WorldWideScience

Sample records for adenylyl cyclase isoforms

  1. Adenylyl cyclases in the digestive system.

    Science.gov (United States)

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Calmodulin-regulated adenylyl cyclases and neuromodulation.

    Science.gov (United States)

    Xia, Z; Storm, D R

    1997-06-01

    Coincidence detection and crosstalk between signal transduction systems play very important regulatory roles in the nervous system, particularly in the regulation of transcription. Coupling of the Ca2+ and cAMP regulatory systems by calmodulin-regulated adenylyl cyclases is hypothesized to be important for some forms of synaptic plasticity, neuroendocrine function, and olfactory detection. Recent studies of a mutant mouse deficient in type I calmodulin-sensitive adenylyl cyclase have provided the first evidence that adenylyl cyclases are important for synaptic plasticity, as well as for learning and memory in vertebrates.

  3. Expression and Immunohistochemical Localisation of the G beta gamma activated and Calcineurin-inhibited Adenylyl Cyclase Isoforms in Rat Articular Chondrocytes

    International Nuclear Information System (INIS)

    Memon, I.; Khan, K.M.; Siddiqui, S.; Perveen, S.; Ishaq, M.

    2016-01-01

    Objective: To determine the expression and localisation of the Gβγ-activated adenylyl cyclase (AC) isoforms 2, 4, and 7 and calcineurin-inhibited AC isoform 9 in rat articular chondrocytes. Study Design: Experimental study. Place and Duration of Study: Jumma Research Laboratory and Histology Laboratory, The Aga Khan University, Karachi, from 2009 to 2011. Methodology: Fresh slices of articular cartilage were taken from various synovial joints of rats of different age groups. The expression of AC isoforms was determined by RT-PCR and immunohistochemistry was performed to localise these isoforms in articular chondrocytes. Tissue sections were processed for immunostaining with respective antibodies. The color was developed by diaminobenzidine. Results: All the studied AC isoforms were found to be differentially expressed in different zones of the rat articular cartilage. Generally, expression of all AC isoforms studied increased with age. The expression of the AC isoforms through PCR was almost consistent with the localisation of these isoforms by immunohistochemistry. Conclusion: These data add to the information about signalling cascades possibly involved in articular chondrocytes. Variable expression of AC isoforms 2, 4, 7, and 9 suggest a role for the signalling cascades regulated by the AC isoforms in articular chondrocytes. (author)

  4. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  5. Deducing the origin of soluble adenylyl cyclase, a gene lost in multiple lineages

    NARCIS (Netherlands)

    Roelofs, Jeroen; Haastert, Peter J.M. van

    2002-01-01

    The family of eukaryotic adenylyl cyclases consists of a very large group of 12 transmembrane adenylyl cyclases and a very small group of soluble adenylyl cyclase (sAC). Orthologs of human sAC are present in rat Diclyostelium and bacteria but absent from the completely sequenced genomes of

  6. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    International Nuclear Information System (INIS)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca 2+ to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca 2+ and this interaction may be important for its invasion into animal cells

  7. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  8. Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII.

    Science.gov (United States)

    Simko, Veronika; Iuliano, Filippo; Sevcikova, Andrea; Labudova, Martina; Barathova, Monika; Radvak, Peter; Pastorekova, Silvia; Pastorek, Jaromir; Csaderova, Lucia

    2017-08-31

    Hypoxia is a phenomenon often arising in solid tumours, linked to aggressive malignancy, bad prognosis and resistance to therapy. Hypoxia-inducible factor-1 has been identified as a key mediator of cell and tissue adaptation to hypoxic conditions through transcriptional activation of many genes involved in glucose metabolism and other cancer-related processes, such as angiogenesis, cell survival and cell invasion. Cyclic adenosine 3'5'-monophosphate is one of the most ancient and evolutionarily conserved signalling molecules and the cAMP/PKA signalling pathway plays an important role in cellular adaptation to hypoxia. We have investigated possible new mechanisms behind hypoxic activation of the cAMP/PKA pathway. For the first time, we have shown that hypoxia induces transcriptional up-regulation of the system of adenylyl cyclases, enzymes responsible for cAMP production, in a panel of carcinoma cell lines of various origin. Our data prove functional relevance of the hypoxic increase of adenylyl cyclases VI and VII at least partially mediated by HIF-1 transcription factor. We have identified adenylyl cyclase VI and VII isoforms as mediators of cellular response to hypoxia, which led to the elevation of cAMP levels and enhanced PKA activity, with an impact on cell migration and pH regulation.

  9. Agonist-induced desensitization of adenylyl cyclase in Y1 adrenocortical tumor cells

    International Nuclear Information System (INIS)

    Olson, M.F.; Tsao, J.; Pon, D.J.; Schimmer, B.P.

    1991-01-01

    Y1 adrenocortical tumor cells (Y1DS) and Y1 mutants resistant to ACTH-induced desensitization of adenylyl cyclase (Y1DR) were transfected with a gene encoding the mouse beta 2-adrenergic receptor (beta 2-AR). Transfectants expressed beta 2-ARs that were able to stimulate adenylyl cyclase activity and steroid biosynthesis. These transfectants were used to explore the basis for the DR mutation in Y1 cells. The authors demonstrate that beta-adrenergic agonists desensitize the adenylyl cyclase system in transfected Y1DS cells whereas transfected Y1DR cells are resistant to desensitization by beta-adrenergic agonists. The fate of the beta 2-ARs during desensitization was evaluated by photoaffinity labelling with [125I]iodocyanopindolol diazerine. Desensitization of Y1DS transfectants was accompanied by a modest loss in receptor density that was insufficient to account for the complete loss of responsiveness to beta-adrenergic agonists. The extent of receptor loss induced by beta-adrenergic agonists in Y1DR transfectants exceeded that in the Y1DS transfectants indicating that the mutation which protects Y1DR cells from agonist-induced desensitization is prior to receptor down-regulation in the desensitization pathway. From these results we infer that ACTH and isoproterenol desensitize adenylyl cyclase by a common pathway and that receptor loss is not a major component of the desensitization process in these cells

  10. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an

  11. Spatial resolution of cAMP signaling by soluble adenylyl cyclase

    Science.gov (United States)

    Caldieri, Giusi

    2016-01-01

    G protein–coupled receptor signaling starts at the plasma membrane and continues at endosomal stations. In this issue, Inda et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512075) show that different forms of adenylyl cyclase are activated at the plasma membrane versus endosomes, providing a rationale for the spatial encoding of cAMP signaling. PMID:27402955

  12. Adenylyl Cyclase Signaling in the Developing Chick Heart: The Deranging Effect of Antiarrhythmic Drugs

    Directory of Open Access Journals (Sweden)

    Lucie Hejnova

    2014-01-01

    Full Text Available The adenylyl cyclase (AC signaling system plays a crucial role in the regulation of cardiac contractility. Here we analyzed the key components of myocardial AC signaling in the developing chick embryo and assessed the impact of selected β-blocking agents on this system. Application of metoprolol and carvedilol, two commonly used β-blockers, at embryonic day (ED 8 significantly downregulated (by about 40% expression levels of AC5, the dominant cardiac AC isoform, and the amount of Gsα protein at ED9. Activity of AC stimulated by forskolin was also significantly reduced under these conditions. Interestingly, when administered at ED4, these drugs did not produce such profound changes in the myocardial AC signaling system, except for markedly increased expression of Giα protein. These data indicate that β-blocking agents can strongly derange AC signaling during the first half of embryonic heart development.

  13. Crystallization of the class IV adenylyl cyclase from Yersinia pestis

    International Nuclear Information System (INIS)

    Smith, Natasha; Kim, Sook-Kyung; Reddy, Prasad T.; Gallagher, D. Travis

    2006-01-01

    The class IV adenylyl cyclase from Y. pestis has been crystallized in an orthorhombic form suitable for structure determination. The class IV adenylyl cyclase from Yersinia pestis has been cloned and crystallized in both a triclinic and an orthorhombic form. An amino-terminal His-tagged construct, from which the tag was removed by thrombin, crystallized in a triclinic form diffracting to 1.9 Å, with one dimer per asymmetric unit and unit-cell parameters a = 33.5, b = 35.5, c = 71.8 Å, α = 88.7, β = 82.5, γ = 65.5°. Several mutants of this construct crystallized but diffracted poorly. A non-His-tagged native construct (179 amino acids, MW = 20.5 kDa) was purified by conventional chromatography and crystallized in space group P2 1 2 1 2 1 . These crystals have unit-cell parameters a = 56.8, b = 118.6, c = 144.5 Å, diffract to 3 Å and probably have two dimers per asymmetric unit and V M = 3.0 Å 3 Da −1 . Both crystal forms appear to require pH below 5, complicating attempts to incorporate nucleotide ligands into the structure. The native construct has been produced as a selenomethionine derivative and crystallized for phasing and structure determination

  14. Platelet adenylyl cyclase activity as a biochemical trait marker for predisposition to alcoholism.

    NARCIS (Netherlands)

    Ratsma, J.E.; Gunning, W.B.; Leurs, R.; Schoffelmeer, A.N.M.

    1999-01-01

    Previous studies demonstrated a reduced G(s)-protein stimulated adenylyl cyclase activity in the brain and blood cells of alcoholics. We investigated this phenomenon in platelets of children of alcoholics (COA), i.e., of children at high risk for the acquisition of alcoholism and (as yet) not

  15. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    Science.gov (United States)

    Zippin, Jonathan H.; Farrell, Jeanne; Huron, David; Kamenetsky, Margarita; Hess, Kenneth C.; Fischman, Donald A.; Levin, Lonny R.; Buck, Jochen

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation. PMID:14769862

  16. Adenylyl Cyclase Signaling in the Developing Chick Heart: The Deranging Effect of Antiarrhythmic Drugs

    Czech Academy of Sciences Publication Activity Database

    Hejnová, L.; Hahnová, K.; Kočková, Radka; Svatůňková, Jarmila; Sedmera, David; Novotný, J.

    2014-01-01

    Roč. 2014, č. 2014 (2014), s. 463123 ISSN 2314-6133 R&D Projects: GA ČR(CZ) GAP302/11/1308 Institutional support: RVO:67985823 Keywords : embryo nic heart * embryo toxicity * adenylyl cyclase * G protein * beta-blocking agents Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.579, year: 2014

  17. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    OpenAIRE

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2012-01-01

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response t...

  18. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    NARCIS (Netherlands)

    Chang, Jung-Chin; Oude-Elferink, Ronald P. J.

    2014-01-01

    The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine tuned by calcium. As such, and in conjunction with carbonic an hydrase ( CA), sAC constitutes an

  19. Adenylyl cyclase type 9 gene polymorphisms are associated with asthma and allergy in Brazilian children.

    Science.gov (United States)

    Teixeira, Helena M P; Alcantara-Neves, Neuza M; Barreto, Maurício; Figueiredo, Camila A; Costa, Ryan S

    2017-02-01

    Asthma is a chronic inflammatory disease of the respiratory tract. This heterogeneous disease is caused by the interaction of interindividual genetic variability and environmental factors. The gene adenylyl cyclase type 9 (ADCY9) encodes a protein called adenylyl cyclase (AC), responsible for producing the second messenger cyclic AMP (cAMP). cAMP is produced by T regulatory cells and is involved in the down-regulation of T effector cells. Failures in cAMP production may be related to an imbalance in the regulatory immune response, leading to immune-mediated diseases, such as allergic disorders. The aim of this study was to investigate how polymorphisms in the ADCY9 are associated with asthma and allergic markers. The study comprised 1309 subjects from the SCAALA (Social Changes Asthma and Allergy in Latin America) program. Genotyping was accomplished using the Illumina 2.5 Human Omni bead chip. Logistic regression was used to assess the association between allergy markers and ADCY9 variation in PLINK 1.07 software with adjustments for sex, age, helminth infection and ancestry markers. The ADCY9 candidate gene was associated with different phenotypes, such as asthma, specific IgE, skin prick test, and cytokine production. Among 133 markers analyzed, 29 SNPs where associated with asthma and allergic markers in silico analysis revealed the functional impact of the 6 SNPs on ADCY9 expression. It can be concluded that polymorphisms in the ADCY9 gene are significantly associated with asthma and/or allergy markers. We believe that such polymorphisms may lead to increased expression of adenylyl cyclase with a consequent increase in immunoregulatory activity. Therefore, these SNPs may offer an impact on the occurrence of these conditions in admixture population from countries such as Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The effect of alcohol on recombinant proteins derived from mammalian adenylyl cyclase

    Directory of Open Access Journals (Sweden)

    Emily Qualls-Creekmore

    2017-07-01

    Full Text Available The cyclic AMP (cAMP signaling pathway is implicated in the development of alcohol use disorder. Previous studies have demonstrated that ethanol enhances the activity of adenylyl cyclase (AC in an isoform specific manner; AC7 is most enhanced by ethanol, and regions responsible for enhancement by ethanol are located in the cytoplasmic domains of the AC7 protein. We hypothesize that ethanol modulates AC activity by directly interacting with the protein and that ethanol effects on AC can be studied using recombinant AC in vitro. AC recombinant proteins containing only the C1a or C2 domains of AC7 and AC9 individually were expressed in bacteria, and purified. The purified recombinant AC proteins retained enzymatic activity and isoform specific alcohol responsiveness. The combination of the C1a or C2 domains of AC7 maintained the same alcohol cutoff point as full-length AC7. We also find that the recombinant AC7 responds to alcohol differently in the presence of different combinations of activators including MnCl2, forskolin, and Gsα. Through a series of concentration-response experiments and curve fitting, the values for maximum activities, Hill coefficients, and EC50 were determined in the absence and presence of butanol as a surrogate of ethanol. The results suggest that alcohol modulates AC activity by directly interacting with the AC protein and that the alcohol interaction with the AC protein occurs at multiple sites with positive cooperativity. This study indicates that the recombinant AC proteins expressed in bacteria can provide a useful model system to investigate the mechanism of alcohol action on their activity.

  1. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    Science.gov (United States)

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    Science.gov (United States)

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  3. Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Klevstig, M.; Manakov, D.; Kašparová, D.; Brabcová, I.; Papoušek, František; Žurmanová, J.; Zídek, Václav; Šilhavý, Jan; Neckář, Jan; Pravenec, Michal; Kolář, František; Nováková, O.; Novotný, J.

    2013-01-01

    Roč. 465, č. 10 (2013), s. 1477-1486 ISSN 0031-6768 R&D Projects: GA MŠk(CZ) LL1204; GA AV ČR(CZ) IAAX01110901; GA ČR(CZ) GAP303/10/0505 Institutional support: RVO:67985823 Keywords : SHR rats * Cd36 * heart * beta-Adrenergic receptors * Adenylyl cyclase * Protein kinase A Subject RIV: ED - Physiology Impact factor: 3.073, year: 2013

  4. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    Science.gov (United States)

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  5. pH sensing via bicarbonate-regulated ‘soluble’ adenylyl cyclase (sAC

    Directory of Open Access Journals (Sweden)

    Nawreen eRahman

    2013-11-01

    Full Text Available Soluble adenylyl cyclase (sAC is a source of the second messenger cyclic adenosine 3',5' monophosphate (cAMP. sAC is directly regulated by bicarbonate (HCO3- ions. In living cells, HCO3- ions are in nearly instantaneous equilibrium with carbon dioxide (CO2 and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO3-, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role.

  6. Expression of adenylyl cyclase types III and VI in human hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Celano, M; Arturi, F; Presta, I; Bruno, R; Scarpelli, D; Calvagno, M G; Cristofaro, C; Bulotta, S; Giannasio, P; Sacco, R; Filetti, S; Russo, D

    2003-05-30

    Hyperfunctioning thyroid nodules are characterized by the presence of spontaneous somatic mutations responsible for constitutive activation of the cAMP pathway. However, alterations affecting other elements of the cAMP signaling system may counteract the effects of the mutations. In this study, the expression of the adenylyl cyclase (AC) types III and VI was investigated by Western blot in 18 hyperfunctioning thyroid nodules; in 12 samples, we also assessed the presence of TSH receptor (TSHR) or gsp mutations and levels of AC VI and III mRNA. We found that the expression of nodular AC VI (but not AC III) was significantly lower (85.1% of normal, P=0.014) than the expression of both adenylyl cycles types of perinodular tissue from the same patients. Slightly, but not significant differences were detected in nodules with or without mutations and AC protein levels generally showed correlation with the levels of the transcripts detected by RT-PCR. In addition, AC III and AC VI expression levels within a given nodule were characterized by a significant positive correlation. These findings indicate that a diminished expression of AC type VI may be part of the mechanisms occurring in the hyperfunctioning nodules, independently of the presence of TSHR or gsp mutations, which influence the resulting phenotype.

  7. An adenylyl cyclase gene (NlAC9) influences growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

    Science.gov (United States)

    The cAMP/PKA intracellular signaling pathway is launched by adenylyl cyclase (AC) conversion of adenosine triphosphate (ATP) to 3', 5'-cyclic AMP (cAMP) and cAMP-dependent activation of PKA. Although this pathway is very well known in insect physiology, there is little to no information on it in som...

  8. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.

    Science.gov (United States)

    Choi, Hyun B; Gordon, Grant R J; Zhou, Ning; Tai, Chao; Rungta, Ravi L; Martinez, Jennifer; Milner, Teresa A; Ryu, Jae K; McLarnon, James G; Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; MacVicar, Brian A

    2012-09-20

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.

    Science.gov (United States)

    Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi

    2018-03-28

    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.

  10. Computational identification of candidate nucleotide cyclases in higher plants

    KAUST Repository

    Wong, Aloysius Tze; Gehring, Christoph A

    2013-01-01

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs

  11. Characterization of two unusual guanylyl cyclases from Dictyostelium

    NARCIS (Netherlands)

    Roelofs, Jeroen; Haastert, Peter J.M. van

    2002-01-01

    Guanylyl cyclase A (GCA) and soluble guanylyl cyclase (sGC) encode GCs in Dictyostelium and have a topology similar to 12-transmembrane and soluble adenylyl cyclase, respectively. We demonstrate that all detectable GC activity is lost in a cell line in which both genes have been inactivated. Cell

  12. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound.

    Science.gov (United States)

    Zhang, Lanqiu; Rasenick, Mark M

    2010-03-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Galpha(s) from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Galpha(s) in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Galpha(s) in lipid rafts, whereas there was no change in overall Galpha(s) content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Galpha(s) localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Galpha(s) and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Galpha(s) from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs.

  13. Chronic Treatment with Escitalopram but Not R-Citalopram Translocates Gαs from Lipid Raft Domains and Potentiates Adenylyl Cyclase: A 5-Hydroxytryptamine Transporter-Independent Action of This Antidepressant Compound

    Science.gov (United States)

    Zhang, Lanqiu

    2010-01-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Gαs from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Gαs in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Gαs in lipid rafts, whereas there was no change in overall Gαs content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Gαs localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Gαs and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Gαs from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs. PMID:19996298

  14. Substrate specificity determinants of class III nucleotidyl cyclases.

    Science.gov (United States)

    Bharambe, Nikhil G; Barathy, Deivanayaga V; Syed, Wajeed; Visweswariah, Sandhya S; Colaςo, Melwin; Misquith, Sandra; Suguna, Kaza

    2016-10-01

    The two second messengers in signalling, cyclic AMP and cyclic GMP, are produced by adenylyl and guanylyl cyclases respectively. Recognition and discrimination of the substrates ATP and GTP by the nucleotidyl cyclases are vital in these reactions. Various apo-, substrate- or inhibitor-bound forms of adenylyl cyclase (AC) structures from transmembrane and soluble ACs have revealed the catalytic mechanism of ATP cyclization reaction. Previously reported structures of guanylyl cyclases represent ligand-free forms and inactive open states of the enzymes and thus do not provide information regarding the exact mode of substrate binding. The structures we present here of the cyclase homology domain of a class III AC from Mycobacterium avium (Ma1120) and its mutant in complex with ATP and GTP in the presence of calcium ion, provide the structural basis for substrate selection by the nucleotidyl cyclases at the atomic level. Precise nature of the enzyme-substrate interactions, novel modes of substrate binding and the ability of the binding pocket to accommodate diverse conformations of the substrates have been revealed by the present crystallographic analysis. This is the first report to provide structures of both the nucleotide substrates bound to a nucleotidyl cyclase. Coordinates and structure factors have been deposited in the Protein Data Bank with accession numbers: 5D15 (Ma1120 CHD +ATP.Ca 2+ ), 5D0E (Ma1120 CHD +GTP.Ca 2+ ), 5D0H (Ma1120 CHD (KDA→EGY)+ATP.Ca 2+ ), 5D0G (Ma1120 CHD (KDA→EGY)+GTP.Ca 2+ ). Adenylyl cyclase (EC number: 4.6.1.1). © 2016 Federation of European Biochemical Societies.

  15. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  16. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    Directory of Open Access Journals (Sweden)

    Jung-Chin eChang

    2014-02-01

    Full Text Available The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10 was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA, sAC constitutes an HCO3-/CO¬2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H+-ATPase (VHA in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment.

  17. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    Directory of Open Access Journals (Sweden)

    Elena Elizabeth Bagley

    2014-06-01

    Full Text Available Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1 currents in periaqueductal gray (PAG neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1

  18. Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora.

    Science.gov (United States)

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-09-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.

  19. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    Science.gov (United States)

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  20. An improved targeted cAMP sensor to study the regulation of adenylyl cyclase 8 by Ca2+ entry through voltage-gated channels.

    Directory of Open Access Journals (Sweden)

    Katy L Everett

    Full Text Available Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca(2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca(2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes.

  1. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling.

    Science.gov (United States)

    Pastor-Soler, Nuria; Beaulieu, Valerie; Litvin, Tatiana N; Da Silva, Nicolas; Chen, Yanqiu; Brown, Dennis; Buck, Jochen; Levin, Lonny R; Breton, Sylvie

    2003-12-05

    Modulation of environmental pH is critical for the function of many biological systems. However, the molecular identity of the pH sensor and its interaction with downstream effector proteins remain poorly understood. Using the male reproductive tract as a model system in which luminal acidification is critical for sperm maturation and storage, we now report a novel pathway for pH regulation linking the bicarbonate activated soluble adenylyl cyclase (sAC) to the vacuolar H+ATPase (V-ATPase). Clear cells of the epididymis and vas deferens contain abundant V-ATPase in their apical pole and are responsible for acidifying the lumen. Proton secretion is regulated via active recycling of V-ATPase. Here we demonstrate that this recycling is regulated by luminal pH and bicarbonate. sAC is highly expressed in clear cells, and apical membrane accumulation of V-ATPase is triggered by a sAC-dependent rise in cAMP in response to alkaline luminal pH. As sAC is expressed in other acid/base transporting epithelia, including kidney and choroid plexus, this cAMP-dependent signal transduction pathway may be a widespread mechanism that allows cells to sense and modulate extracellular pH.

  2. Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi.

    Directory of Open Access Journals (Sweden)

    Jorge García-Martínez

    Full Text Available The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H(2O(2, but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group.

  3. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.

    Science.gov (United States)

    Lim, C J; Spiegelman, G B; Weeks, G

    2001-08-15

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.

  4. Elevated Adenylyl Cyclase 9 Expression Is a Potential Prognostic Biomarker for Patients with Colon Cancer.

    Science.gov (United States)

    Yi, Hua; Wang, Kun; Jin, Jun-Feng; Jin, He; Yang, Lihua; Zou, Yidan; Du, Biaoyan; Liu, Xiaodong

    2018-01-02

    BACKGROUND Adenylyl cyclase 9 (ADCY9) is an enzyme that modulates signal transduction by producing the second messenger, cyclic adenosine monophosphate (cAMP). The aim of the present study was to investigate the association of ADCY9 expression with clinicopathological features and disease-free survival of colon cancer patients. MATERIAL AND METHODS Immunohistochemistry staining with ADCY9 antibody was performed on a tissue microarray. Immunoreactivity scores (IRS) were recorded and applied for association analysis. ADCY9 mRNA expression and clinicopathogical information were also extracted from TCGA colon cancer dataset and analyzed using univariate and multivariate Cox proportional hazards models.  RESULTS ADCY9 IRS was significantly higher (P=0.002) in tumor tissues (6.40±1.26, n=200) than in adjacent normal samples (4.13±0.83, n=8). The IRS and mRNA expression of ADCY9 were correlated to colon cancer TNM staging. Longer disease-free survival was observed in patients with lower ADCY9 expression (P=0.001). In the multivariate models, ADCY9 expression level (hazard ratio [HR] 5.495, 95% confidence interval [CI] 1.753-17.227, P=0.003), and distant metastasis (HR 4.329, 95% CI 1.374-13.636, P=0.012) were still associated with disease-free survival. CONCLUSIONS High ADCY9 expression is a poor prognostic factor for disease-free survival in colon cancer.

  5. Three α-Subunits of Heterotrimeric G Proteins and an Adenylyl Cyclase Have Distinct Roles in Fruiting Body Development in the Homothallic Fungus Sordaria macrospora

    Science.gov (United States)

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-01-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884

  6. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  7. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Zhenshan Wang

    2015-11-01

    Full Text Available Adenylyl Cyclase 3 (AC3 plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE. In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/− and wild-type (AC3+/+ mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.

  8. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    Science.gov (United States)

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Concise Synthesis of Forskolin

    Czech Academy of Sciences Publication Activity Database

    Hylse, O.; Maier, L.; Kučera, R.; Perečko, Tomáš; Svobodová, Aneta; Kubala, Lukáš; Paruch, K.; Svenda, J.

    2017-01-01

    Roč. 56, č. 41 (2017), s. 12586-12589 ISSN 1433-7851 Institutional support: RVO:68081707 Keywords : adenylyl-cyclase isoforms * key intermediate * enantioselective route Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 11.994, year: 2016

  10. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body.

    Science.gov (United States)

    Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D

    2011-12-02

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.

  11. Identification and Characterization of Novel Plant Adenylate Cyclases – The Arabidopsis Thaliana Potassium Uptake Permeases

    KAUST Repository

    Al-Younis, Inas

    2018-01-01

    Adenylyl Cyclases (ACs) catalyze the formation of the key universal second messenger adenosine 3’, 5’-cyclic monophosphate (cAMP) from adenosine 5’- triphosphate. Cyclic AMP participates in several signal transduction pathways and is present

  12. Computational identification of candidate nucleotide cyclases in higher plants

    KAUST Repository

    Wong, Aloysius Tze

    2013-09-03

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants. © Springer Science+Business Media New York 2013.

  13. [Attenuation of inhibitory influence of hormones on adenylyl cyclase systems in the myocardium and brain of rats with obesity and type 2 diabetes mellitus and effect of intranasal insulin on it].

    Science.gov (United States)

    Kuznetsova, L A; Plesneva, S A; Sharova, T S; Pertseva, M N; Shpakov, A O

    2014-01-01

    The functional state of the adenylyl cyclase signaling system (ACSS) and its regulation by hormones, the inhibitors of adenylyl cyclase (AC)--somatostatin (SST) in the brain and myocardium and 5-nonyloxytryptamine (5-NOT) in the brain of rats of different ages (5- and 7-month-old) with experimental obesity and a combination of obesity and type 2 diabetes mellitus (DM2), and the effect of long-term treatment of animals with intranasally administered insulin (II) on ACSS were studied. It was shown that the basal AC activity in rats with obesity and DM2 was increased in the myocardium, and to the lesser extent in the brain, the treatment with II reducing this parameter. The AC stimulating effects of forskolin are decreased in the myocardium, but not in the brain, of rats with obesity and DM2. The treatment with II restored the AC action of forskolin in the 7-month-old animals, but has little effect on it in the 5-month-old rats. In obesity the basal AC activity and its stimulation by forskolin varied insignificantly and weakly changed in treatment of animals with II. The AC inhibitory effects of SST and 5-NOT in the investigated pathology are essentially attenuated, the effect of SST to the greatest extent, which we believe to be associated with a reduction in the functional activity of Gi-proteins. The II treatment of animals with obesity and with a combination of obesity and DM2 restored completely or partially the AC inhibiting effects of hormones, to the greatest extent in the brain. Since impaired functioning of ACSS is one of the causes of the metabolic syndrome and DM2, their elimination by treatments with II can be an effective approach to treat these diseases and their CNS and cardiovascular system complications.

  14. Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells.

    Science.gov (United States)

    Mewes, Mirja; Nedele, Johanna; Schelleckes, Katrin; Bondareva, Olga; Lenders, Malte; Kusche-Vihrog, Kristina; Schnittler, Hans-Joachim; Brand, Stefan-Martin; Schmitz, Boris; Brand, Eva

    2017-10-01

    High dietary salt intake may lead to vascular stiffness, which predicts cardiovascular diseases such as heart failure, and myocardial and cerebral infarctions as well as renal impairment. The vascular endothelium is a primary target for deleterious salt effects leading to dysfunction and endothelial stiffness. We hypothesize that the Ca 2+ - and bicarbonate-activated soluble adenylyl cyclase (sAC) contributes to Na + /K + -ATPase expression regulation in vascular endothelial cells and is an important regulator of endothelial stiffness. In vitro stimulation of vascular endothelial cells with high sodium (150 mM Na + )-induced Na + /K + -ATPase-α and Na + /K + -ATPase-β protein expression determined by western blot. Promoter analyses revealed increased cAMP response element (CRE)-mediated Na + /K + -ATPase-α transcriptional activity under high sodium concentrations. Inhibition of sAC by the specific inhibitor KH7 or siRNA reduced the sodium effects. Flame photometry revealed increased intracellular sodium concentrations in response to high sodium stimulations, which were paralleled by elevated ATP levels. Using atomic force microscopy, a nano-technique that measures cellular stiffness and deformability, we detected significant endothelial stiffening under increased sodium concentrations, which was prevented by inhibition of sAC using KH7 and Na + /K + -ATPase using ouabain. Furthermore, analysis of primary aortic endothelial cells in an in vitro aging model revealed an impaired Na + /K + -ATPase-α sodium response and elevated intracellular sodium levels with cellular aging. We conclude that sAC mediates sodium-induced Na + /K + -ATPase expression in vascular endothelium and is an important regulator of endothelial stiffness. The reactivity of Na + /K + -ATPase-α expression regulation in response to high sodium seems to be impaired in aging endothelial cells and might be a component of endothelial dysfunction.

  15. Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose.

    Directory of Open Access Journals (Sweden)

    Rosemary C Challis

    Full Text Available We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII, a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found, similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.

  16. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    Science.gov (United States)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  17. Amidate prodrugs of 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA) as inhibitors of adenylate cyclase toxin from Bordetella pertussis

    Czech Academy of Sciences Publication Activity Database

    Šmídková, Markéta; Dvořáková, Alexandra; Tloušťová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Roč. 281, Suppl S1 (2014), s. 729 ISSN 1742-464X. [FEBS EMBO 2014 Conference. 30.08.2014-04.09.2014, Paris] R&D Projects: GA MŠk LO1302; GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : Bordetella pertussis * adenylyl cyclase toxin * inhibitors Subject RIV: CE - Biochemistry

  18. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    Energy Technology Data Exchange (ETDEWEB)

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S. (Biosciences Division); (Univ. of Nevada); (Alliance Protein Labs.)

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  19. Soluble adenylyl cyclase in vascular endothelium: gene expression control of epithelial sodium channel-α, Na+/K+-ATPase-α/β, and mineralocorticoid receptor.

    Science.gov (United States)

    Schmitz, Boris; Nedele, Johanna; Guske, Katrin; Maase, Martina; Lenders, Malte; Schelleckes, Michael; Kusche-Vihrog, Kristina; Brand, Stefan-Martin; Brand, Eva

    2014-04-01

    The Ca(2+)- and bicarbonate-activated soluble adenylyl cyclase (sAC) has been identified recently as an important mediator of aldosterone signaling in the kidney. Nuclear sAC has been reported to stimulate cAMP response element-binding protein 1 phosphorylation via protein kinase A, suggesting an alternative cAMP pathway in the nucleus. In this study, we analyzed the sAC as a potential modulator of endothelial stiffness in the vascular endothelium. We determined the contribution of sAC to cAMP response element-mediated transcriptional activation in vascular endothelial cells and kidney collecting duct cells. Inhibition of sAC by the specific inhibitor KH7 significantly reduced cAMP response element-mediated promoter activity and affected cAMP response element-binding protein 1 phosphorylation. Furthermore, KH7 and anti-sAC small interfering RNA significantly decreased mRNA and protein levels of epithelial sodium channel-α and Na(+)/K(+)-ATPase-α. Using atomic force microscopy, a nano-technique that measures stiffness and deformability of living cells, we detected significant endothelial cell softening after sAC inhibition. Our results suggest that the sAC is a regulator of gene expression involved in aldosterone signaling and an important regulator of endothelial stiffness. Additional studies are warranted to investigate the protective action of sAC inhibitors in humans for potential clinical use.

  20. An adenylyl cyclase like-9 gene (NlAC9) influences growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).

    Science.gov (United States)

    Ge, LinQuan; Gu, HaoTian; Huang, Bo; Song, Qisheng; Stanley, David; Liu, Fang; Yang, Guo-Qing; Wu, Jin-Cai

    2017-01-01

    The cAMP/PKA intracellular signaling pathway is launched by adenylyl cyclase (AC) conversion of adenosine triphosphate (ATP) to 3', 5'-cyclic AMP (cAMP) and cAMP-dependent activation of PKA. Although this pathway is very well known in insect physiology, there is little to no information on it in some very small pest insects, such as the brown planthopper (BPH), Nilaparvata lugens Stål. BPH is a destructive pest responsible for tremendous crop losses in rice cropping systems. We are investigating the potentials of novel pest management technologies from RNA interference perspective. Based on analysis of transcriptomic data, the BPH AC like-9 gene (NlAC9) was up-regulated in post-mating females, which led us to pose the hypothesis that NlAC9 is a target gene that would lead to reduced BPH fitness and populations. Targeting NlAC9 led to substantially decreased soluble ovarian protein content, yeast-like symbiont abundance, and vitellogenin gene expression, accompanied with stunted ovarian development and body size. Eggs laid were decreased and oviposition period shortened. Taken together, our findings indicated that NlAC9 exerted pronounced effects on female fecundity, growth and longevity, which strongly supports our hypothesis.

