WorldWideScience

Sample records for adenylate energy charge

  1. Adenylate Energy Charge. I. Achtergrond en bepalingsmethoden

    NARCIS (Netherlands)

    Luttik R; Jacobs DMLHA; Slooff W; Hart MJ' t

    1985-01-01

    In dit rapport wordt een literatuur overzicht betreffende de "Adenylate Energy Charge" bepaling gegeven. In het bijzonder wordt ingegaan op de extractie methoden en de incubatie-buffers die gebruikt worden bij de enzymatische bepaling. Tevens wordt aandacht besteed aan de achtergrond

  2. Glyoxylate lowers metabolic ATP in human platelets without altering adenylate energy charge or aggregation.

    Science.gov (United States)

    Dangelmaier, Carol A; Holmsen, Holm

    2014-01-01

    Human blood platelets adhere to exposed collagen at the site of vascular injury, initiating a signaling cascade leading to fibrinogen activation, secretion of granules and aggregation, thus producing a stable thrombus. All these steps require metabolic ATP. In this study we have labeled the metabolic pool of ATP with nucleotides, treated platelets with various inhibitors and have monitored their ability to be activated. Incubating platelets with glyoxylate dramatically reduced the ATP level without a change in the adenylate energy charge (AEC). This reduction of ATP did not affect ADP-induced primary or secondary aggregation, whereas glyoxal, methyl glyoxal, or the combination of antimycin plus deoxyglucose reduced both ATP and AEC and inhibited aggregation. The reduction of ATP by glyoxylate was almost quantitatively matched by an increase in hypoxanthine without elevation of ADP. AMP, IMP or inosine, acetoacetate, aspartate, or glutamate had no effect on glyoxylate-induced breakdown of ATP, while pyruvate stopped the ATP reduction fast and efficiently. Glyoxylate also lowered the citrate content. The glyoxylate-induced breakdown of ATP coincided with an increase in fructose-1,6-bisphosphate, indicating that the phosphofructokinase reaction was the main ATP-consuming step. Glyoxylate was a substrate for lactate dehydrogenase although with a Km almost 100 times higher than pyruvate. We suggest that glyoxylate primarily competes with pyruvate in the pyruvate dehydrogenase reaction, thus lowering the citrate concentration, which in turn activates phosphofructokinase. Clearly, lowering of ATP in the cytosol by more than 50% does not affect platelet aggregation provided that the AEC is not reduced.

  3. Charges of Nicotinamide Adenine nucleotides and Adenylate Energy Charge as regulatory parameters of the metabolism in Eschericia coli

    DEFF Research Database (Denmark)

    Andersen, Klaus Bahl; von Meyenburg, Kaspar

    1977-01-01

    NADH/(NADH+NAD), NADPH/(NADPH+NADP) and (ATP+½ADP)/(ATP+ADP+AMP) respectively has the values 0.05, 0.45 and 0.9 during steady state growth. The changes of the charges during changes of growth are examined.......NADH/(NADH+NAD), NADPH/(NADPH+NADP) and (ATP+½ADP)/(ATP+ADP+AMP) respectively has the values 0.05, 0.45 and 0.9 during steady state growth. The changes of the charges during changes of growth are examined....

  4. The energy landscape of adenylate kinase during catalysis

    Science.gov (United States)

    Kerns, S. Jordan; Agafonov, Roman V.; Cho, Young-Jin; Pontiggia, Francesco; Otten, Renee; Pachov, Dimitar V.; Kutter, Steffen; Phung, Lien A.; Murphy, Padraig N.; Thai, Vu; Alber, Tom; Hagan, Michael F.; Kern, Dorothee

    2014-01-01

    Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, MD simulations, and crystallography of active complexes. We find that the Mg2+ cofactor activates two distinct molecular events, phosphoryl transfer (>105-fold) and lid-opening (103-fold). In contrast, mutation of an essential active-site arginine decelerates phosphoryl transfer 103-fold without substantially affecting lid-opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a pre-organized active site. PMID:25580578

  5. Balanced contribution of glycolytic and adenylate pool in supply of metabolic energy in platelets.

    Science.gov (United States)

