WorldWideScience

Sample records for adenylyl cyclase type

  1. Isoform-targeted regulation of cardiac adenylyl cyclase.

    Science.gov (United States)

    Ishikawa, Yoshihiro

    2003-01-01

    Numerous attempts have been made to develop strategies for regulating the intracellular cyclic AMP signal pharmacologically, with an intention to establish either new medical therapeutic methods or experimental tools. In the past decades, many pharmacological reagents have been identified that regulate this pathway at the level of the receptor. G protein, adenylyl cyclase, cyclic AMP, protein kinase A and phosphodiesterase. Since the cloning of adenylyl cyclase isoforms during the 1990s, investigators including ourselves have tried to find reagents that regulate the activity of this enzyme directly in an isoform-dependent manner. The ultimate goal of developing such reagents would be to regulate the cyclic AMP signal in an organ-dependent manner. Ourselves and other workers have reported that such reagents may vary from a simple cation to kinases. In a more recent study, using the results from crystallographic studies and computer-assisted drug design programs, we have identified subtype-selective regulators of adenylyl cyclase. Such regulators are mostly based upon forskolin, a diterpene compound obtained from Coleus forskolii, that acts directly on adenylyl cyclase to increase the intracellular levels of cyclic AMP. Similarly, novel reagents have been identified that inhibit a specific adenylyl cyclase isoform (e.g. type 5 adenylyl cyclase). Such reagents would potentially provide a new therapeutic strategy to treat hypertension, for example, as well as methods to selectively stimulate or inhibit this adenylyl cyclase isoform, which may be reminiscent of overexpression or knocking out of the cardiac adenylyl cyclase isoform by the use of a pharmacological method.

  2. Adenylyl cyclase 2 selectively couples to E prostanoid type 2 receptors, whereas adenylyl cyclase 3 is not receptor-regulated in airway smooth muscle.

    Science.gov (United States)

    Bogard, Amy S; Adris, Piyatilake; Ostrom, Rennolds S

    2012-08-01

    Adenylyl cyclases (ACs) are important regulators of airway smooth muscle function, because β-adrenergic receptor (βAR) agonists stimulate AC activity and cAMP production. We have previously shown in a number of cell types that AC6 selectively couples to βAR and these proteins are coexpressed in lipid rafts. We overexpressed AC2, AC3, and AC6 in mouse bronchial smooth muscle cells (mBSMCs) and human embryonic kidney (HEK)-293 cells by using recombinant adenoviruses and assessed their localization and regulation by various G protein-coupled receptors (GPCRs). AC3 and AC6 were expressed primarily in caveolin-rich fractions, whereas AC2 expression was excluded from these domains. AC6 expression enhanced cAMP production in response to isoproterenol but did not increase responses to butaprost, reflecting the colocalization of AC6 with β(2)AR but not E prostanoid type 2 receptor (EP(2)R) in lipid raft fractions. AC2 expression enhanced butaprost-stimulated cAMP production but had no effect on the β(2)AR-mediated response. AC3 did not couple to any GPCR tested. Forskolin-induced arborization of mBSMCs was assessed as a functional readout of cAMP signaling. Arborization was enhanced by overexpression of AC6 and AC3, but AC2 had no effect. GPCR-stimulated arborization mirrored the selective coupling observed for cAMP production. With the addition of the phosphodiesterase 4 (PDE4) inhibitor rolipram AC2 accelerated forskolin-stimulated arborization. Thus, AC2 selectively couples to EP(2)R, but signals from this complex are limited by PDE4 activity. AC3 does not seem to couple to GPCR in either mBSMCs or HEK-293 cells, so it probably exists in a distinct signaling domain in these cells.

  3. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  4. Relaxin Stimulates cAMP Production in MCF-7 Cells upon Overexpression of Type V Adenylyl Cyclase

    OpenAIRE

    Nguyen, Bao T.; Dessauer, Carmen W.

    2005-01-01

    Relaxin stimulates cAMP production and activation of ERK and PI3K in THP-1 cells. Relaxin also stimulates protein kinase C zeta (PKCζ) translocation to the plasma membrane in a PI3K-dependent manner in THP-1 and MCF-7 cells. However, relaxin did not increase cAMP production in MCF-7 cells. We overexpressed different adenylyl cyclase (AC) isoforms in MCF-7 cells to examine coupling of endogenous relaxin receptors to cAMP production. Overexpression of types II and IV AC had no effect on cAMP pr...

  5. Type 5 adenylyl cyclase plays a major role in stabilizing heart rate in response to microgravity induced by parabolic flight

    Science.gov (United States)

    Okumura, Satoshi; Tsunematsu, Takashi; Bai, Yunzhe; Jiao, Qibin; Ono, Shinji; Suzuki, Sayaka; Kurotani, Reiko; Sato, Motohiko; Minamisawa, Susumu; Umemura, Satoshi; Ishikawa, Yoshihiro

    2008-01-01

    It is well known that autonomic nervous activity is altered under microgravity, leading to disturbed regulation of cardiac function, such as heart rate. Autonomic regulation of the heart is mostly determined by β-adrenergic receptors/cAMP signal, which is produced by adenylyl cyclase, in cardiac myocytes. To examine a hypothesis that a major cardiac isoform, type 5 adenylyl cyclase (AC5), plays an important role in regulating heart rate during parabolic flights, we used transgenic mouse models with either disrupted (AC5KO) or overexpressed AC5 in the heart (AC5TG) and analyzed heart rate variability. Heart rate had a tendency to decrease gradually in later phases within one parabola in each genotype group, but the magnitude of decrease was smaller in AC5KO than that in the other groups. The inverse of heart rate, i.e., the R-R interval, was much more variable in AC5KO and less variable in AC5TG than that in wild-type controls. The standard deviation of normal R-R intervals, a marker of total autonomic variability, was significantly greater in microgravity phase in each genotype group, but the magnitude of increase was much greater in AC5KO than that in the other groups, suggesting that heart rate regulation became unstable in the absence of AC5. In all, AC5 plays a major role in stabilizing heat rate under microgravity. PMID:18450980

  6. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    Science.gov (United States)

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  7. Bicarbonate-Regulated Soluble Adenylyl Cyclase

    Directory of Open Access Journals (Sweden)

    Wuttke MS

    2001-07-01

    Full Text Available Soluble adenylyl cyclase (sAC represents a novel form of mammalian adenylyl cyclase structurally, molecularly, and biochemically distinct from the G protein-regulated, transmembrane adenylyl cyclases (tmACs. sAC possesses no transmembrane domains and is insensitive to classic modulators of tmACs, such as heterotrimeric G proteins and P site ligands. Thus, sAC defines an independently regulated cAMP signaling system within mammalian cells. sAC is directly stimulated by bicarbonate ion both in vivo in heterologously expressing cells and in vitro using purified protein. sAC appears to be the predominant form of adenylyl cyclase (AC in mammalian sperm, and its direct activation by bicarbonate provides a mechanism for generating the cAMP required to complete the bicarbonate-induced processes necessary for fertilization, including hyperactivated motility, capacitation, and the acrosome reaction. Immunolocalization studies reveal sAC is also abundantly expressed in other tissues which respond to bicarbonate or carbon dioxide levels suggesting it may function as a general bicarbonate/CO(2 sensor throughout the body.

  8. Deletion of Type 3 Adenylyl Cyclase Perturbs the Postnatal Maturation of Olfactory Sensory Neurons and Olfactory Cilium Ultrastructure in Mice

    Science.gov (United States)

    Zhang, Zhe; Yang, Dong; Zhang, Mengdi; Zhu, Ning; Zhou, Yanfen; Storm, Daniel R.; Wang, Zhenshan

    2017-01-01

    Type 3 adenylyl cyclase (Adcy3) is localized to the cilia of olfactory sensory neurons (OSNs) and is an essential component of the olfactory cyclic adenosine monophosphate (cAMP) signaling pathway. Although the role of this enzyme in odor detection and axonal projection in OSNs was previously characterized, researchers will still have to determine its function in the maturation of postnatal OSNs and olfactory cilium ultrastructure. Previous studies on newborns showed that the anatomic structure of the main olfactory epithelium (MOE) of Adcy3 knockout mice (Adcy3-/-) is indistinguishable from that of their wild-type littermates (Adcy3+/+), whereas the architecture and associated composition of MOE are relatively underdeveloped at this early age. The full effects of sensory deprivation on OSNs may not also be exhibited in such age. In the present study, following a comparison of postnatal OSNs in seven-, 30-, and 90-day-old Adcy3-/- mice and wild-type controls (Adcy3+/+), we observed that the absence of Adcy3 leads to cumulative defects in the maturation of OSNs. Upon aging, Adcy3-/- OSNs exhibited increase in immature cells and reduction in mature cells along with elevated apoptosis levels. The density and ultrastructure of Adcy3-/- cilia were also disrupted in mice upon aging. Collectively, our results reveal an indispensable role of Adcy3 in postnatal maturation of OSNs and maintenance of olfactory cilium ultrastructure in mice through adulthood. PMID:28154525

  9. Adenylyl cyclase type 6 overexpression selectively enhances β-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts

    OpenAIRE

    Liu, Xiaoqiu; Thangavel, Muthusamy; Sun, Shu Qiang; Kaminsky, Joseph; Mahautmr, Penden; Stitham, Jeremiah; Hwa, John; Ostrom, Rennolds S.

    2007-01-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor β and inhibited by agents that elevate 3′,5′-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. Th...

  10. Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein.

    Science.gov (United States)

    Shima, F; Yamawaki-Kataoka, Y; Yanagihara, C; Tamada, M; Okada, T; Kariya, K; Kataoka, T

    1997-03-01

    Posttranslational modification of Ras protein has been shown to be critical for interaction with its effector molecules, including Saccharomyces cerevisiae adenylyl cyclase. However, the mechanism of its action was unknown. In this study, we used a reconstituted system with purified adenylyl cyclase and Ras proteins carrying various degrees of the modification to show that the posttranslational modification, especially the farnesylation step, is responsible for 5- to 10-fold increase in Ras-dependent activation of adenylyl cyclase activity even though it has no significant effect on their binding affinity. The stimulatory effect of farnesylation is found to depend on the association of adenylyl cyclase with 70-kDa adenylyl cyclase-associated protein (CAP), which was known to be required for proper in vivo response of adenylyl cyclase to Ras protein, by comparing the levels of Ras-dependent activation of purified adenylyl cyclase with and without bound CAP. The region of CAP required for this effect is mapped to its N-terminal segment of 168 amino acid residues, which coincides with the region required for the in vivo effect. Furthermore, the stimulatory effect is successfully reconstituted by in vitro association of CAP with the purified adenylyl cyclase molecule lacking the bound CAP. These results indicate that the association of adenylyl cyclase with CAP is responsible for the stimulatory effect of posttranslational modification of Ras on its activity and that this may be the mechanism underlying its requirement for the proper in vivo cyclic AMP response.

  11. Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose.

    Directory of Open Access Journals (Sweden)

    Rosemary C Challis

    Full Text Available We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII, a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found, similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.

  12. Pharmacological stimulation of type 5 adenylyl cyclase stabilizes heart rate under both microgravity and hypergravity induced by parabolic flight.

    Science.gov (United States)

    Bai, Yunzhe; Tsunematsu, Takashi; Jiao, Qibin; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Jin, Meihua; Cai, Wenqian; Jin, Hui-Ling; Fujita, Takayuki; Ichikawa, Yasuhiro; Suita, Kenji; Kurotani, Reiko; Yokoyama, Utako; Sato, Motohiko; Iwatsubo, Kousaku; Ishikawa, Yoshihiro; Okumura, Satoshi

    2012-01-01

    We previously demonstrated that type 5 adenylyl cyclase (AC5) functions in autonomic regulation in the heart. Based on that work, we hypothesized that pharmacological modulation of AC5 activity could regulate the autonomic control of the heart rate under micro- and hypergravity. To test this hypothesis, we selected the approach of activating AC5 activity in mice with a selective AC5 activator (NKH477) or inhibitor (vidarabine) and examining heart rate variability during parabolic flight. The standard deviation of normal R-R intervals, a marker of total autonomic variability, was significantly greater under micro- and hypergravity in the vidarabine group, while there were no significant changes in the NKH477 group, suggesting that autonomic regulation was unstable in the vidarabine group. The ratio of low frequency and high frequency (HF) in heart rate variability analysis, a marker of sympathetic activity, became significantly decreased under micro- and hypergravity in the NKH477 group, while there was no such decrease in the vidarabine group. Normalized HF, a marker of parasympathetic activity, became significantly greater under micro- and hypergravity in the NKH477 group. In contrast, there was no such increase in the vidarabine group. This study is the first to indicate that pharmacological modulation of AC5 activity under micro- and hypergravity could be useful to regulate the autonomic control of the heart rate.

  13. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia.

    Science.gov (United States)

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R

    2011-04-13

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.

  14. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase.

    Science.gov (United States)

    Ramos-Espiritu, Lavoisier; Kleinboelting, Silke; Navarrete, Felipe A; Alvau, Antonio; Visconti, Pablo E; Valsecchi, Federica; Starkov, Anatoly; Manfredi, Giovanni; Buck, Hannes; Adura, Carolina; Zippin, Jonathan H; van den Heuvel, Joop; Glickman, J Fraser; Steegborn, Clemens; Levin, Lonny R; Buck, Jochen

    2016-10-01

    The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.

  15. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    Directory of Open Access Journals (Sweden)

    Sarah eGuadiana

    2016-05-01

    Full Text Available The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII, somatostatin receptor 3 (SSTR3, and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344 and Fischer 344 x Brown Norway (F344 x BN rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 x BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in DG. Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young

  16. The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae.

    Science.gov (United States)

    Thangavel, Muthusamy; Liu, Xiaoqiu; Sun, Shu Qiang; Kaminsky, Joseph; Ostrom, Rennolds S

    2009-02-01

    Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.

  17. Tissue-Specific Expression of a Type I Adenylyl Cyclase Rescues the rutabaga Mutant Memory Defect: In Search of the Engram

    Science.gov (United States)

    Zars, Troy; Wolf, Reinhard; Davis, Ron; Heisenberg, Martin

    2000-01-01

    Most attempts to localize physical correlates of memory in the central nervous system (CNS) rely on ablation techniques. This approach has the limitation of defining just one of an unknown number of structures necessary for memory formation. We have used the Drosophila rutabaga type I Ca2+/CaM-dependent adenylyl cyclase (AC) gene to determine in which CNS region AC expression is sufficient for memory formation. Using pan-neural and restricted CNS expression with the GAL4 binary transcription activation system, we have rescued the memory defect of the rutabaga mutant in a fast robust spatial learning paradigm. The ventral ganglion, antennal lobes, and median bundle are likely the CNS structures sufficient for rutabaga AC- dependent spatial learning. PMID:10706599

  18. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb.

    Science.gov (United States)

    Luo, Jie; Chen, Xuanmao; Pan, Yung-Wei; Lu, Song; Xia, Zhengui; Storm, Daniel R

    2015-01-01

    The type 3 adenylyl cyclase (AC3) is localized to olfactory cilia in the main olfactory epithelium (MOE) and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN) targeting, its role in granule cells (GCs), the most abundant interneurons in the main olfactory bulb (MOB), remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ), however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.

  19. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Jie Luo

    Full Text Available The type 3 adenylyl cyclase (AC3 is localized to olfactory cilia in the main olfactory epithelium (MOE and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN targeting, its role in granule cells (GCs, the most abundant interneurons in the main olfactory bulb (MOB, remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ, however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.

  20. Deducing the origin of soluble adenylyl cyclase, a gene lost in multiple lineages

    NARCIS (Netherlands)

    Roelofs, Jeroen; Haastert, Peter J.M. van

    2002-01-01

    The family of eukaryotic adenylyl cyclases consists of a very large group of 12 transmembrane adenylyl cyclases and a very small group of soluble adenylyl cyclase (sAC). Orthologs of human sAC are present in rat Diclyostelium and bacteria but absent from the completely sequenced genomes of Drosophil

  1. Adenylyl cyclase type 6 overexpression selectively enhances beta-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts.

    Science.gov (United States)

    Liu, Xiaoqiu; Thangavel, Muthusamy; Sun, Shu Qiang; Kaminsky, Joseph; Mahautmr, Penden; Stitham, Jeremiah; Hwa, John; Ostrom, Rennolds S

    2008-06-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor beta and inhibited by agents that elevate 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. The present study sought to define the localization of key G protein-coupled receptors with adenylyl cyclase type 6 (AC6) in lipid rafts of rat cardiac fibroblasts and to determine if this colocalization was functionally relevant. We found that cardiac fibroblasts produce cAMP in response to agonists for beta-adrenergic (isoproterenol), prostaglandin EP2 (butaprost), adenosine (adenosine-5'-N-ethylcarboxamide, NECA), and prostacyclin (beraprost) receptors. Overexpression of AC6 increased cAMP production stimulated by isoproterenol and beraprost but not by butaprost or NECA. A key function of fibroblasts is the production of collagen. Isoproterenol- and beraprostmediated inhibition of collagen synthesis was also enhanced by AC6 overexpression, while inhibition by butaprost and NECA were unaltered. Lipid raft fractions from cardiac fibroblasts contain the preponderance of beta-adrenergic receptors and AC6 but exclude EP2 receptors. While we could not determine the localization of native prostacyclin receptors, we were able to determine that epitope-tagged prostanoid IP receptors (IPR) expressed in COS7 cells did localize, in part, in lipid raft fractions. These findings indicate that IP receptors are expressed in lipid rafts and can activate raft-localized AC isoforms. AC6 is completely compartmentized in lipid raft domains where it is activated solely by coresident G protein-coupled receptors to regulate cardiac fibroblast function.

  2. AKAPs and Adenylyl Cyclase in Cardiovascular Physiology and Pathology

    Science.gov (United States)

    Efendiev, Riad; Dessauer, Carmen W.

    2011-01-01

    Cyclic AMP, generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins (AKAPs) localize the effect of cAMP in space and time by organizing receptors, adenylyl cyclase, protein kinase A and other components of the cAMP cascade into multiprotein complexes. In this review we discuss how interaction of AKAPs with distinct AC isoforms affects cardiovascular physiology. PMID:21978991

  3. Calcium regulation of adenylyl cyclase relevance for endocrine control.

    Science.gov (United States)

    Antoni, F A

    1997-01-01

    A fundamental process in the hormonal regulation of body functions is the conversion of the intercellular signal into an intracellular signal. The first recognized intracellular messengers mediating the actions of hormones were calcium ions (Ca(2+)) and adenosine 3':5' monophosphate (cAMP), which is synthesized from ATP by adenylyl cyclase. Recent work on the structure of adenylyl cyclases has shown that these enzymes are individually tailored molecular machines controlled by diverse Ca(2+)-dependent mechanisms. These include allosteric regulation of enzyme activity through the Ca(2+)-receptor protein calmodulin, apparently direct actions of Ca(2+)on the cyclase catalytic moiety and phosphorylation/dephosphorylation by Ca(2+)-regulated protein kinases and protein phosphatases. This article is a brief review of the recent developments in the area of cyclase control that forecast a major revival of the interest in cAMP-Ca(2+)interactions. (c) 1997, Elsevier Science Inc. (Trends Endocrinol Metab 1997;8:7-14).

  4. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an

  5. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an importa

  6. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins.

    OpenAIRE

    Wang, J; Suzuki, N.; Kataoka, T

    1992-01-01

    In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leuci...

  7. Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutants of yeast adenylyl cyclase defective in CAP binding.

    Science.gov (United States)

    Wang, J; Suzuki, N; Nishida, Y; Kataoka, T

    1993-07-01

    In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.

  8. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins.

    Science.gov (United States)

    Wang, J; Suzuki, N; Kataoka, T

    1992-11-01

    In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.

  9. Intracellular cAMP signaling by soluble adenylyl cyclase.

    Science.gov (United States)

    Tresguerres, Martin; Levin, Lonny R; Buck, Jochen

    2011-06-01

    Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cyclic adenosine 3',5' monophosphate (cAMP). sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems that are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells.

  10. Similarly potent inhibition of adenylyl cyclase by P-site inhibitors in hearts from wild type and AC5 knockout mice.

    Directory of Open Access Journals (Sweden)

    Joerg H Braeunig

    Full Text Available Adenylyl cyclase type 5 (AC5 was described as major cardiac AC isoform. The knockout of AC5 (AC5KO exerted cardioprotective effects in heart failure. Our study explored the impact of AC5KO on mouse heart AC activities and evaluated putative AC5-selective inhibitors. In cardiac membranes from AC5KO mice, basal AC activity was decreased, while AC stimulation was intact. The putative AC5-selective P-site inhibitors SQ22,536 [9-(tetra-hydro-2-furanyl-9H-purin-6-amine], vidarabine (9-β-D-arabinosyladenine and NKY80 [2-amino-7-(2-furanyl-7,8-dihydro-5(6H-quinazolinone] inhibited recombinant AC5 more potently than AC2 and AC1, but selectivity was only modest (∼4-40-fold. These compounds inhibited cardiac AC from WT and AC5KO mice with similar potencies. In conclusion, AC regulation in AC5KO hearts was unimpaired, questioning the supposed dominant role of AC5 in the heart. Moreover, the AC inhibitors SQ22,536, NKY80 and vidarabine lack adequate selectivity for AC5 and, therefore, do not present suitable tools to study AC5-specific functions.

  11. Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex

    Directory of Open Access Journals (Sweden)

    Robichon Alain

    2004-06-01

    Full Text Available Abstract Background We investigated how the synthesis of cAMP, stimulated by isoproterenol acting through β-adrenoreceptors and Gs, is strongly amplified by simultaneous incubation with baclofen. Baclofen is an agonist of δ-aminobutyric acid type B receptors [GABAB], known to inhibit adenylyl cyclase via Gi. Because these agents have opposite effects on cAMP levels, the unexpected increase in cAMP synthesis when they are applied simultaneously has been intensively investigated. From previous reports, it appears that cyclase type II contributes most significantly to this phenomenon. Results We found that simultaneous application of isoproterenol and baclofen specifically influences the association/dissociation of molecules involved in the induction and termination of cyclase activity. Beta/gamma from [GABA]B receptor-coupled Gi has a higher affinity for adenylyl cyclase isoform(s when these isoforms are co-associated with Gs. Our data also suggest that, when beta/gamma and Gαs are associated with adenylyl cyclase isoform(s, beta/gamma from [GABA]B receptor-coupled Gi retards the GTPase activity of Gαs from adrenergic receptor. These reciprocal regulations of subunits of the adenylyl cyclase complex might be responsible for the drastic increase of cAMP synthesis in response to the simultaneous signals. Conclusions Simultaneous signals arriving at a particular synapse converge on molecular detectors of coincidence and trigger specific biochemical events. We hypothesize that this phenomenon comes from the complex molecular architectures involved, including scaffolding proteins that make reciprocal interactions between associated molecules possible. The biochemistry of simultaneous signaling is addressed as a key to synaptic function.

  12. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway.

    Science.gov (United States)

    Li, Sen; Ping, Na-Na; Cao, Lei; Mi, Yan-Ni; Cao, Yong-Xiao

    2015-12-15

    Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway.

  13. Ibogaine and noribogaine potentiate the inhibition of adenylyl cyclase activity by opioid and 5-HT receptors.

    Science.gov (United States)

    Rabin, R A; Winter, J C

    1996-12-05

    The effects of the putative anti-addictive compound ibogaine and its principal metabolite, noribogaine, on adenylyl cyclase activity were determined in various areas of the rat brain. Neither compound altered either basal or forskolin-stimulated adenylyl cyclase activities in the frontal cortex, midbrain or striatum. However, in all three brain areas the addition of ibogaine and noribogaine significantly enhanced inhibition of adenylyl cyclase activity by a maximally effective concentration of morphine. Similarly, both compounds also potentiated the inhibition of hippocampal adenylyl cyclase activity by a maximally effective concentration of 5-hydroxytryptamine (5-HT). Although ibogaine appears to be more potent than noribogaine in augmenting opioid- and 5-HT-mediated inhibition of adenylyl cyclase activity, both compounds appear to be of comparable efficacy. Neither compound, however, modified the inhibitory action of the muscarinic acetylcholine agonist, carbachol, on adenylyl cyclase activity. The present data indicate that ibogaine and noribogaine cause a selective increase in receptor-mediated inhibition of adenylyl cyclase activity. This potentiation may be involved in the pharmacological actions of these compounds.

  14. Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild type

  15. Genetic and biochemical analysis of the adenylyl cyclase-associated protein, cap, in Schizosaccharomyces pombe.

    OpenAIRE

    Kawamukai, M; Gerst, J; Field, J.; Riggs, M.; Rodgers, L; Wigler, M; Young, D

    1992-01-01

    We have identified, cloned, and studied a gene, cap, encoding a protein that is associated with adenylyl cyclase in the fission yeast Schizosaccharomyces pombe. This protein shares significant sequence homology with the adenylyl cyclase-associated CAP protein in the yeast Saccharomyces cerevisiae. CAP is a bifunctional protein; the N-terminal domain appears to be involved in cellular responsiveness to RAS, whereas loss of the C-terminal portion is associated with morphological and nutritional...

  16. Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps.

    Science.gov (United States)

    Ostrom, Rennolds S; Bogard, Amy S; Gros, Robert; Feldman, Ross D

    2012-01-01

    Adenylyl cyclases are a ubiquitous family of enzymes and are critical regulators of metabolic and cardiovascular function. Multiple isoforms of the enzyme are expressed in a range of tissues. However, for many processes, the adenylyl cyclase isoforms have been thought of as essentially interchangeable, with their impact more dependent on their common actions to increase intracellular cyclic adenosine monophosphate content regardless of the isoform involved. It has long been appreciated that each subfamily of isoforms demonstrate a specific pattern of "upstream" regulation, i.e., specific patterns of ion dependence (e.g., calcium-dependence) and specific patterns of regulation by kinases (protein kinase A (PKA), protein kinase C (PKC), raf). However, more recent studies have suggested that adenylyl cyclase isoform-selective patterns of signaling are a wide-spread phenomenon. The determinants of these selective signaling patterns relate to a number of factors, including: (1) selective coupling of specific adenylyl cyclase isoforms with specific G protein-coupled receptors, (2) localization of specific adenylyl cyclase isoforms in defined structural domains (AKAP complexes, caveolin/lipid rafts), and (3) selective coupling of adenylyl cyclase isoforms with specific downstream signaling cascades important in regulation of cell growth and contractility. The importance of isoform-specific regulation has now been demonstrated both in mouse models as well as in humans. Adenylyl cyclase has not been viewed as a useful target for therapeutic regulation, given the ubiquitous expression of the enzyme and the perceived high risk of off-target effects. Understanding which isoforms of adenylyl cyclase mediate distinct cellular effects would bring new significance to the development of isoform-specific ligands to regulate discrete cellular actions.

  17. Diazepam inhibits forskolin-stimulated adenylyl cyclase activity in human tumour cells.

    Science.gov (United States)

    Niles, L P; Wang, J

    1999-10-01

    Previous studies have shown that the benzodiazepine agonist, diazepam, suppresses adenylyl cyclase activity in rat brain, via a G protein-coupled benzodiazepine receptor. Since diazepam binding sites are also present in diverse non-neuronal tissues including tumour cells, its effects on adenylyl cyclase activity were examined in membranes from human MCF-7 (breast cancer) and M-6 (melanoma) cells. Diazepam caused a biphasic and concentration-dependent inhibition of forskolin-stimulated adenylyl cyclase activity in MCF-7 membranes. The first phase of inhibition, at picomolar to nanomolar drug concentrations (EC50=5.7 x 10(-12)M), is similar to the receptor mediated phase observed in the rat brain. At micromolar concentrations of diazepam (EC50= 1.8 x 10(-4)M), the steep decrease in adenylyl cyclase activity may involve a direct action on the enzyme itself, as detected previously in rat brain membranes. Diazepam-induced suppression of adenylyl cyclase activity was also detected in M-6 membranes. However, in contrast to MCF-7 findings, only micromolar concentrations of diazepam (EC50=5.2 x 10(-4)M) inhibited enzyme activity in M-6 membranes. These findings suggest that G protein-coupled benzodiazepine receptors, which mediate inhibition of the adenylyl cyclase-cAMP pathway in the brain, are also expressed in MCF-7 cells.

  18. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    Science.gov (United States)

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  19. Inhibition of adenylyl and guanylyl cyclase isoforms by the antiviral drug foscarnet.

    Science.gov (United States)

    Kudlacek, O; Mitterauer, T; Nanoff, C; Hohenegger, M; Tang, W J; Freissmuth, M; Kleuss, C

    2001-02-02

    The pyrophosphate (PP(i)) analog foscarnet inhibits viral DNA-polymerases and is used to treat cytomegalovirus and human immunodeficiency vius infections. Nucleotide cyclases and DNA-polymerases catalyze analogous reactions, i.e. a phosphodiester bond formation, and have similar topologies in their active sites. Inhibition by foscarnet of adenylyl cyclase isoforms was therefore tested with (i) purified catalytic domains C1 and C2 of types I and VII (IC1 and VIIC1) and of type II (IIC2) and (ii) membrane-bound holoenzymes (from mammalian tissues and types I, II, and V heterologously expressed in Sf9 cell membranes). Foscarnet was more potent than PP(i) in suppressing forskolin-stimulated catalysis by both, IC1/IIC2 and VIIC1/IIC2. Stimulation of VIIC1/IIC2 by Galpha(s) relieved the inhibition by foscarnet but not that by PP(i). The IC(50) of foscarnet on membrane-bound adenylyl cyclases also depended on their mode of regulation. These findings predict that receptor-dependent cAMP formation is sensitive to inhibition by foscarnet in some, but not all, cells. This was verified with two cell lines; foscarnet blocked cAMP accumulation after A(2A)-adenosine receptor stimulation in PC12 but not in HEK-A(2A) cells. Foscarnet also inhibited soluble and, to a lesser extent, particulate guanylyl cylase. Thus, foscarnet interferes with the generation of cyclic nucleotides, an effect which may give rise to clinical side effects. The extent of inhibition varies with the enzyme isoform and with the regulatory input.

  20. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    Energy Technology Data Exchange (ETDEWEB)

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  1. Coiled-coil interaction of N-terminal 36 residues of cyclase-associated protein with adenylyl cyclase is sufficient for its function in Saccharomyces cerevisiae ras pathway.

    Science.gov (United States)

    Nishida, Y; Shima, F; Sen, H; Tanaka, Y; Yanagihara, C; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    1998-10-23

    In the budding yeast Saccharomyces cerevisiae, association with the 70-kDa cyclase-associated protein (CAP) is required for proper response of adenylyl cyclase to Ras proteins. We show here that a small segment comprising the N-terminal 36 amino acid residues of CAP is sufficient for association with adenylyl cyclase as well as for its function in the Ras-adenylyl cyclase pathway as assayed by the ability to confer RAS2(Val-19)-dependent heat shock sensitivity to yeast cells. The CAP-binding site of adenylyl cyclase was mapped to a segment of 119 amino acid residues near its C terminus. Both of these regions contained tandem repetitions of a heptad motif alphaXXalphaXXX (where alpha represents a hydrophobic amino acid and X represents any amino acid), suggesting a coiled-coil interaction. When mutants of CAP defective in associating with adenylyl cyclase were isolated by screening of a pool of randomly mutagenized CAP, they were found to carry substitution mutations in one of the key hydrophobic residues in the heptad repeats. Furthermore, mutations of the key hydrophobic residues in the heptad repeats of adenylyl cyclase also resulted in loss of association with CAP. These results indicate the coiled-coil mechanism as a basis of the CAP-adenylyl cyclase interaction.

  2. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  3. Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells

    OpenAIRE

    Sultana Hameeda; Neelakanta Girish; Rivero Francisco; Blau-Wasser Rosemarie; Schleicher Michael; Noegel Angelika A

    2012-01-01

    Abstract Background Cell adhesion, an integral part of D. discoideum development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development. Results Here, we have investigated the role of cyclase-associated protein (CAP), an important regul...

  4. [The influence of two-month treatment with bromocryptine on activity of the adenylyl cyclase signaling system in the myocardium and testes of rats with type 2 diabetes mellitus].

    Science.gov (United States)

    Derkach, K V; Bondareva, V M; Moyseyuk, I V; Shpakov, A O

    2014-01-01

    One of the common complications of type 2 diabetes mellitus (DM2) are cardiovascular diseases and dysfunctions of the reproductive system, indicating the urgency of developing new approaches to their correction. Last years for the treatment of DM2 began to use bromocryptine (BC), the agonist of type 2 dopamine receptors, which not only restores the energy metabolism, but also prevents the development of cardiovascular diseases. However, the mechanisms and targets of BC action are poorly understood. The purpose of this study was to investigate the effect of BC treatment on functional activity of adenylyl cyclase signaling system (ACSS) in the myocardium and testes of male rats with DM2, which is caused by high-fat diet and treatment with streptozotocin (25 mg/kg). The treatment with BC (60 days, orally at a dose of 0.6 mg/kg once every two days) was started 90 days after the beginning of high-fat diet. Diabetic rats had an increased body weight, elevated triglycerides level, impaired glucose tolerance, and insulin resistance. The treatment with BC resulted in the restoration of glycometabolic indicators and in the improvement of insulin sensitivity. Adenylyl cyclase (AC) stimulating effects of guanylylimidodiphosphate (GppNHp), relaxin, and agonists of β-adrenergic receptors (β3-AR)--isoproterenol and norepinephrine were decreased in the miocardium of the diabetic rats. The corresponding effects of the β-agonists BRL-37344 and CL-316243 was preserved. The inhibitory effect of somatostatin on forskolin-stimulated AC activity was attenuated, while the inhibitory effect of noradrenaline mediated through α2-AR increased. The treatment with BC resulted in the normalization of the adrenergic signaling in the myocardium and partially restoration of AC effects of relaxin and somatostatin. In the testes of diabetic rats, the basal and stimulated by GppNHp, forskolin, human chorionic gonadotropin and pituitary AC-activating polypeptide AC activity were decreased, and the

  5. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    Science.gov (United States)

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  6. Impairment of adenylyl cyclase signal transduction in mecobalamin-deficient rats.

    Science.gov (United States)

    Hatta, S; Watanabe, M; Ikeda, H; Kamada, H; Saito, T; Ohshika, H

    1995-11-30

    This study examined alterations in the beta-adrenoceptor-G5-adenylyl cyclase system in cerebral cortex membranes from vitamin B12-deficient rats fed a diet lacking vitamin B12 (mecobalamin) for 15 weeks. Basal, 5(7)-guanylylimidodiphosphate (GppNHp)-, isoproterenol-, and forskolin-stimulated adenylyl cyclase activities were significantly reduced in mecobalamin-deficient rats compared with those in control rats. However, no significant differences were observed in the amount and function of G5- estimated by immunoblotting and guanine nucleotide photoaffinity labeling, respectively, or in the densities and the dissociation constants of beta-adrenoceptors, estimated by [125I] pindolol binding, between control and the deficient rats. These results indicate that vitamin B12 deficiency results in the impairment of the coupling among the beta-adrenoceptor, G5- and the catalytic subunit of adenylyl cyclase, and in dysfunction of the catalytic subunit of the enzyme, suggesting that vitamin B12 participates in the regulation of neuronal adenylyl cyclase signal transduction.

  7. A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression

    NARCIS (Netherlands)

    Otsuka, Hideshi; Haastert, Peter J.M. van

    1998-01-01

    Dictyostelium development is induced by starvation. The adenylyl cyclase gene ACA is one of the first genes expressed upon starvation. ACA produces extracellular cAMP that induces chemotaxis, aggregation, and differentiation in neighboring cells. Using insertional mutagenesis we have isolated a muta

  8. Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins.

    Science.gov (United States)

    Yu, G; Swiston, J; Young, D

    1994-06-01

    We previously reported the identification of human CAP, a protein that is related to the Saccharomyces cerevisiae and Schizosaccharomyces pombe adenylyl cyclase-associated CAP proteins. The two yeast CAP proteins have similar functions: the N-terminal domains are required for the normal function of adenylyl cyclase, while loss of the C-terminal domains result in morphological and nutritional defects that are unrelated to the cAMP pathways. We have amplified and cloned cDNAs from a human glioblastoma library that encode a second CAP-related protein, CAP2. The human CAP and CAP2 proteins are 64% identical. Expression of either human CAP or CAP2 in S. cerevisiae cap- strains suppresses phenotypes associated with deletion of the C-terminal domain of CAP, but does not restore hyper-activation of adenylyl cyclase by RAS2val19. Similarly, expression of either human CAP or CAP2 in S. pombe cap- strains suppresses the morphological and temperature-sensitive phenotypes associated with deletion of the C-terminal domain of CAP in this yeast. In addition, expression of human CAP, but not CAP2, suppresses the propensity to sporulate due to deletion of the N-terminal domain of CAP in S. pombe. This latter observation suggests that human CAP restores normal adenylyl cyclase activity in S. pombe cap- cells. Thus, functional properties of both N-terminal and C-terminal domains are conserved between the human and S. pombe CAP proteins.

  9. A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression

    NARCIS (Netherlands)

    Otsuka, Hideshi; Haastert, Peter J.M. van

    1998-01-01

    Dictyostelium development is induced by starvation. The adenylyl cyclase gene ACA is one of the first genes expressed upon starvation. ACA produces extracellular cAMP that induces chemotaxis, aggregation, and differentiation in neighboring cells. Using insertional mutagenesis we have isolated a muta

  10. [BETA-ADRENERGIC REGULATION OF THE ADENYLYL CYCLASE SIGNALING SYSTEM IN MYOCARDIUM AND BRAIN OF RATS WITH OBESITY AND TYPES 2 DIABETES MELLITUS AND THE EFFECT OF LONG-TERM INTRANASAL INSULIN TREATMENT].

    Science.gov (United States)

    Kuznetsova, L A; Sharova, T S; Pertseva, M N; Shpakov, A O

    2015-01-01

    The stimulating effect of norepinephrine, isoproterenol and selective β-adrenoceptor (β3-AR) agonists BRL 37344 and CL 316.243 on the adenylyl cyclase signaling system (ACSS) in the brain and myocardium of young and mature rats (disease induction at 2 and 4 months, respectively) with experimental obesity and type 2 diabetes mellitus (DM2), and the influence of long-term treatment of animals with intranasal insulin (I-I) were studied. The AC stimulatory effects of β-agonist isoproterenol in animals with obesity and DM2 was shown to be practically unchanged. The respective effects of norepinephrine on the AC activity were attenuated in the brain of young and mature rats and in the myocardium if mature rats, and the I-I treatment led to their partial recovery. In the brain and myocardium of mature rats with obesity and DM2, the enhancement of the AC stimulatory effects of β3-AR agonists was observed, white in young rats the influence of the same pathological conditions was lacking. The I-I treatment decreased the AC stimulatory effects of β3-agonists to their levels in the control. Since functional disruption of the adrenergic agonist-sensitive ACSS can lead to metabolic syndrome and DM2, the recovery of this system by the I-I treatment offers one of the ways to correct these diseases and their complications in the nervous and cardiovascular systems.

  11. New structural forms of a mycobacterial adenylyl cyclase Rv1625c

    Directory of Open Access Journals (Sweden)

    Deivanayaga Barathy

    2014-09-01

    Full Text Available Rv1625c is one of 16 adenylyl cyclases encoded in the genome of Mycobacterium tuberculosis. In solution Rv1625c exists predominantly as a monomer, with a small amount of dimer. It has been shown previously that the monomer is active and the dimeric fraction is inactive. Both fractions of wild-type Rv1625c crystallized as head-to-head inactive domain-swapped dimers as opposed to the head-to-tail dimer seen in other functional adenylyl cyclases. About half of the molecule is involved in extensive domain swapping. The strain created by a serine residue located on a hinge loop and the crystallization condition might have led to this unusual domain swapping. The inactivity of the dimeric form of Rv1625c could be explained by the absence of the required catalytic site in the swapped dimer. A single mutant of the enzyme was also generated by changing a phenylalanine predicted to occur at the functional dimer interface to an arginine. This single mutant exists as a dimer in solution but crystallized as a monomer. Analysis of the structure showed that a salt bridge formed between a glutamate residue in the N-terminal segment and the mutated arginine residue hinders dimer formation by pulling the N-terminal region towards the dimer interface. Both structures reported here show a change in the dimerization-arm region which is involved in formation of the functional dimer. It is concluded that the dimerization arm along with other structural elements such as the N-terminal region and certain loops are vital for determining the oligomeric nature of the enzyme, which in turn dictates its activity.

  12. A reduced susceptibility to chemoconvulsant stimulation in adenylyl cyclase 8 knockout mice

    Science.gov (United States)

    Chen, Xia; Dong, Guoying; Zheng, Changhong; Wang, Hongbing; Yun, Wenwei; Zhou, Xianju

    2015-01-01

    Objective Adenylyl cyclases (ACs) catalyze the synthesis of cAMP from ATP, and cAMP signaling affects a large number of neuronal processes. Ca2+-stimualted adenylyl cyclase 8 (AC8) expressed in the CNS plays a role in synaptic plasticity, drug addiction and ethanol sensitivity, and chronic pain. This study was to aim at examining the contributions of AC8 to epileptogenesis. Methods In this study, we observed the seizure behavior induced by kainic acid (20mg/kg or 30mg/kg) or pilocarpine (350mg/kg) in AC8 KO and wild-type mice. Next we injected kainic acid or pilocarpine to induce status epilepticus (SE), and examined neuronal degeneration (by Fluoro-Jade B staining) and mossy fiber sprouting (by Timm staining) 24 hr and 2 weeks after SE termination in the hippocampus, respectively. Finally, 15min after intraperitoneal injection of kainic acid (30mg/kg), we examined phosphor-ERK1/2 in the hippocampus by western blot and immunochemistry staining. Results We first observed that AC8 KO mutants display reduced susceptibility (including seizure latency and episodes) to two chemoconvulsants, kainic acid and pilocarpine. Moreover, we found that degenerative neurons and mossy fiber sprouting induced by chemoconvulsants were significant decreased in the hippocampus. Further, western blot and immunochemistry analysis revealed that the MAPK signaling in the hippocampus was attenuated in kainic acid-injected AC8 KO mice. Conclusion AC8 is involved in epileptogenesis, and may serve as a potential target for the treatment of epilepsy. PMID:26656781

  13. Stimulation of renin secretion by catecholamines is dependent on adenylyl cyclases 5 and 6.

    Science.gov (United States)

    Aldehni, Fadi; Tang, Tong; Madsen, Kirsten; Plattner, Michael; Schreiber, Andrea; Friis, Ulla G; Hammond, H Kirk; Han, Pyung Lim; Schweda, Frank

    2011-03-01

    The sympathetic nervous system stimulates renin release from juxtaglomerular cells via the β-adrenoreceptor-cAMP pathway. Recent in vitro studies have suggested that the calcium-inhibited adenylyl cyclases (ACs) 5 and 6 possess key roles in the control of renin exocytosis. To investigate the relative contribution of AC5 and AC6 to the regulation of renin release in vivo we performed experiments using AC5 and AC6 knockout mice. Male AC5(-/-) mice exhibited normal plasma renin concentrations, renal renin synthesis (mRNA and renin content), urinary volume, and systolic blood pressure. In male AC6(-/-) mice, plasma renin concentration (AC6(-/-): 732 ± 119; AC6 (+/+): 436 ± 78 ng of angiotensin I per hour*mL(-1); Prenin synthesis were stimulated associated with an increased excretion of dilute urine (1.55-fold; Pplasma renin concentration by a single injection of the β-adrenoreceptor agonist isoproterenol (10 mg/kg IP) was significantly attenuated in AC5(-/-) (male: -20%; female: -33%) compared with wild-type mice in vivo. The mitigation of the plasma renin concentration response to isoproterenol was even more pronounced in AC6(-/-) (male: -63%; female: -50% versus AC6(+/+)). Similarly, the effects of isoproterenol, prostaglandin E2, and pituitary adenylyl cyclase-activating polypeptide on renin release from isolated perfused kidneys were attenuated to a higher extent in AC6(-/-) (-51% to -98% versus AC6(+/+)) than in AC5(-/-) (-31% to 46% versus AC5(+/+)). In conclusion, both AC5 and AC6 are involved in the stimulation of renin secretion in vivo, and AC6 is the dominant isoforms in this process.

  14. The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein

    Science.gov (United States)

    Ramos-Espiritu, Lavoisier; Diaz, Ana; Nardin, Charlee; Saviola, Anthony J.; Shaw, Fiona; Plitt, Tamar; Yang, Xia; Wolchok, Jedd; Pirog, Edyta C.; Desman, Garrett; Sboner, Andrea; Zhang, Tuo; Xiang, Jenny; Merghoub, Taha; Levin, Lonny R.; Buck, Jochen; Zippin, Jonathan H.

    2016-01-01

    cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein. PMID:27323809

  15. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    Science.gov (United States)

    Zippin, Jonathan H.; Farrell, Jeanne; Huron, David; Kamenetsky, Margarita; Hess, Kenneth C.; Fischman, Donald A.; Levin, Lonny R.; Buck, Jochen

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation. PMID:14769862

  16. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    OpenAIRE

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation.

  17. Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng; ZHAO Guo-hong; JIA Yin-hua; DU Xiong-ming

    2008-01-01

    @@ CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild type cotton Gossypium arboreum L.(DPL971) and its natural fuzzless mutant (DPL972).The gene consisted of an open reading frame of 1,416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa.

  18. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    Science.gov (United States)

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  19. Genetic reduction of chronic muscle pain in mice lacking calcium/calmodulin-stimulated adenylyl cyclases

    Directory of Open Access Journals (Sweden)

    Petrovic Michele J

    2006-02-01

    Full Text Available Abstract Background The Ca2+/calmodulin-stimulated adenylyl cyclase (AC isoforms AC1 and AC8, couple NMDA receptor activation to cAMP signaling pathways in neurons and are important for development, learning and memory, drug addiction and persistent pain. AC1 and AC8 in the anterior cingulate cortex (ACC and the spinal cord were previously shown to be important in subcutaneous inflammatory pain. Muscle pain is different from cutaneous pain in its characteristics as well as conducting fibers. Therefore, we conducted the present work to test the role of AC1 and AC8 in both acute persistent and chronic muscle pain. Results Using an acute persistent inflammatory muscle pain model, we found that the behavioral nociceptive responses of both the late phase of acute muscle pain and the chronic muscle inflammatory pain were significantly reduced in AC1 knockout (KO and AC1&8 double knockout (DKO mice. Activation of other adenylyl cyclases in these KO mice by microinjection of forskolin into the ACC or spinal cord, but not into the peripheral tissue, rescued the behavioral nociceptive responses. Additionally, intra-peritoneal injection of an AC1 inhibitor significantly reduced behavioral responses in both acute persistent and chronic muscle pain. Conclusion The results of the present study demonstrate that neuronal Ca2+/calmodulin-stimulated adenylyl cyclases in the ACC and spinal cord are important for both late acute persistent and chronic inflammatory muscle pain.

  20. Effects of dopamine on adenylyl cyclase activity and amylase secretion in rat parotid tissue.

    Science.gov (United States)

    Hatta, S; Amemiya, N; Takemura, H; Ohshika, H

    1995-06-01

    Several previous studies have shown that dopamine causes amylase secretion from rat parotid tissue. However, the mechanism of this dopamine action is still unclear. The present study was designed to characterize dopamine action in rat parotid gland tissue by examining the effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release. Dopamine significantly enhanced accumulation of cyclic AMP in parotid slices and stimulated adenylyl cyclase activity in parotid membrane preparations. It also significantly stimulated amylase release from parotid slices. The stimulatory effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release were effectively blocked with propranolol, a beta-adrenergic antagonist, but not by either SCH 23390, a preferential D1 antagonist, or butaclamol, a preferential D2 antagonist. No substantial specific binding sites for D1 receptors were detectable by [3H]SCH 23390 binding in parotid membranes. These results suggest that the stimulatory effect of dopamine on amylase secretion in rat parotid tissue is not mediated through specific D1 dopamine receptors but rather through beta-adrenergic receptors.

  1. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    Science.gov (United States)

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved.

  2. The Functional State of Hormone-Sensitive Adenylyl Cyclase Signaling System in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Alexander O. Shpakov

    2013-01-01

    Full Text Available Diabetes mellitus (DM induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.

  3. Overexpression of Gs proteins and adenylyl cyclase in normal and diabetic islets.

    Science.gov (United States)

    Portela-Gomes, Guida M; Abdel-Halim, Samy M

    2002-08-01

    Knowledge about the relation between G proteins and adenylyl cyclases (ACs) is important for the construction of signaling paradigms to increase our understanding of signal transduction in the normal state and its alterations in pathologic states, such as type-2 diabetes. The immunocytochemical expression patterns of the stimulatory Gs proteins (G alpha-s and G alpha-olf) and the in vitro Ca2+-stimulated ACs (AC1, 3, and 8) were studied in normal and spontaneously diabetic Goto-Kakizaki (GK) rat pancreatic islets with use of well-characterized antibodies. The expressions of G alpha-11 and AC2, abundant in pancreatic islets, were also studied. G alpha-s and G alpha-olf were mainly expressed in insulin cells, and G alpha-11 in glucagon cells. The immunoreactivity to G alpha-s and G alpha-olf and to AC1 and AC3 was higher in the GK islets than in the controls, whereas AC8 was found only in the diabetic islets. Strong G alpha-11 and AC2 immunoreactivity was seen equally in both animal groups. G alpha-s was colocalized with all ACs, whereas G alpha-olf was mainly colocalized with AC3, and G alpha-11 with AC1. The current findings may help in drawing a more specific signaling paradigm coupling Gs proteins to ACs.

  4. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.

    Science.gov (United States)

    Choi, Hyun B; Gordon, Grant R J; Zhou, Ning; Tai, Chao; Rungta, Ravi L; Martinez, Jennifer; Milner, Teresa A; Ryu, Jae K; McLarnon, James G; Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; MacVicar, Brian A

    2012-09-20

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Bicarbonate-sensing soluble adenylyl cyclase is present in the cell cytoplasm and nucleus of multiple shark tissues.

    Science.gov (United States)

    Roa, Jinae N; Tresguerres, Martin

    2017-01-01

    The enzyme soluble adenylyl cyclase (sAC) is directly stimulated by bicarbonate (HCO3(-)) to produce the signaling molecule cyclic adenosine monophosphate (cAMP). Because sAC and sAC-related enzymes are found throughout phyla from cyanobacteria to mammals and they regulate cell physiology in response to internal and external changes in pH, CO2, and HCO3(-), sAC is deemed an evolutionarily conserved acid-base sensor. Previously, sAC has been reported in dogfish shark and round ray gill cells, where they sense and counteract blood alkalosis by regulating the activity of V-type H(+)- ATPase. Here, we report the presence of sAC protein in gill, rectal gland, cornea, intestine, white muscle, and heart of leopard shark Triakis semifasciata Co-expression of sAC with transmembrane adenylyl cyclases supports the presence of cAMP signaling microdomains. Furthermore, immunohistochemistry on tissue sections, and western blots and cAMP-activity assays on nucleus-enriched fractions demonstrate the presence of sAC protein in and around nuclei. These results suggest that sAC modulates multiple physiological processes in shark cells, including nuclear functions. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    Science.gov (United States)

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc.

  7. A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology.

    Science.gov (United States)

    Efendiev, Riad; Dessauer, Carmen W

    2011-10-01

    3'-5'-Cyclic adenosine monophosphate (cAMP), generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology, including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins localize the effect of cAMP in space and time by organizing receptors, AC, protein kinase A, and other components of the cAMP cascade into multiprotein complexes. In this review, we discuss how the interaction of A kinase-anchoring proteins with distinct AC isoforms affects cardiovascular physiology.

  8. Adenylyl Cyclase-Associated Protein 1 in the Development of Head and Neck Squamous Cell Carcinomas.

    Science.gov (United States)

    Kakurina, G V; Kondakova, I V; Cheremisina, O V; Shishkin, D A; Choinzonov, E L

    2016-03-01

    We compared the content of adenylyl cyclase-associated protein 1 (CAP1) in the blood and tissues of patients with head and neck squamous cell carcinomas (with and without regional metastases), patients with chronic inflammatory diseases aggravated by laryngeal and laryngopharyngeal dysplasia, and healthy individuals. The data suggest that serum CAP1 concentration correlated with the depth of primary tumor invasion and the presence of regional metastases. In cancer patients, the serum level of CAP1 was lower than in patients with laryngeal and laryngopharyngeal dysplasia, which can be of importance for differential and timely diagnostics of malignant tumors.

  9. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.; Sutkowski, E.M.; Seamon, K.B. (Division of Biochemistry and Biophysics, Food and Drug Administration, Bethesda, MD (USA))

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.

  10. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene.

    Science.gov (United States)

    Rodriguez-Centeno, Javier; Sastre, Leandro

    2016-01-01

    Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation.

  11. Molecular cloning and characterization of a rat homolog of CAP, the adenylyl cyclase-associated protein from Saccharomyces cerevisiae.

    Science.gov (United States)

    Zelicof, A; Gatica, J; Gerst, J E

    1993-06-25

    We have isolated a rat cDNA whose expression suppresses the physiological consequences of the chromosomal disruption of CAP, the gene encoding the adenylyl cyclase-associated protein of Saccharomyces cerevisiae. Yeast CAP is a bifunctional protein: the NH2 terminus is necessary and sufficient for cellular responsiveness to activated RAS proteins, while the COOH terminus is required for normal cellular morphology and growth control. The rat MCH1 cDNA encodes a protein of 474 amino acids that is 36% identical to S. cerevisiae CAP and is capable of suppressing the loss of the COOH-terminal functions of CAP when expressed in yeast. The MCH1 protein therefore appears to be a structural and functional homolog of the yeast cyclase-associated proteins. Northern analysis of MCH1 gene expression shows it to be constitutively expressed in all cell and tissue types examined. The cloning of a rat homolog of CAP, in addition to the cloning of a human CAP homolog by Matviw et al. (Matviw, H., Yu, G., and Young, D. (1992) Mol. Cell. Biol. 12, 5033-5040), demonstrates that both cyclase-associated proteins and their functions may have evolved with mammalian cells.