  1. An adenylyl cyclase like-9 gene (NlAC9 influences growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål (Hemiptera: Delphacidae.

    Directory of Open Access Journals (Sweden)

    LinQuan Ge

    Full Text Available The cAMP/PKA intracellular signaling pathway is launched by adenylyl cyclase (AC conversion of adenosine triphosphate (ATP to 3', 5'-cyclic AMP (cAMP and cAMP-dependent activation of PKA. Although this pathway is very well known in insect physiology, there is little to no information on it in some very small pest insects, such as the brown planthopper (BPH, Nilaparvata lugens Stål. BPH is a destructive pest responsible for tremendous crop losses in rice cropping systems. We are investigating the potentials of novel pest management technologies from RNA interference perspective. Based on analysis of transcriptomic data, the BPH AC like-9 gene (NlAC9 was up-regulated in post-mating females, which led us to pose the hypothesis that NlAC9 is a target gene that would lead to reduced BPH fitness and populations. Targeting NlAC9 led to substantially decreased soluble ovarian protein content, yeast-like symbiont abundance, and vitellogenin gene expression, accompanied with stunted ovarian development and body size. Eggs laid were decreased and oviposition period shortened. Taken together, our findings indicated that NlAC9 exerted pronounced effects on female fecundity, growth and longevity, which strongly supports our hypothesis.

  2. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    Science.gov (United States)

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  3. Molecular characterization of a novel intracellular ADP-ribosyl cyclase.

    Directory of Open Access Journals (Sweden)

    Dev Churamani

    2007-08-01

    Full Text Available ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates.Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1 is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained.Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized.

  4. Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20 days after morphine withdrawal

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Dlouhá, Kateřina; Roubalová, Lenka; Vošahlíková, Miroslava; Kagan, Dmytro; Svoboda, Petr

    2011-01-01

    Roč. 1810, č. 12 (2011), s. 1220-1229 ISSN 0304-4165 R&D Projects: GA MŠk(CZ) LC554; GA MŠk(CZ) LC06063; GA ČR(CZ) GD305/08/H037 Institutional research plan: CEZ:AV0Z50110509 Keywords : morphine * long-term adaptation * adenylyl cyclase isoforms I–IX * forebrain cortex * isolated plasma membranes Subject RIV: FH - Neurology Impact factor: 5.000, year: 2011

  5. Ocean acidification stimulates alkali signal pathway: A bicarbonate sensing soluble adenylyl cyclase from oyster Crassostrea gigas mediates physiological changes induced by CO2 exposure.

    Science.gov (United States)

    Wang, Xiudan; Wang, Mengqiang; Jia, Zhihao; Wang, Hao; Jiang, Shuai; Chen, Hao; Wang, Lingling; Song, Linsheng

    2016-12-01

    Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid-base sensor in response to [HCO 3 - ] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO 3 - ] mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16days of CO 2 exposure (pH=7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45kD and 20kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO 2 exposure. Besides, CO 2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (pocean acidification on marine calcifiers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    Czech Academy of Sciences Publication Activity Database

    Otto, M.; Naumann, Ch.; Brandt, W.; Wasternack, Claus; Hause, B.

    2016-01-01

    Roč. 5, č. 1 (2016), č. článku 3. ISSN 2223-7747 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Activity regulation * Arabidopsis allene oxide cyclase isoforms * Heteromerization Subject RIV: EB - Genetics ; Molecular Biology

  7. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Directory of Open Access Journals (Sweden)

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  8. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    International Nuclear Information System (INIS)

    Cohen, Joseph R; Resnick, Daniel Z; Niewiadomski, Pawel; Dong, Hongmei; Liau, Linda M; Waschek, James A

    2010-01-01

    Hedgehog (HH) signaling is critical for the expansion of granule neuron precursors (GNPs) within the external granular layer (EGL) during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB) - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA) antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1) are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Primary MB tumorsphere cultures were prepared from thirteen ptch1 +/- /p53 +/- double mutant mice and treated with the smoothened (SMO) agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [ 3 H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Primary tumorspheres derived from ptch1 +/- /p53 +/- mice exhibit constitutive HH pathway activity

  9. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Margarita O. Shleeva

    2017-08-01

    Full Text Available Earlier we demonstrated that the adenylyl cyclase (AC encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb, the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.

  10. [THE CHANGES OF NOCICEPTIVE THRESHOLD AND ACTIVITY OF THE ADENYLYL CYCLASE SYSTEM IN THE SKELETAL MUSCLES OF RATS WITH ACUTE AND MILD TYPE 1 DIABETES MELLITUS ].

    Science.gov (United States)

    Shipilov, V N; Trost, A M; Chistyakova, O V; Derkach, K V; Shpakov, A O

    2016-02-01

    Diabetic peripheral neuropathy (DPN) is one of the most common complications of the type 1 diabetes mellitus (DM1). The aim of the work was to study the dynamics of a painful DPN and functional state of the hormone-sensitive ACSS in the skeletal muscles of rats with the models of acute and mild DM1, as well as the study of impact on them of insulin therapy with different ways of hormone delivery - intranasal and peripheral. In both models of DM1, the level of nociceptive threshold in rats decreased and the stimulatory effects of guanine nucleotides (GppNHp) and adrenergic agonists (isoproterenol, BRL-37344) on adenylyl cyclase (AC) activity were attenuated. The AC stimulating effect of relaxin decreased in animals with acute DM1, but in mild DM1, the decrease was insignificant. Peripheral administration of insulin in rats with acute DM1 increased the nociceptive threshold and partially restored the AC effect of ß 3-agonist BRL-37344. Intranasal administration of insulin in rats with DM1 also increased the nociceptive threshold and partially restored the basal and BRL-37344-stimulated AC activity in the skeletal muscles of diabetic animals. Thus, in the skeletal muscles of rats with acute and mild DM1 the nociceptive sensitivity and the functions of ACSS were disturbed, and they were partially restored by the treatment with peripheral (acute DM1) or intranasal (mild DM1) insulin.

  11. Ethanol extract of the seed of Zizyphus jujuba var. spinosa potentiates hippocampal synaptic transmission through mitogen-activated protein kinase, adenylyl cyclase, and protein kinase A pathways.

    Science.gov (United States)

    Jo, So Yeon; Jung, In Ho; Yi, Jee Hyun; Choi, Tae Joon; Lee, Seungheon; Jung, Ji Wook; Yun, Jeanho; Lee, Young Choon; Ryu, Jong Hoon; Kim, Dong Hyun

    2017-03-22

    As the seed of Zizyphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Rhamnaceae) has been used to sleep disturbances in traditional Chinese and Korean medicine, many previous studies have focused on its sedative effect. Recently, we reported the neuroprotective effect of the effect of Z. jujuba var. spinosa. However, its effects on synaptic function have not yet been studied. In this project, we examined the action of ethanol extract of the seed of Z. jujuba var. spinosa (DHP1401) on synaptic transmission in the hippocampus. To investigate the effects of DHP1401, field recordings were conducted using hippocampal slices (400µm). Object recognition test was introduced to examine whether DHP1401 affect normal recognition memory. DHP1401 (50μg/ml) induced a significant increase in synaptic activity in Shaffer collateral pathway in a concentration-dependent manner. This increase of synaptic responses was blocked by NBQX, a broad spectrum α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, but not IEM-1460, a Ca 2+ -permeable AMPAR blocker. Moreover, U0126, a mitogen-activated protein kinase inhibitor, SQ22536, an adenylyl cyclase inhibitor, and PKI, a protein kinase A inhibitor, blocked DHP1401-induced increase in synaptic transmission. Finally, DHP1401 facilitated object recognition memory. These results suggest that DHP1401 increase synaptic transmission through increase of synaptic AMPAR transmission via MAPK, AC and PAK. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. The small molecule triclabendazole decreases the intracellular level of cyclic AMP and increases resistance to stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Joo Lee

    Full Text Available The Ras-adenylyl cyclase-protein kinase A nutrient-sensing pathway controls metabolism, proliferation and resistance to stress in Saccharomyces cerevisiae. The genetic disruption of this pathway increases resistance to a variety of stresses. We show here that the pharmacological inhibition of this pathway by the drug triclabendazole increases resistance to oxidants, heat stress and extends the chronological life. Evidence is presented that triclabendazole decreases the intracellular level of cyclic AMP by inhibiting adenylyl cyclase and triggers the parallel rapid translocation of the stress-resistance transcription factor Msn2 from the cytosol into the nucleus, as deduced from experiments employing a strain in which MSN2 is replaced with MSN2-GFP (GFP, green fluorescent protein. Msn2 and Msn4 are responsible for activating the transcription of numerous genes that encode proteins that protect cells from stress. The results are consistent with triclabendazole either inhibiting the association of Ras with adenylyl cyclase or directly inhibiting adenylyl cyclase, which in turn triggers Msn2/4 to enter the nucleus and activate stress-responsible element gene expression.

  13. [BETA-ADRENERGIC REGULATION OF THE ADENYLYL CYCLASE SIGNALING SYSTEM IN MYOCARDIUM AND BRAIN OF RATS WITH OBESITY AND TYPES 2 DIABETES MELLITUS AND THE EFFECT OF LONG-TERM INTRANASAL INSULIN TREATMENT].

    Science.gov (United States)

    Kuznetsova, L A; Sharova, T S; Pertseva, M N; Shpakov, A O

    2015-01-01

    The stimulating effect of norepinephrine, isoproterenol and selective β-adrenoceptor (β3-AR) agonists BRL 37344 and CL 316.243 on the adenylyl cyclase signaling system (ACSS) in the brain and myocardium of young and mature rats (disease induction at 2 and 4 months, respectively) with experimental obesity and type 2 diabetes mellitus (DM2), and the influence of long-term treatment of animals with intranasal insulin (I-I) were studied. The AC stimulatory effects of β-agonist isoproterenol in animals with obesity and DM2 was shown to be practically unchanged. The respective effects of norepinephrine on the AC activity were attenuated in the brain of young and mature rats and in the myocardium if mature rats, and the I-I treatment led to their partial recovery. In the brain and myocardium of mature rats with obesity and DM2, the enhancement of the AC stimulatory effects of β3-AR agonists was observed, white in young rats the influence of the same pathological conditions was lacking. The I-I treatment decreased the AC stimulatory effects of β3-agonists to their levels in the control. Since functional disruption of the adrenergic agonist-sensitive ACSS can lead to metabolic syndrome and DM2, the recovery of this system by the I-I treatment offers one of the ways to correct these diseases and their complications in the nervous and cardiovascular systems.

  14. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15841371 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  15. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15609037 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  16. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31793093 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  17. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices.

    Science.gov (United States)

    Kim, Hannah; Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Yunjin; Kang, Minkyung; Kim, Kyoung-Shim; Han, Pyung-Lim

    2014-11-07

    Behavioral choices in habits and innate behaviors occur automatically in the absence of conscious selection. These behaviors are not easily modified by learning. Similar types of behaviors also occur in various mental illnesses including drug addiction, obsessive-compulsive disorder, schizophrenia, and autism. However, underlying mechanisms are not clearly understood. In the present study, we investigated the molecular mechanisms regulating unconditioned preferred behaviors in food-choices. Mice lacking adenylyl cyclase-5 (AC5 KO mice), which is preferentially expressed in the dorsal striatum, consumed food pellets nearly one after another in cages. AC5 KO mice showed aversive behaviors to bitter tasting quinine, but they compulsively chose quinine-containing AC5 KO-pellets over fresh pellets. The unusual food-choice behaviors in AC5 KO mice were due to the gain of behavioral preferences for food pellets containing an olfactory cue, which wild-type mice normally ignored. Such food-choice behaviors in AC5 KO mice disappeared when whiskers were trimmed. Conversely, whisker trimming in wildtype mice induced behavioral preferences for AC5 KO food pellets, indicating that preferred food-choices were not learned through prior experience. Both AC5 KO mice and wildtype mice with trimmed whiskers had increased glutamatergic input from the barrel cortex into the dorsal striatum, resulting in an increase in the mGluR1-dependent signaling cascade. The siRNA-mediated inhibition of mGluR1 in the dorsal striatum in AC5 KO mice and wildtype mice with trimmed whiskers abolished preferred choices for AC5 KO food pellets, whereas siRNA-mediated inhibition of mGluR3 glutamate receptors in the dorsal striatum in wildtype mice induced behavioral preferences for AC5 KO food pellets, thus mimicking AC5 KO phenotypes. Our results show that the gain and loss of behavioral preferences for a specific cue-directed option were regulated by specific cellular factors in the dorsal striatum, such

  18. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates.

    Science.gov (United States)

    Taha, Hesham; Dove, Stefan; Geduhn, Jens; König, Burkhard; Shen, Yuequan; Tang, Wei-Jen; Seifert, Roland

    2012-01-01

    Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). Conventional antibiotic treatment is ineffective against either toxaemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Our previous studies showed that EF is differentially inhibited by various purine and pyrimidine nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl (ANT) groups at the 2'(3')-O-ribosyl position, with the unique preference for the base cytosine (Taha et al., Mol Pharmacol 75:693 (2009)). MANT-CTP was the most potent EF inhibitor (K (i), 100 nM) among 16 compounds studied. Here, we examined the interaction of EF with a series of 18 2',3'-O-mono- and bis-(M)ANT-substituted nucleotides, recently shown to be very potent inhibitors of the AC toxin from Bordetella pertussis, CyaA (Geduhn et al., J Pharmacol Exp Ther 336:104 (2011)). We analysed purified EF and EF mutants in radiometric AC assays and in fluorescence spectroscopy studies and conducted molecular modelling studies. Bis-MANT nucleotides inhibited EF competitively. Propyl-ANT-ATP was the most potent EF inhibitor (K (i), 80 nM). In contrast to the observations made for CyaA, introduction of a second (M)ANT-group decreased rather than increased inhibitor potency at EF. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to bis-MANT-ATP, but FRET to bis-MANT-CTP was only small. Mutations N583Q, K353A and K353R differentially altered the inhibitory potencies of bis-MANT-ATP and bis-MANT-CTP. The nucleotide binding site of EF accommodates bulky bis-(M)ANT-substituted purine and pyrimidine nucleotides, but the fit is suboptimal compared to CyaA. These data provide a basis

  19. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    Directory of Open Access Journals (Sweden)

    A Theron

    Full Text Available Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  20. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    Science.gov (United States)

    Theron, A; Roth, R L; Hoppe, H; Parkinson, C; van der Westhuyzen, C W; Stoychev, S; Wiid, I; Pietersen, R D; Baker, B; Kenyon, C P

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  1. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    Science.gov (United States)

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  3. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  4. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming; Hale, Caryn R.; Terns, Rebecca M.; Terns, Michael P.; Li, Hong (FSU); (Georgia)

    2012-08-10

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases and bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.

  5. Identification and Characterization of Novel Plant Adenylate Cyclases – The Arabidopsis Thaliana Potassium Uptake Permeases

    KAUST Repository

    Al-Younis, Inas M.

    2018-05-01

    Adenylyl Cyclases (ACs) catalyze the formation of the key universal second messenger adenosine 3’, 5’-cyclic monophosphate (cAMP) from adenosine 5’- triphosphate. Cyclic AMP participates in several signal transduction pathways and is present in bacteria and higher and lower eukaryotes including higher plants. Previous studies in plants have shown a role for cAMP in signal transduction during e.g. the cell cycle, elongation of the pollen tube and stimulation of protein kinase activity. More recently cAMP has been shown to play a role in stress responses. Interestingly, cAMP has also been shown to regulate ion transport in plant cells. Here we used a similar strategy that led to the discovery of the first guanylyl cyclase in plants that was based on the alignment of conserved and functionally assigned amino acids in the catalytic centre of annotated nucleotide cyclases from lower and higher eukaryotes, to identify a novel candidate ACs in Arabidopsis (Arabidopsis thaliana K+ Uptake 5 and 7). ATKUP5 and 7 are homologous to K+ uptake permeases (KUPs) from bacteria and high-affinity K+ transporters (HAKs) from fungi. The AC activity was investigated by recombinantly expressing the ATKUP5 and 7 AC domain in vitro and by complementation of an E. coli AC mutant (cyaA). Furthermore, ATKUP5 was tested for its ability to functionally complement a yeast mutant deficient in Trk1 and Trk2 high affinity potassium uptake transporters. Site-mutagenesis in the AC domain was used to test the effect of both functions in each other. Furthermore, ATKUP5 was characterized electrophysiologically in HEK-293 cells to characterize the nature of this transporter. The localization of the ATKUP5 in Arabidopsis was examined using a Green Fluorescent Protein (GFP) fusion with the ATKUP5 to determine whether ATKUP5 is expressed at the plasma or tonoplast membrane. Arabiodpsis thaliana of the wild type, overexpressing ATKUP5 and atkup5 mutant lines were used to examine phenotypic differences.

  6. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    Science.gov (United States)

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  7. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress.

    Science.gov (United States)

    Moura, André Luiz de; Hyslop, Stephen; Grassi-Kassisse, Dora M; Spadari, Regina C

    2017-09-01

    Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β 1 /β 2 -adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β 2 -receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β 1 -receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β 2 -adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.

  8. Regulation of brain adenylate cyclase by calmodulin

    International Nuclear Information System (INIS)

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca 2+ -binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[ 125 I]-CaM-diazopyruvamide ( 125 I-CAM-DAP) behaved like native CaM with respect to Ca 2+ -enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca 2+ -dependent stimulation of adenylate cyclase. 125 I-CaM-DAP cross-linked to CaM-binding proteins in a Ca 2+ -dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125 I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  9. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform

    CSIR Research Space (South Africa)

    Theron, Anjo

    2017-10-01

    Full Text Available mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does...

  10. Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2018-04-01

    Full Text Available The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating “Go” responses upon exposure to reward-related stimuli and “NoGo” responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R and adenosine A2A receptors (A2AR, and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5. The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that

  11. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Wang, S.-C.; Wang, J.-S.; Hwang, J.-S.; Ho, S.-P.

    2004-01-01

    The purpose of this work is to evaluate the effect of thuringiensin on the adenylate cyclase activity in rat cerebral cortex. The cyclic adenosine 3'5'-monophosphate (cAMP) levels were shown to be dose-dependently elevated 17-450% or 54-377% by thuringiensin at concentrations of 10 μM-100 mM or 0.5-4 mM, due to the activation of basal adenylate cyclase activity of rat cerebral cortical membrane preparation. Thuringiensin also activated basal activity of a commercial adenylate cyclase from Escherichia coli. However, the forskolin-stimulated adenylate cyclase activity in rat cerebral cortex was inhibited by thuringiensin at concentrations of 1-100 μM, thus cAMP production decreased. Furthermore, thuringiensin or adenylate cyclase inhibitor (MDL-12330A) reduced the forskolin (10 μM)-stimulated adenylate cyclase activity at concentrations of 10 μM, 49% or 43% inhibition, respectively. In conclusion, this study demonstrated that thuringiensin could activate basal adenylate cyclase activity and increase cAMP concentrations in rat cerebral cortex or in a commercial adenylate cyclase. Comparing the dose-dependent effects of thuringiensin on the basal and forskolin-stimulated adenylate cyclase activity, thuringiensin can be regarded as a weak activator of adenylate cyclase or an inhibitor of forskolin-stimulated adenylate cyclase

  12. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    Science.gov (United States)

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  13. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    Science.gov (United States)

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  14. Dispatch. Dictyostelium chemotaxis: fascism through the back door?

    Science.gov (United States)

    Insall, Robert

    2003-04-29

    Aggregating Dictyostelium cells secrete cyclic AMP to attract their neighbours by chemotaxis. It has now been shown that adenylyl cyclase is enriched in the rear of cells, and this localisation is required for normal aggregation.

  15. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine; Marondedze, Claudius; Ederli, Luisa; Pasqualini, Stefania; Gehring, Christoph A

    2013-01-01

    The second messenger 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses

  16. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    Science.gov (United States)

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

    Science.gov (United States)

    Maresca, Julia A; Graham, Joel E; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A

    2007-07-10

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria.

  18. Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches

    NARCIS (Netherlands)

    Postma, M.; Roelofs, J.; Goedhart, J.; Loovers, H.M.; Visser, A.J.W.G.; Haastert, van P.J.M.

    2004-01-01

    The leading edge of Dictyostelium cells in chemoattractant gradients can be visualized using green fluorescent protein (GFP) tagged to the pleckstrin-homology (PH) domain of cytosolic regulator of adenylyl cyclase (CRAC), which presumable binds phosphatidylinositol-(3,4,5)triphosphate

  19. Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches.

    NARCIS (Netherlands)

    Postma, M.; Roelofs, J.; Goedhart, J.; Loovers, H.M.; Visser, A.J.; van Haastert, P.J.

    2004-01-01

    The leading edge of Dictyostelium cells in chemoattractant gradients can be visualized using green fluorescent protein (GFP) tagged to the pleckstrin-homology (PH) domain of cytosolic regulator of adenylyl cyclase (CRAC), which presumable binds phosphatidylinositol-(3,4,5)triphosphate

  20. The guanylyl cyclase family at Y2K.

    Science.gov (United States)

    Wedel, B; Garbers, D

    2001-01-01

    During the 1980s the purification, cloning, and expression of various forms of guanylyl cyclase (GC) revealed that they served as receptors for extracellular signals. Seven membrane forms, which presumably exist as homodimers, and four subunits of apparent heterodimers (commonly referred to as the soluble forms) are known, but in animals such as nematodes, much larger numbers of GCs are expressed. The number of transmembrane segments (none, one, or multiple) divide the GC family into three groups. Those with no or one transmembrane segment bind nitric oxide/carbon monoxide (NO/CO) or peptides. There are no known ligands for the multiple transmembrane segment class of GCs. Mutational and structural analyses support a model where catalysis requires a shared substrate binding site between the subunits, whether homomeric or heteromeric in nature. Because some cyclases or cyclase ligand genes lack specific GC inhibitors, disruption of either has been used to define the functions of individual cyclases, as well as to define human genetic disease counterparts.

  1. TMFunction data: 7 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 1.0+_ 0.3 EC50 (nM) Inhibition of AC by W158F; EC50 values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  2. TMFunction data: 8 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 1.2+_0.2 EC50 (nM) Inhibition of AC by W158F; EC50 values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  3. TMFunction data: 25 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 1.3+_0.6 EC50 (nM) Inhibition of AC by W172F; EC50 values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  4. TMFunction data: 24 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 1.4+_0.3 EC50 (nM) Inhibition of AC by W172F; EC50 values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  5. TMFunction data: 23 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 2.0+_0.6 EC50 (nM) Inhibition of AC by W172F; EC50 values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  6. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    NARCIS (Netherlands)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs)

  7. Allergen challenge primes for IL-5 mRNA production and abrogates beta-adrenergic function in peripheral blood T lymphocytes from asthmatics

    NARCIS (Netherlands)

    Borger, P; Jonker, GJ; Vellenga, E; Postma, DS; De Monchy, JGR; Kauffman, HF

    Background In previous studies, we have found a dysfunctional adenylyl cyclase (AC) system in patients with asthma after allergen provocation, which resulted in a 40-50% decreased generation of intracellular cAMP. In addition, in activated T helper lymphocyte clones, it has been demonstrated that

  8. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".

    Science.gov (United States)

    Nestler, Eric J

    2016-08-15

    In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction. "A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP

  9. Monospecific antibody against Bordetella pertussis Adenylate Cyclase protects from Pertussis

    Directory of Open Access Journals (Sweden)

    Yasmeen Faiz Kazi

    2012-06-01

    Full Text Available Objectives: Acellular pertussis vaccines has been largely accepted world-wide however, there are reports about limitedantibody response against these vaccines suggesting that multiple antigens should be included in acellular vaccinesto attain full protection. The aim of present study was to evaluate the role of Bordetella pertussis adenylate cyclase as aprotective antigen.Materials and methods: Highly mono-specific antibody against adenylate cyclase (AC was raised in rabbits usingnitrocellulose bound adenylate cyclase and the specificity was assessed by immuoblotting. B.pertussis 18-323, wasincubated with the mono-specific serum and without serum as a control. Mice were challenged intra-nasally and pathophysiolgicalresponses were recorded.Results: The production of B.pertussis adenylate cyclase monospecific antibody that successfully recognized on immunoblotand gave protection against fatality (p< 0.01 and lung consolidation (p <0.01. Mouse weight gain showedsignificant difference (p< 0.05.Conclusion: These preliminary results highlight the role of the B.pertussis adenylate cyclase as a potential pertussisvaccine candidate. B.pertussis AC exhibited significant protection against pertussis in murine model. J Microbiol InfectDis 2012; 2(2: 36-43Key words: Pertussis; monospecific; antibody; passive-protection

  10. Polarized Th1 and Th2 cells are less responsive to negative feedback by receptors coupled to the AC/cAMP system compared to freshly isolated T cells

    NARCIS (Netherlands)

    Heijink, Irene H; Vellenga, Edo; Borger, Peter; Postma, Dirkje S; Monchy, Jan G R de; Kauffman, Henk F

    1 The adenylyl cyclase (AC)/cyclic adenosine monophosphate (cAMP) system is known to negatively regulate transcriptional activity of T cells, thereby possibly modulating T-cell-mediated responses at the sites of inflammation. Effects of cAMP have been widely studied in freshly isolated T cells and

  11. [Adenylate cyclase from rabbit heart: substrate binding site].

    Science.gov (United States)

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  12. Overexpression of functional human oxidosqualene cyclase in Escherichia coli

    DEFF Research Database (Denmark)

    Kürten, Charlotte; Uhlén, Mathias; Syrén, Per-Olof

    2015-01-01

    The generation of multicyclic scaffolds from linear oxidosqualene by enzymatic polycyclization catalysis constitutes a cornerstone in biology for the generation of bioactive compounds. Human oxidosqualene cyclase (hOSC) is a membrane-bound triterpene cyclase that catalyzes the formation of the te......The generation of multicyclic scaffolds from linear oxidosqualene by enzymatic polycyclization catalysis constitutes a cornerstone in biology for the generation of bioactive compounds. Human oxidosqualene cyclase (hOSC) is a membrane-bound triterpene cyclase that catalyzes the formation...... of the tetracyclic steroidal backbone, a key step in cholesterol biosynthesis. Protein expression of hOSC and other eukaryotic oxidosqualene cyclases has traditionally been performed in yeast and insect cells, which has resulted in protein yields of 2.7mg protein/g cells (hOSC in Pichia pastoris) after 48h...... of expression. Herein we present, to the best of our knowledge, the first functional expression of hOSC in the model organism Escherichia coli. Using a codon-optimized gene and a membrane extraction procedure for which detergent is immediately added after cell lysis, a protein yield of 2.9mg/g bacterial cells...

  13. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver

    International Nuclear Information System (INIS)

    Katz, M.S.; Boland, S.R.; Schmidt, S.J.

    1985-01-01

    beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-[ 125 I]iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase

  14. Stimulatory effects of adenosine on prolactin secretion in the pituitary gland of the rat

    Directory of Open Access Journals (Sweden)

    D.L.W. Picanço-Diniz

    2002-07-01

    Full Text Available We investigated the effects of adenosine on prolactin (PRL secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA, an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA, respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM. The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.

  15. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  16. Beta-Adrenergic signaling in rat heart is similarly affected by continuous and intermittent normobaric hypoxia

    Czech Academy of Sciences Publication Activity Database

    Hahnová, K.; Kašparová, D.; Žurmanová, J.; Neckář, Jan; Kolář, František; Novotný, J.

    2016-01-01

    Roč. 35, č. 2 (2016), s. 165-173 ISSN 0231-5882 R&D Projects: GA ČR(CZ) GAP303/12/1162 Institutional support: RVO:67985823 Keywords : rat myocardium * chronic hypoxia * beta-adrenergic receptors * adenylyl cyclase Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.170, year: 2016

  17. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; DeVree, Brian T; Zou, Yaozhong

    2011-01-01

    -occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs...

  18. Effect of age and posture on human lymphocyte adenylate cyclase activity.

    Science.gov (United States)

    Mader, S L; Robbins, A S; Rubenstein, L Z; Tuck, M L; Scarpace, P J

    1988-03-01

    1. A number of age-related changes have been reported in the catecholamine-adrenoceptor-adenylate cyclase system. Most of the data available on these alterations come from resting subjects; the response to acute stress may provide additional insights into the age effect on these responses. 2. We measured supine and 10 min upright plasma noradrenaline and lymphocyte adenylate cyclase activity in ten healthy elderly subjects (age 66-80 years) and seven healthy young subjects (age 27-34 years). 3. Isoprenaline stimulation of lymphocyte adenylate cyclase activity was not significantly different between supine and upright positions or between elderly and young subjects. There was a marked increase in forskolin-stimulated adenylate cyclase activity in the upright posture in both elderly and young subjects. The increment over supine levels was 70% in the elderly (P less than 0.025) and 73% in the young (P less than 0.05). This enhanced forskolin activity was not seen in two young subjects who became syncopal. 4. These data suggest that enhanced forskolin-stimulated adenylate cyclase activity occurs after 10 min of upright posture in both elderly and young subjects, and may be relevant to immediate blood pressure regulation. We were unable to demonstrate any age-related differences in these acute adrenergic responses.

  19. 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.

    Science.gov (United States)

    Leung, Susan W S; Gao, Yuansheng; Vanhoutte, Paul M

    2017-01-01

    Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.

  20. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation.

    Science.gov (United States)

    Luczak, Vincent; Blackwell, Kim T; Abel, Ted; Girault, Jean-Antoine; Gervasi, Nicolas

    2017-02-01

    In the hippocampus, cyclic-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) form a critical signaling cascade required for long-lasting synaptic plasticity, learning and memory. Plasticity and memory are known to occur following pathway-specific changes in synaptic strength that are thought to result from spatially and temporally coordinated intracellular signaling events. To better understand how cAMP and PKA dynamically operate within the structural complexity of hippocampal neurons, we used live two-photon imaging and genetically-encoded fluorescent biosensors to monitor cAMP levels or PKA activity in CA1 neurons of acute hippocampal slices. Stimulation of β-adrenergic receptors (isoproterenol) or combined activation of adenylyl cyclase (forskolin) and inhibition of phosphodiesterase (IBMX) produced cAMP transients with greater amplitude and rapid on-rates in intermediate and distal dendrites compared to somata and proximal dendrites. In contrast, isoproterenol produced greater PKA activity in somata and proximal dendrites compared to intermediate and distal dendrites, and the on-rate of PKA activity did not differ between compartments. Computational models show that our observed compartmental difference in cAMP can be reproduced by a uniform distribution of PDE4 and a variable density of adenylyl cyclase that scales with compartment size to compensate for changes in surface to volume ratios. However, reproducing our observed compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient. Together, our imaging and computational results show that compartment diameter interacts with rate-limiting components like adenylyl cyclase, phosphodiesterase and protein phosphatase to shape the spatial and temporal components of cAMP and PKA signaling in CA1 neurons and suggests that small neuronal compartments are most sensitive to c

  1. Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice.

    Science.gov (United States)

    Benes, Jan; Novakova, Martina; Rotkova, Jana; Farar, Vladimir; Kvetnansky, Richard; Riljak, Vladimir; Myslivecek, Jaromir

    2012-07-01

    We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.

  2. Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation

    International Nuclear Information System (INIS)

    Tremblay, J.; Huot, C.; Koch, C.; Potier, M.

    1991-01-01

    Radiation inactivation has been used to evaluate the molecular size of domains responsible for atrial natriuretic peptide (ANP)-binding and cyclase functions of the ANP receptor/guanylate cyclase. Two types of inactivation curves were observed for cyclase function in both adrenal cortex and aortic smooth muscle cells: (1) biphasic with enhanced guanylate cyclase activity after exposure to low radiation doses and (2) linear after preincubation of membrane proteins with 0.5 microM ANP or solubilization with Triton X-100. The existence of an inhibitory component was the simplest model that best explained the types of radiation curves obtained. Activation of guanylate cyclase by ANP or Triton X-100 could occur via the dissociation of this inhibitory component from the catalytic domain. On the other hand, the loss of ANP-binding activity was linear with increasing radiation exposures under basal, ANP treatment, and Triton X-100 solubilization conditions. Radiation inactivation sizes of about 30 kDa for cyclase function, 20 kDa for ANP-binding function, and 90 kDa for inhibitory function were calculated. These studies suggest that the ANP receptor/guanylate cyclase behaves as a multidomain protein. The results obtained by radiation inactivation of the various biological functions of this receptor are compatible with the hypothesis of an intramolecular inhibitory domain repressing the guanylate cyclase catalytic domain within its membrane environment

  3. TMFunction data: 14 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 0.14+_0.02 Ki (nM) Ki values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase ...ens Human Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z J Neurochem. 2000 Dec;75(6):2485-91. AC activity

  4. TMFunction data: 11 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 0.16+_ 0.07 Ki (nM) Ki values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase ...ns Human Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z J Neurochem. 2000 Dec;75(6):2485-91. AC activity

  5. TMFunction data: 13 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available 0.19+_0.04 Ki (nM) Ki values for HU-210. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase ...ens Human Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z J Neurochem. 2000 Dec;75(6):2485-91. AC activity

  6. cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells.