    Verhoeven, A J; Mommersteeg, M E; Akkerman, J W

    1985-03-10

    When platelets are treated with H2O2 the metabolic ATP content decreases sharply (Holmsen, H., and Robkin, L. (1977) J. Biol. Chem. 252, 1752-1757). Here we report that the loss of metabolic energy is fully recovered in phosphorylated glycolytic intermediates. A mixture of antimycin A/2-deoxy-D-glucose/D-gluconic acid-1,5-lactone blocks mitochondrial ATP resynthesis and prevents the entry of sugars into the glycolytic sequence. The energy-rich phosphates in the adenylate and the glycolytic pool are then consumed in a specific order. First, the glycolytic pool is consumed at a rate of 4.5 mumol of ATP equivalents/min/10(11) cells, and metabolic ATP and ADP are kept stable; then the consumption of the glycolytic pool decreases and metabolic ATP and ADP are consumed, together keeping up with the same rate of energy consumption. Thrombin stimulation increases the energy consumption to about 17 mumol of ATPeq/min/10(11) cells which is now furnished by both the glycolytic and the adenylate pool, again with a preferential consumption of the former. The results show that H2O2 triggers a shift of energy-rich phosphates from the adenylate to the glycolytic pool and that the latter remains rapidly accessible to energy consumption thereby stabilizing the level of metabolic ATP. The adenylate energy charge is independent of the distribution of energy among the two pools, which extends its importance to the regulation of energy supply and demand beyond the adenylate pool.

  6. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  7. Hydrogen peroxide lowers ATP levels in platelets without altering adenyalte energy charge and platelet function.

    Science.gov (United States)

    Holmsen, H; Robkin, L

    1977-03-10

    H2O2 irreversibly reduced metabolic platelet ATP levels with a corresponding accumulation of hypoxanthine. This process was enhanced by sodium azide or potassium cyanide and by increasing H2O2 concentrations. The adenylate energy charge was unaltered when less than two thirds of the metabolic ATP had disappeared but decreased markedly when more ATP disappeared. Platelet shape change, primary aggregation, dense granule and alpha-granule secretion were unaffected by H2O2-induced lowering of ATP provided that the adenylate energy charge did not fall by more than 5%; at greater adenylate energy charge reduction, platelet functions were inhibited. These results indicate that cell functions depend more on adenyalte energy charge than on the ATP level and expands the applicability of this view from bacterial systems to a mammalian cell, the human platelet.

  8. Intracellular ATP and total adenylate concentrations are critical predictors of reovirus productivity from Vero cells.

    Science.gov (United States)

    Burgener, A; Coombs, K; Butler, M

    2006-07-05

    The productivity of reovirus type-3 Dearing was studied in cultures of Vero cells in serum-free media. Viral productivity was dependent upon the metabolic state of the cells rather than the phase of growth at which the cells were infected. Cells at different energy states were established by 24-h incubation in nutrient-depleted media. This resulted in variable intracellular nucleotide concentrations but high cellular viability was maintained. Of the nucleotides analyzed at the time of infection only the intracellular [ATP] and total adenylate nucleotides were positively correlated with viral productivity. The correlated data followed a sigmoidal plot with an equation defined by polynomial regression analysis. Apparent threshold values of 3.2 fmol/cell and 3.3 fmol/cell were established for ATP and total adenylate, respectively, at which the viral production was 50% the maximal value. Cultures with lower ATP and total adenylate levels at the time of infection resulted in as much as a 95% reduction in overall viral titer compared to the control. The adenylate energy charge (AEC) showed a negative correlation with viral production with an AEC value >0.97 resulting in low virus productivity. Intracellular ATP or total adenylate concentration at the point of infection may be used as a predictor of viral yield in bioprocesses designed for virus/vaccine production. (c) 2006 Wiley Periodicals, Inc.

  9. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  10. Rapid prototyping of energy management charging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ciulavu, Oana [Hella Electronics Romania, Timisoara (Romania); Starkmuth, Timo; Jesolowitz, Reinhard [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2010-07-01

    This paper presents an approach to develop charging strategies to support a vehicle energy management aiming for the reduction of CO{sub 2} emissions and decreased fuel consumption by using the Hardware-in-the-loop (HIL) environment. (orig.)

  11. Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: implication for the in vivo delivery of CD8(+) T cell epitopes into antigen-presenting cells.