  12. G protein β1γ2 subunits purification and their interaction with adenylyl cyclase

    Institute of Scientific and Technical Information of China (English)

    CHEN; Julian; (陈巨莲); NI; Hanxiang; (倪汉祥); SUN; Jingrui; (孙京瑞); WENG; Gezhi

    2003-01-01

    A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) β1γ2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (Spodoptera frugiperda) and H5 (Trichoplusia ni) were used to express the recombinant protein Gβ1γ2. The cell membrane containing Gβ1γ2 was isolated through affinity chromatography column with Ni-NTA agarose by FPLC method, and the highly purified protein was obtained. The adenylyl cyclase 2 (AC2) activity assay showed that the purified Gβ1γ2 could significantly stimulate AC2 activity. The interaction of β1γ2 subunits of G protein with the cytoplasmic tail of various mammalian adenylyl cyclases was monitored by BIAcore technology using NTA sensor chip, which relies on the phenomenon of surface plasmon resonance (SPR). The experiments showed the direct binding of Gβ1γ2 to the cytoplasmic tail C2 domain of AC2. The specific binding domain of AC2 with Gβ1γ2 was the same as AC2 activity domain which was stimulated by β1γ2.

  13. Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice

    Science.gov (United States)

    Tong, Tao; Shen, Ying; Lee, Han-Woong; Yu, Rina; Park, Taesun

    2016-01-01

    Adenylyl cyclase 3 (Adcy3), a member of the mammalian adenylyl cyclase family responsible for generating the second messenger cAMP, has long been known to play an essential role in olfactory signal transduction. Here, we demonstrated that Adcy3 heterozygous null mice displayed increased visceral adiposity in the absence of hyperphagia and developed abnormal metabolic features characterized by impaired insulin sensitivity, dyslipidemia, and increased plasma levels of proinflammatory cytokines on both chow and high-fat diet (HFD). Of note, HFD decreased the Adcy3 expression in white adipose tissue, liver, and muscle. We also report for the first time that Adcy3 haploinsufficiency resulted in reduced expression of genes involved in thermogenesis, fatty acid oxidation, and insulin signaling, with enhanced expression of genes related to adipogenesis in peripheral tissues of mice. In conclusion, these findings suggest that cAMP signals generated by Adcy3 in peripheral tissues may play a pivotal role in modulating obesity and insulin sensitivity. PMID:27678003

  14. Characterization of Plasmodium falciparum adenylyl cyclase-β and its role in erythrocytic stage parasites.

    Directory of Open Access Journals (Sweden)

    Eric Salazar

    Full Text Available The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has been shown to be important for the parasite's ability to infect the host's liver, but its role during parasite growth inside erythrocytes, the stage responsible for symptomatic malaria, is less clear. The P. falciparum genome encodes two adenylyl cyclases, the enzymes that synthesize cAMP, PfACα and PfACβ. We now show that one of these, PfACβ, plays an important role during the erythrocytic stage of the P. falciparum life cycle. Biochemical characterization of PfACβ revealed a marked pH dependence, and sensitivity to a number of small molecule inhibitors. These inhibitors kill parasites growing inside red blood cells. One particular inhibitor is selective for PfACβ relative to its human ortholog, soluble adenylyl cyclase (sAC; thus, PfACβ represents a potential target for development of safe and effective antimalarial therapeutics.

  15. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis.

    Science.gov (United States)

    Tresguerres, Martin; Parks, Scott K; Salazar, Eric; Levin, Lonny R; Goss, Greg G; Buck, Jochen

    2010-01-05

    pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO(3)(-)). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H(+)) and HCO(3)(-) at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO(3)(-) and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO(3)(-) levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H(+) into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom.

  16. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body.

    Science.gov (United States)

    Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D

    2011-12-02

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.

  17. Regulation of Anterior Chamber Drainage by Bicarbonate-sensitive Soluble Adenylyl Cyclase in the Ciliary Body*

    Science.gov (United States)

    Lee, Yong S.; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y.; Levin, Lonny R.; Buck, Jochen; Marmorstein, Alan D.

    2011-01-01

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (Ct). Modulation of “inflow” and “outflow” pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in Ct with no effect on inflow. In mice deficient in sAC IOP is elevated, and Ct is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or Ct in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate Ct and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure. PMID:21994938

  18. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis.

    Science.gov (United States)

    Drum, C L; Yan, S Z; Sarac, R; Mabuchi, Y; Beckingham, K; Bohm, A; Grabarek, Z; Tang, W J

    2000-11-17

    The edema factor exotoxin produced by Bacillus anthracis is an adenylyl cyclase that is activated by calmodulin (CaM) at resting state calcium concentrations in infected cells. A C-terminal 60-kDa fragment corresponding to the catalytic domain of edema factor (EF3) was cloned, overexpressed in Escherichia coli, and purified. The N-terminal 43-kDa domain (EF3-N) of EF3, the sole domain of edema factor homologous to adenylyl cyclases from Bordetella pertussis and Pseudomonas aeruginosa, is highly resistant to protease digestion. The C-terminal 160-amino acid domain (EF3-C) of EF3 is sensitive to proteolysis in the absence of CaM. The addition of CaM protects EF3-C from being digested by proteases. EF3-N and EF3-C were expressed separately, and both fragments were required to reconstitute full CaM-sensitive enzyme activity. Fluorescence resonance energy transfer experiments using a double-labeled CaM molecule were performed and indicated that CaM adopts an extended conformation upon binding to EF3. This contrasts sharply with the compact conformation adopted by CaM upon binding myosin light chain kinase and CaM-dependent protein kinase type II. Mutations in each of the four calcium binding sites of CaM were examined for their effect on EF3 activation. Sites 3 and 4 were found critical for the activation, and neither the N- nor the C-terminal domain of CaM alone was capable of activating EF3. A genetic screen probing loss-of-function mutations of EF3 and site-directed mutations based on the homology of the edema factor family revealed a conserved pair of aspartate residues and an arginine that are important for catalysis. Similar residues are essential for di-metal-mediated catalysis in mammalian adenylyl cyclases and a family of DNA polymerases and nucleotidyltransferases. This suggests that edema factor may utilize a similar catalytic mechanism.

  19. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation.

    Science.gov (United States)

    Kawai, M; Aotsuka, S; Uchimiya, H

    1998-12-01

    The cDNA encoding CAP (adenylyl cyclase-associated protein) was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA (GhCAP) contained an open reading frame that encoded 471 amino acid residues. RNA blot analysis showed that the cotton CAP gene was expressed mainly in young fibers.

  20. The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module.

    Directory of Open Access Journals (Sweden)

    Jürgen Ulrich Linder

    Full Text Available YHS-domains are small protein modules which have been proposed to bind transition-metal ions like the related TRASH-domains. They are found in a variety of enzymes including copper-transporting ATPases and adenylyl cyclases. Here we investigate a class IIIc adenylyl cyclase from Mycobacterium phlei which contains a C-terminal YHS-domain linked to the catalytic domain by a peptide of 8 amino acids. We expressed the isolated catalytic domain and the full-length enzyme in E. coli. The catalytic domain requires millimolar Mn2+ as a cofactor for efficient production of cAMP, is unaffected by low micromolar concentrations of Cu2+ and inhibited by concentrations higher than 10 μM. The full-length enzyme also requires Mn2+ in the absence of an activator. However, 1-10 μM Cu2+ stimulate the M. phlei adenylyl cyclase sixfold when assayed with Mn2+. With Mg2+ as the probable physiological cofactor of the adenylyl cyclase Cu2+ specifically switches the enzyme from an inactive to an active state. Other transition-metal ions do not elicit activity with Mg2+. We favor the view that the YHS-domain of M. phlei adenylyl cyclase acts as a sensor for copper ions and signals elevated levels of the transition-metal via cAMP. By analogy to TRASH-domains binding of Cu2+ probably occurs via one conserved aspartate and three conserved cysteine-residues in the YHS-domain.

  1. Adenylyl Cyclase Signaling in the Developing Chick Heart: The Deranging Effect of Antiarrhythmic Drugs

    Directory of Open Access Journals (Sweden)

    Lucie Hejnova

    2014-01-01

    Full Text Available The adenylyl cyclase (AC signaling system plays a crucial role in the regulation of cardiac contractility. Here we analyzed the key components of myocardial AC signaling in the developing chick embryo and assessed the impact of selected β-blocking agents on this system. Application of metoprolol and carvedilol, two commonly used β-blockers, at embryonic day (ED 8 significantly downregulated (by about 40% expression levels of AC5, the dominant cardiac AC isoform, and the amount of Gsα protein at ED9. Activity of AC stimulated by forskolin was also significantly reduced under these conditions. Interestingly, when administered at ED4, these drugs did not produce such profound changes in the myocardial AC signaling system, except for markedly increased expression of Giα protein. These data indicate that β-blocking agents can strongly derange AC signaling during the first half of embryonic heart development.

  2. Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy.

    Science.gov (United States)

    Iwatsubo, Kousaku; Tsunematsu, Takashi; Ishikawa, Yoshihiro

    2003-06-01

    Adenylyl cyclase (AC) is a target enzyme of multiple G-protein-coupled receptors (GPCRs). In the past decade, the cloning, structure and biochemical properties of nine AC isoforms were reported, and each isoform of AC shows distinct patterns of tissue distribution and biochemical/pharmacological properties. In addition to the conventional regulators of this enzyme, such as calmodulin (CaM) or PKC, novel regulators, for example, caveolin, have been identified. Most importantly, these regulators work on AC in an isoform dependent manner. Recent studies have demonstrated that certain classic AC inhibitors, i.e., P-site inhibitors, show an isoform-dependent inhibition of AC. The side chain modifications of forskolin, a diterpene extract from Coleus forskolii, markedly enhance its isoform selectivity. When taken together, these findings suggest that it is feasible to develop new pharmacotherapeutic agents that target AC isoforms to regulate various neurohormonal signals in a highly tissue-/organ-specific manner.

  3. In vitro metacyclogenesis of Trypanosoma cruzi induced by starvation correlates with a transient adenylyl cyclase stimulation as well as with a constitutive upregulation of adenylyl cyclase expression.

    Science.gov (United States)

    Hamedi, Afsaneh; Botelho, Larisse; Britto, Constança; Fragoso, Stenio Perdigão; Umaki, Adriana Castilhos Souza; Goldenberg, Samuel; Bottu, Guy; Salmon, Didier

    2015-01-01

    The Trypanosoma cruzi adenylyl cyclase (AC) multigene family encodes different isoforms (around 15) sharing a variable large N-terminal domain, which is extracellular and receptor-like, followed by a transmembrane helix and a conserved C-terminal catalytic domain. It was proposed that these key enzymes in the cAMP signalling pathway allow the parasite to sense its changing extracellular milieu in order to rapidly adapt to its new environment, which is generally achieved through a differentiation process. One of the critical differentiation events the parasitic protozoan T. cruzi undergoes during its life cycle, known as metacyclogenesis, occurs in the digestive tract of the insect and corresponds to the differentiation from noninfective epimastigotes to infective metacyclic trypomastigote forms. By in vitro monitoring the activity of AC during metacyclogenesis, we showed that both the activity of AC and the intracellular cAMP content follow a similar pattern of transient stimulation in a two-step process, with a first activation peak occurring during the first hours of nutritional stress and a second peak between 6 and 48 h, corresponding to the cellular adhesion. During this differentiation process, a general mechanism of upregulation of AC expression of both mRNA and protein is triggered and in particular for a major subclass of these enzymes that are present in various gene copies commonly associated to the THT gene clusters. Although the scattered genome distribution of these gene copies is rather unusual in trypanosomatids and seems to be a recent acquisition in the evolution of the T. cruzi clade, their encoded product redistributed on the flagellum of the parasite upon differentiation could be important to sense the extracellular milieu.

  4. A HCO(3)(-)-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca²⁺ currents in locus coeruleus neurons.

    Science.gov (United States)

    Imber, Ann N; Santin, Joseph M; Graham, Cathy D; Putnam, Robert W

    2014-12-01

    Hypercapnic acidosis activates Ca²⁺ channels and increases intracellular Ca²⁺ levels in neurons of the locus coeruleus, a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca²⁺-activated K⁺ channels, in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in locus coeruleus neurons. Here, we present evidence that the Ca²⁺ current is activated by a HCO(3)(-)-sensitive pathway. The increase in HCO(3)(-) associated with hypercapnia activates HCO(3)(-)-sensitive adenylyl cyclase (soluble adenylyl cyclase). This results in an increase in cyclic adenosine monophosphate levels and activation of Ca²⁺ channels via cyclic adenosine monophosphate-activated protein kinase A. We also show the presence of soluble adenylyl cyclase in the cytoplasm of locus coeruleus neurons, and that the cyclic adenosine monophosphate analogue db-cyclic adenosine monophosphate increases Ca²⁺i. Disrupting this pathway by decreasing HCO(3)(-) levels during acidification or inhibiting either soluble adenylyl cyclase or protein kinase A, but not transmembrane adenylyl cyclase, can increase the magnitude of the firing rate response to hypercapnia in locus coeruleus neurons from older neonates to the same extent as inhibition of K⁺ channels. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice.

    Science.gov (United States)

    Farrell, Jeanne; Ramos, Lavoisier; Tresguerres, Martin; Kamenetsky, Margarita; Levin, Lonny R; Buck, Jochen

    2008-09-22

    Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex)/Sacy(tm1Lex) knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex) knockout allele. These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.

  6. Temporal and Regional Regulation of Gene Expression by Calcium-Stimulated Adenylyl Cyclase Activity during Fear Memory

    OpenAIRE

    Lindsay Wieczorek; James W Maas; Muglia, Lisa M.; Vogt, Sherri K.; Muglia, Louis J.

    2010-01-01

    BACKGROUND: The Ca2+-stimulated adenylyl cyclases (ACs), AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1(-/-)Adcy8(-/-); DKO) display impaired fear memory processing; the mechanism of this impairment is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gen...

  7. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.

    Science.gov (United States)

    Guo, Qing; Jureller, Justin E; Warren, Julia T; Solomaha, Elena; Florián, Jan; Tang, Wei-Jen

    2008-08-29

    Calmodulin (CaM), a eukaryotic calcium sensor that regulates diverse biological activities, consists of N- and C-terminal globular domains (N-CaM and C-CaM, respectively). CaM serves as the activator of CyaA, a 188-kDa adenylyl cyclase toxin secreted by Bordetella pertussis, which is the etiologic agent for whooping cough. Upon insertion of the N-terminal adenylyl cyclase domain (ACD) of CyaA to its targeted eukaryotic cells, CaM binds to this domain tightly ( approximately 200 pm affinity). This interaction activates the adenylyl cyclase activity of CyaA, leading to a rise in intracellular cAMP levels to disrupt normal cellular signaling. We recently solved the structure of CyaA-ACD in complex with C-CaM to elucidate the mechanism of catalytic activation. However, the structure of the interface between N-CaM and CyaA, the formation of which contributes a 400-fold increase of binding affinity between CyaA and CaM, remains elusive. Here, we used site-directed mutations and molecular dynamic simulations to generate several working models of CaM-bound CyaA-ACD. The validity of these models was evaluated by disulfide bond cross-linking, point mutations, and fluorescence resonance energy transfer experiments. Our study reveals that a beta-hairpin region (amino acids 259-273) of CyaA-ACD likely makes contacts with the second calcium binding motif of the extended CaM. This mode of interaction differs from the interaction of N-CaM with anthrax edema factor, which binds N-CaM via its helical domain. Thus, two structurally conserved, bacterial adenylyl cyclase toxins have evolved to utilize distinct binding surfaces and modes of activation in their interaction with CaM, a highly conserved eukaryotic signaling protein.

  8. Extracellular regulation of sperm transmembrane adenylyl cyclase by a forward motility stimulating protein.

    Directory of Open Access Journals (Sweden)

    Souvik Dey

    Full Text Available Forward motility stimulating factor (FMSF, a glycoprotein isolated from buffalo serum, binds to the surface of the mature sperm cells to promote their progressive motility. This article reports the mode of signal transduction of this extracellular factor in goat sperm. The mechanism was investigated by assaying intracellular second messenger level and forward motility in presence of different pharmacological modulators. Mg++-dependent Forskolin responsive form of transmembrane adenylyl cyclase (tmAC of goat spermatozoa was probed for its involvement in FMSF action. Dideoxyadenosine, a selective inhibitor of tmACs, was used to identify the role of this enzyme in the scheme of FMSF-signaling. Involvement of the α-subunit of G-protein in this regard has been inspected using GTPγS. Participation of protein kinase A (PKA and tyrosine kinase was checked using IP20 and genistein, respectively. FMSF promotes tmAC activity in a dose-dependent manner through receptor/G-protein activation to enhance intracellular cAMP and forward motility. Motility boosting effects of this glycoprotein are almost lost in presence of dideoxyadenosine. But, FMSF displayed substantial motility promoting activity when movement of spermatozoa was inhibited with KH7, the specific inhibitor of soluble adenylyl cyclase indicating tmAC to be the primary target of FMSF action. Involvement of cAMP in mediating FMSF action was confirmed by the application of dibutyryl cAMP. Observed motility regulatory effects with IP20 and genistein indicate contribution of PKA and tyrosine kinase in FMSF activity; enhanced phosphorylation of a tyrosine containing ≈50 kDa protein was detected in this regard. FMSF initiates a novel signaling cascade to stimulate tmAC activity that augments intracellular cAMP, which through downstream crosstalk of phosphokinases leads to enhanced forward motility in mature spermatozoa. Thus, this article for the first time describes conventional tm

  9. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies.

    Science.gov (United States)

    Selwa, Edithe; Davi, Marilyne; Chenal, Alexandre; Sotomayor-Pérez, Ana-Cristina; Ladant, Daniel; Malliavin, Thérèse E

    2014-07-25

    Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg(338), Asn(347), and Asp(360)) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn(347); ACm1A), two (Arg(338) and Asp(360); ACm2A), or three residues (Arg(338), Asn(347), and Asp(360); ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3AC-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.

  10. Molecular Cloning, and Characterization of an Adenylyl Cyclase-Associated Protein from Gossypium arboreum L.

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng; ZHAO Guo-hong; JIA Yin-hua; DU Xiong-ming

    2009-01-01

    The aim of this study was to clone CAP (adenylyl cyclase-associated protein) gene from Gossypium arboreum L. and develop a platform for expressing and purifying CAP protein, which is a base for the construction and function researches of CAP. In this work, a CAP homolog from cotton (DPL971) ovule was identified and cloned. And the cDNA sequence consisted of an open reading frame of 1416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa. To gain insight on the CAP role in cotton fiber development, the cloned CAP cDNA was expressed. A significant higher yield pure protein was obtained with the chromatographic method. Further experiments showed that the purified protein can bind with the actin in vitro indicating that the recombinant cotton CAP is functional. The procedure described here produced high yield pure protein through one chromatographic step, suitable for further structure-function studies.

  11. Structure of the Class IV Adenylyl Cyclase Reveals a Novel Fold

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher,D.; Smith, N.; Kim, S.; Heroux, A.; Robinson, H.; Reddy, P.

    2006-01-01

    The crystal structure of the class IV adenylyl cyclase (AC) from Yersinia pestis (Yp) is reported at 1.9 {angstrom} resolution. The class IV AC fold is distinct from the previously described folds for class II and class III ACs. The dimeric AC-IV folds into an antiparallel eight-stranded barrel whose connectivity has been seen in only three previous structures: yeast RNA triphosphatase and two proteins of unknown function from Pyrococcus furiosus and Vibrio parahaemolyticus. Eight highly conserved ionic residues E10, E12, K14, R63, K76, K111, D126, and E136 lie in the barrel core and form the likely binding sites for substrate and divalent cations. A phosphate ion is observed bound to R63, K76, K111, and R113 near the center of the conserved cluster. Unlike the AC-II and AC-III active sites that utilize two-Asp motifs for cation binding, the AC-IV active site is relatively enriched in glutamate and features an ExE motif as its most conserved element. Homologs of Y. pestis AC-IV, including human thiamine triphosphatase, span the three kingdoms of life and delineate an ancient family of phosphonucleotide processing enzymes.

  12. Role of signal transduction crosstalk between adenylyl cyclase and MAP kinase in hippocampus-dependent memory.

    Science.gov (United States)

    Xia, Zhengui; Storm, Daniel R

    2012-08-16

    One of the intriguing questions in neurobiology is how long-term memory (LTM) traces are established and maintained in the brain. Memory can be divided into at least two temporally and mechanistically distinct forms. Short-term memory (STM) lasts no longer than several hours, while LTM persists for days or longer. A crucial step in the generation of LTM is consolidation, a process in which STM is converted to LTM. Hippocampus-dependent LTM depends on activation of Ca(2+), Erk/MAP kinase (MAPK), and cAMP signaling pathways, as well as de novo gene expression and translation. One of the transcriptional pathways strongly implicated in LTM is the CREB/CRE (calcium, cAMP response element) transcriptional pathway. Interestingly, this transcriptional pathway may also contribute to other forms of neuroplasticity including adaptive responses to drugs. Evidence discussed in this review indicates that activation of the Erk1/2 MAP Kinase (MAPK)/CRE transcriptional pathway during the formation of hippocampus-dependent memory depends on calmodulin (CaM)-stimulated adenylyl cyclases.

  13. Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi.

    Directory of Open Access Journals (Sweden)

    Jorge García-Martínez

    Full Text Available The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H(2O(2, but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group.

  14. In silico prediction of tyrosinase and adenylyl cyclase inhibitors from natural compounds.

    Science.gov (United States)

    Fong, Pedro; Tong, Henry H Y; Chao, Chi M

    2014-02-01

    Although many herbal medicines are effective in the treatment of hyperpigmentation, the potency of different constituents remains unknown. In this work, more than 20,000 herbal ingredients from 453 herbs were docked into the crystal structures of adenylyl cyclase and a human homology tyrosinase model using Surflex-Dock. These two enzymes are responsible for melanin production and inhibition of them may attain a skin-whitening effect superior to currently available agents. The essential drug properties for topical formulation of the herbal ingredients, including skin permeability, sensitization, irritation, corrosive and carcinogenic properties were predicted by Dermwin, Skin Sensitization Alerts (SSA), Skin Irritation Corrosion Rules Estimation Tool (SICRET) and Benigni/Bossa rulebase module of Toxtree. Moreover, similarity ensemble and pharmacophore mapping approaches were used to forecast other potential targets for these herbal compounds by the software, SEArch and PharmMapper. Overall, this study predicted seven compounds to have advanced drug-like properties over the well-known effective tyrosinase inhibitors, arbutin and kojic acid. These seven compounds have the highest potential for further in vitro and in vivo investigation with the aim of developing safe and high-efficacy skin-whitening agents.

  15. Adenylyl cyclase localization to the uropod of aggregating Dictyostelium cells requires RacC

    Science.gov (United States)

    Wang, C.; Jung, D.; Cao, Z.; Chung, C. Y.

    2015-01-01

    The localization of adenylyl cyclase A (ACA) to uropod of cells is required for the stream formation during Dictyostelium development. RacC is a Dictyostelium orthologue of Cdc42. We identified a streaming defect of racC− cells as they are clearly less polarized and form smaller and fragmented streams. ACA-YFP is mainly associated with intracellular vesicular structures, but not with the plasma membrane in racC− cells. racC− cells have a slightly higher number of vesicles than Ax3 cells, suggesting that the defect of ACA trafficking is not simply due to the lack of vesicle formation. While the ACA-YFP vesicles traveled with an average velocity of 9.1 µm/min in Ax3 cells, a slow and diffusional movement without direction with an average velocity of 4 µm/min was maintained in racC− cells. Images acquired by using total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) analysis revealed that a significantly decreased number of ACA-YFP vesicles appeared near the cell membrane, indicating a defect in ACA-YFP vesicle trafficking. These results suggest an important role of RacC in the rapid and directional movements of ACA vesicles on microtubules to the plasma membrane, especially to the back of polarized cell. PMID:26315268

  16. Adenylyl cyclase 4 does not regulate collecting duct water and sodium handling.

    Science.gov (United States)

    Kittikulsuth, Wararat; Stuart, Deborah; Kohan, Donald E

    2014-01-01

    Abstract Adenylyl cyclase (AC)-stimulated cAMP is a key mediator of collecting duct (CD) Na and water transport. AC isoforms 3, 4, and 6 are expressed in the CD. Our group demonstrated that AC6, but not AC3, is involved in regulating CD Na and water transport. However, the role of AC4 in such regulation remains unknown. Therefore, we generated mice with loxP-flanked critical exons in the Adcy4 gene and bred with mice expressing the aquaporin-2/Cre recombinase transgene to yield CD principal cell-specific knockout of AC4 (CD AC4 KO). Isolated inner medullary CD showed 100% genomic target gene recombination in CD AC4 KO mice, while microdissected cortical CD and renal papillary AC4 mRNA was significantly reduced in CD AC4 KO mice. CD AC4 KO had no effect on vasopressin (AVP)-stimulated cAMP generation in the inner medulla. Water intake, urine volume, and urine osmolality were similar between CD AC4 KO and control mice during normal or restricted water intake. Sodium intake, urinary Na excretion, and blood pressure on a normal-, high-, or low-Na diet were not affected by CD AC4 KO. Moreover, there were no differences in plasma AVP or plasma renin concentration between CD AC4 KO and control mice. In summary, these data suggest that CD AC4 does not play a role in the physiologic regulation of CD Na and water handling.

  17. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    Directory of Open Access Journals (Sweden)

    Kabir Hassan Biswas

    2015-04-01

    Full Text Available GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain. In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

  18. Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells

    Directory of Open Access Journals (Sweden)

    Sultana Hameeda

    2012-01-01

    Full Text Available Abstract Background Cell adhesion, an integral part of D. discoideum development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development. Results Here, we have investigated the role of cyclase-associated protein (CAP, an important regulator of cell polarity and F-actin/G-actin ratio in the aca- mutant. We show that ectopic expression of GFP-CAP improves cell polarization, streaming and aggregation in aca- cells, but it fails to completely restore development. Our studies indicate a requirement of CAP in the ACA dependent signal transduction for progression of the development of unicellular amoebae into multicellular structures. The reduced expression of the cell adhesion molecule DdCAD1 together with csA is responsible for the defects in aca- cells to initiate multicellular development. Early development was restored by the expression of GFP-CAP that enhanced the DdCAD1 transcript levels and to a lesser extent the csA mRNA levels. Conclusions Collectively, our data shows a novel role of CAP in regulating cell adhesion mechanisms during development that might be envisioned to unravel the functions of mammalian CAP during animal embryogenesis.

  19. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    D Gallagher; S Kim; H Robinson; P Reddy

    2011-12-31

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV) - two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  20. Altered collecting duct adenylyl cyclase content in collecting duct endothelin-1 knockout mice

    Directory of Open Access Journals (Sweden)

    Kohan Donald E

    2007-05-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 inhibition of vasopressin (AVP-stimulated water reabsorption by the inner medullary collecting duct (IMCD is associated with reduced cAMP accumulation. To determine the effect of ET-1 deficiency, AVP-stimulated cAMP responsiveness was assessed in IMCD from mice with collecting duct-specific deletion of ET-1 (CD ET-1 KO and from control animals. Methods Cyclic AMP production, adenylyl cyclase (AC mRNA, and AC protein were measured in acutely isolated IMCD. Results CD ET-1 KO IMCD had enhanced AVP-stimulated cAMP accumulation. Inhibition of calcium-stimulated AC using BAPTA did not prevent enhanced AVP responsiveness in CD ET-1 KO IMCD. Factors known to be modified by ET-1, including nitric oxide, cyclooxygenase metabolites, and superoxide did not affect the increased AVP responsiveness of CD ET-1 KO IMCD. Differential V2 receptor or G-protein activity was not involved since CD ET-1 KO IMCD had increased cAMP accumulation in response to forskolin and/or cholera toxin. CD ET-1 KO did not affect mRNA or protein levels of AC3, one of the major known collecting duct AC isoforms. However, the other known major collecting duct AC isoform (AC5/6 did have increased protein levels in CD ET-1 KO IMCD, although AC5 (weak signal and 6 mRNA levels were unchanged. Conclusion ET-1 deficiency increases IMCD AC5/6 content, an effect that may synergize with acute ET-1 inhibition of AVP-stimulated cAMP accumulation.

  1. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, D.T.; Robinson, H.; Kim, S.-K.; Reddy, P. T.

    2011-01-21

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  2. Suppression of adenylyl cyclase-mediated cAMP production by plasma membrane associated cytoskeletal protein 4.1G.

    Science.gov (United States)

    Goto, Toshihiro; Chiba, Ayano; Sukegawa, Jun; Yanagisawa, Teruyuki; Saito, Masaki; Nakahata, Norimichi

    2013-03-01

    It has been shown lately that activity of G protein-coupled receptors (GPCRs) is regulated by an array of proteins binding to carboxy (C)-terminus of GPCRs. Proteins of 4.1 family are subsets of subcortical cytoskeletal proteins and are known to stabilize cellular structures and proteins at the plasma membrane. One of the 4.1 family proteins, 4.1G has been shown to interact with the C-terminus of GPCRs and regulate intracellular distribution of the receptors, including parathyroid hormone (PTH)/PTH-related protein receptor (PTHR). PTHR is coupled to trimeric G proteins G(s) and G(q), which activate the adenylyl cyclase/cyclic AMP (cAMP) pathway and phospholipase C pathway, respectively. During the course of investigation of the role of 4.1G on adenylyl cyclase/cAMP signaling pathway, we found that 4.1G suppressed forskolin-induced cAMP production in cells. The cAMP accumulation induced by forskolin was decreased in HEK293 cells overexpressing 4.1G or increased in 4.1G-knockdown cells. Furthermore, PTH -(1-34)-stimulated cAMP production was also suppressed in the presence of exogenously expressed 4.1G despite its activity to increase the distribution of PTHR to the cell surface. In cells overexpressing FERM domain-deleted 4.1G, a mutant form of the protein deficient in plasma membrane distribution, neither forskolin-induced nor PTH -(1-34)-stimulated cAMP production was not altered. The suppression of the forskolin-induced cAMP production was observed even in membrane preparations of 4.1G-overexpressing cells. In 4.1G-knockdown HEK293 cells, plasma membrane distribution of adenylyl cyclase 6, one of the major subtypes of the enzyme in the cells, showed a slight decrease, in spite of the increased production of cAMP in those cells when stimulated by forskolin. Also, cytochalasin D treatment did not cause any influence on forskolin-induced cAMP production in HEK293 cells. These data indicate that plasma membrane-associated 4.1G regulates GPCR-mediated G(s) signaling

  3. Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum.

    Science.gov (United States)

    Selley, Dana E; Cassidy, Michael P; Martin, Billy R; Sim-Selley, Laura J

    2004-11-01

    Cannabinoid CB(1) receptors in the cerebellum mediate the inhibitory effects of Delta(9)-tetrahydrocannabinol (THC) on motor coordination. Intracellular effects of CB(1) receptors include inhibition of adenylyl cyclase via activation of G(i/o) proteins. There is evidence for the convergence of other neuronal receptors, such as adenosine A(1) and GABA(B), with the cannabinoid system on this signaling pathway to influence motor function. Previous studies have shown that brain CB(1) receptors are desensitized and down-regulated by long-term THC treatment, but few studies have examined the effects of long-term THC treatment on downstream effector activity in brain. Therefore, these studies examined the relationship between CB(1), adenosine A(1), and GABA(B) receptors in cerebella of mice undergoing prolonged treatment with vehicle or THC at the level of G protein activation and adenylyl cyclase inhibition. In control cerebella, CB(1) receptors produced less than additive inhibition of adenylyl cyclase with GABA(B) and A(1) receptors, indicating that these receptors are localized on overlapping populations of cells. Long-term THC treatment produced CB(1) receptor down-regulation and desensitization of both cannabinoid agonist-stimulated G protein activation and inhibition of forskolin-stimulated adenylyl cyclase. However, G protein activation by GABA(B) or A(1) receptors was unaffected. It is noteworthy that heterologous attenuation of GABA(B) and A(1) receptor-mediated inhibition of adenylyl cyclase was observed, even though absolute levels of basal and forskolin- or G(s)-stimulated activity were unchanged. These results indicate that long-term THC administration produces a disruption of inhibitory receptor control of cerebellar adenylyl cyclase and suggest a potential mechanism of cross-tolerance to the motor incoordinating effects of cannabinoid, GABA(B), and A(1) agonists.

  4. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Mavoungou, Chrystelle [Max Planck Institute for Biochemistry (Germany); Israel, Lars [Ludwig Maximilians-University, Adolf Butenandt Institute, Cell Biology (Germany); Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz [Max Planck Institute for Biochemistry (Germany); Noegel, Angelika A. [University of Cologne, Institute for Biochemistry (Germany); Schleicher, Michael [Ludwig Maximilians-University, Adolf Butenandt Institute, Cell Biology (Germany); Holak, Tad A. [Max Planck Institute for Biochemistry (Germany)

    2004-05-15

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state {sup 1}H-{sup 15}N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an {alpha}-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by {beta}-strands.

  5. Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    Science.gov (United States)

    Ksiazek, Dorota; Brandstetter, Hans; Israel, Lars; Bourenkov, Gleb P; Katchalova, Galina; Janssen, Klaus-Peter; Bartunik, Hans D; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2003-09-01

    Cyclase-associated proteins (CAPs) are widely distributed and highly conserved proteins that regulate actin remodeling in response to cellular signals. The N termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C termini bind to G-actin and thereby alter the dynamic rearrangements of the microfilament system. We report here the X-ray structure of the core of the N-terminal domain of the CAP from Dictyostelium discoideum, which comprises residues 51-226, determined by a combination of single isomorphous replacement with anomalous scattering (SIRAS). The overall structure of this fragment is an alpha helix bundle composed of six antiparallel helices. Results from gel filtration and crosslinking experiments for CAP(1-226), CAP(255-464), and the full-length protein, together with the CAP N-terminal domain structure and the recently determined CAP C-terminal domain structure, provide evidence that the functional structure of CAP is multimeric.

  6. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    Science.gov (United States)

    Mavoungou, Chrystelle; Israel, Lars; Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2004-05-01

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands.

  7. Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory.

    Directory of Open Access Journals (Sweden)

    Lindsay Wieczorek

    Full Text Available BACKGROUND: The Ca2+-stimulated adenylyl cyclases (ACs, AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1(-/-Adcy8(-/-; DKO display impaired fear memory processing; the mechanism of this impairment is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gene expression changes associated with conditioned fear (CF memory in wild-type and DKO mice to identify AC-dependent gene regulatory changes that occur in the amygdala and hippocampus at baseline and different time points after CF learning. We observed an overall decrease in transcriptional changes in DKO mice across all time points, but most strikingly, at periods when memory consolidation and retention should be occurring. Further, we identified a shared set of transcription factor binding sites in genes upregulated in wild-type mice that were associated with downregulated genes in DKO mice. To prove the temporal and regional importance of AC activity on different stages of memory processing, the tetracycline-off system was used to produce mice with forebrain-specific inducible expression of AC8 on a DKO background. CF behavioral results reveal that adult restoration of AC8 activity in the forebrain is sufficient for intact learning, while cessation of this expression at any time point across learning causes memory deficits. CONCLUSIONS/SIGNIFICANCE: Overall, these studies demonstrate that the Ca2+-stimulated ACs contribute to the formation and maintenance of fear memory by a network of long-term transcriptional changes.

  8. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy.

    Science.gov (United States)

    Polanco, Maria Josè; Parodi, Sara; Piol, Diana; Stack, Conor; Chivet, Mathilde; Contestabile, Andrea; Miranda, Helen C; Lievens, Patricia M-J; Espinoza, Stefano; Jochum, Tobias; Rocchi, Anna; Grunseich, Christopher; Gainetdinov, Raul R; Cato, Andrew C B; Lieberman, Andrew P; La Spada, Albert R; Sambataro, Fabio; Fischbeck, Kenneth H; Gozes, Illana; Pennuto, Maria

    2016-12-21

    Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser(96) Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser(96) phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.

  9. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity.

    Science.gov (United States)

    Hess, Kenneth C; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A; Buck, Jochen; Levin, Lonny R; Barrientos, Antoni

    2014-10-01

    Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.

  10. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice.

    Directory of Open Access Journals (Sweden)

    Jeanne Farrell

    Full Text Available BACKGROUND: Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex/Sacy(tm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. PRINCIPAL FINDINGS: We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex knockout allele. CONCLUSIONS/SIGNIFICANCE: These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.

  11. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats.

    Science.gov (United States)

    Puebla, L; Rodríguez-Martín, E; Arilla, E

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 micrograms) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activity was markedly increased in hippocampal membranes from rats treated with 10 micrograms of histamine (23% +/- 1% vs. 17% +/- 1% and 37% +/- 2% vs. 23% +/- 1%, respectively). In contrast, neither the basal nor the FK-stimulated enzyme activities were affected by histamine administration. The functional activity of the hippocampal guanine-nucleotide binding inhibitory protein (Gi protein), as assessed by the capacity of the stable GTP analogue 5'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit FK-stimulated AC activity, was not modified by histamine administration. These data suggest that the increased response of the enzyme to SS was not related to an increased functional activity of Gi proteins. In fact, the increased AC response to SS in hippocampal membranes from histamine (10 micrograms)-treated rats was associated with quantitative changes in the SS receptors. Equilibrium binding data obtained with [125I]Tyr11-SS indicate an increase in the number with specific SS receptors (541 +/- 24 vs. 365 +/- 16 fmol/mg protein, P histamine (10 micrograms)-treated rats as compared to control animals. With the aim of determining if these changes were related to histamine binding to its specific receptor sites, the histaminergic H1 and H2 receptor antagonists mepyramine and cimetidine, respectively, were administered 1 h before histamine injection. The pretreatment with mepyramine or cimetidine induced an increase in the

  12. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC.

    Science.gov (United States)

    Rieg, Timo; Tang, Tong; Uchida, Shinichi; Hammond, H Kirk; Fenton, Robert A; Vallon, Volker

    2013-01-01

    Arginine vasopressin (AVP) affects kidney function via vasopressin V2 receptors that are linked to activation of adenylyl cyclase (AC) and an increase in cyclic adenosine monophosphate formation. AVP/cyclic adenosine monophosphate enhance the phosphorylation of the Na-K-2Cl cotransporter (NKCC2) at serine residue 126 (pS126 NKCC2) and of the Na-Cl cotransporter (NCC) at threonine 58 (pT58 NCC). The isoform(s) of AC involved in these responses, however, were unknown. Phosphorylation of S126 NKCC2 and T58 NCC, induced by the V2 receptor agonist (1-desamino-8-D-arginine vasopressin) in wild-type mice, is lacking in knockout mice for AC isoform 6 (AC6). With regard to NKCC2 phosphorylation, the stimulatory effect of 1-desamino-8-D-AVP and the defect in AC6(-/-) mice seem to be restricted to the medullary portion of the thick ascending limb. AC6 is also a stimulator of total renal NKCC2 protein abundance in medullary and cortical thick ascending limb. Consequently, mice lacking AC6 have lower NKCC2 expression and a mild Bartter syndrome-like phenotype, including lower plasma concentrations of K+ and H+ and compensatory upregulation of NCC. Increased AC6-independent phosphorylation of NKCC2 at S126 might help to stabilize NKCC2 activity in the absence of AC6. Renal AC6 determines total NKCC2 expression and mediates vasopressin-induced NKCC2/NCC phosphorylation. These regulatory mechanisms, which are defective in AC knockout mice, are likely responsible for the observed mild Bartter syndrome. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons.

    Science.gov (United States)

    Gerber, U; Gähwiler, B H

    1994-11-01

    1. Gamma-aminobuturic acid-B (GABAB) and adenosine A1 receptors, which are expressed in hippocampal pyramidal cells, are linked to pertussis toxin-sensitive G-proteins known to be coupled negatively to the enzyme adenylyl cyclase. This study investigates the electrophysiological consequences of adenylyl cyclase inhibition in response to stimulation of these receptors. 2. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal slice cultures in presence of tetrodotoxin. The calcium-dependent potassium current (IAHP), which is very sensitive to intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), was used as an electrophysiological indicator of adenylyl cyclase activity. 3. Application of baclofen (10 microM), a selective agonist at GABAB receptors, or adenosine (50 microM) each resulted in a transient decrease followed by a significant enhancement in the amplitude of evoked IAHP. The initial reduction in amplitude of IAHP probably reflects inadequacies in voltage clamp of electronically distant dendritic sites, due to the shunting caused by concomitant activation of potassium conductance by baclofen/adenosine. Comparable increases in membrane conductance in response to the GABAA agonist, muscimol, caused a similar reduction in IAHP. The enhancement of IAHP is consistent with an inhibition of constitutively active adenylyl cyclase. 4. The receptor mediating the responses to adenosine was identified as belonging to the A1 subtype on the basis of its sensitivity to the selective antagonist 8-cyclopentyl-1,3-dipropylxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role.

    Science.gov (United States)

    Barott, K L; Helman, Y; Haramaty, L; Barron, M E; Hess, K C; Buck, J; Levin, L R; Tresguerres, M

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels.

  15. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    Directory of Open Access Journals (Sweden)

    Elena Elizabeth Bagley

    2014-06-01

    Full Text Available Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1 currents in periaqueductal gray (PAG neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1

  16. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation.

    Science.gov (United States)

    Shima, F; Okada, T; Kido, M; Sen, H; Tanaka, Y; Tamada, M; Hu, C D; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    2000-01-01

    Posttranslational modification, in particular farnesylation, of Ras is crucial for activation of Saccharomyces cerevisiae adenylyl cyclase (CYR1). Based on the previous observation that association of CYR1 with cyclase-associated protein (CAP) is essential for its activation by posttranslationally modified Ras, we postulated that the associated CAP might contribute to the formation of a Ras-binding site of CYR1, which mediates CYR1 activation, other than the primary Ras-binding site, the leucine-rich repeat domain. Here, we observed a posttranslational modification-dependent association of Ras with a complex between CAP and CYR1 C-terminal region. When CAP mutants defective in Ras signaling but retaining the CYR1-binding activity were isolated by screening of a pool of randomly mutagenized CAP, CYR1 complexed with two of the obtained three mutants failed to be activated efficiently by modified Ras and exhibited a severely impaired ability to bind Ras, providing a genetic evidence for the importance of the physical association with Ras at the second Ras-binding site. On the other hand, CYR1, complexed with the other CAP mutant, failed to be activated by Ras but exhibited a greatly enhanced binding to Ras. Conversely, a Ras mutant E31K, which exhibits a greatly enhanced binding to the CYR1-CAP complex, failed to activate CYR1 efficiently. Thus, the strength of interaction at the second Ras-binding site appears to be a critical determinant of CYR1 regulation by Ras: too-weak and too-strong interactions are both detrimental to CYR1 activation. These results, taken together with those obtained with mammalian Raf, suggest the importance of the second Ras-binding site in effector regulation.

  17. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade.

    Science.gov (United States)

    Bahn, Yong-Sun; Hicks, Julie K; Giles, Steven S; Cox, Gary M; Heitman, Joseph

    2004-12-01

    The evolutionarily conserved cyclic AMP (cAMP) signaling pathway controls cell functions in response to environmental cues in organisms as diverse as yeast and mammals. In the basidiomycetous human pathogenic fungus Cryptococcus neoformans, the cAMP pathway governs virulence and morphological differentiation. Here we identified and characterized adenylyl cyclase-associated protein, Aca1, which functions in parallel with the Galpha subunit Gpa1 to control the adenylyl cyclase (Cac1). Aca1 interacted with the C terminus of Cac1 in the yeast two-hybrid system. By molecular and genetic approaches, Aca1 was shown to play a critical role in mating by regulating cell fusion and filamentous growth in a cAMP-dependent manner. Aca1 also regulates melanin and capsule production via the Cac1-cAMP-protein kinase A pathway. Genetic epistasis studies support models in which Aca1 and Gpa1 are necessary and sufficient components that cooperate to activate adenylyl cyclase. Taken together, these studies further define the cAMP signaling cascade controlling virulence of this ubiquitous human fungal pathogen.

  18. [A change of hormonal regulation of adenylyl cyclase in the epididymal adipose tissue of rats with experimental models of diabetes mellitus].

    Science.gov (United States)

    Derkach, K V; Chistyakova, O V; Shpakov, A O

    2014-01-01

    One of the key causes of diabetes mellitus (DM) and its complications are hormonal disturbances in functioning of hormonal signaling systems, including the adenylyl cyclase signaling system (ACSS). The goal of this work was to study the functional state and hormonal sensitivity of ACSS in the epididymal adipose tissue of male rats in the 7-month model of mild type 1 DM (DM1), in the 18-month neonatal model of type 2 DM (DM2), and in the taken for comparison model of the 30-day acute DM1. It is shown for the first time that in adipocytes from the epididymal fat of rats with the studied DM models the basal AC activity and its stimulation by forskolin were decreased, which indicates a weakening of the catalytic function of the enzyme adenylyl cyclase (AC). Stimulation of AC by guanine nucleotides in DM changed to the lesser extent, which speaks in favor of preservation of functions of heterotrimeric G(s)-proteins in the epididymal fat. In rats with DM1 the sensitivity of AC of adipocytes to agonists of β-adrenergic receptors (β-AR), activators of lipolysis, remained practically unchanged, while in animals with DM2 the AC stimulating effects of β-AR-agonists were reduced or completely blocked, like in the case of β3-AR-agonist BRL-37344 and CL-316243. In adipocytes of rats with DM1 the AC inhibitory effect of N6-cyclopentyladenosine, agonist of type 1 adenosine receptors (Aden1R), an inhibitor of lipolysis, was attenuated, whe- reas in DM2 this effect was completely preserved. Thus, in the epididymal adipose tissue of rats with DM1 the antilipolytic AC cascades including Aden1R were decreased and the stimulation of AC by β-AR-agonists was preserved, whereas in rats with DM2 the β-AR-mediated AC cascades activating lipolysis were reduced, but Aden1R-mediated AC cascades inhibiting lipolysis did not change. The changes of hormonal regulation of ACSS in adipocytes from the epididymal fat lead to disturbances of the metabolic status of animal with DM1 and DM2 and

  19. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion.

    Science.gov (United States)

    Zhang, Haitao; Ghai, Pooja; Wu, Huhehasi; Wang, Changhui; Field, Jeffrey; Zhou, Guo-Lei

    2013-07-19

    CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.

  20. Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor.

    Directory of Open Access Journals (Sweden)

    Carolin Lübker

    Full Text Available Adenylyl cyclases (ACs catalyze the conversion of ATP into the second messenger cAMP. Membranous AC1 (AC1 is involved in processes of memory and learning and in muscle pain. The AC toxin edema factor (EF of Bacillus anthracis is involved in the development of anthrax. Both ACs are stimulated by the eukaryotic Ca(2+-sensor calmodulin (CaM. The CaM-AC interaction could constitute a potential target to enhance or impair the AC activity of AC1 and EF to intervene in above (pathophysiological mechanisms. Thus, we analyzed the impact of 39 compounds including typical CaM-inhibitors, an anticonvulsant, an anticholinergic, antidepressants, antipsychotics and Ca(2+-antagonists on CaM-stimulated catalytic activity of AC1 and EF. Compounds were tested at 10 μM, i.e., a concentration that can be reached therapeutically for certain antidepressants and antipsychotics. Calmidazolium chloride decreased CaM-stimulated AC1 activity moderately by about 30%. In contrast, CaM-stimulated EF activity was abrogated by calmidazolium chloride and additionally decreased by chlorpromazine, felodipine, penfluridol and trifluoperazine by about 20-40%. The activity of both ACs was decreased by calmidazolium chloride in the presence and absence of CaM. Thus, CaM-stimulated AC1 activity is more insensitive to inhibition by small molecules than CaM-stimulated EF activity. Inhibition of AC1 and EF by calmidazolium chloride is largely mediated via a CaM-independent allosteric mechanism.

  1. Distinct Roles of Soluble and Transmembrane Adenylyl Cyclases in the Regulation of Flagellar Motility in Ciona Sperm

    Directory of Open Access Journals (Sweden)

    Kogiku Shiba

    2014-07-01

    Full Text Available Adenylyl cyclase (AC is a key enzyme that synthesizes cyclic AMP (cAMP at the onset of the signaling pathway to activate sperm motility. Here, we showed that both transmembrane AC (tmAC and soluble AC (sAC are distinctly involved in the regulation of sperm motility in the ascidian Ciona intestinalis. A tmAC inhibitor blocked both cAMP synthesis and the activation of sperm motility induced by the egg factor sperm activating and attracting factor (SAAF, as well as those induced by theophylline, an inhibitor of phoshodiesterase. It also significantly inhibited cAMP-dependent phosphorylation of a set of proteins at motility activation. On the other hand, a sAC inhibitor does not affect on SAAF-induced transient increase of cAMP, motility activation or protein phosphorylation, but it reduced swimming velocity to half in theophylline-induced sperm. A sAC inhibitor KH-7 induced circular swimming trajectory with smaller diameter and significantly suppressed chemotaxis of sperm to SAAF. These results suggest that tmAC is involved in the basic mechanism for motility activation through cAMP-dependent protein phosphorylation, whereas sAC plays distinct roles in increase of flagellar beat frequency and in the Ca2+-dependent chemotactic movement of sperm.

  2. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes.

    Science.gov (United States)

    Lee, Sahmin; Lee, Hyun-Chae; Kwon, Yoo-Wook; Lee, Sang Eun; Cho, Youngjin; Kim, Joonoh; Lee, Soobeom; Kim, Ju-Young; Lee, Jaewon; Yang, Han-Mo; Mook-Jung, Inhee; Nam, Ky-Youb; Chung, Junho; Lazar, Mitchell A; Kim, Hyo-Soo

    2014-03-04

    Human resistin is a cytokine that induces low-grade inflammation by stimulating monocytes. Resistin-mediated chronic inflammation can lead to obesity, atherosclerosis, and other cardiometabolic diseases. Nevertheless, the receptor for human resistin has not been clarified. Here, we identified adenylyl cyclase-associated protein 1 (CAP1) as a functional receptor for human resistin and clarified its intracellular signaling pathway to modulate inflammatory action of monocytes. We found that human resistin directly binds to CAP1 in monocytes and upregulates cyclic AMP (cAMP) concentration, protein kinase A (PKA) activity, and NF-κB-related transcription of inflammatory cytokines. Overexpression of CAP1 in monocytes enhanced the resistin-induced increased activity of the cAMP-dependent signaling. Moreover, CAP1-overexpressed monocytes aggravated adipose tissue inflammation in transgenic mice that express human resistin from their monocytes. In contrast, suppression of CAP1 expression abrogated the resistin-mediated inflammatory activity both in vitro and in vivo. Therefore, CAP1 is the bona fide receptor for resistin leading to inflammation in humans.

  3. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9.

    Science.gov (United States)

    Cauwe, Bénédicte; Martens, Erik; Van den Steen, Philippe E; Proost, Paul; Van Aelst, Ilse; Blockmans, Daniel; Opdenakker, Ghislain

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1 was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.

  4. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  5. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    Directory of Open Access Journals (Sweden)

    Jung-Chin eChang

    2014-02-01

    Full Text Available The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10 was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA, sAC constitutes an HCO3-/CO¬2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H+-ATPase (VHA in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment.

  6. Calcium-stimulated adenylyl cyclase subtype 1 (AC1 contributes to LTP in the insular cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Manabu Yamanaka

    2017-07-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission in the central nervous system is a key form of cortical plasticity. The insular cortex (IC is known to play important roles in pain perception, aversive memory and mood disorders. LTP has been recently reported in the IC, however, the signaling pathway for IC LTP remains unknown. Here, we investigated the synaptic mechanism of IC LTP. We found that IC LTP induced by the pairing protocol was N-methyl-D-aspartate receptors (NMDARs dependent, and expressed postsynaptically, since paired-pulse ratio (PPR was not affected. Postsynaptic calcium is important for the induction of post-LTP, since the postsynaptic application of BAPTA completely blocked the induction of LTP. Calcium-activated adenylyl cyclase subtype 1 (AC1 is required for potentiation. By contrast, AC8 is not required. Inhibition of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs or protein kinase M zeta (PKMζ reduced the expression of LTP. Our results suggest that calcium-stimulated AC1, but not AC8, can be a trigger of the induction and maintenance of LTP in the IC.

  7. Association of elongation factor 1 alpha and ribosomal protein L3 with the proline-rich region of yeast adenylyl cyclase-associated protein CAP.

    Science.gov (United States)

    Yanagihara, C; Shinkai, M; Kariya, K; Yamawaki-Kataoka, Y; Hu, C D; Masuda, T; Kataoka, T

    1997-03-17

    CAP is a multifunctional protein; the N-terminal region binds adenylyl cyclase and controls its response to Ras while the C-terminal region is involved in cytoskeletal regulation. In between the two regions, CAP possesses two proline-rich segments, P1 and P2, resembling a consensus sequence for binding SH3 domains. We have identified two yeast proteins with molecular sizes of 48 and 46 kDa associated specifically with P2. Determination of partial protein sequences demonstrated that the 48-kDa and 46-kDa proteins correspond to EF1 alpha and rL3, respectively, neither of which contains any SH3-domain-like sequence. Deletion of P2 from CAP resulted in loss of the activity to bind the two proteins either in vivo or in vitro. Yeast cells whose chromosomal CAP was replaced by the P2-deletion mutant displayed an abnormal phenotype represented by dissociated localizations of CAP and F-actin, which were colocalized in wild-type cells. These results suggest that these associations may have functional significance.