    Science.gov (United States)

    Inda, Carolina; Bonfiglio, Juan José; Dos Santos Claro, Paula A; Senin, Sergio A; Armando, Natalia G; Deussing, Jan M; Silberstein, Susana

    2017-05-16

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells). By characterising CRHR1 signalling mechanisms involved in the neuritogenic effect, we demonstrate that neurite outgrowth in HT22-CRHR1 cells takes place by a sAC-dependent, ERK1/2-independent signalling cascade. Both tmACs and sAC are involved in corticotropin-releasing hormone (CRH)-mediated CREB phosphorylation and c-fos induction, but only sAC-generated cAMP pools are critical for the neuritogenic effect of CRH, further highlighting the engagement of two sources of cAMP downstream of the activation of a GPCR, and reinforcing the notion that restricted cAMP microdomains may regulate independent cellular processes.

  7. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    Science.gov (United States)

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and

  8. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  9. TMFunction data: 17 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available ens Human Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z J Neurochem. 2000 Dec;75(6):2485-91. AC activity 6.4+_1.7 Ki (nM) Ki valu...es for CP55,940. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  10. TMFunction data: 21 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available ens Human Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z J Neurochem. 2000 Dec;75(6):2485-91. AC activity 3.6+_0.5 Ki (nM) Ki valu...es for WIN55,212-2. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  11. TMFunction data: 18 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available ens Human Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z J Neurochem. 2000 Dec;75(6):2485-91. AC activity 6.9+_0.9 Ki (nM) Ki valu...es for CP55,940. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  12. TMFunction data: 22 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available ens Human Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z J Neurochem. 2000 Dec;75(6):2485-91. AC activity 3.6+_1.2 Ki (nM) Ki valu...es for WIN55,212-2. ... CNR2_HUMAN (P34972) Helix ... Cannabinoids; CB2 receptor; G protein; Site directed mutagensis; adenylyl cyclase

  13. In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

    KAUST Repository

    Raji, Misjudeen; Gehring, Christoph A

    2017-01-01

    Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

  14. In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

    KAUST Repository

    Raji, Misjudeen

    2017-05-31

    Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

  15. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  16. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    Science.gov (United States)

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  17. Pituitary adenylate cyclase activating polypeptide and migraine

    DEFF Research Database (Denmark)

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients...

  18. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  19. Effects of ionizing radiation and cysteamine (MEA) on activity of mouse spleen adenyl cyclase

    International Nuclear Information System (INIS)

    Soltysiak-Pawluczuk, D.; Bitny-Szlachto, S.

    1976-01-01

    In mice X-irradiated with doses of 200 R and 400 R, there was a substantial increase in spleen adenyl cyclase activity; there was similar activation by MEA. In mice given MEA before irradiation, an additive effect of radiation and the radioprotective drug was observed. On the other hand, a dose of 800 R given either alone or after pre-treatment with MEA failed to elicit any change in cyclase activity. The results indicate the importance of the adenyl cyclase system in the response of cells to irradiation and action of MEA. (author)

  20. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

    Science.gov (United States)

    Inda, Carolina; Dos Santos Claro, Paula A; Bonfiglio, Juan J; Senin, Sergio A; Maccarrone, Giuseppina; Turck, Christoph W; Silberstein, Susana

    2016-07-18

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP. © 2016 Inda et al.

  1. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity.

    Science.gov (United States)

    Ting, Kai Yiu; Leung, Christina F P; Graeff, Richard M; Lee, Hon Cheung; Hao, Quan; Kotaka, Masayo

    2016-03-01

    Cyclic ADP-ribose (cADPR) mobilizes intracellular Ca(2+) stores and activates Ca(2+) influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD(+) by the multifunctional CD38/ADP-ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD(+) can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD(+) to form linear ADPR while Aplysia ADP-ribosyl cyclase prefers cyclizing NAD(+) to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD(+) cyclase activity producing cADPR. We also determined the X-ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD(+) reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively. © 2016 The Protein Society.

  2. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria

    OpenAIRE

    Maresca, Julia A.; Graham, Joel E.; Wu, Martin; Eisen, Jonathan A.; Bryant, Donald A.

    2007-01-01

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechoc...

  3. Age-associated alterations in hepatic β-adrenergic receptor/adenylate cyclase complex

    International Nuclear Information System (INIS)

    Graham, S.M.; Herring, P.A.; Arinze, I.J.

    1987-01-01

    The effect of age on catecholamine regulation of hepatic glycogenolysis and on hepatic adenylate cyclase was studied in male rats up to 24 mo of age. Epinephrine and norepinephrine stimulated glycogenolysis in isolated hepatocytes at all age groups studied. Isoproterenol, however, stimulated glycogenolysis only at 24 mo. In isolated liver membranes, usual activators of adenylate cyclase increased the activity of the enzyme considerably more in membranes from 24-mo-old rats than in membranes from either 3- or 22-mo-old rats. The Mn 2+ -dependent activity of the cyclase was increased by 2.9-fold in 3-mo-old animals and ∼ 5.7-fold in 24-mo-old rats, indicating a substantial age-dependent increase in the intrinsic activity of the catalytic unit. The density of the β-adrenergic receptor, as measured by the binding of [ 125 I]-iodocyanopindolol to plasma membranes, was 5-8 fmol/mg protein in rats aged 3-12 mo but increased to 19 fmol/mg protein in 24-mo-old rats. Computer-aided analysis of isoproterenol competition of the binding indicated a small age-dependent increase in the proportion of β-receptors in the high-affinity state. These observations suggest that β-receptor-mediated hepatic glycogenolysis in the aged rat is predicated upon increases in the density of β-receptors as well as increased intrinsic activity of the catalytic unit of adenylate cyclase

  4. Characterization of serotonergic receptors in rabbit, porcine and human conjunctivae.

    Science.gov (United States)

    Turner, Helen C; Alvarez, Lawrence J; Candia, Oscar A; Bernstein, Audrey M

    2003-10-01

    To characterize the serotonin (5-HT) receptors linked to the modulation of adenylyl cyclase activity in rabbit, porcine and human conjunctivae. Serotonin receptor-subtype expression was examined using reverse transcription-polymerase chain reaction (RT-PCR) and receptor subtype-specific polyclonal antibodies for the immunofluorescent labeling of conjunctival cryosections. In addition, measurements of the effects of serotonergics on the short-circuit current (I(sc)) across rabbit and porcine conjunctivae were contrasted. RT-PCR assays indicated the expression of 5-HT(1B ) and 5-HT(1D) receptors, subtypes negatively coupled to adenylyl cyclase, in the rabbit conjunctiva. This approach also suggested the co-expression of 5-HT(1B), 5-HT(1D), 5-HT(1F), 5-HT(4) and 5-HT(7) mRNA's in the porcine conjunctiva, and 5-HT( 1D), 5-HT(1F) and 5-HT(7) in the human conjunctiva. Since the 5-HT(4) and 5-HT(7) receptors are positively linked to adenylyl cyclase, these results implied that the porcine and human tissues exhibited subtypes both positively and negatively linked to the enzyme. However, immunohistochemical observations, using currently available antibodies solely localized the 5-HT(7) moiety in the porcine and human epithelia, suggested that the 1B/1D forms may be minor elements. Consistent with this prospect, 5-HT was a stimulant of the transepithelial I(sc) across the porcine conjunctiva, an opposite response from earlier findings that demonstrated inhibitory effects by 5-HT on the rabbit I(sc), which are now explained by the localization of the 1B/1D receptors in the rabbit stratified epithelium. The 5-HT receptors expressed by mammalian conjunctivae are not identical. In terms of 5-HT receptor expression, the porcine tissue may be a more appropriate model for human, than is the rabbit, in that 5-HT may serve as a secretagogue in the human epithelium.

  5. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.

    Science.gov (United States)

    Lee, S; Parent, C A; Insall, R; Firtel, R A

    1999-09-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras

  6. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects

    Directory of Open Access Journals (Sweden)

    Kubo Takeo

    2010-02-01

    Full Text Available Abstract Background The ecdysone receptor (EcR regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. Results The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. Conclusions Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional

  7. (S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity.

    Science.gov (United States)

    Harkany, Tibor; Horvath, Tamas L

    2017-01-10

    Classical views posit G protein-coupled cannabinoid receptor 1s (CB1Rs) at the cell surface with cytosolic Giα-mediated signal transduction. Hebert-Chatelain et al. (2016) instead place CB 1 Rs at mitochondria limiting neuronal respiration by soluble adenylyl cyclase-dependent modulation of complex I activity. Thus, neuronal bioenergetics link to synaptic plasticity and, globally, learning and memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Photodynamics of BLUF domain proteins: a new class of the biological blue-light photoreceptors

    OpenAIRE

    Zirak Yousefabadi, Peyman

    2008-01-01

    BLUF domains are light sensors of many microorganisms. They are present in the multi-domain proteins e.g. AppA from the phototrophic proteobacterium Rhodobacter sphaeroides, YcgF from Escherichia coli, PAC (photoactive adenylyl cyclase) from the unicellular flagellate Euglena gracilis and single domain proteins e.g. BlrB from Rhodobacter sphaeroides, Slr1694 from cyanobacterium Synechocystis sp.PCC6803, and Tll0078 of the thermophilic unicellular cyanobacterium Thermosynechococcus elongates B...

  9. Cloning and Functional Characterization of a Lycopene β-Cyclase from Macrophytic Red Alga Bangia fuscopurpurea

    Directory of Open Access Journals (Sweden)

    Tian-Jun Cao

    2017-04-01

    Full Text Available Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms. In this work, we isolated a gene (BfLCYB encoding a lycopene β-cyclase from Bangia fuscopurpurea, a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both β- and ε-rings, including β-carotene, zeaxanthin, α-carotene (β,ε-carotene and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (β,ψ-carotene and bicyclic β-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.

  10. Identification of the chlE gene encoding oxygen-independent Mg-protoporphyrin IX monomethyl ester cyclase in cyanobacteria.

    Science.gov (United States)

    Yamanashi, Kaori; Minamizaki, Kei; Fujita, Yuichi

    2015-08-07

    The fifth ring (E-ring) of chlorophyll (Chl) a is produced by Mg-protoporphyrin IX monomethyl ester (MPE) cyclase. There are two evolutionarily unrelated MPE cyclases: oxygen-independent (BchE) and oxygen-dependent (ChlA/AcsF) MPE cyclases. Although ChlA is the sole MPE cyclase in Synechocystis PCC 6803, it is yet unclear whether BchE exists in cyanobacteria. A BLAST search suggests that only few cyanobacteria possess bchE. Here, we report that two bchE candidate genes from Cyanothece strains PCC 7425 and PCC 7822 restore the photosynthetic growth and bacteriochlorophyll production in a bchE-lacking mutant of Rhodobacter capsulatus. We termed these cyanobacterial bchE orthologs "chlE." Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Impact of the NO-Sensitive Guanylyl Cyclase 1 and 2 on Renal Blood Flow and Systemic Blood Pressure in Mice.

    Science.gov (United States)

    Mergia, Evanthia; Thieme, Manuel; Hoch, Henning; Daniil, Georgios; Hering, Lydia; Yakoub, Mina; Scherbaum, Christina Rebecca; Rump, Lars Christian; Koesling, Doris; Stegbauer, Johannes

    2018-03-23

    Nitric oxide (NO) modulates renal blood flow (RBF) and kidney function and is involved in blood pressure (BP) regulation predominantly via stimulation of the NO-sensitive guanylyl cyclase (NO-GC), existing in two isoforms, NO-GC1 and NO-GC2. Here, we used isoform-specific knockout (KO) mice and investigated their contribution to renal hemodynamics under normotensive and angiotensin II-induced hypertensive conditions. Stimulation of the NO-GCs by S -nitrosoglutathione (GSNO) reduced BP in normotensive and hypertensive wildtype (WT) and NO-GC2-KO mice more efficiently than in NO-GC1-KO. NO-induced increase of RBF in normotensive mice did not differ between the genotypes, but the respective increase under hypertensive conditions was impaired in NO-GC1-KO. Similarly, inhibition of endogenous NO increased BP and reduced RBF to a lesser extent in NO-GC1-KO than in NO-GC2-KO. These findings indicate NO-GC1 as a target of NO to normalize RBF in hypertension. As these effects were not completely abolished in NO-GC1-KO and renal cyclic guanosine monophosphate (cGMP) levels were decreased in both NO-GC1-KO and NO-GC2-KO, the results suggest an additional contribution of NO-GC2. Hence, NO-GC1 plays a predominant role in the regulation of BP and RBF, especially in hypertension. However, renal NO-GC2 appears to compensate the loss of NO-GC1, and is able to regulate renal hemodynamics under physiological conditions.

  12. Sensitive method for the assay of guanylate cyclase activity

    Energy Technology Data Exchange (ETDEWEB)

    Karczewski, P; Krause, E G [Akademie der Wissenschaften der DDR, Berlin-Buch. Zentralinstitut fuer Herz- und Kreislauf-Regulationsforschung

    1978-07-01

    A method for the assay of guanylate cyclase is described utilizing ..cap alpha..-(/sup 32/P)-GTP as substrate for the enzyme reaction. 100-150 ..mu..g of enzyme protein is incubated in a 15.6 mM Tris-HCl buffer incubation mixture, pH 7.6. The reaction is stopped by the addition of EDTA. The (/sup 32/P)-cyclic GMP formed is separated by a two-step column chromatography on Dowex 50W-X4 ion-exchange resin and neutral alumina. The recovery for cyclic GMP was about 70%. The blank values ranged from 0.001-0.003 % of the added ..cap alpha..-(/sup 32/P)-GTP which had been purified by Dowex 50W-X4 column chromatography. This method was employed for the assay of guanylate cyclase activities in different tissues.

  13. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme

    Czech Academy of Sciences Publication Activity Database

    Mašín, Jiří; Osička, Radim; Bumba, Ladislav; Šebo, Peter

    2015-01-01

    Roč. 73, č. 8 (2015) ISSN 2049-632X R&D Projects: GA ČR GAP302/12/0460; GA ČR GA15-09157S; GA ČR(CZ) GA15-11851S Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * membrane penetration * pore-formation Subject RIV: EE - Microbiology, Virology Impact factor: 2.483, year: 2015

  14. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  15. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  16. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Brejchová, Jana; Vošahlíková, Miroslava; Kagan, Dmytro; Dlouhá, Kateřina; Sýkora, Jan; Merta, Ladislav; Drastichová, Z.; Novotný, J.; Ostašov, Pavel; Roubalová, Lenka; Parenti, M.; Hof, Martin; Svoboda, Petr

    2014-01-01

    Roč. 63, Suppl.1 (2014), S165-S176 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : GPCR * morphine * mu-OR, delta-OR and kappa-OR * rat brain cortex * adenylyl cyclase I and II * proteomic analysis Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.293, year: 2014

  17. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    OpenAIRE

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  18. Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c.

    Science.gov (United States)

    Rotcheewaphan, Suwatchareeporn; Belisle, John T; Webb, Kristofor J; Kim, Hee-Jin; Spencer, John S; Borlee, Bradley R

    2016-09-01

    The second messenger, bis-(3',5')-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host-pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography-mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae.

  19. Indirect effect of ionizing radiation on adehylate cyclase activity of liver cells in rat embryos

    International Nuclear Information System (INIS)

    Slozhenikina, L.V.; Ushakova, T.E.; Mikhajlets, L.P.; Kuzin, A.M.

    1980-01-01

    A comparative study was made of the effect of ionizing radiation on basal and catecholamine-stimulating activity of adenylate cyclase in the liver of 20-day embroys under in vivo and in vitro conditions (a membrane fraction and plasma membranes). The authors discuss the share of the indirect effect of radiation in modifying the adenylate cyclase activity

  20. Comparison of the in vivo and in vitro activities of adenylate cyclase from Mycobacterium tuberculosis H37Ra(NCTC 7417)

    International Nuclear Information System (INIS)

    Padh, Harish; Venkitsubramanian, T.A.

    1979-01-01

    The incorporation of [ 14 C] adenine into the adenosine 3', 5'-monophosphate (cyclic AMP) fraction by whole cells of Mycobacterium tuberculosis was taken as a measure of the in vivo activity of adenylate cyclase. The in vivo activity of adenylate cyclase was significantly inhibited by glucose, thus suggesting that the low level of cyclic AMP in the presence of glucose is due to the inhibited synthesis of cyclic AMP. In vitro activity of adenylate cyclase had optimum pH of 8.5 and Km of 1.33 mM for ATP. Glucose and other sugars did not show significant inhibition of in vitro activity. The results suggest that the adenylate cyclase activity becomes less sensitive to glucose when the bacterial cells are disrupted, an analogy with eukaryotic adenylate cyclase which loses sensitivity to hormones when the cells are disrupted. (auth.)

  1. Science.gov (United States)

    Gueguen, Marie; Vallin, Benjamin; Glorian, Martine; Blaise, Régis; Limon, Isabelle

    2016-01-01

    In response to various types of vascular stress, the smooth muscle cells of the vessel wall (VSMCs) change phenotype and acquire the capacity to react to abnormal signals. This phenomenon favors the involvement of these cells in the development of major vascular diseases, such as atherosclerosis, and some complications of angioplasty, such as restenosis. The cyclic adenosine monophosphate (cAMP) pathway plays a key role in the integration of stimuli from the immediate environment and in the development of cellular responses. The temporal and spatial subcellular compartmentalization of cAMP ensures that the signals transmitted are specific. This compartmentalization is dependent on the diversity of (1) proteins directly or indirectly regulating the synthesis, degradation or release of cAMP; (2) intracellular effectors of cAMP; (3) isoforms of all these proteins with unique biochemical properties and unique patterns of regulation and (4) the scaffolding proteins on which the macromolecular complexes are built. This review illustrates the ways in which changes in the profile of adenylyl cyclases (ACs) may play critical roles in signal integration, the response of muscle cells and pathological vascular remodeling. It also illustrates the relevance of the renewed consideration of ACs as potentially interesting treatment targets. © Société de Biologie, 2016.

  2. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms

    OpenAIRE

    Bradbury, Louis M. T.; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J.; Wurtzel, Eleanore T.

    2012-01-01

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784–11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that...

  3. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergey V., E-mail: Sergey.Ivanov@med.nyu.edu [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  4. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

    Science.gov (United States)

    Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E

    2012-07-31

    Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

  5. The Emerging Role of Soluble Adenylyl Cyclase in Primary Biliary Cholangitis

    NARCIS (Netherlands)

    Chang, Jung-Chin; Beuers, Ulrich; Oude Elferink, Ronald P. J.

    2017-01-01

    Primary biliary cholangitis (PBC; previously referred to as primary biliary cirrhosis) is a chronic fibrosing cholangiopathy with the signature of an autoimmune disease and features of intrahepatic cholestasis. Immunosuppressing treatments are largely unsuccessful. Responsiveness to ursodeoxycholic

  6. Cyclic Nucleotide Signalling in Kidney Fibrosis

    Directory of Open Access Journals (Sweden)

    Elisabeth Schinner

    2015-01-01

    Full Text Available Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure.

  7. APPRIS 2017: principal isoforms for multiple gene sets

    Science.gov (United States)

    Rodriguez-Rivas, Juan; Di Domenico, Tomás; Vázquez, Jesús; Valencia, Alfonso

    2018-01-01

    Abstract The APPRIS database (http://appris-tools.org) uses protein structural and functional features and information from cross-species conservation to annotate splice isoforms in protein-coding genes. APPRIS selects a single protein isoform, the ‘principal’ isoform, as the reference for each gene based on these annotations. A single main splice isoform reflects the biological reality for most protein coding genes and APPRIS principal isoforms are the best predictors of these main proteins isoforms. Here, we present the updates to the database, new developments that include the addition of three new species (chimpanzee, Drosophila melangaster and Caenorhabditis elegans), the expansion of APPRIS to cover the RefSeq gene set and the UniProtKB proteome for six species and refinements in the core methods that make up the annotation pipeline. In addition APPRIS now provides a measure of reliability for individual principal isoforms and updates with each release of the GENCODE/Ensembl and RefSeq reference sets. The individual GENCODE/Ensembl, RefSeq and UniProtKB reference gene sets for six organisms have been merged to produce common sets of splice variants. PMID:29069475

  8. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines

    Czech Academy of Sciences Publication Activity Database

    Šebo, Peter; Osička, Radim; Mašín, Jiří

    2014-01-01

    Roč. 13, č. 10 (2014), s. 1215-1227 ISSN 1476-0584 R&D Projects: GA ČR GA13-14547S; GA ČR(CZ) GAP302/11/0580; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * antigen delivery * Bordetella pertussis Subject RIV: EE - Microbiology, Virology Impact factor: 4.210, year: 2014

  9. Regulation of melanogenesis: the role of cAMP and MITF

    Directory of Open Access Journals (Sweden)

    Michał Otręba

    2012-01-01

    Full Text Available The article presents the melanogenesis pathway and the role of cyclic adenosine monophosphate (cAMP and microphthalmia transcription factor (MITF in regulation of this process. Products of melanogenesis are eu- and/or pheomelanins synthesized in a multistage process of tyrosine oxidation and polymerization. The conversions require the presence of tyrosinase (TYR, key enzyme, tyrosine hydroxylase isoform I (THI and tyrosinase related proteins (TRP1 and TRP2. Many types of signal molecules and transcription factors participate in regulation of melanin synthesis, but the most important are cAMP and MITF. cAMP is the second messenger in the intracellular signal cascade, which is synthesized from adenosine triphosphate (ATP by adenylyl cyclase, activated among others by the melanocortin receptor and the αS subunit of G protein. The signal molecule cAMP regulates MITF, TYR, THI, GTP-cyclohydroxylase I (GTP-CHI transcription and phenylalanine hydroxylase (PAH phosphorylation at Ser16 by protein kinase A (PKA. Mutations of genes encoding proteins belonging to the cAMP signal cascade may lead to McCune-Albright and Carney syndromes. MITF is one of the most important nuclear transcription factors regulating melanogenesis. Currently 10 isoforms of human MITF are known, but in melanocytes only MITF-M, MITF-Mdel, MITF-A and MITF-H occur. MITF transcription factor regulates melanogenesis by activation of tyrosinase, TRP1 and TRP2 transcription. It also affects expression of other factors regulating melanosome maturation, biogenesis and transport. Moreover, it regulates melanocyte proliferation and protection against apoptosis. Mutations of the MITF gene may lead to hereditary diseases: Waardenburg type II and Tietz syndromes.

  10. Inhibitors of glutaminyl cyclases against Alzheimer´s disease

    Czech Academy of Sciences Publication Activity Database

    Kolenko, Petr; Koch, B.; Schilling, S.; Rahfeld, J.-U.; Demuth, H.-U.; Stubbs, M. T.

    2013-01-01

    Roč. 20, č. 1 (2013), s. 16 ISSN 1211-5894. [Discussions in Structural Molecular Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] R&D Projects: GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : glutaminyl cyclases * Alzheimer ´s disease Subject RIV: CE - Biochemistry

  11. Zebrafish Model of NF1 for Structure-Function Analysis, Mechanisms of Glial Tumorigenesis, and Chemical Biology

    Science.gov (United States)

    2015-08-01

    models. Zinc-finger nucleases (ZFNs) are chimeric fusions between a zinc-finger protein (ZFP) and the nuclease domain of FokI (Urnov et al., 2010). ZFNs...reference line. Once a target site is chosen, the user can click on the ZFN entry (QueryID; see Fig. 4B) for details about each construct (Fig. 4C...Zhong, Y. (1997). Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuro- peptides . Science 276, 795–798.ports 8, 1265

  12. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus

    OpenAIRE

    Valdizán, Elsa M.; Castro, Elena; Pazos, Ángel

    2009-01-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal r...

  13. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  14. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    International Nuclear Information System (INIS)

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E.

    1987-01-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [ 125 I]iodocyanopindolol. Binding sites had the characteristics of mixed β 1 - and β 2 -type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β 1 -adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  15. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    International Nuclear Information System (INIS)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A.

    2013-01-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility

  16. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  17. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  18. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin

    Science.gov (United States)

    Ravichandran, Akshaya; Gu, Ganyu; Escano, Jerome; Lu, Shi-En; Smith, Leif

    2014-01-01

    Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides. PMID:23394257

  19. Effects of PTH and Ca2+ on renal adenyl cyclase

    International Nuclear Information System (INIS)

    Nielsen, S.T.; Neuman, W.F.

    1978-01-01

    The effects of calcium ion on the adenylate cyclase system was studied in isolated, renal basal-lateral plasma membranes of the rat. Bovine parathyroid hormone (bPTH) and a guanyl triphosphate analogue, Gpp(NH)p were used to stimulate cyclase activity. Under conditions of maximal stimulation, calcium ions inhibited cyclic adenosine monophosphate (cAMP) formation, the formation rate falling exponentially with the calcium concentration. Fifty percent inhibition of either bPTH- or Gpp(NH)p-stimulated activity was given by approximately 50 μM Ca 2+ . Also the Hill coefficient for the inhibition was close to unity in both cases. The concentration of bPTH giving half-maximal stimulation of cAMP formation (1.8 x 10 -8 M) was unchanged by the presence of calcium. These data suggest that calcium acts at some point other than the initial hormone-receptor interaction, presumably decreasing the catalytic efficiency of the enzymic moiety of the membrane complex

  20. Overexpression of guanylate cyclase activating protein 2 in rod photoreceptors in vivo leads to morphological changes at the synaptic ribbon.

    Directory of Open Access Journals (Sweden)

    Natalia López-del Hoyo

    Full Text Available Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout and gain-of-function (transgenic overexpression mouse models of GCAP2. Rod synaptic ribbons in GCAPs-/- mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs-/- background (GCAP2 expression in the absence of endogenous GCAP1 had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of

  1. WT1 isoform expression pattern in acute myeloid leukemia.

    Science.gov (United States)

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Ibañez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Oscar; Dolz, Sandra; Oltra, Silvestre; Alonso, Carmen; Vera, Belén; Lorenzo, Ignacio; Martínez-Cuadrón, David; Montesinos, Pau; Senent, M Leonor; Moscardó, Federico; Bolufer, Pascual; Sanz, Miguel A

    2013-12-01

    WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Specific Profile of Tau Isoforms in Argyrophylic Grain Disease

    Directory of Open Access Journals (Sweden)

    Alberto Rábano

    2013-01-01

    Full Text Available Argyrophylic grain disease (AGD is a neurodegenerative condition that has been classified among the sporadic tauopathies. Entities in this group present intracellular aggregates of hyperphosphorylated tau, giving rise to characteristic neuronal and glial inclusions. In different tauopathies, the proportion of several tau isoforms present in the aggregates shows specific patterns. AGD has been tentatively classified in the 4R group (predominance of 4R tau isoforms together with progressive supranuclear palsy and corticobasal degeneration. Pick's disease is included in the 3R group (predominance of 3R isoforms, whereas tau pathology of Alzheimer's disease represents and intermediate group (3 or 4 repeats [3R plus 4R, respectively] isoforms. In this work, we have analyzed tau present in aggregates isolated from brain samples of patients with argyrophylic grain disease. Our results indicate that the main tau isoform present in aggregates obtained from patients with AGD is a hyperphosphorylated isoform containing exons 2 and 10 but lacking exon 3.

  3. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells.

    OpenAIRE

    Jiang, M; Pandey, S; Tran, V T; Fong, H K

    1991-01-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein alpha subunits (G alpha) including Gs alpha, Gi-1 alpha, Gi-2 alpha, Gi-3 alpha, and Gz alpha (or Gx alpha), where Gs and Gi are proteins that stimulate or inhibit adenylyl cyclase, respectively, and Gz is a protein that may mediate pertussis toxin-insensi...

  4. Bordetella adenylate cyclase toxin: a swift saboteur of host defense

    Czech Academy of Sciences Publication Activity Database

    Vojtová, Jana; Kamanová, Jana; Šebo, Peter

    2006-01-01

    Roč. 9, - (2006), s. 1-7 ISSN 1369-5274 R&D Projects: GA AV ČR IAA5020406; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50200510 Keywords : cyaa * scanning electron microscopy * cyclase toxin Subject RIV: EE - Microbiology, Virology Impact factor: 7.445, year: 2006

  5. Human CRF2 α and β splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay

    International Nuclear Information System (INIS)

    Ardati, A.; Goetschy, V.; Gottowick, J.; Henriot, S.; Deuschle, U.; Kilpatrick, G.J.; Valdenaire, O.

    1999-01-01

    Corticotropin releasing factor (CRF) receptors belong to the super-family of G protein-coupled receptors. These receptors are classified into two subtypes (CRF 1 and CRF 2 ). Both receptors are positively coupled to adenylyl cyclase but they have a distinct pharmacology and distribution in brain. Two isoforms belonging to the CRF 2 subtype receptors, CRF 2α and CRF 2β , have been identified in rat and man. The neuropeptides CRF and urocortin mediate their actions through this CRF G protein-coupled receptor family. In this report, we describe the pharmacological characterization of the recently identified hCRF 2β receptor. We have used radioligand binding with [ 125 I]-tyr 0 -sauvagine and a gene expression assay in which the firefly luciferase gene expression is under the control of cAMP responsive elements. Association kinetics of [ 125 I]-tyr 0 -sauvagine binding to the hCRF 2β receptor were monophasic while dissociation kinetics were biphasic, in agreement with the kinetics results obtained with the hCRF 2α receptor. Saturation binding analysis revealed two affinity states in HEK 293 cells with binding parameters in accord with those determined kinetically and with parameters obtained with the hCRF 2α receptor. A non-hydrolysable GTP analog, Gpp(NH)p, reduced the high affinity binding of [ 125 I]-tyr 0 -sauvagine to both hCRF 2 receptor isoforms in a similar manner. The rank order of potency of CRF agonist peptides in competition experiments was identical for both hCRF 2 α-helical CRF (9-41) oCRF). Similarly, agonist potency was similar for the two isoforms when studied using the luciferase gene reporter system. The peptide antagonist α-helical CRF (9-41) exhibited a non-competitive antagonism of urocortin-stimulated luciferase expression with both hCRF 2 receptor isoforms. Taken together, these results indicate that the pharmacological profiles of the CRF 2 splice variants are identical. This indicates that the region of the N-terminus that varies

  6. Characterisation of Cdkl5 transcript isoforms in rat.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Ritakari, Tuula E; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2017-03-01

    CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain isoform is a 9.7kb transcript comprised of 18 exons with a large 6.6kb 3'-untranslated region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, such as rat. In this study we characterise, both bioinformatically and experimentally, the rat Cdkl5 gene structure and its associated transcript isoforms. New exonic regions, splice sites and UTRs are described, confirming the presence of four distinct transcript isoforms. The predominant isoform in the brain, which we name rCdkl5_1, is orthologous to the human hCDKL5_1 and mouse mCdkl5_1 isoforms and is the most highly expressed isoform across all brain regions tested. This updated gene model of Cdkl5 in rat provides a framework for studies into its protein products and provides a reference for the development of molecular therapies for testing in rat models of CDKL5 disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-01-01

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 μM isoproterenol and 50 μM GTP-γ-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 μM GTP-γ-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of β-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes

  8. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A; Turek, Ilona S.

    2017-01-01

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  9. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A.

    2017-10-04

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  10. Oxygenation properties and isoform diversity of snake hemoglobins

    DEFF Research Database (Denmark)

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking fo...... isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform....

  11. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    Science.gov (United States)

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  12. Genetic deficiency of the α subunit of the guanine nucleotide-binding protein G/sub s/ as the molecular basis for Albright hereditary osteodystrophy

    International Nuclear Information System (INIS)

    Levine, M.A.; Ahn, T.G.; Klupt, S.F.; Kaufman, K.D.; Smallwood, P.M.; Bourne, H.R.; Sullivan, K.A.; Van Dop, C.

    1988-01-01

    Patients who have pseudohypoparathyroidism type I associated with Albright hereditary osteodystrophy commonly have a genetic deficiency of the α subunit of the G protein that stimulated adenylyl cyclase αG/sub s/. To discover the molecular mechanism that causes αG/sub s/ deficiency in these patients, the authors examined eight kindreds with one or more members affected with Albright hereditary osteodystrophy or pseudohypoparathyroidism and αG/sub s/ deficiency. In these families, αG/sub s/, deficiency and the Albright hereditary osteodystrophy phenotype were transmitted together in a dominant inheritance pattern. Using a cDNA hybridization probe for αG/sub s/, restriction analysis with several analysis with several endonucleases showed no abnormalities of restriction fragments or gene dosage. RNA blot and dot blot analysis of total RNA from cultured fibroblasts obtained from the patients revealed ∼ 50% reduced mRNA levels for αG/sub s/ in affected members of six of the pedigrees but normal levels in affected members of the two other pedigrees, compared to mRNA levels in fibroblasts from unaffected individuals. By contrast, mRNA levels encoding the α subunit of the G protein that inhibits adenylyl cyclase were not altered. These findings suggest that several molecular mechanisms produce αG/sub s/ deficiency in patients with pseudohypoparathyroidism type Ia and that major gene rearrangements or deletions are not a common cause for αG/sub s/ deficiency in pseudohypoparathyroidism type I

  13. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  14. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.

    Science.gov (United States)

    Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R

    2006-03-01

    Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.

  15. Adenylate cyclase regulation in intact cultured myocardial cells

    International Nuclear Information System (INIS)

    Marsh, J.D.; Roberts, D.J.