    Science.gov (United States)

    Karimova, G; Fayolle, C; Gmira, S; Ullmann, A; Leclerc, C; Ladant, D

    1998-10-13

    Bordetella pertussis secretes a calmodulin-activated adenylate cyclase toxin, CyaA, that is able to deliver its N-terminal catalytic domain (400-aa residues) into the cytosol of eukaryotic target cells, directly through the cytoplasmic membrane. We have previously shown that CyaA can be used as a vehicle to deliver T cell epitopes, inserted within the catalytic domain of the toxin, into antigen-presenting cells and can trigger specific class I-restricted CD8(+) cytotoxic T cell responses in vivo. Here, we constructed a series of recombinant toxins harboring at the same insertion site various peptide sequences of 11-25 amino acids, corresponding to defined CD8(+) T cell epitopes and differing in the charge of the inserted sequence. We show that inserted peptide sequences containing net negative charges (-1 or -2) decreased or completely blocked (charge of -4) the internalization of the toxin into target cells in vitro and abolished the induction of cytotoxic T cell responses in vivo. The blocking of translocation due to the inserted acidic sequences can be relieved by appropriate mutations in the flanking region of CyaA that counterbalance the inserted charges. Our data indicate that (i) the electrostatic charge of the peptides inserted within the catalytic domain of CyaA is critical for its translocation into eukaryotic cells and (ii) the delivery of T cell epitopes into the cytosol of antigen-presenting cells by recombinant CyaA toxins is essential for the in vivo stimulation of specific cytotoxic T cells. These findings will help to engineer improved recombinant CyaA vectors able to stimulate more efficiently cellular immunity.

  12. Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: Implication for the in vivo delivery of CD8+ T cell epitopes into antigen-presenting cells

    Science.gov (United States)

    Karimova, G.; Fayolle, C.; Gmira, S.; Ullmann, A.; Leclerc, C.; Ladant, D.

    1998-01-01

    Bordetella pertussis secretes a calmodulin-activated adenylate cyclase toxin, CyaA, that is able to deliver its N-terminal catalytic domain (400-aa residues) into the cytosol of eukaryotic target cells, directly through the cytoplasmic membrane. We have previously shown that CyaA can be used as a vehicle to deliver T cell epitopes, inserted within the catalytic domain of the toxin, into antigen-presenting cells and can trigger specific class I-restricted CD8+ cytotoxic T cell responses in vivo. Here, we constructed a series of recombinant toxins harboring at the same insertion site various peptide sequences of 11–25 amino acids, corresponding to defined CD8+ T cell epitopes and differing in the charge of the inserted sequence. We show that inserted peptide sequences containing net negative charges (−1 or −2) decreased or completely blocked (charge of −4) the internalization of the toxin into target cells in vitro and abolished the induction of cytotoxic T cell responses in vivo. The blocking of translocation due to the inserted acidic sequences can be relieved by appropriate mutations in the flanking region of CyaA that counterbalance the inserted charges. Our data indicate that (i) the electrostatic charge of the peptides inserted within the catalytic domain of CyaA is critical for its translocation into eukaryotic cells and (ii) the delivery of T cell epitopes into the cytosol of antigen-presenting cells by recombinant CyaA toxins is essential for the in vivo stimulation of specific cytotoxic T cells. These findings will help to engineer improved recombinant CyaA vectors able to stimulate more efficiently cellular immunity. PMID:9770520

  13. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  14. Black hole free energy during charged collapse

    Science.gov (United States)

    Edery, Ariel; Beauchesne, Hugues

    2012-03-01

    Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the gravitational Lagrangian approaches the (Helmholtz) free energy of a Schwarzschild black hole at late times of the collapse. We investigate numerically this association during the collapse of a charged scalar field to a Reissner-Nordström (RN) black hole in isotropic coordinates. Charged collapse yields a large outgoing matter wave in the exterior region but this has a negligible effect on the interior. The thermodynamics via the free energy can therefore be investigated by focusing on the interior. We find that the percentage discrepancy between the numerical value for the Lagrangian and the analytical expression for the free energy reach values as low as 3% depending on the initial state. As a consistency check, we also implement a procedure for prolonging the evolution of the exterior region. The matter Lagrangian approaches zero everywhere (interior and exterior) showing clearly that the entropy of the charged black hole is gravitational in origin.

  15. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    Science.gov (United States)

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  16. Abnormal Kinetic Energy of Charged Dust Particles in Plasmas

    NARCIS (Netherlands)

    Norman, G.; Stegailov, V.; Timofeev, A.