  8. Inhibition of adenylyl cyclase in amygdala blocks the effect of audiogenic seizure kindling in genetically epilepsy-prone rats.

    Science.gov (United States)

    Tupal, Srinivasan; Faingold, Carl

    2010-01-01

    Genetically epilepsy-prone rats of the severe seizure strain (GEPR-9s) exhibit audiogenic seizures (AGS) beginning with wild running and ending with tonic hind limb extension (TE). AGS kindling in GEPR-9s involves periodic repetition of >/=14 seizures over 7-21 days and results in prolonged seizures and an additional phase of generalized post-tonic clonus (PTC) that follows TE. AGS kindling behavior changes are long-lasting and involve expansion of the requisite seizure neuronal network from the brainstem to include the amygdala, mediated by neuroplasticity in lateral amygdala. Recent evidence indicates that focal activation of adenylyl cyclase (AC) in lateral amygdala leads to precipitous acquisition of AGS-kindled seizure behaviors, suggesting that activation of AC activity is important in development and maintenance of AGS kindling. The present study further examined the role of AC in AGS-kindled seizures in GEPR-9s by focally inhibiting AC in the amygdala. Bilateral microinjection of an AC inhibitor, SQ22,536 (0.25 and 0.50 nmol/side), in AGS-kindled GEPR-9s selectively blocked PTC during AGS at 1 h after microinjection, but the pre-kindled AGS behaviors remained intact. The incidence of PTC during AGS returned to pre-drug levels 12 h after the lower dose of SQ22,536 (0.25 nmol/side). However, after the higher dose of SQ22,536 (0.5 nmol/side), complete return to AGS with PTC was seen in all GEPR-9s at 120 h. These results indicate that maintenance of AGS kindling-mediated PTC in GEPR-9s may involve activation of AC. These data provide further evidence for the involvement of AC in the epileptogenic mechanisms subserving AGS kindling.

  9. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains.

    Science.gov (United States)

    Bogard, Amy S; Xu, Congfeng; Ostrom, Rennolds S

    2011-04-01

    Adenylyl cyclases (AC) are important regulators of airway smooth muscle function, because β-adrenergic receptor (AR) agonists stimulate AC activity and increase airway diameter. We assessed expression of AC isoforms in human bronchial smooth muscle cells (hBSMC). Reverse transcriptase-polymerase chain reaction and immunoblot analyses detected expression of AC2, AC4, and AC6. Forskolin-stimulated AC activity in membranes from hBSMC displayed Ca(2+)-inhibited and G(βγ)-stimulated AC activity, consistent with expression of AC6, AC2, and AC4. Isoproterenol-stimulated AC activity was inhibited by Ca(2+) but unaltered by G(βγ), whereas butaprost-stimulated AC activity was stimulated by G(βγ) but unaffected by Ca(2+) addition. Using sucrose density centrifugation to isolate lipid raft fractions, we found that only AC6 localized in lipid raft fractions, whereas AC2 and AC4 localized in nonraft fractions. Immunoisolation of caveolae using caveolin-1 antibodies yielded Ca(2+)-inhibited AC activity (consistent with AC6 expression), whereas the nonprecipitated material displayed G(βγ)-stimulated AC activity (consistent with expression of AC2 and/or AC4). Overexpression of AC6 enhanced cAMP production in response to isoproterenol and beraprost but did not increase responses to prostaglandin E(2) or butaprost. β(2)AR, but not prostanoid EP(2) or EP(4) receptors, colocalized with AC5/6 in lipid raft fractions. Thus, particular G protein-coupled receptors couple to discreet AC isoforms based, in part, on their colocalization in membrane microdomains. These different cAMP signaling compartments in airway smooth muscle cells are responsive to different hormones and neurotransmitters and can be regulated by different coincident signals such as Ca(2+) and G(βγ).

  10. Modulation of NaCl absorption by [HCO(3)(-)] in the marine teleost intestine is mediated by soluble adenylyl cyclase.

    Science.gov (United States)

    Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; Grosell, Martin

    2010-07-01

    Intestinal HCO(3)(-) secretion and NaCl absorption are essential for counteracting dehydration in marine teleost fish. We investigated how these two processes are coordinated in toadfish. HCO(3)(-) stimulated a luminal positive short-circuit current (I(sc)) in intestine mounted in Ussing chamber, bathed with the same saline solution on the external and internal sides of the epithelium. The I(sc) increased proportionally to the [HCO(3)(-)] in the bath up to 80 mM NaHCO(3), and it did not occur when NaHCO(3) was replaced with Na(+)-gluconate or with NaHCO(3) in Cl(-)-free saline. HCO(3)(-) (20 mM) induced a approximately 2.5-fold stimulation of I(sc), and this [HCO(3)(-)] was used in all subsequent experiments. The HCO(3)(-)-stimulated I(sc) was prevented or abolished by apical application of 10 muM bumetanide (a specific inhibitor of NKCC) and by 30 microM 4-catechol estrogen [CE; an inhibitor of soluble adenylyl cyclase (sAC)]. The inhibitory effects of bumetanide and CE were not additive. The HCO(3)(-)-stimulated I(sc) was prevented by apical bafilomycin (1 microM) and etoxolamide (1 mM), indicating involvement of V-H(+)-ATPase and carbonic anhydrases, respectively. Immunohistochemistry and Western blot analysis confirmed the presence of an NKCC2-like protein in the apical membrane and subapical area of epithelial intestinal cells, of Na(+)/K(+)-ATPase in basolateral membranes, and of an sAC-like protein in the cytoplasm. We propose that sAC regulates NKCC activity in response to luminal HCO(3)(-), and that V-H(+)-ATPase and intracellular carbonic anhydrase are essential for transducing luminal HCO(3)(-) into the cell by CO(2)/HCO(3)(-) hydration/dehydration. This mechanism putatively coordinates HCO(3)(-) secretion with NaCl and water absorption in toadfish intestine.

  11. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells.

    Science.gov (United States)

    Yang, Lei; Wang, Yan-Li; Liu, Shang; Zhang, Pei-Pei; Chen, Zheng; Liu, Min; Tang, Hua

    2014-01-03

    MicroRNAs are a class of small, endogenous, non-coding RNAs that function as post-transcriptional regulators. In this study, we found that miR-181b promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells. And we validated a new miR-181b target gene, adenylyl cyclase 9 (AC9). miR-181b restricted cAMP production by post-transcriptionally downregulating AC9 expression. Phenotypic experiments indicated that miR-181b and AC9 exerted opposite effects on cell proliferation and apoptosis.

  12. Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor.

    Directory of Open Access Journals (Sweden)

    Kerstin Y Beste

    Full Text Available Guanylyl cyclases (GCs regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs and a nitric oxide-activated soluble GC (sGC. Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF from Bacillus anthracis possess nucleotidyl cyclase (NC activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.

  13. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis

    Science.gov (United States)

    Zhang, Xuebin; Candas, Mehmet; Griko, Natalya B.; Taussig, Ronald; Bulla, Lee A.

    2006-01-01

    Many pathogenic organisms and their toxins target host cell receptors, the consequence of which is altered signaling events that lead to aberrant activity or cell death. A significant body of literature describes various molecular and cellular aspects of toxins associated with bacterial invasion, colonization, and host cell disruption. However, there is little information on the molecular and cellular mechanisms associated with the insecticidal action of Bacillus thuringiensis (Bt) Cry toxins. Recently, we reported that the Cry1Ab toxin produced by Bt kills insect cells by activating a Mg2+-dependent cytotoxic event upon binding of the toxin to its receptor BT-R1. Here we show that binding of Cry toxin to BT-R1 provokes cell death by activating a previously undescribed signaling pathway involving stimulation of G protein (Gαs) and adenylyl cyclase, increased cAMP levels, and activation of protein kinase A. Induction of the adenylyl cyclase/protein kinase A pathway is manifested by sequential cytological changes that include membrane blebbing, appearance of ghost nuclei, cell swelling, and lysis. The discovery of a toxin-induced cell death pathway specifically linked to BT-R1 in insect cells should provide insights into how insects evolve resistance to Bt and into the development of new, safer insecticides. PMID:16788061

  14. Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu

    Science.gov (United States)

    Ayling, Laura J.; Briddon, Stephen J.; Halls, Michelle L.; Hammond, Gerald R. V.; Vaca, Luis; Pacheco, Jonathan; Hill, Stephen J.; Cooper, Dermot M. F.

    2012-01-01

    The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub. PMID:22399809

  15. Identification of a human cDNA encoding a protein that is structurally and functionally related to the yeast adenylyl cyclase-associated CAP proteins

    Energy Technology Data Exchange (ETDEWEB)

    Matviw, Yu, G.; Young, D. (Univ. of Calgary Health Science Centre, Alberta (Canada))

    1992-11-01

    The adenylyl cyclases of both Saccharomyces cerevisiae and Schizosaccharomyces pombe are associated with related proteins named CAP. In S. cerevisiae, CAP is required for cellular responses mediated by the RAS/cyclic AMP pathway. Both yeast CAPs appear to be bifunctional proteins: The N-terminal domains are required for the proper function of adenylyl cyclase, while loss of the C-terminal domains results in morphological and nutritional defects that appear to be unrelated to the cAMP pathways. Expression of either yeast CAP in the heterologous yeast suppresses phenotypes associated with loss of the C-terminal domain of the endogenous CAP but does not suppress loss of the N-terminal domain. On the basis of the homology between the two yeast CAP proteins, we have designed degenerate oligonucleotides that we used to detect, by the polymerase chain reaction method, a human cDNA fragment encoding a CAP-related peptide. Using the polymerase chain reaction fragment as a probe, we isolated a human cDNA clone encoding a 475-amino-acid protein that is homologous to the yeast CAP proteins. Expressions of the human CAP protein in S. cerevisiae suppresses the phenotypes associated with loss of the C-terminal domain of CAP but does not suppress phenotypes associated with loss of the N-terminal domain. Thus, CAP proteins have been structurally and, to some extent, functionally conserved in evolution between yeasts and mammals. 42 refs., 5 figs.

  16. Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase

    DEFF Research Database (Denmark)

    Jansen-Olesen, I; Mortensen, A; Edvinsson, L

    1996-01-01

    strong and potent relaxation of precontracted circular vessel segments. The Imax (maximum relaxant effect) to human calcitonin was low and the pD2 (concentration for half maximum effect) 7.7 was much lower than that of CGRP. The CGRP-1, antagonist human alpha-CGRP8-37 blocked the response to human alpha......-CGRP but not to human beta-CGRP, while the putative antagonist [Tyr]CGRP28-37 did not. Capsaicin (10(-15)-10(-8)M) caused relaxation of the cerebral arteries by 22% of precontraction. Pre-treatment with 10(-6)M human alpha-CGRP8-37 inhibited this relaxation. Human alpha-CGRP increased the cyclic AMP content of human...... cerebral arteries in a concentration-dependent manner. This increase in adenylyl cyclase activity was blocked by human alpha-CGRP8-37. The results suggest that CGRP-1 receptors coupled to adenylyl cyclase are present in human cerebral arteries....

  17. Somatic ‘Soluble’ Adenylyl Cyclase Isoforms Are Unaffected in Sacytm1Lex/Sacytm1Lex ‘Knockout’ Mice

    Science.gov (United States)

    Tresguerres, Martin; Kamenetsky, Margarita; Levin, Lonny R.; Buck, Jochen

    2008-01-01

    Background Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacytm1Lex/Sacytm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. Principal Findings We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which ‘escapes’ the design of the Sacytm1Lex knockout allele. Conclusions/Significance These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells. PMID:18806876

  18. A HCO3−-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca2+ currents in locus coeruleus neurons

    Science.gov (United States)

    Imber, Ann N.; Santin, Joseph M.; Graham, Cathy D.; Putnam, Robert W.

    2014-01-01

    Hypercapnic acidosis activates Ca2+ channels and increases intracellular Ca2+ levels in neurons of the locus coeruleus (LC), a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca2+-activated K+ channels (BK), in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in LC neurons. Here, we present evidence that the Ca2+ current is activated by a HCO3−-sensitive pathway. The increase in HCO3− associated with hypercapnia activates HCO3−-sensitive adenylyl cyclase (sAC). This results in an increase in cAMP levels and activation of Ca2+ channels via cAMP-activated protein kinase A (PKA). We also show the presence of sAC in the cytoplasm of LC neurons, and that the cAMP analogue db-cAMP increases Ca2+i. Disrupting this pathway by decreasing HCO3− levels during acidification or inhibiting either sAC or PKA, but not transmembrane adenylyl cyclase (tmAC), can increase the magnitude of the firing rate response to hypercapnia in LC neurons from older neonates to the same extent as inhibition of BK channels. PMID:25092170

  19. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Directory of Open Access Journals (Sweden)

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  20. [HCO3-]-regulated expression and activity of soluble adenylyl cyclase in corneal endothelial and Calu-3 cells

    Directory of Open Access Journals (Sweden)

    Cui Miao

    2004-04-01

    Full Text Available Abstract Background Bicarbonate activated Soluble Adenylyl Cyclase (sAC is a unique cytoplasmic and nuclear signaling mechanism for the generation of cAMP. HCO3- activates sAC in bovine corneal endothelial cells (BCECs, increasing [cAMP] and stimulating PKA, leading to phosphorylation of the cystic fibrosis transmembrane-conductance regulator (CFTR and increased apical Cl- permeability. Here, we examined whether HCO3- may also regulate the expression of sAC and thereby affect the production of cAMP upon activation by HCO3- and the stimulation of CFTR in BCECs. Results RT-competitive PCR indicated that sAC mRNA expression in BCECs is dependent on [HCO3-] and incubation time in HCO3-. Immunoblots showed that 10 and 40 mM HCO3- increased sAC protein expression by 45% and 87%, respectively, relative to cells cultured in the absence of HCO3-. Furthermore, 40 mM HCO3- up-regulated sAC protein expression in Calu-3 cells by 93%. On the other hand, sAC expression in BCECs and Calu-3 cells was unaffected by changes in bath pH or osmolarity. Interestingly, BCECs pre-treated with10 μM adenosine or 10 μM forskolin, which increase cAMP levels, showed decreased sAC mRNA expression by 20% and 30%, respectively. Intracellular cAMP production by sAC paralleled the time and [HCO3-]-dependent expression of sAC. Bicarbonate-induced apical Cl- permeability increased by 78% (P 3-. However for cells cultured in the absence of HCO3-, apical Cl- permeability increased by only 10.3% (P > 0.05. Conclusion HCO3- not only directly activates sAC, but also up-regulates the expression of sAC. These results suggest that active cellular uptake of HCO3- can contribute to the basal level of cellular cAMP in tissues that express sAC.

  1. The vasorelaxant effect of 8(17),12E,14-labdatrien-18-oic acid involves stimulation of adenylyl cyclase and cAMP/PKA pathway: Evidences by pharmacological and molecular docking studies.

    Science.gov (United States)

    Ribeiro, Luciano A A; Alencar Filho, Edilson B; Coelho, Maisa C; Silva, Bagnólia A

    2015-10-05

    The relaxant effect of 8(17),12E,14-labdatrien-18-oic acid (LBD) was investigated on isolated aortic rings and compared with forskolin (FSK), a standard and potent activator of adenylyl cyclase (AC) with relaxing effect. The presence of potassium channel blockers, such as glibenclamide (ATP-blocker), apamin (SKCa-blocker), charybdotoxin (BKCa-blocker) did not significantly affect either the LBD or FSK concentration-response curves. However, in the presence of 4-aminopyridine (KV-blocker), the relaxant effect for both diterpenes was significantly attenuated, with reduction of its relative potencies. Moreover, the relaxation induced by 8-Br-cAMP, an analog of cAMP, was also significantly attenuated in the same conditions, i.e., in the presence of 4-aminopyridine. The presence of aminophylline, a nonselective phosphodiesterase inhibitor, caused a significant increasing in the potency for both LBD and FSK. On the other hand, the presence of Rp-cAMPS, a selective PKA-inhibitor, significantly attenuated the relaxant effect of LBD. In this work, in the same experimental conditions, both labdane-type diterpenes presented remarkably similar results; FSK, however, presented a higher potency (100-fold) than LBD. Thus, the hypothesis that LBD could be a novel AC-activator emerged. To assess that hypothesis, computational molecular docking studies were performed. Crystallographic structure of adenylyl cyclase/forskolin complex (1AB8) was obtained from RSCB Protein Data Bank and used to compare the modes of interaction of the native ligand and LBD. The computational data shows many similarities between LBD and FSK concerning the interaction with the regulatory site of AC. Taken together, the results presented here pointed to LBD as a novel AC-activator.

  2. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices.

    Science.gov (United States)

    Kim, Hannah; Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Yunjin; Kang, Minkyung; Kim, Kyoung-Shim; Han, Pyung-Lim

    2014-11-07

    Behavioral choices in habits and innate behaviors occur automatically in the absence of conscious selection. These behaviors are not easily modified by learning. Similar types of behaviors also occur in various mental illnesses including drug addiction, obsessive-compulsive disorder, schizophrenia, and autism. However, underlying mechanisms are not clearly understood. In the present study, we investigated the molecular mechanisms regulating unconditioned preferred behaviors in food-choices. Mice lacking adenylyl cyclase-5 (AC5 KO mice), which is preferentially expressed in the dorsal striatum, consumed food pellets nearly one after another in cages. AC5 KO mice showed aversive behaviors to bitter tasting quinine, but they compulsively chose quinine-containing AC5 KO-pellets over fresh pellets. The unusual food-choice behaviors in AC5 KO mice were due to the gain of behavioral preferences for food pellets containing an olfactory cue, which wild-type mice normally ignored. Such food-choice behaviors in AC5 KO mice disappeared when whiskers were trimmed. Conversely, whisker trimming in wildtype mice induced behavioral preferences for AC5 KO food pellets, indicating that preferred food-choices were not learned through prior experience. Both AC5 KO mice and wildtype mice with trimmed whiskers had increased glutamatergic input from the barrel cortex into the dorsal striatum, resulting in an increase in the mGluR1-dependent signaling cascade. The siRNA-mediated inhibition of mGluR1 in the dorsal striatum in AC5 KO mice and wildtype mice with trimmed whiskers abolished preferred choices for AC5 KO food pellets, whereas siRNA-mediated inhibition of mGluR3 glutamate receptors in the dorsal striatum in wildtype mice induced behavioral preferences for AC5 KO food pellets, thus mimicking AC5 KO phenotypes. Our results show that the gain and loss of behavioral preferences for a specific cue-directed option were regulated by specific cellular factors in the dorsal striatum, such

  3. Dysregulation of TrkB phosphorylation and proBDNF protein in adenylyl cyclase 1 and 8 knockout mice in a model of fetal alcohol spectrum disorder.

    Science.gov (United States)

    Susick, Laura L; Chrumka, Alexandria C; Hool, Steven M; Conti, Alana C

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) mediates neuron growth and is regulated by adenylyl cyclases (ACs). Mice lacking AC1/8 (DKO) have a basal reduction in the dendritic complexity of medium spiny neurons in the caudate putamen and demonstrate increased neurotoxicity in the striatum following acute neonatal ethanol exposure compared to wild type (WT) controls, suggesting a compromise in BDNF regulation under varying conditions. Although neonatal ethanol exposure can negatively impact BDNF expression, little is known about the effect on BDNF receptor activation and its downstream signaling, including Akt activation, an established neuroprotective pathway. Therefore, here we determined the effects of AC1/8 deletion and neonatal ethanol administration on BDNF and proBDNF protein expression, and activation of tropomyosin-related kinase B (TrkB), Akt, ERK1/2, and PLCγ. WT and DKO mice were treated with a single dose of 2.5 g/kg ethanol or saline at postnatal days 5-7 to model late-gestational alcohol exposure. Striatal and cortical tissues were analyzed using a BDNF enzyme-linked immunosorbent assay or immunoblotting for proBDNF, phosphorylated and total TrkB, Akt, ERK1/2, and PLCɣ1. Neither postnatal ethanol exposure nor AC1/8 deletion affected total BDNF protein expression at any time point in either region examined. Neonatal ethanol increased the expression of proBDNF protein in the striatum of WT mice 6, 24, and 48 h after exposure, with DKO mice demonstrating a reduction in proBDNF expression 6 h after exposure. Six and 24 h after ethanol administration, phosphorylation of full-length TrkB in the striatum was significantly reduced in WT mice, but was significantly increased in DKO mice only at 24 h. Interestingly, 48 h after ethanol, both WT and DKO mice demonstrated a reduction in phosphorylated full-length TrkB. In addition, Akt and PLCɣ1 phosphorylation was also decreased in ethanol-treated DKO mice 48 h after injection. These data demonstrate

  4. Identification of a CAP (adenylyl-cyclase-associated protein) homologous gene in Lentinus edodes and its functional complementation of yeast CAP mutants.

    Science.gov (United States)

    Zhou, G L; Miyazaki, Y; Nakagawa, T; Tanaka, K; Shishido, K; Matsuda, H; Kawamukai, M

    1998-04-01

    The adenylyl-cyclase-associated protein, CAP, was originally identified in yeasts as a protein that functions in both signal transduction and cytoskeletal organization. This paper reports the identification of a cDNA and genomic DNA that encodes a CAP homologue from the mushroom Lentinus edodes. The L. edodes cap gene contains eight introns and an ORF encoding a 518 amino acid protein. The L. edodes CAP is 35.5% and 40.9% identical at the amino acid level with Saccharomyces cerevisiae CAP and Schizosaccharomyces pombe CAP, respectively. The C-terminal domain shows greater homology (39-46% identity) with yeast CAPs than does the N-terminal domain (27-35% identity). Southern blotting and Northern blotting results suggest that L. edodes cap is a single-copy gene and uniformly expressed. Expression of the L. edodes CAP in both Schiz. pombe and Sacch. cerevisiae complemented defects associated with the loss of the C-terminal domain function of the endogenous CAP. By using a yeast two-hybrid assay, an interaction was demonstrated between the L. edodes CAP and Schiz. pombe actin. This result and the functional complementation test indicate that CAP from L. edodes has a conserved C-terminal domain function.

  5. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    Science.gov (United States)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  6. Ocean acidification stimulates alkali signal pathway: A bicarbonate sensing soluble adenylyl cyclase from oyster Crassostrea gigas mediates physiological changes induced by CO2 exposure.

    Science.gov (United States)

    Wang, Xiudan; Wang, Mengqiang; Jia, Zhihao; Wang, Hao; Jiang, Shuai; Chen, Hao; Wang, Lingling; Song, Linsheng

    2016-12-01

    Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid-base sensor in response to [HCO3(-)] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO3(-)] mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16days of CO2 exposure (pH=7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45kD and 20kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO2 exposure. Besides, CO2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (pocean acidification on marine calcifiers. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant.

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2009-01-01

    Although modulation of presynaptic terminal excitability can profoundly affect transmission efficacy, how excitability along axonal terminal branches is regulated requires further investigations. We performed focal patch recording in Drosophila larval neuromuscular junctions (NMJs) to monitor the activity of individual synaptic boutons along the presynaptic terminal. Analysis of the learning mutant rutabaga (rut) suggests a tight regulation of presynaptic terminal excitability by rut adenylyl cyclase (AC) that is responsible for Ca2+/calmodulin-dependent cAMP synthesis. Focal excitatory junctional currents (ejcs) demonstrated that disrupted cAMP metabolism in rut mutant boutons leads to decreased transmitter release, coupled with temporal dispersion and amplitude fluctuation of ejcs during repetitive activity. Strikingly, rut motor terminals displayed greatly increased variability among corresponding terminal branches of identified NMJs in different preparations. However, boutons throughout single terminal branches were relatively uniform in either WT or rut mutant larvae. The use of electrotonic depolarization to directly evoke transmitter release from axonal terminals revealed that variability in neurotransmission originated from varying degrees of weakened excitability in rut terminals. Pharmacological treatments and axonal action potential recordings raised the possibility that defective rut AC resulted in reduced Ca2+ currents in the nerve terminal. Thus, our data indicate that rut AC not only affects transmitter release machinery, but also plays a previously unsuspected role in local excitability control, both contributing to transmission level and precision along the entire axonal terminal.

  8. Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression.

    Science.gov (United States)

    Verkerke-van Wijk, I; Fukuzawa, M; Devreotes, P N; Schaap, P

    2001-06-01

    cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA.

  9. Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms.

    Science.gov (United States)

    Bogard, Amy S; Birg, Anna V; Ostrom, Rennolds S

    2014-04-01

    Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool.

  10. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    Science.gov (United States)

    Lila, T; Drubin, D G

    1997-02-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.

  11. Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulation.

    Science.gov (United States)

    Carvalho, Edison S M; Gregório, Sílvia F; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2012-12-01

    In the marine fish intestine luminal, HCO₃⁻ can remove divalent ions (calcium and magnesium) by precipitation in the form of carbonate aggregates. The process of epithelial HCO₃⁻ secretion is under endocrine control, therefore, in this study we aimed to characterize the involvement of transmembrane (tmACs) and soluble (sACs) adenylyl cyclases on the regulation of bicarbonate secretion (BCS) and water absorption in the intestine of the sea bream (Sparus aurata). We observed that all sections of sea bream intestine are able to secrete bicarbonate as measured by pH-Stat in Ussing chambers. In addition, gut sac preparations reveal net water absorption in all segments of the intestine, with significantly higher absorption rates in the anterior intestine that in the rectum. BCS and water absorption are positively correlated in all regions of the sea bream intestinal tract. Furthermore, stimulation of tmACs (10 μM FK + 500 μM IBMX) causes a significant decrease in BCS, bulk water absorption and short circuit current (Isc) in a region dependent manner. In turn, stimulation of sACs with elevated HCO₃⁻ results in a significant increase in BCS, and bulk water absorption in the anterior intestine, an action completely reversed by the sAC inhibitor KH7 (200 μM). Overall, the results reveal a functional relationship between BCS and water absorption in marine fish intestine and modulation by tmACs and sAC. In light of the present observations, it is hypothesized that the endocrine effects on intestinal BCS and water absorption mediated by tmACs are locally and reciprocally modulated by the action of sACs in the fish enterocyte, thus fine-tuning the process of carbonate aggregate production in the intestinal lumen.

  12. Identification of a 14-3-3 protein from Lentinus edodes that interacts with CAP (adenylyl cyclase-associated protein), and conservation of this interaction in fission yeast.

    Science.gov (United States)

    Zhou, G L; Yamamoto, T; Ozoe, F; Yano, D; Tanaka, K; Matsuda, H; Kawamukai, M

    2000-01-01

    We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.

  13. Effect of Interleukin-1β on the Variation of Adenylyl Cyclase Expression in Rats with Seizures Induced by L-Glutamate

    Institute of Scientific and Technical Information of China (English)

    王珍; 刘庆莹; 朱长庚

    2004-01-01

    To explore the mechanism of interleukin-1beta (IL-1β) in the onset of seizure and the effect of IL-1β on the expression of adenylyl cyclase (AC) in rats with seizure induced by L-glutamate. Experimental rats were first injected with IL-1β and then L-glutamate (a dose under the threshold) was injected into the right lateral ventricle. The rats were sacrificed 4 h after the onset of epileptic activity and examined for changes in behavior, immunohistochemistry and compared with those with seizure induced by L-glutamate alone. It was found that the expression of AC in hippocampal and neocortex of rats with seizure induced by IL-1β and L-glutamate were stronger than that of control group (P<0.05), without significant difference found between the L-glutamate group and IL-1β plus L-glutamate group in the expression of AC, the latent period and the severity of seizure. When IL-ra were given (i. c. v. ) first, there was no epileptic activity and the expression of AC did not increase. There were no differences in the expression of AC of rats with IL-1ra and that of control rats. But when 2-methyl-2-(carboxycyclopropyl)glycine (MCCG) was given (i. c.v. ) first, the strongest expression of AC, the shortest latent period and the the most serious seizure activities were observed. The results indicated that IL-1β could facilitate the onset of epilepsy induced by L-glutamate through IL-1R, metabotropic glutamate receptors might work with IL-1R and the increased expression of AC might be involved in the process.

  14. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound.

    Science.gov (United States)

    Zhang, Lanqiu; Rasenick, Mark M

    2010-03-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Galpha(s) from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Galpha(s) in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Galpha(s) in lipid rafts, whereas there was no change in overall Galpha(s) content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Galpha(s) localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Galpha(s) and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Galpha(s) from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs.

  15. Pituitary adenylyl cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos.

    Science.gov (United States)

    Przywara, D A; Kulkarni, J S; Wakade, T D; Leontiev, D V; Wakade, A R

    1998-11-01

    Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24-48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1-100 nM) restored [3H]NE uptake to 92 +/- 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 +/- 40 versus 38 +/- 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 +/- 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.

  16. Ser⁄ Thr residues at α3⁄β5 loop of Gαs are important in morphine-induced adenylyl cyclase sensitization but not mitogen-activated protein kinase phosphorylation

    Science.gov (United States)

    Seyedabadi, Mohammad; Ostad, Seyed Nasser; Albert, Paul R.; Dehpour, Ahmad R.; Rahimian, Reza; Ghazi-Khansari, Mahmoud; Ghahremani, Mohammad H.

    2015-01-01

    The signaling switch of β2-adrenergic and μ1-opioid receptors from stimulatory G-protein (Gαs) to inhibitory G-protein (Gαi) (and vice versa) influences adenylyl cyclase (AC) and extracellular-regulated kinase (ERK)1 ⁄ 2 activation. Post-translational modifications, including dephosphorylation of Gαs, enhance opioid receptor coupling to Gαs. In the present study, we substituted the Ser ⁄ Thr residues of Gαs at the α3 ⁄ β5 and α4 ⁄ β6 loops aiming to study the role of Gαs lacking Ser ⁄ Thr phosphorylation with respect to AC sensitization and mitogen-activated protein kinase activation. Isoproterenol increased the cAMP concentration (EC50 = 22.8 ± 3.4 μM) in Gαs-transfected S49 cyc– cells but not in nontransfected cells. However, there was no significant difference between the Gαs-wild-type (wt) and mutants. Morphine (10 μM) inhibited AC activity more efficiently in cyc– compared to Gαs-wt introduced cells (P < 0.05); however, we did not find a notable difference between Gαs-wt and mutants. Interestingly, Gαs-wt transfected cells showed more sensitization with respect to AC after chronic morphine compared to nontransfected cells (101 ± 12% versus 34 ± 6%; P < 0.001); μ1-opioid receptor interacted with Gαs, and both co-immunoprecipitated after chronic morphine exposure. Furthermore, mutation of T270A and S272A (P < 0.01), as well as T270A, S272A and S261A (P < 0.05), in α3 ⁄ β5, resulted in a higher level of AC supersensitization. ERK1⁄ 2 phosphorylation was rapidly induced by isoproterenol (by 9.5 ± 2.4-fold) and morphine (22 ± 2.2-fold) in Gαs-transfected cells; mutations of α3 ⁄ β5 and α4 ⁄ β6 did not affect the pattern or extent of mitogen-activated protein kinase activation. The findings of the present study show that Gαs interacts with the μ1-opioid receptor, and the Ser ⁄ Thr mutation to Ala at the α3 ⁄ β5 loop of Gαs enhances morphine-induced AC sensitization. In addition, Gαs was required for

  17. The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation.

    Science.gov (United States)

    Keuylian, Zela; de Baaij, Jeroen H F; Gueguen, Marie; Glorian, Martine; Rouxel, Clotilde; Merlet, Elise; Lipskaia, Larissa; Blaise, Régis; Mateo, Véronique; Limon, Isabelle

    2012-07-20

    Vascular smooth muscle cell (VSMC) trans-differentiation, or their switch from a contractile/quiescent to a secretory/inflammatory/migratory state, is known to play an important role in pathological vascular remodeling including atherosclerosis and postangioplasty restenosis. Several reports have established the Notch pathway as tightly regulating VSMC response to various stress factors through growth, migration, apoptosis, and de-differentiation. More recently, we showed that alterations of the Notch pathway also govern VSMC acquisition of the inflammatory state, one of the major events accelerating atherosclerosis. We also evidenced that the inflammatory context of atherosclerosis triggers a de novo expression of adenylyl cyclase isoform 8 (AC8), associated with the properties developed by trans-differentiated VSMCs. As an initial approach to understanding the regulation of AC8 expression, we examined the role of the Notch pathway. Here we show that inhibiting the Notch pathway enhances the effect of IL1β on AC8 expression, amplifies its deleterious effects on the VSMC trans-differentiated phenotype, and decreases Notch target genes Hrt1 and Hrt3. Conversely, Notch activation resulted in blocking AC8 expression and up-regulated Hrt1 and Hrt3 expression. Furthermore, overexpressing Hrt1 and Hrt3 significantly decreased IL1β-induced AC8 expression. In agreement with these in vitro findings, the in vivo rat carotid balloon-injury model of restenosis evidenced that AC8 de novo expression coincided with down-regulation of the Notch3 pathway. These results, demonstrating that the Notch pathway attenuates IL1β-mediated AC8 up-regulation in trans-differentiated VSMCs, suggest that AC8 expression, besides being induced by the proinflammatory cytokine IL1β, is also dependent on down-regulation of the Notch pathway occurring in an inflammatory context.

  18. Characterization of two unusual guanylyl cyclases from Dictyostelium

    NARCIS (Netherlands)

    Roelofs, Jeroen; Haastert, Peter J.M. van

    2002-01-01

    Guanylyl cyclase A (GCA) and soluble guanylyl cyclase (sGC) encode GCs in Dictyostelium and have a topology similar to 12-transmembrane and soluble adenylyl cyclase, respectively. We demonstrate that all detectable GC activity is lost in a cell line in which both genes have been inactivated. Cell li

  19. Impairment of adenylyl cyclase 2 function and expression in hypoxanthine phosphoribosyltransferase-deficient rat B103 neuroblastoma cells as model for Lesch-Nyhan disease: BODIPY-forskolin as pharmacological tool.

    Science.gov (United States)

    Kinast, Liz; von der Ohe, Juliane; Burhenne, Heike; Seifert, Roland

    2012-07-01

    Hypoxanthine phosphoribosyl transferase (HPRT) deficiency results in Lesch-Nyhan disease (LND). The link between the HPRT defect and the self-injurious behavior in LND is still unknown. HPRT-deficient rat B103 neuroblastoma cells serve as a model system for LND. In B103 cell membranes, HPRT deficiency is associated with a decrease of basal and guanosine triphosphate-stimulated adenylyl cyclase (AC) activity (Pinto and Seifert, J Neurochem 96:454-459, 2006). Since recombinant AC2 possesses a high basal activity, we tested the hypothesis that AC2 function and expression is impaired in HPRT deficiency. We examined AC regulation in B103 cell membranes, cAMP accumulation in intact B103 cells, AC isoform expression, and performed morphological studies. As most important pharmacological tool, we used 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene forskolin (BODIPY-FS) that inhibits recombinant AC2 but activates ACs 1 and 5 (Erdorf et al., Biochem Pharmacol 82:1673-1681, 2011). In B103 control membranes, BODIPY-FS reduced catalysis, but in HPRT(-) membranes, BODIPY-FS was rather stimulatory. 2'(3')-O-(N-methylanthraniloyl) (MANT)-nucleoside 5'-[γ-thio]triphosphates inhibit recombinant ACs 1 and 5 more potently than AC2. In B103 control membranes, MANT-guanosine 5'-[γ-thio]triphosphate inhibited catalysis in control membranes less potently than in HPRT(-) membranes. Quantitative real-time PCR revealed that in HPRT deficiency, AC2 was virtually absent. In contrast, AC5 was up-regulated. Forskolin (FS) and BODIPY-FS induced cell clustering and rounding and neurite extension in B103 cells. The effects of FS and BODIPY-FS were much more prominent in control than in HPRT(-) cells, indicative for a differentiation defect in HPRT deficiency. Neither FS nor BODIPY-FS significantly changed cAMP concentrations in intact B103 cells. Collectively, our data show that HPRT deficiency in B103 cells is associated with impaired AC2 function and expression and reduced sensitivity to

  20. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  1. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-04

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2).

  2. The Cyclase-associated Protein CAP as Regulator of Cell Polarity and cAMP Signaling in Dictyostelium

    OpenAIRE

    Noegel, Angelika A; Blau-Wasser, Rosemarie; Sultana, Hameeda; Müller, Rolf; Israel, Lars; Schleicher, Michael; Patel, Hitesh; Weijer, Cornelis J

    2004-01-01

    Cyclase-associated protein (CAP) is an evolutionarily conserved regulator of the G-actin/F-actin ratio and, in yeast, is involved in regulating the adenylyl cyclase activity. We show that cell polarization, F-actin organization, and phototaxis are altered in a Dictyostelium CAP knockout mutant. Furthermore, in complementation assays we determined the roles of the individual domains in signaling and regulation of the actin cytoskeleton. We studied in detail the adenylyl cyclase activity and fo...

  3. Crystallization of cyclase-associated protein from Dictyostelium discoideum.

    Science.gov (United States)

    Hofmann, Andreas; Hess, Sonja; Noegel, Angelika A; Schleicher, Michael; Wlodawer, Alexander

    2002-10-01

    Cyclase-associated protein (CAP) is a conserved two-domain protein that helps to activate the catalytic activity of adenylyl cyclase in the cyclase-bound state through interaction with Ras, which binds to the cyclase in a different region. With its other domain, CAP can bind monomeric actin and therefore also carries a cytoskeletal function. The protein is thus involved in Ras/cAMP-dependent signal transduction and most likely serves as an adapter protein translocating the adenylyl cyclase complex to the actin cytoskeleton. Crystals belonging to the orthorhombic space group C222, with unit-cell parameters a = 71.2, b = 75.1, c = 162.9 A, have been obtained from Dictyostelium discoideum CAP carrying a C-terminal His tag. A complete native data set extending to 2.2 A resolution was collected from a single crystal using an in-house X-ray system. The asymmetric unit contains one molecule of CAP.

  4. Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development

    Science.gov (United States)

    Antal, Maria Cristina; Bénardais, Karelle; Samama, Brigitte; Auger, Cyril; Schini-Kerth, Valérie; Ghandour, Said; Boehm, Nelly

    2017-01-01

    Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors. PMID:28122017

  5. Receptor-type guanylyl cyclase Gyc76C is required for development of the Drosophila embryonic somatic muscle

    Directory of Open Access Journals (Sweden)

    Unisha Patel

    2012-04-01

    Guanylyl cyclases mediate a number of physiological processes, including smooth muscle function and axonal guidance. Here, we report a novel role for Drosophila receptor-type guanylyl cyclase at 76C, Gyc76C, in development of the embryonic somatic muscle. In embryos lacking function of Gyc76C or the downstream cGMP-dependent protein kinase (cGK, DG1, patterning of the somatic body wall muscles was abnormal with ventral and lateral muscle groups showing the most severe defects. In contrast, specification and elongation of the dorsal oblique and dorsal acute muscles of gyc76C mutant embryos was normal, and instead, these muscles showed defects in proper formation of the myotendinous junctions (MTJs. During MTJ formation in gyc76C and pkg21D mutant embryos, the βPS integrin subunit failed to localize to the MTJs and instead was found in discrete puncta within the myotubes. Tissue-specific rescue experiments showed that gyc76C function is required in the muscle for proper patterning and βPS integrin localization at the MTJ. These studies provide the first evidence for a requirement for Gyc76C and DG1 in Drosophila somatic muscle development, and suggest a role in transport and/or retention of integrin receptor subunits at the developing MTJs.

  6. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    Energy Technology Data Exchange (ETDEWEB)

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S. (Biosciences Division); (Univ. of Nevada); (Alliance Protein Labs.)

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  7. The Receptor Guanylyl Cyclase Type D (GC-D) Ligand Uroguanylin Promotes the Acquisition of Food Preferences in Mice

    Science.gov (United States)

    2013-01-01

    Rodents rely on olfactory stimuli to communicate information between conspecifics that is critical for health and survival. For example, rodents that detect a food odor simultaneously with the social odor carbon disulfide (CS2) will acquire a preference for that food. Disruption of the chemosensory transduction cascade in CS2-sensitive olfactory sensory neurons (OSNs) that express the receptor guanylyl cyclase type D (GC-D; GC-D+ OSNs) will prevent mice from acquiring these preferences. GC-D+ OSNs also respond to the natriuretic peptide uroguanylin, which is excreted into urine and feces. We analyzed if uroguanylin could also act as a social stimulus to promote the acquisition of food preferences. We found that feces of mice that had eaten odored food, but not unodored food, promoted a strong preference for that food in mice exposed to the feces. Olfactory exploration of uroguanylin presented with a food odor similarly produced a preference that was absent when mice were exposed to the food odor alone. Finally, the acquisition of this preference was dependent on GC-D+ OSNs, as mice lacking GC-D (Gucy2d − /− mice) showed no preference for the demonstrated food. Together with our previous findings, these results demonstrate that the diverse activators of GC-D+ OSNs elicit a common behavioral result and suggest that this specialized olfactory subsystem acts as a labeled line for a type of associative olfactory learning. PMID:23564012

  8. The cyclase-associated protein CAP as regulator of cell polarity and cAMP signaling in Dictyostelium.

    Science.gov (United States)

    Noegel, Angelika A; Blau-Wasser, Rosemarie; Sultana, Hameeda; Müller, Rolf; Israel, Lars; Schleicher, Michael; Patel, Hitesh; Weijer, Cornelis J

    2004-02-01

    Cyclase-associated protein (CAP) is an evolutionarily conserved regulator of the G-actin/F-actin ratio and, in yeast, is involved in regulating the adenylyl cyclase activity. We show that cell polarization, F-actin organization, and phototaxis are altered in a Dictyostelium CAP knockout mutant. Furthermore, in complementation assays we determined the roles of the individual domains in signaling and regulation of the actin cytoskeleton. We studied in detail the adenylyl cyclase activity and found that the mutant cells have normal levels of the aggregation phase-specific adenylyl cyclase and that receptor-mediated activation is intact. However, cAMP relay that is responsible for the generation of propagating cAMP waves that control the chemotactic aggregation of starving Dictyostelium cells was altered, and the cAMP-induced cGMP production was significantly reduced. The data suggest an interaction of CAP with adenylyl cyclase in Dictyostelium and an influence on signaling pathways directly as well as through its function as a regulatory component of the cytoskeleton.

  9. Receptor-Type Guanylyl Cyclase at 76C (Gyc76C) Regulates De Novo Lumen Formation during Drosophila Tracheal Development

    Science.gov (United States)

    Patel, Unisha

    2016-01-01

    Lumen formation and maintenance are important for the development and function of essential organs such as the lung, kidney and vasculature. In the Drosophila embryonic trachea, lumena form de novo to connect the different tracheal branches into an interconnected network of tubes. Here, we identify a novel role for the receptor type guanylyl cyclase at 76C (Gyc76C) in de novo lumen formation in the Drosophila trachea. We show that in embryos mutant for gyc76C or its downsteam effector protein kinase G (PKG) 1, tracheal lumena are disconnected. Dorsal trunk (DT) cells of gyc76C mutant embryos migrate to contact each other and complete the initial steps of lumen formation, such as the accumulation of E-cadherin (E-cad) and formation of an actin track at the site of lumen formation. However, the actin track and E-cad contact site of gyc76C mutant embryos did not mature to become a new lumen and DT lumena did not fuse. We also observed failure of the luminal protein Vermiform to be secreted into the site of new lumen formation in gyc76C mutant trachea. These DT lumen formation defects were accompanied by altered localization of the Arf-like 3 GTPase (Arl3), a known regulator of vesicle-vesicle and vesicle-membrane fusion. In addition to the DT lumen defect, lumena of gyc76C mutant terminal cells were shorter compared to wild-type cells. These studies show that Gyc76C and downstream PKG-dependent signaling regulate de novo lumen formation in the tracheal DT and terminal cells, most likely by affecting Arl3-mediated luminal secretion. PMID:27642749

  10. Computational identification of candidate nucleotide cyclases in higher plants

    KAUST Repository

    Wong, Aloysius Tze

    2013-09-03

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants. © Springer Science+Business Media New York 2013.

  11. Computational identification of candidate nucleotide cyclases in higher plants.

    Science.gov (United States)

    Wong, Aloysius; Gehring, Chris

    2013-01-01

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants.

  12. Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes.

    Science.gov (United States)

    Wang, Honglan; Kohr, Mark J; Traynham, Christopher J; Ziolo, Mark T

    2009-08-01

    Endothelial nitric oxide synthase (NOS3) regulates the functional response to beta-adrenergic (beta-AR) stimulation via modulation of the L-type Ca(2+) current (I(Ca)). However, the NOS3 signaling pathway modulating I(Ca) is unknown. This study investigated the contribution of soluble guanylate cyclase (sGC) and phosphodiesterase type 5 (PDE5), a cGMP-specific PDE, in the NOS3-mediated regulation of I(Ca). Myocytes were isolated from NOS3 knockout (NOS3(-/-)) and wildtype (WT) mice. We measured I(Ca) (whole-cell voltage-clamp), and simultaneously measured Ca(2+) transients (Fluo-4 AM) and cell shortening (edge detection). Zaprinast (selective inhibitor of PDE5), decreased beta-AR stimulated (isoproterenol, ISO)-I(Ca), and Ca(2+) transient and cell shortening amplitudes in WT myocytes. However, YC-1 (NO-independent activator of sGC) only reduced ISO-stimulated I(Ca), but not cardiac contraction. We further investigated the NOS3/sGC/PDE5 pathway in NOS3(-/-) myocytes. PDE5 is mislocalized in these myocytes and we observed dissimilar effects of PDE5 inhibition and sGC activation compared to WT. That is, zaprinast had no effect on ISO-stimulated I(Ca), or Ca(2+) transient and cell shortening amplitudes. Conversely, YC-1 significantly decreased both ISO-stimulated I(Ca), and cardiac contraction. Further confirming that PDE5 localizes NOS3/cGMP signaling to I(Ca); YC-1, in the presence of zaprinast, now significantly decreased ISO-stimulated Ca(2+) transient and cell shortening amplitudes in WT myocytes. The effects of YC-1 on I(Ca) and cardiac contraction were blocked by KT5823 (a selective inhibitor of the cGMP-dependent protein kinase, PKG). Our data suggests a novel physiological role for PDE5 in restricting the effects of NOS3/sGC/PKG signaling pathway to modulating beta-AR stimulated I(Ca), while limiting effects on cardiac contraction.

  13. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    Science.gov (United States)

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-02-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.

  14. Reversible adenylylation of glutamine synthetase is dynamically counterbalanced during steady-state growth of Escherichia coli.

    Science.gov (United States)

    Okano, Hiroyuki; Hwa, Terence; Lenz, Peter; Yan, Dalai

    2010-12-03

    Glutamine synthetase (GS) is the central enzyme for nitrogen assimilation in Escherichia coli and is subject to reversible adenylylation (inactivation) by a bifunctional GS adenylyltransferase/adenylyl-removing enzyme (ATase). In vitro, both of the opposing activities of ATase are regulated by small effectors, most notably glutamine and 2-oxoglutarate. In vivo, adenylyltransferase (AT) activity is critical for growth adaptation when cells are shifted from nitrogen-limiting to nitrogen-excess conditions and a rapid decrease of GS activity by adenylylation is needed. Here, we show that the adenylyl-removing (AR) activity of ATase is required to counterbalance its AT activity during steady-state growth under both nitrogen-excess and nitrogen-limiting conditions. This conclusion was established by studying AR(-)/AT(+) mutants, which surprisingly displayed steady-state growth defects in nitrogen-excess conditions due to excessive GS adenylylation. Moreover, GS was abnormally adenylylated in the AR(-) mutants even under nitrogen-limiting conditions, whereas there was little GS adenylylation in wild-type strains. Despite the importance of AR activity, we establish that AT activity is significantly regulated in vivo, mainly by the cellular glutamine concentration. There is good general agreement between quantitative estimates of AT regulation in vivo and results derived from previous in vitro studies except at very low AT activities. We propose additional mechanisms for the low AT activities in vivo. The results suggest that dynamic counterbalance by reversible covalent modification may be a general strategy for controlling the activity of enzymes such as GS, whose physiological output allows adaptation to environmental fluctuations.

  15. A cytoskeletal localizing domain in the cyclase-associated protein, CAP/Srv2p, regulates access to a distant SH3-binding site.

    Science.gov (United States)

    Yu, J; Wang, C; Palmieri, S J; Haarer, B K; Field, J

    1999-07-09

    In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling.

  16. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    Science.gov (United States)

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  17. Photo-dynamics of the BLUF domain containing soluble adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultaet fuer Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Stierl, M.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Kateriya, Suneel [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India)

    2011-08-25

    Graphical abstract: The photoactivated adenylyl cyclase (nPAC) from Naegleria gruberi was expressed heterologously in Escherichia coli and its photo-cycling dynamics was studied by optical absorption and fluorescence spectroscopy. Highlights: {yields} Photo-activated adenylyl cyclase (nPAC) from Naegleria gruberi NEG-M was expressed. {yields} Photodynamics of BLUF domain in BLUF sensor - cyclase actuator protein was studied. {yields} Photo-excitation caused BLUF photo-cycling and permanent protein re-conformation. {yields} Re-conformed protein enabled photo-induced flavin reduction by proton transfer. {yields} Fluorescence of flavin in dark- and light-adapted state of nPAC was characterized. - Abstract: The amoeboflagellate Naegleria gruberi NEG-M comprises a BLUF (blue light sensor using flavin) regulated adenylate cyclase (nPAC). The nPAC gene was expressed heterologously in Escherichia coli and the photo-dynamics of the nPAC protein was studied by optical absorption and fluorescence spectroscopy. Blue-light exposure of nPAC caused a typical BLUF-type photo-cycle behavior (spectral absorption red-shift, fluorescence quenching, absorption and fluorescence recovery in the dark). Additionally, time-delayed reversible photo-induced one-electron reduction of fully oxidized flavin (Fl{sub ox}) to semi-reduced flavin (FlH{sup {center_dot}}) occurred. Furthermore, photo-excitation of FlH{sup {center_dot}} caused irreversible electron transfer to fully reduced anionic flavin (FlH{sup -}). A photo-induced electron transfer from Tyr or Trp to flavin (Tyr{sup {center_dot}+}-Fl{sup {center_dot}-} or Trp{sup {center_dot}+}-Fl{sup {center_dot}-} radical ion-pair formation) is thought to cause H-bond restructuring responsible for BLUF-type photo-cycling and permanent protein re-conformation enabling photo-induced flavin reduction by proton transfer. Some photo-degradation of Fl{sub ox} to lumichrome was observed. A model of the photo-dynamics of nPAC is developed.

  18. Plant adenylate cyclases.

    Science.gov (United States)

    Lomovatskaya, Lidiya A; Romanenko, Anatoliy S; Filinova, Nadejda V

    2008-01-01

    Adenylate cyclase (AC) (ATP diphosphate-lyase cyclizing; EC 4.6.1.1) is a key component of the adenylate cyclase signaling system and catalyzes the generation of cyclic adenosine monophosphate (cAMP) from ATP. This review summarizes data from the literature and the authors' laboratory on the investigation of plant transmembrane (tmAC) and soluble (sAC) adenylate cyclases, in comparison with some key characteristics of adenylate cyclases of animal cells. Plant sAC has been demonstrated to exhibit similarities with animal sAC with respect to certain characteristics. External factors, such as far-red and red light, temperature, exogenous phytohormones, as well as specific triggering compounds of fungal and bacterial origin exert a significant influence on the activity of plant tmAC and sAC.

  19. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization.

    Science.gov (United States)

    Hubberstey, Andrew V; Mottillo, Emilio P

    2002-04-01

    Many extracellular signals elicit changes in the actin cytoskeleton, which are mediated through an array of signaling proteins and pathways. One family of proteins that plays a role in regulating actin remodeling in response to cellular signals are the cyclase-associated proteins (CAPs). CAPs are highly conserved monomeric actin binding proteins present in a wide range of organisms including yeast, fly, plants, and mammals. The original CAP was isolated as a component of the Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during nutritional signaling. CAPs are multifunctional molecules that contain domains involved in actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization. Genetic studies in yeast have implicated CAPs in vesicle trafficking and endocytosis. CAPs play a developmental role in multicellular organisms, and studies of Drosophila have illuminated the importance of the actin cytoskeleton during eye development and in establishing oocyte polarity. This review will highlight the critical structural and functional domains of CAPs, describe recent studies that have implied important roles for these proteins in linking cell signaling with actin polymerization, and highlight their roles in vesicle trafficking and development.

  20. Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes.

    Directory of Open Access Journals (Sweden)

    Jike Cui

    2010-08-01

    Full Text Available Trichomonas vaginalis has an unusually large genome (approximately 160 Mb encoding approximately 60,000 proteins. With the goal of beginning to understand why some Trichomonas genes are present in so many copies, we characterized here a family of approximately 123 Trichomonas genes that encode transmembrane adenylyl cyclases (TMACs.The large family of TMACs genes is the result of recent duplications of a small set of ancestral genes that appear to be unique to trichomonads. Duplicated TMAC genes are not closely associated with repetitive elements, and duplications of flanking sequences are rare. However, there is evidence for TMAC gene replacements by homologous recombination. A high percentage of TMAC genes (approximately 46% are pseudogenes, as they contain stop codons and/or frame shifts, or the genes are truncated. Numerous stop codons present in the genome project G3 strain are not present in orthologous genes of two other Trichomonas strains (S1 and B7RC2. Each TMAC is composed of a series of N-terminal transmembrane helices and a single C-terminal cyclase domain that has adenylyl cyclase activity. Multiple TMAC genes are transcribed by Trichomonas cloned by limiting dilution.We conclude that one reason for the unusually large genome of Trichomonas is the presence of unstable families of genes such as those encoding TMACs that are undergoing massive gene duplication and concomitant development of pseudogenes.