    1987-01-01

    To examine the coupling of cardiac cell-surface β-adrenergic receptors to adenylate cyclase activation and contractile response, the authors studied this receptor-effector response system in monolayers of spontaneously contracting chick embryo ventricular cells under physiological conditions. The hydrophilic ligand 3 H-CGP12177 identified uniformly high-agonist affinity β-adrenergic receptors. Isoproterenol-stimulated cyclic AMP (cAMP) accumulation with 50% effective concentration at (EC 50 ) = 12.1 nM and augmented contractile response with EC 50 = 6 nM under identical conditions. One micromolar isoproterenol induced receptor loss from the cell surface with t/sub 1/2/ = 13.2 min; under identical conditions cAMP content declined with t/sub 1/2/ = 13.5 min and contractile response with t/sub 1/2/ = 20.7 min. After agonist removal cAMP response recovered with t/sub 1/2/ = 15.7 min and receptors with t/sub 1/2/ = 24.7 min. Sixty minutes after agonist removal there was recovery of 52% of maximal cAMP responsiveness and 82% of the initial number of receptors; receptor occupancy was associated with 78% of initial contractile response. Agonist affinity for cell-surface receptors was changed only modestly by agonist exposure. They conclude that for this system there is relatively close coupling between high-affinity receptors, adenylate cyclase stimulation, and contractile response

  16. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    International Nuclear Information System (INIS)

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of [ 3 H]GDP binding to plasma membranes suggested a single high affinity site with a K d = 0.24 uM. Competition studies indicated that GTP γ S was 7-fold more potent than GDP β S. Bound GDP could be released by FSH in the presence of GTP γ S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP β S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP β S competitively inhibited GTP γ S-stimulated adenylate cyclase activity with a K i = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP γ S-bound form persisted even if GDP β S previously occupied all available binding sites. Two membrane proteins, M r = 43,000 and 48,000, were ADP·ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP γ S but not by GDP β S. The M r = 43,000 and 48,000 proteins represented variant forms of G S . A single protein of M r = 40,000 (G i ) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC 50 = 0.1 uM. The adenosine analog, N 6 ·phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin

  17. Irradiation inactivation studies of the dopamine D1 receptor and dopamine-stimulated adenylate cyclase in rat striatum

    International Nuclear Information System (INIS)

    Anderson, P.H.; Nielson, M.

    1987-01-01

    In frozen rat striatal tissue, exposed to 10 MeV electrons from a linear accelerator, the sizes of the dopamine (DA) D 1 receptor and the DA sensitive adenylate cyclase complex were determined using target size analysis. The number of D 1 receptors (labelled by [ 3 H]SCH 23390)declined monoexponentially with increasing radiation intensity, yielding a molecular weight (mol. wt.) of 80kDa. Also the activity of the catalytic unit (C) of the adenylate cyclase (as measured by forskolin stimulation), decreased monoexponentially however with a mol. wt. of 145 kDa. Both basal, DA- and flouride (F - ) stimulated activity declined in a concave downward fashion with a limiting mol. wt. of 134, 138 and 228 kDa respectively. It was estimated that the basal and DA - stimulated activity originated from an enzyme complex with a mol. wt. of 325 kDa a value close to the combined size of R G S + C. These data suggest that F - stimulation of the adenylate cyclase, which occurs by a G S activation, does not cause disassociation of G S into the α S and βγ subunits. Further, the AA-regulated adenylate cyclase apparently exists as a complex consisting of RG S and C; the mechanisms of hormonal activation is dissociation of C from this complex

  18. Identification and characterization of novel smoothelin isoforms in vascular smooth muscle.

    Science.gov (United States)

    Krämer, J; Quensel, C; Meding, J; Cardoso, M C; Leonhardt, H

    2001-01-01

    Smoothelin is a cytoskeletal protein specifically expressed in differentiated smooth muscle cells and has been shown to colocalize with smooth muscle alpha actin. In addition to the small smoothelin isoform of 59 kD, we recently identified a large smoothelin isoform of 117 kD. The aim of this study was to identify and characterize novel smoothelin isoforms. The genomic structure and sequence of the smoothelin gene were determined by genomic PCR, RT-PCR and DNA sequencing. Comparison of the cDNA and genomic sequences shows that the small smoothelin isoform is generated by transcription initiation 10 kb downstream of the start site of the large isoform. In addition to the known smoothelin cDNA (c1 isoform) we identified two novel cDNA variants (c2 and c3 isoform) that are generated by alternative splicing within a region, which shows similarity to the spectrin family of F-actin cross-linking proteins. Visceral organs express the c1 form, while the c2 form prevails in well-vascularized tissue as analyzed by RT-PCR. We then generated specific antibodies against the major smoothelin isoforms and could show by Western blotting and immunohistochemistry that the large isoform is specifically expressed in vascular smooth muscle cells, while the small isoform is abundant in visceral smooth muscle. These results strongly suggest that the smoothelin gene contains a vascular and a visceral smooth muscle promoter. The cell-type-specific expression of smoothelin isoforms that are associated with actin filaments may play a role in the modulation of the contractile properties of different smooth muscle cell types. Copyright 2001 S. Karger AG, Basel

  19. Effect of hypolipidemic drugs on basal and stimulated adenylate cyclase activity in tumor cells

    International Nuclear Information System (INIS)

    Bershtein, L.M.; Kovaleva, I.G.; Rozenberg, O.A.

    1986-01-01

    This paper studies adenylate cyclase acticvity in Ehrlich's ascites carcinoma (EAC) cells during administration of drugs with a hypolipidemic action. Seven to eight days before they were killed, male mice ingested the antidiabetic biguanide phenformin, and the phospholipid-containing preparation Essentiale in drinking water. The cAMP formed was isolated by chromatography on Silufol plates after incubation of the enzyme preparation with tritium-ATP, or was determined by the competitive binding method with protein. It is shown that despite the possible differences in the concrete mechanism of action of the hypolipidemic agents chosen for study on the cyclase system, the use of such agents, offers definite prospects for oriented modification of the hormone sensitivity of tumor cells

  20. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland

    Science.gov (United States)

    De Jonge, Hugo R.; Tilly, Ben C.; Hogema, Boris M.; Pfau, Daniel J.; Kelley, Catherine A.; Kelley, Megan H.; Melita, August M.; Morris, Montana T.; Viola, Ryan M.

    2013-01-01

    The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG. PMID:24259420

  1. Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa.

    Science.gov (United States)

    Yang, Xinmei; Matsui, Takashi; Kodama, Takeshi; Mori, Takahiro; Zhou, Xiaoxi; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2016-03-01

    In polyketide biosynthesis, ring formation is one of the key diversification steps. Olivetolic acid cyclase (OAC) from Cannabis sativa, involved in cannabinoid biosynthesis, is the only known plant polyketide cyclase. In addition, it is the only functionally characterized plant α+β barrel (DABB) protein that catalyzes the C2-C7 aldol cyclization of the linear pentyl tetra-β-ketide CoA as the substrate, to generate olivetolic acid (OA). Herein, we solved the OAC apo and OAC-OA complex binary crystal structures at 1.32 and 1.70 Å resolutions, respectively. The crystal structures revealed that the enzyme indeed belongs to the DABB superfamily, as previously proposed, and possesses a unique active-site cavity containing the pentyl-binding hydrophobic pocket and the polyketide binding site, which have never been observed among the functionally and structurally characterized bacterial polyketide cyclases. Furthermore, site-directed mutagenesis studies indicated that Tyr72 and His78 function as acid/base catalysts at the catalytic center. Structural and/or functional studies of OAC suggested that the enzyme lacks thioesterase and aromatase activities. These observations demonstrated that OAC employs unique catalytic machinery utilizing acid/base catalytic chemistry for the formation of the precursor of OA. The structural and functional insights obtained in this work thus provide the foundation for analyses of the plant polyketide cyclases that will be discovered in the future. Structural data reported in this paper are available in the Protein Data Bank under the accession numbers 5B08 for the OAC apo, 5B09 for the OAC-OA binary complex and 5B0A, 5B0B, 5B0C, 5B0D, 5B0E, 5B0F and 5B0G for the OAC His5Q, Ile7F, Tyr27F, Tyr27W, Val59M, Tyr72F and His78S mutant enzymes, respectively. © 2016 Federation of European Biochemical Societies.

  2. Inulin isoforms differ by repeated additions of one crystal unit cell

    Science.gov (United States)

    Cooper, Peter D.; Barclay, Thomas G.; Ginic-Markovic, Milena; Gerson, Andrea R.; Petrovsky, Nikolai

    2014-01-01

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the ‘energetic unit’ equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an ‘energetic unit’ equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain. PMID:24528745

  3. The effects of sex and neonatal stress on pituitary adenylate cyclase-activating peptide expression.

    Science.gov (United States)

    Mosca, E V; Rousseau, J P; Gulemetova, R; Kinkead, R; Wilson, R J A

    2015-02-01

    What is the central question of this study? Does sex or neonatal stress affect the expression of pituitary adenylate cyclase-activating peptide or its receptors? What is the main finding and its importance? Neonatal-maternal separation stress has little long-lasting effect on the expression of pituitary adenylate cyclase-activating peptide or its receptors, but sex differences exist in these genes between males and females at baseline. Sex differences in classic stress hormones have been studied in depth, but pituitary adenylate cyclase-activating peptide (PACAP), recently identified as playing a critical role in the stress axes, has not. Here we studied whether baseline levels of PACAP differ between sexes in various stress-related tissues and whether neonatal-maternal separation stress has a sex-dependent effect on PACAP gene expression in stress pathways. Using quantitative RT-PCR, we found sex differences in PACAP and PACAP receptor gene expression in several respiratory and/or stress-related tissues, while neonatal-maternal separation stress did little to affect PACAP signalling in adult animals. We propose that sex differences in PACAP expression are likely to contribute to differences between males and females in responses to stress. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  4. Prostaglandin D Synthase Isoforms from Cerebrospinal Fluid Vary with Brain Pathology

    Directory of Open Access Journals (Sweden)

    Michael G. Harrington

    2006-01-01

    Full Text Available Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and acquired diseases. The purpose of this study was to examine changes in PTGDS isoforms in such a population. Spinal fluid from 22 healthy study participants (normal controls with no classifiable neurological or psychiatric diagnosis was obtained and PTGDS isoforms were identified by specific immunostaining and mass spectrometry after denaturing 2D gel electrophoresis. The PTGDS isoforms in controls consisted of five charge isoforms that were always present and a small number of occasional, low abundance isoforms. A qualitative survey of 98 different people with a wide range of congenital and acquired diseases revealed striking changes. Loss of the control isoforms occurred in congenital malformations of the nervous system. Gain of additional isoforms occurred in some degenerative, most demyelinating and vasculitic diseases, as well as in Creutzfeldt-Jakob disease. A retrospective analysis of published data that quantified relative amounts of PTGDS in multiple sclerosis, schizophrenia and Parkinson’s disease compared to controls revealed significant dysregulation. It is concluded that qualitative and quantitative fluctuations of cerebrospinal fluid PTGDS isoforms reflect both major and subtle brain pathophysiology.

  5. Structure of glutaminyl cyclase from Drosophila melanogaster in space group I4

    Czech Academy of Sciences Publication Activity Database

    Kolenko, Petr; Koch, B.; Rahfeld, J.-U.; Schilling, S.; Demuth, H.-U.; Stubbs, M. T.

    2013-01-01

    Roč. 69, č. 4 (2013), s. 358-361 ISSN 1744-3091 R&D Projects: GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : glutaminyl cyclases * Drosophila melanogaster * soaking Subject RIV: CE - Biochemistry Impact factor: 0.568, year: 2013

  6. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States); Hofmann, Wilma A., E-mail: whofmann@buffalo.edu [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States)

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  7. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    Directory of Open Access Journals (Sweden)

    Ma’ayan Israeli

    2016-08-01

    Full Text Available Edema Factor (EF, the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP, and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.

  8. Diphtheria toxin can simultaneously bind to its receptor and adenylyl-(3',5')-uridine 3'-monophosphate

    International Nuclear Information System (INIS)

    Barbieri, J.T.; Collins, C.M.; Collier, R.J.

    1986-01-01

    Diphtheria toxin (DT) that was bound to receptors on BS-C-1 cells was able to bind approximately 1 molar equiv of adenylyl-(3',5')-uridine 3'-monophosphate (ApUp). In contrast, receptor-bound CRM197, a mutant form of toxin with greatly diminished affinity for dinucleotides, did not bind ApUp. Affinity of the dinucleotide for receptor-bound toxin differed from that for free toxin by less than an order of magnitude. These results indicate that the receptor site and the ApUp site on the toxin do not significantly overlap. BS-C-1 cells were incubated with or without 125 I-DT or CRM 197. They were then incubated with [ 32 P]ApUp, and assayed

  9. Modulation of neuronal differentiation by CD40 isoforms

    International Nuclear Information System (INIS)

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-01-01

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40 -/- deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40 -/- mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may represent

  10. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa eDuda

    2014-03-01

    Full Text Available Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase, ONE-GC. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, atrial natriuretic factor (ANF and B-type natriuretic peptide (BNP. After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation and anti-proliferation. Very recently another modus operandi for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin  mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.

  11. Detection of VEGF-A(xxx)b isoforms in human tissues.

    Science.gov (United States)

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  12. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A.

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  13. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A

    2010-01-01

    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  14. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  15. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Science.gov (United States)

    Béziau, Delphine M; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the

  16. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  17. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  18. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

    Science.gov (United States)

    Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-11-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP

  19. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of (/sup 14/C)adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with /sup 60/Co ..gamma..-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of ..gamma..-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after high doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m/sup -2/) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as ..gamma..-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  20. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli

    International Nuclear Information System (INIS)

    Chatterjee, A.; Bhattacharya, A.K.

    1988-01-01

    The incorporation of [ 14 C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60 Co γ-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of γ-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after high doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m -2 ) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as γ-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells. (author)

  1. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    Science.gov (United States)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  2. Hypoxic Vasospasm Mediated by cIMP: When Soluble Guanylyl Cyclase Turns Bad.

    Science.gov (United States)

    Gao, Yuansheng; Chen, Zhengju; Leung, Susan W S; Vanhoutte, Paul M

    2015-06-01

    In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5'-triphosphate and in the synthesis of inosine 3',5'-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5'-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.

  3. Oxygenation properties and isoform diversity of snake hemoglobins.

    Science.gov (United States)

    Storz, Jay F; Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E

    2015-11-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. Copyright © 2015 the American Physiological Society.

  4. Functional Lycopene Cyclase (CruA) in Cyanobacterium, Arthrospira platensis NIES-39, and its Role in Carotenoid Synthesis.

    Science.gov (United States)

    Sugiyama, Kenjiro; Ebisawa, Masashi; Yamada, Masaharu; Nagashima, Yoshiki; Suzuki, Hideyuki; Maoka, Takashi; Takaichi, Shinichi

    2017-04-01

    The genus Arthrospira is filamentous, non-nitrogen-fixing cyanobacteria that is commercially important. We identified the molecular structures of carotenoids in Arthrospira platensis NIES-39. The major carotenoid identified was β-carotene. In addition, the hydroxyl derivatives of β-cryptoxanthin and (3R,3'R)-zeaxanthin were also found to be present. The carotenoid glycosides were identified as (3R,2'S)-myxol 2'-methylpentoside and oscillol 2,2'-dimethylpentoside. The methylpentoside moiety was a mixture of fucoside and chinovoside in an approximate ratio of 1 : 4. Trace amounts of the ketocarotenoid 3'-hydroxyechinenone were also found. Three types of lycopene cyclases have been functionally confirmed in carotenogenesis organisms. In cyanobacteria, the functional lycopene cyclases (CrtL, CruA and CruP) have only been found in four species. In this study, we found that CruA exhibited lycopene cyclase activity in transformed Escherichia coli, which contains lycopene, but CruP exhibited no lycopene cyclase activity and crtL was absent. This is the third cyanobacterial species in which CruA activity has been confirmed. Neurosporene was not a substrate of CruA in E. coli, whereas lycopene cyclases of CrtY (bacteria), CrtL (plants) and CrtYB (fungi) have been reported to convert neurosporene to 7,8-dihydro-β-carotene. β-Carotene hydroxylase (CrtR) was found to convert β-carotene to zeaxanthin in transformed E. coli, which contains β-carotene. Among the β-carotene hydroxylases, bacterial CrtZ and eukaryotic CrtR and BCH have similarities, whereas cyanobacterial CrtR appears to belong to another clade. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the A. platensis NIES-39 genome, we propose a biosynthetic pathway for the carotenoids as well as the corresponding genes and enzymes. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved

  5. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-01-01

    center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified

  6. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    M. R. Aquino-Silva

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  7. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva M. R.

    2003-01-01

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  8. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes

    DEFF Research Database (Denmark)

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B

    2015-01-01

    understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each...

  9. An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia.

    Science.gov (United States)

    Turetsky, Bruce I; Moberg, Paul J

    2009-02-01

    Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.

  10. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    International Nuclear Information System (INIS)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun; Chao, How-Ran; Shy, Cherng-Gueih; Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching; Ko, Ying-Chin

    2010-01-01

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing that ≥ 300 μM arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.

  11. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    Science.gov (United States)

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  12. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  13. Expression of a novel cardiac-specific tropomyosin isoform in humans

    International Nuclear Information System (INIS)

    Denz, Christopher R.; Narshi, Aruna; Zajdel, Robert W.; Dube, Dipak K.

    2004-01-01

    Tropomyosins are a family of actin binding proteins encoded by a group of highly conserved genes. Humans have four tropomyosin-encoding genes: TPM1, TPM2, TPM3, and TPM4, each of which is known to generate multiple isoforms by alternative splicing, promoters, and 3 ' end processing. TPM1 is the most versatile and encodes a variety of tissue specific isoforms. The TPM1 isoform specific to striated muscle, designated TPM1α, consists of 10 exons: 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b. In this study, using RT-PCR with adult and fetal human RNAs, we present evidence for the expression of a novel isoform of the TPM1 gene that is specifically expressed in cardiac tissues. The new isoform is designated TPM1κ and contains exon 2a instead of 2b. Ectopic expression of human GFP.TPM1κ fusion protein can promote myofibrillogenesis in cardiac mutant axolotl hearts that are lacking in tropomyosin

  14. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chen, Yicai; Yuan, Mingjun; Mohanty, Anee

    2015-01-01

    The nucleotide signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an essential role in regulating microbial virulence and biofilm formation. C-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. One...

  15. Sumatriptan increases the proliferation of peripheral blood mononuclear cells from HIV-infected individuals and healthy blood donors in vitro

    DEFF Research Database (Denmark)

    Afzelius, P; Nielsen, Jens Ole

    2000-01-01

    responsible for regulation of the intracellular levels of cAMP. In a preliminary study sumatriptan increased the proliferative responses of PBMC to a polyclonal activator in vitro in 9 of 10 HIV-seropositive individuals (p=0.007), and in 7 of 9 healthy blood donors (p=0.05). This was probably due...... of the intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) has been shown to cause impaired proliferative capacity of peripheral blood mononuclear cells (PBMC) from HIV-infected individuals in vitro. Sumatriptan, a 5HT1d receptor agonist, inhibits the activity of adenylyl cyclases, the enzymes...

  16. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    The Na+,K+-ATPase is an essential ion pump found in all animal cells. It uses the energy from ATP hydrolysis to export three Na+ and import two K+, both against their chemical gradients and for Na+ also against the electrical potential. Mammals require four Na+,K+-ATPase isoforms that each have...... unique expression profiles and specialized functional features. We use a Two Electrode Voltage Clamp setup to determine pre-steady-state and steady-state characteristics of each isoform and design chimeras to pin-point the structural elements responsible for observed differences. With this strategy we...

  17. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  18. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-alpha-pinene and (-)-beta-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate

    International Nuclear Information System (INIS)

    Croteau, R.B.; Wheeler, C.J.; Cane, D.E.; Ebert, R.; Ha, H.J.

    1987-01-01

    To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10- 2 H 3 ,1- 3 H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed

  19. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a...

  20. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  1. Plectin isoforms as organizers of intermediate filament cytoarchitecture.

    Science.gov (United States)

    Wiche, Gerhard; Winter, Lilli

    2011-01-01

    Intermediate filaments (IFs) form cytoplamic and nuclear networks that provide cells with mechanical strength. Perturbation of this structural support causes cell and tissue fragility and accounts for a number of human genetic diseases. In recent years, important additional roles, nonmechanical in nature, were ascribed to IFs, including regulation of signaling pathways that control survival and growth of the cells, and vectorial processes such as protein targeting in polarized cellular settings. The cytolinker protein plectin anchors IF networks to junctional complexes, the nuclear envelope and cytoplasmic organelles and it mediates their cross talk with the actin and tubulin cytoskeleton. These functions empower plectin to wield significant influence over IF network cytoarchitecture. Moreover, the unusual diversity of plectin isoforms with different N termini and a common IF-binding (C-terminal) domain enables these isoforms to specifically associate with and thereby bridge IF networks to distinct cellular structures. Here we review the evidence for IF cytoarchitecture being controlled by specific plectin isoforms in different cell systems, including fibroblasts, endothelial cells, lens fibers, lymphocytes, myocytes, keratinocytes, neurons and astrocytes, and discuss what impact the absence of these isoforms has on IF cytoarchitecture-dependent cellular functions.

  2. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2.

    Science.gov (United States)

    Peach, Chloe J; Mignone, Viviane W; Arruda, Maria Augusta; Alcobia, Diana C; Hill, Stephen J; Kilpatrick, Laura E; Woolard, Jeanette

    2018-04-23

    Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGF xxx a or VEGF xxx b isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF 165 a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.

  3. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  4. Differential Signature of the Centrosomal MARK4 Isoforms in Glioma

    Directory of Open Access Journals (Sweden)

    Ivana Magnani

    2011-01-01

    Full Text Available Background: MAP/microtubule affinity-regulating kinase 4 (MARK4 is a serine-threonine kinase expressed in two spliced isoforms, MARK4L and MARK4S, of which MARK4L is a candidate for a role in neoplastic transformation. Methods: We performed mutation analysis to identify sequence alterations possibly affecting MARK4 expression. We then investigated the MARK4L and MARK4S expression profile in 21 glioma cell lines and 36 tissues of different malignancy grades, glioblastoma-derived cancer stem cells (GBM CSCs and mouse neural stem cells (NSCs by real-time PCR, immunoblotting and immunohistochemistry. We also analyzed the sub-cellular localisation of MARK4 isoforms in glioma and normal cell lines by immunofluorescence. Results: Mutation analysis rules out sequence variations as the cause of the altered MARK4 expression in glioma. Expression profiling confirms that MARK4L is the predominant isoform, whereas MARK4S levels are significantly decreased in comparison and show an inverse correlation with tumour grade. A high MARK4L/MARK4S ratio also characterizes undifferentiated cells, such as GBM CSCs and NSCs. Accordingly, only MARK4L is expressed in brain neurogenic regions. Moreover, while both MARK4 isoforms are localised to the centrosome and midbody in glioma and normal cells, the L isoform exhibits an additional nucleolar localisation in tumour cells. Conclusions: The observed switch towards MARK4L suggests that the balance between the MARK4 isoforms is carefully guarded during neural differentiation but may be subverted in gliomagenesis. Moreover, the MARK4L nucleolar localisation in tumour cells features this MARK4 isoform as a nucleolus-associated tumour marker.

  5. Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors

    DEFF Research Database (Denmark)

    Hautmann, Matthias; Friis, Ulla G; Desch, Michael

    2007-01-01

    Besides of its functional role in the nervous system, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of cardiovascular function. Therefore, PACAP is a potent vasodilator in several vascular beds, including the renal vasculature. Because...

  6. Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans.

    Science.gov (United States)

    Cao, Chengjun; Wu, Mei; Bing, Jian; Tao, Li; Ding, Xuefen; Liu, Xiaoyun; Huang, Guanghua

    2017-07-01

    The conserved cAMP-dependent protein kinase (PKA) plays critical roles in the regulation of morphological transitions and virulence in the human fungal pathogen Candida albicans. It has long been thought that the PKA catalytic subunit is essential for cell viability in this fungus. Paradoxically, the single adenylyl cyclase-encoding gene, CYR1, which is required for the production of cAMP in C. albicans, is not essential for cell growth. Here, a double mutant of TPK1 and TPK2 (tpk2/tpk2 tpk1/tpk1, t2t1), which encode two isoforms of the PKA catalytic subunit was successfully generated, suggesting that this subunit is not essential for cell viability. Inactivation of the PKA catalytic subunit blocked filamentation and dramatically attenuated white-to-opaque switching, but promoted sexual mating. Comparative transcriptomic analyses demonstrated that the t2t1 and cyr1/cyr1 mutants exhibited similar global gene expression profiles. Compared with the WT strain, the general transcriptional activity and metabolism were significantly decreased in both the t2t1 and cyr1/cyr1 mutants. Using combined phosphoproteomic and bioinformatic analyses, we identified 181 potential PKA phosphorylation targets, which represent 148 unique proteins involved in a wide spectrum of biological processes. The study sheds new insights into the global regulatory features of the cAMP/PKA pathway in C. albicans. © 2017 John Wiley & Sons Ltd.

  7. Developmental changes in circulating IL-8/CXCL8 isoforms in neonates.

    Science.gov (United States)

    Maheshwari, Akhil; Voitenok, Nikolai N; Akalovich, Svetlana; Shaik, Sadiq S; Randolph, David A; Sims, Brian; Patel, Rakesh P; Killingsworth, Cheryl R; Fallon, Michael B; Ohls, Robin K

    2009-04-01

    Interleukin-8 (IL-8/CXCL8) is widely expressed in fetal tissues although inflammatory changes are not seen. Circulating IL-8 is comprised of an endothelial-derived [ala-IL-8](77) isoform and another, more potent [ser-IL-8](72) secreted by most other cells; [ala-IL-8](77) can be converted into [ser-IL-8](72) by proteolytic removal of an N-terminal pentapeptide from [ala-IL-8](77). In this study, we show [ala-IL-8](77) is the predominant circulating isoform of IL-8 in premature neonates but not in term neonates/adults, who have [ser-IL-8](72) as the major isoform. This isoform switch from the less potent [ala-IL-8](77) to [ser-IL-8](72) correlates with a maturational increase in the neutrophil chemotactic potency of plasma IL-8. The emergence of [ser-IL-8](72) as the major isoform is likely due to increased plasma [ala-IL-8](77)-convertase activity and/or changes in the cellular sources of IL-8. Developmental changes in IL-8 isoforms may serve to minimize its inflammatory effects in the fetus and also provide a mechanism to restore its full activity after birth.

  8. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin

    Czech Academy of Sciences Publication Activity Database

    Wald, Tomáš; Petry-Podgorska, Inga; Fišer, Radovan; Matoušek, Tomáš; Dědina, Jiří; Osička, Radim; Šebo, Peter; Mašín, Jiří

    2014-01-01

    Roč. 450, APR 2014 (2014), s. 57-62 ISSN 0003-2697 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR GA13-14547S; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 ; RVO:68081715 Keywords : Potassium * Adenylate cyclase toxin * RTX Subject RIV: CE - Biochemistry Impact factor: 2.219, year: 2014

  9. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinct...... receptor isoforms, of which isoforms 1, 2, and 4, encode functional proteins. Detailed pharmacology on isoforms 1 (unspliced receptor), and 2 (which has an 80 amino acid deletion within the third intracellular loop of the protein) revealed that both isoforms displayed robust responses to a series of known...... revealed a rank order of potency at both isoforms of clobenpropit>iodophenpropit>thioperamide, and these drugs are fivefold less potent at isoform 2 than isoform 1. To further explore the pharmacology of H(3) receptor function, we screened 150 clinically relevant neuropsychiatric drugs for H(3) receptor...

  10. Third Acivity of Bordetella Adenylate Cyclase (AC) Toxin-Hemolysin

    Czech Academy of Sciences Publication Activity Database

    Fišer, Radovan; Mašín, Jiří; Basler, Marek; Krůšek, Jan; Špuláková, V.; Konopásek, Ivo; Šebo, Peter

    2007-01-01

    Roč. 282, č. 5 (2007), s. 2808-2820 ISSN 0021-9258 R&D Projects: GA MŠk 1M0506; GA AV ČR IAA5020406 Grant - others:XE(XE) LSHB-CT-2003-503582; Univerzita Karlova(CZ) 146/2005/B-BIO Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK ; V - iné verejné zdroje Keywords : bordetella * adenylate cyclase toxin * enzymatic aktivity Subject RIV: EE - Microbiology, Virology Impact factor: 5.581, year: 2007

  11. Human CRF{sub 2} {alpha} and {beta} splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay

    Energy Technology Data Exchange (ETDEWEB)

    Ardati, A. [Rhone-Poulenc Rorer, Cardiovascular Biology, NW4, 500 Arcola Road, Collegeville, PA (United States); Goetschy, V.; Gottowick, J.; Henriot, S.; Deuschle, U.; Kilpatrick, G.J. [Central Nervous System, Pharma Division, F. Hoffmann-La Roche AG, CH-4070 Basel (Switzerland); Valdenaire, O. [Cardiovascular Research, Pharma Division, F. Hoffmann-La Roche AG, CH-4070 Basel (Switzerland)

    1999-03-14

    Corticotropin releasing factor (CRF) receptors belong to the super-family of G protein-coupled receptors. These receptors are classified into two subtypes (CRF{sub 1} and CRF{sub 2}). Both receptors are positively coupled to adenylyl cyclase but they have a distinct pharmacology and distribution in brain. Two isoforms belonging to the CRF{sub 2} subtype receptors, CRF{sub 2{alpha}} and CRF{sub 2{beta}}, have been identified in rat and man. The neuropeptides CRF and urocortin mediate their actions through this CRF G protein-coupled receptor family. In this report, we describe the pharmacological characterization of the recently identified hCRF{sub 2{beta}} receptor. We have used radioligand binding with [{sup 125}I]-tyr{sup 0}-sauvagine and a gene expression assay in which the firefly luciferase gene expression is under the control of cAMP responsive elements. Association kinetics of [{sup 125}I]-tyr{sup 0}-sauvagine binding to the hCRF{sub 2{beta}} receptor were monophasic while dissociation kinetics were biphasic, in agreement with the kinetics results obtained with the hCRF{sub 2{alpha}} receptor. Saturation binding analysis revealed two affinity states in HEK 293 cells with binding parameters in accord with those determined kinetically and with parameters obtained with the hCRF{sub 2{alpha}} receptor. A non-hydrolysable GTP analog, Gpp(NH)p, reduced the high affinity binding of [{sup 125}I]-tyr{sup 0}-sauvagine to both hCRF{sub 2} receptor isoforms in a similar manner. The rank order of potency of CRF agonist peptides in competition experiments was identical for both hCRF{sub 2}{alpha}-helical CRF{sub (9-41)}oCRF). Similarly, agonist potency was similar for the two isoforms when studied using the luciferase gene reporter system. The peptide antagonist {alpha}-helical CRF{sub (9-41)} exhibited a non-competitive antagonism of urocortin-stimulated luciferase expression with both hCRF{sub 2} receptor isoforms. Taken together, these results indicate that the

  12. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production].

    Science.gov (United States)

    Jin, Yingfu; Han, Li; Zhang, Shasha; Li, Shizhong; Liu, Weifeng; Tao, Yong

    2017-11-25

    To optimize key enzymes, such as to explore the gene resources and to modify the expression level, can maximize metabolic pathways of target products. β-carotene is a terpenoid compound with important application value. Lycopene cyclase (CrtY) is the key enzyme in β-carotene biosynthesis pathway, catalyzing flavin adenine dinucleotide (FAD)-dependent cyclization reaction and β-carotene synthesis from lycopene precursor. We optimized lycopene cyclase (CrtY) to improve the synthesis of β-carotene and determined the effect of CrtY expression on metabolic pathways. Frist, we developed a β-carotene synthesis module by coexpressing the lycopene β-cyclase gene crtY with crtEBI module in Escherichia coli. Then we simultaneously optimized the ribosome-binding site (RBS) intensity and the species of crtY using oligo-linker mediated DNA assembly method (OLMA). Five strains with high β-carotene production capacity were screened out from the OLMA library. The β-carotene yields of these strains were up to 15.79-18.90 mg/g DCW (Dry cell weight), 65% higher than that of the original strain at shake flask level. The optimal strain CP12 was further identified and evaluated for β-carotene production at 5 L fermentation level. After process optimization, the final β-carotene yield could reach to 1.9 g/L. The results of RBS strength and metabolic intermediate analysis indicated that an appropriate expression level of CrtY could be beneficial for the function of the β-carotene synthesis module. The results of this study provide important insight into the optimization of β-carotene synthesis pathway in metabolic engineering.

  13. Crystallization and Identification of the Glycosylated Moieties of Two Isoforms of the Main Allergen Hev b 2 and Preliminary X-ray Analysis of Two Polymorphs of Isoform ll

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes-Silva,D.; Mendoza-Hernandez, G.; Stojanoff, V.; Palomares, L.; Zenteno, E.; Torres-Larios, A.; Rodriguez-Romero, A.

    2007-01-01

    Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a {beta}-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content consisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapor-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 {angstrom} were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 {angstrom}, {beta}= 113.6{sup o}. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  14. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes-Silva, D. [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Mendoza-Hernández, G. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Stojanoff, V. [Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY (United States); Palomares, L. A. [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Zenteno, E. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Torres-Larios, A. [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Rodríguez-Romero, A., E-mail: adela@servidor.unam.mx [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico)

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  15. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    International Nuclear Information System (INIS)

    Fuentes-Silva, D.; Mendoza-Hernández, G.; Stojanoff, V.; Palomares, L. A.; Zenteno, E.; Torres-Larios, A.; Rodríguez-Romero, A.