    A mechanism of the increase of the average kinetic energy of charged dust particles in gas discharge plasmas is suggested. Particle charge fluctuation is the reason for the appearance of forced resonance, which heals vertical oscillations. The energy transfer from vertical oscillations to the

  17. Energy Transfer of a Shaped Charge.

    Energy Technology Data Exchange (ETDEWEB)

    Milinazzo, Jared Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    A cylinder of explosive with a hollow cavity on one and a detonator at the other is considered a hollow charge. When the explosive is detonated the detonation products form a localized intense force. If the hollow charge is placed near or in contact with a steel plate then the damage to the plate is greater than a solid cylinder of explosive even though there is a greater amount of explosive in the latter charge. The hollow cavity can take almost any geometrical shape with differing amounts of damage associated with each shape. This phenomenon is known in the United States as the Munroe effect.

  18. Electric Charge as a Form of Imaginary Energy

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2008-04-01

    Full Text Available Electric charge is considered as a form of imaginary energy. With this consideration, the energy of an electrically charged particle is a complex number. The real part is proportional to the mass, while the imaginary part is proportional to the electric charge. The energy of an antiparticle is given by conjugating the energy of its corresponding particle. Newton's law of gravity and Coulomb's law of electric force are classically unified into a single expression of the interaction between the complex energies of two electrically charged particles. Interaction between real energies (or masses is the gravitational force. Interaction between imaginary energies (or electric charges is the electromagnetic force. Since radiation is also a form of real energy, there are another two types of interactions between real energies: the mass-radiation interaction and the radiation-radiation interaction. Calculating the work done by the mass-radiation interaction on a photon, we can derive the Einsteinian gravitational redshift. Calculating the work done by the radiation-radiation interaction on a photon, we can obtain a radiation redshift. This study suggests the electric charge as a form of imaginary energy, so that classically unifies the gravitational and electric forces and derives the Einsteinian gravitational redshift.

  19. Research on Battery Charging-Discharging in New Energy Systems

    OpenAIRE

    Che Yanbo; Zhou Yan; Sun Yue; Hu Bo

    2013-01-01

    As an energy storage component, the battery plays increasingly important role in new energy industry. Charging and discharging system is the vital part of the application of the battery, but the charge and discharge are always designed separately and carried by different part in the traditional application. Additionally, most battery discharge mode and method are always simplified which cannot ensure to meet the demand of power utilization. In the actual energy storage system, the design of t...

  20. Fundamental limits of energy dissipation in charge-based computing

    Science.gov (United States)

    Boechler, Graham P.; Whitney, Jean M.; Lent, Craig S.; Orlov, Alexei O.; Snider, Gregory L.

    2010-09-01

    According to Landauer's principle, dissipation of energy is only necessary when information is erased, suggesting that vastly more efficient logical switches than transistors are possible. However, an influential analysis of binary switching suggests that representing information with electric charge is the root of the problem, that Landauer's principle is fundamentally flawed, and that any movement of charge, such as charging a capacitor, must dissipate at least kBT ln(2). Here, using a RC circuit, an energy loss of much less than kBT ln(2) is demonstrated while delivering energy of 100 kBT ln(2) to the capacitor. This shows that there is no fundamental lower limit to energy dissipation in moving charge.

  1. VOYAGER 1 JUP LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  2. VOYAGER 1 SAT LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN. THIS...

  3. VOYAGER 2 SAT LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN. THIS...

  4. VOYAGER 2 JUP LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  5. Charge promotion of low-energy fragmentations of peptide ions.

    Science.gov (United States)

    Burlet, O; Orkiszewski, R S; Ballard, K D; Gaskell, S J

    1992-11-01

    We have examined the hypothesis that structural features which predispose to localization of charge at a strongly favored site are not conducive to the low-energy fragmentation of peptide ions via a multiplicity of pathways. Consistent with this proposal, it is demonstrated that the formation of N- or C-terminal pre-charged derivatives is detrimental to the formation of sequence-specific product ions following low-energy collisional activation. Protonation of pre-charged derivatives (yielding doubly charged ions) restores favorable fragmentation properties; the effect is attributed to the fragmentation-directing properties of the proton which may occupy one of several sites. Similarly, a doubly protonated peptide which incorporates a C-terminal arginine residue as a single strongly favored site of protonation exhibits favored low-energy fragmentations attributable to location of the second proton at one of several sites remote from the C-terminus.