  1. Structural evidence for variable oligomerization of the N-terminal domain of cyclase-associated protein (CAP).

    Science.gov (United States)

    Yusof, Adlina Mohd; Hu, Nien-Jen; Wlodawer, Alexander; Hofmann, Andreas

    2005-02-01

    Cyclase-associated protein (CAP) is a highly conserved and widely distributed protein that links the nutritional response signaling to cytoskeleton remodeling. In yeast, CAP is a component of the adenylyl cyclase complex and helps to activate the Ras-mediated catalytic cycle of the cyclase. While the N-terminal domain of CAP (N-CAP) provides a binding site for adenylyl cyclase, the C-terminal domain (C-CAP) possesses actin binding activity. Our attempts to crystallize full-length recombinant CAP from Dictyostelium discoideum resulted in growth of orthorhombic crystals containing only the N-terminal domain (residues 42-227) due to auto-proteolytic cleavage. The structure was solved by molecular replacement with data at 2.2 A resolution. The present crystal structure allows the characterization of a head-to-tail N-CAP dimer in the asymmetric unit and a crystallographic side-to-side dimer. Comparison with previously published structures of N-CAP reveals variable modes of dimerization of this domain, but the presence of a common interface for the side-to-side dimer.

  2. Mechanism for Muscarinic Inhibitory Regulation of the L-type Ca2 + Current in Cardiac Ventricular Myocytes

    Institute of Scientific and Technical Information of China (English)

    蒋彬; 杨向军; 惠杰; 蒋廷波; 宋建平; 刘志华

    2004-01-01

    @@ Objective The autonomic nervous system plays a key role in regulating cardiac function by modifying heart rate, contractility and impulse. The parasympathetic neurotransmitter acetyl-choline and muscarinic agonist carbachol (Cch) inhibit excitation-contraction coupling in cardiac ventricular myocytes. Muscarinic agonists suppress adenylyl cyclase (AC) acitivity and,by reducing activation of the cAMP/protein kinase A (PKA)cascade, inhibit the L-type Ca2+ current (ICa(L) ). They also increase the content of cGMP by stimulating guanylyl cyclase (GC) activity. The role of nitric oxide (NO)/cGMP in muscarinic inhibition has undergone considerable scrutiny. The role of the NO/cGMP pathway in the inhibition of ICa(L) by Cch was examined in guinea-pig ventricular myocytes.

  3. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats

    OpenAIRE

    Puebla Jiménez, Lilian; Rodríguez Martín, Eulalia; Arilla Ferreiro, Eduardo

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 ¿g) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal ...

  4. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes.

    Science.gov (United States)

    Novak, Jakub; Cerny, Ondrej; Osickova, Adriana; Linhartova, Irena; Masin, Jiri; Bumba, Ladislav; Sebo, Peter; Osicka, Radim

    2017-09-24

    Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.

  5. NCBI nr-aa BLAST: CBRC-ACAR-01-0303 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0303 ref|NP_066939.1| brain adenylate cyclase 1 [Homo sapiens] sp|Q088...28|ADCY1_HUMAN Adenylate cyclase type 1 (Adenylate cyclase type I) (ATP pyrophosphate-lyase 1) (Adenylyl cyclase... 1) (Ca(2+)/calmodulin-activated adenylyl cyclase) gb|EAL23741.1| adenylate cyclase 1 (brain) [Homo sapiens] NP_066939.1 6e-54 57% ...

  6. The Receptor-Bound Guanylyl Cyclase DAF-11 Is the Mediator of Hydrogen Peroxide-Induced cGMP Increase in Caenorhabditis elegans [corrected]..

    Directory of Open Access Journals (Sweden)

    Ulrike Beckert

    Full Text Available Adenosine 3', 5'-cyclic monophosphate (cAMP and guanosine 3', 5'-cyclic monophosphate (cGMP are well-studied second messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such as Caenorhabditis elegans (C. elegans. cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases, respectively. Studies using C. elegans have revealed additional roles for cGMP signaling in lifespan extension. For example, mutants lacking the function of a specific receptor-bound guanylyl cyclase, DAF-11, have an increased life expectancy. While the daf-11 phenotype has been attributed to reductions in intracellular cGMP concentrations, the actual content of cyclic nucleotides has not been biochemically determined in this system. Similar assumptions were made in studies using phosphodiesterase loss-of-function mutants or using adenylyl cyclase overexpressing mutants. In the present study, cyclic nucleotide regulation in C. elegans was studied by establishing a special nematode protocol for the simultaneous detection and quantitation of cyclic nucleotides. We also examined the influence of reactive oxygen species (ROS on cyclic nucleotide metabolism and lifespan in C. elegans using highly specific HPLC-coupled tandem mass-spectrometry and behavioral assays. Here, we show that the relation between cGMP and survival is more complex than previously appreciated.

  7. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase

    NARCIS (Netherlands)

    Roelofs, J; Snippe, H; Kleineidam, RG; Van Haastert, PJM

    2001-01-01

    The core of adenylate and guanylate cyclases is formed by an intramolecular ol intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a he

  8. Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor.

    Science.gov (United States)

    Zink, Mathias; Otto, Christiane; Zörner, Björn; Zacher, Christiane; Schütz, Günther; Henn, Fritz A; Gass, Peter

    2004-04-22

    In vitro pituitary adenylate cyclase activating polypeptide (PACAP) induces the expression of brain-derived neurotrophic factor (BDNF) via its specific receptor PAC1. Since BDNF has been implicated in learning paradigms and mice lacking functional PAC1 have deficits in hippocampus-dependent associative learning, we investigated whether PAC1 mutants show alterations in hippocampal expression of BDNF and its receptor TrkB. Semi-quantitative in situ-hybridization using exon-specific BDNF-probes revealed significantly reduced expression of the exon-III and exon-V-specific transcripts within the hippocampal CA3 region in PAC1-deficient mice. A similar trend was observed for the exon-I-specific transcript. The expression of the exon-III-specific transcript was also reduced within the dentate gyrus, while Trk B-expression did not differ between genotypes. Our data demonstrate that even in vivo PAC1-mediated signaling seems to play a pivotal role for the transcriptional regulation of BDNF.

  9. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

    Science.gov (United States)

    Maresca, Julia A; Graham, Joel E; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A

    2007-07-10

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria.

  10. Two separate functions are encoded by the carboxyl-terminal domains of the yeast cyclase-associated protein and its mammalian homologs. Dimerization and actin binding.

    Science.gov (United States)

    Zelicof, A; Protopopov, V; David, D; Lin, X Y; Lustgarten, V; Gerst, J E

    1996-07-26

    The yeast adenylyl cyclase-associated protein, CAP, was identified as a component of the RAS-activated cyclase complex. CAP consists of two functional domains separated by a proline-rich region. One domain, which localizes to the amino terminus, mediates RAS signaling through adenylyl cyclase, while a domain at the carboxyl terminus is involved in the regulation of cell growth and morphogenesis. Recently, the carboxyl terminus of yeast CAP was shown to sequester actin, but whether this function has been conserved, and is the sole function of this domain, is unclear. Here, we demonstrate that the carboxyl-terminal domains of CAP and CAP homologs have two separate functions. We show that carboxyl-terminals of both yeast CAP and a mammalian CAP homolog, MCH1, bind to actin. We also show that this domain contains a signal for dimerization, allowing both CAP and MCH1 to form homodimers and heterodimers. The properties of actin binding and dimerization are mediated by separate regions on the carboxyl terminus; the last 27 amino acids of CAP being critical for actin binding. Finally, we present evidence that links a segment of the proline-rich region of CAP to its localization in yeast. Together, these results suggest that all three domains of CAP proteins are functional.

  11. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme.

    Science.gov (United States)

    Masin, Jiri; Osicka, Radim; Bumba, Ladislav; Sebo, Peter

    2015-11-01

    The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) is a key virulence factor of the whooping cough agent Bordetella pertussis. CyaA targets myeloid phagocytes expressing the complement receptor 3 (CR3, known as αMβ2 integrin CD11b/CD18 or Mac-1) and translocates by a poorly understood mechanism directly across the cytoplasmic membrane into cell cytosol of phagocytes an adenylyl cyclase(AC) enzyme. This binds intracellular calmodulin and catalyzes unregulated conversion of cytosolic ATP into cAMP. Among other effects, this yields activation of the tyrosine phosphatase SHP-1, BimEL accumulation and phagocyte apoptosis induction. In parallel, CyaA acts as a cytolysin that forms cation-selective pores in target membranes. Direct penetration of CyaA into the cytosol of professional antigen-presenting cells allows the use of an enzymatically inactive CyaA toxoid as a tool for delivery of passenger antigens into the cytosolic pathway of processing and MHC class I-restricted presentation, which can be exploited for induction of antigen-specific CD8(+) cytotoxic T-lymphocyte immune responses.

  12. Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria.

    Science.gov (United States)

    Tao, L; Picataggio, S; Rouvière, P E; Cheng, Q

    2004-03-01

    Carotenoids have important functions in photosynthesis, nutrition, and protection against oxidative damage. Some natural carotenoids are asymmetrical molecules that are difficult to produce chemically. Biological production of carotenoids using specific enzymes is a potential alternative to extraction from natural sources. Here we report the isolation of lycopene beta-cyclases that selectively cyclize only one end of lycopene or neurosporene. The crtLm genes encoding the asymmetrically acting lycopene beta-cyclases were isolated from non-photosynthetic bacteria that produced monocyclic carotenoids. Co-expression of these crtLm genes with the crtEIB genes from Pantoea stewartii (responsible for lycopene synthesis) resulted in the production of monocyclic gamma-carotene in Escherichia coli. The asymmetric cyclization activity of CrtLm could be inhibited by the lycopene beta-cyclase inhibitor 2-(4-chlorophenylthio)-triethylamine (CPTA). Phylogenetic analysis suggested that bacterial CrtL-type lycopene beta-cyclases might represent an evolutionary link between the common bacterial CrtY-type of lycopene beta-cyclases and plant lycopene beta- and epsilon-cyclases. These lycopene beta-cyclases may be used for efficient production of high-value asymmetrically cyclized carotenoids.

  13. Influence of N-phenyl-2-naphthylamine on the Activity of Adenylate Cyclase Signaling System and the Virulence of Clavibacter michiganensis subsp. sepedonicus

    Directory of Open Access Journals (Sweden)

    A.M. Goncharova

    2016-11-01

    Full Text Available The effect of N-phenyl-2-naphthylamine was obtained from exudates of pea root on growth, virulence and signaling-specific of potato phytopathogen Clavibacter michiganensis subsp. sepedonicus. It is shown that the compound in a physiological concentration of the peas 9 mkM had no effect on C. michiganensis subsp. sepedonicus, but when exposed to N-FNA in a concentration of 45 mkM was observed reduction in growth of planktonic culture C. michiganensis subsp. sepedonicus, as well as changes in the activity of adenylyl cyclase signaling system components in this phytopathogen.

  14. A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a Type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase.

    Science.gov (United States)

    Pérez-Mendoza, Daniel; Coulthurst, Sarah J; Humphris, Sonia; Campbell, Emma; Welch, Martin; Toth, Ian K; Salmond, George P C

    2011-11-01

    Cyclic diguanylate (c-di-GMP) is a second messenger controlling many important bacterial processes. The phytopathogen Pectobacterium atrosepticum SCRI1043 (Pba1043) possesses a Type I secretion system (T1SS) essential for the secretion of a proteinaceous multi-repeat adhesin (MRP) required for binding to the host plant. The genes encoding the MRP and the T1SS are tightly linked to genes encoding several putative c-di-GMP regulatory components. We show that c-di-GMP regulates secreted MRP levels in Pba1043 through the action of two genes encoding predicted diguanylate cyclase (DGC) and phosphodiesterase proteins (ECA3270 and ECA3271). Phenotypic analyses and quantification of c-di-GMP levels demonstrated that ECA3270 and ECA3271 regulate secreted MRP levels by increasing and decreasing, respectively, the intracellular levels of c-di-GMP. Moreover, ECA3270 represents the first active DGC reported to have an alternative active-site motif from the 'canonical' GG[D/E]EF. ECA3270 has an A-site motif of SGDEF and analysis of single amino acid replacements demonstrated that the first position of this motif can tolerate functional substitution. Serine in position one of the A-site is also observed in many other DGCs. Finally, another T1SS-linked regulator (ECA3265) also plays an important role in regulating secreted MRP, with an altered localization of MRP observed in an ECA3265 mutant background. Mutants defective in these three T1SS-linked regulators exhibit a reduction in root binding and virulence, confirming that this complex, finely tuned regulation system is crucial in the interaction with host plants.

  15. NCBI nr-aa BLAST: CBRC-MDOM-11-0110 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-11-0110 sp|P30804|ADCY6_CANFA RecName: Full=Adenylate cyclase type 6; AltName: Full...=Adenylate cyclase type VI; AltName: Full=ATP pyrophosphate-lyase 6; AltName: Full=Adenylyl cyclase 6; AltName: Full=Ca(2+)-inhibitable adenylyl cyclase P30804 1e-123 75% ...

  16. Histamine H1-receptors modulate somatostatin receptors coupled to the inhibition of adenylyl cyclase in the rat frontoparietal cortex

    OpenAIRE

    Puebla Jiménez, Lilian; Ocaña Fuentes, Aurelio; Arilla Ferreiro, Eduardo

    1997-01-01

    Since exogenous histamine has been previously shown to increase the somatostatin (SS) receptor-effector system in the rat frontoparietal cortex and both histamine H1-receptor agonists and SS modulate higher nervous activity and have anticonvulsive properties, it was of interest to determine the participation of the H1-histaminergic system in this response. The intracerebroventricular (i.c.v.) administration of the specific histamine H1-receptor agonist 2-pyridylethylamine (PEA) (10 ¿g) to rat...

  17. Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology

    Directory of Open Access Journals (Sweden)

    Alexander Harms

    2015-09-01

    Full Text Available Toxin-antitoxin (TA modules are ubiquitous molecular switches controlling bacterial growth via the release of toxins that inhibit cell proliferation. Most of these toxins interfere with protein translation, but a growing variety of other mechanisms hints at a diversity that is not yet fully appreciated. Here, we characterize a group of FIC domain proteins as toxins of the conserved and abundant FicTA family of TA modules, and we reveal that they act by suspending control of cellular DNA topology. We show that FicTs are enzymes that adenylylate DNA gyrase and topoisomerase IV, the essential bacterial type IIA topoisomerases, at their ATP-binding site. This modification inactivates both targets by blocking their ATPase activity, and, consequently, causes reversible growth arrest due to the knotting, catenation, and relaxation of cellular DNA. Our results give insight into the regulation of DNA topology and highlight the remarkable plasticity of FIC domain proteins.

  18. NCBI nr-aa BLAST: CBRC-ACAR-01-1123 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-1123 ref|NP_899200.1| adenylate cyclase 5 [Homo sapiens] sp|O95622|ADCY5_HUMAN Adenylate cyclas...e type 5 (Adenylate cyclase type V) (ATP pyrophosphate-lyase 5) (Adenylyl cyclase 5) NP_899200.1 2e-91 52% ...

  19. Pituitary adenylate cyclase activating polypeptide and migraine

    DEFF Research Database (Denmark)

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients...

  20. A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding.

    Science.gov (United States)

    Wills, Zachary; Emerson, Mark; Rusch, Jannette; Bikoff, Jay; Baum, Buzz; Perrimon, Norbert; Van Vactor, David

    2002-11-14

    We demonstrate that Drosophila capulet (capt), a homolog of the adenylyl cyclase-associated protein that binds and regulates actin in yeast, associates with Abl in Drosophila cells, suggesting a functional relationship in vivo. We find a robust and specific genetic interaction between capt and Abl at the midline choice point where the growth cone repellent Slit functions to restrict axon crossing. Genetic interactions between capt and slit support a model where Capt and Abl collaborate as part of the repellent response. Further support for this model is provided by genetic interactions that both capt and Abl display with multiple members of the Roundabout receptor family. These studies identify Capulet as part of an emerging pathway linking guidance signals to regulation of cytoskeletal dynamics and suggest that the Abl pathway mediates signals downstream of multiple Roundabout receptors.

  1. Mechanistic investigations on six bacterial terpene cyclases

    Directory of Open Access Journals (Sweden)

    Patrick Rabe

    2016-08-01

    Full Text Available The products obtained by incubation of farnesyl diphosphate (FPP with six purified bacterial terpene cyclases were characterised by one- and two-dimensional NMR spectroscopic methods, allowing for a full structure elucidation. The absolute configurations of four terpenes were determined based on their optical rotary powers. Incubation experiments with 13C-labelled isotopomers of FPP in buffers containing water or deuterium oxide allowed for detailed insights into the cyclisation mechanisms of the bacterial terpene cyclases.

  2. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin.

    Science.gov (United States)

    Gottwald, U; Brokamp, R; Karakesisoglou, I; Schleicher, M; Noegel, A A

    1996-02-01

    In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.

  3. The prostaglandin E2/EP4 receptor/cyclic AMP/T-type Ca(2+) channel pathway mediates neuritogenesis in sensory neuron-like ND7/23 cells.

    Science.gov (United States)

    Mitani, Kenji; Sekiguchi, Fumiko; Maeda, Takashi; Tanaka, Yukari; Yoshida, Shigeru; Kawabata, Atsufumi

    2016-03-01

    We investigated mechanisms for the neuritogenesis caused by prostaglandin E2 (PGE2) or intracellular cyclic AMP (cAMP) in sensory neuron-like ND7/23 cells. PGE2 caused neuritogenesis, an effect abolished by an EP4 receptor antagonist or inhibitors of adenylyl cyclase (AC) or protein kinase A (PKA) and mimicked by the AC activator forskolin, dibutyryl cAMP (db-cAMP), and selective activators of PKA or Epac. ND7/23 cells expressed both Cav3.1 and Cav3.2 T-type Ca(2+) channels (T-channels). The neuritogenesis induced by db-cAMP or PGE2 was abolished by T-channel blockers. T-channels were functionally upregulated by db-cAMP. The PGE2/EP4/cAMP/T-channel pathway thus appears to mediate neuritogenesis in sensory neurons.

  4. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

    Science.gov (United States)

    Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E

    2012-07-31

    Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

  5. Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie.

    Science.gov (United States)

    Colombo, Sonia; Paiardi, Chiara; Pardons, Katrien; Winderickx, Joris; Martegani, Enzo

    2014-05-01

    Data in literature suggest that budding yeast adenylate cyclase forms a membrane-associated complex with the upstream components of the cAMP/PKA pathway. Here we provide evidences that adenylate cyclase (Cyr1p) acts as a scaffold protein keeping Ras2 available for its regulatory factors. We show that in a strain with deletion of the CYR1 gene (cyr1Δ pde2Δ msn2Δ msn4Δ) the basal Ras2-GTP level is very high and this is independent on the lack of feedback inhibition that could result from the absence of adenylate cyclase activity. Moreover, strains effected either in the intrinsic adenylate cyclase activity (fil1 strain) or in the stimulation of adenylate cyclase activity by active G-proteins (lcr1 strain) had a normal basal and glucose-induced Ras2-GTP level, indicating that adenylate cyclase activity does not influence the Ras2 activation state and suggesting that Cyr1 protein is required for the proper interaction between Ras2 and the Ira proteins. We also provide evidence that the two Ras-binding sites mapped on Cyr1p are required for the signalling complex assembly. In fact, we show that the cyr1Δ strain expressing CYR1 alleles lacking either the LRR region or the C-terminal domain still have a high basal and glucose-induced Ras2-GTP level. In contrast, a mutant expressing a Cyr1 protein only missing the N-terminal domain showed a normal Ras2 activation pattern. Likewise, the Ras2-GTP levels are comparable in the wild type strain and the srv2Δ strain, supporting the hypothesis that Cap is not essential for the Ras-adenylate cyclase interaction.

  6. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    Science.gov (United States)

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.

  7. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein.

    Science.gov (United States)

    Freeman, N L; Chen, Z; Horenstein, J; Weber, A; Field, J

    1995-03-10

    The Saccharomyces cerevisiae adenylyl cyclase complex contains at least two subunits, a 200-kDa catalytic subunit and a 70-kDa cyclase-associated protein, CAP (also called Srv2p). Genetic studies suggested two roles for CAP, one as a positive regulator of cAMP levels in yeast and a second role as a cytoskeletal regulator. We present evidence showing that CAP sequesters monomeric actin (Kd in the range of 0.5-5 microM), decreasing actin incorporation into actin filaments. Anti-CAP monoclonal antibodies co-immunoprecipitate a protein with a molecular size of about 46 kDa. When CAP was purified from yeast using an anti-CAP monoclonal antibody column, the 46-kDa protein co-purified with a stoichiometry of about 1:1 with CAP. Western blots identified the 46-kDa protein as yeast actin. CAP also bound to muscle actin in vitro in immunoprecipitation assays and falling ball viscometry assays. Experiments with pyrene-labeled actin demonstrated that CAP sequesters actin monomers. The actin monomer binding activity is localized to the carboxyl-terminal half of CAP. Together, these data suggest that yeast CAP regulates the yeast cytoskeleton by sequestering actin monomers.

  8. Multifunctional oxidosqualene cyclases and cytochrome P450involved in the biosynthesis of apple fruit triterpenic acids

    OpenAIRE

    Andre, Christelle; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; M.Cooney, Janine; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; A.Laing, William

    2016-01-01

    Summary Apple (Malus × domestica) accumulates bioactive ursane‐, oleanane‐, and lupane‐type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology‐based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with co...

  9. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria

    OpenAIRE

    Maresca, Julia A.; Graham, Joel E.; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A.

    2007-01-01

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechoc...

  10. Role of glutaminyl cyclases in thyroid carcinomas.

    Science.gov (United States)

    Kehlen, Astrid; Haegele, Monique; Menge, Katja; Gans, Kathrin; Immel, Uta-Dorothee; Hoang-Vu, Cuong; Klonisch, Thomas; Demuth, Hans-Ulrich

    2013-02-01

    CCL2 is a chemokine known to recruit monocytes/macrophages to sites of inflammation. CCL2 is also associated with tumor progression in several cancer types. Recently, we showed that the N-terminus of CCL2 is modified to a pyroglutamate (pE)-residue by both glutaminyl cyclases (QC (QPCT)) and its isoenzyme (isoQC (QPCTL)). The pE-residue increases stability against N-terminal degradation by aminopeptidases. Here, we report an upregulation of QPCT expression in tissues of patients with thyroid carcinomas compared with goiter tissues, whereas QPCTL was not regulated. In thyroid carcinoma cell lines, QPCT gene expression correlates with the mRNA levels of its substrate CCL2. Both QPCT and CCL2 are regulated in a NF-κB-dependent pathway shown by stimulation with TNFa and IL1b as well as by inhibition with the IKK2 inhibitor and RNAi of p50. In the culture supernatant of thyroid carcinoma cells, equal amounts of pECCL2 and total CCL2 were detected by two ELISAs discriminating between total CCL2 and pECCL2, concluding that all CCL2 is secreted as pECCL2. Activation of the CCL2/CCR2 pathway by recombinant CCL2 increased tumor cell migration of FTC238 cells in scratch assays as well as thyroid carcinoma cell-derived CCL2-induced migration of monocytic THP1 cells. Suppression of CCL2 signaling by CCR2 antagonist, IKK2 inhibitor, and QPCT RNAi reduced FTC238 cell growth measured by WST8 proliferation assays. Our results reveal new evidence for a novel role of QC in thyroid carcinomas and provide an intriguing rationale for the use of QC inhibitors as a means of blocking pECCL2 formation and preventing thyroid cancer metastasis.

  11. Diterpene Cyclases and the Nature of the Isoprene Fold

    Science.gov (United States)

    Cao, Rong; Zhang, Yonghui; Mann, Francis M.; Huang, Cancan; Mukkamala, Dushyant; Hudock, Michael P.; Mead, Matthew; Prisic, Sladjana; Wang, Ke; Lin, Fu-Yang; Chang, Ting-Kai; Peters, Reuben; Oldfield, Eric

    2013-01-01

    The structures and mechanism of action of many terpene cyclases are known, but there are no structures of diterpene cyclases. Here, we propose structural models based on bioinformatics, site-directed mutagenesis, domain swapping, enzyme inhibition and spectroscopy that help explain the nature of diterpene cyclase structure, function, and evolution. Bacterial diterpene cyclases contain ∼20 α-helices and the same conserved “QW” and DxDD motifs as in triterpene cyclases, indicating the presence of a βγ barrel structure. Plant diterpene cyclases have a similar catalytic motif and βγ-domain structure together with a third, α-domain, forming an αβγ structure, and in H+-initiated cyclases, there is an EDxxD-like Mg2+/diphosphate binding motif located in the γ-domain. The results support a new view of terpene cyclase structure and function and suggest evolution from ancient (βγ) bacterial triterpene cyclases to (βγ) bacterial and thence to (αβγ) plant diterpene cyclases. PMID:20602361

  12. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultaet fuer Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Stierl, M.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Kateriya, S. [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India)

    2012-01-02

    Graphical abstract: Protein color center emissions were observed in the wavelength range from 340 nm to 900 nm from nano-clusters of the photo-activated adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi. Highlights: Black-Right-Pointing-Pointer Adenylyl cyclase nPAC in aqueous pH 7.5 buffer dissolved only to nano-clusters. Black-Right-Pointing-Pointer Nano-cluster size was determined by light attenuation (scattering) measurements. Black-Right-Pointing-Pointer The size of the nano-clusters was growing by coalescing during observation period. Black-Right-Pointing-Pointer In nPAC nano-clusters color centers were present in emission range of 360-900 nm. Black-Right-Pointing-Pointer The nPAC color center emission is compared with fluorescent protein emission. - Abstract: The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  13. NCBI nr-aa BLAST: CBRC-GACU-11-0020 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-11-0020 ref|NP_001107.2| adenylate cyclase 9 [Homo sapiens] sp|O60503|ADCY9_HUMAN Adenylate cyclas...e type 9 (Adenylate cyclase type IX) (ATP pyrophosphate-lyase 9) (Adenylyl cyclase ...9) gb|AAK29464.1| adenylate cyclase type 9 [Homo sapiens] gb|AAY21237.1| adenylyl cyclase type 9 [Homo sapie...ns] gb|EAW85331.1| adenylate cyclase 9, isoform CRA_a [Homo sapiens] gb|EAW85332.1| adenylate cyclase... 9, isoform CRA_a [Homo sapiens] gb|AAI51208.1| Adenylate cyclase 9 [Homo sapiens] NP_001107.2 0.0 63% ...

  14. A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli.

    Science.gov (United States)

    Jiang, Peng; Ninfa, Alexander J

    2011-12-20

    Glutamine synthetase (GS) activity in Escherichia coli is regulated by reversible adenylylation, brought about by a bicyclic system comprised of uridylyltransferase/uridylyl-removing enzyme (UTase/UR), its substrate, PII, adenylyltransferase (ATase), and its substrate, GS. The modified and unmodified forms of PII produced by the upstream UTase/UR-PII cycle regulate the downstream ATase-GS cycle. A reconstituted UTase/UR-PII-ATase-GS bicyclic system has been shown to produce a highly ultrasensitive response of GS adenylylation state to the glutamine concentration, but its composite UTase/UR-PII and ATase-GS cycles displayed moderate glutamine sensitivities when examined separately. Glutamine sensitivity of the bicyclic system was significantly reduced when the trimeric PII protein was replaced by a heterotrimeric form of PII that was functionally monomeric, and coupling between the two cycles was different in systems containing wild-type or heterotrimeric PII. Thus, the trimeric nature of PII played a role in the glutamine response of the bicyclic system. We therefore examined regulation of the individual AT (adenylylation) and AR (deadenylylation) activities of ATase by PII preparations with various levels of uridylylation. AR activity was affected in a linear fashion by PII uridylylation, but partially modified wild-type PII activated the AT much less than expected based on the extent of PII modification. Partially modified wild-type PII also bound to ATase less than expected based upon the fraction of modified subunits. Our results suggest that the AT activity is only bound and activated by completely unmodified PII and that this design is largely responsible for ultrasensitivity of the bicyclic system.

  15. Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site.

    Science.gov (United States)

    Xu, Yibin; Carr, Paul D; Vasudevan, Subhash G; Ollis, David L

    2010-02-26

    The X-ray structure of the C-terminal fragment, containing residues 449-946, of Escherichia coli glutamine synthetase adenylyl transferase (ATase) has been determined. ATase is part of the cascade that regulates the enzymatic activity of E. coli glutamine synthetase, a key component of the cell's machinery for the uptake of ammonia. It has two enzymatic activities, adenylyl removase (AR) and adenylyl transferase (AT), which are located in distinct catalytic domains that are separated by a regulatory (R) domain. We previously reported the three-dimensional structure of the AR domain (residues 1-440). The present structure contains both the R and AT domains. AR and AT share 24% sequence identity and also contain the beta-polymerase motif that is characteristic of many nucleotidylyl transferase enzymes. The structures overlap with an rmsd of 2.4 A when the superhelical R domain is omitted. A model for the complete ATase molecule is proposed, along with some refinements of domain boundaries. A rather more speculative model for the complex of ATase with glutamine synthetase and the nitrogen signal transduction protein PII is also presented.

  16. Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification

    Science.gov (United States)

    Kugel, Susann; Baunach, Martin; Baer, Philipp; Ishida-Ito, Mie; Sundaram, Srividhya; Xu, Zhongli; Groll, Michael; Hertweck, Christian

    2017-06-01

    Terpenoid natural products comprise a wide range of molecular architectures that typically result from C-C bond formations catalysed by classical type I/II terpene cyclases. However, the molecular diversity of biologically active terpenoids is substantially increased by fully unrelated, non-canonical terpenoid cyclases. Their evolutionary origin has remained enigmatic. Here we report the in vitro reconstitution of an unusual flavin-dependent bacterial indoloterpenoid cyclase, XiaF, together with a designated flavoenzyme-reductase (XiaP) that mediates a key step in xiamycin biosynthesis. The crystal structure of XiaF with bound FADH2 (at 2.4 Å resolution) and phylogenetic analyses reveal that XiaF is, surprisingly, most closely related to xenobiotic-degrading enzymes. Biotransformation assays show that XiaF is a designated indole hydroxylase that can be used for the production of indigo and indirubin. We unveil a cryptic hydroxylation step that sets the basis for terpenoid cyclization and suggest that the cyclase has evolved from xenobiotics detoxification enzymes.

  17. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    Science.gov (United States)

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  18. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    Science.gov (United States)

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  19. Adenylate cyclases involvement in pathogenicity, a minireview.

    Science.gov (United States)

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.

  20. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    Full Text Available Mechanical stress that arises due to deformation of the extracellular matrix (ECM either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC via the RhoA/RhoA-associated protein kinase (ROCK pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853. Because myosin phosphatase targeting subunit 1 (Thr853 is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188 that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188 induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188. Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.

  1. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    Science.gov (United States)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  2. Control of guanylate cyclase activity in the rod outer segment.

    Science.gov (United States)

    Pannbacker, R G

    1973-12-14

    Mammalian photoreceptors contain a guanylate cyclase which has a high specific activity and is inhibited by exposure of the rod outer segment to light. Several minutes are required for this inhibition to take effect, indicating that it is not a step in visual excitation. The activity of the enzyme is sensitive to the concentration of calcium ion in the medium, suggesting that light-induced changes in calcium distribution in the photoreceptor could control guanylate cyclase activity.

  3. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    Energy Technology Data Exchange (ETDEWEB)

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  4. Interaction Of GCAP1 With Retinal Guanylyl Cyclase And Calcium: Sensitivity to Fatty Acylation

    Directory of Open Access Journals (Sweden)

    Igor V. Peshenko

    2012-02-01

    Full Text Available Guanylyl cyclase activating proteins (GCAP1 are calcium/magnesium binding proteins within neuronal calcium sensor proteins group (NCS of the EF-hand proteins superfamily. GCAPs activate retinal guanylyl cyclase (RetGC in vertebrate photoreceptors in response to light-dependent fall of the intracellular free Ca2+ concentrations. GCAPs consist of four EF-hand domains and contain N-terminal fatty acylated glycine, which in GCAP1 is required for the normal activation of RetGC. We analyzed the effects of a substitution prohibiting N-myristoylation (Gly2 → Ala on the ability of the recombinant GCAP1 to co-localize with its target enzyme when heterologously expressed in HEK293 cells. We also compared Ca2+ binding and RetGC-activating properties of the purified non-acylated G2A mutant and C14:0 acylated GCAP1 in vitro. The G2A GCAP1 expressed with a C-terminal GFP tag was able to co-localize with the cyclase, albeit less efficiently than the wild type, but much less effectively stimulated cyclase activity in vitro. Ca2+ binding isotherm of the G2A GCAP1 was slightly shifted toward higher free Ca2+ concentrations and so was Ca2+ sensitivity of RetGC reconstituted with the non-acylated mutant. At the same time, myristoylation had little effect on the high-affinity Ca2+-binding in the EF-hand that is proximal to the myristoyl residue in the three-dimensional GCAP1 structure. These data indicate that the N-terminal fatty acyl group may alter the activity of EF-hands in the distal portion of the GCAP1 molecule via presently unknown intramolecular mechanism.

  5. Adenyl cyclase in the human placenta.

    Science.gov (United States)

    Sato, K; Ryan, K J

    1971-09-21

    This study demonstrated that the human placenta possesses an adenyl cyclase system responsive to catecholamines and sodium flouride (NaF). 2.5 gm human term placentas were homogenized, centrifuged, washed, resuspended, and used as the enzyme system when placed with various agents. Incubations and the determination of adenosine 3', 5' monophosphate (cyclic AMP) formed were performed. Samples stimulated by .0001 M catecholamines (L-epinephrine or L-norepinephrine) or .01 M NaF had higher levels of cyclic AMP than the controls (p. 005 for catecholamine-treated samples and p. 001 for NaF-treated samples). A concentration of .0001 M L-epinephrine or L-norepinephrine appeared to be a maximum effective dose and .0000001 M a minimum. L=epinephrine was 10 times as effective in the stimulation as L-norepinephrine. With .0001 M, 499 and 439 pmoles/10 minutes per 25 mg of tissue was formed, whereas in the control (no added hormones) 256 pmoles/10 minutes were formed. 3.2% ethanol activated the system by a small amount (p.02). Propranolol alone did not appear to have any effect; however, the effect of .0001 M L-epinephrine was reduced by 95% in the presence of .00001 M propranolol. Propranolol had no effect on NaF-stimulated activity.

  6. Adenylate cyclase regulates elongation of mammalian primary cilia

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  7. Thyrotropin receptor-adenylate cyclase function in human thyroid neoplasms.

    Science.gov (United States)

    Saltiel, A R; Powel-Jones, C H; Thomas, C G; Nayfeh, S N

    1981-06-01

    The action of thyrotropin (TSH) on plasma membranes was studied to elucidate the mechanism of hormonal regulation of malignant versus normal human thyroid tissue. Thyroid plasma membranes of six specimens of papillary or follicular carcinoma and six of adenoma, as well as adjacent normal tissue obtained from these patients, were evaluated with respect to binding of 125I-labeled TSH and stimulation of adenylate cyclase. Scatchard analysis of TSH binding revealed the presence of two species of binding sites in normal thyroid of different affinities and capacities. In 11 of 12 tumors studied, the high-affinity binding site remained intact; however, the total number of low-affinity sites was markedly lower than normal tissue. Other parameters of binding were not altered in neoplastic thyroid. In each of these tissues, the hormone responsiveness and kinetics of adenylate cyclase activation were essentially identical to those observed in normal tissue, although basal activity was typically greater in the neoplasm. One carcinoma was totally deficient in both 125I-labeled TSH binding and TSH-stimulatable adenylate cyclase, although basal activity was detected. Furthermore, adenylate cyclase of this specimen was not activated by prostaglandin, in contrast to normal thyroid and other thyroid tumors. These results suggest that: (a) clinical behavior of thyroid carcinomas may not be reflected by TSH receptor-adenylate cyclase function; (b) lack of clinical response as manifest by tumor regression cannot be ascribed to the absence of functional TSH receptors or adenylate cyclase; and (c) decreased low-affinity binding present in tumors is not correlated with altered hormone responsiveness of adenylate cyclase but may reflect more general cancer-induced changes in membrane structure or composition.

  8. Monospecific antibody against Bordetella pertussis Adenylate Cyclase protects from Pertussis

    Directory of Open Access Journals (Sweden)

    Yasmeen Faiz Kazi

    2012-06-01

    Full Text Available Objectives: Acellular pertussis vaccines has been largely accepted world-wide however, there are reports about limitedantibody response against these vaccines suggesting that multiple antigens should be included in acellular vaccinesto attain full protection. The aim of present study was to evaluate the role of Bordetella pertussis adenylate cyclase as aprotective antigen.Materials and methods: Highly mono-specific antibody against adenylate cyclase (AC was raised in rabbits usingnitrocellulose bound adenylate cyclase and the specificity was assessed by immuoblotting. B.pertussis 18-323, wasincubated with the mono-specific serum and without serum as a control. Mice were challenged intra-nasally and pathophysiolgicalresponses were recorded.Results: The production of B.pertussis adenylate cyclase monospecific antibody that successfully recognized on immunoblotand gave protection against fatality (p< 0.01 and lung consolidation (p <0.01. Mouse weight gain showedsignificant difference (p< 0.05.Conclusion: These preliminary results highlight the role of the B.pertussis adenylate cyclase as a potential pertussisvaccine candidate. B.pertussis AC exhibited significant protection against pertussis in murine model. J Microbiol InfectDis 2012; 2(2: 36-43Key words: Pertussis; monospecific; antibody; passive-protection

  9. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors.

    Science.gov (United States)

    Huang, Cathy C Y; Shi, Liheng; Lin, Chia-Hung; Kim, Andy Jeesu; Ko, Michael L; Ko, Gladys Y-P

    2015-11-01

    AMP-activated protein kinase (AMPK) is a cellular energy sensor, which is activated when the intracellular ATP production decreases. The activities of AMPK display circadian rhythms in various organs and tissues, indicating that AMPK is involved in the circadian regulation of cellular metabolism. In vertebrate retina, the circadian clocks regulate many aspects of retinal function and physiology, including light/dark adaption, but whether and how AMPK was involved in the retinal circadian rhythm was not known. We hypothesized that the activation of AMPK (measured as phosphorylated AMPK) in the retina was under circadian control, and AMPK might interact with other intracellular signaling molecules to regulate photoreceptor physiology. We combined ATP assays, western blots, immunostaining, patch-clamp recordings, and pharmacological treatments to decipher the role of AMPK in the circadian regulation of photoreceptor physiology. We found that the overall retinal ATP content displayed a diurnal rhythm that peaked at early night, which was nearly anti-phase to the diurnal and circadian rhythms of AMPK phosphorylation. AMPK was also involved in the circadian phase-dependent regulation of photoreceptor L-type voltage-gated calcium channels (L-VGCCs), the ion channel essential for sustained neurotransmitter release. The activation of AMPK dampened the L-VGCC currents at night with a corresponding decrease in protein expression of the L-VGCCα1 pore-forming subunit, while inhibition of AMPK increased the L-VGCC current during the day. AMPK appeared to be upstream of extracellular-signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Hence, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology. We found that in chicken embryonic retina, the activation of AMP-activated protein

  10. Pertussis toxin inhibits cAMP-induced desensitization of adenylate cyclase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Snaar-Jagalska, B. Ewa; Haastert, Peter J.M. van

    1990-01-01

    cAMP binds to surface receptors of Dictyostelium discoideum cells, transducing the signal to adenylate cyclase, guanylate cyclase and to chemotaxis. The activation of adenylate cyclase is maximal after 1 min and then declines to basal levels due to desensitization, which is composed of two component

  11. Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Irena Adkins

    Full Text Available Adenylate cyclase toxin (CyaA is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR-activated murine and human dendritic cells (DCs. cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4(+ and CD8(+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4(+CD25(+Foxp3(+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8(+ T cell proliferation and limited the induction of IFN-γ producing CD8(+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.

  12. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Rashna Bhandari; Roy Mathew; K Vijayachandra; Sandhya S Visweswariah

    2000-12-01

    Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.

  13. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    Science.gov (United States)

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis.

  14. [The changes in hormonal status of the cardiovascular and the thyroid systems in rats with 18-month type 2 diabetes mellitus].

    Science.gov (United States)

    Derkach, K V; Ignatieva, P A; Bogush, I V; Balluzek, M F; Shpakov, A O

    2016-01-01

    Among the most common complications of type 2 diabetes mellitus (DM2) are disorders of the cardiovascular and the thyroid systems. The functions of these systems may be weakened with increasing age. However, the mechanisms of these disorders, including the role of alterations in the adenylyl cyclase signaling system (ACSS), are not fully elucidated. Objective was to study thyroid status and ACSS activity of the myocardium and the thyroid gland (TG) of rats with 8- and 18-month DM2 (DM-8 and DM-18) as compared to control animals of the same age (C-8 and C-18). In the myocardium of rats with DM2 an imbalance of β-adrenergic regulation of ACSS was detected, and these disturbances were amplified with increasing age. In the myocardium of rats of the C-18 group the disturbances of ACSS hormonal regulation were also identified, but they were less pronounced. In diabetic rats, the levels of free thyroxine and total triiodothyronine decreased, the level of thyroid stimulating hormone (TSH) increased, and the stimulatory effect of TSH on the ACSS in TG was attenuated, which indicates the hypothyroid state in long-term DM2. In the C-18 group, these changes were absent. Thus, in the myocardium and TG of rats with 18-month DM2 the hormonal regulation of ACSS was violated, which may be one of the causes of cardiovascular pathology and hypothyroid states in long-term DM2.

  15. Soluble guanylate cyclase : a potential therapeutic target for heart failure

    NARCIS (Netherlands)

    Gheorghiade, Mihai; Marti, Catherine N.; Sabbah, Hani N.; Roessig, Lothar; Greene, Stephen J.; Boehm, Michael; Burnett, John C.; Campia, Umberto; Cleland, John G. F.; Collins, Sean P.; Fonarow, Gregg C.; Levy, Phillip D.; Metra, Marco; Pitt, Bertram; Ponikowski, Piotr; Sato, Naoki; Voors, Adriaan A.; Stasch, Johannes-Peter; Butler, Javed

    2013-01-01

    The number of annual hospitalizations for heart failure (HF) and the mortality rates among patients hospitalized for HF remains unacceptably high. The search continues for safe and effective agents that improve outcomes when added to standard therapy. The nitric oxide (NO)-soluble guanylate cyclase

  16. General base-general acid catalysis by terpenoid cyclases.

    Science.gov (United States)

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  17. Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium Streptomyces cattleya.

    Science.gov (United States)

    Streicher, S L; Tyler, B

    1981-01-01

    The enzymatic activity of glutamine synthetase [GS; L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] from the Gram-positive bacterium Streptomyces cattleya is regulated by covalent modification. In whole cells containing high levels of GS the addition of ammonium chloride leads to a rapid decline in GS activity. Crude extracts prepared from such ammonia-shocked cells had very low levels of GS activity as measured by biosynthetic and gamma-glutamyltransferase assays. Incubation of the crude extracts with snake venom phosphodiesterase restored GS activity. In cell extracts, GS was also inactivated by an ATP- and glutamine-dependent reaction. Radioactive labeling studies demonstrated the incorporation of an AmP moiety into GS protein upon modification. Our results suggest a covalent modification of GS in a Gram-positive bacterium. This modification appears to be adenylylation of the GS subunit similar to that found in the Gram-negative bacteria.

  18. The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Kira V. Derkach

    2015-01-01

    Full Text Available In the last years the treatment of type 2 diabetes mellitus (DM2 was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC activity in the hypothalamus and normalized AC stimulation by β-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.

  19. Membrane Guanylyl Cyclase Complexes Shape the Photoresponses of Retinal Rods and Cones

    Directory of Open Access Journals (Sweden)

    Xiao-Hong eWen

    2014-06-01

    Full Text Available In vertebrate rods and cones, photon capture by rhodopsin leads to the destruction of cyclic GMP (cGMP and the subsequent closure of cyclic nucleotide gated (CNG ion channels in the outer segment plasma membrane. Replenishment of cGMP and reopening of the channels limit the growth of the photon response and are requisite for its recovery. In different vertebrate retinas, there may be as many as four types of membrane guanylyl cyclases (GCs for cGMP synthesis. Ten neuronal Ca2+ sensor proteins could potentially modulate their activities. The mouse is proving to be an effective model for characterizing the roles of individual components because its relative simplicity can be reduced further by genetic engineering. There are two types of guanylyl cyclase activating proteins (GCAPs and two types of GCs in mouse rods, whereas cones express one type of GCAP and one type of GC. Mutant mouse rods and cones bereft of both GCAPs have large, long lasting photon responses. Thus, GCAPs normally mediate negative feedback tied to the light-induced decline in intracellular Ca2+ that accelerates GC activity to curtail the growth and duration of the photon response. Rods from other mutant mice that express a single GCAP type reveal how the two GCAPs normally work together as a team. Because of its lower Ca2+ affinity, GCAP1 is the first responder that senses the initial decrease in Ca2+ following photon absorption and acts to limit response amplitude. GCAP2, with a higher Ca2+ affinity, is recruited later during the course of the photon response as Ca2+ levels continue to decline further. The main role of GCAP2 is to provide for a timely response recovery and it is particularly important after exposure to very bright light. The multiplicity of GC isozymes and GCAP homologs in the retinas of other vertebrates confers greater flexibility in shaping the photon responses in order to tune visual sensitivity, dynamic range and frequency response.

  20. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase

    Directory of Open Access Journals (Sweden)

    Marletta Michael A

    2008-10-01

    Full Text Available Abstract Background Soluble guanylate cyclases generate cyclic GMP when bound to nitric oxide, thereby linking nitric oxide levels to the control of processes such as vascular homeostasis and neurotransmission. The guanylate cyclase catalytic module, for which no structure has been determined at present, is a class III nucleotide cyclase domain that is also found in mammalian membrane-bound guanylate and adenylate cyclases. Results We have determined the crystal structure of the catalytic domain of a soluble guanylate cyclase from the green algae Chlamydomonas reinhardtii at 2.55 Å resolution, and show that it is a dimeric molecule. Conclusion Comparison of the structure of the guanylate cyclase domain with the known structures of adenylate cyclases confirms the close similarity in architecture between these two enzymes, as expected from their sequence similarity. The comparison also suggests that the crystallized guanylate cyclase is in an inactive conformation, and the structure provides indications as to how activation might occur. We demonstrate that the two active sites in the dimer exhibit positive cooperativity, with a Hill coefficient of ~1.5. Positive cooperativity has also been observed in the homodimeric mammalian membrane-bound guanylate cyclases. The structure described here provides a reliable model for functional analysis of mammalian guanylate cyclases, which are closely related in sequence.

  1. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa eDuda

    2014-03-01

    Full Text Available Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase, ONE-GC. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, atrial natriuretic factor (ANF and B-type natriuretic peptide (BNP. After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation and anti-proliferation. Very recently another modus operandi for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin  mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.

  2. The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain.

    Science.gov (United States)

    Ceni, Claire; Pochon, Nathalie; Villaz, Michel; Muller-Steffner, Hélène; Schuber, Francis; Baratier, Julie; De Waard, Michel; Ronjat, Michel; Moutin, Marie-Jo

    2006-04-15

    cADPR (cADP-ribose), a metabolite of NAD+, is known to modulate intracellular calcium levels and to be involved in calcium-dependent processes, including synaptic transmission, plasticity and neuronal excitability. However, the enzyme that is responsible for producing cADPR in the cytoplasm of neural cells, and particularly at the synaptic terminals of neurons, remains unknown. In the present study, we show that endogenous concentrations of cADPR are much higher in embryonic and neonate mouse brain compared with the adult tissue. We also demonstrate, by comparing wild-type and Cd38-/- tissues, that brain cADPR content is independent of the presence of CD38 (the best characterized mammalian ADP-ribosyl cyclase) not only in adult but also in developing tissues. We show that Cd38-/- synaptosome preparations contain high ADP-ribosyl cyclase activities, which are more important in neonates than in adults, in line with the levels of endogenous cyclic nucleotide. By using an HPLC method and adapting the cycling assay developed initially to study endogenous cADPR, we accurately examined the properties of the synaptosomal ADP-ribosyl cyclase. This intracellular enzyme has an estimated K(m) for NAD+ of 21 microM, a broad optimal pH at 6.0-7.0, and the concentration of free calcium has no major effect on its cADPR production. It binds NGD+ (nicotinamide-guanine dinucleotide), which inhibits its NAD+-metabolizing activities (K(i)=24 microM), despite its incapacity to cyclize this analogue. Interestingly, it is fully inhibited by low (micromolar) concentrations of zinc. We propose that this novel mammalian ADP-ribosyl cyclase regulates the production of cADPR and therefore calcium levels within brain synaptic terminals. In addition, this enzyme might be a potential target of neurotoxic Zn2+.

  3. Multiple lineage specific expansions within the guanylyl cyclase gene family

    Directory of Open Access Journals (Sweden)

    O'Halloran Damien M

    2006-03-01

    Full Text Available Abstract Background Guanylyl cyclases (GCs are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs which are found ubiquitously in cell cytoplasm, and receptor (rGC forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions

  4. Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Zhi-ying LIN; Li-min CHEN; Jing ZHANG; Xiao-dong PAN; Yuan-gui ZHU; Qin-yong YE; Hua-pin HUANG; Xiao-chun CHEN

    2012-01-01

    Aim:To investigate the effect of ginsenoside Rb1 on voltage-gated calcium currents in cultured rat hippocampal neurons and the modulatory mechanism.Methods:Cultured hippocampal neurons were prepared from Sprague Dawley rat embryos.Whole-cell configuration of the patchclamp technique was used to record the voltage-gated calcium currents (VGCCs)from the hippocampal neurons,and the effect of Rb1 was examined.Results:Rb1 (2-100 μmol/L)inhibited VGCCs in a concentration-dependent manner,and the current was mostly recovered upon wash-out.The specific L-type Ca2+ channel inhibitor nifedipine (10 μmol/L)occluded Rb1-induced inhibition on VGCCs.Neither the selective N-type Ca2+ channel blocker ω-conotoxin-GVlA (1 μmoVL),nor the selective P/Q-type Ca2+ channel blocker ωo-agatoxin IVA (30 nmol/L)diminished Rb1-sensitive VGCCs.Rb1 induced a leftward shift of the steady-state inactivation curve of Ica to a negative potential without affecting its activation kinetics or reversal potential in the I-V curve.The inhibitory effect of Rb1 was neither abolished by the adenylyl cyclase activator forskolin (10 μmol/L),nor by the PKA inhibitor H-89 (10 μmol/L).Conclusion:Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels,without affecting the N-type or P/Q-type Ca2+ channels in hippocampal neurons,cAMP-PKA signaling pathway is not involved in this effect.

  5. Overexpression of functional human oxidosqualene cyclase in Escherichia coli

    DEFF Research Database (Denmark)

    Kürten, Charlotte; Uhlén, Mathias; Syrén, Per-Olof

    2015-01-01

    The generation of multicyclic scaffolds from linear oxidosqualene by enzymatic polycyclization catalysis constitutes a cornerstone in biology for the generation of bioactive compounds. Human oxidosqualene cyclase (hOSC) is a membrane-bound triterpene cyclase that catalyzes the formation of the te......The generation of multicyclic scaffolds from linear oxidosqualene by enzymatic polycyclization catalysis constitutes a cornerstone in biology for the generation of bioactive compounds. Human oxidosqualene cyclase (hOSC) is a membrane-bound triterpene cyclase that catalyzes the formation...

  6. Sodium-calcium exchanger and R-type Ca(2+) channels mediate spontaneous [Ca(2+)]i oscillations in magnocellular neurones of the rat supraoptic nucleus.

    Science.gov (United States)

    Kortus, Stepan; Srinivasan, Chinnapaiyan; Forostyak, Oksana; Zapotocky, Martin; Ueta, Yoichi; Sykova, Eva; Chvatal, Alexandr; Verkhratsky, Alexei; Dayanithi, Govindan

    2016-06-01

    Isolated supraoptic neurones generate spontaneous [Ca(2+)]i oscillations in isolated conditions. Here we report in depth analysis of the contribution of plasmalemmal ion channels (Ca(2+), Na(+)), Na(+)/Ca(2+) exchanger (NCX), intracellular Ca(2+) release channels (InsP3Rs and RyRs), Ca(2+) storage organelles, plasma membrane Ca(2+) pump and intracellular signal transduction cascades into spontaneous Ca(2+) activity. While removal of extracellular Ca(2+) or incubation with non-specific voltage-gated Ca(2+) channel (VGCC) blocker Cd(2+) suppressed the oscillations, neither Ni(2+) nor TTA-P2, the T-type VGCC blockers, had an effect. Inhibitors of VGCC nicardipine, ω-conotoxin GVIA, ω-conotoxin MVIIC, ω-agatoxin IVA (for L-, N-, P and P/Q-type channels, respectively) did not affect [Ca(2+)]i oscillations. In contrast, a specific R-type VGCC blocker SNX-482 attenuated [Ca(2+)]i oscillations. Incubation with TTX had no effect, whereas removal of the extracellular Na(+) or application of an inhibitor of the reverse operation mode of Na(+)/Ca(2+) exchanger KB-R7943 blocked the oscillations. The mitochondrial uncoupler CCCP irreversibly blocked spontaneous [Ca(2+)]i activity. Exposure of neurones to Ca(2+) mobilisers (thapsigargin, cyclopiazonic acid, caffeine and ryanodine); 4-aminopyridine (A-type K(+) current blocker); phospholipase C and adenylyl cyclase pathways blockers U-73122, Rp-cAMP, SQ-22536 and H-89 had no effect. Oscillations were blocked by GABA, but not by glutamate, apamin or dynorphin. In conclusion, spontaneous oscillations in magnocellular neurones are mediated by a concerted action of R-type Ca(2+) channels and the NCX fluctuating between forward and reverse modes.