    2007-01-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4 1 with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units

  16. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    Directory of Open Access Journals (Sweden)

    Syamalima Dube

    2017-06-01

    Full Text Available In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM, a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4 generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.

  17. The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers

    KAUST Repository

    Wong, Aloysius Tze; Gehring, Christoph A

    2013-01-01

    plants, guanylyl cyclases (GCs), enzymes that generate cGMP from guanosine-5'-triphosphate (GTP) have remained elusive until recently. GC search motifs constructed from the alignment of known GCs catalytic centers form vertebrates and lower eukaryotes

  18. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  19. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  20. Initiation of proteolysis of yeast fructose-1,6-bisphosphatase by pH-control of adenylate cyclase

    International Nuclear Information System (INIS)

    Holzer, H.; Purwin, C.; Pohlig, G.; Scheffers, W.A.; Nicolay, K.

    1986-01-01

    Addition of fermentable sugars or uncouplers such as CCCP to resting yeast cells grown on glucose initiates phosphorylation of fructose-1,6-bisphosphatase (FBPase). There is good evidence that phosphorylation marks FBPase for proteolytic degradation. 31 P-NMR measurements of the cytosolic pH of yeast cells demonstrated a decrease of the cytosolic pH from 7.0 to 6.5 after addition of glucose or CCCP to starved yeast. Activity of adenylate cyclase in permeabilized yeast cells increases 2-3-fold when the pH is lowered from 7.0 to 6.5. It is concluded that pH controlled activation of adenylate cyclase causes the previously described increase in cyclic AMP which leads to phosphorylation of FBPase and finally to proteolysis of FBPase

  1. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  2. The Role of Akt Isoforms in Colorectal Cancer

    Science.gov (United States)

    2015-09-01

    AD_________________ Award Number: W81XWH-13-1-0198 TITLE: The Role of Akt Isoforms in Colorectal Cancer PRINCIPAL INVESTIGATOR: Jatin Roper...CONTRACT NUMBER The Role of Akt Isoforms in Colorectal Cancer 5b. GRANT NUMBER W81XWH-13-1-0198 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...substantially reduces colorectal tumorigenesis in our genetically engineered mouse model. We also successfully ablated novel downstream targets of Akt in our

  3. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  4. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Science.gov (United States)

    Martín, César; Uribe, Kepa B; Gómez-Bilbao, Geraxane; Ostolaza, Helena

    2011-02-23

    Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  5. Stimulation of cyclic GMP efflux in human melanocytes by hypergravity generated by centrifugal acceleration

    NARCIS (Netherlands)

    Ivanova, Krassimira; Zadeh, Nahid Hamidi; Block, Ingrid; Das, Pranab K.; Gerzer, Rupert

    2004-01-01

    Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) plays an important role in human melanocyte functions and different guanylyl cyclase isoforms are responsible for cGMP synthesis in human non-metastatic and metastatic

  6. Adenylate cyclase activity in fish gills in relation to salt adaptation

    International Nuclear Information System (INIS)

    Guibbolini, M.E.; Lahlou, B.

    1987-01-01

    The influence of salt adaptation on specific adenylate cyclase activity (measured by conversion of [α- 32 P] - ATP into [α- 32 P] - cAMP) was investigated in gill plasma membranes of rainbow trout (Salmo gairdneri) adapted to various salinities (deionized water, DW; fresh water, FW; 3/4 sea water, 3/4 SW; sea water, SW) and in sea water adapted- mullet (Mugil sp.). Basal activity declined by a factor of 2 in trout with increasing external salinity (pmoles cAMP/mg protein/10 min: 530 in DW, 440 in FW, 340 in 3/4 SW; 250 in SW) and was very low in SW adapted-mullet: 35. The Km for ATP was similar (0.5 mM) in both FW adapted- and SW adapted- trout in either the absence (basal activity) or in the presence of stimulating agents (isoproterenol; NaF) while the Vm varied. Analysis of stimulation ratios with respect to basal levels of the enzyme showed that hormones and pharmacological substances (isoproterenol, NaF) display a greater potency in high salt than in low salt adapted- fish gills. In contrast, salt adaptation did not have any effect on the regulation of adenylate cyclase by PGE 1 . These results are interpreted in relation to the general process of osmoregulation. 27 references, 6 figures

  7. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  8. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB.20

    International Nuclear Information System (INIS)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT 1C receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing [ 3 H]serotonin, [ 3 H]lysergic acid diethylamide or [ 3 H]dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor

  9. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.

    Science.gov (United States)

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-12-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC.

  10. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas.

    Science.gov (United States)

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Cavallaro, Sebastiano; D'Agata, Velia

    2016-10-01

    PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.

  11. Control of βAR- and N-methyl-D-aspartate (NMDA Receptor-Dependent cAMP Dynamics in Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Andrew Chay

    2016-02-01

    Full Text Available Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs, facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs. To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA, and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.

  12. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    International Nuclear Information System (INIS)

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K.

    2005-01-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP 3 -mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKCα) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKCα-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKCα-specific inhibitor Goe6976 suggested the involvement of PKCα in the regulation of guanylate cyclase activity

  13. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    Science.gov (United States)

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  14. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    Science.gov (United States)

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  15. Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available High-throughput mRNA sequencing (RNA-Seq is widely used for transcript quantification of gene isoforms. Since RNA-Seq data alone is often not sufficient to accurately identify the read origins from the isoforms for quantification, we propose to explore protein domain-domain interactions as prior knowledge for integrative analysis with RNA-Seq data. We introduce a Network-based method for RNA-Seq-based Transcript Quantification (Net-RSTQ to integrate protein domain-domain interaction network with short read alignments for transcript abundance estimation. Based on our observation that the abundances of the neighboring isoforms by domain-domain interactions in the network are positively correlated, Net-RSTQ models the expression of the neighboring transcripts as Dirichlet priors on the likelihood of the observed read alignments against the transcripts in one gene. The transcript abundances of all the genes are then jointly estimated with alternating optimization of multiple EM problems. In simulation Net-RSTQ effectively improved isoform transcript quantifications when isoform co-expressions correlate with their interactions. qRT-PCR results on 25 multi-isoform genes in a stem cell line, an ovarian cancer cell line, and a breast cancer cell line also showed that Net-RSTQ estimated more consistent isoform proportions with RNA-Seq data. In the experiments on the RNA-Seq data in The Cancer Genome Atlas (TCGA, the transcript abundances estimated by Net-RSTQ are more informative for patient sample classification of ovarian cancer, breast cancer and lung cancer. All experimental results collectively support that Net-RSTQ is a promising approach for isoform quantification. Net-RSTQ toolbox is available at http://compbio.cs.umn.edu/Net-RSTQ/.

  16. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian

    2014-01-01

    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross......-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N......-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI...

  17. NHS-A isoform of the NHS gene is a novel interactor of ZO-1.

    Science.gov (United States)

    Sharma, Shiwani; Koh, Katrina S Y; Collin, Caitlin; Dave, Alpana; McMellon, Amy; Sugiyama, Yuki; McAvoy, John W; Voss, Anne K; Gécz, Jozef; Craig, Jamie E

    2009-08-15

    Mutations in the NHS (Nance-Horan Syndrome) gene lead to severe congenital cataracts, dental defects and sometimes mental retardation. NHS encodes two protein isoforms, NHS-A and -1A that display cell-type dependent differential expression and localization. Here we demonstrate that of these two isoforms, the NHS-A isoform associates with the cell membrane in the presence of intercellular contacts and it immunoprecipitates with the tight junction protein ZO-1 in MDCK (Madin Darby Canine Kidney) epithelial cells and in neonatal rat lens. The NHS-1A isoform however is a cytoplasmic protein. Both Nhs isoforms are expressed during mouse development. Immunolabelling of developing mouse with the anti-NHS antibody that detects both isoforms revealed the protein in the developing head including the eye and brain. It was primarily expressed in epithelium including neural epithelium and certain vascular endothelium but only weakly expressed in mesenchymal cells. In the epithelium and vascular endothelium the protein associated with the cell membrane and co-localized with ZO-1, which indirectly indicates expression of the Nhs-A isoform in these structures. Membrane localization of the protein in the lens vesicle similarly supports Nhs-A expression. In conclusion, the NHS-A isoform of NHS is a novel interactor of ZO-1 and may have a role at tight junctions. This isoform is important in mammalian development especially of the organs in the head.

  18. Liaison of 3H 5-HT and adenyl cyclasic activation induced by the 5-HT in preparations of brain glial membranes

    International Nuclear Information System (INIS)

    Fillion, Gilles; Beaudoin, Dominique; Rousselle, J.-C.; Jacob, Joseph

    1980-01-01

    Purified glial membrane preparations have been isolated from horse brain striatum. Tritiated 5-HT bound to these membranes with a high affinity (K(D)=10 nM); the corresponding bindings is reversible and appears specific of the serotoninergic structure. In parallel, 5-HT activates an adenylate cyclase with a low affinity (K(D)=1 μM). The sites involved in this binding and in this adenylate cyclase activation appear different from the serotoninergic sites reported in the neuronal membrane preparations [fr

  19. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  20. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms.

    Directory of Open Access Journals (Sweden)

    Sundarapandian Thangapandian

    Full Text Available Histone deacetylases (HDACs have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E in HDAC10 and leucine (L in HDAC 11 based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.

  1. An abnormally glycosylated isoform of erythropoietin in hemangioblastoma is associated with polycythemia.

    Science.gov (United States)

    Delanghe, Sigurd E; Dierick, Jan; Maenhout, Thomas M; Zabeau, Lennart; Tavernier, Jan; Claes, Kathleen; Bleyen, Joris; Delanghe, Joris R

    2015-01-01

    Hemangioblastomas express erythropoietin and the patients often present with polycythemia. Serum erythropoietin was measured using a commercial immunoassay, a functional erythropoietin assay and iso-electric focusing. Despite the polycythemia, serum erythropoietin remained low, while a functional erythropoietin-assay showed a 4-5 higher activity in serum compared to the immunoassay. Iso-electric focusing of serum erythropoietin indicated overrepresentation of highly sialylated erythropoietin isoforms produced by the tumor. As a result, altered affinity of the monoclonal antibody used in the immunoassay for the hypersialylated isoforms was suggested. Analysis of erythropoietin isoforms may be helpful in distinguishing the ectopic erythropoietin isoforms from normally glycosylated erythropoietin. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W

    2014-01-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here, for the ...

  3. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  4. Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Mergia, Evanthia; Kramer, Christian M; Lückstädt, Wiebke; Yang, Jiangning; Wolff, Georg; Panknin, Christina; Bracht, Thilo; Sitek, Barbara; Pernow, John; Stasch, Johannes-Peter; Feelisch, Martin; Koesling, Doris; Kelm, Malte

    2018-04-01

    Endothelial dysfunction is associated with decreased NO bioavailability and impaired activation of the NO receptor soluble guanylate cyclase (sGC) in the vasculature and in platelets. Red blood cells (RBCs) are known to produce NO under hypoxic and normoxic conditions; however evidence of expression and/or activity of sGC and downstream signaling pathway including phopshodiesterase (PDE)-5 and protein kinase G (PKG) in RBCs is still controversial. In the present study, we aimed to investigate whether RBCs carry a functional sGC signaling pathway and to address whether this pathway is compromised in coronary artery disease (CAD). Using two independent chromatographic procedures, we here demonstrate that human and murine RBCs carry a catalytically active α 1 β 1 -sGC (isoform 1), which converts 32 P-GTP into 32 P-cGMP, as well as PDE5 and PKG. Specific sGC stimulation by NO+BAY 41-2272 increases intracellular cGMP-levels up to 1000-fold with concomitant activation of the canonical PKG/VASP-signaling pathway. This response to NO is blunted in α1-sGC knockout (KO) RBCs, but fully preserved in α2-sGC KO. In patients with stable CAD and endothelial dysfunction red cell eNOS expression is decreased as compared to aged-matched controls; by contrast, red cell sGC expression/activity and responsiveness to NO are fully preserved, although sGC oxidation is increased in both groups. Collectively, our data demonstrate that an intact sGC/PDE5/PKG-dependent signaling pathway exists in RBCs, which remains fully responsive to NO and sGC stimulators/activators in patients with endothelial dysfunction. Targeting this pathway may be helpful in diseases with NO deficiency in the microcirculation like sickle cell anemia, pulmonary hypertension, and heart failure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Directory of Open Access Journals (Sweden)

    Heger Christopher D

    2010-12-01

    Full Text Available Abstract Background Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Methods Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. Results We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76% of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72% and 27% had only low levels of expression. Conclusions Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in

  6. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed; Meier, Stuart Kurt

    2013-01-01

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  7. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  8. From Escherichia coli heat-stable enterotoxin to mammalian endogenous guanylin hormones

    International Nuclear Information System (INIS)

    Lima, A.A.M.; Fonteles, M.C.

    2014-01-01

    The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia

  9. From Escherichia coli heat-stable enterotoxin to mammalian endogenous guanylin hormones

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.A.M. [Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Instituto de Biomedicina, Unidade de Pesquisas Clínicas, Fortaleza, CE, Brasil, Unidade de Pesquisas Clínicas, Instituto de Biomedicina, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Fonteles, M.C. [Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Instituto de Biomedicina, Unidade de Pesquisas Clínicas, Fortaleza, CE, Brasil, Unidade de Pesquisas Clínicas, Instituto de Biomedicina, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Universidade Estadual do Ceará, Instituto de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil)

    2014-03-03

    The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia.

  10. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    Science.gov (United States)

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  11. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T

    2014-01-01

    sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable......Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms....... Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal...

  12. Adenylate cyclase regulation in the spermatogenic cell plasma membrane: Modulating effects of TPA and TCDD

    International Nuclear Information System (INIS)

    Beebe, L.E.

    1989-01-01

    This research was designed to compare the effects of TPA, a phorbol ester, and TCDD in a spermatogenic cell population, a target of TCDD toxicity. Membrane-bound adenylate cyclase activity was used an index of membrane function, and was quantified by the amount of 32 P-cAMP formed from 32 P-ATP following chromatographic separation. Exposure to male germ cells in-vitro to TPA and TCDD followed by direct measurement of enzyme activity was used to investigate the potential of each agent to perturb membrane function. TPA and TCDD consistently inhibited adenylate cyclase activity at the levels of G s -catalytic unit coupling and hormone-receptor activation, as measured by the stimulation of enzyme activity by concomitant addition of forskolin and GTP and FSH and GTP, respectively. The effect on coupling required at least 60 minutes of exposure to TPA or TCDD. Concentration-response curves demonstrated a progressive desensitization with increasing TPA concentration, while TCDD exhibited consistent inhibition over the same concentration range

  13. Evolution of the cAMP-dependent protein kinase (PKA catalytic subunit isoforms.

    Directory of Open Access Journals (Sweden)

    Kristoffer Søberg

    Full Text Available The 3',5'-cyclic adenosine monophosphate (cAMP-dependent protein kinase, or protein kinase A (PKA, pathway is one of the most versatile and best studied signaling pathways in eukaryotic cells. The two paralogous PKA catalytic subunits Cα and Cβ, encoded by the genes PRKACA and PRKACB, respectively, are among the best understood model kinases in signal transduction research. In this work, we explore and elucidate the evolution of the alternative 5' exons and the splicing pattern giving rise to the numerous PKA catalytic subunit isoforms. In addition to the universally conserved Cα1/Cβ1 isoforms, we find kinase variants with short N-termini in all main vertebrate classes, including the sperm-specific Cα2 isoform found to be conserved in all mammals. We also describe, for the first time, a PKA Cα isoform with a long N-terminus, paralogous to the PKA Cβ2 N-terminus. An analysis of isoform-specific variation highlights residues and motifs that are likely to be of functional importance.

  14. Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Haiyan Xia

    Full Text Available Friedreich ataxia (FRDA is an inherited neurodegenerative disease caused by frataxin (FXN deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II and III, which are specifically expressed in affected cerebellum and heart tissues, respectively, and are functional in vitro and in vivo. Increasing the abundance of the heart-specific isoform III significantly increased the mitochondrial aconitase activity, while over-expression of the cerebellum-specific isoform II protected against oxidative damage of Fe-S cluster-containing aconitase. Further, we observed that the protein level of isoform III decreased in FRDA patient heart, while the mRNA level of isoform II decreased more in FRDA patient cerebellum compared to total FXN mRNA. Our novel findings are highly relevant to understanding the mechanism of tissue-specific pathology in FRDA.

  15. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  16. Characterization of ß-Galactosidase Isoforms from Bacillus circulans and Their Contribution to GOS Production

    NARCIS (Netherlands)

    Warmerdam, A.; Paudel, E.; Wanqing, J.; Boom, R.M.; Janssen, A.E.M.

    2013-01-01

    A ß-galactosidase preparation from Bacillus circulans consists of four isoforms called ß-gal-A, ß-gal-B, ß-gal-C, and ß-gal-D. These isoforms differ in lactose hydrolysis and galacto-oligosaccharide (GOS) synthesis at low substrate concentrations. For this reason, using a selection of the isoforms

  17. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms.

    Science.gov (United States)

    Bedinger, Daniel; Lao, Llewelyn; Khan, Shireen; Lee, Steve; Takeuchi, Toshihiko; Mirza, Amer M

    2016-01-01

    Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies' potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease.

  18. Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases

    Czech Academy of Sciences Publication Activity Database

    Břehová, Petra; Šmídková, Markéta; Skácel, Jan; Dračínský, Martin; Mertlíková-Kaiserová, Helena; Velasquez, M. P. S.; Watts, V. J.; Janeba, Zlatko

    2016-01-01

    Roč. 11, č. 22 (2016), s. 2534-2546 ISSN 1860-7179 R&D Projects: GA MV VG20102015046; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : adenylate cyclase toxin * acyclic nucleoside phosphonates * anthranilic acid Subject RIV: CC - Organic Chemistry Impact factor: 3.225, year: 2016

  19. Adenylate Cyclase Toxin Subverts Phagocyte Function by RhoA Inhibition and Unproductive Ruffling

    Czech Academy of Sciences Publication Activity Database

    Kamanová, Jana; Kofroňová, Olga; Mašín, Jiří; Genth, H.; Vojtová, Jana; Linhartová, Irena; Benada, Oldřich; Just, I.; Šebo, Peter

    2008-01-01

    Roč. 181, č. 8 (2008), s. 5587-5597 ISSN 0022-1767 R&D Projects: GA MŠk 1M0506; GA MŠk 2B06161; GA ČR GA310/08/0447 Grant - others:XE(XE) LSHB-CT-2003-503582 Institutional research plan: CEZ:AV0Z50200510 Keywords : bordetella * adenylate cyclase toxin * rhoa Subject RIV: EC - Immunology Impact factor: 6.000, year: 2008

  20. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    Science.gov (United States)

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Functions of PDE3 Isoforms in Cardiac Muscle

    Science.gov (United States)

    Movsesian, Matthew; Ahmad, Faiyaz

    2018-01-01

    Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses. PMID:29415428

  2. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia.

    Science.gov (United States)

    Radl, Daniela; De Mei, Claudia; Chen, Eric; Lee, Hyuna; Borrelli, Emiliana

    2013-06-01

    Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and their comparison with D2L-null animals. These mice represent a valuable tool with which to investigate dopamine-dependent isoform-specific signaling in the pituitary gland. We sought to assess the existence of a more prominent role of D2L or D2S in controlling PRL expression and lactotroph hyperplasia. Importantly, we found that D2L and D2S are specifically linked to independent transduction pathways in the pituitary. D2L-mediated signaling inhibits the AKT/protein kinase B kinase activity whereas D2S, in contrast, is required for the activation of the ERK 1/2 pathway. Under normal conditions, presence of only 1 of the 2 D2R isoforms in vivo prevents hyperprolactinemia, formation of lactotroph's hyperplasia, and tumorigenesis that is observed when both isoforms are deleted as in D2R-/- mice. However, the protective function of the single D2R isoforms is overridden when single isoform-knockout mice are challenged by chronic estrogen treatments as they show increased PRL production and lactotroph hyperplasia. Our study indicates that signaling from each of the D2R isoforms is sufficient to maintain lactotroph homeostasis in physiologic conditions; however, signaling from both is necessary in conditions simulating pathologic states.

  3. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution.

    Directory of Open Access Journals (Sweden)

    Niels Jacob Aachmann-Andersen

    Full Text Available The membrane-assisted isoform immunoassay (MAIIA quantitates erythropoietin (EPO isoforms as percentages of migrated isoforms (PMI. We evaluated the effect of recombinant human EPO (rhEPO on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13; high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13; or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3 % (mean (SD. High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2% (p<0.00001 and 45.2 (7.3% (p<0.00001. Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8% (p<0.00001 and 46.1 (10.4% (p<0.00001. In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4% (p=0.029; low-dose Epoetin beta: 73.1 (17.8% (p=0.039. In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.

  4. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression.

    Directory of Open Access Journals (Sweden)

    Thomas P Stricker

    2017-03-01

    Full Text Available Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+ subtype and fourteen triple negative (TN subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.

  5. Comparison of transferrin isoform analysis by capillary electrophoresis and HPLC for screening congenital disorders of glycosylation.

    Science.gov (United States)

    Dave, Mihika B; Dherai, Alpa J; Udani, Vrajesh P; Hegde, Anaita U; Desai, Neelu A; Ashavaid, Tester F

    2018-01-01

    Transferrin, a major glycoprotein has different isoforms depending on the number of sialic acid residues present on its oligosaccharide chain. Genetic variants of transferrin as well as the primary (CDG) & secondary glycosylation defects lead to an altered transferrin pattern. Isoform analysis methods are based on charge/mass variations. We aimed to compare the performance of commercially available capillary electrophoresis CDT kit for diagnosing congenital disorders of glycosylation with our in-house optimized HPLC method for transferrin isoform analysis. The isoform pattern of 30 healthy controls & 50 CDG-suspected patients was determined by CE using a Carbohydrate-Deficient Transferrin kit. The results were compared with in-house HPLC-based assay for transferrin isoforms. Transferrin isoform pattern for healthy individuals showed a predominant tetrasialo transferrin fraction followed by pentasialo, trisialo, and disialotransferrin. Two of 50 CDG-suspected patients showed the presence of asialylated isoforms. The results were comparable with isoform pattern obtained by HPLC. The commercial controls showed a <20% CV for each isoform. Bland Altman plot showed the difference plot to be within +1.96 with no systemic bias in the test results by HPLC & CE. The CE method is rapid, reproducible and comparable with HPLC and can be used for screening Glycosylation defects. © 2017 Wiley Periodicals, Inc.

  6. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    Science.gov (United States)

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  7. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS.

    Directory of Open Access Journals (Sweden)

    Kristin R Wildsmith

    Full Text Available Apolipoprotein E (ApoE is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4 each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD. Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS, we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.

  8. Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Kristensen, Tina Bøgelund; Brooks, Heddwen L

    2017-01-01

    knockout (AC6(loxloxCre)) mice had approximately 50% lower urine osmolality and doubled water intake under baseline conditions compared with controls. Dietary Li(+) administration increased water intake and reduced urine osmolality in control, AC6(-/-), and AC6(loxloxCre) mice. Consistent with AC6......(-/-) mice, medullary AQP2 and pS256-AQP2 abundances were lower in AC6(loxloxCre) mice compared with controls under standard conditions, and levels were further reduced after Li(+) administration. AC6(loxloxCre) and control mice had a similar increase in the numbers of proliferating cell nuclear antigen......-positive cells in response to Li(+). However, AC6(loxloxCre) mice had a higher number of H(+)-ATPase B1 subunit-positive cells under standard conditions and after Li(+) administration. Collectively, AC6 has a minor role in Li-NDI development but may be important for determining the intercalated cell...

  9. Proliferation marker pKi-67 occurs in different isoforms with various cellular effects.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Finniss, Susan; Bögler, Oliver; Duchrow, Michael

    2004-04-15

    The Ki-67 antigen, pKi-67, is a commonly used proliferation marker in research and pathology. It has been recognized that the protein exists in two different splice variants that differ in one exon. In the current work, we present three new splice variants of human pKi-67 consisting of two naturally occurring isoforms and one atypical version. Additionally, data is presented indicating that alternative splicing of the pKi-67 N-terminus is common in tumor cell lines. Analyzing 93 tissues mainly consisting of brain tumor specimens, we found evidence that long and short isoform can be expressed independently of each other. Induction of mitosis in human peripheral blood mononuclear cells revealed that short pKi-67 appears earlier in the cell cycle than the long isoform and reaches its expression maximum when transcription of the latter sets in. Finally, transfection of mammalian culture cells with exon 7 (specific for the long pKi-67 isoform and not present in the short isoform) in a tetracycline regulated expression system decreased the rate of cell proliferation without affecting the cell cycle. In summary, we present evidence that the pKi-67 N-terminus is differentially spliced resulting in at least five different isoforms with different functions. Copyright 2004 Wiley-Liss, Inc.

  10. Sex differences and the effects of ovariectomy on the β-adrenergic contractile response

    Science.gov (United States)

    McIntosh, Victoria J.; Chandrasekera, P. Charukeshi

    2011-01-01

    The presence of sex differences in myocardial β-adrenergic responsiveness is controversial, and limited studies have addressed the mechanism underlying these differences. Studies were performed using isolated perfused hearts from male, intact female and ovariectomized female mice to investigate sex differences and the effects of ovarian hormone withdrawal on β-adrenergic receptor function. Female hearts exhibited blunted contractile responses to the β-adrenergic receptor agonist isoproterenol (ISO) compared with males but not ovariectomized females. There were no sex differences in β1-adrenergic receptor gene or protein expression. To investigate the role of adenylyl cyclase, phosphodiesterase, and the cAMP-signaling cascade in generating sex differences in the β-adrenergic contractile response, dose-response studies were performed in isolated perfused male and female hearts using forskolin, 3-isobutyl-1-methylxanthine (IBMX), and 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Males showed a modestly enhanced contractile response to forskolin at 300 nM and 5 μM compared with females, but there were no sex differences in the response to IBMX or CPT-cAMP. The role of the A1 adenosine receptor (A1AR) in antagonizing the β-adrenergic contractile response was investigated using both the A1AR agonist 2-chloro-N6-cyclopentyl-adenosine and A1AR knockout (KO) mice. Intact females showed an enhanced A1AR anti-adrenergic effect compared with males and ovariectomized females. The β-adrenergic contractile response was potentiated in both male and female A1ARKO hearts, with sex differences no longer present above 1 nM ISO. The β-adrenergic contractile response is greater in male hearts than females, and minor differences in the action of adenylyl cyclase or the A1AR may contribute to these sex differences. PMID:21685268

  11. Vibrio cholerae Infection of Drosophilamelanogaster Mimics the Human Disease Cholera.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii flies harboring mutant alleles of either adenylyl cyclase, Gsalpha, or the Gardos K channel homolog SK are resistant to V. cholerae infection; and (iii ingestion of a K channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mug of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

  12. Can the anti-inflammatory activities of β2-agonists be harnessed in the clinical setting?

    Directory of Open Access Journals (Sweden)

    Theron AJ

    2013-11-01

    Full Text Available Annette J Theron,1,2 Helen C Steel,1 Gregory R Tintinger,1 Charles Feldman,3 Ronald Anderson1 1Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, 2Tshwane Academic Division of the National Health Laboratory Service, Pretoria, 3Division of Pulmonology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand and Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa Abstract: Beta2-adrenoreceptor agonists (β2-agonists are primarily bronchodilators, targeting airway smooth muscle and providing critical symptomatic relief in conditions such as bronchial asthma and chronic obstructive pulmonary disease. These agents also possess broad-spectrum, secondary, anti-inflammatory properties. These are mediated largely, though not exclusively, via interactions with adenylyl cyclase-coupled β2-adrenoreceptors on a range of immune and inflammatory cells involved in the immunopathogenesis of acute and chronic inflammatory disorders of the airways. The clinical relevance of the anti-inflammatory actions of β2-agonists, although often effective in the experimental setting, remains contentious. The primary objectives of the current review are: firstly, to assess the mechanisms, both molecular and cell-associated, that may limit the anti-inflammatory efficacy of β2-agonists; secondly, to evaluate pharmacological strategies, several of which are recent and innovative, that may overcome these limitations. These are preceded by a consideration of the various types of β2-agonists, their clinical applications, and spectrum of anti-inflammatory activities, particularly those involving adenosine 3',5'-cyclic adenosine monophosphate-activated protein kinase-mediated clearance of cytosolic calcium, and altered gene expression in immune and inflammatory cells. Keywords: adenylyl cyclase, corticosteroids, cyclic AMP, muscarinic

  13. Overexpression of EMMPRIN Isoform 2 Is Associated with Head and Neck Cancer Metastasis

    OpenAIRE

    Huang, Zhiquan; Tan, Ning; Guo, Weijie; Wang, Lili; Li, Haigang; Zhang, Tianyu; Liu, Xiaojia; Xu, Qin; Li, Jinsong; Guo, Zhongmin

    2014-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a plasma membrane protein of the immunoglobulin (Ig) superfamily, has been reported to promote cancer cell invasion and metastasis in several human malignancies. However, the roles of the different EMMPRIN isoforms and their associated mechanisms in head and neck cancer progression remain unknown. Using quantitative real-time PCR, we found that EMMPRIN isoform 2 (EMMPRIN-2) was the only isoform that was overexpressed in both head and n...

  14. Different strictuctural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes

    Czech Academy of Sciences Publication Activity Database

    Mašín, Jiří; Konopásek, I.; Svobodová, J.; Šebo, Peter

    2004-01-01

    Roč. 1660, - (2004), s. 144-154 ISSN 0005-2736 R&D Projects: GA AV ČR IPP1050128; GA AV ČR IAA5020907 Grant - others:GA Howard Hughes Medical Institut(US) 55000334; GA(XE) QLK2-CT-1999-00556 Institutional research plan: CEZ:AV0Z5020903 Keywords : bordetella pertussis * adenylate cyclase toxin * membrane interaction Subject RIV: EE - Microbiology, Virology Impact factor: 3.441, year: 2004

  15. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes.

    Science.gov (United States)

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K

    2015-01-01

    Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.

  16. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3

    Czech Academy of Sciences Publication Activity Database

    Osička, Radim; Osičková, Adriana; Hasan, Shakir; Bumba, Ladislav; Černý, Jiří; Šebo, Peter

    2015-01-01

    Roč. 4, DEC 9 (2015) ISSN 2050-084X R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR(CZ) GA15-11851S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 ; RVO:86652036 Keywords : E. coli * adenylate cyclase toxin * biochemistry Subject RIV: CE - Biochemistry Impact factor: 8.282, year: 2015

  17. Synthesis of alpha-Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases

    Czech Academy of Sciences Publication Activity Database

    Frydrych, Jan; Skácel, Jan; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Gnanasekaran, Ramachandran; Lepšík, Martin; Soto-Velasquez, M.; Watts, V. J.; Janeba, Zlatko

    2018-01-01

    Roč. 13, č. 2 (2018), s. 199-206 ISSN 1860-7179 R&D Projects: GA MV VG20102015046; GA ČR(CZ) GBP208/12/G016; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * adenylate cyclase toxin * bisamidates * Bordetella pertussis * prodrugs Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.225, year: 2016

  18. Effect of drugs on lipid methylation, receptor-adenylate cyclase coupling and cyclic AMP secretion in Dictyostelium discoideum

    NARCIS (Netherlands)

    Van Waarde, Aren; Van Haastert, P.J.M.

    1986-01-01

    Intercellular communication in Dictyostelium discoldeum takes place by means of cyclic AMP-induced cyclic AMP-synthesis and secretion. Since phospholipid methylation has been suggested to play a role in receptor-adenylate cyclase coupling, we examined the effects of transmethylation inhibitors on

  19. Intracellular pH in sperm physiology.

    Science.gov (United States)

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Physiological roles of acid-base sensors.

    Science.gov (United States)

    Levin, Lonny R; Buck, Jochen

    2015-01-01

    Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase.

  1. Kalrn promoter usage and isoform expression respond to chronic cocaine exposure

    Directory of Open Access Journals (Sweden)

    Ma Xin-Ming

    2011-02-01

    Full Text Available Abstract Background The long-term effects of cocaine on behavior are accompanied by structural changes in excitatory glutamatergic synapses onto the medium spiny neurons of the striatum. The Kalrn gene encodes several functionally distinct isoforms; these multidomain guanine nucleotide exchange factors (GEFs contain additional domains known to interact with phosphatidylinositides as well as with a number of different proteins. Through their activation of Rho proteins and their interactions with other proteins, the different Kalirin isoforms affect cytoskeletal organization. Chronic exposure of adult male rodents to cocaine increases levels of Kalirin 7 in the striatum. When exposed chronically to cocaine, mice lacking Kalirin 7, the major adult isoform, fail to show an increase in dendritic spine density in the nucleus accumbens, show diminished place preference for cocaine, and exhibit increased locomotor activity in response to cocaine. Results The use of alternate promoters and 3'-terminal exons of the mouse Kalrn gene were investigated using real-time quantitative polymerase chain reaction. While the two most distal full-length Kalrn promoters are used equally in the prefrontal cortex, the more proximal of these promoters accounts for most of the transcripts expressed in the nucleus accumbens. The 3'-terminal exon unique to the Kalirin 7 isoform accounts for a greater percentage of the Kalrn transcripts in prefrontal cortex than in nucleus accumbens. Western blot analyses confirmed these differences. Chronic cocaine treatment increases usage of the promoter encoding the Δ-Kalirin isoforms but does not alter full-length Kalirin promoter usage. Usage of the 3'-terminal exon unique to Kalirin 7 increases following chronic cocaine exposure. Conclusions Kalrn promoter and 3'-terminal exon utilization are region-specific. In the nucleus accumbens, cocaine-mediated alterations in promoter usage and 3'-terminal exon usage favor expression of

  2. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  3. mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    Beatriz Puisac

    2017-02-01

    Full Text Available Cornelia de Lange syndrome (CdLS is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction. Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys, showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers.