  6. Energy deposition and charging in EUV lithography: Monte Carlo studies

    Science.gov (United States)

    Wiseheart, Liam; Narasimhan, Amrit; Grzeskowiak, Steven; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Greg; Brainard, Robert L.

    2016-03-01

    EUV photons expose photoresists by complex interactions including photoionization to create primary electrons (~80 eV), and subsequent ionization steps that create secondary electrons (10-60 eV). The mechanisms by which these electrons interact with resist components are key to optimizing the performance of EUV resists and EUV lithography as a whole. As these photoelectrons and secondary electrons are created, they deposit their energy within the resist, creating ionized atoms along the way. Because many photo- and secondary electrons can escape the resist through the surface, resists can become charged. Charging and energy deposition profiles within the resist may play a role in the sensitivity and line-edge roughness of EUV resists. In this paper, we present computational analysis of charging-influenced electron behavior in photoresists using LESiS (Low energy Electron Scattering in Solids), a software developed to understand and model electron-matter interactions. We discuss the implementation of charge and tracking and the model used to influence electron behavior. We also present the potential effects of charging on EUV and electron beam lithography by investigating secondary electron blur in charging and non-charging models.

  7. Design of low energy bunch compressors with space charge effects

    Directory of Open Access Journals (Sweden)

    A. He

    2015-01-01

    Full Text Available In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5–22 MeV linac bunch compressor design to produce short (∼150  fs and small size (∼30  μm bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R_{56} dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31  μm rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL’s very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25  μm rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  8. High Energy Charged Particles in Space at One Astronomical Unit

    Science.gov (United States)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  9. 10 CFR 904.6 - Charge for capacity and firm energy.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity and...

  10. Inorganic electret with enhanced charge stability for energy harvesting

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    We report a new surface treatment of inorganic electret materials which enhances the charge stability. Coating the surfaces with 1H, 1H, 2H, 2H - perfluorodecyltrichlorosilane (FDTS) makes the electret surface more hydrophobic which improves the surface charge stability under high humidity...... conditions. Thermal tests show that the thermal stability of charge in the inorganic electrets is also much better than that of polymer materials such as CYTOP. A demonstrator device with SiO2 electrets shows promising results for energy harvesting applications....

  11. Charged-particle multiplicity at LHC energies

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  12. Electrostatic free energy of weakly charged macromolecules in solution and intermacromolecular complexes consisting of oppositely charged polymers

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Cohen Stuart, M.A.

    2004-01-01

    When oppositely charged polyelectrolytes are mixed in water, attraction between oppositely charged groups may lead to the formation of polyelectrolyte complexes (associative phase separation, complex coacervation, interpolymer complexes). Theory is presented to describe the electrostatic free energy

  13. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  14. Gravitational energy and radiation of a charged black hole

    Science.gov (United States)

    Combi, Luciano; Romero, Gustavo E.

    2017-10-01

    We investigate the energy configuration of a charged black hole in the teleparallel framework of general relativity. We obtain the energy-momentum tensor of the gravitational field in a stationary frame, and we calculate its contribution to the total energy of the system. We study the same gravitational field measured by an accelerated frame and we analyze how the energy-momentum tensor is transformed. We found that in the accelerated frame, a Poynting-like flux appears for the gravitational field but not for the electromagnetic field.

  15. Potential energy curves for neutral and multiply charged carbon ...

    Indian Academy of Sciences (India)

    physics pp. 49–55. Potential energy curves for neutral and multiply charged carbon monoxide. PRADEEP KUMAR1 and N SATHYAMURTHY1,2,3,∗. 1Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. 2Indian Institute of Science Education and Research Mohali, MGSIPAP Complex,.

  16. INTRAMOLECULAR CHARGE AND ENERGY TRANSFER IN MULTICHROMOPHORIC AROMATIC SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Edward C. Lim

    2008-09-09

    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  17. Exact solutions, energy, and charge of stable Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2016-05-15

    In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)

  18. Renewable Energy for Electric Vehicles : Price Based Charging Coordination

    NARCIS (Netherlands)

    Richstein, J.C.; Schuller, A.; Dinther, C.; Ketter, W.; Weinhardt, C.