  7. A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins.

    Science.gov (United States)

    Smith, Sarah J; Kroon, Johan T M; Simon, William J; Slabas, Antoni R; Chivasa, Stephen

    2015-06-01

    Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell-cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which

  8. Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase.

    Science.gov (United States)

    Inhorn, L; Fleming, J W; Klingberg, D; Gabig, T G; Boswell, H S

    1988-04-01

    Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3-independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the "differentiation" agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G-proteins appear to play a secondary role.

  9. Co-expression of guanylyl cyclase-C and caudal-type homeobox transcription factor 2 in human gastric cancer and precursor lesions%鸟苷酸环化酶C和尾型同源盒转录因子2在胃癌及癌前病变组织中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    毛振彪; 许钟; 张健锋; 朱慧君; 章建国; 潘正平

    2008-01-01

    目的 研究鸟苷酸环化酶C(GC-C)和尾型同源盒转录因子2(CDX2)基因与蛋白在胃癌及癌前病变组织中的表达并探讨其临床意义.方法 收集30例手术切除的胃癌及相应癌旁5 cm胃黏膜组织,另32例非胃癌患者胃镜下取活检标本,其中23例肠上皮化生、9例异型增生.应用逆转录(RT)-PCR检测GC-C和CDX2 mRNA在胃癌及癌旁组织中的表达,Western印迹和间接免疫荧光组化技术检测GC-C和CDX2蛋白的表达,同时检测两者在肠上皮化生和异型增生中的表达.结果 RT-PCR显示GC-C和CDX2 mRNA在胃癌中的表达率分别为20/30和19/30,显著高于癌旁组织(0/30和0/30,P值均=0.000).Western印迹检测GC-C和CDX2蛋白在胃癌组织中表达率分别为19/30和17/30,显著高于癌旁组织(0/30和0/30,P值均=0.000).免疫荧光检测GC-C和CDX2在癌旁组织中不表达,在肠上皮化生组织中表达率为39.1 %和39.1%、异型增生组织为55.6%和55.6%、胃癌组织为56.7%和60.0%,与癌旁组织间差异有统计学意义(P值均=0.000).但在肠上皮化生、异型增生和胃癌间阳性率比较差异无统计学意义(P值均>0.05).两者在肠型胃癌中的表达高于弥漫型(P值分别=0.009和0.024),但与年龄、性别、病灶大小、临床病理分期、分化程度和淋巴结转移等因素无关(P值均>0.05).在肠上皮化生和胃癌中GC-C与CDX2的表达呈正相关(r分别=0.4524和0.3845,P分别=0.0371和0.0408).结论 GC-C和CDX2的异常表达与胃黏膜癌变的发生有关,可能参与人胃腺癌致癌过程的调节,检测GC-C与CDX2有助于早期胃癌和胃癌前病变诊断.%Objective To investigate the expressions of guanylyl cyclase-c(GC-C) and caudal-type homeobox transcription factor 2 (CDX2) in human gastric tissues and precursor lesions and its significance. Methods The cancerous and paracancerous (5 cm from cancer lesion )samples from 30 cases of gastric cancer and 32 samples including 23 intestinal metaplasia

  10. Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis.

    Science.gov (United States)

    Schweiger, M; Hennig, K; Lerner, F; Niere, M; Hirsch-Kauffmann, M; Specht, T; Weise, C; Oei, S L; Ziegler, M

    2001-03-09

    Nicotinamide mononucleotide adenylyl transferase (NMNAT) is an essential enzyme in all organisms, because it catalyzes a key step of NAD synthesis. However, little is known about the structure and regulation of this enzyme. In this study we established the primary structure of human NMNAT. The human sequence represents the first report of the primary structure of this enzyme for an organism higher than yeast. The enzyme was purified from human placenta and internal peptide sequences determined. Analysis of human DNA sequence data then permitted the cloning of a cDNA encoding this enzyme. Recombinant NMNAT exhibited catalytic properties similar to the originally purified enzyme. Human NMNAT (molecular weight 31932) consists of 279 amino acids and exhibits substantial structural differences to the enzymes from lower organisms. A putative nuclear localization signal was confirmed by immunofluorescence studies. NMNAT strongly inhibited recombinant human poly(ADP-ribose) polymerase 1, however, NMNAT was not modified by poly(ADP-ribose). NMNAT appears to be a substrate of nuclear kinases and contains at least three potential phosphorylation sites. Endogenous and recombinant NMNAT were phosphorylated in nuclear extracts in the presence of [gamma-(32)P]ATP. We propose that NMNAT's activity or interaction with nuclear proteins are likely to be modulated by phosphorylation.

  11. Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesin.

    Science.gov (United States)

    Wu, Chao; Cheng, Yuan-Yuan; Yin, Hao; Song, Xiang-Ning; Li, Wen-Wei; Zhou, Xian-Xuan; Zhao, Li-Ping; Tian, Li-Jiao; Han, Jun-Cheng; Yu, Han-Qing

    2013-01-01

    Although oxygen has been reported to regulate biofilm formation by several Shewanella species, the exact regulatory mechanism mostly remains unclear. Here, we identify a direct oxygen-sensing diguanylate cyclase (DosD) and reveal its regulatory role in biofilm formation by Shewanella putrefaciens CN32 under aerobic conditions. In vitro and in vivo analyses revealed that the activity of DosD culminates to synthesis of cyclic diguanylate (c-di-GMP) in the presence of oxygen. DosD regulates the transcription of bpfA operon which encodes seven proteins including a large repetitive adhesin BpfA and its cognate type I secretion system (TISS). Regulation of DosD in aerobic biofilms is heavily dependent on an adhesin BpfA and the TISS. This study offers an insight into the molecular mechanism of oxygen-stimulated biofilm formation by S. putrefaciens CN32.

  12. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Directory of Open Access Journals (Sweden)

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  13. The Involvement of Ser1898 of the Human L-Type Calcium Channel in Evoked Secretion

    Directory of Open Access Journals (Sweden)

    Niv Bachnoff

    2011-01-01

    Full Text Available A PKA consensus phosphorylation site S1928 at the α11.2 subunit of the rabbit cardiac L-type channel, CaV1.2, is involved in the regulation of CaV1.2 kinetics and affects catecholamine secretion. This mutation does not alter basal CaV1.2 current properties or regulation of CaV1.2 current by PKA and the beta-adrenergic receptor, but abolishes CaV1.2 phosphorylation by PKA. Here, we test the contribution of the corresponding PKA phosphorylation site of the human α11.2 subunit S1898, to the regulation of catecholamine secretion in bovine chromaffin cells. Chromaffin cells were infected with a Semliki-Forest viral vector containing either the human wt or a mutated S1898A α11.2 subunit. Both subunits harbor a T1036Y mutation conferring nifedipine insensitivity. Secretion evoked by depolarization in the presence of nifedipine was monitored by amperometry. Depolarization-triggered secretion in cells infected with either the wt α11.2 or α11.2/S1898A mutated subunit was elevated to a similar extent by forskolin. Forskolin, known to directly activate adenylyl-cyclase, increased the rate of secretion in a manner that is largely independent of the presence of S1898. Our results are consistent with the involvement of additional PKA regulatory site(s at the C-tail of α11.2, the pore forming subunit of CaV1.2.

  14. Retinal degeneration 3 (RD3) protein inhibits catalytic activity of retinal membrane guanylyl cyclase (RetGC) and its stimulation by activating proteins.

    Science.gov (United States)

    Peshenko, Igor V; Olshevskaya, Elena V; Azadi, Seifollah; Molday, Laurie L; Molday, Robert S; Dizhoor, Alexander M

    2011-11-08

    Retinal membrane guanylyl cyclase (RetGC) in the outer segments of vertebrate photoreceptors is controlled by guanylyl cyclase activating proteins (GCAPs), responding to light-dependent changes of the intracellular Ca(2+) concentrations. We present evidence that a different RetGC binding protein, retinal degeneration 3 protein (RD3), is a high-affinity allosteric modulator of the cyclase which inhibits RetGC activity at submicromolar concentrations. It suppresses the basal activity of RetGC in the absence of GCAPs in a noncompetitive manner, and it inhibits the GCAP-stimulated RetGC at low intracellular Ca(2+) levels. RD3 opposes the allosteric activation of the cyclase by GCAP but does not significantly change Ca(2+) sensitivity of the GCAP-dependent regulation. We have tested a number of mutations in RD3 implicated in human retinal degenerative disorders and have found that several mutations prevent the stable expression of RD3 in HEK293 cells and decrease the affinity of RD3 for RetGC1. The RD3 mutant lacking the carboxy-terminal half of the protein and associated with Leber congenital amaurosis type 12 (LCA12) is unable to suppress the activity of the RetGC1/GCAP complex. Furthermore, the inhibitory activity of the G57V mutant implicated in cone-rod degeneration is strongly reduced. Our results suggest that inhibition of RetGC by RD3 may be utilized by photoreceptors to block RetGC activity during its maturation and/or incorporation into the photoreceptor outer segment rather than participate in dynamic regulation of the cyclase by Ca(2+) and GCAPs.

  15. Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate.

    Science.gov (United States)

    Ravichandran, Sarangan; Duda, Teresa; Pertzev, Alexandre; Sharma, Rameshwar K

    2017-01-01

    Membrane guanylate cyclase (MGC) is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD) module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC's CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1) The CCD is a conserved 145-residue structural unit, represented by the segment V(820)-P(964). (2) It exists as a homo-dimer and contains seven conserved catalytic elements (CEs) wedged into seven conserved motifs. (3) It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V(836)-L(857). (4) Site-directed mutagenesis documents that each of the seven CEs governs the cyclase's catalytic activity. (5) In contrast to the soluble and the bacterium MGC which use Mn(2+)-GTP substrate for catalysis, MGC CCD uses the natural Mg(2+)-GTP substrate. (6) Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD) to exhibit its major (∼92%) catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7) the seven CEs control each of four phototransduction pathways- -two Ca(2+)-sensor GCAPs-, one Ca(2+)-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the

  16. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.

    Science.gov (United States)

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias; Blanchoin, Laurent; Staiger, Christopher J

    2007-08-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux

  17. Expression of the Intestinal Biomarkers Guanylyl Cyclase C and CDX2 in Poorly Differentiated Colorectal Carcinomas

    Science.gov (United States)

    Winn, Brody; Tavares, Rosemarie; Matoso, Andres; Noble, Lelia; Fanion, Jacqueline; Waldman, Scott A.; Resnick, Murray B.

    2009-01-01

    Guanylyl cyclase C a receptor for bacterial diarrheagenic enterotoxins is expressed selectively by intestinal epithelium and is an endogenous downstream target of CDX2. The expression of Guanylyl cyclase C is preserved throughout the adenoma/carcinoma sequence in the colorectum. Detection of Guanylyl cyclase C expression by RT-PCR is currently being validated as a technique to identify occult lymph node metastases in patients with colorectal cancer and for circulating cells in the blood for postoperative surveillance. Although Guanylyl cyclase C is widely expressed by well differentiated colorectal cancer, its expression in poorly differentiated colorectal cancer has not been evaluated. A tissue microarray was created from 69 archival specimens including 44 poorly differentiated, 15 undifferentiated or medullary and 10 signet ring cell colorectal carcinomas. Matched normal colonic mucosa was used as a positive control. Immunohistochemical staining for Guanylyl cyclase C and CDX2 was evaluated as positive or negative based on at least a 10% extent of staining. Out of the 69 tumor samples 75%, 47%, and 90% of the poorly differentiated, medullary and signet ring cell tumors were positive for Guanylyl cyclase C and 75%, 40% and 90% of these subsets were positive for CDX2 respectively. There was excellent correlation between Guanylyl cyclase C and CDX2 expression on a case per case basis (p<0.0001). There was also a statistically significant difference in the GCC staining pattern between MC and PDC (p=0.05). Immunopositivity for Guanylyl cyclase C was greater than 95% in a separately stained microarray series of well/moderately differentiated colorectal carcinomas. In conclusion, Guanylyl cyclase C expression is lost in a quarter of poorly differentiated and half of undifferentiated colorectal carcinomas. Therefore the utility of Guanylyl cyclase C expression as a diagnostic marker for colorectal carcinoma may be questionable in poorly differentiated colorectal

  18. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A.

    2017-10-04

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  19. Inhibition of a plant sesquiterpene cyclase by mevinolin.

    Science.gov (United States)

    Vögeli, U; Chappell, J

    1991-07-01

    The specificity of mevinolin as an inhibitor of sterol and sesquiterpene metabolism in tobacco cell suspension cultures was examined. Exogenous mevinolin inhibited [14C]acetate, but not [3H]mevalonate incorporation into free sterols. In contrast, mevinolin inhibited the incorporation of both [14C]acetate and [3H]mevalonate into capsidiol, an extracellular sesquiterpene. Microsomal 3-hydroxy-3-methylglutaryl Coenzyme A reductase was inhibited greater than 90% by microM mevinolin, while squalene synthetase was insensitive to even 600 microM mevinolin. Sesquiterpene cyclase, the first branch point enzyme specific for sesquiterpene biosynthesis, was inhibited in a dose-dependent manner by mevinolin with a 50% reduction in activity at 100 microM. Kinetic analysis indicated that the mechanism for inhibition was complex with mevinolin acting as both a competitive and noncompetitive inhibitor. The results suggest that the mevinolin inhibition of [3H]mevalonate incorporation into extracellular sesquiterpenes can, in part, be attributed to a secondary, but specific, site of inhibition, the sesquiterpene cyclase.

  20. Muscarinic cholinergic regulation of L-type calcium channel in heart of embryonic mice at different developmental stages

    Institute of Scientific and Technical Information of China (English)

    Hua-min LIANG; Su-yun LI; Ling-ling LAI; Juergen HESCHELER; Ming TANG; Chang-jin LIU; Hong-yan LUO; Yuan-long SONG; Xin-wu HU; Jiao-ya XI; Lin-lin GAO; Bin NIE

    2004-01-01

    AIM: To investigate the muscarinic regulation of L-type calcium current (ICa-L) during development. METHODS:The whole cell patch-clamp technique was used to record Ica- L in mice embryonic cardiomyocytes at different stages (the early developmental stage, EDS; the intermediate developmental stage, IDS; and the late developmental stage, LDS). Carbachol (CCh) was used to stimulate M-receptor in the embryonic cardiomyocytes of mice.RESULTS: The expression of Ica-L density did not change in different developmental stages (P>0.05). There was no difference in the sensitivity of ICa-L to CCh during development (P>0.05). This inhibitory action of CCh was mediated by inhibition of cyclic AMP since 8-bromo-cAMP completely reversed the muscarinic inhibitory action.IBMX, a non-selective inhibitor of phosphodiesterase (PDE), reversed the inhibitory action of M-receptor on ICa-Lcurrent by 71.2 %±9.2 % (n=8) and 11.3 %±2.5 % (n=9) in EDS and LDS respectively. However forskolin, an agonist of adenylyl cyclase (AC), reversed the action of CCh by 14.5 %±3.5 % (n=5) and 82.7 %±10.4 % (n=7) in EDS and LDS respectively. CONCLUSION: The inhibitory action of CCh on ICa-L current was mediated in different pathways: in EDS, the inhibitory action of M-receptor on ICa-L channel mainly depended on the stimulation of PDE. However, in LDS, the regulation by M-receptor on ICa-L channel mainly depended on the inactivation of AC.

  1. Muscarinic cholinergic regulation of L-type calcium channel in heart of embryonic mice at different developmental stages

    Institute of Scientific and Technical Information of China (English)

    Hua-minLIANG; MingTANG; Chang-jinLIU; Hong-yanLUO; Yuan-longSONG; Xin-wuHU; Jiao-yaXI; Lin-linGAO; BinNIE; Su-yunLI; Ling-lingLAI; JuergenHESCHELER

    2004-01-01

    AIM: To investigate the muscarinic regulation of L-type calcium current (ICa-L) during development. METHODS:The whole cell patch-clamp technique was used to record ICa-L in mice embryonic cardiomyocytes at different stages (the early developmental stage, EDS; the intermediate developmental stage, IDS; and the late developmental stage, LDS). Carbachol (CCh) was used to stimulate M-receptor in the embryonic cardiomyocytes of mice.RESULTS: The expression of lCa.L density did not change in different developmental stages (P>0.05). There was no difference in the sensitivity of ICa-L to CCh during development (P>0.05). This inhibitory action of CCh was mediated by inhibition of cyclic AMP since 8-bromo-cAMP completely reversed the muscarinic inhibitory action. IBMX, a non-selective inhibitor of phosphodiesterase (PDE), reversed the inhibitory action of M-receptor on ICa-L current by 71.2 %±9.2% (n=8) and 11.3%±2.5% (n=9) in EDS and LDS respectively. However forskolin, an agonist of adenylyl cyclase (AC), reversed the action of CCh by 14.5%±3.5% (n=5) and 82.7%± 10.4% (n=7) in EDS and LDS respectively. CONCLUSION: The inhibitory action of CCh on lca.L current was mediated in different pathways: in EDS, the inhibitory action of M-receptor on ICa-L channel mainly depended on the stimulation of PDE. However, in LDS, the regulation by M-receptor on lCa.L channel mainly depended on the inactivation of AC.

  2. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate

    Directory of Open Access Journals (Sweden)

    Brans Alain

    2007-08-01

    Full Text Available Abstract Background We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP, in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a metabolizable carbon source and quickly disappears as soon as the cells receive a carbon source such as glucose. Thus, we hypothesized that AThTP may be a signal produced in response to carbon starvation. Results Here we show that, in bacterial extracts, the biosynthesis of AThTP is carried out from thiamine diphosphate (ThDP and ADP or ATP by a soluble high molecular mass nucleotidyl transferase. We partially purified this enzyme and characterized some of its functional properties. The enzyme activity had an absolute requirement for divalent metal ions, such as Mn2+ or Mg2+, as well as for a heat-stable soluble activator present in bacterial extracts. The enzyme has a pH optimum of 6.5–7.0 and a high Km for ThDP (5 mM, suggesting that, in vivo, the rate of AThTP synthesis is proportional to the free ThDP concentration. When ADP was used as the variable substrate at a fixed ThDP concentration, a sigmoid curve was obtained, with a Hill coefficient of 2.1 and an S0.5 value of 0.08 mM. The specificity of the AThTP synthesizing enzyme with respect to nucleotide substrate is restricted to ATP/ADP, and only ThDP can serve as the second substrate of the reaction. We tentatively named this enzyme ThDP adenylyl transferase (EC 2.7.7.65. Conclusion This is the first demonstration of an enzyme activity transferring a nucleotidyl group on thiamine diphosphate to produce AThTP. The existence of a mechanism for the enzymatic synthesis of this compound is in agreement with the hypothesis of a non-cofactor role for thiamine derivatives in living cells.

  3. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  4. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  5. Integrative signaling networks of membrane guanylate cyclases: Biochemistry and physiology

    Directory of Open Access Journals (Sweden)

    Rameshwar K Sharma

    2016-09-01

    Full Text Available This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs, highlighting contributions made by the authors and their collaborators. Upon resolution of early, contentious studies, cyclic GMP emerged, alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and TRP (Transient Receptor Potential channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

  6. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    Science.gov (United States)

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

  7. [Biosynthesis of cyclic GMP in plant cells - new insight into guanylate cyclases].

    Science.gov (United States)

    Świeżawska, Brygida; Marciniak, Katarzyna; Szmidt-Jaworska, Adriana

    2015-01-01

    Cyclic 3',5'-guanosine monophosphate (cGMP) is involved in many physiological processes in plants. Concentration of this second messenger in plant cell is determined by guanylyl cyclases (GCs) responsible for cGMP synthesis and phosphodiesterases (PDEs) involved in cGMP inactivation. First discovered plant GCs were localized in cytosol, but few years ago a new family of plasma membrane proteins with guanylyl cyclase activity was identified in Arabidopsis thaliana. These proteins belong to the family of a leucine-rich repeat receptor-like kinases (LRR-RLK) with extracellular leucine-rich repeat domain, a transmembrane-spanning domain, and an intracellular kinase domain. A novel class of guanylyl cyclases contain the GC catalytic center encapsulated within the intracellular kinase domain. These molecules are different to animal GCs in that the GC catalytic center is nested within the kinase domain. In presented paper we summarized the most recent data concerning plant guanylyl cyclases.

  8. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    Science.gov (United States)

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.

  9. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms

    OpenAIRE

    Bradbury, Louis M. T.; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J.; Wurtzel, Eleanore T

    2012-01-01

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784–11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that...

  10. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  11. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    Science.gov (United States)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  12. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface.

    Science.gov (United States)

    Peshenko, Igor V; Olshevskaya, Elena V; Dizhoor, Alexander M

    2015-08-01

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823).

  13. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Milad S. Bitar

    2015-01-01

    Full Text Available Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could

  14. Structural insights for activation of retinal guanylate cyclase by GCAP1.

    Directory of Open Access Journals (Sweden)

    Sunghyuk Lim

    Full Text Available Guanylyl cyclase activating protein 1 (GCAP1, a member of the neuronal calcium sensor (NCS subclass of the calmodulin superfamily, confers Ca(2+-sensitive activation of retinal guanylyl cyclase 1 (RetGC1 upon light activation of photoreceptor cells. Here we present NMR assignments and functional analysis to probe Ca(2+-dependent structural changes in GCAP1 that control activation of RetGC. NMR assignments were obtained for both the Ca(2+-saturated inhibitory state of GCAP1 versus a GCAP1 mutant (D144N/D148G, called EF4mut, which lacks Ca(2+ binding in EF-hand 4 and models the Ca(2+-free/Mg(2+-bound activator state of GCAP1. NMR chemical shifts of backbone resonances for Ca(2+-saturated wild type GCAP1 are overall similar to those of EF4mut, suggesting a similar main chain structure for assigned residues in both the Ca(2+-free activator and Ca(2+-bound inhibitor states. This contrasts with large Ca(2+-induced chemical shift differences and hence dramatic structural changes seen for other NCS proteins including recoverin and NCS-1. The largest chemical shift differences between GCAP1 and EF4mut are seen for residues in EF4 (S141, K142, V145, N146, G147, G149, E150, L153, E154, M157, E158, Q161, L166, but mutagenesis of EF4 residues (F140A, K142D, L153R, L166R had little effect on RetGC1 activation. A few GCAP1 residues in EF-hand 1 (K23, T27, G32 also show large chemical shift differences, and two of the mutations (K23D and G32N each decrease the activation of RetGC, consistent with a functional conformational change in EF1. GCAP1 residues at the domain interface (V77, A78, L82 have NMR resonances that are exchange broadened, suggesting these residues may be conformationally dynamic, consistent with previous studies showing these residues are in a region essential for activating RetGC1.

  15. Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate

    Directory of Open Access Journals (Sweden)

    Sarangan Ravichandran

    2017-06-01

    Full Text Available Membrane guanylate cyclase (MGC is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC’s CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1 The CCD is a conserved 145-residue structural unit, represented by the segment V820-P964. (2 It exists as a homo-dimer and contains seven conserved catalytic elements (CEs wedged into seven conserved motifs. (3 It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V836-L857. (4 Site-directed mutagenesis documents that each of the seven CEs governs the cyclase’s catalytic activity. (5 In contrast to the soluble and the bacterium MGC which use Mn2+-GTP substrate for catalysis, MGC CCD uses the natural Mg2+-GTP substrate. (6 Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD to exhibit its major (∼92% catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7 the seven CEs control each of four phototransduction pathways- -two Ca2+-sensor GCAPs-, one Ca2+-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the

  16. 亚洲棉腺苷酸环化酶结合蛋白基因GaCAP的克隆及序列分析%Cloning and Analysis of Adenylyl Cyclase-associated Protein Genes in Gossypium arboreum L.

    Institute of Scientific and Technical Information of China (English)

    王晟; 赵国红; 杜雄明

    2009-01-01

    在腺苷酸环化酶结合蛋白(CAP)的编码区两端设计引物,利用PCR方法,克隆了亚洲棉CAP基因DNA和cDNA序列.经测序及生物信息学分析发现:该基因DNA序列中存在9个内含子;cDNA序列全长1425个核苷酸,总共编码471个氨基酸残基,其序列特征包含CAP蛋白家族所特有的四个结构域,因此被命名为GaCAP.它的C末端氨基酸残基可以与Actin蛋白结合;N末端带有CAP蛋白特有的RLE残基区,可介导CAP与腺苷酸环化酶发生互作,因此,该蛋白可能参与细胞对信号的应答反应进而影响细胞骨架结构的生物过程.

  17. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Science.gov (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  18. The Notch pathway attenuates interleukin 1beta (IL1beta)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation

    NARCIS (Netherlands)

    Keuylian, Z.; Baaij, J.H. de; Glorian, M.; Rouxel, C.; Merlet, E.; Lipskaia, L.; Blaise, R.; Mateo, V.; Limon, I.

    2012-01-01

    Vascular smooth muscle cell (VSMC) trans-differentiation, or their switch from a contractile/quiescent to a secretory/inflammatory/migratory state, is known to play an important role in pathological vascular remodeling including atherosclerosis and postangioplasty restenosis. Several reports have

  19. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Science.gov (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  20. The Notch pathway attenuates interleukin 1beta (IL1beta)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation

    NARCIS (Netherlands)

    Keuylian, Z.; Baaij, J.H. de; Glorian, M.; Rouxel, C.; Merlet, E.; Lipskaia, L.; Blaise, R.; Mateo, V.; Limon, I.

    2012-01-01

    Vascular smooth muscle cell (VSMC) trans-differentiation, or their switch from a contractile/quiescent to a secretory/inflammatory/migratory state, is known to play an important role in pathological vascular remodeling including atherosclerosis and postangioplasty restenosis. Several reports have es

  1. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    Science.gov (United States)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  2. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase

    Science.gov (United States)

    Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.

    2017-01-01

    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.

  3. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    Science.gov (United States)

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  4. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  5. Soluble guanylate cyclase stimulators increase sensitivity to cisplatin in head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Tuttle, Traci R; Takiar, Vinita; Kumar, Bhavna; Kumar, Pawan; Ben-Jonathan, Nira

    2017-03-28

    Head and neck squamous cell carcinoma (HNSCC) is an aggressive and often fatal disease. Cisplatin is the most common chemotherapeutic drug in the treatment of HNSCC, but intrinsic and acquired resistance are frequent, and severe side effects occur at high doses. The second messenger cyclic GMP (cGMP) is produced by soluble guanylate cyclase (sGC). We previously reported that activation of the cGMP signaling cascade caused apoptosis in HNSCC cells, while others found that this pathway enhances cisplatin efficacy in some cell types. Here we found that sGC stimulators reduced HNSCC cell viability synergistically with cisplatin, and enhanced apoptosis by cisplatin. Moreover, the sGC stimulators effectively reduced viability in cells with acquired cisplatin resistance, and were synergistic with cisplatin. The sGC stimulator BAY 41-2272 reduced expression of the survival proteins EGFR and β-catenin, and increased pro-apoptotic Bax, suggesting a potential mechanism for the anti-tumorigenic effects of these drugs. The sGC stimulator Riociguat is FDA-approved to treat pulmonary hypertension, and others are being studied for therapeutic use in several diseases. These drugs could provide valuable addition or alternative to cisplatin in the treatment of HNSCC.

  6. Neurohypophyseal hormone-responsive renal adenylate cyclase. IV. A random-hit matrix model for coupline in a hormone-sensitive adenylate cyclase system.

    Science.gov (United States)

    Bergman, R N; Hechter, O

    1978-05-10

    A "random-hit" matrix model is proposed to account for the dynamic and steady state relationship between occupation of bovine renal medullary membrane receptors by [Lys8]vasopressin (LVP) and neurohypophyseal hormones (NHH) and the associated activation of membrane-bound adenylate cyclase. The model was developed by systematic introduction of specific rules concerning receptor coupling into a general structural model which consists of two square matrices of identical size, one composed of homogeneous R ("receptor") units, the second of homogeneous C ("cyclase") units. R units are either occupied (RO) or unoccupied (RU); C units are either active (CA) or inactive (CI). Hormone molecules are envisioned to "collide" with R units randomly; collision with RU leads to "binding", and occupation is maintained for a characteristic mean occupancy time, TO. In this structure, each R unit has an "interaction field" which consists of the "twin" unit in the "C" matrix, and the 4 nearest neighbor C units surrounding the twin. Occupation of an R unit leads to activation of all CI units in the interaction field of that R; CA units in the interaction field are refractory. Thus binding at a given R may "recruit" a variable number of inactive neighboring C units (5, 4, 3, 2, 1, or 0). The model requires that there be individual coupling delays between the moment of binding at a given R and subsequent activation of CI units (mean coupling delay (Td) approximately 10% To). Activation of C units persists as long as the "parent" R is occupied and is maintained for an additional short time interval (Tp) after RO reverts to RU, corresponding to hormone dissociation from receptor. The model accounts for the following previously demonstrated relations between LVP occupation of receptors and adenylate cyclase activation in bovine renal medullary membranes: 1) the shape of the nonlinear steady state relation between normalized (percentage maximal) receptor occupation (O) and cyclase activation

  7. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity.

    Science.gov (United States)

    Xiong, Wei; Shen, Gaozhong; Bryant, Donald A

    2017-03-01

    The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.

  8. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum

    Directory of Open Access Journals (Sweden)

    Liu Shuyang

    2012-08-01

    Full Text Available Abstract Background The efficacy of entomopathogenic fungi in pest control is mainly affected by various adverse environmental factors, such as heat shock and UV-B radiation, and by responses of the host insect, such as oxidative stress, osmotic stress and fever. In this study, an adenylate cyclase gene (MaAC was cloned from the locust-specific entomopathogenic fungus, Metarhizium acridum, which is homologous to various fungal adenylate cyclase genes. RNA silencing was adapted to analyze the role of MaAC in virulence and tolerance to adverse environmental and host insect factors. Results Compared with the wild type, the vegetative growth of the RNAi mutant was decreased in PD (potato dextrose medium, Czapek-dox and PDA plates, respectively, demonstrating that MaAC affected vegetative growth. The cAMP levels were also reduced in PD liquid culture, and exogenous cAMP restored the growth of RNAi mutants. These findings suggested that MaAC is involved in cAMP synthesis. The knockdown of MaAC by RNAi led to a reduction in virulence after injection or topical inoculation. Furthermore, the RNAi mutant grew much slower than the wild type in the haemolymph of locust in vitro and in vivo, thus demonstrating that MaAC affects the virulence of M. acridum via fungal growth inside the host locust. A plate assay indicated that the tolerances of the MaAC RNAi mutant under oxidative stress, osmotic stress, heat shock and UV-B radiation was decreased compared with the wild type. Conclusion MaAC is required for virulence and tolerance to oxidative stress, osmotic stress, heat shock and UV-B radiation. MaAC affects fungal virulence via vegetative growth inside the insect and tolerance against oxidative stress, osmotic stress and locust fever.

  9. Molecular cloning and expression of a chicken pituitary adenylate cyclase-activating polypeptide receptor.

    Science.gov (United States)

    Peeters, K; Gerets, H H; Princen, K; Vandesande, F

    1999-08-25

    Although, since the isolation of pituitary adenylate cyclase-activating polypeptide (PACAP), a wealth of literature has been published describing its localization, binding sites, and biological activities in a variety of mammalian tissues, only very little is known about PACAP in avian species. Therefore, in order to find out the sites of actions of PACAP and to elucidate its physiological significance in birds, we identified a chicken PACAP receptor homologue of the mammalian type I receptors (PAC(1)-Rs). The chicken PACAP type I cDNA sequence was obtained using reverse transcriptase-polymerase chain reaction (RT-PCR) in combination with 3'- and 5'-RACE PCR. This cDNA encodes a 471 amino acid precursor protein, sharing 81-83% sequence identity with mammalian analogs and 76% amino acid identity with the goldfish type I PACAP receptor. Northern blot analysis of chicken brain poly(A)(+)-rich RNA revealed the presence of a 5.5 kb and 7.5 kb PAC(1) receptor transcript. RT-PCR revealed that the chicken PACAP receptor is mainly expressed in the brain and gonads. A smaller amount of the receptor mRNA was found in pituitary, adrenal gland, kidney, intestine, pancreas, lung, and heart tissue. In situ hybridization with specific antisense oligodeoxynucleotide probes showed a widespread distribution of PAC(1) receptor mRNA in the chicken brain, with the highest expression being found in the dorsal telencephalon, olfactory bulb, hypothalamus, optic tectum, and cerebellar cortex. These findings suggest that PACAP affect a variety of functions both in the brain and peripheral tissues of the chicken.

  10. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  11. Cloning and Functional Characterization of a Lycopene β-Cyclase from Macrophytic Red Alga Bangia fuscopurpurea

    Directory of Open Access Journals (Sweden)

    Tian-Jun Cao

    2017-04-01

    Full Text Available Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms. In this work, we isolated a gene (BfLCYB encoding a lycopene β-cyclase from Bangia fuscopurpurea, a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both β- and ε-rings, including β-carotene, zeaxanthin, α-carotene (β,ε-carotene and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (β,ψ-carotene and bicyclic β-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.

  12. Regulation of adenylate cyclase of Dictyostelium discoideum by divalent cations and adenosine analogs

    Energy Technology Data Exchange (ETDEWEB)

    Khachatrian, L.; Howlett, A.; Klein, C.

    1986-03-05

    Cyclic AMP is synthesized and secreted in a pulsatile fashion as a chemotactic signaling system intrinsic to the differentiation program of D. discoideum. They examined the regulation of D. dischoideum adenylate cyclase using a membrane fraction which exhibits high specific activity enzyme. When Mn-ATP was used as substrate, increasing Mn/sup 2 +/ concentrations activated the enzyme 3 to 8 fold. In contrast, Mg ion increased the adenylate cyclase activity by only 60%. These results suggested an activation of the catalytic subunit by Mn/sup 2 +/. Inhibition of activity was observed in response to adenosine and its analogs. P-site agonist, 2',5'-Dideoxy-adenosine, inhibited activity by about 25% in the presence of Mg/sup 2 +/, and about 80% in presence of Mn/sup 2 +/. This inhibition was not dependent on guanine nucleotides. The data are in agreement with characteristics of P-site regulation of the catalytic subunit of eukaryotic systems. Kinetic analysis of previously reported inhibition of D. discoideum adenylate cyclase by guanine nucleotides revealed that guanine nucleotides do not compete for the substrate binding site. Further, the enzyme activity cannot be accounted for by guanylate cyclase. Their data suggest that regulation of adenylate cyclase may exist not only at the catalytic subunit but also via inhibitory G protein, N/sub i/.

  13. Cloning and Functional Characterization of a Lycopene β-Cyclase from Macrophytic Red Alga Bangia fuscopurpurea.

    Science.gov (United States)

    Cao, Tian-Jun; Huang, Xing-Qi; Qu, Yuan-Yuan; Zhuang, Zhong; Deng, Yin-Yin; Lu, Shan

    2017-04-11

    Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene) into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene) is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms. In this work, we isolated a gene (BfLCYB) encoding a lycopene β-cyclase from Bangia fuscopurpurea, a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both β- and ε-rings, including β-carotene, zeaxanthin, α-carotene (β,ε-carotene) and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (β,ψ-carotene) and bicyclic β-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene) to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.

  14. Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels.

    Science.gov (United States)

    Oliveria, Seth F; Dittmer, Philip J; Youn, Dong-ho; Dell'Acqua, Mark L; Sather, William A

    2012-10-31

    Excitation-driven entry of Ca(2+) through L-type voltage-gated Ca(2+) channels controls gene expression in neurons and a variety of fundamental activities in other kinds of excitable cells. The probability of opening of Ca(V)1.2 L-type channels is subject to pronounced enhancement by cAMP-dependent protein kinase (PKA), which is scaffolded to Ca(V)1.2 channels by A-kinase anchoring proteins (AKAPs). Ca(V)1.2 channels also undergo negative autoregulation via Ca(2+)-dependent inactivation (CDI), which strongly limits Ca(2+) entry. An abundance of evidence indicates that CDI relies upon binding of Ca(2+)/calmodulin (CaM) to an isoleucine-glutamine motif in the carboxy tail of Ca(V)1.2 L-type channels, a molecular mechanism seemingly unrelated to phosphorylation-mediated channel enhancement. But our work reveals, in cultured hippocampal neurons and a heterologous expression system, that the Ca(2+)/CaM-activated phosphatase calcineurin (CaN) is scaffolded to Ca(V)1.2 channels by the neuronal anchoring protein AKAP79/150, and that overexpression of an AKAP79/150 mutant incapable of binding CaN (ΔPIX; CaN-binding PXIXIT motif deleted) impedes CDI. Interventions that suppress CaN activity-mutation in its catalytic site, antagonism with cyclosporine A or FK506, or intracellular perfusion with a peptide mimicking the sequence of the phosphatase's autoinhibitory domain-interfere with normal CDI. In cultured hippocampal neurons from a ΔPIX knock-in mouse, CDI is absent. Results of experiments with the adenylyl cyclase stimulator forskolin and with the PKA inhibitor PKI suggest that Ca(2+)/CaM-activated CaN promotes CDI by reversing channel enhancement effectuated by kinases such as PKA. Hence, our investigation of AKAP79/150-anchored CaN reconciles the CaM-based model of CDI with an earlier, seemingly contradictory model based on dephosphorylation signaling.

  15. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    Science.gov (United States)

    Krumenacker, J. S.; Hyder, S. M.; Murad, F.

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC alpha(1) 10% and sGC beta(1) 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression.

  16. [THE THYROID STATUS OF RATS IMMUNIZED WITH PEPTIDES DERIVED FROM THE EXTRACELLULAR REGIONS OF THE TYPES 3 AND 4 MELANOCORTIN RECEPTORS AND THE 1B-SUBTYPE 5-HYDROXYTRYPTAMINE RECEPTOR].

    Science.gov (United States)

    Derkach, K V; Moyseuk, I V; Shpakova, E A; Sphakov, A O

    2015-01-01

    The activity of the hypothalamic-pituitary-thyroid (HPT) axis is controlled by the brain neurotransmitter systems, including the melanocortin signaling system. Pharmacological inhibition of type 4 melanocortin receptor (M4R) leads to disruption of the functioning of HPT axis and to reduction of the level of thyroid hormones. At the same time, the data on how prolonged inhibition of M4R affects this axis and on its role in regulation of M3R are absent. The relationship between the thyroid status and the activity of 1B-subtype 5-hydroxytryptamine receptor (5-HT1BR) is scarcely explored. The aim of this work to study the effects of chronic inhibition of M3R, M4R and 5-HT1BR induced by immunization of rats with BSA-conjugated peptide derived from the extracellular regions of these receptors on the thyroid status and the activity of thyroid stimulating hormone (TSH)-sensitive adenylyl cyclase signaling system (ACSS) in the thyroid glarid (TG) of the immunized animals. In rats immunized with the peptides K-[TSLHL WNRSSHGLHG11-25]-A of M4R, A[PTNPYCICTTAH269-280]-A of M3R and. [QAKAEE-EVSEC(Acm)-VVNTDH189-205]-A of 5-HT1BR levels of thyroid hormones such as fT4, tT4 and tT3 were significantly reduced. In rats immunized with M4R and M3R peptides, an increase of TSH was detected whereas in the animals immunized with 5-HT1BR peptide the level of TSH, on the contrary, was reduced. In the TG of rats immunized with M4R and M3R peptides, the stimulatory effects of hormones (TSH, PA-CAP-3 8) and GppNHp on adenylyl cyclase activity were attenuated, and the changes were most pronounced in the case M4R peptide immunization. After immunization with 5-HT1BR peptide the stimulatory effects of TSH, PACAP-38 and GppNHp were retained. Thus, the main cause of thyroid hormones deficit in rats immunized with M4R and M3R peptides was the decreased sensitivity of ACSS thyrocytes to TSH, whereas in rats iimunized with 5-HT1BR peptide the deficit of thyroid hormones was associated with decreased

  17. In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

    KAUST Repository

    Raji, Misjudeen

    2017-05-31

    Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

  18. The Diguanylate Cyclase GcbA Facilitates Pseudomonas aeruginosa Biofilm Dispersion by Activating BdlA

    Science.gov (United States)

    Petrova, Olga E.; Cherny, Kathryn E.

    2014-01-01

    Biofilm dispersion is a highly regulated process that allows biofilm bacteria to respond to changing environmental conditions and to disseminate to new locations. The dispersion of biofilms formed by the opportunistic pathogen Pseudomonas aeruginosa is known to require a number of cyclic di-GMP (c-di-GMP)-degrading phosphodiesterases (PDEs) and the chemosensory protein BdlA, with BdlA playing a pivotal role in regulating PDE activity and enabling dispersion in response to a wide array of cues. BdlA is activated during biofilm growth via posttranslational modifications and nonprocessive cleavage in a manner that is dependent on elevated c-di-GMP levels. Here, we provide evidence that the diguanylate cyclase (DGC) GcbA contributes to the regulation of BdlA cleavage shortly after initial cellular attachment to surfaces and, thus, plays an essential role in allowing biofilm cells to disperse in response to increasing concentrations of a variety of substances, including carbohydrates, heavy metals, and nitric oxide. DGC activity of GcbA was required for its function, as a catalytically inactive variant could not rescue impaired BdlA processing or the dispersion-deficient phenotype of gcbA mutant biofilms to wild-type levels. While modulating BdlA cleavage during biofilm growth, GcbA itself was found to be subject to c-di-GMP-dependent and growth-mode-specific regulation. GcbA production was suppressed in mature wild-type biofilms and could be induced by reducing c-di-GMP levels via overexpression of genes encoding PDEs. Taken together, the present findings demonstrate that the regulatory functions of c-di-GMP-synthesizing DGCs expand beyond surface attachment and biofilm formation and illustrate a novel role for DGCs in the regulation of the reverse sessile-motile transition of dispersion. PMID:25331436

  19. Overexpression of adenylate cyclase-associated protein 1 is associated with metastasis of lung cancer.

    Science.gov (United States)

    Tan, Min; Song, Xiaolian; Zhang, Guoliang; Peng, Aimei; Li, Xuan; Li, Ming; Liu, Yang; Wang, Changhui

    2013-10-01

    Lung cancer ranks first in both prevalence and mortality rates among all types of cancer. Metastasis is the main cause of treatment failure. Biomarkers are critical to early diagnosis and prediction and monitoring of progressive lesions. Several biomarkers have been identified for lung cancer but none have been routinely used clinically. The present study assessed the diagnostic and prognostic value of cyclase-associated protein 1 (CAP1) for lung cancer. CAP1 mRNA abundance and protein content were determined by real-time PCR and western blot analysis and/or immunostaining in biopsy specimens (24 neoplastic and 6 non-neoplastic) freshly collected at surgical lung resection, in 82 pathologically banked lung cancer specimens and in cultured non-invasive (95-C) and invasive (95-D) lung cancer cells. Multivariate regression analysis was performed to correlate immunoreactive CAP1 signal with cancer type and stage. In vitro cell migration was performed to determine the effect of RNA interference-mediated CAP1 gene silencing on invasiveness of 95-D cells. These analyses collectively demonstrated that: i) both CAP1 mRNA abundance and protein content were significantly higher in neoplastic compared to non-neoplastic specimens and in metastatic compared to non-metastatic specimens but not different between adenocarcinoma and squamous cell carcinoma; ii) immunoreactive CAP1 signal was significantly stronger in metastatic specimens and 95-D cells compared to non-metastatic specimens and 95-C cells; and iii) RNA interference-mediated CAP1 gene silencing adequately attenuated the invasive capacity of 95-D cells in vitro. These findings suggest that overexpression of CAP1 in lung cancer cells, particularly at the metastatic stage, may have significant clinical implications as a diagnostic/prognostic factor for lung cancer.

  20. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis.

    Science.gov (United States)

    Hamelink, Carol; Tjurmina, Olga; Damadzic, Ruslan; Young, W Scott; Weihe, Eberhard; Lee, Hyeon-Woo; Eiden, Lee E

    2002-01-08

    The adrenal gland is important for homeostatic responses to metabolic stress: hypoglycemia stimulates the splanchnic nerve, epinephrine is released from adrenomedullary chromaffin cells, and compensatory glucogenesis ensues. Acetylcholine is the primary neurotransmitter mediating catecholamine secretion from the adrenal medulla. Accumulating evidence suggests that a secretin-related neuropeptide also may function as a transmitter at the adrenomedullary synapse. Costaining with highly specific antibodies against the secretin-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) and the vesicular acetylcholine transporter (VAChT) revealed that PACAP is found in nerve terminals at all mouse adrenomedullary cholinergic synapses. Mice with a targeted deletion of the PACAP gene had otherwise normal cholinergic innervation and morphology of the adrenal medulla, normal adrenal catecholamine and blood glucose levels, and an intact initial catecholamine secretory response to insulin-induced hypoglycemia. However, insulin-induced hypoglycemia was more profound and longer-lasting in PACAP knock-outs, and was associated with a dose-related lethality absent in wild-type mice. Failure of PACAP-deficient mice to adequately counterregulate plasma glucose levels could be accounted for by impaired long-term secretion of epinephrine, secondary to a lack of induction of tyrosine hydroxylase, normally occurring after insulin hypoglycemia in wild-type mice, and a consequent depletion of adrenomedullary epinephrine stores. Thus, PACAP is needed to couple epinephrine biosynthesis to secretion during metabolic stress. PACAP appears to function as an "emergency response" cotransmitter in the sympathoadrenal axis, where the primary secretory response is controlled by a classical neurotransmitter but sustained under paraphysiological conditions by a neuropeptide.

  1. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions.

    Science.gov (United States)

    Koch, K W; Stryer, L

    1988-07-07

    Visual excitation in retinal rod cells is mediated by a cascade that leads to the amplified hydrolysis of cyclic GMP (cGMP) and the consequent closure of cGMP-activated cation-specific channels in the plasma membrane. Recovery of the dark state requires the resynthesis of cGMP, which is catalysed by guanylate cyclase, an axoneme-associated enzyme. The lowering of the cytosolic calcium concentration (Cai) following illumination is thought to be important in stimulating cyclase activity. This hypothesis is supported by the finding that the cGMP content of rod outer segments increases several-fold when Cai is lowered to less than 10 nM. It is evident that cGMP and Cai levels are reciprocally controlled by negative feedback. Guanylate cyclase from toad ROS is strongly stimulated when the calcium level is lowered from 10 microM to 10 nM, but only if they are excited by light. We show here that the guanylate cyclase activity of unilluminated bovine rod outer segments increases markedly (5 to 20-fold) when the calcium level is lowered from 200 nM to 50 nM. This steep dependence of guanylate cyclase activity on the calcium level in the physiological range has a Hill coefficient of 3.9. Stimulation at low calcium levels is mediated by a protein that can be released from the outer segment membranes by washing with a low salt buffer. Calcium sensitivity is partially restored by adding the soluble extract back to the washed membranes. The highly cooperative activation of guanylate cyclase by the light-induced lowering of Cai is likely to be a key event in restoring the dark current after excitation.

  2. [The aspects of adenylate cyclase activity regulation in myocardium cell membranes during hypokinesia].

    Science.gov (United States)

    Bulanova, K Ia; Komar, E S; Lobanok, L M

    1999-01-01

    Nonstimulated and isoproterenol, GTF, GITF, NaF stimulated activities of the adenylate cyclase in sarcolemma in white rats' myocardium was studied after two weeks of hypokinesia. As was established, in restrained animals the sensitivity of adenylate cyclase to the specified agents was increased and transition to the bimodal GTF regulation took place. It is hypothesised that involvement of membrane-bound Gi-proteins in the adrenergic effects on cardiomyocytes is one of mechanisms of the cardiotropic effects of restraint and heart distresses.

  3. Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation.

    Science.gov (United States)

    del Puerto, Ana; Díaz-Hernández, Juan-Ignacio; Tapia, Mónica; Gomez-Villafuertes, Rosa; Benitez, María José; Zhang, Jin; Miras-Portugal, María Teresa; Wandosell, Francisco; Díaz-Hernández, Miguel; Garrido, Juan José

    2012-01-01

    In adult brains, ionotropic or metabotropic purinergic receptors are widely expressed in neurons and glial cells. They play an essential role in inflammation and neurotransmission in response to purines secreted to the extracellular medium. Recent studies have demonstrated a role for purinergic receptors in proliferation and differentiation of neural stem cells although little is known about their role in regulating the initial neuronal development and axon elongation. The objective of our study was to investigate the role of some different types of purinergic receptors, P2Y1, P2Y13 and P2X7, which are activated by ADP or ATP. To study the role and crosstalk of P2Y1, P2Y13 and P2X7 purinergic receptors in axonal elongation, we treated neurons with specific agonists and antagonists, and we nucleofected neurons with expression or shRNA plasmids. ADP and P2Y1-GFP expression improved axonal elongation; conversely, P2Y13 and ATP-gated P2X7 receptors halted axonal elongation. Signaling through each of these receptor types was coordinated by adenylate cyclase 5. In neurons nucleofected with a cAMP FRET biosensor (ICUE3), addition of ADP or Blue Brilliant G, a P2X7 antagonist, increased cAMP levels in the distal region of the axon. Adenylate cyclase 5 inhibition or suppression impaired these cAMP increments. In conclusion, our results demonstrate a crosstalk between two metabotropic and one ionotropic purinergic receptor that regulates cAMP levels through adenylate cyclase 5 and modulates axonal elongation triggered by neurotropic factors and the PI3K-Akt-GSK3 pathway.

  4. Blocking the L-type Ca2+ channel (Cav 1.2) is the key mechanism for the vascular relaxing effect of Pterodon spp. and its isolated diterpene methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate.

    Science.gov (United States)

    de Fátima Reis, Carolina; de Andrade, Daniela Medeiros Lobo; Junior Neves, Bruno; de Almeida Ribeiro Oliveira, Leandra; Pinho, José Felippe; da Silva, Leidiane Pinha; Dos Santos Cruz, Jader; Bara, Maria Teresa Freitas; Andrade, Carolina Horta; Rocha, Matheus Lavorenti

    2015-10-01

    Pterodon spp. Vogel (Fabaceae), popularly known as "sucupira", has ethnopharmacological application which is described as having antispasmodic and relaxant effects. Hence, it was hypothesized that sucupira oil-resin (SOR) could induce smooth muscle relaxation. So, this study investigated the mechanisms involved in the vasorelaxant effect of SOR and its isolated diterpene (methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate). Vascular reactivity experiments were performed using rat aortic rings (n=5-8) with (E+) or without endothelium (E-) in an isolated bath organ. The SOR (0-56 μg/mL) relaxed phenylephrine (E+: 86.7±7.1%; E-: 92.3±4.7%) and KCl contracted rings (E-: 97.1±2.8%). In the same way, diterpene (0-48 μg/mL) also relaxed phenylephrine (E+: 94.5±3.6%; E-: 92.2±3.4%) and KCl contracted rings (E-: 99.7±0.2%). The pre-incubation of arterial rings with cyclopiazonic acid (reticular Ca2+-ATPase inhibitor), tetraethylammonium (K+ channels blocker) or MDL-12,330A (adenylyl cyclesinhibitor) did not modify either SOR- or diterpeneinduced vasorelaxation. However, ODQ (guanylyl cyclase inhibitor) impaired only diterpene-induced vasorelaxation. SOR and diterpene significantly reduced CaCl2-induced contraction stimulated by Bay K8644 (1 μM), phenylephrine (0.1 μM) or KCl solution (40 mM). Computational molecular docking studies demonstrated that the vasodilator effect of diterpene relies on blocking the Cav 1.2 channel, and patch clamp results showed that diterpene substantially decreased the ionic current through Cav 1.2 in freshly dissociated vascular smooth muscle cells. These findings suggest that SOR and its isolated diterpene induce endothelium-independent vascular relaxation by blocking the L-type Ca2+ channel (Cav 1.2).

  5. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu.

    Directory of Open Access Journals (Sweden)

    Shiva Mansouri

    Full Text Available Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP and the glucagon-like peptide-1 receptor (GLP-1R agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia.