  4. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding

    Czech Academy of Sciences Publication Activity Database

    Hasan, Shakir; Osičková, Adriana; Bumba, Ladislav; Novák, Petr; Šebo, Peter; Osička, Radim

    2015-01-01

    Roč. 589, č. 3 (2015), s. 374-379 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR(CZ) GA15-09157S; GA ČR(CZ) GA15-11851S Institutional support: RVO:61388971 Keywords : Adenylate cyclase toxin * CD11b/CD18 * Complement receptor type 3 Subject RIV: CE - Biochemistry Impact factor: 3.519, year: 2015

  5. Alternative NF-κB Isoforms in the Drosophila Neuromuscular Junction and Brain.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available The Drosophila NF-κB protein Dorsal is expressed at the larval neuromuscular junction, where its expression appears unrelated to known Dorsal functions in embryonic patterning and innate immunity. Using confocal microscopy with domain-specific antisera, we demonstrate that larval muscle expresses only the B isoform of Dorsal, which arises by intron retention. We find that Dorsal B interacts with and stabilizes Cactus at the neuromuscular junction, but exhibits Cactus independent localization and an absence of detectable nuclear translocation. We further find that the Dorsal-related immune factor Dif encodes a B isoform, reflecting a conservation of B domains across a range of insect NF-κB proteins. Carrying out mutagenesis of the Dif locus via a site-specific recombineering approach, we demonstrate that Dif B is the major, if not sole, Dif isoform in the mushroom bodies of the larval brain. The Dorsal and Dif B isoforms thus share a specific association with nervous system tissues as well as an alternative protein structure.

  6. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling.

    Directory of Open Access Journals (Sweden)

    Marina Beltrami-Moreira

    Full Text Available Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells.Human primary vascular smooth muscle cells (VSMCs and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001 and with IL-1β + areas (R2 = 0.68, P<0.001. MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area.Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis.

  7. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    International Nuclear Information System (INIS)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-01-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the [ 3 H]-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the [ 3 H]DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the β-adrenergic receptor in rat heart

  8. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  9. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis.

    Directory of Open Access Journals (Sweden)

    Bo G Lindberg

    2018-03-01

    Full Text Available Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB, JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic

  10. Degeneration of the olfactory guanylyl cyclase D gene during primate evolution.

    Directory of Open Access Journals (Sweden)

    Janet M Young

    2007-09-01

    Full Text Available The mammalian olfactory system consists of several subsystems that detect specific sets of chemical cues and underlie a variety of behavioral responses. Within the main olfactory epithelium at least three distinct types of chemosensory neurons can be defined by their expression of unique sets of signal transduction components. In rodents, one set of neurons expresses the olfactory-specific guanylyl cyclase (GC-D gene (Gucy2d, guanylyl cyclase 2d and other cell-type specific molecules. GC-D-positive neurons project their axons to a small group of atypical "necklace" glomeruli in the olfactory bulb, some of which are activated in response to suckling in neonatal rodents and to atmospheric CO2 in adult mice. Because GC-D is a pseudogene in humans, signaling through this system appears to have been lost at some point in primate evolution.Here we used a combination of bioinformatic analysis of trace-archive and genome-assembly data and sequencing of PCR-amplified genomic DNA to determine when during primate evolution the functional gene was lost. Our analysis reveals that GC-D is a pseudogene in a large number of primate species, including apes, Old World and New World monkeys and tarsier. In contrast, the gene appears intact and has evolved under purifying selection in mouse, rat, dog, lemur and bushbaby.These data suggest that signaling through GC-D-expressing cells was probably compromised more than 40 million years ago, prior to the divergence of New World monkeys from Old World monkeys and apes, and thus cannot be involved in chemosensation in most primates.

  11. The Arabidopsis thalianaK+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre

    KAUST Repository

    Al-Younis, Inas

    2015-11-27

    Adenylate Cyclases (ACs) catalyze the formation of the second messenger cyclic adenosine 3′, 5′-monophosphate (cAMP) from adenosine 5’-triphosphate (ATP). Although cAMP is increasingly recognized as an important signaling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP71-100 is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP71-100 generates cAMP in vitro.

  12. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    Full Text Available We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2 in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2 and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2 generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms.We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. The streptozotocin (STZ murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study.Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold. Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively.The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for the treatment of diabetic renal

  13. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions

    Science.gov (United States)

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Petrovsky, Nikolai

    2013-01-01

    In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous → alpha-1 (AI-1) → alpha-2 (AI-2) → gamma (GI) → delta (DI) → zeta (ZI) → epsilon (EI) → omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using 1H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) “melting” or “freezing” points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators. PMID:23853206

  14. Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome.

    Science.gov (United States)

    Huang, Yi-Jhih; Huang, Tsai-Wang; Chao, Tsu-Yi; Sun, Yu-Shan; Chen, Shyi-Jou; Chu, Der-Ming; Chen, Wei-Liang; Wu, Li-Wei

    2017-09-29

    Tartrate-resistant phosphatase isoform 5a is expressed in tumor-associated macrophages and is a biomarker of chronic inflammation. Herein, we correlated serum tartrate-resistant phosphatase isoform 5a levels with metabolic syndrome status and made comparisons with traditional markers of inflammation, including c-reactive protein and interleukin-6. One hundred healthy volunteers were randomly selected, and cut-off points for metabolic syndrome related inflammatory biomarkers were determined using receiver operating characteristic curves. Linear and logistic regression models were subsequently used to correlate inflammatory markers with the risk of metabolic syndrome. Twenty-two participants met the criteria for metabolic syndrome, and serum tartrate-resistant phosphatase isoform 5a levels of >5.8 μg/L were associated with metabolic syndrome (c-statistics, 0.730; p = 0.001; 95% confidence interval, 0.618-0.842). In addition, 1 μg/L increases in tartrate-resistant phosphatase isoform 5a levels were indicative of a 1.860 fold increase in the risk of metabolic syndrome (p = 0.012). Elevated serum tartrate-resistant phosphatase isoform 5a levels are associated with the risk of metabolic syndrome, with a cut-off level of 5.8 μg/L.

  15. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Science.gov (United States)

    2011-01-01

    Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H

  16. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo, E-mail: kawamots@mail.nih.gov

    2014-08-08

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.

  17. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    Science.gov (United States)

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  18. G-protein-mediated interconversions of cell-surface cAMP receptors and their involvement in excitation and desensitization of guanylate cyclase in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    van Haastert, P.J.; de Wit, R.J.; Janssens, P.M.; Kesbeke, F.; DeGoede, J.

    1986-01-01

    In Dictyostelium discoideum cells, extracellular cAMP induces the rapid (within 2 s) activation of guanylate cyclase, which is followed by complete desensitization after about 10 s. cAMP binding to these cells is heterogeneous, showing a subclass of fast dissociating sites coupled to adenylate cyclase (A-sites) and a subclass of slowly dissociating sites coupled to guanylate cyclase (B-sites). The kinetics of the B-sites were further investigated on a seconds time scale. Statistical analysis of the association of [ 3 H]cAMP to the B-sites and dissociation of the complex revealed that the receptor can exist in three states which interconvert according to the following scheme. cAMP binds to the BF-state (off-rate 2.5 s) which rapidly (t1/2 = 3 s) converts to the BS-state (off-rate 15 s) and subsequently (without a detectable delay) into the BSS-state (off-rate 150 s). In membranes, both the BS- and BSS-states are converted to the BF-state by GTP and GDP, suggesting the involvement of a G-protein. Densensitized cells show a 80% reduction of the formation of the BSS-state, but no reduction of the BF- or BS-state. These data are combined into a model in which the transitions of the B-sites are mediated by a G-protein; activation of the G-protein and guanylate cyclase is associated with the transition of the BS- to the BSS-state of the receptor, whereas desensitization is associated with the inhibition of this transition

  19. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  20. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    International Nuclear Information System (INIS)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L.

    2014-01-01

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R h ) and reduced thermal stability in the mutant complex. Taken together

  1. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  2. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    Science.gov (United States)

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  3. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  4. Alteration in adenylate cyclase response to aminergic stimulation following neonatal x-irradiation

    International Nuclear Information System (INIS)

    Chronister, R.B.; Palmer, G.C.; Gerbrandt, L.

    1980-01-01

    X-irradiation of the rat neonatal hippocampus produces severe alterations in the architectonic features of the mature hippocampus. The most prominent alteration is a marked depletion of the granule cells of the dentate gyrus, with a subsequent realignment of CA 4 cells. The present data also show that norepinephrine (NE), dopamine and histamine stimulation of adenylate cyclase activity is severely attenuated in the hippocampi of irradiated animals. This failure suggests that the NE fibers of irradiated subjects, although normal in content of NE, are not functional in some of their NE-effector actions

  5. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A. (Novartis)

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  6. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells

    International Nuclear Information System (INIS)

    Turck, Natacha; Gross, Isabelle; Gendry, Patrick; Stutzmann, Jeanne; Freund, Jean-Noel; Kedinger, Michele; Simon-Assmann, Patricia; Launay, Jean-Francois

    2005-01-01

    Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins

  7. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    Science.gov (United States)

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site

    Directory of Open Access Journals (Sweden)

    Misquitta Stephanie A

    2004-02-01

    Full Text Available Abstract Background Glutaminyl cyclase (QC forms the pyroglutamyl residue at the amino terminus of numerous secretory peptides and proteins. We previously proposed the mammalian QC has some features in common with zinc aminopeptidases. We now have generated a structural model for human QC based on the aminopeptidase fold (pdb code 1AMP and mutated the apparent active site residues to assess their role in QC catalysis. Results The structural model proposed here for human QC, deposited in the protein databank as 1MOI, is supported by a variety of fold prediction programs, by the circular dichroism spectrum, and by the presence of the disulfide. Mutagenesis of the six active site residues present in both 1AMP and QC reveal essential roles for the two histidines (140 and 330, QC numbering and the two glutamates (201 and 202, while the two aspartates (159 and 248 appear to play no catalytic role. ICP-MS analysis shows less than stoichiometric zinc (0.3:1 in the purified enzyme. Conclusions We conclude that human pituitary glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site residues. In contrast to the aminopeptidase, however, QC does not appear to require zinc for enzymatic activity.

  9. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells

    International Nuclear Information System (INIS)

    Liu Yang; Dong Qianze; Zhao Yue; Dong Xinjun; Miao Yuan; Dai Shundong; Yang Zhiqiang; Zhang Di; Wang Yan; Li Qingchang; Zhao Chen; Wang Enhua

    2009-01-01

    Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and β-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms

  10. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  11. Catecholamine-induced desensitization of adenylate cyclase coupled β-adrenergic receptors in turkey erythrocytes: evidence for a two-step mechanism

    International Nuclear Information System (INIS)

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-01-01

    Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the β-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the β-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the β-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with 32 P or with the photoaffinity label 125 I-(p-azidobenzyl)carazolol, can be resolved into a doublet (M/sub r/ similarly ordered 37,000 and M/sub r/ similarly ordered 41,000) as compared to a single M/sub r/ similarly ordered 37,000 β-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of 32 P-labeled β-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (M/sub r/ similarly ordered 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (M/sub r/ similarly ordered 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled β-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism

  12. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    Science.gov (United States)

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  13. Discovery of novel isoforms of huntingtin reveals a new hominid-specific exon.

    Directory of Open Access Journals (Sweden)

    Albert Ruzo

    Full Text Available Huntington's disease (HD is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT. HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease.

  14. Discovery of Novel Isoforms of Huntingtin Reveals a New Hominid-Specific Exon

    Science.gov (United States)

    Popowski, Melissa; Haremaki, Tomomi; Croft, Gist F.; Deglincerti, Alessia; Brivanlou, Ali H.

    2015-01-01

    Huntington’s disease (HD) is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT). HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC) lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease. PMID:26010866

  15. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    Science.gov (United States)

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  16. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model

    Science.gov (United States)

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  17. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. Copyright © 2012 Wiley Periodicals, Inc.

  18. Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2018-04-01

    Full Text Available Endothelial dysfunction is associated with decreased NO bioavailability and impaired activation of the NO receptor soluble guanylate cyclase (sGC in the vasculature and in platelets. Red blood cells (RBCs are known to produce NO under hypoxic and normoxic conditions; however evidence of expression and/or activity of sGC and downstream signaling pathway including phopshodiesterase (PDE-5 and protein kinase G (PKG in RBCs is still controversial. In the present study, we aimed to investigate whether RBCs carry a functional sGC signaling pathway and to address whether this pathway is compromised in coronary artery disease (CAD. Using two independent chromatographic procedures, we here demonstrate that human and murine RBCs carry a catalytically active α1β1-sGC (isoform 1, which converts 32P-GTP into 32P-cGMP, as well as PDE5 and PKG. Specific sGC stimulation by NO+BAY 41-2272 increases intracellular cGMP-levels up to 1000-fold with concomitant activation of the canonical PKG/VASP-signaling pathway. This response to NO is blunted in α1-sGC knockout (KO RBCs, but fully preserved in α2-sGC KO. In patients with stable CAD and endothelial dysfunction red cell eNOS expression is decreased as compared to aged-matched controls; by contrast, red cell sGC expression/activity and responsiveness to NO are fully preserved, although sGC oxidation is increased in both groups. Collectively, our data demonstrate that an intact sGC/PDE5/PKG-dependent signaling pathway exists in RBCs, which remains fully responsive to NO and sGC stimulators/activators in patients with endothelial dysfunction. Targeting this pathway may be helpful in diseases with NO deficiency in the microcirculation like sickle cell anemia, pulmonary hypertension, and heart failure. Keywords: cGMP, Nitric oxide, Protein kinase G, Signaling, Non -canonical functions of RBCs

  19. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box

    International Nuclear Information System (INIS)

    Short, Stephen; Malartre, Marianne; Sharpe, Colin

    2005-01-01

    SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT

  20. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  1. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  2. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard [Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, CNRS UMR5084, Universite Bordeaux 1, Chemin du Solarium, F-33175 Gradignan cedex (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, F-91192 Gif-sur-Yvette cedex, Saint-Aubin (France); Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis, E-mail: ortega@cenbg.in2p3.f [FAME, ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble cedex (France)

    2009-11-15

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  3. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Science.gov (United States)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  4. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    International Nuclear Information System (INIS)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard; Solari, Pier Lorenzo; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis

    2009-01-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  5. Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization.

    Science.gov (United States)

    Magnusson, P; Farley, J R

    2002-12-01

    High-performance liquid chromatography (HPLC) separates three human bone alkaline phosphatase (BALP) isoforms in serum; two major BALP isoforms, B1 and B2, and a minor fraction, B/I, which is composed on average of 70% bone and 30% intestinal ALP. The current studies were intended to identify an in vitro source of the BALP isoforms for physical, biochemical, and immunological characterizations. The three BALP isoforms were identified in extracts of human osteosarcoma (SaOS-2) cells, by HPLC, after separation by anion-exchange chromatography. All three BALP isoforms were similar with respect to freeze-thaw stability, solubility, heat inactivation, and inhibition by L-phenylalanine, L-homoarginine, and levamisole. The isoforms were also kinetically similar (i.e., maximal velocity and KM at pH 8.8 and pH 10.0). The isoforms differed, however, with respect to sensitivity to precipitation with wheat germ agglutinin (WGA), P acid residues was estimated to be 29 and 45, for each B1 and B2 homodimer, respectively. Apparent discrepancies between these estimates of molecular weight and estimates based on gel filtration chromatography were attributed to nonspecific interactions between carbohydrate residues and the gel filtration beads. All three BALP isoforms showed similar dose-dependent linearity in the commercial Alkphase-B and Tandem-MP Ostase immunoassays, r = 0.944 and r = 0.985, respectively (P acid residues compared with B/I, which mainly explains the apparent differences in molecular weight. Future investigations will focus on the clinical and functional significance of the revealed differences in sialic acid residues.

  6. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  7. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  8. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  9. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer

    Science.gov (United States)

    Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377

  10. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  11. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    Science.gov (United States)

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-03

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  12. MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber.

    Science.gov (United States)

    Hoehenwarter, Wolfgang; Larhlimi, Abdelhalim; Hummel, Jan; Egelhofer, Volker; Selbig, Joachim; van Dongen, Joost T; Wienkoop, Stefanie; Weckwerth, Wolfram

    2011-07-01

    Mass Accuracy Precursor Alignment is a fast and flexible method for comparative proteome analysis that allows the comparison of unprecedented numbers of shotgun proteomics analyses on a personal computer in a matter of hours. We compared 183 LC-MS analyses and more than 2 million MS/MS spectra and could define and separate the proteomic phenotypes of field grown tubers of 12 tetraploid cultivars of the crop plant Solanum tuberosum. Protein isoforms of patatin as well as other major gene families such as lipoxygenase and cysteine protease inhibitor that regulate tuber development were found to be the primary source of variability between the cultivars. This suggests that differentially expressed protein isoforms modulate genotype specific tuber development and the plant phenotype. We properly assigned the measured abundance of tryptic peptides to different protein isoforms that share extensive stretches of primary structure and thus inferred their abundance. Peptides unique to different protein isoforms were used to classify the remaining peptides assigned to the entire subset of isoforms based on a common abundance profile using multivariate statistical procedures. We identified nearly 4000 proteins which we used for quantitative functional annotation making this the most extensive study of the tuber proteome to date.

  13. Mechanisms of isoform-specific Na/K pump regulation by short- and long-term adrenergic activation in rat ventricular myocytes.

    Science.gov (United States)

    Yin, Jian; Guo, Hui-Cai; Yu, Ding; Wang, Hui-Ci; Li, Jun-Xia; Wang, Yong-Li

    2014-01-01

    Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH) and low-affinity current (IPL), α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane. © 2014 S. Karger AG, Basel.

  14. Mechanisms of Isoform-Specific Na/K Pump Regulation by Short- and Long-Term Adrenergic Activation in Rat Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2014-05-01

    Full Text Available Background: Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. Methods: After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH and low-affinity current (IPL, α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. Results: After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. Conclusions: These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane.

  15. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease.

    Science.gov (United States)

    Clausen, Michael V; Hilbers, Florian; Poulsen, Hanne

    2017-01-01

    The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.

  16. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    Science.gov (United States)

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  17. G protein-coupled receptors: the inside story.

    Science.gov (United States)

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  18. ADP-ribosylation of membrane components by pertussis and cholera toxin

    International Nuclear Information System (INIS)

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its α/sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its α; subunit. By using [ 32 P]NAD + and determining the transfer of its [ 32 P]ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin

  19. Statistical modeling of isoform splicing dynamics from RNA-seq time series data.

    Science.gov (United States)

    Huang, Yuanhua; Sanguinetti, Guido

    2016-10-01

    Isoform quantification is an important goal of RNA-seq experiments, yet it remains problematic for genes with low expression or several isoforms. These difficulties may in principle be ameliorated by exploiting correlated experimental designs, such as time series or dosage response experiments. Time series RNA-seq experiments, in particular, are becoming increasingly popular, yet there are no methods that explicitly leverage the experimental design to improve isoform quantification. Here, we present DICEseq, the first isoform quantification method tailored to correlated RNA-seq experiments. DICEseq explicitly models the correlations between different RNA-seq experiments to aid the quantification of isoforms across experiments. Numerical experiments on simulated datasets show that DICEseq yields more accurate results than state-of-the-art methods, an advantage that can become considerable at low coverage levels. On real datasets, our results show that DICEseq provides substantially more reproducible and robust quantifications, increasing the correlation of estimates from replicate datasets by up to 10% on genes with low or moderate expression levels (bottom third of all genes). Furthermore, DICEseq permits to quantify the trade-off between temporal sampling of RNA and depth of sequencing, frequently an important choice when planning experiments. Our results have strong implications for the design of RNA-seq experiments, and offer a novel tool for improved analysis of such datasets. Python code is freely available at http://diceseq.sf.net G.Sanguinetti@ed.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells.

    Science.gov (United States)

    Babeu, Jean-Philippe; Jones, Christine; Geha, Sameh; Carrier, Julie C; Boudreau, François

    2018-06-13

    HNF4α is a key nuclear receptor for regulating gene expression in the gut. While both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms may regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism while P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms are rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome thereby promoting colorectal cancer progression. © 2018. Published by The Company of Biologists Ltd.

  1. Segments Crucial for Membrane Translocation and Pore-forming Activity of Bordetella Adenylate Cyclase Toxin

    Czech Academy of Sciences Publication Activity Database

    Basler, Marek; Knapp, O.; Mašín, Jiří; Fišer, R.; Maier, E.; Benz, R.; Šebo, Peter; Osička, Radim

    2007-01-01

    Roč. 282, č. 17 (2007), s. 12419-12429 ISSN 0021-9258 R&D Projects: GA MŠk 1M0506; GA AV ČR IAA5020406 Grant - others:XE(XE) European Union 6th FP contract LSHB-CT-2003-503582 THERAVAC Institutional research plan: CEZ:AV0Z50200510 Source of funding: R - rámcový projekt EK Keywords : bordetella * adenylate cyclase toxin * ac membrane translocation Subject RIV: EE - Microbiology, Virology Impact factor: 5.581, year: 2007

  2. N-hydroxylamine is not an intermediate in the conversion of L-arginine to an activator of soluble guanylate cyclase in neuroblastoma N1E-115 cells.

    Science.gov (United States)

    Pou, S; Pou, W S; Rosen, G M; el-Fakahany, E E

    1991-01-01

    This study evaluates the role of N-hydroxylamine (NH2OH) in activating soluble guanylate cyclase in the mouse neuroblastoma clone N1E-115. It has been proposed that NH2OH is a putative intermediate in the biochemical pathway for the generation of nitric oxide (NO)/endothelium-derived relaxing factor (EDRF) from L-arginine. NH2OH caused a time- and concentration-dependent increase in cyclic GMP formation in intact cells. This response was not dependent on Ca2+. In cytosol preparations the activation of guanylate cyclase by L-arginine was dose-dependent and required Ca2+ and NADPH. In contrast, NH2OH itself did not activate cytosolic guanylate cyclase but it inhibited the basal activity of this enzyme in a concentration-dependent manner. The formation of cyclic GMP in the cytosolic fractions in response to NH2OH required the addition of catalase and H2O2. On the other hand, catalase and/or H2O2 lead to a decrease in L-arginine-induced cyclic GMP formation. Furthermore, NH2OH inhibited L-arginine- and sodium nitroprusside-induced cyclic GMP formation in the cytosol. The inhibition of L-arginine-induced cyclic GMP formation in the cytosol by NH2OH was not reversed by the addition of superoxide dismutase. These data strongly suggest that NH2OH is not a putative intermediate in the metabolism of L-arginine to an activator of guanylate cyclase. PMID:1671745

  3. High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal

    Directory of Open Access Journals (Sweden)

    Denis Kole

    2017-05-01

    Full Text Available Basic fibroblast growth factor (FGF2 is a highly pleiotropic member of a large family of growth factors with a broad range of activities, including mitogenesis and angiogenesis (Ornitz et al., 1996; Zhang et al., 2006, and it is known to be essential for maintenance of balance between survival, proliferation, and self-renewal in human pluripotent stem cells (Eiselleova et al., 2009; Zoumaro-Djayoon et al., 2011. A single FGF2 transcript can be translated into five FGF2 protein isoforms, an 18 kDa low molecular weight (LMW isoform and four larger high molecular weight (HMW isoforms (Arese et al., 1999; Arnaud et al., 1999. As they are not generally secreted, high molecular weight (HMW FGF2 isoforms have predominantly been investigated intracellularly; only a very limited number of studies have investigated their activity as extracellular factors. Here we report over-expression, isolation, and biological activity of all recombinant human FGF2 isoforms. We show that HMW FGF2 isoforms can support self-renewal of human embryonic stem cells (hESCs in vitro. Exogenous supplementation with HMW FGF2 isoforms also activates the canonical FGFR/MAPK pathway and induces mitogenic activity in a manner similar to that of the 18 kDa FGF2 isoform. Though all HMW isoforms, when supplemented exogenously, are able to recapitulate LMW FGF2 activity to some degree, it appears that certain isoforms tend to do so more poorly, demonstrating a lesser functional response by several measures. A better understanding of isoform-specific FGF2 effects will lead to a better understanding of developmental and pathological FGF2 signaling.

  4. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    International Nuclear Information System (INIS)

    Feng Changdong; Yang Jianping; Dai Tijun

    2009-01-01

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  5. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

    Science.gov (United States)

    White, Caroline N; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Figtree, Gemma A; Rasmussen, Helge H

    2010-04-30

    Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

  6. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease

    Directory of Open Access Journals (Sweden)

    Michael V. Clausen

    2017-06-01

    Full Text Available The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.

  7. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation

    Science.gov (United States)

    Seeger, Tanja; Hart, Melanie; Patarroyo, Manuel; Rolauffs, Bernd; Aicher, Wilhelm K.; Klein, Gerd

    2015-01-01

    Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells. PMID:26406476

  8. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation.

    Directory of Open Access Journals (Sweden)

    Tanja Seeger

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521 showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.

  9. Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-β Isoforms for Early and Differential Dementia Diagnosis.

    Science.gov (United States)

    Struyfs, Hanne; Van Broeck, Bianca; Timmers, Maarten; Fransen, Erik; Sleegers, Kristel; Van Broeckhoven, Christine; De Deyn, Peter P; Streffer, Johannes R; Mercken, Marc; Engelborghs, Sebastiaan

    2015-01-01

    Overlapping cerebrospinal fluid biomarkers (CSF) levels between Alzheimer's disease (AD) and non-AD patients decrease differential diagnostic accuracy of the AD core CSF biomarkers. Amyloid-β (Aβ) isoforms might improve the AD versus non-AD differential diagnosis. To determine the added diagnostic value of Aβ isoforms, Aβ(1-37), Aβ(1-38), and Aβ(1-40), as compared to the AD CSF biomarkers Aβ(1-42), T-tau, and P-tau(181P). CSF from patients with dementia due to AD (n = 50), non-AD dementias (n = 50), mild cognitive impairment due to AD (n = 50) and non-demented controls (n = 50) was analyzed with a prototype multiplex assay using MSD detection technology. The non-AD group consisted of frontotemporal dementia (FTD; n = 17), dementia with Lewy bodies (DLB; n = 17), and vascular dementia (n = 16). Aβ(1-37) and Aβ(1-38) increased accuracy to differentiate AD from FTD or DLB. Aβ(1-37), Aβ(1-38), and Aβ(1-40) levels correlated with Mini-Mental State Examination scores and disease duration in dementia due to AD. The Aβ(1-42)/Aβ(1-40) ratio improved diagnostic performance of Aβ(1-42) in most differential diagnostic situations. Aβ(1-42) levels were lower in APOE ε4 carriers compared to non-carriers. Aβ isoforms help to differentiate AD from FTD and DLB. Aβ isoforms increase diagnostic performance of Aβ(1-42). In contrast to Aβ1-42, Aβ isoforms seem to be correlated with disease severity in AD. Adding the Aβ isoforms to the current biomarker panel could enhance diagnostic accuracy.

  10. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Directory of Open Access Journals (Sweden)

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  11. Heterosubtypic protection against influenza A induced by adenylate cyclase toxoids delivering conserved HA2 subunit of hemagglutinin

    Czech Academy of Sciences Publication Activity Database

    Staneková, Z.; Adkins, Irena; Kosová, Martina; Janulíková, J.; Šebo, Peter; Varečková, E.

    2013-01-01

    Roč. 97, č. 1 (2013), s. 24-35 ISSN 0166-3542 R&D Projects: GA ČR GA310/08/0447; GA ČR GP310/09/P582 Institutional support: RVO:61388971 Keywords : Bordetella adenylate cyclase toxoid * Influenza A infection * Cross-protection Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.434, year: 2013

  12. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis

    Czech Academy of Sciences Publication Activity Database

    Šmídková, Markéta; Dvořáková, Alexandra; Tloušťová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Roč. 58, č. 2 (2014), s. 664-671 ISSN 0066-4804 R&D Projects: GA MV VG20102015046 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : Bordetella pertussis * adenylate cyclase toxin * ACT * inhibitors * PMEA * amidate prodrugs Subject RIV: CC - Organic Chemistry Impact factor: 4.476, year: 2014

  13. Effect of renal replacement therapy on retinol-binding protein 4 isoforms

    DEFF Research Database (Denmark)

    Frey, Simone K; Henze, Andrea; Nagl, Britta

    2009-01-01

    Retinol-binding protein 4 (RBP4) levels are elevated in the serum of patients with kidney dysfunction. We recently showed that RBP4 isoforms including apo-RBP4 (RBP4 not bound to retinol) and RBP4 truncated at the C-terminus (RBP4-L, RBP4-LL) are increased in the serum of patients with kidney dis...... diseases but not in serum of patients with various liver diseases. The aim of this study was to investigate the effect of renal replacement therapy on RBP4 isoforms....

  14. Isoforms of transferrin in psoriasis patients abusing alcohol

    NARCIS (Netherlands)

    P. Hoefkens (Peter); E.M. Higgins; R.J. Ward (Roberta); H.G. van Eijk (Henk)

    1997-01-01

    textabstractThe different isoforms of transferrin have been quantified by isoelectric focusing in the sera of psoriasis patients with and without a history of abusing alcohol. In both male and female psoriasis subjects abusing alcohol, there were significant increases in the

  15. Progesterone receptor isoform A may regulate the effects of neoadjuvant aglepristone in canine mammary carcinoma

    DEFF Research Database (Denmark)

    Guil-Luna, Silvia; Stenvang, Jan; Brünner, Nils

    2014-01-01

    RNA expression of progesterone receptor isoforms A and B in mammary carcinomas in dogs treated with 20 mg/Kg of aglepristone (n¿=¿22) or vehicle (n¿=¿5) twice before surgery.ResultsFormalin-fixed, paraffin-embedded tissue samples taken before and after treatment were used to analyse total progesterone receptor......-receptor positive and isoform-A positive tumours in aglepristone-treated dogs.ConclusionsThese findings suggest that the antiproliferative effects of aglepristone in canine mammary carcinomas are mediated by progesterone receptor isoform A....

  16. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes

    Czech Academy of Sciences Publication Activity Database

    Novák, Jakub; Černý, Ondřej; Osičková, Adriana; Linhartová, Irena; Mašín, Jiří; Bumba, Ladislav; Šebo, Peter; Osička, Radim

    2017-01-01

    Roč. 9, č. 10 (2017), s. 1-28, č. článku 300. E-ISSN 2072-6651 R&D Projects: GA ČR GA15-09157S; GA ČR(CZ) GA16-05919S; GA MŠk(CZ) LM2015064; GA MZd(CZ) NV16-28126A Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * Bordetella * cAMP Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.030, year: 2016

  17. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    Science.gov (United States)

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.

  18. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  19. Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis.

    Science.gov (United States)

    Bégay, Valérie; Smink, Jeske J; Loddenkemper, Christoph; Zimmermann, Karin; Rudolph, Cornelia; Scheller, Marina; Steinemann, Doris; Leser, Ulf; Schlegelberger, Brigitte; Stein, Harald; Leutz, Achim

    2015-01-01

    Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPβ) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPβ mRNA. The truncated C/EBPβ LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPβ LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPβ knockin mice that constitutively express only the C/EBPβ LIP isoform from its own locus. Our data show that deregulated C/EBPβ LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPβ LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPβ LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPβ LIP isoform. Elevated C/EBPβ LIP promotes cancer in mice. C/EBPβ LIP is upregulated in B-NHL. Deregulated C/EBPβ LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPβ LIP may support a pro-tumorigenic microenvironment.

  20. Biochemical Characteristics of Three Laccase Isoforms from the Basidiomycete Pleurotus nebrodensis

    Directory of Open Access Journals (Sweden)

    Xianghe Yuan

    2016-02-01

    Full Text Available The characterization of three laccase isoforms from Pleurotus nebrodensis is described. Isoenzymes Lac1, Lac2 and Lac3 were purified to homogeneity using ion exchange chromatography on DEAE-cellulose, CM-cellulose and Q-Sepharose and a gel filtration step on Superdex 75. The molecular weights of the purified laccases were estimated to be 68, 64 and 51 kDa, respectively. The isoenzymes demonstrated the same optimum pH at 3.0 but slightly different temperature optima: 50–60 °C for Lac1 and Lac3 and 60 °C for Lac2. Lac2 was always more stable than the other two isoforms and exposure to 50 °C for 120 min caused 30% loss in activity. Lac2 was relatively less stable than the other two isoforms when exposed to the pH range of 3.0–8.0 for 24 h, but inactivation only occurred initially, with around 70% residual activity being maintained during the whole process. Oxidative ability towards aromatic compounds varied substantially among the isoforms and each of them displayed preference toward some substrates. Kinetic constants (Km, Kcat were determined by using a 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS assay, with Lac3 showing the best affinity and Lac2 displaying the highest catalytic efficiency. Amino acid sequences from peptides derived from digestion of isoenzymes showed great consistency with laccases in the databases.

  1. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors.

    Directory of Open Access Journals (Sweden)

    David Shlensky

    Full Text Available Coactivator-associated arginine methyltransferase 1 (CARM1 is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL and truncated CARM1 (CARM1ΔE15. CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models.To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors.Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement.The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens.