    2012-01-01

    In this paper we investigate the charging coordination of battery electric vehicles (BEV) with respect to the availability of intermittent renewable energy generation considering individual real world driving profiles in a deterministic simulation based analysis, mapping a part of the German power

  19. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  20. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    Directory of Open Access Journals (Sweden)

    Forero Camacho Oscar Mauricio

    2016-01-01

    Full Text Available Electric Vehicles (EV technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents the development of a test platform, including three Li-ion batteries designed for EV applications, and three associated bi-directional power converters, for testing impacts on different advanced loadings of EV batteries. Different charging algorithms/profiles have been tested, including constant current and power, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages of both tests in terms of regulation of the aggregated local power, power capacity and the power exchange with the grid. The smart charging tests performed have demonstrated that even with a simple control algorithm, without any forecasting, it is possible to provide the required charging and at the same time the power system services, reducing the peak power and the energy losses in the power connection line of the power exchange with the national grid.

  1. Regulation of brain adenylate cyclase by calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca{sup 2+}-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-({sup 125}I)-CaM-diazopyruvamide ({sup 125}I-CAM-DAP) behaved like native CaM with respect to Ca{sup 2+}-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca{sup 2+}-dependent stimulation of adenylate cyclase. {sup 125}I-CaM-DAP cross-linked to CaM-binding proteins in a Ca{sup 2+}-dependent, concentration-dependent, and CaM-specific manner. Photolysis of {sup 125}I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000.

  2. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  3. Charge and energy transport at the nanoscale: A DFT perspective

    Science.gov (United States)

    Eich, Florian; Covito, Fabio; Rubio, Angel

    Understanding the interplay between charge and energy transport at the nanoscale paves the way for novel thermoelectric devices, which may prove useful for the development for sustainable energy sources. However, concepts, such as heat flow, temperature and entropy are only well-established at the macroscopic level for slow dynamics. This raises the question about whether these concepts can be employed for small length and short time scales. We will present our recent efforts to use a time-dependent density-functional theory framework, dubbed thermal DFT, in order to generalize temperature and heat or energy flow to the microscopic regime. To this end we will highlight the analogy of the formally exact microscopic equations of motion for charge density and energy density in thermal DFT to the macroscopic equations of motion of hydrodynamics. Furthermore, we will present first result using our approach to compute transient energy energy currents induced by a temperature gradient and show that in the steady-state limit persistent temperature oscillations develop. This project has received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No. 701796.

  4. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    CERN Document Server

    Bosman, Martine; Nessi, Marzio

    1999-01-01

    Intrinsic performance of the ATLAS calorimeters in the barrel region with respect to charged pions was studied. For this the following simulated data were used: pion energy scans ($E = 20, 50, 200, 400$ and $1000$ GeV) at two pseudo-rapidity points ($eta = 0.3$ and $1.3$) and pseudo-rapidity scans ($-0.2 < eta < 1.8$) with pions of constant transverse energy ($E_T = 20$ and $50$ GeV). For pion energy reconstruction the benchmark approach was used. Performance was estimated for cases, when energy and rapidity dependent and independent calibration parameters were applied. The best results were obtained with energy and rapidity dependent parameters. Studies done for pions enabled optimization of the cone size and of the cut to obtain the best energy resolution. Energy dependence of the resolution can be parameterized as: $(50pm4)%/sqrt{E} oplus (3.4pm0.3)% oplus 1.0/E$ at $eta = 0.3$ and $(68pm8)%/sqrt{E} oplus (3.0pm0.7)% oplus 1.5/E$ at $eta = 1.3$. Larger constant term at $eta=0.3$ can be explained by l...

  5. Scaling of the Coulomb Energy Due to Quantum Fluctuations in the Charge on a Quantum Dot

    DEFF Research Database (Denmark)

    Molenkamp, L. W; Flensberg, Karsten; Kemerink, M.

    1995-01-01

    The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy...

  6. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  7. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on cape cod

    Science.gov (United States)

    Metge, D.W.; Brooks, M.H.; Smith, R.L.; Harvey, R.W.