  6. Mutation in Mg-Protoporphyrin IX Monomethyl Ester Cyclase Decreases Photosynthesis Capacity in Rice

    Science.gov (United States)

    Wang, Xuexia; Huang, Rongfeng; Quan, Ruidang

    2017-01-01

    In photosynthesis, the pigments chlorophyll a/b absorb light energy to convert to chemical energy in chloroplasts. Though most enzymes of chlorophyll biosynthesis from glutamyl-tRNA to chlorophyll a/b have been identified, the exact composition and regulation of the multimeric enzyme Mg-protoporphyrin IX monomethyl ester cyclase (MPEC) is largely unknown. In this study, we isolated a rice pale-green leaf mutant m167 with yellow-green leaf phenotype across the whole lifespan. Chlorophyll content decreases 43–51% and the granal stacks of chloroplasts becomes thinner in m167. Chlorophyll fluorescence parameters, including Fv/Fm (the maximum quantum efficiency of PSII) and quantum yield of PSII (Y(II)), were lower in m167 than those in wild type plants (WT), and photosynthesis rate decreases 40% in leaves of m167 mutant compared with WT plants, which lead to yield reduction in m167. Genetic analysis revealed that yellow-green leaf phenotype of m167 is controlled by a single recessive genetic locus. By positional cloning, a single mutated locus, G286A (Alanine 96 to Threonine in protein), was found in the coding sequence of LOC_Os01g17170 (Rice Copper Response Defect 1, OsCRD1), encoding a putative subunit of MPEC. Expression profile analysis demonstrated that OsCRD1 is mainly expressed in green tissues of rice. Sequence alignment analysis of CRD1 indicated that Alanine 96 is very conserved in all green plants and photosynthetic bacteria. OsCRD1 protein mainly locates in chloroplast and the point mutation A96T in OsCRD1 does not change its location. Therefore, Alanine96 of OsCRD1 might be fundamental for MPEC activity, mutation of which leads to deficiency in chlorophyll biosynthesis and chloroplast development and decreases photosynthetic capacity in rice. PMID:28129387

  7. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling

    KAUST Repository

    Turek, Ilona

    2016-03-05

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3′,5′-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. © 2016 Springer Science+Business Media Dordrecht

  8. Loss of guanylyl cyclase C (GCC signaling leads to dysfunctional intestinal barrier.

    Directory of Open Access Journals (Sweden)

    Xiaonan Han

    Full Text Available BACKGROUND: Guanylyl Cyclase C (GCC signaling via uroguanylin (UGN and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function. METHODOLOGY/PRINCIPAL FINDINGS: Paracellular permeability of intestinal segments was assessed in wild type (WT and GCC deficient (GCC-/- mice with and without lipopolysaccharide (LPS challenge, as well as in UGN deficient (UGN-/- mice. IFNγ and myosin light chain kinase (MLCK levels were determined by real time PCR. Expression of tight junction proteins (TJPs, phosphorylation of myosin II regulatory light chain (MLC, and STAT1 activation were examined in intestinal epithelial cells (IECs and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi. We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability. CONCLUSIONS/SIGNIFICANCE: GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury.

  9. Chaperone-dependent E3 ligase CHIP ubiquitinates and mediates proteasomal degradation of soluble guanylyl cyclase.

    Science.gov (United States)

    Xia, Tian; Dimitropoulou, Christiana; Zeng, Jingmin; Antonova, Galina N; Snead, Connie; Venema, Richard C; Fulton, David; Qian, Shuibing; Patterson, Cam; Papapetropoulos, Andreas; Catravas, John D

    2007-11-01

    The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.

  10. Characterization and phylogenetic epitope mapping of CD38 ADPR cyclase in the cynomolgus macaque

    Directory of Open Access Journals (Sweden)

    Titti Fausto

    2004-09-01

    Full Text Available Abstract Background The CD38 transmembrane glycoprotein is an ADP-ribosyl cyclase that moonlights as a receptor in cells of the immune system. Both functions are independently implicated in numerous areas related to human health. This study originated from an inherent interest in studying CD38 in the cynomolgus monkey (Macaca fascicularis, a species closely related to humans that also represents a cogent animal model for the biomedical analysis of CD38. Results A cDNA was isolated from cynomolgus macaque peripheral blood leukocytes and is predicted to encode a type II membrane protein of 301 amino acids with 92% identity to human CD38. Both RT-PCR-mediated cDNA cloning and genomic DNA PCR surveying were possible with heterologous human CD38 primers, demonstrating the striking conservation of CD38 in these primates. Transfection of the cDNA coincided with: (i surface expression of cynomolgus macaque CD38 by immunofluorescence; (ii detection of ~42 and 84 kDa proteins by Western blot and (iii the appearance of ecto-enzymatic activity. Monoclonal antibodies were raised against the cynomolgus CD38 ectodomain and were either species-specific or cross-reactive with human CD38, in which case they were directed against a common disulfide-requiring conformational epitope that was mapped to the C-terminal disulfide loop. Conclusion This multi-faceted characterization of CD38 from cynomolgus macaque demonstrates its high genetic and biochemical similarities with human CD38 while the immunological comparison adds new insights into the dominant epitopes of the primate CD38 ectodomain. These results open new prospects for the biomedical and pharmacological investigations of this receptor-enzyme.

  11. Nitroxyl (HNO stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation.

    Directory of Open Access Journals (Sweden)

    Eliane Q Lin

    Full Text Available BACKGROUND: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NO• attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP however has not been investigated. METHODS: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II in the presence and absence of the HNO donor Angeli's salt (sodium trioxodinitrate or B-type natriuretic peptide, BNP (all 1 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. RESULTS: We now demonstrate that Angeli's salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and β-myosin heavy chain expression. Angeli's salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation, as well as p38 mitogen-activated protein kinase (p38MAPK. The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli's salt were mimicked by BNP. We also demonstrate that the effects of Angeli's salt are specifically mediated by HNO (with no role for NO• or nitrite, with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC and cGMP signaling (on both cGMP-dependent protein kinase, cGK-I and phosphorylation of vasodilator-stimulated phosphoprotein, VASP. CONCLUSIONS: Our results demonstrate that HNO prevents cardiomyocyte hypertrophy, and that cGMP-dependent NADPH oxidase suppression contributes to these antihypertrophic actions. HNO donors may thus represent innovative pharmacotherapy for cardiac hypertrophy.

  12. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    Science.gov (United States)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  13. A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases.

    Science.gov (United States)

    Kots, Alexander Y; Martin, Emil; Sharina, Iraida G; Murad, Ferid

    2009-01-01

    Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules.

  14. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chen, Yicai; Yuan, Mingjun; Mohanty, Anee

    2015-01-01

    The nucleotide signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an essential role in regulating microbial virulence and biofilm formation. C-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. One intri...

  15. Differential calcium signaling by cone specific guanylate cyclase-activating proteins from the zebrafish retina.

    Directory of Open Access Journals (Sweden)

    Alexander Scholten

    Full Text Available Zebrafish express in their retina a higher number of guanylate cyclase-activating proteins (zGCAPs than mammalians pointing to more complex guanylate cyclase signaling systems. All six zGCAP isoforms show distinct and partial overlapping expression profiles in rods and cones. We determined critical Ca(2+-dependent parameters of their functional properties using purified zGCAPs after heterologous expression in E.coli. Isoforms 1-4 were strong, 5 and 7 were weak activators of membrane bound guanylate cyclase. They further displayed different Ca(2+-sensitivities of guanylate cyclase activation, which is half maximal either at a free Ca(2+ around 30 nM (zGCAP1, 2 and 3 or around 400 nM (zGCAP4, 5 and 7. Zebrafish GCAP isoforms showed also differences in their Ca(2+/Mg(2+-dependent conformational changes and in the Ca(2+-dependent monomer-dimer equilibrium. Direct Ca(2+-binding revealed that all zGCAPs bound at least three Ca(2+. The corresponding apparent affinity constants reflect binding of Ca(2+ with high (≤ 100 nM, medium (0.1-5 µM and/or low (≥ 5 µM affinity, but were unique for each zGCAP isoform. Our data indicate a Ca(2+-sensor system in zebrafish rod and cone cells supporting a Ca(2+-relay model of differential zGCAP operation in these cells.

  16. Age-associated alterations in hepatic. beta. -adrenergic receptor/adenylate cyclase complex

    Energy Technology Data Exchange (ETDEWEB)

    Graham, S.M.; Herring, P.A.; Arinze, I.J.

    1987-09-01

    The effect of age on catecholamine regulation of hepatic glycogenolysis and on hepatic adenylate cyclase was studied in male rats up to 24 mo of age. Epinephrine and norepinephrine stimulated glycogenolysis in isolated hepatocytes at all age groups studied. Isoproterenol, however, stimulated glycogenolysis only at 24 mo. In isolated liver membranes, usual activators of adenylate cyclase increased the activity of the enzyme considerably more in membranes from 24-mo-old rats than in membranes from either 3- or 22-mo-old rats. The Mn/sup 2 +/-dependent activity of the cyclase was increased by 2.9-fold in 3-mo-old animals and approx. 5.7-fold in 24-mo-old rats, indicating a substantial age-dependent increase in the intrinsic activity of the catalytic unit. The density of the ..beta..-adrenergic receptor, as measured by the binding of (/sup 125/I)-iodocyanopindolol to plasma membranes, was 5-8 fmol/mg protein in rats aged 3-12 mo but increased to 19 fmol/mg protein in 24-mo-old rats. Computer-aided analysis of isoproterenol competition of the binding indicated a small age-dependent increase in the proportion of ..beta..-receptors in the high-affinity state. These observations suggest that ..beta..-receptor-mediated hepatic glycogenolysis in the aged rat is predicated upon increases in the density of ..beta..-receptors as well as increased intrinsic activity of the catalytic unit of adenylate cyclase.

  17. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.L.; Pelton, J.T.; Trivedi, D.; Johnson, D.G.; Coy, D.H.; Sueiras-Diaz, J.; Hruby, V.J.

    1986-04-08

    In this study, we determined the ability of four N-terminally modified derivatives of glucagon, (3-Me-His1,Arg12)-, (Phe1,Arg12)-, (D-Ala4,Arg12)-, and (D-Phe4)glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, (3-Me-His1,Arg12)glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. (Phe1,Arg12)glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. (D-Ala4,Arg12)glucagon and (D-Phe4)glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. (D-Ala4,Arg12)glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the (D-Phe4) derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.

  18. Crystal structure and functional analysis of the glutaminyl cyclase from Xanthomonas campestris.

    Science.gov (United States)

    Huang, Wei-Lin; Wang, Yu-Ruei; Ko, Tzu-Ping; Chia, Cho-Yun; Huang, Kai-Fa; Wang, Andrew H-J

    2010-08-20

    Glutaminyl cyclases (QCs) (EC 2.3.2.5) catalyze the formation of pyroglutamate (pGlu) at the N-terminus of many proteins and peptides, a critical step for the maturation of these bioactive molecules. Proteins having QC activity have been identified in animals and plants, but not in bacteria. Here, we report the first bacterial QC from the plant pathogen Xanthomonas campestris (Xc). The crystal structure of the enzyme was solved and refined to 1.44-A resolution. The structure shows a five-bladed beta-propeller and exhibits a scaffold similar to that of papaya QC (pQC), but with some sequence deletions and conformational changes. In contrast to the pQC structure, the active site of XcQC has a wider substrate-binding pocket, but its accessibility is modulated by a protruding loop acting as a flap. Enzyme activity analyses showed that the wild-type XcQC possesses only 3% QC activity compared to that of pQC. Superposition of those two structures revealed that an active-site glutamine residue in pQC is substituted by a glutamate (Glu(45)) in XcQC, although position 45 is a glutamine in most bacterial QC sequences. The E45Q mutation increased the QC activity by an order of magnitude, but the mutation E45A led to a drop in the enzyme activity, indicating the critical catalytic role of this residue. Further mutagenesis studies support the catalytic role of Glu(89) as proposed previously and confirm the importance of several conserved amino acids around the substrate-binding pocket. XcQC was shown to be weakly resistant to guanidine hydrochloride, extreme pH, and heat denaturations, in contrast to the extremely high stability of pQC, despite their similar scaffold. On the basis of structure comparison, the low stability of XcQC may be attributed to the absence of both a disulfide linkage and some hydrogen bonds in the closure of beta-propeller structure. These results significantly improve our understanding of the catalytic mechanism and extreme stability of type I QCs

  19. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard;

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...

  20. Identification of the chlE gene encoding oxygen-independent Mg-protoporphyrin IX monomethyl ester cyclase in cyanobacteria.

    Science.gov (United States)

    Yamanashi, Kaori; Minamizaki, Kei; Fujita, Yuichi

    2015-08-07

    The fifth ring (E-ring) of chlorophyll (Chl) a is produced by Mg-protoporphyrin IX monomethyl ester (MPE) cyclase. There are two evolutionarily unrelated MPE cyclases: oxygen-independent (BchE) and oxygen-dependent (ChlA/AcsF) MPE cyclases. Although ChlA is the sole MPE cyclase in Synechocystis PCC 6803, it is yet unclear whether BchE exists in cyanobacteria. A BLAST search suggests that only few cyanobacteria possess bchE. Here, we report that two bchE candidate genes from Cyanothece strains PCC 7425 and PCC 7822 restore the photosynthetic growth and bacteriochlorophyll production in a bchE-lacking mutant of Rhodobacter capsulatus. We termed these cyanobacterial bchE orthologs "chlE."

  1. Cyclase-associated protein is essential for the functioning of the endo-lysosomal system and provides a link to the actin cytoskeleton.

    Science.gov (United States)

    Sultana, Hameeda; Rivero, Francisco; Blau-Wasser, Rosemarie; Schwager, Stephan; Balbo, Alessandra; Bozzaro, Salvatore; Schleicher, Michael; Noegel, Angelika A

    2005-10-01

    Data from mutant analysis in yeast and Dictyostelium indicate a role for the cyclase-associated protein (CAP) in endocytosis and vesicle transport. We have used genetic and biochemical approaches to identify novel interacting partners of Dictyostelium CAP to help explain its molecular interactions in these processes. Cyclase-associated protein associates and interacts with subunits of the highly conserved vacuolar H(+)-ATPase (V-ATPase) and co-localizes to some extent with the V-ATPase. Furthermore, CAP is essential for maintaining the structural organization, integrity and functioning of the endo-lysosomal system, as distribution and morphology of V-ATPase- and Nramp1-decorated membranes were disturbed in a CAP mutant (CAP bsr) accompanied by an increased endosomal pH. Moreover, concanamycin A (CMA), a specific inhibitor of the V-ATPase, had a more severe effect on CAP bsr than on wild-type cells, and the mutant did not show adaptation to the drug. Also, the distribution of green fluorescent protein-CAP was affected upon CMA treatment in the wildtype and recovered after adaptation. Distribution of the V-ATPase in CAP bsr was drastically altered upon hypo-osmotic shock, and growth was slower and reached lower saturation densities in the mutant under hyper-osmotic conditions. Taken together, our data unravel a link of CAP with the actin cytoskeleton and endocytosis and suggest that CAP is an essential component of the endo-lysosomal system in Dictyostelium.

  2. Reduced early and late phase insulin response to glucose in isolated spiny mouse (Acomys cahirinus) islets: a defective link between glycolysis and adenylate cyclase.

    Science.gov (United States)

    Nesher, R; Abramovitch, E; Cerasi, E

    1989-09-01

    The spiny mouse (Acomys cahirinus) exhibits low insulin responsiveness to glucose with a nearly absent early phase release. The alternative fuel-secretagogue glyceraldehyde (10 mmol/l) produced a maximal early insulin response in rat islets but failed to affect early response in Acomys; however, it potentiated the late insulin response in both species alike. Glucagon (1.5 mumol/l) potentiated the early insulin response to intermediate (8.3 mmol/l) glucose in rat and Acomys islets by two- and four-fold, respectively. Glucose doubled cyclic AMP levels in rat islets but no significant response was noted in Acomys islets. Isobutylmethylxanthine (0.1 mmol/l) and forskolin (25 mumol/l) caused a significant rise in islet cyclic AMP levels in both types of islets; however, neither agent restored the glucose stimulation of cyclic AMP in spiny mouse islets. Forskolin and isobutylmethylxanthine potentiated early and late phase insulin release in both species; however, neither augmented the early response in the Acomys to the degree observed in rat islets. Thus: (1) A deficient link exists in Acomys between glycolysis and subsequent signals. (2) These islets contain a glucose-insensitive adenylate cyclase. (3) The early insulin response may be potentiated by direct activation of adenylate cyclase. (4) The glucose effects on early and late phase insulin release are probably mediated by distinct pathways. (5) In the spiny mouse the signals mediating the early response are deranged to a greater extent than those activating the late phase insulin release.

  3. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense.

    Science.gov (United States)

    Ramírez-Mata, Alberto; López-Lara, Lilia I; Xiqui-Vázquez, Ma Luisa; Jijón-Moreno, Saúl; Romero-Osorio, Angelica; Baca, Beatriz E

    2016-04-01

    In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.

  4. Studies on responsiveness of hepatoma cells to catecholamines. VI. Characteristics of adrenoceptors and adenylate cyclase response in rat ascites hepatoma cells and human hepatoma cells.

    Science.gov (United States)

    Sanae, F; Kohei, K; Nomura, M; Miyamoto, K

    1992-06-01

    Alpha 1, alpha 2- and beta-Adrenoceptor densities and catecholamine responsiveness in established hepatoma cells, rat ascites hepatoma AH13, AH66, AH66F, AH109A, AH130 and AH7974 cells and human hepatocellular carcinoma HLF and HepG2 cells, were compared with those in normal rat hepatocytes and Chang liver cells. Alpha 1-Adrenoceptor densities measured by [3H]prazosin bindings were not detected in all hepatoma cell lines. Alpha 2-Adrenoceptor densities measured by [3H]clonidine bindings were also barely detected in hepatoma cell lines except for AH130 cells and HepG2 cells. Regarding beta-adrenoceptor, AH109A, AH130 and AH7974 cells had much more [125I]iodocyanopindolol binding sites than normal rat hepatocytes, although we could not detect the binding in HepG2 cells. Adenylate cyclase of normal rat hepatocyte and Chang liver cells were stimulated by beta 2-adrenergic agonist salbutamol, while the cyclase in hepatoma cells had no beta 2-adrenergic response but a beta 1-type response. These findings indicate that the characteristics of adrenergic response in hepatoma cell lines is very different from that in normal hepatocytes, suggesting a participation in the hepatocarcinogenesis and/or the autonomous proliferation of hepatoma cells.

  5. Overexpression of guanylate cyclase activating protein 2 in rod photoreceptors in vivo leads to morphological changes at the synaptic ribbon

    OpenAIRE

    Natalia López-del Hoyo; Lucrezia Fazioli; Santiago López-Begines; Laura Fernández-Sánchez; Nicolás Cuenca; Jordi Llorens; Pedro de la Villa; Ana Méndez

    2012-01-01

    Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based o...

  6. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    Science.gov (United States)

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism.

  7. Catecholamine-sensitive adenylate cyclase of caudate nucleus and cerebral cortex. Effects of guanine nucleotides.

    Science.gov (United States)

    Sulakhe, P V; Leung, N L; Arbus, A T; Sulakhe, S J; Jan, S H; Narayanan, N

    1977-01-01

    1. GTP and GMP-P(NH)P (guanyl-5'-yl imidodiphosphate) were observed to increase the stimulation of neural adenylate cyclase by dopamine (3,4-dihydroxyphenethylamine) and noradrenaline. 2. GMP-P(NH)P had a biphasic effect on the enzyme activity. 3. Preincubation of membranes with GMP-P(NH)P activated the enzyme by a process dependent on time and temperature. Catecholamines increased the speed and the extent of this activation. 4. Membrane fractions contained high- and low-affinity sites for GMP-P(NH)P binding: this binding was due to protein(s) of the membrane preparations. 5. Low-affinity-site binding of GMP-P(NH)P appeared to be related to the stimulatory effect on the adenylate cyclase activity. PMID:18147

  8. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

    Directory of Open Access Journals (Sweden)

    Robert J Bauer

    Full Text Available DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.

  9. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

    Science.gov (United States)

    Bauer, Robert J; Evans, Thomas C; Lohman, Gregory J S

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.

  10. Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases.

    Science.gov (United States)

    Giorio, Giovanni; Yildirim, Arzu; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2013-11-01

    Lutein is becoming increasingly important in preventive medicine due to its possible role in maintaining good vision and in preventing age-related maculopathy. Average daily lutein intake in developed countries is often below suggested daily consumption levels, and lutein supplementation could be beneficial. Lutein is also valuable in the food and feed industries and is emerging in nutraceutical and pharmaceutical markets. Currently, lutein is obtained at high cost from marigold petals, and synthesis alternatives are thus desirable. Tomato constitutes a promising starting system for production as it naturally accumulates high levels of lycopene. To develop tomato for lutein synthesis, the tomato Red Setter cultivar was transformed with the tomato lycopene ε-cyclase-encoding gene under the control of a constitutive promoter, and the HighDelta (HD) line, characterised by elevated lutein and δ-carotene content in ripe fruits, was selected. HD was crossed to the transgenic HC line and to RS(B) with the aim of converting all residual fruit δ-carotene to lutein. Fruits of both crosses were enriched in lutein and presented unusual carotenoid profiles. The unique genetic background of the crosses used in this study permitted an unprecedented analysis of the role and regulation of the lycopene cyclase enzymes in tomato. A new defined biochemical index, the relative cyclase activity ratio, was used to discern post-transcriptional regulation of cyclases, and will help in the study of carotenoid biosynthesis in photosynthetic plant species and particularly in those, like tomato, that have been domesticated for the production of food, feed or useful by-products.

  11. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments.

    Science.gov (United States)

    Imbert, M; Chabardès, D; Montégut, M; Clique, A; Morel, F

    1975-01-01

    A method is described, which allows adenylate cyclase activity measurement in single pieces of various nephron segments. Tubular samples of 0.5 to 2 mm length were isolated by microdissection from collagenase treated slices of rabbit kidney. A photograph of each piece was taken in order to measure its length. After a permeabilisation treatment involving preincubation in a hypoosmotic medium and a freezing step, each sample was incubated for 30 mm at 30 degrees C in a medium containing high specific (alpha-32-P)-ATP 3-10-4 M, final volume 2.5 mu 1. The (32P)-cAMP formed was separated from the other labelled nucleotides by filtering the incubate on a dry aluminium oxide microcolumn, 3H cAMP was added as a tracer for measuring cAMP recovery. The sensitivity of the method was found to be a few fentomoles (10-15 M) cAMP. cAMP generation increased linearly as a function of the incubation time up to more than 30 min, and as a function of the length of the segment used. Control and fluoride (5 mM) stimulated adenvlate cyclase activities were measured in the following segments of the nephron: early proximal convoluted tubule (PCT), pars recta of the proximal tubule (PR), thin descending limb of the loop (TDL), cortical portion of the thick ascending limb (CAL), distal convoluted tubule (dct), first branched portion of the collecting tubule (BCT), further cortical (CCT) and medullary (MCT) portions of the collecting tubule. Mean control adenylate cyclase activity varied from 7 (PR) to 75 (BCT) fmoles/mm/30 min. Flouride addition resulted in a 10 (BCT) to 50 (PR) fold increase in enzyme activity. Series of replicates gave a scatter equal to plus or minus 20% (S.D. as a per cent of the mean). The method described appears to be suitable to determine which nephron segments contain hormone-dependent adenylate cyclase.

  12. Stimulatory and inhibitory effects of forskolin on adenylate cyclase in rat normal hepatocytes and hepatoma cells.

    Science.gov (United States)

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Takagi, K; Satake, T; Hasegawa, T

    1989-02-01

    Forskolin synergistically potentiated adenosine 3',5'-cyclic monophosphate formation by prostaglandin E1 (PGE1) in rat normal hepatocytes freshly prepared by collagenase digestion and rat ascites hepatoma AH66 cells, but dose-dependently inhibited the accumulation by PGE1 in AH66F cells. Forskolin activated adenylate cyclase in a dose-dependent manner in homogenates of all cell lines. In normal hepatocytes and AH66 cells, simultaneous addition of forskolin and other adenylate cyclase activators [isoproterenol (IPN), PGE1, guanosine 5'-triphosphate sodium salt (GTP), 5'-guanylylimidodiphosphate sodium salt (Gpp (NH)p), NaF, cholera toxin, islet activating protein and MnCl2] gave greater than additive responses. On the other hand, in AH66F cells, the effect of forskolin on adenylate cyclase was hardly influenced by GTP, but forskolin diminished the activities induced by high concentrations of GTP to that by the diterpene alone. Forskolin also significantly inhibited the PGE1-stimulated and the guanine nucleotide binding regulatory protein-stimulated activities. Because AH66F cells were insensitive to IPN, the combination with forskolin and IPN gave similar activity to that obtained with the diterpene alone. The effect of forskolin on the activation by manganese ion was neither synergistic nor inhibitory but was additive in AH66F cells. These results suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide binding regulatory protein and the catalytic unit in normal hepatocytes and AH66 cells, but in AH66F cells forskolin interferes with the coupling of the two components of adenylate cyclase.

  13. Decreased Soluble Guanylate Cyclase Contributes to Cardiac Dysfunction Induced by Chronic Doxorubicin Treatment in Mice.

    Science.gov (United States)

    Vandenwijngaert, Sara; Swinnen, Melissa; Walravens, Ann-Sophie; Beerens, Manu; Gillijns, Hilde; Caluwé, Ellen; Tainsh, Robert E; Nathan, Daniel I; Allen, Kaitlin; Brouckaert, Peter; Bartunek, Jozef; Scherrer-Crosbie, Marielle; Bloch, Kenneth D; Bloch, Donald B; Janssens, Stefan P; Buys, Emmanuel S

    2017-02-01

    The use of doxorubicin, a potent chemotherapeutic agent, is limited by cardiotoxicity. We tested the hypothesis that decreased soluble guanylate cyclase (sGC) enzyme activity contributes to the development of doxorubicin-induced cardiotoxicity. Doxorubicin administration (20 mg/kg, intraperitoneally [IP]) reduced cardiac sGC activity in wild-type (WT) mice. To investigate whether decreased sGC activity contributes to doxorubicin-induced cardiotoxicity, we studied mice with cardiomyocyte-specific deficiency of the sGC α1-subunit (mice with cardiomyocyte-specific deletion of exon 6 of the sGCα1 allele [sGCα1(-/-CM)]). After 12 weeks of doxorubicin administration (2 mg/kg/week IP), left ventricular (LV) systolic dysfunction was greater in sGCα1(-/-CM) than WT mice. To further assess whether reduced sGC activity plays a pathogenic role in doxorubicin-induced cardiotoxicity, we studied a mouse model in which decreased cardiac sGC activity was induced by cardiomyocyte-specific expression of a dominant negative sGCα1 mutant (DNsGCα1) upon doxycycline removal (Tet-off). After 8 weeks of doxorubicin administration, DNsGCα1(tg/+), but not WT, mice displayed LV systolic dysfunction and dilatation. The difference in cardiac function and remodeling between DNsGCα1(tg/+) and WT mice was even more pronounced after 12 weeks of treatment. Further impairment of cardiac function was attenuated when DNsGCα1 gene expression was inhibited (beginning at 8 weeks of doxorubicin treatment) by administering doxycycline. Furthermore, doxorubicin-associated reactive oxygen species generation was higher in sGCα1-deficient than WT hearts. Innovation and Conclusion: These data demonstrate that a reduction in cardiac sGC activity worsens doxorubicin-induced cardiotoxicity in mice and identify sGC as a potential therapeutic target. Various pharmacological sGC agonists are in clinical development or use and may represent a promising approach to limit doxorubicin

  14. The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers

    KAUST Repository

    Wong, Aloysius Tze

    2013-07-08

    Background: Second messengers link external cues to complex physiological responses. One such messenger, 3\\',5\\'-cyclic guanosine monophosphate (cGMP), has been shown to play a key role in many physiological responses in plants. However, in higher plants, guanylyl cyclases (GCs), enzymes that generate cGMP from guanosine-5\\'-triphosphate (GTP) have remained elusive until recently. GC search motifs constructed from the alignment of known GCs catalytic centers form vertebrates and lower eukaryotes have led to the identification of a number of plant GCs that have been characterized in vitro and in vivo.Presentation of the hypothesis.Recently characterized GCs in Arabidopsis thaliana contributed to the development of search parameters that can identify novel candidate GCs in plants. We hypothesize that there are still a substantial number (> 40) of multi-domain molecules with potentially functional GC catalytic centers in plants that remain to be discovered and characterized. Testing the hypothesis. The hypothesis can be tested, firstly, by computational methods constructing 3D models of selected GC candidates using available crystal structures as templates. Homology modeling must include substrate docking that can provide support for the structural feasibility of the GC catalytic centers in those candidates. Secondly, recombinant peptides containing the GC domain need to be tested in in vitro GC assays such as the enzyme-linked immune-sorbent assay (ELISA) and/or in mass spectrometry based cGMP assays. In addition, quantification of in vivo cGMP transients with fluorescent cGMP-reporter assays in wild-type or selected mutants will help to elucidate the biological role of novel GCs.Implications of the hypothesis.If it turns out that plants do harbor a large number of functional GC domains as part of multi-domain enzymes, then major new insights will be gained into the complex signal transduction pathways that link cGMP to fundamental processes such as ion transport

  15. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jennifer C Irvine

    Full Text Available BACKGROUND: Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272. METHODS: Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1, 60nmol/L in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined. RESULTS: We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L elicited concentration-dependent antihypertrophic actions, inhibiting ET(1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP, without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272. CONCLUSIONS: Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding

  16. Changes of Adenylate Cyclase and Guanylate Cyclase in the Frontal Cortex, Lenticula, Corpus Amygdaloideum, and Hippocampus in Morphine-dependent Rats

    Directory of Open Access Journals (Sweden)

    Shijun Hong

    2016-01-01

    Full Text Available To detect the changes of adenylate cyclase (AC and guanylate cyclase (GC in the four cerebral regions that are concerned with psychogenic dependence of morphine in rats, including the frontal cortex, lenticula, corpus amygdaloideum, and hippocampus. To discuss the relation between the expressions of AC and GC with the psychogenic dependence on morphine. Different periods of morphine-dependent rat models were established, and enzyme histochemistry was used to detect the variations of AC and GC in four cerebral regions. Compared with the control group, AC and GC in all the morphine-dependent groups increased. The data indicated that the amounts of AC and GC were significantly different between the morphine-dependent groups and the control group when tested at periods of 1 week, 2 weeks, 4 weeks, and 8 weeks (P ˂ 0.05 or P ˂ 0.01. There were significant differences when comparing the 1-week group with the 2-week, 4-week, and 8-week groups (P ˂ 0.05 or P ˂ 0.01. There were significant differences when comparing the 2-week dependent group with the 4-week dependent group or the 8-week dependent group (P ˂ 0.05 or P ˂ 0.01. The activities of AC and GC increased in four cerebral regions of morphine-dependent rats. The psychogenic dependence on morphine appears to be closely linked to the upgrade of AC and GC.

  17. Soluble guanylate cyclase α1-deficient mice: a novel murine model for primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Buys

    Full Text Available Primary open angle glaucoma (POAG is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1-deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.

  18. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy

    Directory of Open Access Journals (Sweden)

    Gillis John

    2006-07-01

    Full Text Available Abstract Background In recent years encouraging progress has been made in developing vaccine treatments for cancer, particularly with melanoma. However, the overall rate of clinically significant results has remained low. The present research used microarray datasets from previous investigations to examine gene expression patterns in cancer cell lines with the goal of better understanding the tumor microenvironment. Methods Principal Components Analyses with Promax rotational transformations were carried out with 90 cancer cell lines from 3 microarray datasets, which had been made available on the internet as supplementary information from prior publications. Results In each of the analyses a well defined melanoma component was identified that contained a gene coding for the enzyme, glutaminyl cyclase, which was as highly expressed as genes from a variety of well established biomarkers for melanoma, such as MAGE-3 and MART-1, which have frequently been used in clinical trials of melanoma vaccines. Conclusion Since glutaminyl cyclase converts glutamine and glutamic acid into a pyroglutamic form, it may interfere with the tumor destructive process of vaccines using peptides having glutamine or glutamic acid at their N-terminals. Finding ways of inhibiting the activity of glutaminyl cyclase in the tumor microenvironment may help to increase the effectiveness of some melanoma vaccines.

  19. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    Energy Technology Data Exchange (ETDEWEB)

    Azarkan, Mohamed [Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium); Clantin, Bernard; Bompard, Coralie [CNRS-UMR 8525, Institut de Biologie de Lille, BP 477, 1 Rue du Professeur Calmette, F-59021 Lille (France); Belrhali, Hassan [EMBL Grenoble Outstation, 6 Rue Jules Horowitz, BP 181, F-38042 Grenoble CEDEX 9 (France); Baeyens-Volant, Danielle [Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium); Looze, Yvan [Laboratoire de Chimie Générale, Institut de Pharmacie-ULB CP206/04, Boulevard du Triomphe, B-1050 Brussels (Belgium); Villeret, Vincent, E-mail: vincent.villeret@ibl.fr [CNRS-UMR 8525, Institut de Biologie de Lille, BP 477, 1 Rue du Professeur Calmette, F-59021 Lille (France); Wintjens, René, E-mail: vincent.villeret@ibl.fr [Laboratoire de Chimie Générale, Institut de Pharmacie-ULB CP206/04, Boulevard du Triomphe, B-1050 Brussels (Belgium); Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium)

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.

  20. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    Directory of Open Access Journals (Sweden)

    Ma’ayan Israeli

    2016-08-01

    Full Text Available Edema Factor (EF, the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP, and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.

  1. The first structure of a bacterial diterpene cyclase: CotB2.

    Science.gov (United States)

    Janke, Ronja; Görner, Christian; Hirte, Max; Brück, Thomas; Loll, Bernhard

    2014-06-01

    Sesquiterpenes and diterpenes are a diverse class of secondary metabolites that are predominantly derived from plants and some prokaryotes. The properties of these natural products encompass antitumor, antibiotic and even insecticidal activities. Therefore, they are interesting commercial targets for the chemical and pharmaceutical industries. Owing to their structural complexity, these compounds are more efficiently accessed by metabolic engineering of microbial systems than by chemical synthesis. This work presents the first crystal structure of a bacterial diterpene cyclase, CotB2 from the soil bacterium Streptomyces melanosporofaciens, at 1.64 Å resolution. CotB2 is a diterpene cyclase that catalyzes the cyclization of the linear geranylgeranyl diphosphate to the tricyclic cyclooctat-9-en-7-ol. The subsequent oxidation of cyclooctat-9-en-7-ol by two cytochrome P450 monooxygenases leads to bioactive cyclooctatin. Plasticity residues that decorate the active site of CotB2 have been mutated, resulting in alternative monocyclic, dicyclic and tricyclic compounds that show bioactivity. These new compounds shed new light on diterpene cyclase reaction mechanisms. Furthermore, the product of mutant CotB2(W288G) produced the new antibiotic compound (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene, which acts specifically against multidrug-resistant Staphylococcus aureus. This opens a sustainable route for the industrial-scale production of this bioactive compound.

  2. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  3. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  4. GUANYLYL CYCLASE/NATRIURETIC PEPTIDES RECEPTOR-A SIGNALING ANTAGONIZES PHOSPHOINOSITIDE HYDROLYSIS, Ca2+ RELEASE, AND ACTIVATION OF PROTEIN KINASE C

    Directory of Open Access Journals (Sweden)

    Kailash N Pandey

    2014-08-01

    Full Text Available Thus far, three related natriuretic peptides (NPs and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA, and C-type natriuretic peptide (CNP shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB. All three NPs bind to natriuretic peptide receptor-C (NPRC, which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3 have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems.

  5. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  6. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity.

    Science.gov (United States)

    Fulcher, Nanette B; Holliday, Phillip M; Klem, Erich; Cann, Martin J; Wolfgang, Matthew C

    2010-05-01

    Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signalling molecule adenosine 3', 5'-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems.

  7. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  8. Effect of mitomycin C on the activation of adenylate cyclase in rat ascites hepatoma AH130 cells.

    Science.gov (United States)

    Miyamoto, K; Matsunaga, T; Sanae, F; Koshiura, R

    1986-09-01

    Isoproterenol (IPN)-stimulated activity of adenylate cyclase was enhanced in a dose-dependent manner by exposure of AH130 cells to mitomycin C (MMC). The enhancement was also observed in prostaglandin E1-, guanine nucleotide analog-, NaF-, cholera toxin- and forskolin-stimulated activities of the enzyme but not in manganese-stimulated activity. In addition, even when the cells pretreated with islet-activating protein were exposed to MMC, IPN-stimulated activity of adenylate cyclase was enhanced. Anaerobic exposure of AH130 cells to MMC somewhat inhibited IPN-stimulated activity of adenylate cyclase in contrast with aerobic exposure. Exposure of cells to adriamycin also caused enhancement of IPN-stimulated activity of adenylate cyclase but exposure to nitrogen mustard inhibited the enzyme stimulation by IPN. The enhancing effect of MMC was lost by the combined treatment with alpha-tocopherol. From these results, it was shown that MMC modulated the activity of adenylate cyclase, probably through alterations in membrane structure.

  9. Expresión diferencial de proteínas cardiacas en ratas diabéticas tipo Sprague-Dawley Differential heart protein expression in diabetic type Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Richard Southgate

    Full Text Available Se purificaron proteínas cardiacas a partir de ratas diabéticas y sanas de tipo Sprague-Dawley. Las proteínas fueron fraccionadas por medio de gel de electroforesis de dos dimensiones (2D-PAGE. La separación resultante fue visualizada por tinción con Coomassie azul. Luego de ser convertidas en imagen digital, las proteínas del grupo diabético y del grupo control fueron comparadas y correlacionadas para determinar los niveles de expresión diferenciada. Sesenta de las ciento ochenta proteínas en el gel fueron removidas y digeridas en fragmentos pequeños de péptidos, los cuales se analizaron por medio de espectrometría de masas para determinar la estructura primaria de los péptidos resultantes (secuencia de los aminoácidos. Esta información se registró en una base de datos (http://www.ncbi.nlm.nih.gov/ para determinar la identidad de las proteínas precedentes a los péptidos. Se determinó la identidad de las proteínas expresadas diferencialmente en el tejido cardiaco de ambos grupos; se encontraron varias proteínas expresadas en diferentes niveles a los normales cuando se analizaron los corazones de ratas diabéticas, incluyendo fosfatasa de tiroxina (PTP, Q60998, receptores de lipoproteínas de muy baja densidad (VLDL-R, P98156, perioxidasa de glutation (PHGPx, O70325, transferasa de serina hidroxilamina (SHMT, P50431, adenylyl cyclasa proteína 1 asociada (CAP1, P40124 y teletonina (TELT, O70548.Cardiac proteins were isolated from diabetic and wild type Sprague-Dawley rats, then fractionated by two dimensional gel electrophoresis (2D-PAGE using isoelectric focusing and molecular weight. The resulting protein spots were stained to facilitate detection. After being converted into a digital image, the proteins on the diabetic and wild type gels were matched to each other then compared to determine levels of expression. Sixty of the one hundred and eighty proteins on the gel were removed and digested to produce peptide fragments

  10. [The influence of immunization of rats with BSA-conjugated peptide 269-280 of type 3 melanocortin receptor on the metabolic parameters and thyroid functions].

    Science.gov (United States)

    Derkach, K V; Shpakova, E A; Zharova, O A; Bondareva, V M; Shpakov, A O

    2014-01-01

    One of the approaches to study the role of the brain hormonal signaling systems in the regulation of biochemical and physiological processes is their shutdown using the antibodies generated to peptides corresponding to extracellular regions of receptors. The brain type 3 melanocortin receptors (M3R) play an important role in the central regulation of the metabolism and the endocrine system. However, the influence of prolonged inhibition of M3R on energy metabolism, insulin resistance, and thyroid gland (TG) function is practically not studied. The aim of the study was to investigate the influence of prolonged repeated immunization of male rats with the BSA-conjugated peptide Ala-[Pro-Thr-Asn-Pro-Tyr-Cys-Ile-Cys-Thr-Thr-Ala-His269-280]-Ala (A[269- 280]A) corresponding to the third extracellular loop of M3R on their metabolic parameters and functional activity of TG. 9 months after the first immunization, the weight of rats was reduced and after 12-13 months was significantly lower than in controls. The weight of abdominal and brown adipose tissues, on the contrary, increased. At the same timeline there was an increase in the fasting glucose and insulin levels, and increase of the HOMA-IR index (by 75%) indicating that immunized animals develop insulin resistance. The rats have increased glucose utilization due to an increase of insulin production by pancreatic β-cells. 12 months after the first immunization, the increase of the triglycerides level (by 74%) and the ratio of LDL- and HDL-cholesterol (by 36%) were revealed. 13 months after the start of immunization, the levels of free and total thyroxine and total triiodothyronine significantly decreased. In the TG plasma membranes of immunized rats the weakening adenylyl cyclase stimulating effect of thyroid-stimulating hormone was detected. Thus, long-term decrease in the bra- in M3R activity due to repeated immunization of rats with BSA-conjugated peptide A[269-280]A induces the disturbances of the peripheral

  11. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Vincent W. Wu

    2017-01-01

    Full Text Available The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2 that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability.

  12. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes

    Science.gov (United States)

    Wu, Vincent W.; Dana, Craig M.; Iavarone, Anthony T.; Clark, Douglas S.

    2017-01-01

    ABSTRACT The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. PMID:28096492

  13. From Kinase to Cyclase: An Unusual Example of Catalytic Promiscuity Modulated by Metal Switching

    OpenAIRE

    Sánchez-Moreno, Israel; Iturrate Montoya, Laura; Martín-Hoyos, Rocio; Jimeno, M. Luisa; Mena, Montaña; Bastida, Ágatha; García-Junceda, Eduardo

    2009-01-01

    “This is the pre-peer reviewed version of the following article: Sánchez-Moreno, I., Iturrate, L., Martín-Hoyos, R., Jimeno, M. L., Mena, M., Bastida, A. and García-Junceda, E. (2009) From Kinase to Cyclase: An Unusual Example of Catalytic Promiscuity Modulated by Metal Switching. ChemBioChem. 10, 225-229, which has been published in final form at http://www3.interscience.wiley.com/journal/121544668/abstract?CRETRY=1&SRETRY=0.”

  14. Cyclic 3', 5'-AMP relay in Dictyostelium discoideum: adaptation is independent of activation of adenylate cyclase

    OpenAIRE

    1983-01-01

    In Dictyostelium discoideum, binding of cAMP to high affinity surface receptors leads to a rapid activation of adenylate cyclase followed by subsequent adaptation within several minutes. The rate of secretion of [ 3H ]cAMP, which reflects the state of activation of the enzyme, was measured. Caffeine noncompetitively inhibited the response to cAMP. Inhibition was rapidly reversible and pretreatment of cells with caffeine for up to 22 min had little effect on the subsequent responsiveness to cA...

  15. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles

    OpenAIRE

    Donato, Gina M.; Goldsmith, Cynthia S.; Paddock, Christopher D.; Eby, Joshua C.; Gray, Mary C.; Hewlett, Erik L.

    2012-01-01

    B.pertussis adenylate cyclase toxin (ACT) intoxicates cells by producing intracellular cAMP. B.pertussis outer membrane vesicles (OMV) contain ACT on their surface (OMV-ACT), but the properties of OMV-ACT were previously unknown. We found that B.pertussis in the lung from a fatal pertussis case contains OMV, suggesting an involvement in pathogenesis. OMV-ACT and ACT intoxicate cells with and without the toxin’s receptor CD11b/CD18. Intoxication by ACT is blocked by antitoxin and anti-CD11b an...

  16. Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa.

    Science.gov (United States)

    Yang, Xinmei; Matsui, Takashi; Kodama, Takeshi; Mori, Takahiro; Zhou, Xiaoxi; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2016-03-01

    In polyketide biosynthesis, ring formation is one of the key diversification steps. Olivetolic acid cyclase (OAC) from Cannabis sativa, involved in cannabinoid biosynthesis, is the only known plant polyketide cyclase. In addition, it is the only functionally characterized plant α+β barrel (DABB) protein that catalyzes the C2-C7 aldol cyclization of the linear pentyl tetra-β-ketide CoA as the substrate, to generate olivetolic acid (OA). Herein, we solved the OAC apo and OAC-OA complex binary crystal structures at 1.32 and 1.70 Å resolutions, respectively. The crystal structures revealed that the enzyme indeed belongs to the DABB superfamily, as previously proposed, and possesses a unique active-site cavity containing the pentyl-binding hydrophobic pocket and the polyketide binding site, which have never been observed among the functionally and structurally characterized bacterial polyketide cyclases. Furthermore, site-directed mutagenesis studies indicated that Tyr72 and His78 function as acid/base catalysts at the catalytic center. Structural and/or functional studies of OAC suggested that the enzyme lacks thioesterase and aromatase activities. These observations demonstrated that OAC employs unique catalytic machinery utilizing acid/base catalytic chemistry for the formation of the precursor of OA. The structural and functional insights obtained in this work thus provide the foundation for analyses of the plant polyketide cyclases that will be discovered in the future. Structural data reported in this paper are available in the Protein Data Bank under the accession numbers 5B08 for the OAC apo, 5B09 for the OAC-OA binary complex and 5B0A, 5B0B, 5B0C, 5B0D, 5B0E, 5B0F and 5B0G for the OAC His5Q, Ile7F, Tyr27F, Tyr27W, Val59M, Tyr72F and His78S mutant enzymes, respectively. © 2016 Federation of European Biochemical Societies.

  17. Differential Effects of Temperature on cAMP-induced Excitation, Adaptation, and Deadaptation of Adenylate and Guanylate Cyclase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    Extracellular cAMP induces excitation of adenylate and guanylate cyclase in Dictyostelium discoideum. Continuous stimulation with cAMP leads to adaptation, while cells deadapt upon removal of the cAMP stimulus. Excitation of guanylate cyclase by cAMP has a lag time of ~1 s; excitation of adenylate c

  18. Characterization of adenylate cyclase toxin from a mutant of Bordetella pertussis defective in the activator gene, cyaC.

    Science.gov (United States)

    Hewlett, E L; Gray, M C; Ehrmann, I E; Maloney, N J; Otero, A S; Gray, L; Allietta, M; Szabo, G; Weiss, A A; Barry, E M

    1993-04-15

    Bordetella pertussis adenylate cyclase (AC) toxin has the abilities to 1) enter target cells where it catalyzes cyclic AMP production and 2) lyse sheep erythrocytes, and these abilities require post-translational modification by the product of an accessory gene cyaC (Barry, E. M., Weiss, A. A., Ehrmann, E. E., Gray, M. C., Hewlett, E. L., and Goodwin, M. St. M. (1991) J. Bacteriol. 173, 720-726). In the present study, AC toxin has been purified from an organism with a mutation in cyaC, BPDE386, and evaluated for its physical and functional properties in order to determine the basis for its lack of toxin and hemolytic activities. AC toxin from BPDE386 is indistinguishable from wild-type toxin in enzymatic activity, migration on SDS-polyacrylamide gel electrophoresis, ability to bind calcium, and calcium-dependent conformational change. Although unable to elicit cAMP accumulation, AC toxin from BPDE386 exhibits binding to the surface of Jurkat cells which is comparable to that of wild-type toxin. This target cell interaction is qualitatively different, however, in that 99% of the mutant toxin remains sensitive to trypsin, whereas approximately 20% of cell-associated wild-type toxin enters a trypsin-resistant compartment. To evaluate the ability of this mutant AC toxin to function at its intracellular site of action, the cAMP-stimulated L-type calcium current in frog atrial myocytes was used. Extracellular addition of wild-type toxin results in cAMP-dependent events that include activation of calcium channels and enhancement of calcium current. In contrast, there is no response to externally applied toxin from BPDE386. When injected into the cell interior, however, the AC toxin from BPDE386 is able to produce increases in the calcium current comparable to those observed with wild-type toxin. Although AC toxin from BPDE386 is unaffected in its enzymatic activity, calcium binding, and calcium-dependent conformational change, the mutation in cyaC does result in a toxin

  19. Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site

    Directory of Open Access Journals (Sweden)

    Misquitta Stephanie A

    2004-02-01

    Full Text Available Abstract Background Glutaminyl cyclase (QC forms the pyroglutamyl residue at the amino terminus of numerous secretory peptides and proteins. We previously proposed the mammalian QC has some features in common with zinc aminopeptidases. We now have generated a structural model for human QC based on the aminopeptidase fold (pdb code 1AMP and mutated the apparent active site residues to assess their role in QC catalysis. Results The structural model proposed here for human QC, deposited in the protein databank as 1MOI, is supported by a variety of fold prediction programs, by the circular dichroism spectrum, and by the presence of the disulfide. Mutagenesis of the six active site residues present in both 1AMP and QC reveal essential roles for the two histidines (140 and 330, QC numbering and the two glutamates (201 and 202, while the two aspartates (159 and 248 appear to play no catalytic role. ICP-MS analysis shows less than stoichiometric zinc (0.3:1 in the purified enzyme. Conclusions We conclude that human pituitary glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site residues. In contrast to the aminopeptidase, however, QC does not appear to require zinc for enzymatic activity.

  20. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.

    Science.gov (United States)

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-12-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC.

  1. Phosphorylation-independent regulation of the diguanylate cyclase WspR.

    Directory of Open Access Journals (Sweden)

    Nabanita De

    2008-03-01

    Full Text Available Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP, a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation.

  2. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase.

    Science.gov (United States)

    Agarwal, Nisheeth; Lamichhane, Gyanu; Gupta, Radhika; Nolan, Scott; Bishai, William R

    2009-07-02

    With 8.9 million new cases and 1.7 million deaths per year, tuberculosis is a leading global killer that has not been effectively controlled. The causative agent, Mycobacterium tuberculosis, proliferates within host macrophages where it modifies both its intracellular and local tissue environment, resulting in caseous granulomas with incomplete bacterial sterilization. Although infection by various mycobacterial species produces a cyclic AMP burst within macrophages that influences cell signalling, the underlying mechanism for the cAMP burst remains unclear. Here we show that among the 17 adenylate cyclase genes present in M. tuberculosis, at least one (Rv0386) is required for virulence. Furthermore, we demonstrate that the Rv0386 adenylate cyclase facilitates delivery of bacterial-derived cAMP into the macrophage cytoplasm. Loss of Rv0386 and the intramacrophage cAMP it delivers results in reductions in TNF-alpha production via the protein kinase A and cAMP response-element-binding protein pathway, decreased immunopathology in animal tissues, and diminished bacterial survival. Direct intoxication of host cells by bacterial-derived cAMP may enable M. tuberculosis to modify both its intracellular and tissue environments to facilitate its long-term survival.

  3. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A.

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  4. The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies*

    Science.gov (United States)

    Wang, Xianzhe; Maynard, Jennifer A.

    2015-01-01

    The adenylate cyclase toxin (ACT) is a multifunctional virulence factor secreted by Bordetella species. Upon interaction of its C-terminal hemolysin moiety with the cell surface receptor αMβ2 integrin, the N-terminal cyclase domain translocates into the host cell cytosol where it rapidly generates supraphysiological cAMP concentrations, which inhibit host cell anti-bacterial activities. Although ACT has been shown to induce protective immunity in mice, it is not included in any current acellular pertussis vaccines due to protein stability issues and a poor understanding of its role as a protective antigen. Here, we aimed to determine whether any single domain could recapitulate the antibody responses induced by the holo-toxin and to characterize the dominant neutralizing antibody response. We first immunized mice with ACT and screened antibody phage display libraries for binding to purified ACT. The vast majority of unique antibodies identified bound the C-terminal repeat-in-toxin (RTX) domain. Representative antibodies binding two nonoverlapping, neutralizing epitopes in the RTX domain prevented ACT association with J774A.1 macrophages and soluble αMβ2 integrin, suggesting that these antibodies inhibit the ACT-receptor interaction. Sera from mice immunized with the RTX domain showed similar neutralizing activity as ACT-immunized mice, indicating that this domain induced an antibody response similar to that induced by ACT. These data demonstrate that RTX can elicit neutralizing antibodies and suggest it may present an alternative to ACT. PMID:25505186

  5. Mechanistic studies of sesquiterpene cyclases based on their carbon isotope ratios at natural abundance.

    Science.gov (United States)

    Tan, Wenhua; Bartram, Stefan; Boland, Wilhelm

    2017-01-03

    During the process of terpene biosynthesis, C-C bond breaking and forming steps are subjected to kinetic carbon isotope effects, leading to distinct carbon isotopic signatures of the products. Accordingly, carbon isotopic signatures could be used to reveal the 'biosynthetic history' of the produced terpenoids. Five known sesquiterpene cyclases, regulating three different pathways, representing simple to complex biosynthetic sequences, were heterologously expressed and used for in vitro assays with farnesyl diphosphate as substrate. Compound specific isotope ratio mass spectrometry measurements of the enzyme substrate farnesyl diphosphate (FDP) and the products of all the five cyclases were performed. The calculated δ(13) C value for FDP, based on δ(13) C values and relative amounts of the products, was identical with its measured δ(13) C value, confirming the reliability of the approach and the precision of measurements. The different carbon isotope ratios of the products reflect the complexity of their structure and are correlated with the frequency of carbon-carbon bond forming and breaking steps on their individual biosynthetic pathways. Thus, the analysis of carbon isotopic signatures of terpenes at natural abundance can be used as a powerful tool in elucidation of associated biosynthetic mechanisms of terpene synthases and in future in vivo studies even without 'touching' the plant. © 2017 John Wiley & Sons Ltd.