  2. Analysis of the synaptotagmin family during reconstituted membrane fusion. Uncovering a class of inhibitory isoforms.

    Science.gov (United States)

    Bhalla, Akhil; Chicka, Michael C; Chapman, Edwin R

    2008-08-01

    Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells is regulated by the Ca(2+)-binding protein synaptotagmin (syt) I. Sixteen additional isoforms of syt have been identified, but little is known concerning their biochemical or functional properties. Here, we assessed the abilities of fourteen syt isoforms to directly regulate SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor)-catalyzed membrane fusion. One group of isoforms stimulated neuronal SNARE-mediated fusion in response to Ca(2+), while another set inhibited SNARE catalyzed fusion in both the absence and presence of Ca(2+). Biochemical analysis revealed a strong correlation between the ability of syt isoforms to bind 1,2-dioleoyl phosphatidylserine (PS) and t-SNAREs in a Ca(2+)-promoted manner with their abilities to enhance fusion, further establishing PS and SNAREs as critical effectors for syt action. The ability of syt I to efficiently stimulate fusion was specific for certain SNARE pairs, suggesting that syts might contribute to the specificity of intracellular membrane fusion reactions. Finally, a subset of inhibitory syts down-regulated the ability of syt I to activate fusion, demonstrating that syt isoforms can modulate the function of each other.

  3. The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    Science.gov (United States)

    Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy

    2012-01-01

    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647

  4. The landscape of isoform switches in human cancers

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Sandelin, Albin Gustav

    2017-01-01

    highly predictive of patient survival independent of cancer types. Our data constitute an important resource for cancer researchers, available through interactive web tools. Moreover, our methods, available as an R package, enable systematic analysis of isoform switches from other RNA-seq datasets...

  5. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W

    2010-07-23

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.

  6. Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.

    2010-01-01

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008

  7. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    Science.gov (United States)

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  8. O-GlcNAcylation modulates PKA-CREB signaling in a manner specific to PKA catalytic subunit isoforms.

    Science.gov (United States)

    Jin, Nana; Ma, Denglei; Gu, Jianlan; Shi, Jianhua; Xu, Xiaotao; Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei; Chu, Dandan

    2018-02-26

    O-GlcNAcylation is a post-translational modification of proteins. Protein kinase A (PKA)-cAMP response element binding protein (CREB) signaling plays critical roles in multiple biological processes. Isoforms α and β of PKA catalytic subunit (PKAc) and CREB are modified by O-GlcNAcylation. In the present study, we determined the role of O-GlcNAcylation in PKAc isoform-specific CREB signaling. We found that up-regulation of O-GlcNAcylation enhanced CREB phosphorylation, but suppressed CREB expression in exogenous PKAc isoform-unspecific manner. PKAc isoforms affected exogenous expression of OGT or OGA and protein O-GlcNAcylation differently. Up-regulation of O-GlcNAcylation did not significantly affect net PKAcα-CREB signaling, but enhanced PKAcβ-CREB signaling. The role of O-GlcNAcylation in PKA-CREB signaling was desensitized by insulin treatment. This study suggests a role of O-GlcNAcylation in PKA-CREB signaling by affecting phosphorylation of CREB in a PKAc isoform-specific manner. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Lipoprotein lipase isoelectric point isoforms in humans

    DEFF Research Database (Denmark)

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.

    2014-01-01

    -heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation...

  10. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.

    Science.gov (United States)

    Orfanos, Zacharias; Sparrow, John C

    2013-01-01

    During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc. The weeP26 IFM sarcomeres have a unique MHC-GFP-labelling pattern restricted to the sarcomere core, explained by non-translation of the GFP exon following alternative splicing. Characterisation of wild-type IFM MHC mRNA confirmed the presence of an alternately spliced isoform, expressed earlier than the major IFM-specific isoform. The two wild-type IFM-specific MHC isoforms differ by the presence of a C-terminal 'tailpiece' in the minor isoform. The sequential expression and assembly of these two MHCs into developing thick filaments suggest a role for the tailpiece in initiating A-band formation. The restriction of the MHC-GFP sarcomeric pattern in weeP26 is lifted when the IFM lack the IFM-specific myosin binding protein flightin, suggesting that it limits myosin dissociation from thick filaments. Studies of flightin binding to developing thick filaments reveal a progressive binding at the growing thick filament tips and in a retrograde direction to earlier assembled, proximal filament regions. We propose that this flightin binding restricts myosin molecule incorporation/dissociation during thick filament assembly and explains the location of the early MHC isoform pattern in the IFM A-band.

  11. Tocopherol synthesis from homogentisate in Capsicum anuum L. (yellow pepper) chromoplast membranes: evidence for tocopherol cyclase.

    OpenAIRE

    Arango, Y; Heise, K P

    1998-01-01

    The present study shows for the first time appreciable tocopherol cyclase activities in plastidial membrane preparations of Capsicum annuum L. (yellow pepper) fruits. When chromoplast membranes from yellow peppers were incubated with [3H]homogentisate and phytyl pyrophosphate under strictly reducing conditions, all biosynthesis precursors were labelled. The main labelling was found in gamma-tocopherol. These observations contradict the hypothesis that assigns a rate-limiting function to tocop...

  12. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    International Nuclear Information System (INIS)

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-01-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of [ 125 ]Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10 -5 M) suggesting predominate beta 2 -type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta- 2 -type BAR coupled to adenylate cyclase in rat brown fat

  13. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    Science.gov (United States)

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology.

    Science.gov (United States)

    Callaghan, Paul S; Siriwardana, Amila; Hassett, Matthew R; Roepe, Paul D

    2016-03-31

    Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.

  15. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation.

    Science.gov (United States)

    Pardo, M; Abrial, E; Jope, R S; Beurel, E

    2016-03-01

    Abnormally active glycogen synthase kinase-3 (GSK3) contributes to pathological processes in multiple psychiatric and neurological disorders. Modeled in mice, this includes increasing susceptibility to dysregulation of mood-relevant behaviors, impairing performance in several cognitive tasks and impairing adult hippocampal neural precursor cell (NPC) proliferation. These deficits are all evident in GSK3α/β knockin mice, in which serine-to-alanine mutations block the inhibitory serine phosphorylation regulation of both GSK3 isoforms, leaving GSK3 hyperactive. It was unknown if both GSK3 isoforms perform redundant actions in these processes, or if hyperactivity of one GSK3 isoform has a predominant effect. To test this, we examined GSK3α or GSK3β knockin mice in which only one isoform was mutated to a hyperactive form. Only GSK3β, not GSK3α, knockin mice displayed heightened vulnerability to the learned helplessness model of depression-like behavior. Three cognitive measures impaired in GSK3α/β knockin mice showed differential regulation by GSK3 isoforms. Novel object recognition was impaired in GSK3β, not in GSK3α, knockin mice, whereas temporal order memory was not impaired in GSK3α or GSK3β knockin mice, and co-ordinate spatial processing was impaired in both GSK3α and GSK3β knockin mice. Adult hippocampal NPC proliferation was severely impaired in GSK3β knockin mice, but not impaired in GSK3α knockin mice. Increased activity of GSK3β, in the absence of overexpression or disease pathology, is sufficient to impair mood regulation, novel object recognition and hippocampal NPC proliferation, whereas hyperactive GSK3α individually does not impair these processes. These results show that hyperactivity of the two GSK3 isoforms execute non-redundant effects on these processes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics.

    Directory of Open Access Journals (Sweden)

    Chryso Kanthou

    Full Text Available Vascular endothelial growth factor-A (VEGF is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120 on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188 or wild type controls (fswt were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine

  17. HPLC separation of human serum albumin isoforms based on their isoelectric points

    Science.gov (United States)

    Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A.; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA–SHg+), HSA with Cys34 oxidized to sulfenic acid (HSA–SOH) and HSA oxidized to sulfinate anion (HSA–SO2−) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3–585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA PMID:24316526

  18. Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi.

    Directory of Open Access Journals (Sweden)

    Lena Studt

    Full Text Available The plant-pathogenic fungus Fusarium fujikuroi is a notorious rice pathogen causing hyper-elongation of infected plants due to the production of gibberellic acids (GAs. In addition to GAs, F. fujikuroi produces a wide range of other secondary metabolites, such as fusarins, fusaric acid or the red polyketides bikaverins and fusarubins. The recent availability of the fungal genome sequence for this species has revealed the potential of many more putative secondary metabolite gene clusters whose products remain to be identified. However, the complex regulation of secondary metabolism is far from being understood. Here we studied the impact of the heterotrimeric G protein and the cAMP-mediated signaling network, including the regulatory subunits of the cAMP-dependent protein kinase (PKA, to study their effect on colony morphology, sexual development and regulation of bikaverins, fusarubins and GAs. We demonstrated that fusarubin biosynthesis is negatively regulated by at least two Gα subunits, FfG1 and FfG3, which both function as stimulators of the adenylyl cyclase FfAC. Surprisingly, the primary downstream target of the adenylyl cyclase, the PKA, is not involved in the regulation of fusarubins, suggesting that additional, yet unidentified, cAMP-binding protein(s exist. In contrast, bikaverin biosynthesis is significantly reduced in ffg1 and ffg3 deletion mutants and positively regulated by FfAC and FfPKA1, while GA biosynthesis depends on the active FfAC and FfPKA2 in an FfG1- and FfG3-independent manner. In addition, we provide evidence that G Protein-mediated/cAMP signaling is important for growth in F. fujikuroi because deletion of ffg3, ffac and ffpka1 resulted in impaired growth on minimal and rich media. Finally, sexual crosses of ffg1 mutants showed the importance of a functional FfG1 protein for development of perithecia in the mating strain that carries the MAT1-1 idiomorph.

  19. Defective Resensitization in Human Airway Smooth Muscle Cells Evokes β-Adrenergic Receptor Dysfunction in Severe Asthma.

    Directory of Open Access Journals (Sweden)

    Manveen K Gupta

    Full Text Available β2-adrenergic receptor (β2AR agonists (β2-agonist are the most commonly used therapy for acute relief in asthma, but chronic use of these bronchodilators paradoxically exacerbates airway hyper-responsiveness. Activation of βARs by β-agonist leads to desensitization (inactivation by phosphorylation through G-protein coupled receptor kinases (GRKs which mediate β-arrestin binding and βAR internalization. Resensitization occurs by dephosphorylation of the endosomal βARs which recycle back to the plasma membrane as agonist-ready receptors. To determine whether the loss in β-agonist response in asthma is due to altered βAR desensitization and/or resensitization, we used primary human airway smooth muscle cells (HASMCs isolated from the lungs of non-asthmatic and fatal-asthmatic subjects. Asthmatic HASMCs have diminished adenylyl cyclase activity and cAMP response to β-agonist as compared to non-asthmatic HASMCs. Confocal microscopy showed significant accumulation of phosphorylated β2ARs in asthmatic HASMCs. Systematic analysis of desensitization components including GRKs and β-arrestin showed no appreciable differences between asthmatic and non-asthmatic HASMCs. However, asthmatic HASMC showed significant increase in PI3Kγ activity and was associated with reduction in PP2A activity. Since reduction in PP2A activity could alter receptor resensitization, endosomal fractions were isolated to assess the agonist ready β2ARs as a measure of resensitization. Despite significant accumulation of β2ARs in the endosomes of asthmatic HASMCs, endosomal β2ARs cannot robustly activate adenylyl cyclase. Furthermore, endosomes from asthmatic HASMCs are associated with significant increase in PI3Kγ and reduced PP2A activity that inhibits β2AR resensitization. Our study shows that resensitization, a process considered to be a homeostasis maintaining passive process is inhibited in asthmatic HASMCs contributing to β2AR dysfunction which may underlie

  20. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  1. Expression of two isoforms of CD44 in human endometrium.

    Science.gov (United States)

    Behzad, F; Seif, M W; Campbell, S; Aplin, J D

    1994-10-01

    The distribution of the cell-surface adhesion glycoprotein CD44 in human endometrium was examined by immunofluorescence using six monoclonal antibodies to epitopes common to all forms of the molecule, and by reverse transcription-polymerase chain reaction (RT-PCR). Immunoreactivity was observed throughout the menstrual cycle in stroma, vessels, glandular, and luminal epithelium. Variations in staining intensity were observed, especially in the epithelial compartment. CD44 was also expressed strongly by decidualized stromal cells of first-trimester pregnancy. No systematic variation of immunoreactivity was observed with stages of the normal cycle, but a fraction (25%) of the specimens lacked reactivity in the epithelium. To determine the molecular size of the epithelial isoform, an immunoprecipitation technique was developed using surface-radioiodinated, detergent-extracted glands. This indicated the presence at the cell surface of a single dominant CD44E species with an approximate molecular mass of 130 kDa. RT-PCR was used to investigate the isoforms present in whole endometrial tissue, isolated gland fragments, and Ishikawa endometrial carcinoma cells. Complementary DNA produced from total endometrial mRNA was PCR-amplified across the splice junction between exons 5 and 15. Transcripts corresponding to the hyaluronate receptor CD44H as well as a larger isoform were identified. CD44H was absent, or very scarce, in cDNA from purified gland epithelium. In contrast, Ishikawa cells expressed this form abundantly. The glands and Ishikawa cells also expressed CD44E containing sequences encoded by exons 12, 13, and 14. These data demonstrate the presence of CD44 in human endometrium and decidua, and show that different isoforms of CD44 are associated with tissue compartments in which different functional roles can be anticipated.

  2. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: Role of voltage and pH

    Czech Academy of Sciences Publication Activity Database

    Knapp, O.; Maier, E.; Mašín, Jiří; Šebo, Peter; Benz, R.

    2008-01-01

    Roč. 1778, č. 1 (2008), s. 260-269 ISSN 0005-2736 R&D Projects: GA AV ČR(CZ) IAA5020406 Grant - others:XE(XE) QLK2-CT-1999-00556 Institutional research plan: CEZ:AV0Z50200510 Keywords : adenylate cyclase toxin * act * voltage Subject RIV: EE - Microbiology, Virology Impact factor: 4.180, year: 2008

  3. Analysis of human bone alkaline phosphatase isoforms: comparison of isoelectric focusing and ion-exchange high-performance liquid chromatography.

    Science.gov (United States)

    Sharp, Christopher A; Linder, Cecilia; Magnusson, Per

    2007-04-01

    Several isoforms of alkaline phosphatase (ALP) can be identified in human tissues and serum after separation by anion-exchange HPLC and isoelectric focusing (IEF). We purified four soluble bone ALP (BALP) isoforms (B/I, B1x, B1 and B2) from human SaOS-2 cells, determined their specific pI values by broad range IEF (pH 3.5-9.5), compared these with commercial preparations of bone, intestinal and liver ALPs and established the effects of neuraminidase and wheat germ lectin (WGA) on enzyme activity. Whilst the isoforms B1x (pI=4.48), B1 (pI=4.32) and B2 (pI=4.12) resolved as well-defined bands, B/I resolved as a complex (pI=4.85-6.84). Neuraminidase altered the migration of all BALP isoforms to pI=6.84 and abolished their binding to the anion-exchange matrix, but increased their enzymatic activities by 11-20%. WGA precipitated the BALP isoforms in IEF gels and the HPLC column and attenuated their enzymatic activities by 54-73%. IEF resolved the commercial BALP into 2 major bands (pI=4.41 and 4.55). Migration of BALP isoforms is similar in IEF and anion-exchange HPLC and dependent on sialic acid content. HPLC is preferable in smaller scale research applications where samples containing mixtures of BALP isoforms are analysed. Circulating liver ALP (pI=3.85) can be resolved from BALP by either method. IEF represents a simpler approach for routine purposes even though some overlapping of the isoforms may occur.

  4. Smoking specifically induces metallothionein-2 isoform in human placenta at term

    International Nuclear Information System (INIS)

    Ronco, Ana Maria; Garrido, Fernando; Llanos, Miguel N.

    2006-01-01

    Recently, we reported the presence of higher levels of metallothionein (MT) in placentas of smokers compared to non-smokers. In the present study, we designed experiments to separate and evaluate two isoforms of MT (MT-1 and MT-2) in placentas of smokers and non-smokers. Metallothionein was extracted and separated by ion-exchange high performance liquid chromatography (HPLC), previous saturation with cadmium chloride. Two peaks eluting at 6 and 12.5 min, corresponding to MT-1 and MT-2, respectively, were obtained. Metallothionein present in both peaks was identified by Western blot analysis using a monoclonal antibody directed against MT-1 and MT-2. Each isoform concentration was calculated after measuring its cadmium content by atomic absorption spectrometry with inductively coupled-plasma. In placentas of smokers, MT-2 levels increased by seven-fold compared to non-smokers, whereas MT-1 was not changed. Total placental cadmium and zinc concentrations, determined by atomic absorption spectrometry and neutron activation analysis, respectively, were higher in smokers. Metallothioneins levels were clearly in excess to bind all cadmium ions present in placentas. However, most of placental zinc remains unbound to MTs, although as much as twice zinc ions could be bound to MT in smokers. In conclusion, MT-2 is the main isoform induced by smoking, suggesting that this isoform could be involved in placental cadmium and zinc retention. This fact, which could contribute to reduce the transference of zinc to the fetus, may be associated to detrimental effects on fetal growth and development

  5. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    International Nuclear Information System (INIS)

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.; Morris, Glenn E.

    2011-01-01

    Highlights: → A novel epsilon isoform of nesprin-2 has been discovered. → This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. → It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. → Like other nesprins, it is located at the nuclear envelope. → We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  6. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E. (Alton Ochsner Medical Foundation, New Orleans, LA (USA))

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.

  7. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina.

    Science.gov (United States)

    López-Begines, Santiago; Plana-Bonamaisó, Anna; Méndez, Ana

    2018-02-13

    Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.

  8. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    International Nuclear Information System (INIS)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-01-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release

  9. Differential expression of a new isoform of DLG2 in renal oncocytoma

    Directory of Open Access Journals (Sweden)

    Kovacs Gyula

    2006-04-01

    Full Text Available Abstract Background Renal oncocytoma, a benign tumour of the kidney, may pose a differential diagnostic problem due to overlapping phenotype with chromophobe renal cell carcinoma or other types of renal cell tumours. Therefore, identification of molecular markers would be of great value for molecular diagnostics of this tumour type. Methods In the current study we applied various techniques, including Affymetrix microarray hybridization and semiquantitative RT-PCR, to identify genes expressed differentially in renal oncocytomas. Subsequently, we used RACE and Northern blot hybridization to characterize the potential candidates for molecular diagnosis. Results We have identified new isoform of DLG2 gene, which contains 3'-end exons of the known DLG2 gene along with the hypothetical gene FLJ37266. The new isoform is specifically upregulated in renal oncocytoma, whereas the known DLG2 gene is downregulated in this type of kidney tumour. Conclusion The new isoform of DLG2 is the promising candidate gene for molecular differential diagnostics of renal oncocytoma.

  10. Differential expression of a new isoform of DLG2 in renal oncocytoma

    International Nuclear Information System (INIS)

    Zubakov, Dmitry; Stupar, Zorica; Kovacs, Gyula

    2006-01-01

    Renal oncocytoma, a benign tumour of the kidney, may pose a differential diagnostic problem due to overlapping phenotype with chromophobe renal cell carcinoma or other types of renal cell tumours. Therefore, identification of molecular markers would be of great value for molecular diagnostics of this tumour type. In the current study we applied various techniques, including Affymetrix microarray hybridization and semiquantitative RT-PCR, to identify genes expressed differentially in renal oncocytomas. Subsequently, we used RACE and Northern blot hybridization to characterize the potential candidates for molecular diagnosis. We have identified new isoform of DLG2 gene, which contains 3'-end exons of the known DLG2 gene along with the hypothetical gene FLJ37266. The new isoform is specifically upregulated in renal oncocytoma, whereas the known DLG2 gene is downregulated in this type of kidney tumour. The new isoform of DLG2 is the promising candidate gene for molecular differential diagnostics of renal oncocytoma

  11. [Characterization of a malic enzyme isoform V from Mucor circinelloides].

    Science.gov (United States)

    Zhang, Yingtong; Chen, Haiqin; Song, Yuanda; Zhang, Hao; Chen, Yongquan; Chen, Wei

    2016-02-04

    We aimed at characterizing a malic enzyme isoform V from Mucor circinelloides. me1 gene encoding malic enzyme isoform V was amplified and cloned into expression vector pET28a. High-purity recombinant protein BLME1 was obtained by affinity chromatography using. Ni-NTA column and characterized subsequently. The optimum conditions were pH at 8.0 and temperature at 33 degrees C. Under optimum conditions, BLME1 activity achieved 92.8 U/mg. The K(m) for L-malate and NADP+ were 0.74960 ± 0.06120 mmol/L and 0.22070 ± 0.01810 mmol/L, the V(max) for L-malate and NADP+ were 72.820 ± 1.077 U/mg and 86.110 ± 1.665 U/mg, respectively. In addition, ions played important roles in BLME1 activity; several ions such as Mn2+, Mg2+, Co2+, Ni2+ could activate BLME1, whereas Ca2+, Cu2+ could be used as inhibitors. Additionally, the metabolic intermediates such as oxaloacetic acid and α-ketoglutaric acid inhibited the activity of BLME1, whereas succinic acid activated it. A malic enzyme isoform V from Mucor circinelloides was characterized, providing the references for further studies on this enzyme.

  12. Two Distinct Isoforms of Matrix Metalloproteinase-2 Are Associated with Human Delayed Kidney Graft Function.

    Directory of Open Access Journals (Sweden)

    Shaynah Wanga

    Full Text Available Delayed graft function (DGF is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2, as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2 that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC, in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are

  13. Role of AC-cAMP-PKA Cascade in Antidepressant Action of Electroacupuncture Treatment in Rats

    Directory of Open Access Journals (Sweden)

    Jian-hua Liu

    2012-01-01

    Full Text Available Adenylyl cyclase (AC-cyclic adenosine monophosphate (cAMP-cAMP-dependent protein kinase A (PKA cascade is considered to be associated with the pathogenesis and treatment of depression. The present study was conducted to explore the role of the cAMP cascade in antidepressant action of electroacupuncture (EA treatment for chronic mild stress (CMS-induced depression model rats. The results showed that EA improved significantly behavior symptoms in depression and dysfunction of AC-cAMP-PKA signal transduction pathway induced by CMS, which was as effective as fluoxetine. Moreover, the antidepressant effects of EA rather than Fluoxetine were completely abolished by H89, a specific PKA inhibitor. Consequently, EA has a significant antidepressant treatment in CMS-induced depression model rats, and AC-cAMP-PKA signal transduction pathway is crucial for it.

  14. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    Science.gov (United States)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  15. Localization of a guanylyl cyclase to chemosensory cilia requires the novel ciliary MYND domain protein DAF-25.

    Directory of Open Access Journals (Sweden)

    Victor L Jensen

    2010-11-01

    Full Text Available In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-β and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation were isolated from screens for mutants exhibiting constitutive dauer formation and found to be defective in olfaction. The daf-25 dauer phenotype is suppressed by daf-10/IFT122 mutations (which disrupt ciliogenesis, but not by daf-6/PTCHD3 mutations (which prevent environmental exposure of sensory cilia, implying that DAF-25 functions in the cilia themselves. daf-25 encodes the C. elegans ortholog of mammalian Ankmy2, a MYND domain protein of unknown function. Disruption of DAF-25, which localizes to sensory cilia, produces no apparent cilia structure anomalies, as determined by light and electron microscopy. Hinting at its potential function, the dauer phenotype, epistatic order, and expression profile of daf-25 are similar to daf-11, which encodes a cilium-localized guanylyl cyclase. Indeed, we demonstrate that DAF-25 is required for proper DAF-11 ciliary localization. Furthermore, the functional interaction is evolutionarily conserved, as mouse Ankmy2 interacts with guanylyl cyclase GC1 from ciliary photoreceptors. The interaction may be specific because daf-25 mutants have normally-localized OSM-9/TRPV4, TAX-4/CNGA1, CHE-2/IFT80, CHE-11/IFT140, CHE-13/IFT57, BBS-8, OSM-5/IFT88, and XBX-1/D2LIC in the cilia. Intraflagellar transport (IFT (required to build cilia is not defective in daf-25 mutants, although the ciliary localization of DAF-25 itself is influenced in che-11 mutants, which are defective in retrograde IFT. In summary, we have discovered a novel ciliary protein that plays an important role in cGMP signaling by localizing a guanylyl cyclase to the sensory organelle.

  16. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation has been applied extensively to determine the molecular weight of soluble enzyme and receptor systems from the slope of a linear ln (activity) vs. dose curve. Complex nonlinear inactivation curves are predicted for multimeric enzyme systems, composed of distinct subunits in equilibrium with multimeric complexes. For the system A1 + A2----A1A2, with an active A1A2 complex (associative model), the ln (activity) vs. dose curve is linear for high dissociation constant, K. If a monomer, A1, has all the enzyme activity (dissociative model), the ln (activity) vs. dose curve has an activation hump at low radiation dose if the inactive subunit, A2, has a higher molecular weight than A1 and has upward concavity when A2 is smaller than A1. In general, a radiation inactivation model for a multistep mechanism for enzyme activation fulfills the characteristics of an associative or dissociative model if the reaction step forming active enzyme is an associative or dissociative reaction. Target theory gives the molecular weight of the active enzyme subunit or complex from the limiting slope of the ln (activity) vs. dose curve at high radiation dose. If energy transfer occurs among subunits in the multimer, the ln (activity) vs. dose curve is linear for a single active component and is concave upward for two or more active components. The use of radiation inactivation as a method to determine enzyme size and multimeric subunit assembly is discussed with specific application to the hormone-sensitive adenylate cyclase system. It is shown that the complex inactivation curves presented in the accompanying paper can be used select the best mechanism out of a series of seven proposed mechanisms for the activation of adenylate cyclase by hormone

  17. ADAPTIVE CHANGES OF MYOSIN ISOFORMS IN RESPONSE TO LONG-TERM STRENGTH AND POWER TRAINING IN MIDDLE-AGED MEN

    Directory of Open Access Journals (Sweden)

    Raivo Puhke

    2006-06-01

    Full Text Available The purpose of the study was to examine the adaptive changes in myosin heavy chain (MHC and light chain (MLC isoforms in human vastus lateralis muscle caused by long-term strength and power training (54 weeks, approximately 3 times a week in untrained middle- aged men (16 in the training and 6 in the control group. Muscular MHC and MLC isoforms were determined by means of SDS-PAGE gel electrophoresis. During the training period, maximal anaerobic cycling power increased by 64 W (p < 0.001 and the maximal jumping height by 1.5 cm (p < 0. 05 in the training group, but no significant changes were found in the control group. However, the group by time effect was not significant. In the training group, the increase of the maximal jumping height correlated with the number of strength and power training sessions (r = 0.56; p < 0.05. The change of the proportion of MHC IIa isoform from 52.6 ± 12.2% to 59.4 ± 11.6% did not reach statistical significance (p = 0.070 for group by time; within training group p = 0.061 and neither did the change of the proportion of MHC IIx isoform from 18.1 ± 11.4% to 11.1 ± 9.1% (p = 0.104 for group by time; within training group p=0.032. The degree of change of MHC IIx isoform correlated with the amount of earlier recreational sports activity (r = 0.61; p < 0.05. In the training group, the changes of MLC1s isoform correlated negatively with the changes of MLC1f isoform (r = -0. 79; p < 0.05 as well as with the changes in maximal anaerobic cycling power (r = -0.81; p < 0.05, and positively with those of MHC I isoform (r = 0.81; p < 0.05. In conclusion, the long- term strength and power training ~3 times a week seemed to have only slight effects on fast MHC isoforms in the vastus lateralis muscle of untrained middle-aged men; the proportion of MHC IIa tended to increase and that of MHC IIx tended to decrease. No changes in MLC isoform profile could be shown

  18. Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum.

    Science.gov (United States)

    Bhattacharyya, Dipto; Hazra, Saptarshi; Banerjee, Anindyajit; Datta, Riddhi; Kumar, Deepak; Chakrabarti, Saikat; Chattopadhyay, Sharmila

    2016-09-01

    Podophyllotoxin (ptox) is a therapeutically important lignan derived from Podophyllum hexandrum and is used as a precursor for the synthesis of anticancer drugs etoposide, teniposide and etopophose. In spite of its enormous economic significance, genomic information on this endangered medicinal herb is scarce. We have performed de novo transcriptome analysis of methyl jasmonate (MeJA)-treated P. hexandrum cell cultures exhibiting enhanced ptox accumulation. The results revealed the maximum up-regulation of several isoforms of cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes the synthesis of coniferyl alcohol and sinapyl alcohol from coniferaldehyde (CAld) and sinapaldehyde respectively. Coniferyl alcohol can produce both lignin and lignan while sinapyl alcohol produces only lignin. To isolate the CAD isoforms favoring ptox, we deduced full length cDNA sequences of four CAD isoforms: PhCAD1, PhCAD2, PhCAD3 and PhCAD4 from the contigs of the transcriptome data. In vitro enzyme assays indicated a higher affinity for CAld over sinapaldehyde for each isoform. In silico molecular docking analyses also suggested that PhCAD3 has a higher binding preference with CAld over sinapaldehyde, followed by PhCAD4, PhCAD2, and PhCAD1, respectively. The transgenic cell cultures overexpressing these isoforms independently revealed that PhCAD3 favored the maximum accumulation of ptox as compared to lignin followed by PhCAD4 and PhCAD2, whereas, PhCAD1 favored both equally. Together, our study reveals transcriptome-wide identification and characterization of ptox specific CAD isoforms from P. hexandrum. It provides a useful resource for future research not only on the ptox biosynthetic pathway but on overall P. hexandrum, an endangered medicinal herb with immense therapeutic importance.

  19. The schizophrenia-associated Kv11.1-3.1 isoform results in reduced current accumulation during repetitive brief depolarizations.

    Directory of Open Access Journals (Sweden)

    Juliane Heide

    Full Text Available Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing.

  20. Cooperation between two ClpB isoforms enhances the recovery of the recombinant {beta}-galactosidase from inclusion bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Izabela [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland); Zolkiewski, Michal [Department of Biochemistry, Kansas State University, Manhattan, KS 66506 (United States); Kedzierska-Mieszkowska, Sabina, E-mail: kedzie@biotech.ug.gda.pl [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer An important role of synergistic cooperation between the two ClpB isoforms. Black-Right-Pointing-Pointer Both ClpB isoforms are associated with IBs of {beta}-galactosidase. Black-Right-Pointing-Pointer ClpB is a key chaperone in IB protein release. -- Abstract: Bacterial ClpB is a molecular chaperone that solubilizes and reactivates aggregated proteins in cooperation with the DnaK chaperone system. The mechanism of protein disaggregation mediated by ClpB is linked to translocation of substrates through the central channel within the ring-hexameric structure of ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and the truncated ClpB80 (ClpB{Delta}N), which does not contain the N-terminal domain. The functional specificity of the two ClpB isoforms and the biological role of the N-terminal domain are still not fully understood. Recently, it has been demonstrated that ClpB may achieve its full potential as an aggregate-reactivating chaperone through the functional interaction and synergistic cooperation of its two isoforms. It has been found that the most efficient resolubilization and reactivation of stress-aggregated proteins occurred in the presence of both ClpB95 and ClpB80. In this work, we asked if the two ClpB isoforms functionally cooperate in the solubilization and reactivation of proteins from insoluble inclusion bodies (IBs) in Escherichia coli cells. Using the model {beta}-galactosidase fusion protein (VP1LAC), we found that solubilization and reactivation of enzymes entrapped in IBs occurred more efficiently in the presence of ClpB95 with ClpB80 than with either ClpB95 or ClpB80 alone. The two isoforms of ClpB chaperone acting together enhanced the solubility and enzymatic activity of {beta}-galactosidase sequestered into IBs. Both ClpB isoforms were associated with IBs of {beta}-galactosidase, what demonstrates their affinity to this type of aggregates. These results demonstrate a synergistic

  1. Differential expression of mRNAs for protein kinase inhibitor isoforms in mouse brain.

    OpenAIRE

    Seasholtz, A F; Gamm, D M; Ballestero, R P; Scarpetta, M A; Uhler, M D

    1995-01-01

    Many neurotransmitters are known to regulate neuronal cell function by means of activation of cAMP-dependent protein kinase (PKA) and phosphorylation of neuronal substrate proteins, including transcription factors and ion channels. Here, we have characterized the gene expression of two isoforms of a protein kinase inhibitor (PKI) specific for PKA in mouse brain by RNase protection and in situ hybridization histochemistry. The studies demonstrate that the PKI alpha isoform is abundant in many ...

  2. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis.

    Science.gov (United States)

    Kawai, Yoshikazu; Asai, Kei; Errington, Jeffery

    2009-08-01

    MreB proteins are bacterial actin homologues thought to have a role in cell shape determination by positioning the cell wall synthetic machinery. Many bacteria, particularly Gram-positives, have more than one MreB isoform. Bacillus subtilis has three, MreB, Mbl and MreBH, which colocalize in a single helical structure. We now show that the helical pattern of peptidoglycan (PG) synthesis in the cylindrical part of the rod-shaped cell is governed by the redundant action of the three MreB isoforms. Single mutants for any one of mreB isoforms can still incorporate PG in a helical pattern and generate a rod shape. However, after depletion of MreB in an mbl mutant (or depletion of all three isoforms) lateral wall PG synthesis was impaired and the cells became spherical and lytic. Overexpression of any one of the MreB isoforms overcame the lethality as well as the defects in lateral PG synthesis and cell shape. Furthermore, MreB and Mbl can associate with the peptidoglycan biosynthetic machinery independently. However, no single MreB isoform was able to support normal growth under various stress conditions, suggesting that the multiple isoforms are used to allow cells to maintain proper growth and morphogenesis under changing and sometimes adverse conditions.