  6. Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus

    Science.gov (United States)

    Yang, Kunlong; Qin, Qiuping; Liu, Yinghang; Zhang, Limei; Liang, Linlin; Lan, Huahui; Chen, Chihao; You, Yunchao; Zhang, Feng; Wang, Shihua

    2016-01-01

    Aspergillus flavus is one of the most important opportunistic pathogens of crops and animals. The carcinogenic mycotoxin, aflatoxins produced by this pathogen cause a health problem to human and animals. Since cyclic AMP signaling controls a range of physiological processes, like fungal development and infection when responding to extracellular stimuli in fungal pathogens, in this study, we investigated the function of adenylate cyclase, a core component of cAMP signaling, in aflatoxins biosynthesis and virulence on plant seeds in A. flavus. A gene replacement strategy was used to generate the deletion mutant of acyA that encodes the adenylate cyclase. Severe defects in fungal growth, sporulation and sclerotia formation were observed in the acyA deletion mutant. The defect in radical growth could be partially rescued by exogenous cAMP analog. The acyA mutant was also significantly reduced in aflatoxins production and virulence. Similar to the former studies in other fungi, The acyA mutant showed enhancing tolerance to oxidative stress, but more sensitive to heat stress. Overall, the pleiotropic defects of the acyA deletion mutant indicates that the cAMP-PKA pathway is involved in fungal development, aflatoxins biosynthesis and plant seed invasion in A. flavus. PMID:28066725

  7. Adenylate-cyclase activity in platelets of patients with obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    D Marazziti, S Baroni

    2009-07-01

    Full Text Available D Marazziti, S Baroni, L Palego, I Masala, G Consoli, M Catena Dell’Osso, G Giannaccini, A LucacchiniDipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Pisa, ItalyAbstract: Although the main biological hypothesis on the pathophysiology of obsessive-compulsive disorder (OCD is centered on the serotonin system, indications are available that other neurotransmitters, and even second messengers, particularly the cyclic adenosine monophosphate (cAMP signaling, may be involved, though effective data are few. Therefore, the aim of the present study was to evaluate and compare the basal and isoprenaline (ISO-stimulated velocity of adenylate-cyclase (AC in human platelet membranes of patients with OCD and healthy control subjects. The results showed that the basal and ISO-stimulated AC activity, as well as the dose-response curves of ISO by using agonist concentrations ranging between 0.1 nM and 10 µM, were not different in the two groups. However, OCD patients showed lower EC50 and higher Emax values than healthy subjects. These findings suggest the presence of supersensitive β-adrenergic receptors in platelets of OCD patients.Keywords: obsessive-compulsive disorder, norepinephrine, second messengers, adenylate-cyclase, platelets, isoprenaline, β-adrenergic receptors

  8. Modification of a bi-functional diguanylate cyclase-phosphodiesterase to efficiently produce cyclic diguanylate monophosphate

    Directory of Open Access Journals (Sweden)

    Natasha M. Nesbitt

    2015-09-01

    Full Text Available Cyclic-diGMP is a bacterial messenger that regulates many physiological processes, including many attributed to pathogenicity. Bacteria synthesize cyclic-diGMP from GTP using diguanylate cyclases; its hydrolysis is catalyzed by phosphodiesterases. Here we report the over-expression and purification of a bi-functional diguanylate cyclase-phosphodiesterase from Agrobacterium vitis S4. Using homology modeling and primary structure alignment, we identify several amino acids predicted to participate in the phosphodiesterase reaction. Upon altering selected residues, we obtain variants of the enzyme that efficiently and quantitatively catalyze the synthesis of cyclic-diGMP from GTP without hydrolysis to pGpG. Additionally, we identify a variant that produces cyclic-diGMP while immobilized to NiNTA beads and can catalyze the conversion of [α-32P]-GTP to [32P]-cyclic-diGMP. In short, we characterize a novel cyclic-diGMP processing enzyme and demonstrate its utility for efficient and cost-effective production of cyclic-diGMP, as well as modified cyclic-diGMP molecules, for use as probes in studying the many important biological processes mediated by cyclic-diGMP.

  9. The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila.

    Science.gov (United States)

    Duvall, Laura B; Taghert, Paul H

    2012-01-01

    The neuropeptide Pigment Dispersing Factor (PDF) is essential for normal circadian function in Drosophila. It synchronizes the phases of M pacemakers, while in E pacemakers it decelerates their cycling and supports their amplitude. The PDF receptor (PDF-R) is present in both M and subsets of E cells. Activation of PDF-R stimulates cAMP increases in vitro and in M cells in vivo. The present study asks: What is the identity of downstream signaling components that are associated with PDF receptor in specific circadian pacemaker neurons? Using live imaging of intact fly brains and transgenic RNAi, we show that adenylate cyclase AC3 underlies PDF signaling in M cells. Genetic disruptions of AC3 specifically disrupt PDF responses: they do not affect other Gs-coupled GPCR signaling in M cells, they can be rescued, and they do not represent developmental alterations. Knockdown of the Drosophila AKAP-like scaffolding protein Nervy also reduces PDF responses. Flies with AC3 alterations show behavioral syndromes consistent with known roles of M pacemakers as mediated by PDF. Surprisingly, disruption of AC3 does not alter PDF responses in E cells--the PDF-R(+) LNd. Within M pacemakers, PDF-R couples preferentially to a single AC, but PDF-R association with a different AC(s) is needed to explain PDF signaling in the E pacemakers. Thus critical pathways of circadian synchronization are mediated by highly specific second messenger components. These findings support a hypothesis that PDF signaling components within target cells are sequestered into "circadian signalosomes," whose compositions differ between E and M pacemaker cell types.

  10. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide

    Science.gov (United States)

    Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela

    2011-01-01

    Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011

  11. The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila.

    Directory of Open Access Journals (Sweden)

    Laura B Duvall

    Full Text Available The neuropeptide Pigment Dispersing Factor (PDF is essential for normal circadian function in Drosophila. It synchronizes the phases of M pacemakers, while in E pacemakers it decelerates their cycling and supports their amplitude. The PDF receptor (PDF-R is present in both M and subsets of E cells. Activation of PDF-R stimulates cAMP increases in vitro and in M cells in vivo. The present study asks: What is the identity of downstream signaling components that are associated with PDF receptor in specific circadian pacemaker neurons? Using live imaging of intact fly brains and transgenic RNAi, we show that adenylate cyclase AC3 underlies PDF signaling in M cells. Genetic disruptions of AC3 specifically disrupt PDF responses: they do not affect other Gs-coupled GPCR signaling in M cells, they can be rescued, and they do not represent developmental alterations. Knockdown of the Drosophila AKAP-like scaffolding protein Nervy also reduces PDF responses. Flies with AC3 alterations show behavioral syndromes consistent with known roles of M pacemakers as mediated by PDF. Surprisingly, disruption of AC3 does not alter PDF responses in E cells--the PDF-R(+ LNd. Within M pacemakers, PDF-R couples preferentially to a single AC, but PDF-R association with a different AC(s is needed to explain PDF signaling in the E pacemakers. Thus critical pathways of circadian synchronization are mediated by highly specific second messenger components. These findings support a hypothesis that PDF signaling components within target cells are sequestered into "circadian signalosomes," whose compositions differ between E and M pacemaker cell types.

  12. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1 restores vision in an avian model of childhood blindness.

    Directory of Open Access Journals (Sweden)

    Melissa L Williams

    2006-06-01

    Full Text Available BACKGROUND: Leber congenital amaurosis (LCA is a genetically heterogeneous group of retinal diseases that cause congenital blindness in infants and children. Mutations in the GUCY2D gene that encodes retinal guanylate cyclase-1 (retGC1 were the first to be linked to this disease group (LCA type 1 [LCA1] and account for 10%-20% of LCA cases. These mutations disrupt synthesis of cGMP in photoreceptor cells, a key second messenger required for function of these cells. The GUCY1*B chicken, which carries a null mutation in the retGC1 gene, is blind at hatching and serves as an animal model for the study of LCA1 pathology and potential treatments in humans. METHODS AND FINDINGS: A lentivirus-based gene transfer vector carrying the GUCY2D gene was developed and injected into early-stage GUCY1*B embryos to determine if photoreceptor function and sight could be restored to these animals. Like human LCA1, the avian disease shows early-onset blindness, but there is a window of opportunity for intervention. In both diseases there is a period of photoreceptor cell dysfunction that precedes retinal degeneration. Of seven treated animals, six exhibited sight as evidenced by robust optokinetic and volitional visual behaviors. Electroretinographic responses, absent in untreated animals, were partially restored in treated animals. Morphological analyses indicated there was slowing of the retinal degeneration. CONCLUSIONS: Blindness associated with loss of function of retGC1 in the GUCY1*B avian model of LCA1 can be reversed using viral vector-mediated gene transfer. Furthermore, this reversal can be achieved by restoring function to a relatively low percentage of retinal photoreceptors. These results represent a first step toward development of gene therapies for one of the more common forms of childhood blindness.

  13. The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence.

    Science.gov (United States)

    Walker, C J; Mansfield, K E; Rezzano, I N; Hanamoto, C M; Smith, K M; Castelfranco, P A

    1988-10-15

    Mg-protoporphyrin IX monomethyl ester cyclase activity was assayed in isolated developing cucumber (Cucumis sativus L. var. Beit Alpha) chloroplasts [Chereskin, Wong & Castelfranco (1982) Plant Physiol. 70, 987-993]. The presence of both 6- and 7-methyl esterase activities was detected, which permitted the use of diester porphyrins in a substrate-specificity study. It was found that: (1) the 6-methyl acrylate derivative of Mg-protoporphyrin monomethyl ester was inactive as a substrate for cyclization; (2) only one of the two enantiomers of 6-beta-hydroxy-Mg-protoporphyrin dimethyl ester had detectable activity as a substrate for the cyclase; (3) the 2-vinyl-4-ethyl-6-beta-oxopropionate derivatives of Mg-protoporphyrin mono- or di-methyl ester were approx. 4 times more active as substrates for cyclization than the corresponding divinyl forms; (4) at the level of Mg-protoporphyrin there was no difference in cyclase activity between the 4-vinyl and 4-ethyl substrates; (5) reduction of the side chain of Mg-protoporphyrin in the 2-position from a vinyl to an ethyl resulted in a partial loss of cyclase activity. This work suggests that the original scheme for cyclization proposed by Granick [(1950) Harvey Lect. 44, 220-245] should now be modified by the omission of the 6-methyl acrylate derivative of Mg-protoporphyrin monomethyl ester and the introduction of stereo-specificity at the level of the hydroxylated intermediate.

  14. BIOTIC STRESS IMPACT ON ACTIVITY OF VARIOUS FORMS OF ADENYLATE CYCLASE IN ORGANELLES OF POTATO PLANT CELLS

    Directory of Open Access Journals (Sweden)

    Lomovatskaya L.A.

    2006-12-01

    Full Text Available Notwithstanding significant interest towards study of adenylate cyclase plant signal system, there is still no complete picture of functioning and regulation mechanisms of this signal system in plants under biotic stress. With this in view, our study was aimed at identification of various forms of adenylate cyclase (transmembrane and “soluble” in the nucleus and chloroplasts of potato cells and modulation of their activity under the impact of exopolysaсcharides ofpotato ring rot pathogen. The investigations conducted allowed to conclude that two forms of adenylate cyclase function in nuclei and chloroplasts of potato plants: transmembrane and “soluble”. Activity of these forms of the enzyme extracted from plant cells of the two potato varieties contrasted by resistance to potato ring rot pathogen Clavibacter michiganensis subsp. sepedonicus, changed in the reverse manner with the mediated impact of exopolysaсcharides secreted by virulent and mucinous strain of bacterial pathogen: in the plants of resistant сultivar it increased, in the plants of sensitive сultivar it was oppressed. It was concluded that activity of both forms of adenylate cyclase directly depended on the degree of resistance of a particular potato variety to given pathogen.

  15. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    KAUST Repository

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  16. The roles of cysteines in the heme domain of human soluble guanylate cyclase

    Institute of Scientific and Technical Information of China (English)

    Fang Fang Zhong; Xiao Xiao Liu; Jie Pan; Zhong Xian Huang; Xiang Shi Tan

    2012-01-01

    Soluble guanylate cyclase (sGC) is a critical heme-containing enzyme involved in NO signaling.The dimerization of sGC subunits is necessary for its bioactivity and its mechanism is a striiking and an indistinct issue.The roles of heme domain cysteines of the sGC on the dimerization and heme binding were investigated herein.The site-directed mutations of three conserved cysteines (C78A,C 122A and C 174S) were studied systematically and the three mutants were characterized by gel filtration analysis,UV-vis spectroscopy and heime transfer examination.Cys78 was involved in heme binding but not referred to the dimerization,while Cys174 was demonstrated to be involved in the homodimerization.These results provide new insights into the cysteine-related dimerization regulation of sGC.

  17. The effect of adenylate cyclase stimulation on endocochlear potential in the guinea pig.

    Science.gov (United States)

    Doi, K; Mori, N; Matsunaga, T

    1990-01-01

    Forskolin, a diterpene extracted from Coleus forskohlii, is potentially an important tool for studying the modulation of ionic currents by cAMP because it stimulates adenylate cyclase in a variety of cells. We studied the effect of forskolin on cochlear potentials and found that its perfusion of the scala vestibuli (SV) to a concentration more than 10(-5) M and the scala tympani (ST) to more than 10(-4) M produced a reversible elevation of the endocochlear potential (EP) in a dose-dependent manner. The cochlear microphonics recorded simultaneously with the EP was not depressed during the EP elevation. A large negative EP was induced by anoxia following the SV perfusion with forskolin (2 X 10(-4) M). The results suggest that the EP elevation produced by forskolin does not result from the decrease in the negative component of EP but from the increase in the positive component of EP.

  18. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

    Science.gov (United States)

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

  19. Adenylate cyclase 5 is required for melanophore and male pattern development in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Kottler, Verena A; Künstner, Axel; Koch, Iris; Flötenmeyer, Matthias; Langenecker, Tobias; Hoffmann, Margarete; Sharma, Eshita; Weigel, Detlef; Dreyer, Christine

    2015-09-01

    Guppies (Poecilia reticulata) are colorful fish that have attracted the attention of pigmentation researchers for almost a century. Here, we report that the blond phenotype of the guppy is caused by a spontaneous mutation in the guppy ortholog of adenylate cyclase 5 (adcy5). Using double digest restriction site-associated DNA sequencing (ddRADseq) and quantitative trait locus (QTL) mapping, we linked the blond phenotype to a candidate region of 118 kb, in which we subsequently identified a 2-bp deletion in adcy5 that alters splicing and leads to a premature stop codon. We show that adcy5, which affects life span and melanoma growth in mouse, is required for melanophore development and formation of male orange pigmentation traits in the guppy. We find that some components of the male orange pattern are particularly sensitive to loss of Adcy5 function. Our work thus reveals a function for Adcy5 in patterning of fish color ornaments.

  20. Pituitary adenylate cyclase-activating polypeptide: occurrence and relaxant effect in female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Alm, P; Hannibal, J

    1995-01-01

    that PACAP was located in delicate varicose nerve fibers that were most abundant in the internal cervical os, where they mainly seemed to innervate blood vessels and smooth muscle cells. PACAP-38 and PACAP-27 (10(-10)-10(-6) M) caused a concentration-dependent relaxation of the spontaneous activity......The distribution, localization, and smooth muscle effects of pituitary adenylate cyclase-activating polypeptide (PACAP) were studied in the human female genital tract. The concentrations of PACAP-38 and PACAP-27 were measured by radioimmunoassays, and both peptides were found throughout the genital...... of the nonvascular smooth muscle strips from fallopian tube and myometrium in vitro. Likewise, both peptides (10(-10)-10(-6) M) caused relaxation of nonrepinephrine (10(-6) M)-precontracted intramyometrial arteries. No effect of the PACAP sequences, PACAP-(6-27), PACAP-(16-38), and PACAP-(18-27), on fallopian tube...

  1. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles.

    Science.gov (United States)

    Donato, Gina M; Goldsmith, Cynthia S; Paddock, Christopher D; Eby, Joshua C; Gray, Mary C; Hewlett, Erik L

    2012-02-17

    Bordetella pertussis adenylate cyclase toxin (ACT) intoxicates cells by producing intracellular cAMP. B. pertussis outer membrane vesicles (OMV) contain ACT on their surface (OMV-ACT), but the properties of OMV-ACT were previously unknown. We found that B. pertussis in the lung from a fatal pertussis case contains OMV, suggesting an involvement in pathogenesis. OMV-ACT and ACT intoxicate cells with and without the toxin's receptor CD11b/CD18. Intoxication by ACT is blocked by antitoxin and anti-CD11b antibodies, but not by cytochalasin-D; in contrast, OMV-ACT is unaffected by either antibody and blocked by cytochalasin-D. Thus OMV-ACT can deliver ACT by processes distinct from those of ACT alone. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  2. Guanylyl Cyclase C Hormone Axis at the Intersection of Obesity and Colorectal Cancer.

    Science.gov (United States)

    Blomain, Erik S; Merlino, Dante J; Pattison, Amanda M; Snook, Adam E; Waldman, Scott A

    2016-09-01

    Obesity has emerged as a principal cause of mortality worldwide, reflecting comorbidities including cancer risk, particularly in colorectum. Although this relationship is established epidemiologically, molecular mechanisms linking colorectal cancer and obesity continue to be refined. Guanylyl cyclase C (GUCY2C), a membrane-bound guanylyl cyclase expressed in intestinal epithelial cells, binds the paracrine hormones guanylin and uroguanylin, inducing cGMP signaling in colorectum and small intestine, respectively. Guanylin is the most commonly lost gene product in sporadic colorectal cancer, and its universal loss early in transformation silences GUCY2C, a tumor suppressor, disrupting epithelial homeostasis underlying tumorigenesis. In small intestine, eating induces endocrine secretion of uroguanylin, the afferent limb of a novel gut-brain axis that activates hypothalamic GUCY2C-cGMP signaling mediating satiety opposing obesity. Recent studies revealed that diet-induced obesity suppressed guanylin and uroguanylin expression in mice and humans. Hormone loss reflects reversible calorie-induced endoplasmic reticulum stress and the associated unfolded protein response, rather than the endocrine, adipokine, or inflammatory milieu of obesity. Loss of intestinal uroguanylin secretion silences the hypothalamic GUCY2C endocrine axis, creating a feed-forward loop contributing to hyperphagia in obesity. Importantly, calorie-induced guanylin loss silences the GUCY2C-cGMP paracrine axis underlying obesity-induced epithelial dysfunction and colorectal tumorigenesis. Indeed, genetically enforced guanylin replacement eliminated diet-induced intestinal tumorigenesis in mice. Taken together, these observations suggest that GUCY2C hormone axes are at the intersection of obesity and colorectal cancer. Moreover, they suggest that hormone replacement that restores GUCY2C signaling may be a novel therapeutic paradigm to prevent both hyperphagia and intestinal tumorigenesis in obesity.

  3. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    Science.gov (United States)

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  4. Interaction of retinal guanylate cyclase with the alpha subunit of transducin: potential role in transducin localization.

    Science.gov (United States)

    Rosenzweig, Derek H; Nair, K Saidas; Levay, Konstantin; Peshenko, Igor V; Crabb, John W; Dizhoor, Alexander M; Slepak, Vladlen Z

    2009-02-01

    Vertebrate phototransduction is mediated by cGMP, which is generated by retGC (retinal guanylate cyclase) and degraded by cGMP phosphodiesterase. Light stimulates cGMP hydrolysis via the G-protein transducin, which directly binds to and activates phosphodiesterase. Bright light also causes relocalization of transducin from the OS (outer segments) of the rod cells to the inner compartments. In the present study, we show experimental evidence for a previously unknown interaction between G(alphat) (the transducin alpha subunit) and retGC. G(alphat) co-immunoprecipitates with retGC from the retina or from co-transfected COS-7 cells. The retGC-G(alphat) complex is also present in cones. The interaction also occurs in mice lacking RGS9 (regulator of G-protein signalling 9), a protein previously shown to associate with both G(alphat) and retGC. The G(alphat)-retGC interaction is mediated primarily by the kinase homology domain of retGC, which binds GDP-bound G(alphat) stronger than the GTP[S] (GTPgammaS; guanosine 5'-[gamma-thio]triphosphate) form. Neither G(alphat) nor G(betagamma) affect retGC-mediated cGMP synthesis, regardless of the presence of GCAP (guanylate cyclase activating protein) and Ca2+. The rate of light-dependent transducin redistribution from the OS to the inner segments is markedly accelerated in the retGC-1-knockout mice, while the migration of transducin to the OS after the onset of darkness is delayed. Supplementation of permeabilized photoreceptors with cGMP does not affect transducin translocation. Taken together, these results suggest that the protein-protein interaction between G(alphat) and retGC represents a novel mechanism regulating light-dependent translocation of transducin in rod photoreceptors.

  5. Forskolin inhibits the Gs-stimulated adenylate cyclase in rat ascites hepatoma AH66F cells.

    Science.gov (United States)

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Hasegawa, T; Takagi, K; Satake, T

    1989-09-01

    Forskolin increased intracellular cyclic AMP and augmented cyclic AMP formation by prostaglandin E1 (PGE1) in normal rat hepatocytes and ascites hepatoma AH66 cells. However, in AH66F cells which were derived from the AH66 cell line, the diterpene only slightly increased the cyclic AMP level, and dose-dependently inhibited the accumulation caused by PGE1. Forskolin dose-dependently activated adenylate cyclase in these membranes, and the magnitude of activation by forskolin was largest in the following order: hepatocytes, AH66 cells, and AH66F cells. This difference may be based on the number of forskolin-binding sites. The binding affinity of forskolin for each cell membrane was similar. The number and affinity of forskolin-binding sites in these cells were not influenced by 5'-guanylylimidodiphosphate [Gpp(NH)p]. In hepatocytes and AH66 cells, forskolin and other adenylate cyclase activators such as PGE1, GTP, Gpp(NH)p, F-, and Mn2+ synergistically increased the enzyme activity. In AH66F cells, the forskolin-stimulated activity was hardly influenced by the GTP analog, and forskolin diminished the activities induced by the GTP analog in a manner similar to that of diterpene alone. Forskolin (10 microM) also significantly inhibited the activities induced by PGE1, GTP, and F-. The effect of forskolin with Mn2+ was additive in AH66F cells. The data suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide-binding protein and the catalytic unit in the membrane of normal hepatocytes and AH66 cells, but it interferes with the coupling in AH66F cells.

  6. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7.

    Science.gov (United States)

    Srivastava, A; Tripathi, A K

    2006-10-01

    Azospirillum brasilense is a nitrogen-fixing, root-colonizing bacterium that brings about plant-growth-promoting effects mainly because of its ability to produce phytohormones. Ethylenediamine (EDA)-resistant mutants of A. brasilense were isolated and screened for their higher ability to decrease acetylene and release ammonia in the medium. One of the mutants showed considerably higher levels of acetylene decrease and ammonia excretion. Nitrogenase activity of this mutant was relatively resistant to inhibition by NH(4)Cl. Adenosine triphosphate ribosylation of dinitrogenase reductase in the mutant did not increase even in presence of 10 mM NH(4)Cl. Although the mutant showed decreased glutamine synthetase (GS) activity, neither the levels of GS synthesized by the mutant nor the NH (4) (+) -binding site in the GS differed from those of the parent. The main reason for the release of ammonia by the mutant seems to be the fixation of higher levels of nitrogen than its GS can assimilate, as well as higher levels of adenylylation of GS, which may decrease ammonia assimilation.

  7. Zebrafish as a Model to Study NF1-Associated Learning Deficits

    Science.gov (United States)

    2016-07-01

    screening libraries of bioactive small molecules. 15. SUBJECT TERMS Neurofibromatosis; zebrafish; NF1; cAMP; Ras; learning; memory 16. SECURITY ...Hannan, F., Bernards, A., and Zhong, Y. (1997). Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuro - peptides. Science...a mouse model of neuro - fibromatosis type 1. Curr. Biol. 15, 1961–1967. Liao, J.K., and Laufs, U. (2005). Pleiotropic effects of statins. Annu. Rev

  8. Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways.

    Directory of Open Access Journals (Sweden)

    Giorgio Fedele

    Full Text Available The complex pathology of B. pertussis infection is due to multiple virulence factors having disparate effects on different cell types. We focused our investigation on the ability of B. pertussis to modulate host immunity, in particular on the role played by adenylate cyclase toxin (CyaA, an important virulence factor of B. pertussis. As a tool, we used human monocyte derived dendritic cells (MDDC, an ex vivo model useful for the evaluation of the regulatory potential of DC on T cell immune responses. The work compared MDDC functions after encounter with wild-type B. pertussis (BpWT or a mutant lacking CyaA (BpCyaA-, or the BpCyaA- strain supplemented with either the fully functional CyaA or a derivative, CyaA*, lacking adenylate cyclase activity. As a first step, MDDC maturation, cytokine production, and modulation of T helper cell polarization were evaluated. As a second step, engagement of Toll-like receptors (TLR 2 and TLR4 by B. pertussis and the signaling events connected to this were analyzed. These approaches allowed us to demonstrate that CyaA expressed by B. pertussis strongly interferes with DC functions, by reducing the expression of phenotypic markers and immunomodulatory cytokines, and blocking IL-12p70 production. B. pertussis-treated MDDC promoted a mixed Th1/Th17 polarization, and the activity of CyaA altered the Th1/Th17 balance, enhancing Th17 and limiting Th1 expansion. We also demonstrated that Th1 effectors are induced by B. pertussis-MDDC in the absence of IL-12p70 through an ERK1/2 dependent mechanism, and that p38 MAPK is essential for MDDC-driven Th17 expansion. The data suggest that CyaA mediates an escape strategy for the bacterium, since it reduces Th1 immunity and increases Th17 responses thought to be responsible, when the response is exacerbated, for enhanced lung inflammation and injury.

  9. The Arabidopsis thalianaK+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre

    KAUST Repository

    Al-Younis, Inas

    2015-11-27

    Adenylate Cyclases (ACs) catalyze the formation of the second messenger cyclic adenosine 3′, 5′-monophosphate (cAMP) from adenosine 5’-triphosphate (ATP). Although cAMP is increasingly recognized as an important signaling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP71-100 is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP71-100 generates cAMP in vitro.

  10. Morphine-induced changes of adenylate and guanylate cyclase in locus ceruleus, periaqueductal gray, and substantia nigra in rats.

    Science.gov (United States)

    Shijun, Hong; Liping, Zhao; Yongqiang, Qu; Zhen, Li; Yonghe, Zhao; Lihua, Li

    2009-01-01

    To observe the changes of adenylate cyclase (AC) and guanylate cyclase (GC) in the cerebral regions including the locus ceruleus, periaqueductal gray, and substantia nigra in rats that were physiologically dependent on morphine. We also investigated the relationship of enzymatic changes in these cerebral regions to the mechanism of morphine dependence. A morphine-dependent rat model was established and withdrawal symptoms evaluated. Enzyme histochemistry was used to detect the variations of AC and GC in cerebral regions. Compared to controls, AC and GC significantly increased in morphine-dependent groups. Comparisons of four different morphine-dependent groups also showed AC and GC significantly differed at weeks 1, 2, 4, and 8. Results found that the content of AC and GC increased in these cerebral regions in rats that demonstrated morphine dependence and appeared to be closely linked to increases in AC and GC activity.

  11. The role of cyclase-associated protein in regulating actin filament dynamics – more than a monomer-sequestration factor

    OpenAIRE

    Ono, Shoichiro

    2013-01-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in a...

  12. Cyclase-associated Protein 1 (CAP1) Promotes Cofilin-induced Actin Dynamics in Mammalian Nonmuscle CellsV⃞

    OpenAIRE

    Bertling, Enni; Hotulainen, Pirta; Mattila, Pieta K.; Matilainen, Tanja; Salminen, Marjo; Lappalainen, Pekka

    2004-01-01

    Cyclase-associated proteins (CAPs) are highly conserved actin monomer binding proteins present in all eukaryotes. However, the mechanism by which CAPs contribute to actin dynamics has been elusive. In mammals, the situation is further complicated by the presence of two CAP isoforms whose differences have not been characterized. Here, we show that CAP1 is widely expressed in mouse nonmuscle cells, whereas CAP2 is the predominant isoform in developing striated muscles. In cultured NIH3T3 and B1...

  13. CelR, an Ortholog of the Diguanylate Cyclase PleD of Caulobacter, Regulates Cellulose Synthesis in Agrobacterium tumefaciens

    OpenAIRE

    Barnhart, D. Michael; Su, Shengchang; Baccaro, Brenna E.; Banta, Lois M.; Farrand, Stephen K.

    2013-01-01

    Cellulose fibrils play a role in attachment of Agrobacterium tumefaciens to its plant host. While the genes for cellulose biosynthesis in the bacterium have been identified, little is known concerning the regulation of the process. The signal molecule cyclic di-GMP (c-di-GMP) has been linked to the regulation of exopolysaccharide biosynthesis in many bacterial species, including A. tumefaciens. In this study, we identified two putative diguanylate cyclase genes, celR (atu1297) and atu1060, th...

  14. Responsiveness of adenylate cyclase to pituitary gonadotropins and evidence of a hormone-induced desensitization in the lizard ovary.

    Science.gov (United States)

    Borrelli, L; De Stasio, R; Bovenzi, V; Parisi, E; Filosa, S

    1997-07-01

    Gonadotropins (FSH and LH) affect several mammalian gonadal functions. In particular, FSH stimulates oogonial proliferation and oocyte growth, while LH regulates ovulation and progesterone secretion. In lacertilian reptiles, gonadal function is also regulated by pituitary gonadotropins, but which hormone controls ovarian activities and the mechanisms of action are unknown. The present study aimed to clarify mechanisms of action of pituitary gonadotropins on the ovary of Podarcis sicula (Lacertilia). The data demonstrate that mammalian gonadotropins FSH and LH produce a threefold stimulation of adenylate cyclase activity in follicular membranes, while hCG and TSH are less effective, causing a twofold increase in adenylate cyclase activity. Neurotransmitters such as dopamine, serotonin, and catecholamines have no effect on enzyme activity. The action of mammalian FSH and LH on the ovary mimics the effect of homologous hormones: in lizard ovaries incubated in vitro in the presence of isolated homologous pituitary glands, the intracellular cAMP level increased by 50% with respect to control ovaries. Mammalian gonadotropins appear homologous to lizard gonadotropin(s): Southern blot analyses show that the lizard genome contains nucleotide sequences homologous to those encoding for mammalian beta FSH and beta LH. Both homologous and heterologous desensitization of adenylate cyclase activity occurs in the lizard ovary. In fact, responsiveness of adenylate cyclase to gonadotropin stimulation is abolished in animals 2 hr after in vivo treatment with FSH. Sensitivity to gonadotropin stimulation is restored 2 weeks after the beginning of the in vivo treatment. Desensitization was also observed in ovaries incubated in vitro with mammalian FSH or with isolated pituitary glands.

  15. Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7*

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-01-01

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466

  16. Diadenosine homodinucleotide products of ADP-ribosyl cyclases behave as modulators of the purinergic receptor P2X7.

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-07-02

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5',5'"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509-14514). P24, but not P18, proved to increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca(2+) through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca(2+) influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC(50) of approximately 1 mum. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca(2+)](i) has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146-23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca(2+)](i) to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A.

  17. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  18. Mechanism of oligomerisation of cyclase-associated protein from Dictyostelium discoideum in solution.

    Science.gov (United States)

    Yusof, Adlina Mohd; Jaenicke, Elmar; Pedersen, Jan Skov; Noegel, Angelika A; Schleicher, Michael; Hofmann, Andreas

    2006-10-06

    Cyclase-associated protein (CAP) is a highly conserved modular protein implicated in the regulation of actin filament dynamics and a variety of developmental and morphological processes. The protein exists as a high molecular weight complex in cell extracts and purified protein possesses a high tendency to aggregate, a major obstacle for crystallisation. Using a mutagenesis approach, we show that two structural features underlie the mechanism of oligomerisation in Dictyostelium discoideum CAP. Positively charged clusters on the surface of the N-terminal helix-barrel domain are involved in inter-molecular interactions with the N or C-terminal domains. Abolishing these interactions mainly renders dimers due to a domain swap feature in the extreme C-terminal region of the protein that was previously described. Based on earlier studies with yeast CAP, we also generated constructs with mutations in the extreme N-terminal region of Dictyostelium CAP that did not show significantly altered oligomerisation behaviour. Constructs with mutations in the earlier identified protein-protein interaction interface on the N-terminal domain of CAP could not be expressed as soluble protein. Assessment of the soluble proteins indicates that the mutations did not affect their overall fold. Further studies point to the correlation between stability of full-length CAP with its multimerisation behaviour, where oligomer formation leads to a more stable protein.

  19. Crystal structure of the actin binding domain of the cyclase-associated protein.

    Science.gov (United States)

    Dodatko, Tetyana; Fedorov, Alexander A; Grynberg, Marcin; Patskovsky, Yury; Rozwarski, Denise A; Jaroszewski, Lukasz; Aronoff-Spencer, Eliah; Kondraskina, Elena; Irving, Tom; Godzik, Adam; Almo, Steven C

    2004-08-24

    Cyclase-associated protein (CAP or Srv2p) is a modular actin monomer binding protein that directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and the establishment of cell polarity. The crystal structure of the C-terminal dimerization and actin monomer binding domain (C-CAP) reveals a highly unusual dimer, composed of monomers possessing six coils of right-handed beta-helix flanked by antiparallel beta-strands. Domain swapping, involving the last two strands of each monomer, results in the formation of an extended dimer with an extensive interface. This structural and biochemical characterization provides new insights into the organization and potential mechanistic properties of the multiprotein assemblies that integrate dynamic actin processes into the overall physiology of the cell. An unanticipated finding is that the unique tertiary structure of the C-CAP monomer provides a structural model for a wide range of molecules, including RP2 and cofactor C, proteins involved in X-linked retinitis pigmentosa and tubulin maturation, respectively, as well as several uncharacterized proteins that exhibit very diverse domain organizations. Thus, the unusual right-handed beta-helical fold present in C-CAP appears to support a wide range of biological functions.

  20. Ablation of cyclase-associated protein 2 (CAP2) leads to cardiomyopathy.

    Science.gov (United States)

    Peche, Vivek S; Holak, Tad A; Burgute, Bhagyashri D; Kosmas, Kosmas; Kale, Sushant P; Wunderlich, F Thomas; Elhamine, Fatiha; Stehle, Robert; Pfitzer, Gabriele; Nohroudi, Klaus; Addicks, Klaus; Stöckigt, Florian; Schrickel, Jan W; Gallinger, Julia; Schleicher, Michael; Noegel, Angelika A

    2013-02-01

    Cyclase-associated proteins are highly conserved proteins that have a role in the regulation of actin dynamics. Higher eukaryotes have two isoforms, CAP1 and CAP2. To study the in vivo function of CAP2, we generated mice in which the CAP2 gene was inactivated by a gene-trap approach. Mutant mice showed a decrease in body weight and had a decreased survival rate. Further, they developed a severe cardiac defect marked by dilated cardiomyopathy (DCM) associated with drastic reduction in basal heart rate and prolongations in atrial and ventricular conduction times. Moreover, CAP2-deficient myofibrils exhibited reduced cooperativity of calcium-regulated force development. At the microscopic level, we observed disarrayed sarcomeres with development of fibrosis. We analyzed CAP2's role in actin assembly and found that it sequesters G-actin and efficiently fragments filaments. This activity resides completely in its WASP homology domain. Thus CAP2 is an essential component of the myocardial sarcomere and is essential for physiological functioning of the cardiac system, and a deficiency leads to DCM and various cardiac defects.

  1. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma.

    Science.gov (United States)

    Masugi, Yohei; Tanese, Keiji; Emoto, Katsura; Yamazaki, Ken; Effendi, Kathryn; Funakoshi, Takeru; Mori, Mariko; Sakamoto, Michiie

    2015-12-01

    Malignant melanoma is one of the lethal malignant tumors worldwide. Previously we reported that adenylate cyclase-associated protein 2 (CAP2), which is a well-conserved actin regulator, was overexpressed in hepatocellular carcinoma; however, CAP2 expression in other clinical cancers remains unclear. The aim of the current study was to clarify the clinicopathological significance of CAP2 overexpression in malignant melanoma. Immunohistochemical analyses revealed that many melanoma cells exhibited diffuse cytoplasmic expression of CAP2, whereas no normal melanocytes showed detectable immunostaining for CAP2. A high level of CAP2 expression was seen in 14 of 50 melanomas and was significantly correlated with greater tumor thickness and nodular melanoma subtypes. In addition, a high level of CAP2 expression was associated with poor overall survival in univariate and multivariate analyses. For 13 patients, samples of primary and metastatic melanoma tissue were available: four patients exhibited higher levels of CAP2 expression in metastatic tumor compared to the primary site, whereas no patient showed lower levels of CAP2 expression in metastatic melanomas. Our findings show that CAP2 overexpression is a novel prognostic marker in malignant melanoma and that CAP2 expression seems to increase stepwise during tumor progression, suggesting the involvement of CAP2 in the aggressive behavior of malignant melanoma.

  2. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    Science.gov (United States)

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  3. CAP2, cyclase-associated protein 2, is a dual compartment protein.

    Science.gov (United States)

    Peche, V; Shekar, S; Leichter, M; Korte, H; Schröder, R; Schleicher, M; Holak, T A; Clemen, C S; Ramanath-Y, B; Pfitzer, G; Karakesisoglou, I; Noegel, A A

    2007-10-01

    Cyclase-associated proteins (CAPs) are evolutionarily conserved proteins with roles in regulating the actin cytoskeleton and in signal transduction. Mammals have two CAP genes encoding the related CAP1 and CAP2. We studied the distribution and subcellular localization of CAP1 and CAP2 using specific antibodies. CAP1 shows a broad tissue distribution, whereas CAP2 is significantly expressed only in brain, heart and skeletal muscle, and skin. CAP2 is found in the nucleus in undifferentiated myoblasts and at the M-line of differentiated myotubes. In PAM212, a mouse keratinocyte cell line, CAP2 is enriched in the nucleus, and sparse in the cytosol. By contrast, CAP1 localizes to the cytoplasm in PAM212 cells. In human skin, CAP2 is present in all living layers of the epidermis localizing to the nuclei and the cell periphery. In in vitro studies, a C-terminal fragment of CAP2 interacts with actin, indicating that CAP2 has the capacity to bind to actin.

  4. Guanylyl cyclase C and guanylin reduce fat droplet accumulation in cattle mesenteric adipose tissue.

    Science.gov (United States)

    Yasuda, Masahiro; Kawabata, Jyunya; Akieda-Asai, Sayaka; Nasu, Tetsuo; Date, Yukari

    2017-09-30

    Guanylyl cyclase C (GC-C) is a member of a family of enzymes that metabolize GTP to cGMP and was first identified as a receptor for heat-stable enterotoxin. Guanylin (GNY) has since been identified as an endogenous ligand for GC-C in the intestine of several mammalian species. The GNY/GC-C system regulates ion transportation and pH in the mucosa. Recently, it was reported that GC-C and GNY are involved in lipid metabolism in rat mesenteric adipose tissue macrophages. To examine the role of GC-C and GNY in lipid metabolism in cattle, we used a bovine mesenteric adipocyte primary culture system and a coculture system for bovine adipocytes and GNY-/GC-C-expressing macrophages. Fat droplets were observed to accumulate in bovine mesenteric adipocytes cultured alone, whereas few fat droplets accumulated in adipocytes indirectly cocultured with macrophages. We also observed that GC-C was present in bovine mesenteric adipose tissue, and that fat droplet accumulation decreased after in vitro GNY administration. Expressions of mRNAs encoding lipogenic factors decreased significantly in adipocytes after either coculture or GNY administration. These results suggest that the GNY/GC-C system is part of the control system for lipid accumulation in bovine mesenteric adipose tissue.

  5. cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects.

    Science.gov (United States)

    Beckert, Ulrike; Grundmann, Manuel; Wolter, Sabine; Schwede, Frank; Rehmann, Holger; Kaever, Volkhard; Kostenis, Evi; Seifert, Roland

    2014-09-05

    In addition to the well-known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. The Pseudomonas aeruginosa toxin ExoY massively increases cGMP and cUMP in cells, whereas the Bordetella pertussis toxin CyaA increases cAMP and, to a lesser extent, cCMP. To mimic and dissect toxin effects, we synthesized cNMP-acetoxymethylesters as prodrugs. cNMP-AMs rapidly and effectively released the corresponding cNMP in cells. The combination of cGMP-AM plus cUMP-AM mimicked cytotoxicity of ExoY. cUMP-AM and cGMP-AM differentially activated gene expression. Certain cCMP and cUMP effects were independent of the known cNMP effectors protein kinases A and G and guanine nucleotide exchange factor Epac. In conclusion, cNMP-AMs are useful tools to mimic and dissect bacterial nucleotidyl cyclase toxin effects.

  6. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  7. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    Science.gov (United States)

    Otto, Markus; Naumann, Christin; Brandt, Wolfgang; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles. PMID:27135223

  8. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  9. Structure of a diguanylate cyclase from Thermotoga maritima: insights into activation, feedback inhibition and thermostability.

    Directory of Open Access Journals (Sweden)

    Angeline Deepthi

    Full Text Available Large-scale production of bis-3'-5'-cyclic-di-GMP (c-di-GMP would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain from Thermotoga maritima, enables the robust enzymatic production of large quantities of c-di-GMP. To understand the structural correlates of tDGC thermostability, its catalytic mechanism and feedback inhibition, we determined structures of an active-like dimeric conformation with both active (A sites facing each other and of an inactive dimeric conformation, locked by c-di-GMP bound at the inhibitory (I site. We also report the structure of a single mutant of tDGC, with the R158A mutation at the I-site, abolishing product inhibition and unproductive dimerization. A comparison with structurally characterized DGC homologues from mesophiles reveals the presence of a higher number of salt bridges in the hyperthermophile enzyme tDGC. Denaturation experiments of mutants disrupting in turn each of the salt bridges unique to tDGC identified three salt-bridges critical to confer thermostability.

  10. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans.

    Science.gov (United States)

    Cheng, Xingqun; Zheng, Xin; Zhou, Xuedong; Zeng, Jumei; Ren, Zhi; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Li, Yuqing

    2016-03-01

    Cyclic diadenosine monophosphate (c-di-AMP) has been implicated in the control of many important bacterial activities. However, the function of this molecule in Streptococcus mutans, the primary aetiological agent of human dental caries, is unknown. In this study, we identified and characterized a diadenylate cyclase, named CdaA, in S. mutans. Furthermore, we showed that in-frame deletion of the cdaA gene in S. mutans causes decreased c-di-AMP levels, increased sensitivity to hydrogen peroxide and increased production of extracellular polysaccharides. Global gene expression profiling revealed that more than 200 genes were significantly upregulated or downregulated (> 2.0-fold) in the cdaA mutant. Interestingly, genes with increased or decreased expression were clustered in cellular polysaccharide biosynthetic processes and oxidoreductase activity respectively. Notably, the expression of several genomic islands, such as GTF-B/C, TnSmu, CRISPR1-Cas and CRISPR2-Cas, was found to be altered in the cdaA mutant, indicating a possible link between these genomic islands and c-di-AMP signalling. Collectively, the results reported here show that CdaA is an important global modulator in S. mutans and is required for optimal growth and environmental adaption. This report also paves the way to unveil further the roles of c-di-AMP signalling networks in the biology and pathogenicity of S. mutans.

  11. Soluble Guanylate Cyclase Stimulators: a Novel Treatment Option for Heart Failure Associated with Cardiorenal Syndromes?

    Science.gov (United States)

    Dubin, Ruth F; Shah, Sanjiv J

    2016-06-01

    Heart failure in the setting of chronic kidney disease (CKD) is an increasingly common scenario and carries a poor prognosis. Clinicians lack tools for primary or secondary heart failure prevention in patients with cardiorenal syndromes. In patients without CKD, angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin receptor blockers (ARB) and statins mitigate cardiovascular risk in large part due to salutary effects on the endothelium. In the setting of CKD, use of these therapies is limited by adverse effects of hyperkalemia in pre-dialysis CKD (ACE-I/ARB), or potential increased risk of stroke in end-stage renal disease (statins). The soluble guanylate cyclase (sGC) stimulators are a novel class of medications that promote endothelial and myocardial function with no known risk of hyperkalemia or stroke. In this review, we discuss the evidence emerging from recent clinical trials of sGC stimulators in pulmonary hypertension and heart failure, the diseased pathways involved in cardiorenal syndromes likely to be restored by sGC stimulators, and several strategies for designing future clinical trials of cardiorenal syndromes that might shorten the timeline for discovery and approval of effective cardiovascular therapies in these high-risk patients.

  12. Characterization and expression of soluble guanylate cyclase in skins and melanocytes of sheep.

    Science.gov (United States)

    Yang, Shanshan; Zhang, Junzhen; Ji, Kaiyuan; Jiao, Dingxing; Fan, Ruiwen; Dong, Changsheng

    2016-04-01

    The study reported the characterization of soluble guanylate cyclase (sGC) with the size of CDS of 1860bp, encoding a protein of 620 amino acids and containing several conserved functional domains including HNOB, HNOBA, and CHD. Quantitative real time PCR analysis of sGC showed that the expression of sGC mRNA is higher (∼5 fold) in white sheep skin relative to black sheep skin with significant difference (Pmelanocytes in vitro of sheep skin. Over expression of sGC in melanocytes resulted in decreased expression of key melanogenic genes including microphthalmia transcription factor (MITF), tyrosinase (TYR), tyrosinase related protein 1(TYRTP1), and tyrosinase related protein 2(TYRP2) both at mRNA and protein level. Moreover, the melanocytes was capable of producing cGMP and cAMP. The observed differential expression and localization of sGC in sheep skins and melanocytes and the capability of producing cGMP and cAMP, which suggested a potential role for this gene in hair color regulation.

  13. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis

    Science.gov (United States)

    Zheng, Cao; Ma, Yang; Wang, Xun; Xie, Yuqun; Ali, Maria K.; He, Jin

    2015-01-01

    Cyclic di-AMP (c-di-AMP) is a recently discovered bacterial secondary messenger molecule, which is associated with various physiological functions. In the genus Bacillus, the intracellular level and turnover of c-di-AMP are mainly regulated by three diadenylate cyclases (DACs), including DisA, CdaA and CdaS, and two c-di-AMP-specific phosphodiesterases (GdpP and PgpH). In this study, we demonstrated that CdaS protein from B. thuringiensis is a hexameric DAC protein that can convert ATP or ADP to c-di-AMP in vitro and the N-terminal YojJ domain is essential for the DAC activity. Based on the markerless gene knock-out method, we demonstrated that the transcription of cdaS was initiated by the sporulation-specific sigma factor σH and the deletion of cdaS significantly delayed sporulation and parasporal crystal formation. These findings contrast with similar experiments conducted using B. subtilis, wherein transcription of its cdaS was initiated by the sigma factor σG. Deletion of all the three DAC genes from a single strain was unsuccessful, suggesting that c-di-AMP is an indispensable molecule in B. thuringiensis. Phylogenetic analysis indicated increased diversity of CdaS in the B. cereus and B. subtilis Bacillus subgroups. In summary, this study identifies important aspects in the regulation of c-di-AMP in the genus Bacillus. PMID:26441857

  14. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit.

    Science.gov (United States)

    Ampomah-Dwamena, Charles; McGhie, Tony; Wibisono, Reginald; Montefiori, Mirco; Hellens, Roger P; Allan, Andrew C

    2009-01-01

    The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-beta) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-beta), and epsilon carotene hydroxylase (CRH-epsilon) showed some variation in gene expression. The LCY-beta gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-beta gene.

  15. Exogenous irritant-induced airway hyperreactivity and inhibition of soluble guanylyl cyclase.

    Science.gov (United States)

    Antosová, Martina; Strapková, Anna; Turcan, Tomás

    2008-10-01

    The majority of nitric oxide (NO) effects in the respiratory system are caused by stimulation of soluble guanylyl cyclase (sGC) with subsequent increase of cyclic guanosine monophosphate (cGMP) production. The importance of this mechanism of NO action in airway hyperreactivity (AHR) pathogenesis is unknown. Therefore, the aim of our experiment was to examine the changes of airway reactivity enhanced by toluene vapor exposure in the presence or inhibition of sGC activity in guinea pigs. Animals were treated with a nonspecific sGC inhibitor, methylene blue, in a dose of 50 or 100 mg/kg body weight, administered by intraperitoneal injection 30 min before or after exposure to toluene vapors. The toluene exposure lasted 2 hr in each of 3 consecutive days under in vivo conditions. Thereafter, the tracheal and lung tissue smooth muscle response to cumulative doses of mediators (histamine or acetylcholine) was recorded under in vitro conditions. The exposure to toluene vapors significantly increased the airway reactivity to both mediators in comparison with the healthy animal group. The administration of methylene blue decreased the amplitude of airway smooth muscle contraction in toluene-induced hyperreactivity. The decreases were dependent on the inhibitor doses, on a regimen of administration (before or after toluene inhalation), the level of the respiratory system (trachea, lung), and the bronchoconstrictor mediators. Our results suggest that the interaction between NO and sGC may be important for airway reactivity changes, but other mechanisms of NO action are important in AHR pathogenesis, too.

  16. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Cao eZheng

    2015-09-01

    Full Text Available Cyclic di-AMP (c-di-AMP is a recently discovered bacterial secondary messenger molecule, which is associated with various physiological functions. In Bacillus, the intracellular level and turnover of c-di-AMP is mainly regulated by three diadenylate cyclases (DACs, including DisA, CdaA and CdaS, and one c-di-AMP-specific phosphodiesterase. In this study, we demonstrated that CdaS protein from B. thuringiensisis is a hexameric DAC protein that can convert ATP or ADP to c-di-AMP in vitro and the N-terminal YojJ domain was essential for the DAC activity. Based on the markerless gene knock-out method, we demonstrated that the transcription of cdaS was initiated by the sporulation-specific sigma factor σH and the deletion of cdaS significantly delayed sporulation and parasporal crystal formation. These findings contrast with similar experiments conducted using B. subtilis, wherein transcription of its cdaS was initiated by the sigma factor σG. Deletion of all the three DAC genes from a single strain was unsuccessful, suggesting that c-di-AMP is an indispensable molecule in B. thuringiensis. Phylogenetic analysis indicated increased diversity of CdaS in the B. cereus and B. subtilis Bacillus subgroups. In summary, this study identifies important aspects in the regulation of c-di-AMP in Bacillus.

  17. Bioinformatics analysis of the oxidosqualene cyclase gene and the amino acid sequence in mangrove plants

    Science.gov (United States)

    Basyuni, M.; Wati, R.

    2017-01-01

    This study described the bioinformatics methods to analyze seven oxidosqualene cyclase (OSC) genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, similarity, subcellular localization and phylogenetic. The physical and chemical properties of seven mangrove OSC showed variation among the genes. The percentage of the secondary structure of seven mangrove OSC genes followed the order of a helix > random coil > extended chain structure. The values of chloroplast or signal peptide were too low, indicated that no chloroplast transit peptide or signal peptide of secretion pathway in mangrove OSC genes. The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the mangrove OSC gene, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, Kandelia KcMS join with Bruguiera BgLUS, Rhizophora RsM1 was close to Bruguiera BgbAS, and Rhizophora RcCAS join with Kandelia KcCAS. The present study, therefore, supported the previous results that plant OSC genes form distinct clusters in the tree.

  18. How adenylate cyclase choreographs the pas de deux of the receptors heteromerization dance.

    Science.gov (United States)

    Woods, A S; Jackson, S N

    2013-05-15

    Our work suggests that heteromer formation, mainly involves linear motifs (LMs) found in disordered regions of proteins. Local disorder imparts plasticity to LMs. Most molecular recognition of proteins occurs between short linear segments, known as LMs. Interaction of short continuous epitopes is not constrained by sequence and has the advantage of resulting in interactions with micromolar affinities which suit transient, reversible complexes such as receptor heteromers. Electrostatic interactions between epitopes of the G-protein coupled receptors (GPCR) involved, are the key step in driving heteromer formation forward. The first step in heteromerization, involves phosphorylating Ser/Thr in an epitope containing a casein kinase 1/2-consensus site. Our data suggest that dopaminergic neurotransmission, through cAMP-dependent protein kinase A (PKA) slows down heteromerization. The negative charge, acquired by the phosphorylation of a Ser/Thr in a PKA consensus site in the Arg-rich epitope, affects the activity of the receptors involved in heteromerization by causing allosteric conformational changes, due to the repulsive effect generated by the negatively charged phosphate. In addition to modulating heteromerization, it affects the stability of the heteromers' interactions and their binding affinity. So here we have an instance where phosphorylation is not just an on/off switch, instead by weakening the noncovalent bond, heteromerization acts like a rheostat that controls the stability of the heteromer through activation or inhibition of adenylate cyclase by the neurotransmitter Dopamine depending on which Dopamine receptor it docks at. Published by Elsevier Ltd.

  19. Cytochemical localization of adenylate cyclase activity in heart tissue with cerium.

    Science.gov (United States)

    Schulze, W; Will-Shahab, L; Küttner, I

    1986-01-01

    Adenylate cyclase (AC) activity showed a doses depending inactivation of the basal activity and of the sodium fluoride stimulation by cerium in homogenates of unfixed and fixed guinea pig hearts. The isoproterenol and guanine nucleotide stimulation was not more than two times of the basal activity in glutaraldehyde-prefixed heart homogenates in the presence of 2 mmol/l CeCl3. The inactivation of the AC (activity) by cerium was less than in the presence of lead. Test tube experiments showed no differences in the precipitation of imidodiphosphate in comparison with inorganic phosphate. The substrate AMP-PNP was not spontaneously hydrolysed by 2 mmol/l CeCl3. Ultrastructural analysis of cytochemical incubation of glutaraldehyde-fixed slices and small pieces of guinea pig heart tissue showed fine-amorphous precipitations of reaction products localized along the plasma membrane of the sarcolemma, the nexuses of the intercalated discs and the T-tubule membranes. No precipitates were found neither on the junctional nor on other SR membranes. Nonspecific coarse and clumped precipitates have been detected in the intercellular space on components of the basal membranes. It was not able to demonstrate cytochemically stimulation of AC by hormones or by sodium fluoride. The localization of the basal AC activity in heart tissue seems to be better with cerium as capture agent than with lead. However, differences in the localization of the AC activity in heart tissue were not observed.

  20. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases.

    Science.gov (United States)

    Shibuya, M; Zhang, H; Endo, A; Shishikura, K; Kushiro, T; Ebizuka, Y

    1999-11-01

    Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.

  1. Cellular localization of pituitary adenylate cyclase-activating peptide (PACAP) following traumatic brain injury in humans.

    Science.gov (United States)

    van Landeghem, Frank K H; Weiss, Thorsten; Oehmichen, Manfred; von Deimling, Andreas

    2007-06-01

    The pituitary adenylate cyclase-activating peptide (PACAP) is involved in many processes of the developing and mature central nervous system, such as proliferation, differentiation, apoptosis, neurotransmission, inflammation and neuroprotection. Alternative posttranslational processing of PACAP results in two biologically active, amidated 27- and 38-amino acid peptides termed PACAP27 and PACAP38. In the present study, we examined whether traumatic brain injury (TBI) affects cellular immunopositivity for PACAP27 and PACAP38. Patients (n = 55) were classified into three groups dependent on their survival time (under 24 h, between 24 h and 7 days and between 7 days and 99 days postinjury). PACAP27 and PACAP38 were expressed by neurons and glial cells in normal human neocortex (n = 10). Following TBI, the total number of PACAP27- and PACAP38-positive cells was significantly decreased for a prolonged survival period within the traumatized neocortex. In the pericontusional cortex, the number of cells expressing PACAP27 and PACAP38 was significantly increased at all survival times examined. Triple immunofluorescence examinations revealed a significant increase in the absolute numbers of GFAP-positive reactive astrocytes as well as a decrease in the CNP-positive oligodendrocytes, each coexpressing PACAP27 or PACAP38 in the contusional and pericontusional cortex. We hypothesize that the increase of glial PACAP immunoreactivity may be interpreted as part of a complex endogenous neuroprotective response in the pericontusional regions, but the precise role of PACAP following TBI is yet to be determined.

  2. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase

    Directory of Open Access Journals (Sweden)

    Papacchioli Velia

    2006-06-01

    Full Text Available Abstract Background Potato is a major staple food, and modification of its provitamin content is a possible means for alleviating nutritional deficiencies. beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein, antheraxanthin, violaxanthin, and of xanthophyll esters. None of these carotenoids have provitamin A activity. Results We silenced the first dedicated step in the beta-epsilon- branch of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e, by introducing, via Agrobacterium-mediated transformation, an antisense fragment of this gene under the control of the patatin promoter. Real Time measurements confirmed the tuber-specific silencing of Lcy-e. Antisense tubers showed significant increases in beta-beta-carotenoid levels, with beta-carotene showing the maximum increase (up to 14-fold. Total carotenoids increased up to 2.5-fold. These changes were not accompanied by a decrease in lutein, suggesting that LCY-e is not rate-limiting for lutein accumulation. Tuber-specific changes in expression of several genes in the pathway were observed. Conclusion The data suggest that epsilon-cyclization of lycopene is a key regulatory step in potato tuber carotenogenesis. Upon tuber-specific silencing of the corresponding gene, beta-beta-carotenoid and total carotenoid levels are increased, and expression of several other genes in the pathway is modified.

  3. Expression of nitric oxide synthase and guanylate cyclase in the human ciliary body and trabecular meshwork

    Institute of Scientific and Technical Information of China (English)

    WU Ren-yi; MA Ning

    2012-01-01

    Background The role played by the nitric oxide (NO) signaling pathway in the aqueous humor dynamics is still unclear.This study was designed to investigate the expression and distribution of NO synthase (NOS) isoforms and guanylate cyclase (GC) in human ciliary body,trabecular meshwork and the Schlemm's canal.Methods Twelve eyes after corneal transplantation were used.Expression of three NOS isoforms (i.e.neuronal NOS (nNOS),inducible NOS (iNOS) and endothelial NOS (eNOS)) and GC were assessed in 10 eyes by immunohistochemical staining using monoclonal or polyclonal antibody of NOS and GC.Ciliary bodies were dissected free and the total proteins were extracted.Western blotting was performed to confirm the protein expression of 3 NOS isoforms and GC.Results Expression of 3 NOS isoforms and GC were observed in the ciliary epithelium,ciliary muscle,trabecular meshwork and the endothelium of the Schlemm's canal.Immunoreactivity of nNOS was detected mainly along the apical cytoplasmic junction of the non-pigmented epithelium (NPE) and pigmented epithelial (PE) cells.Protein expressions of 3 NOS isoforms and GC were confirmed in isolated human ciliary body by Western blotting.Conclusions The expression of NOS isoforms and GC in human ciliary body suggest the possible involvement of NO and cyclic guanosine monophosphate (cyclic GMP,cGMP) signaling pathway in the ciliary body,and may play a role in both processes of aqueous humor formation and drainage.

  4. Atomoxetine reverses locomotor hyperactivity, impaired novel object recognition, and prepulse inhibition impairment in mice lacking pituitary adenylate cyclase-activating polypeptide.

    Science.gov (United States)

    Shibasaki, Y; Hayata-Takano, A; Hazama, K; Nakazawa, T; Shintani, N; Kasai, A; Nagayasu, K; Hashimoto, R; Tanida, M; Katayama, T; Matsuzaki, S; Yamada, K; Taniike, M; Onaka, Y; Ago, Y; Waschek, J A; Köves, K; Reglődi, D; Tamas, A; Matsuda, T; Baba, A; Hashimoto, H

    2015-06-25

    Attention-deficit/hyperactivity disorder (ADHD) is a complex neurobehavioral disorder that is characterized by attention difficulties, impulsivity, and hyperactivity. A non-stimulant drug, atomoxetine (ATX), which is a selective noradrenaline reuptake inhibitor, is widely used for ADHD because it exhibits fewer adverse effects compared to conventional psychostimulants. However, little is known about the therapeutic mechanisms of ATX. ATX treatment significantly alleviated hyperactivity of pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP(-/-)) mice with C57BL/6J and 129S6/SvEvTac hybrid background. ATX also improved impaired novel object recognition memory and prepulse inhibition in PACAP(-/-) mice with CD1 background. The ATX-induced increases in extracellular noradrenaline and dopamine levels were significantly higher in the prefrontal cortex of PACAP(-/-) mice compared to wild-type mice with C57BL/6J and 129S6/SvEvTac hybrid background. These results suggest that ATX treatment-induced increases in central monoamine metabolism may be involved in the rescue of ADHD-related abnormalities in PACAP(-/-) mice. Our current study suggests that PACAP(-/-) mice are an ideal rodent model with predictive validity for the study of ADHD etiology and drug development. Additionally, the potential effects of differences in genetic background of PACAP(-/-) mice on behaviors are discussed. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  6. The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes.

    Directory of Open Access Journals (Sweden)

    Stuart Meier

    Full Text Available BACKGROUND: Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3',5'-cyclic monophosphate (cGMP, has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. PRINCIPAL FINDINGS: We have identified an Arabidopsis receptor type wall associated kinase-like molecule (AtWAKL10 as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10(431-700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently co-expressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. CONCLUSIONS: We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP.

  7. The arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes

    KAUST Repository

    Meier, Stuart

    2010-01-26

    Background: Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3?,5?-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. Principal Findings: We have identified an Arabidopsis receptor type wall associated kinase-like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431-700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently coexpressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. Conclusions: We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP. © 2010 Meier et al.

  8. A peptide against soluble guanylyl cyclase α1: a new approach to treating prostate cancer.

    Directory of Open Access Journals (Sweden)

    Shuai Gao

    Full Text Available Among the many identified androgen-regulated genes, sGCα1 (soluble guanylyl cyclase α1 appears to play a pivotal role in mediating the pro-cancer effects of androgens and androgen receptor. The classical role for sGCα1 is to heterodimerize with the sGCβ1 subunit, forming sGC, the enzyme that mediates nitric oxide signaling by catalyzing the synthesis of cyclic guanosine monophosphate. Our published data show that sGCα1 can drive prostate cancer cell proliferation independent of hormone and provide cancer cells a pro-survival function, via a novel mechanism for p53 inhibition, both of which are independent of sGCβ1, NO, and cGMP. All of these properties make sGCα1 an important novel target for prostate cancer therapy. Thus, peptides were designed targeting sGCα1 with the aim of disrupting this protein's pro-cancer activities. One peptide (A-8R was determined to be strongly cytotoxic to prostate cancer cells, rapidly inducing apoptosis. Cytotoxicity was observed in both hormone-dependent and, significantly, hormone-refractory prostate cancer cells, opening the possibility that this peptide can be used to treat the usually lethal castration-resistant prostate cancer. In mouse xenograft studies, Peptide A-8R was able to stop tumor growth of not only hormone-dependent cells, but most importantly from hormone-independent cells. In addition, the mechanism of Peptide A cytotoxicity is generation of reactive oxygen species, which recently have been recognized as a major mode of action of important cancer drugs. Thus, this paper provides strong evidence that targeting an important AR-regulated gene is a new paradigm for effective prostate cancer therapy.

  9. Pituitary adenylate cyclase activating polypeptide modulates catecholamine storage and exocytosis in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available A number of efforts have been made to understand how pituitary adenylate cyclase activating polypeptide (PACAP functions as a neurotrophic and neuroprotective factor in Parkinson's disease (PD. Recently its effects on neurotransmission and underlying mechanisms have generated interest. In the present study, we investigate the effects of PACAP on catecholamine storage and secretion in PC12 cells with amperometry and transmission electron microscopy (TEM. PACAP increases quantal release induced by high K+ without significantly regulating the frequency of vesicle fusion events. TEM data indicate that the increased volume of the vesicle is mainly the result of enlargement of the fluidic space around the dense core. Moreover, the number of docked vesicles isn't modulated by PACAP. When cells are acutely treated with L-DOPA, the vesicular volume and quantal release both increase dramatically. It is likely that the characteristics of amperometric spikes from L-DOPA treated cells are associated with increased volume of individual vesicles rather than a direct effect on the mechanics of exocytosis. Treatment with PACAP versus L-DOPA results in different profiles of the dynamics of exocytosis. Release via the fusion pore prior to full exocytosis was observed with the same frequency following treatment with PACAP and L-DOPA. However, release events have a shorter duration and higher average current after PACAP treatment compared to L-DOPA. Furthermore, PACAP reduced the proportion of spikes having rapid decay time and shortened the decay time of both fast and slow spikes. In contrast, the distributions of the amperometric spike decay for both fast and slow spikes were shifted to longer time following L-DOPA treatment. Compared to L-DOPA, PACAP may produce multiple favorable effects on dopaminergic neurons, including protecting dopaminergic neurons against neurodegeneration and potentially regulating dopamine storage and release, making it a promising

  10. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice.

    Science.gov (United States)

    Hattori, Satoko; Takao, Keizo; Tanda, Koichi; Toyama, Keiko; Shintani, Norihito; Baba, Akemichi; Hashimoto, Hitoshi; Miyakawa, Tsuyoshi

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC(1)). Recent studies reveal that genetic variants of the PACAP and PAC(1) genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory.

  11. Isolation and functional characterization of a lycopene β-cyclase gene promoter from citrus

    Directory of Open Access Journals (Sweden)

    Suwen Lu

    2016-09-01

    Full Text Available Lycopene β-cyclases are key enzymes located at the branch point of the carotenoid biosynthesis pathway. However, the transcriptional regulatory mechanisms of LCYb1 in citrus with abundant carotenoid accumulation are still unclear. To understand the molecular basis of CsLCYb1 expression, we isolated and functionally characterized the 5’ upstream sequences of CsLCYb1 from citrus. The full-length CsLCYb1 promoter and a series of its 5’ deletions were fused to the β-glucuronidase (GUS reporter gene and transferred into different plants (tomato, Arabidopsis and citrus callus to test the promoter activities. The results of all transgenic species showed that the 1584 bp upstream region from the translational start site displayed maximal promoter activity, and the minimal promoter containing 746 bp upstream sequences was sufficient for strong basal promoter activity. Furthermore, the CsLCYb1 promoter activity was developmentally and tissue-specially regulated in transgenic Arabidopsis, and it was affected by multiple hormones and environmental cues in transgenic citrus callus under various treatments. Finer deletion analysis identified an enhancer element existing as a tandem repeat in the promoter region between -574 to -513 bp and conferring strong promoter activity. The copy numbers of the enhancer element differed among various citrus species, leading to the development of a derived simple sequence repeat (SSR marker to distinguish different species. In conclusion, this study elucidates the expression characteristics of the LCYb1 promoter from citrus and further identifies a novel enhancer element required for the promoter activity. The characterized promoter fragment would be an ideal candidate for genetic engineering and seeking of upstream trans-acting elements.

  12. Corruption of homeostatic mechanisms in the guanylyl cyclase C signaling pathway underlying colorectal tumorigenesis

    Science.gov (United States)

    Waldman, Scott A

    2010-01-01

    Colon cancer, the second leading cause of cancer-related mortality worldwide, originates from the malignant transformation of intestinal epithelial cells. The intestinal epithelium undergoes a highly organized process of rapid regeneration along the crypt-villus axis, characterized by proliferation, migration, differentiation and apoptosis, whose coordination is essential to maintaining the mucosal barrier. Disruption of these homeostatic processes predisposes cells to mutations in tumor suppressors or oncogenes, whose dysfunction provides transformed cells an evolutionary growth advantage. While sequences of genetic mutations at different stages along the neoplastic continuum have been established, little is known of the events initiating tumorigenesis prior to adenomatous polyposis coli (APC) mutations. Here, we examine a role for the corruption of homeostasis induced by silencing novel tumor suppressors, including the intestine-specific transcription factor CDX2 and its gene target guanylyl cyclase C (GCC), as early events predisposing cells to mutations in APC and other sequential genes that initiate colorectal cancer. CDX2 and GCC maintain homeostatic regeneration in the intestine by restricting cell proliferation, promoting cell maturation and adhesion, regulating cell migration and defending the intestinal barrier and genomic integrity. Elimination of CDX2 or GCC promotes intestinal tumor initiation and growth in aged mice, mice carrying APC mutations or mice exposed to carcinogens. The roles of CDX2 and GCC in suppressing intestinal tumorigenesis, universal disruption in their signaling through silencing of hormones driving GCC, and the uniform overexpression of GCC by tumors underscore the potential value of oral replacement with GCC ligands as targeted prevention and therapy for colorectal cancer. PMID:20592492

  13. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  14. Isolation and Functional Characterization of a Lycopene β-cyclase Gene Promoter from Citrus.

    Science.gov (United States)

    Lu, Suwen; Zhang, Yin; Zheng, Xiongjie; Zhu, Kaijie; Xu, Qiang; Deng, Xiuxin

    2016-01-01

    Lycopene β-cyclases are key enzymes located at the branch point of the carotenoid biosynthesis pathway. However, the transcriptional regulatory mechanisms of LCYb1 in citrus with abundant carotenoid accumulation are still unclear. To understand the molecular basis of CsLCYb1 expression, we isolated and functionally characterized the 5' upstream sequences of CsLCYb1 from citrus. The full-length CsLCYb1 promoter and a series of its 5' deletions were fused to the β-glucuronidase (GUS) reporter gene and transferred into different plants (tomato, Arabidopsis and citrus callus) to test the promoter activities. The results of all transgenic species showed that the 1584 bp upstream region from the translational start site displayed maximal promoter activity, and the minimal promoter containing 746 bp upstream sequences was sufficient for strong basal promoter activity. Furthermore, the CsLCYb1 promoter activity was developmentally and tissue-specially regulated in transgenic Arabidopsis, and it was affected by multiple hormones and environmental cues in transgenic citrus callus under various treatments. Finer deletion analysis identified an enhancer element existing as a tandem repeat in the promoter region between -574 to -513 bp and conferring strong promoter activity. The copy numbers of the enhancer element differed among various citrus species, leading to the development of a derived simple sequence repeat marker to distinguish different species. In conclusion, this study elucidates the expression characteristics of the LCYb1 promoter from citrus and further identifies a novel enhancer element required for the promoter activity. The characterized promoter fragment would be an ideal candidate for genetic engineering and seeking of upstream trans-acting elements.

  15. Therapeutically targeting guanylate cyclase-C: computational modeling of plecanatide, a uroguanylin analog.

    Science.gov (United States)

    Brancale, Andrea; Shailubhai, Kunwar; Ferla, Salvatore; Ricci, Antonio; Bassetto, Marcella; Jacob, Gary S

    2017-04-01

    Plecanatide is a recently developed guanylate cyclase-C (GC-C) agonist and the first uroguanylin analog designed to treat chronic idiopathic constipation (CIC) and irritable bowel syndrome with constipation (IBS-C). GC-C receptors are found across the length of the intestines and are thought to play a key role in fluid regulation and electrolyte balance. Ligands of the GC-C receptor include endogenous agonists, uroguanylin and guanylin, as well as diarrheagenic, Escherichia coli heat-stable enterotoxins (ST). Plecanatide mimics uroguanylin in its 2 disulfide-bond structure and in its ability to activate GC-Cs in a pH-dependent manner, a feature associated with the presence of acid-sensing residues (Asp2 and Glu3). Linaclotide, a synthetic analog of STh (a 19 amino acid member of ST family), contains the enterotoxin's key structural elements, including the presence of three disulfide bonds. Linaclotide, like STh, activates GC-Cs in a pH-independent manner due to the absence of pH-sensing residues. In this study, molecular dynamics simulations compared the stability of plecanatide and linaclotide to STh. Three-dimensional structures of plecanatide at various protonation states (pH 2.0, 5.0, and 7.0) were simulated with GROMACS software. Deviations from ideal binding conformations were quantified using root mean square deviation values. Simulations of linaclotide revealed a rigid conformer most similar to STh. Plecanatide simulations retained the flexible, pH-dependent structure of uroguanylin. The most active conformers of plecanatide were found at pH 5.0, which is the pH found in the proximal small intestine. GC-C receptor activation in this region would stimulate intraluminal fluid secretion, potentially relieving symptoms associated with CIC and IBS-C.

  16. Diversity of squalene-hopene cyclases in a tropical carbonate-rich environment

    Science.gov (United States)

    Leavitt, W. D.; Pearson, A.

    2007-12-01

    Hopanoids are isoprenoid lipids which derive primarily from bacteria and are ubiquitous in contemporary Earth surface environments. In the geologic record, hopanes found in sedimentary rocks are used as proxies to help decipher ancient biological communities. However, in contrast to the ubiquity of these lipid products, biosynthesis of hopanoids appears to be a relatively rare physiological trait among bacteria in complex environmental communities. We have recently estimated that fewer than one in ten bacterial cells in soils and fewer than one in twenty bacterial cells in the ocean contains the gene squalene-hopene cyclase (sqhC) [1]. Biosynthesis of hopanoids is rarer in natural communities than it is among species that have been propagated in pure culture [2]. Here we continue our previous work to survey the phylogeny and diversity of hopanoid producers using culture-independent methods. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analyzed previously [1]. One possible explanation is that hopanoid-producing strains of cyanobacteria are regionally localized. It has been suggested that throughout the long-term sedimentary record there is a correlation between 2-methylhopanoid index (a putative indicator of cyanobacterial biomass) and the global prevalence of shallow carbonate platform environments [3], and in previous work we did not analyze any such environments. To address this question we surveyed a land-sea gradient across the Bahamian island of San Salvador. Samples were taken from upland soil, a hypersaline lake, a tidal creek, and the shallow open ocean. The data are remarkably similar to our previous results: environmental sqhCs average triterpenes in Prokaryotes. J. Gen. Microbiol. 130, 1137-1150. [3] Summons, RE (personal communication).

  17. Characterization and Inhibition of a Class II Diterpene Cyclase from Mycobacterium tuberculosis

    Science.gov (United States)

    Mann, Francis M.; Prisic, Sladjana; Hu, Huayou; Xu, Meimei; Coates, Robert M.; Peters, Reuben J.

    2009-01-01

    Mycobacterium tuberculosis remains a widespread and devastating human pathogen, whose ability to infiltrate macrophage host cells from the human immune system is an active area of investigation. We have recently reported the discovery of a novel diterpene from M. tuberculosis, edaxadiene, whose ability to arrest phagosomal maturation in isolation presumably contributes to this critical process in M. tuberculosis infections. (Mann, F. M., Xu, M., Chen, X., Fulton, D. B., Russell, D. G., and Peters, R. J. (2009) J. Am. Chem. Soc., in press). Here, we present characterization of the class II diterpene cyclase that catalyzes the committed step in edaxadiene biosynthesis, i.e. the previously identified halimadienyl-diphosphate synthase (HPS; EC 5.5.1.16). Intriguingly, our kinetic analysis suggests a potential biochemical regulatory mechanism that triggers edaxadiene production upon phagosomal engulfment. Furthermore, we report characterization of potential HPS inhibitors: specifically, two related transition state analogs (15-aza-14,15-dihydrogeranylgeranyl diphosphate (7a) and 15-aza-14,15-dihydrogeranylgeranyl thiolodiphosphate (7b)) that exhibit very tight binding. Although arguably not suitable for clinical use, these nevertheless provide a basis for pharmaceutical design against this intriguing biosynthetic pathway. Finally, we provide evidence indicating that this pathway exists only in M. tuberculosis and is not functional in the closely related Mycobacterium bovis because of an inactivating frameshift in the HPS-encoding gene. Thus, we hypothesize that the inability to produce edaxadiene may be a contributing factor in the decreased infectivity and/or virulence of M. bovis relative to M. tuberculosis in humans. PMID:19574210

  18. Cloning and functional characterization of three branch point oxidosqualene cyclases from Withania somnifera (L.) dunal.

    Science.gov (United States)

    Dhar, Niha; Rana, Satiander; Razdan, Sumeer; Bhat, Wajid Waheed; Hussain, Aashiq; Dhar, Rekha S; Vaishnavi, Samantha; Hamid, Abid; Vishwakarma, Ram; Lattoo, Surrinder K

    2014-06-13

    Oxidosqualene cyclases (OSCs) positioned at a key metabolic subdividing junction execute indispensable enzymatic cyclization of 2,3-oxidosqualene for varied triterpenoid biosynthesis. Such branch points present favorable gene targets for redirecting metabolic flux toward specific secondary metabolites. However, detailed information regarding the candidate OSCs covering different branches and their regulation is necessary for the desired genetic manipulation. The aim of the present study, therefore, was to characterize members of OSC superfamily from Withania somnifera (Ws), a medicinal plant of immense repute known to synthesize a large array of biologically active steroidal lactone triterpenoids called withanolides. Three full-length OSC cDNAs, β-amyrin synthase (WsOSC/BS), lupeol synthase (WsOSC/LS), and cycloartenol synthase (WsOSC/CS), having open reading frames of 2289, 2268, and 2277 bp, were isolated. Heterologous expression in Schizosaccharomyces pombe, LC-MS analyses, and kinetic studies confirmed their monofunctionality. The three WsOSCs were found to be spatially regulated at transcriptional level with WsOSC/CS being maximally expressed in leaf tissue. Promoter analysis of three WsOSCs genes resulted in identification of distinct cis-regulatory elements. Further, transcript profiling under methyl jasmonate, gibberellic acid, and yeast extract elicitations displayed differential transcriptional regulation of each of the OSCs. Changes were also observed in mRNA levels under elicitations and further substantiated with protein expression levels by Western blotting. Negative regulation by yeast extract resulted in significant increase in withanolide content. Empirical evidence suggests that repression of competitive branch OSCs like WsOSC/BS and WsOSC/LS possibly leads to diversion of substrate pool toward WsOSC/CS for increased withanolide production.

  19. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  20. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.).

    Science.gov (United States)

    Yuan, J; Liakat Ali, M; Taylor, J; Liu, J; Sun, G; Liu, W; Masilimany, P; Gulati-Sakhuja, A; Pauls, K P

    2008-02-01

    Gibberella ear rot, caused by the fungal pathogen Fusarium graminearum Schwabe, is a serious disease of maize (Zea mays L.) grown in northern climates. The infected maize grain contains toxins that are very harmful to livestock and humans. A maize gene that encodes a putative 267-amino acid guanylyl cyclase-like protein (ZmGC1) was characterized and shown to be associated with resistance to this disease. The putative ZmGC1 amino acid sequence is 53% identical and 65% similar to AtGC1, an Arabidopsis guanylyl cyclase. The Zmgc1 coding sequence is nearly identical in a Gibberella ear rot-resistant line (CO387) and a susceptible line (CG62) but several nucleotide sequence differences were observed in the UTRs and introns of the two alleles. Using a 463 bp probe derived from the CG62 allele of Zmgc1 and a recombinant inbred (RI) mapping population developed from a CG62 x CO387 cross, six Zmgc1 restriction fragment length polymorphism (RFLP) fragments (ER1_1, ER1_2, ER1_3, ER1_4, ER1_5, and ER5_1) were mapped on maize chromosomes 2, 3, 7, and 8. Markers ER1_1 and ER5_1 on chromosomes 7 and 8, respectively, were significantly associated with Gibberella ear rot resistance, each in three different environments. The amount of Zmgc1 transcript in ear tissues increased more quickly and to a greater extent in the resistant genotype compared to the susceptible genotype after inoculation with F. graminearum. Zmgc1 is the first guanylyl cyclase gene characterized in maize and the first gene found to be associated with Gibberella ear rot resistance in this plant.

  1. Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor.

    Science.gov (United States)

    Vögeli, U; Chappell, J

    1988-12-01

    Addition of elicitor, cell wall fragments of the fungus Phytophthora parasitica, to tobacco cell suspension cultures (Nicotiana tabacum) resulted in the rapid synthesis and secretion of large amounts of antibiotic sesquiterpenoids. Pulse-labeling experiments with [(14)C]acetate and [(3)H] mevalonate demonstrated that the induction of sesquiterpenoid biosynthesis, maximal by 6 to 9 hours after elicitor addition to the cell cultures, was paralleled by a rapid and large decline in the incorporation rate of radioactivity into sterols. Consequently, sterol accumulation was also inhibited upon addition of elicitor to the cell cultures. Sesquiterpene cyclase activity was absent from control cell cultures but induced to a maximum within 10 hours of elicitor addition to the cell cultures. The cyclase activity remained elevated for an additional 30 hours before declining. In contrast, squalene synthetase activity was suppressed to less than 15% of that found in control cells within 7 hours of elicitor addition. Our results suggest that the channeling of isoprenoid intermediates, and especially farnesyl diphosphate, into sesquiterpenoids occurred by a coordinated increase in the sesquiterpene cyclase and a decrease in the squalene synthetase enzyme activities. A reexamination of the data pertaining to the transient induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity (EC 1.1.1.34) in elicitor-treated cells suggested that, while the reductase activity was necessary for sesquiterpenoid biosynthesis, it functioned more to maintain a sufficient level of intermediates between mevalonate and farnesyl diphosphate rather than as a rate limiting step controlling the synthesis rate of any one class of isoprenoids.

  2. Crystal Structure of the Signaling Helix Coiled-coil Domain of the b1 Subunit of the Soluble guanylyl Cyclase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.; Beuve, A; van den Akker, F

    2010-01-01

    The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner. To investigate the structure of the CC S-helix region, we crystallized and determined the structure of the CC domain of the sGC{beta}1 subunit comprising residues 348-409. The crystal structure was refined to 2.15 {angstrom} resolution. The CC structure of sGC{beta}1 revealed a tetrameric arrangement comprised of a dimer of CC dimers. Each monomer is comprised of a long a-helix, a turn near residue P399, and a short second a-helix. The CC structure also offers insights as to how sGC homodimers are not as stable as (functionally) active heterodimers via a possible role for inter-helix salt-bridge formation. The structure also yielded insights into the residues involved in dimerization. In addition, the CC region is also known to harbor a number of congenital and man-made mutations in both membrane and soluble guanylyl cyclases and those function-affecting mutations have been mapped onto the CC structure. This mutant analysis indicated an importance for not only certain dimerization residue positions, but also an important role for other faces of the CC dimer which might perhaps interact with adjacent domains. Our results also extend beyond guanylyl cyclases as the CC structure is, to our knowledge, the first S-helix structure and serves as a model for all S-helix containing family members.

  3. Crystal structure of the signaling helix coiled-coil domain of the β1 subunit of the soluble guanylyl cyclase

    Directory of Open Access Journals (Sweden)

    van den Akker Focco

    2010-01-01

    Full Text Available Abstract Background The soluble guanylyl cyclase (sGC is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC, and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner. Results To investigate the structure of the CC S-helix region, we crystallized and determined the structure of the CC domain of the sGCβ1 subunit comprising residues 348-409. The crystal structure was refined to 2.15 Å resolution. Conclusions The CC structure of sGCβ1 revealed a tetrameric arrangement comprised of a dimer of CC dimers. Each monomer is comprised of a long a-helix, a turn near residue P399, and a short second a-helix. The CC structure also offers insights as to how sGC homodimers are not as stable as (functionally active heterodimers via a possible role for inter-helix salt-bridge formation. The structure also yielded insights into the residues involved in dimerization. In addition, the CC region is also known to harbor a number of congenital and man-made mutations in both membrane and soluble guanylyl cyclases and those function-affecting mutations have been mapped onto the CC structure. This mutant analysis indicated an importance for not only certain dimerization residue positions, but also an important role for other faces of the CC dimer which might perhaps interact with adjacent domains. Our results also extend beyond guanylyl cyclases as the CC structure is, to our knowledge, the first S-helix structure and serves as a model for all S-helix containing family members.

  4. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  5. Effect of Cardiopulmonary Bypass on Beta Adrenergic ReceptorAdenylate Cyclase System on Surfaces of Peripheral Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    LUO Ailin; TIAN Yuke; JIN Shiao

    2000-01-01

    The experimental results showed that the level of CAMP, the ratio of cAPM to cGMP,IL-2R expression and IL-2 production in vitro in lymphocytes immediate and 2 weeks after cardiopulmonary bypass (CPB) were significantly lower than those before anesthetics in the patients undergoing cardiac surgery with CPB. These findings suggested that CPB could cause serious damage to adrenergic beta receptor-adenylate cyclase system on circulating lymphocytes surfaces,which might be one of the mechanisms resulting in immunosuppression after open heart surgery with CPB.

  6. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    Science.gov (United States)

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  7. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.

    Science.gov (United States)

    Blum, Allison L; Li, Wanhe; Cressy, Mike; Dubnau, Josh

    2009-08-25

    A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.

  8. Studies on cell migration, adenylate cyclase and membrane-coating granules in the buccal epithelium of the zinc-deficient rabbit, including the influence of isoproterenol.

    Science.gov (United States)

    Chen, S Y

    1988-01-01

    Cell migration was slightly increased; cytochemical reaction deposits of adenylate cyclase and the area density of membrane-coating granules (MCG) were significantly increased. Upon isoproterenol stimulation, the MCG area density was significantly increased, whereas the cell migration rate was unchanged. Thus in zinc deficiency, there may be a simultaneous increase in the production and secretion of MCGs, in adenylate cyclase activity, and in cell migration. The non-significantly increased cell migration rate may not keep pace with the significantly increased cell-production rate, resulting in thickening of the epithelium.

  9. Riociguat: a soluble guanylate cyclase stimulator for the treatment of pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Lian TY

    2017-04-01

    Full Text Available Tian-Yu Lian, Xin Jiang, Zhi-Cheng Jing State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Despite advances in treatments and improved survival, patients with pulmonary hypertension still experience poor exercise and functional capacity, which has a significant detrimental impact on their quality of life. The nitric oxide (NO–soluble guanylate cyclase (sGC–cyclic guanosine 3',5'-monophosphate (cGMP pathway has been shown to play an important role in cardiovascular physiology, especially in vasodilation and pulmonary vascular tone. The oral sGC stimulator riociguat has a dual mode of action on the NO–sGC–cGMP pathway: direct stimulation of sGC independent of NO and indirect simulation via sensitization of sGC to endogenous NO. Riociguat is now licensed in >50 countries worldwide, including in Europe, the USA, Canada, and Japan. Approval for the treatment of pulmonary arterial hypertension (PAH was based on Phase III data from the PATENT studies, in which riociguat significantly improved exercise capacity, pulmonary vascular resistance, a range of secondary end points, and hemodynamic parameters in patients with symptomatic PAH. In the Phase III CHEST studies, riociguat consistently improved exercise capacity in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH or persistent/recurrent CTEPH after pulmonary endarterectomy and is now the only drug to be approved for this indication. Riociguat was well tolerated in long-term studies of PAH and CTEPH. This review describes the role of the NO–sGC–cGMP pathway in the pathophysiology of pulmonary hypertension, and reviews the clinical efficacy and safety of riociguat in patients with PAH and inoperable or persistent/recurrent CTEPH. Based on its demonstrated efficacy and established safety

  10. Molecular Cloning and Characterization of an Allene Oxide Cyclase Gene Associated with Fiber Strength in Cotton

    Institute of Scientific and Technical Information of China (English)

    WANG Li-man; ZHU You-min; TONG Xiang-chao; HU Wen-jing; CAI Cai-ping; GUO Wang-zhen

    2014-01-01

    Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion of allene oxide into 12-oxo-phytodienoic acid (OPDA), a precursor of JA. Using 28K cotton genome array hybridization, an expressed sequence tag (EST;GenBank accession no. ES792958) was investigated that exhibited signiifcant expression differences between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines during ifber initiation stages. The EST was used to search the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) for corresponding cDNA sequences encoding full-length open reading frames (ORFs). Identiifed ORFs were conifrmed using transcriptional and genomic data. As a result, a novel gene encoding AOC in cotton (Gossypium hirsutum AOC;GenBank accession no. KF383427) was cloned and characterized. The 741-bp GhAOC gene comprises three exons and two introns and encodes a polypeptide of 246 amino acids. Two homologous copies were identiifed in the tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, and one copy in the diploid cotton species G. herbaceum and G. raimondii. qRT-PCR showed that the GhAOC transcript was abundant in cotton ifber tissues from 8 to 23 days post anthesis (DPA), and the expression proifles were similar in the two cultivated tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, with a higher level of transcription in the former. One copy of GhAOC in tetraploid cotton was localized to chromosome 24 (Chr. D8) using the subgenome-speciifc single nucleotide polymorphism (SNP) marker analysis, which co-localized GhAOC to within 10 cM of a ifber strength quantitative trait locus (QTL) reported previously. GhAOC was highly correlated with ifber quality and strength (P=0.014) in an association analysis, suggesting a possible role in cotton ifber development, especially in secondary cell wall thickening.

  11. Membrane Guanylate Cyclase, A Multimodal Transduction Machine: History, Present and Future Directions

    Directory of Open Access Journals (Sweden)

    Rameshwar K Sharma

    2014-07-01

    Full Text Available A sequel to these authors’ earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC from its origin to the year 2010, this article contains 13 parts. The first is HISTORICAL and covers MGC from the year 1963-1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its BIOCHEMICAL IDENTITY. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its EXPANSION. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of PHOTOTRANSDUCTION. Parts 4 to 7 cover its BIOCHEMISTRY and PHYSIOLOGY. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Part 8 demonstrates how this knowledge begins to be TRANSLATED into the diagnosis and providing the molecular definition of retinal dystrophies. Part 9 discusses a striking property of ROS-GC where it becomes a [Ca2+]i bimodal switch and transcends its signaling role in other neural transduction processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cycles activator, the S100B protein, is made. It extends the role of ROS-GC transduction system beyond the photoreceptor cells to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in Part 10, discovery of ANOTHER CD-GCAP, NC, is made and its linkage with signaling of the inner plexiform layer neurons is established. Part 11 discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the

  12. Guanylate cyclase C deficiency causes severe inflammation in a murine model of spontaneous colitis.

    Directory of Open Access Journals (Sweden)

    Eleana Harmel-Laws

    Full Text Available BACKGROUND: Guanylate Cyclase C (GC-C; Gucy2c is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses. METHODS: We utilized intraperitoneal injection of lipopolysaccharide to elicit a systemic cytokine challenge and then measured pro-inflammatory gene expression in colonic mucosa. GC-C(+/+ and GC-C(-/- mice were bred with interleukin (IL-10 deficient animals and colonic inflammation were assessed. Immune cell influx and cytokine/chemokine expression was measured in the colon of wildtype, IL-10(-/-, GC-C(+/+IL-10(-/- and GC-C(-/-IL-10(-/- mice. GC-C and guanylin production were examined in the colon of these animals and in a cytokine-treated colon epithelial cell line. RESULTS: Relative to GC-C(+/+ animals, intraperitoneal lipopolysaccharide injection into GC-C(-/- mice increased proinflammatory gene expression in both whole colon tissue and in partially purified colonocyte isolations. Spontaneous colitis in GC-C(-/-IL-10(-/- animals was significantly more severe relative to GC-C(+/+IL-10(-/- mice. Unlike GC-C(+/+IL-10(-/- controls, colon pathology in GC-C(-/-IL-10(-/- animals was apparent at an early age and was characterized by severely altered mucosal architecture, crypt abscesses, and hyperplastic subepithelial lesions. F4/80 and myeloperoxidase positive cells as well as proinflammatory gene expression were elevated in GC-C(-/-IL-10(-/- mucosa relative to control animals. Guanylin was diminished early in colitis in vivo and tumor necrosis factor α suppressed guanylin mRNA and protein in intestinal goblet cell-like HT29-18-N2 cells. CONCLUSIONS: The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by

  13. Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Cruz Diana P

    2012-07-01

    Full Text Available Abstract Background Klebsiella pneumoniae can be found in environmental habitats as well as in hospital settings where it is commonly associated with nosocomial infections. One of the factors that contribute to virulence is its capacity to form biofilms on diverse biotic and abiotic surfaces. The second messenger Bis-(3’-5’-cyclic dimeric GMP (c-di-GMP is a ubiquitous signal in bacteria that controls biofilm formation as well as several other cellular processes. The cellular levels of this messenger are controlled by c-di-GMP synthesis and degradation catalyzed by diguanylate cyclase (DGC and phophodiesterase (PDE enzymes, respectively. Many bacteria contain multiple copies of these proteins with diverse organizational structure that highlight the complex regulatory mechanisms of this signaling network. This work was undertaken to identify DGCs and PDEs and analyze the domain structure of these proteins in K. pneumoniae. Results A search for conserved GGDEF and EAL domains in three sequenced K. pneumoniae genomes showed that there were multiple copies of GGDEF and EAL containing proteins. Both single domain and hybrid GGDEF proteins were identified: 21 in K. pneumoniae Kp342, 18 in K. pneumoniae MGH 78578 and 17 in K. pneumoniae NTUH-K2044. The majority had only the GGDEF domain, most with the GGEEF motif, and hybrid proteins containing both GGDEF and EAL domains were also found. The I site for allosteric control was identified only in single GGDEF domain proteins and not in hybrid proteins. EAL-only proteins, containing either intact or degenerate domains, were also identified: 15 in Kp342, 15 in MGH 78578 and 10 in NTUH-K2044. Several input sensory domains and transmembrane segments were identified, which together indicate complex regulatory circuits that in many cases can be membrane associated. Conclusions The comparative analysis of proteins containing GGDEF/EAL domains in K. pneumoniae showed that most copies were shared among the

  14. Involvement of hepatocellular carcinoma biomarker, cyclase-associated protein 2 in zebrafish body development and cancer progression.

    Science.gov (United States)

    Effendi, Kathryn; Yamazaki, Ken; Mori, Taisuke; Masugi, Yohei; Makino, Shinji; Sakamoto, Michiie

    2013-01-01

    Cyclase-associated protein 2 (CAP2) is a conserved protein that is found up-regulated in hepatocellular carcinoma (HCC). By using zebrafish, combined with HCC cell lines, we further investigated the role of CAP2. The zebrafish CAP2 sequence was 60% identical to human CAP2 with 77% homology in the C-terminal actin-binding domain, and 58% in the N-terminal cyclase-binding domain. CAP2 expression was observed during zebrafish development and was preferentially expressed in the skeletal muscle and heart. Knockdown using two different morpholinos against CAP2 resulted in a short-body morphant zebrafish phenotype with pericardial edema. CAP2 was observed co-localized with actin in zebrafish skeletal muscle, and in the leading edge of lamellipodium in HCC cell lines. CAP2 silencing resulted in a defect in lamellipodium formation and decreased cell motility in HCC cell lines. Strongly positive expression of CAP2 was observed in 10 of 16 (63%) poorly, 30 of 68 (44%) moderately, and 2 of 21 (10%) well differentiated HCC. CAP2 expression was significantly associated with tumor size, poor differentiation, portal vein invasion, and intrahepatic metastasis. Our results indicate that an important conserved function of CAP2 in higher vertebrates may be associated with the process of skeletal muscle development. CAP2 also played an important role in enhancing cell motility, which may promote a more invasive behavior in the progression of HCC. These findings highlight the link between development and cancer.

  15. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle.

    Science.gov (United States)

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-09-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.

  16. Inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol in mouse spleen cells: a potential mechanism for cannabinoid-mediated immunosuppression.

    Science.gov (United States)

    Schatz, A R; Kessler, F K; Kaminski, N E

    1992-01-01

    The ability of delta 9-Tetrahydrocannabinol (delta 9-THC) to modulate adenylate cyclase activity in mouse spleen cells was investigated. These studies were prompted by the recent identification and cloning of a G-protein coupled cannabinoid receptor localized in certain regions of the brain and the potential for a common mechanism between cannabinoid-mediated CNS effects and immunosuppression. Temporal addition studies were initially performed to identify the period of time when spleen cells in culture were most susceptible to the inhibitory effects of delta 9-THC, as measured by the day 5 IgM antibody forming cell response. delta 9-THC was only inhibitory when added to spleen cell cultures during the first 2 hr following antigen sensitization. In light of this time course, adenylate cyclase activity was measured in spleen cells incubated in the presence of 22 microM delta 9-THC for 5 min and subsequently stimulated with forskolin. delta 9-THC treated spleen cells demonstrated a 33% inhibition and a 66% inhibition in intracellular cAMP after a 5 or 15 min stimulation with forskolin, respectively. These studies suggest that inhibition of immune function by delta 9-THC may be mediated through the inhibition of intracellular cAMP early after antigen stimulation.

  17. High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells.

    Science.gov (United States)

    Bao, Zhen; Qiu, Xiaojun; Wang, Donglin; Ban, Na; Fan, Shaochen; Chen, Wenjuan; Sun, Jie; Xing, Weikang; Wang, Yunfeng; Cui, Gang

    2016-04-01

    Adenylate cyclase-associated protein 1 (CAP1), a conserved member of cyclase-associated proteins was reported to be associated with the proliferation, migration or invasion of the tumors of pancreas, breast and liver, and was involved in astrocyte proliferation after acute Traumatic Brain Injury (TBI). In this study, we sought to investigate the character of CAP1 in the pathological process of human glioma by detecting human glioma specimens and cell lines. 43 of 100 specimens showed high expression of CAP1 via immunohistochemistry. With statistics analysis, we found out the expression level of CAP1 was correlated with the WHO grades of human glioma and was great positively related to Ki-67 (p<0.01). In vitro, silencing CAP1 in U251 and U87MG, the glioma cell lines with the relatively higher expression of CAP1, induced the proliferation of the cells significantly retarded, migration and invasion as well. Obviously, our results indicated that CAP1 participated in the molecular pathological process of glioma indeed, and in a certain sense, CAP1 might be a potential and promising molecular target for glioma diagnosis and therapies in the future.

  18. Isolation and functional characterization of a lycopene beta-cyclase gene that controls fruit colour of papaya (Carica papaya L.).

    Science.gov (United States)

    Devitt, Luke C; Fanning, Kent; Dietzgen, Ralf G; Holton, Timothy A

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.

  19. Calpain-Mediated Processing of Adenylate Cyclase Toxin Generates a Cytosolic Soluble Catalytically Active N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Kepa B Uribe

    Full Text Available Bordetella pertussis, the whooping cough pathogen, secretes several virulence factors among which adenylate cyclase toxin (ACT is essential for establishment of the disease in the respiratory tract. ACT weakens host defenses by suppressing important bactericidal activities of the phagocytic cells. Up to now, it was believed that cell intoxication by ACT was a consequence of the accumulation of abnormally high levels of cAMP, generated exclusively beneath the host plasma membrane by the toxin N-terminal catalytic adenylate cyclase (AC domain, upon its direct translocation across the lipid bilayer. Here we show that host calpain, a calcium-dependent Cys-protease, is activated into the phagocytes by a toxin-triggered calcium rise, resulting in the proteolytic cleavage of the toxin N-terminal domain that releases a catalytically active "soluble AC". The calpain-mediated ACT processing allows trafficking of the "soluble AC" domain into subcellular organella. At least two strategic advantages arise from this singular toxin cleavage, enhancing the specificity of action, and simultaneously preventing an indiscriminate activation of cAMP effectors throughout the cell. The present study provides novel insights into the toxin mechanism of action, as the calpain-mediated toxin processing would confer ACT the capacity for a space- and time-coordinated production of different cAMP "pools", which would play different roles in the cell pathophysiology.

  20. Cloning and Functional Analysis of Lycopeneε-Cyclase (IbLCYe) Gene from Sweetpotato, Ipomoea batatas (L.) Lam

    Institute of Scientific and Technical Information of China (English)

    YU Ling; ZHAI Hong; CHEN Wei; HE Shao-zhen; LIU Qing-chang

    2013-01-01

    This paper reported firstly successful cloning of lycopeneε-cyclase (IbLCYe) gene from sweetpotato, Ipomoea batatas (L.) Lam. Using rapid amplification of cDNA ends (RACE), IbLCYe gene was cloned from sweetpotato cv. Nongdafu 14 with high carotenoid content. The 1 805 bp cDNA sequence of IbLCYe gene contained a 1 236 bp open reading frame (ORF) encoding a 411 amino acids polypeptide with a molecular weight of 47 kDa and an isoelectric point (pI) of 6.95. IbLCYe protein contained one potential lycopeneε-cyclase domain and one potential FAD (flavinadenine dinucleotide)/NAD(P) (nicotinamide adenine dinucleotide phosphate)-binding domain, indicating that this protein shares the typical characteristics of LCYe proteins. The gDNA of IbLCYe gene was 4 029 bp and deduced to contain 5 introns and 6 exons. Real-time quantitative PCR analysis revealed that the expression level of IbLCYe gene was significantly higher in the storage roots of Nongdafu 14 than those in the leaves and stems. Transgenic tobacco (cv. Wisconsin 38) expressing IbLCYe gene accumulated significantly moreβ-carotene compared to the untransformed control plants. These results showed that IbLCYe gene has an important function for the accumulation of carotenoids of sweetpotato.

  1. A Single Residue Switch for Mg2+-dependent Inhibition Characterizes Plant Class II Diterpene Cyclases from Primary and Secondary Metabolism*

    Science.gov (United States)

    Mann, Francis M.; Prisic, Sladjana; Davenport, Emily K.; Determan, Mara K.; Coates, Robert M.; Peters, Reuben J.

    2010-01-01

    Class II diterpene cyclases mediate the acid-initiated cycloisomerization reaction that serves as the committed step in biosynthesis of the large class of labdane-related diterpenoid natural products, which includes the important gibberellin plant hormones. Intriguingly, these enzymes are differentially susceptible to inhibition by their Mg2+ cofactor, with those involved in gibberellin biosynthesis being more sensitive to such inhibition than those devoted to secondary metabolism, which presumably limits flux toward the potent gibberellin phytohormones. Such inhibition has been suggested to arise from intrasteric Mg2+ binding to the DXDD motif that cooperatively acts as the catalytic acid, whose affinity must then be modulated in some fashion. While further investigating class II diterpene cyclase catalysis, we discovered a conserved basic residue that seems to act as a counter ion to the DXDD motif, enhancing the ability of aspartic acid to carry out the requisite energetically difficult protonation of a carbon-carbon double bond and also affecting inhibitory Mg2+ binding. Notably, this residue is conserved as a histidine in enzymes involved in gibberellin biosynthesis and as an arginine in those dedicated to secondary metabolism. Interchanging the identity of these residues is sufficient to switch the sensitivity of the parent enzyme to inhibition by Mg2+. These striking findings indicate that this is a single residue switch for Mg2+ inhibition, which not only supports the importance of this biochemical regulatory mechanism in limiting gibberellin biosynthesis, but the importance of its release, presumably to enable higher flux, into secondary metabolism. PMID:20430888

  2. Bi-directional effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on fear-related behavior and c-Fos expression after fear conditioning in rats.

    Science.gov (United States)

    Meloni, Edward G; Venkataraman, Archana; Donahue, Rachel J; Carlezon, William A

    2016-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in stress regulation and learning and memory. PACAP has neuromodulatory actions on brain structures within the limbic system that could contribute to its acute and persistent effects in animal models of stress and anxiety-like behavior. Here, male Sprague-Dawley rats were implanted with intracerebroventricular (ICV) cannula for infusion of PACAP-38 (0.5, 1, or 1.5 μg) or vehicle followed 30 min later by fear conditioning. Freezing was measured early (1, 4, and 7 days) or following a delay (7, 10, and 13 days) after conditioning. PACAP (1.5 μg) produced a bi-phasic response in freezing behavior across test days: relative to controls, PACAP-treated rats showed a reduction in freezing when tested 1 or 7 days after fear conditioning that evolved into a significant elevation in freezing by the third test session in the early, but not delayed, group. Corticosterone (CORT) levels were significantly elevated in PACAP-treated rats following fear conditioning, but not at the time of testing (Day 1). Brain c-Fos expression revealed PACAP-dependent alterations within, as well as outside of, areas typically implicated in fear conditioning. Our findings raise the possibility that PACAP disrupts fear memory consolidation by altering synaptic plasticity within neurocircuits normally responsible for encoding fear-related cues, producing a type of dissociation or peritraumatic amnesia often seen in people early after exposure to a traumatic event. However, fear memories are retained such that repeated testing and memory reactivation (e.g., re-experiencing) causes the freezing response to emerge and persist at elevated levels. PACAP systems may represent an axis on which stress and exposure to trauma converge to promote maladaptive behavioral responses characteristic of psychiatric illnesses such as post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. NO-sensitive guanylyl cyclase beta1 subunit is peripherally associated to chromosomes during mitosis. Novel role in chromatin condensation and cell cycle progression.

    Science.gov (United States)

    Pifarré, Paula; Baltrons, María Antonia; Földi, Istvan; García, Agustina

    2009-01-01

    NO-sensitive guanylyl cyclase (GC(NO)), the major NO target, is involved in important regulatory functions in the cardiovascular, gastrointestinal and central nervous systems. GC(NO) exists as heterodimers of alpha(1/2) and beta1 subunits. Deletion of the obligate beta1 dimerizing partner abrogates NO/cGMP signaling and shortens the life span of KO mice. Localization studies in the CNS have shown that beta1 is more widespread than alpha subunits and in some areas is the only GC(NO) subunit expressed, suggesting that beta1 may have GC(NO)-independent functions. GC(NO) is predominantly cytosolic, but association to membranes and other intracellular structures has been described. Here, we show localization of beta1 in cytoplasm and nucleus of cells expressing alpha subunits and GC(NO) activity (astrocytes, C6 cells), as well as in cells devoid of alpha subunits and GC(NO) activity (microglia). In both cell types beta1 associates peripherally to chromosomes in all phases of mitosis. Immunodepletion of beta1 in C6 cells enhances chromatin condensation in an in vitro assay. Moreover, silencing beta1 by siRNA induces cell cycle re-entry as determined by flow cytometry, and increases proliferation rate in a MTT-assay, whereas infection with beta1-containing adenovirus has the opposite effect. These actions are independent of cGMP formation. We postulate that beta1 is a multifunctional protein that regulates chromatin condensation and cell cycle progression, in addition to being an obligate monomer in functional GC(NO) heterodimers.

  4. Pituitary adenylate cyclase-activating polypeptide enhances saliva secretion via direct binding to PACAP receptors of major salivary glands in mice.

    Science.gov (United States)

    Matoba, Yuko; Nonaka, Naoko; Takagi, Yoshitoki; Imamura, Eisaku; Narukawa, Masayuki; Nakamachi, Tomoya; Shioda, Seiji; Banks, William A; Nakamura, Masanori

    2016-09-01

    Xerostomia, or dry mouth, is a common syndrome that is generally treated with artificial saliva; however, no other effective methods have yet been established. Saliva secretion is mainly under the control of the autonomic nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is recognized as a multifunctional neuropeptide in various organs. In this study, we examined the effect of PACAP on saliva secretion, and detected the distribution of the PACAP type 1 receptor (PAC1R) in major salivary glands, including the parotid, submandibular, and sublingual glands, in 9-week-old male C57BL/6 mice. Intranasal administration of PACAP 38 increased the amount of saliva secreted, which was not inhibited by atropine pretreatment. Immunohistochemical analysis showed that PAC1R was distributed in the three major salivary glands. In the parotid and sublingual glands, PAC1R was detected in striated duct cells, whereas in the submandibular gland, a strong PAC1R immunoreaction was detected in tall columnar epithelial cells in the granular ducts (i.e., pillar cells), as well as in some striated duct cells. PACAP significantly increased the concentration of epidermal growth factor in saliva. These results suggest that PACAP directly regulates saliva secretion by controlling the absorption activity in the ducts, and that pillar cells regulate the function of granular epithelial cells in the granular duct, such as the secretion of growth factors into the saliva. Collectively, these results suggest the possibility of PACAP as a new effective treatment of xerostomia. Anat Rec, 299:1293-1299, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Heat-stable enterotoxin receptor/guanylyl cyclase C is an oligomer consisting of functi