  3. Roles of the troponin isoforms during indirect flight muscle ...

    Indian Academy of Sciences (India)

    IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed ...

  4. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases.

    Science.gov (United States)

    Lieberman, Ori J; Orr, Mona W; Wang, Yan; Lee, Vincent T

    2014-01-17

    The rise of bacterial resistance to traditional antibiotics has motivated recent efforts to identify new drug candidates that target virulence factors or their regulatory pathways. One such antivirulence target is the cyclic-di-GMP (cdiGMP) signaling pathway, which regulates biofilm formation, motility, and pathogenesis. Pseudomonas aeruginosa is an important opportunistic pathogen that utilizes cdiGMP-regulated polysaccharides, including alginate and pellicle polysaccharide (PEL), to mediate virulence and antibiotic resistance. CdiGMP activates PEL and alginate biosynthesis by binding to specific receptors including PelD and Alg44. Mutations that abrogate cdiGMP binding to these receptors prevent polysaccharide production. Identification of small molecules that can inhibit cdiGMP binding to the allosteric sites on these proteins could mimic binding defective mutants and potentially reduce biofilm formation or alginate secretion. Here, we report the development of a rapid and quantitative high-throughput screen for inhibitors of protein-cdiGMP interactions based on the differential radial capillary action of ligand assay (DRaCALA). Using this approach, we identified ebselen as an inhibitor of cdiGMP binding to receptors containing an RxxD domain including PelD and diguanylate cyclases (DGC). Ebselen reduces diguanylate cyclase activity by covalently modifying cysteine residues. Ebselen oxide, the selenone analogue of ebselen, also inhibits cdiGMP binding through the same covalent mechanism. Ebselen and ebselen oxide inhibit cdiGMP regulation of biofilm formation and flagella-mediated motility in P. aeruginosa through inhibition of diguanylate cyclases. The identification of ebselen provides a proof-of-principle that a DRaCALA high-throughput screening approach can be used to identify bioactive agents that reverse regulation of cdiGMP signaling by targeting cdiGMP-binding domains.

  5. Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model.

    Science.gov (United States)

    Cheung, Gordon Y C; Xing, Dorothy; Prior, Sandra; Corbel, Michael J; Parton, Roger; Coote, John G

    2006-12-01

    Four recombinant forms of the cell-invasive adenylate cyclase toxin (CyaA) of Bordetella pertussis were compared for the ability to enhance protection against B. pertussis in mice when coadministered with an acellular pertussis vaccine (ACV). The four forms were as follows: fully functional CyaA, a CyaA form lacking adenylate cyclase enzymatic activity (CyaA*), and the nonacylated forms of these toxins, i.e., proCyaA and proCyaA*, respectively. None of these forms alone conferred significant (P > 0.05) protection against B. pertussis in a murine intranasal challenge model. Mice immunized with ACV alone showed significant (P protection was only significant (P protection provided by CyaA* was due to an augmentation of both Th1 and Th2 immune responses to B. pertussis antigens.

  6. The related transcriptional enhancer factor-1 isoform, TEAD4(216, can repress vascular endothelial growth factor expression in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Binoy Appukuttan

    Full Text Available Increased cellular production of vascular endothelial growth factor (VEGF is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4 protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4(216, which represses VEGF promoter activity. The TEAD4(216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE, which is the sequence critical to hypoxia inducible factor (HIF-mediated effects. The TEAD4(216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4(216 isoform can competitively repress the stimulatory activity of the TEAD4(434 and TEAD4(148 enhancers. Synthesis of the native VEGF(165 protein and cellular proliferation is suppressed by the TEAD4(216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4(216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases.

  7. Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing.

    Science.gov (United States)

    Huertas, César S; Carrascosa, L G; Bonnal, S; Valcárcel, J; Lechuga, L M

    2016-04-15

    Alternative splicing of mRNA precursors enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression. Current methodologies for monitoring alternative splicing demand elaborate procedures and often present difficulties in discerning between closely related isoforms, e.g. due to cross-hybridization during their detection. Herein, we report a general methodology using a Surface Plasmon Resonance (SPR) biosensor for label-free monitoring of alternative splicing events in real-time, without any cDNA synthesis or PCR amplification requirements. We applied this methodology to RNA isolated from HeLa cells for the quantification of alternatively spliced isoforms of the Fas gene, involved in cancer progression through regulation of programmed cell death. We demonstrate that our methodology is isoform-specific, with virtually no cross-hybridization, achieving limits of detection (LODs) in the picoMolar (pM) range. Similar results were obtained for the detection of the BCL-X gene mRNA isoforms. The results were independently validated by RT-qPCR, with excellent concordance in the determination of isoform ratios. The simplicity and robustness of this biosensor technology can greatly facilitate the exploration of alternative splicing biomarkers in disease diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The effect of a period of intensive exercise on the isoform test to detect growth hormone doping in sports.

    Science.gov (United States)

    Voss, S C; Giraud, S; Alsayrafi, M; Bourdon, P C; Schumacher, Y O; Saugy, M; Robinson, N

    2013-08-01

    The major objective of this study was to investigate the effects of several days of intense exercise on growth hormone (hGH) testing using the World Anti-Doping Agencies hGH isoform differential immunoassays. Additionally the effects of circadian variation and exercise type on the isoform ratios were also investigated. 15 male athletes performed a simulated nine day cycling stage race. Blood samples were collected twice daily over a period of 15 days (stage race+three days before and after). hGH isoforms were analysed by the official WADA immunoassays (CMZ Assay GmbH). All measured isoform ratios were far below the WADA decision limits for an adverse analytical finding. Changes in the isoform ratios could not be clearly connected to circadian variation, exercise duration or intensity. The present study demonstrates that the hGH isoform ratios are not significantly affected by exercise or circadian variation. We demonstrated that heavy, long term exercise does not interfere with the decision limits for an adverse analytical finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    Science.gov (United States)

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions.

    Science.gov (United States)

    Wu, Tung-Kung; Liu, Yuan-Ting; Chiu, Feng-Hsuan; Chang, Cheng-Hsiang

    2006-10-12

    [reaction: see text] We describe the Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase Phe445 site-saturated mutants that generate truncated tricyclic and altered deprotonation product profiles. Among these mutants, only polar side-chain group substitutions genetically complemented yeast viability and produced spatially related product diversity, supporting the Johnson model that cation-pi interactions between a carbocationic intermediate and an enzyme can be replaced by an electrostatic or polar side chain to stabilize the cationic intermediate, but with product differentiation.

  11. Comparative effects of sub-stimulating concentrations of non-human versus human Luteinizing Hormones (LH) or chorionic gonadotropins (CG) on adenylate cyclase activation by forskolin in MLTC cells.

    Science.gov (United States)

    Nguyen, Thi-Mong Diep; Filliatreau, Laura; Klett, Danièle; Combarnous, Yves

    2018-05-15

    We have compared various Luteinizing Hormone (LH) and Chorionic Gonadotropin (CG) preparations from non-human and human species in their ability to synergize with 10 µM forskolin (FSK) for cyclic AMP intracellular accumulation, in MLTC cells. LH from rat pituitary as well as various isoforms of pituitary ovine, bovine, porcine, equine and human LHs and equine and human CG were studied. In addition, recombinant human LH and CG were also compared with the natural human and non-human hormones. Sub-stimulating concentrations of all LHs and CGs (2-100 pM) were found to stimulate cyclic AMP accumulation in MLTC cells in the presence of an also non-stimulating FSK concentration (10 µM). Like rat LH, the most homologous available hormone for mouse MLTC cells, all non-human LHs and CG exhibit a strong potentiating effect on FSK response. The human, natural and recombinant hLH and hCG also do so but in addition, they were found to elicit a permissive effect on FSK stimulation. Indeed, when incubated alone with MLTC cells at non-stimulating concentrations (2-70 pM) hLH and hCG permit, after being removed, a dose-dependent cyclic AMP accumulation with 10 µM FSK. Our data show a clearcut difference between human LH and CG compared to their non-human counterparts on MLTC cells adenylate cyclase activity control. This points out the risk of using hCG as a reference ligand for LHR in studies using non-human cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Pituitary adenylate cyclase-activating polypeptide: occurrence and relaxant effect in female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Alm, P; Hannibal, J

    1995-01-01

    The distribution, localization, and smooth muscle effects of pituitary adenylate cyclase-activating polypeptide (PACAP) were studied in the human female genital tract. The concentrations of PACAP-38 and PACAP-27 were measured by radioimmunoassays, and both peptides were found throughout the genital...... was observed. The findings suggest a smooth muscle regulatory role of PACAP in the human female reproductive tract....... tract. The highest concentrations of PACAP-38 were detected in the ovary, the upper part of vagina, and the perineum. The concentrations of PACAP-27 were generally low, in some regions below the detection limit and in other regions 1 to 5% of the PACAP-38 concentrations. Immunocytochemistry revealed...

  13. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1.

    Directory of Open Access Journals (Sweden)

    Shinobu Tsuzuki

    2007-05-01

    Full Text Available AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo.The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo.These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood

  14. [Changes in titin and myosin heavy chain isoform composition in skeletal muscles of Mongolian gerbil (Meriones unguiculatus) after 12-day spaceflight].

    Science.gov (United States)

    Okuneva, A D; Vikhliantsev, I M; Shpagina, M D; Rogachevskiĭ, V V; Khutsian, S S; Poddubnaia, Z A; Grigor'ev, A I

    2012-01-01

    Changes of titin and myosin heavy chain isoform composition in skeletal muscles (m. soleus, m. gastrocnemius, m. tibialis anterior, m. psoas major) in Mongolian Gerbil (Meriones unguiculatus ) were investigated after 12-day spaceflight on board of Russian space vehicle "Foton-M3". In m. psoas and m. soleus in the gerbils from "Flight" group the expected increase in the content of fast myosin heavy chain isoforms (IIxd and IIa, respectively) were observed. No significant differences were found in the content of IIxd and IIa isoforms of myosin heavy chain in m. tibialis anterior in the gerbils from control group as compared to that in "Flight" group. An unexpected increase in the content of slow myosin heavy chain I isoform and a decrease in the content of fast IIx/d isoform in m. gastrocnemius of the gerbils from "Flight" group were observed. In skeletal muscles of the gerbils from "Flight" group the relative content of titin N2A-isoform was reduced (by 1,2-1,7 times), although the content of its NT-isoform, which was revealed in striated muscles of mammals in our experiments earlier, remained the same. When the content of titin N2A-isoform was decreased, no predictable abnormalities in sarcomeric structure and contractile ability of skeletal muscles in the gerbils from "Flight" group were found. An assumption on the leading role of titin NT-isoform in maintenance of structural and functional properties of striated muscles of mammals was made.

  15. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    Science.gov (United States)

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  16. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression.

    Science.gov (United States)

    Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin; Moufarrej, Mira N; Jones, Joan G; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-03-01

    Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.

  17. Modified Polyadenylation-Based RT-qPCR Increases Selectivity of Amplification of 3′-MicroRNA Isoforms

    Directory of Open Access Journals (Sweden)

    Charlotte Nejad

    2018-01-01

    Full Text Available MicroRNA (miRNA detection by reverse transcription (RT quantitative real-time PCR (RT-qPCR is the most popular method currently used to measure miRNA expression. Although the majority of miRNA families are constituted of several 3′-end length variants (“isomiRs”, little attention has been paid to their differential detection by RT-qPCR. However, recent evidence indicates that 3′-end miRNA isoforms can exhibit 3′-length specific regulatory functions, underlining the need to develop strategies to differentiate 3′-isomiRs by RT-qPCR approaches. We demonstrate here that polyadenylation-based RT-qPCR strategies targeted to 20–21 nt isoforms amplify entire miRNA families, but that primers targeted to >22 nt isoforms were specific to >21 nt isoforms. Based on this observation, we developed a simple method to increase selectivity of polyadenylation-based RT-qPCR assays toward shorter isoforms, and demonstrate its capacity to help distinguish short RNAs from longer ones, using synthetic RNAs and biological samples with altered isomiR stoichiometry. Our approach can be adapted to many polyadenylation-based RT-qPCR technologies already exiting, providing a convenient way to distinguish long and short 3′-isomiRs.

  18. DMPD: The role of C/EBP isoforms in the control of inflammatory and native immunityfunctions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9792624 The role of C/EBP isoforms in the control of inflammatory and native immunityfunction...f C/EBP isoforms in the control of inflammatory and native immunityfunctions. PubmedID 9792624 Title The rol...e of C/EBP isoforms in the control of inflammatory and native immunityfunctions.

  19. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  20. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  1. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis

    Czech Academy of Sciences Publication Activity Database

    Česnek, Michal; Jansa, Petr; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Brust, T. F.; Pávek, P.; Trejtnar, F.; Watts, V. J.; Janeba, Zlatko

    2015-01-01

    Roč. 10, č. 8 (2015), s. 1351-1364 ISSN 1860-7179 R&D Projects: GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : adenylate cyclase toxin * bisamidates * Bordetella pertussis * nucleosides * phosphonates Subject RIV: CC - Organic Chemistry Impact factor: 2.980, year: 2015

  2. The three isoforms of the light-harvesting complex II Spectroscopic features, trimer formation, and functional roles

    CERN Document Server

    Standfuss, Jorg

    2004-01-01

    The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isofo...

  3. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    International Nuclear Information System (INIS)

    Olsson, Eleonor; Lövgren, Kristina; Fernö, Mårten; Grabau, Dorthe; Borg, Åke; Hegardt, Cecilia; Honeth, Gabriella; Bendahl, Pär-Ola; Saal, Lao H; Gruvberger-Saal, Sofia; Ringnér, Markus; Vallon-Christersson, Johan; Jönsson, Göran; Holm, Karolina

    2011-01-01

    The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44 + /CD24 - phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to

  4. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    Directory of Open Access Journals (Sweden)

    Vallon-Christersson Johan

    2011-09-01

    Full Text Available Abstract Background The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. Methods We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Results Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44+/CD24- phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. Conclusions We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in

  5. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Directory of Open Access Journals (Sweden)

    Yan Gong

    Full Text Available β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may

  6. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Directory of Open Access Journals (Sweden)

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  7. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...... peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) may be released from parasympathetic fibres and activate sensory nerve fibres during migraine attacks. Triptans are effective and well tolerated in acute migraine management but the exact mechanism of action is still debated. Triptans might...

  8. Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation.

    Science.gov (United States)

    Meyer-Roxlau, Stefanie; Lämmle, Simon; Opitz, Annett; Künzel, Stephan; Joos, Julius P; Neef, Stefan; Sekeres, Karolina; Sossalla, Samuel; Schöndube, Friedrich; Alexiou, Konstantin; Maier, Lars S; Dobrev, Dobromir; Guan, Kaomei; Weber, Silvio; El-Armouche, Ali

    2017-07-01

    Protein phosphatase 1 (PP1) is a key regulator of important cardiac signaling pathways. Dysregulation of PP1 has been heavily implicated in cardiac dysfunctions. Accordingly, pharmacological targeting of PP1 activity is considered for therapeutic intervention in human cardiomyopathies. Recent evidence from animal models implicated previously unrecognized, isoform-specific activities of PP1 in the healthy and diseased heart. Therefore, this study examined the expression of the distinct PP1 isoforms PP1α, β, and γ in human heart failure (HF) and atrial fibrillation (AF) and addressed the consequences of β-adrenoceptor blocker (beta-blocker) therapy for HF patients with reduced ejection fraction on PP1 isoform expression. Using western blot analysis, we found greater abundance of PP1 isoforms α and γ but unaltered PP1β levels in left ventricular myocardial tissues from HF patients as compared to non-failing controls. However, expression of all three PP1 isoforms was higher in atrial appendages from patients with AF compared to patients with sinus rhythm. Moreover, we found that in human failing ventricles, beta-blocker therapy was associated with lower PP1α abundance and activity, as indicated by higher phosphorylation of the PP1α-specific substrate eIF2α. Greater eIF2α phosphorylation is a known repressor of protein translation, and accordingly, we found lower levels of the endoplasmic reticulum (ER) stress marker Grp78 in the very same samples. We propose that isoform-specific targeting of PP1α activity may be a novel and innovative therapeutic strategy for the treatment of human cardiac diseases by reducing ER stress conditions.

  9. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  10. Deep Sequencing Reveals Uncharted Isoform Heterogeneity of the Protein-Coding Transcriptome in Cerebral Ischemia.

    Science.gov (United States)

    Bhattarai, Sunil; Aly, Ahmed; Garcia, Kristy; Ruiz, Diandra; Pontarelli, Fabrizio; Dharap, Ashutosh

    2018-06-03

    Gene expression in cerebral ischemia has been a subject of intense investigations for several years. Studies utilizing probe-based high-throughput methodologies such as microarrays have contributed significantly to our existing knowledge but lacked the capacity to dissect the transcriptome in detail. Genome-wide RNA-sequencing (RNA-seq) enables comprehensive examinations of transcriptomes for attributes such as strandedness, alternative splicing, alternative transcription start/stop sites, and sequence composition, thus providing a very detailed account of gene expression. Leveraging this capability, we conducted an in-depth, genome-wide evaluation of the protein-coding transcriptome of the adult mouse cortex after transient focal ischemia at 6, 12, or 24 h of reperfusion using RNA-seq. We identified a total of 1007 transcripts at 6 h, 1878 transcripts at 12 h, and 1618 transcripts at 24 h of reperfusion that were significantly altered as compared to sham controls. With isoform-level resolution, we identified 23 splice variants arising from 23 genes that were novel mRNA isoforms. For a subset of genes, we detected reperfusion time-point-dependent splice isoform switching, indicating an expression and/or functional switch for these genes. Finally, for 286 genes across all three reperfusion time-points, we discovered multiple, distinct, simultaneously expressed and differentially altered isoforms per gene that were generated via alternative transcription start/stop sites. Of these, 165 isoforms derived from 109 genes were novel mRNAs. Together, our data unravel the protein-coding transcriptome of the cerebral cortex at an unprecedented depth to provide several new insights into the flexibility and complexity of stroke-related gene transcription and transcript organization.

  11. Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

    Science.gov (United States)

    Thoresen, Todd; Lenz, Martin; Gardel, Margaret L

    2013-02-05

    Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Branchial Expression Patterns of Claudin Isoforms in Atlantic Salmon During Seawater Acclimation and Smoltification

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Kiilerich, Pia; Nilsen, Tom O

    2008-01-01

    in epithelia. We identified Atlantic salmon genes belonging to the claudin family by screening expressed sequence tag libraries available at NCBI and classification was performed with aid of maximum likelihood and neighbour-joining analysis. In gill libraries, five isoforms (10e, 27a, 28a, 28b and 30) were...... present and QPCR analysis confirmed tissue-specific expression in gill when compared to kidney, intestine, heart, muscle, brain and liver. Expression patterns during acclimation of freshwater salmon to seawater (SW) and during the smoltification process were examined. Acclimation to SW reduced...... induced no significant changes in expression of the other isoforms. This study demonstrates the expression of an array of salmon claudin isoforms and shows that SW acclimation involves inverse regulation, in the gill, of claudin 10e versus claudin 27a and 30. It is possible, that claudin 10e...

  13. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: a molecular docking approach.

    Science.gov (United States)

    Pessôa, Marco T C; Alves, Silmara L G; Taranto, Alex G; Villar, José A F P; Blanco, Gustavo; Barbosa, Leandro A

    2018-12-01

    Digoxin and other cardiotonic steroids (CTS) exert their effect by inhibiting Na,K-ATPase (NKA) activity. CTS bind to the various NKA isoforms that are expressed in different cell types, which gives CTS their narrow therapeutic index. We have synthesised a series of digoxin derivatives (γ-Benzylidene digoxin derivatives) with substitutions in the lactone ring (including non-oxygen and ether groups), to obtain CTS with better NKA isoform specificity. Some of these derivatives show some NKA isoform selective effects, with BD-3, BD-8, and BD-13 increasing NKA α2 activity, BD-5 inhibiting NKA α1 and NKA α3, BD-10 reducing NKA α1, but stimulating NKA α2 and α3; and BD-14, BD-15, and BD-16 enhancing NKA α3 activity. A molecular-docking approach favoured NKA isoform specific interactions for the compounds that supported their observed activity. These results show that BD compounds are a new type of CTS with the capacity to target NKA activity in an isoform-specific manner.

  14. Bacterial Production, Characterization and Protein Modeling of a Novel Monofuctional Isoform of FAD Synthase in Humans: An Emergency Protein?

    Directory of Open Access Journals (Sweden)

    Piero Leone

    2018-01-01

    Full Text Available FAD synthase (FADS, EC 2.7.7.2 is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf. Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3′-phosphoadenosine 5′-phosphosulfate (PAPS reductase domain (named FADS6. This isoform has been previously detected in Riboflavin-Responsive (RR-MADD and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L−1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (kcat about 2.8 min−1, as well as FAD pyrophosphorolysis in a strictly Mg2+-dependent manner. The synthesis of FAD is inhibited by HgCl2. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.

  15. Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Gheorghiade, Mihai; Greene, Stephen J; Butler, Javed

    2015-01-01

    IMPORTANCE: Worsening chronic heart failure (HF) is a major public health problem. OBJECTIVE: To determine the optimal dose and tolerability of vericiguat, a soluble guanylate cyclase stimulator, in patients with worsening chronic HF and reduced left ventricular ejection fraction (LVEF). DESIGN, ...

  16. Different expression patterns of renal Na+/K+-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    Science.gov (United States)

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na + /K + -ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Activity of adenylate cyclase in plasma membranes of pulmonary tissue remote times following nonlethal gamma-irradiation of rats

    International Nuclear Information System (INIS)

    Slozhenkina, L.V.; Ruda, V.P.; Ushakova, T.E.; Kuzin, A.M.

    1990-01-01

    Basal and stimulated activity of adenylate cyclase (cyclizing ATP-pyrophosphate lyase, E.C. 4.6.1.1., AC) in plasma membranes of pumonary tissye was being studied during a year after fractionated irradiation of rats (2 Gyx3). Basal and hormone-stimulated activity of AC was shown to vary significantly from normal 6 and 12 months after irradiation. The exposed membranes responded differently to AC activation by isoproterenol and F -

  18. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Directory of Open Access Journals (Sweden)

    Ralph D Hector

    Full Text Available Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5 cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR, which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  19. RON kinase isoforms demonstrate variable cell motility in normal cells.

    Science.gov (United States)

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  20. Apolipoprotein (A) Isoform Distribution and Plasma Lipoprotein (a ...

    African Journals Online (AJOL)

    Plasma lipoprotein (a) Concentrations and apo(a) isoforms were determined in 101 healthy Nigerian subjects (M=63), F=38; age range 17-68 years), and coronary heart disease (CHD) patients (M=19, F=17, age range 30-79 years). Median Lp(a) level was 24.4 mg/di in the CHD patients and 22.1 mg/di in the controls.

  1. Multiple isoforms for the catalytic subunit of PKA in the basal fungal lineage Mucor circinelloides.

    Science.gov (United States)

    Fernández Núñez, Lucas; Ocampo, Josefina; Gottlieb, Alexandra M; Rossi, Silvia; Moreno, Silvia

    2016-12-01

    Protein kinase A (PKA) activity is involved in dimorphism of the basal fungal lineage Mucor. From the recently sequenced genome of Mucor circinelloides we could predict ten catalytic subunits of PKA. From sequence alignment and structural prediction we conclude that the catalytic core of the isoforms is conserved, and the difference between them resides in their amino termini. This high number of isoforms is maintained in the subdivision Mucoromycotina. Each paralogue, when compared to the ones form other fungi is more homologous to one of its orthologs than to its paralogs. All of these fungal isoforms cannot be included in the class I or II in which fungal protein kinases have been classified. mRNA levels for each isoform were measured during aerobic and anaerobic growth. The expression of each isoform is differential and associated to a particular growth stage. We reanalyzed the sequence of PKAC (GI 20218944), the only cloned sequence available until now for a catalytic subunit of M. circinelloides. PKAC cannot be classified as a PKA because of its difference in the conserved C-tail; it shares with PKB a conserved C2 domain in the N-terminus. No catalytic activity could be measured for this protein nor predicted bioinformatically. It can thus be classified as a pseudokinase. Its importance can not be underestimated since it is expressed at the mRNA level in different stages of growth, and its deletion is lethal. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Electrophoretic Mobility of Cardiac Myosin Heavy Chain Isoforms Revisited: Application of MALDI TOF/TOF Analysis

    Czech Academy of Sciences Publication Activity Database

    Arnoštová, P.; Jedelsky, P. L.; Soukup, Tomáš; Žurmanová, J.

    2011-01-01

    Roč. 2011, - (2011), e634253 ISSN 1110-7243 R&D Projects: GA AV ČR IAAX01110901; GA ČR(CZ) GA304/08/0256 Institutional research plan: CEZ:AV0Z50110509 Keywords : cardiac MyHC isoforms * MyHC isoform mobility * effect of thyroid hormones * mass spectrometry * SDS-PAGE and western blot Subject RIV: ED - Physiology Impact factor: 2.436, year: 2011

  3. Identification of five novel 14-3-3 isoforms interacting with the GPIb-IX complex in platelets.

    Science.gov (United States)

    Mangin, P H; Receveur, N; Wurtz, V; David, T; Gachet, C; Lanza, F

    2009-09-01

    Binding of von Willebrand factor to the platelet glycoprotein (GP)Ib-IX complex initiates a signaling cascade leading to integrin alpha(IIb)beta(3) activation, a key process in hemostasis and thrombosis. Interaction of 14-3-3zeta with the intracytoplasmic domain of GPIb appears to be a major effector of this activation pathway. The aim of our study was to determine whether other members of the 14-3-3 family bind to GPIb-IX. In this study, western blot analyses showed that platelets also contain the 14-3-3beta, 14-3-3gamma, 14-3-3epsilon, 14-3-3eta and 14-3-3theta isoforms, but lack 14-3-3sigma. Coimmunoprecipitation studies in platelets and CHO transfectants demonstrated that all six 14-3-3 isoforms expressed in platelets, including, as previously reported, 14-3-3zeta, bind to GPIb-IX. In addition, their interaction was found to critically require the same GPIbalpha domains (580-590 and 605-610) already identified as essential for 14-3-3zeta binding, in agreement with the conservation of the sequence of the I-helix among these different isoforms. Pull-down experiments indicated that all six 14-3-3 isoforms present in platelets bind to GPIbbeta. In contrast, deletion or mutation of the GPIbbeta intracytoplasmic tail did not affect the interaction of GPIb-IX with the 14-3-3 isoforms, questioning the importance of this domain. Our study suggests that, to inhibit GPIb-induced integrin alpha(IIb)beta(3) activation, a more appropriate strategy than inhibiting individual 14-3-3 isoforms would be to target the 14-3-3-binding motif on GPIb or, alternatively, the conserved 14-3-3 I-helix.

  4. Analysis of Distinct Roles of CaMKK Isoforms Using STO-609-Resistant Mutants in Living Cells.

    Science.gov (United States)

    Fujiwara, Yuya; Hiraoka, Yuri; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2015-06-30

    To assess the isoform specificity of the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)-mediated signaling pathway using a CaMKK inhibitor (STO-609) in living cells, we have established A549 cell lines expressing STO-609-resistant mutants of CaMKK isoforms. Following serial mutagenesis studies, we have succeeded in obtaining an STO-609-resistant CaMKKα mutant (Ala292Thr/Leu233Phe) and a CaMKKβ mutant (Ala328Thr/Val269Phe), which showed sensitivity to STO-609 that was 2-3 orders of magnitude lower without an appreciable effect on kinase activity or CaM requirement. These results are consistent with the results obtained for CaMKK activities in the extracts of A549 cells stably expressing the mutants of CaMKK isoforms. Ionomycin-induced 5'-AMP-activated protein kinase (AMPK) phosphorylation at Thr172 in A549 cells expressing either the wild-type or the STO-609-resistant mutant of CaMKKα was completely suppressed by STO-609 treatment but resistant to the inhibitor in the presence of the CaMKKβ mutant (Ala328Thr/Val269Phe). This result strongly suggested that CaMKKβ is responsible for ionomycin-induced AMPK activation, which supported previous reports. In contrast, ionomycin-induced CaMKIV phosphorylation at Thr196 was resistant to STO-609 treatment in A549 cells expressing STO-609-resistant mutants of both CaMKK isoforms, indicating that both CaMKK isoforms are capable of phosphorylating and activating CaMKIV in living cells. Considering these results together, STO-609-resistant CaMKK mutants developed in this study may be useful for distinguishing CaMKK isoform-mediated signaling pathways in combination with the use of an inhibitor compound.

  5. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    Science.gov (United States)

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  7. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  8. TGF-β's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner

    International Nuclear Information System (INIS)

    Schabort, Elske J.; Merwe, Mathilde van der; Loos, Benjamin; Moore, Frances P.; Niesler, Carola U.

    2009-01-01

    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner

  9. Frataxin mRNA Isoforms in FRDA Patients and Normal Subjects: Effect of Tocotrienol Supplementation

    Directory of Open Access Journals (Sweden)

    Provvidenza Maria Abruzzo

    2013-01-01

    Full Text Available Friedreich’s ataxia (FRDA is caused by deficient expression of the mitochondrial protein frataxin involved in the formation of iron-sulphur complexes and by consequent oxidative stress. We analysed low-dose tocotrienol supplementation effects on the expression of the three splice variant isoforms (FXN-1, FXN-2, and FXN-3 in mononuclear blood cells of FRDA patients and healthy subjects. In FRDA patients, tocotrienol leads to a specific and significant increase of FXN-3 expression while not affecting FXN-1 and FXN-2 expression. Since no structural and functional details were available for FNX-2 and FXN-3, 3D models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex, and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms in human cells. Finally, in order to evaluate whether tocotrienol enhancement of FXN-3 was mediated by an increase in peroxisome proliferator-activated receptor-γ (PPARG, PPARG expression was evaluated. At a low dose of tocotrienol, the increase of FXN-3 expression appeared to be independent of PPARG expression. Our data show that it is possible to modulate the mRNA expression of the minor frataxin isoforms and that they may have a functional role.

  10. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    International Nuclear Information System (INIS)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T.

    2006-01-01

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy β and originally identified CoA synthase, CoASy α. The transcript specific for CoASy β was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy β. In contrast to CoASy α, which shows ubiquitous expression, CoASy β is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation

  11. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Adrian Biddle

    Full Text Available CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that

  12. Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Niewold, T.A.; Kornalijnslijper, E.

    2005-01-01

    The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis.......The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis....

  13. Distinct transthyretin oxidation isoform profile in spinal fluid from patients with Alzheimer’s disease and mild cognitive impairment

    DEFF Research Database (Denmark)

    Poulsen, Keld; Bahl, Justyna Mc; Simonsen, Anja H

    2014-01-01

    BACKGROUND: Transthyretin (TTR), an abundant protein in cerebrospinal fluid (CSF), contains a free, oxidation-prone cysteine residue that gives rise to TTR isoforms. These isoforms may reflect conditions in vivo. Since increased oxidative stress has been linked to neurodegenerative disorders such...

  14. Pre-α-pro-GDNF and Pre-β-pro-GDNF Isoforms Are Neuroprotective in the 6-hydroxydopamine Rat Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Anna-Maija Penttinen

    2018-06-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF is one of the most studied neurotrophic factors. GDNF has two splice isoforms, full-length pre-α-pro-GDNF (α-GDNF and pre-β-pro-GDNF (β-GDNF, which has a 26 amino acid deletion in the pro-region. Thus far, studies have focused solely on the α-GDNF isoform, and nothing is known about the in vivo effects of the shorter β-GDNF variant. Here we compare for the first time the effects of overexpressed α-GDNF and β-GDNF in non-lesioned rat striatum and the partial 6-hydroxydopamine lesion model of Parkinson's disease. GDNF isoforms were overexpressed with their native pre-pro-sequences in the striatum using an adeno-associated virus (AAV vector, and the effects on motor performance and dopaminergic phenotype of the nigrostriatal pathway were assessed. In the non-lesioned striatum, both isoforms increased the density of dopamine transporter-positive fibers at 3 weeks after viral vector delivery. Although both isoforms increased the activity of the animals in cylinder assay, only α-GDNF enhanced the use of contralateral paw. Four weeks later, the striatal tyrosine hydroxylase (TH-immunoreactivity was decreased in both α-GDNF and β-GDNF treated animals. In the neuroprotection assay, both GDNF splice isoforms increased the number of TH-immunoreactive cells in the substantia nigra but did not promote behavioral recovery based on amphetamine-induced rotation or cylinder assays. Thus, the shorter GDNF isoform, β-GDNF, and the full-length α-isoform have comparable neuroprotective efficacy on dopamine neurons of the nigrostriatal circuitry.

  15. Thyroid-stimulating immunoglobulins in Hashimoto's thyroiditis measured by radioreceptor assay and adenylate cyclase stimulation and their relationship to HLA-D alleles

    International Nuclear Information System (INIS)

    Bliddal, H.; Bech, K.; Feldt-Rasmussen, U.; Thomsen, M.; Ryder, L.P.; Hansen, J.M.; Siersbaek-Nielsen, K.; Friis, T.

    1982-01-01

    The relationship between thyroid-stimulating immunoglobulins, measured by both radioreceptor assay and adenylate cyclase stimulation, and the HLA alleles was studied in 41 patients with Hashimoto's thyroiditis. TSH binding-inhibiting immunoglobulins (TBII) were detected in 9 (22