    1993-01-01

    Changes in adenylate energy charge (EC(A)) and in total adenine nucleotides (A(T)) and DNA content (both normalized to the abundance of free- living, groundwater bacteria) in response to carbon loading were determined for a laboratory-grown culture and for a contaminated aquifer. The latter study involved a 3-km-long transect through a contaminant plume resulting from continued on-land discharge of secondary sewage to a shallow, sandy aquifer on Cape Cod, Mass. With the exception of the most contaminated groundwater immediately downgradient from the contaminant source, DNA and adenylate levels correlated strongly with bacterial abundance and decreased exponentially with increasing distance downgradient. EC(A)s (0.53 to 0.60) and the ratios of ATP to DNA (0.001 to 0.003) were consistently low, suggesting that the unattached bacteria in this groundwater study are metabolically stressed, despite any eutrophication that might have occurred. Elevated EC(A)s (up to 0.74) were observed in glucose-amended groundwater, confirming that the metabolic state of this microbial community could be altered. In general, per-bacterium DNA and ATP contents were approximately twofold higher in the plume than in surrounding groundwater, although EC(A) and per-bacterium levels of A(T) differed little in the plume and the surrounding uncontaminated groundwater. However, per-bacterium levels of DNA and A(T) varied six- and threefold, respectively, during a 6-h period of decreasing growth rate for an unidentified pseudomonad isolated from contaminated groundwater and grown in batch culture. These data suggest that the DNA content of groundwater bacteria may be more sensitive than their A(T) to the degree of carbon loading, which may have significant ramifications in the use of nucleic acids and adenine nucleotides for estimating the metabolic status of bacterial communities within more highly contaminated aquifers.

  8. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    NARCIS (Netherlands)

    Bruin, W.C.C. de; Oerlemans, F.T.J.J.; Wieringa, B.

    2004-01-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand

  9. Modeling energy and charge transports in pi-conjugated systems

    Science.gov (United States)

    Shin, Yongwoo

    Carbon based pi-conjugated materials, such as conducting polymers, fullerene, carbon nanotubes, graphene, and conjugated dendrimers have attracted wide scientific attentions in the past three decades. This work presents the first unified model Hamiltonian that can accurately capture the low-energy excitations among all these pi-conjugated systems, even with the presence of defects and heterogeneous sites. Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter gamma scales the electronphonon coupling strength in aromatic rings and the other parameter epsilon specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), polyacenes, fullerene, carbon nanotubes, graphene, and graphene nanoribbons with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches. The charge and energy transports along -conjugated backbones can be modeled on the adiabatic potential energy surface. The adiabatic minimum-energy path of a self-trapped topological soliton is computed for trans-polyacetylene. The frequently cited activation barrier via a ridge shift of the hyper-tangent order parameter overestimates its true value by 14 orders of magnitude. Self-trapped solitons migrate along the Goldstone mode direction with continuously adjusted amplitudes so that a small-width soliton expands and a large-width soliton shrinks when they move uphill. A soliton with the critical width may migrate without any amplitude modifications. In an open chain as solitons move from the chain center toward a chain edge, the minimum-energy path first follows a tilted washboard. Such a generic constrained Goldstone mode relaxation

  10. Design of an energy analyzer for low energy 1+ charged ion beams at RISP Project

    Science.gov (United States)

    Boussaid, R.; Park, Y. H.; Moon, J. Y.

    2017-11-01

    Accurate measurement of the energy spread with a compact device has been accomplished by developing a new prototype of a retarding field energy analyzer (RFEA). The device is capable of handling all kinds of low energy mono-charged ion beams at RISP Project. Numerical simulations have been performed in order to study and evaluate dependency of RFEA energy resolution to beam emittance, beam energy, beam energy spread, space charge effects, and most significantly the optics system. Simulation results have shown that the use of developed optics system with particular voltage applied on the focusing cylinder and suitable positioning of the retarding grid may lead to high efficiency energy resolutions not exceeding 0.31 eV for beam energy going up to 20 keV . Small errors on the measured energy spread are obtained despite the presence of degradations stemming from various energy resolution dependencies. Typical mono-charged ion beams delivered from ion trap devices, ISOL beam-line and stable ion sources have been studied. The error on the optimum measured energy spread for beams delivered from ion trap devices is 5 ~ 10% owing to beam emittances. For a larger beam size, delivered from an ISOL beam-line, a larger error occurs on the measured energy spread at around 23.5%. The energy spread of ion beams delivered from stable ion sources with good optical quality relative to the ISOL sources can be measured with an error around 21.7%. This prototype enables accurate measurement of the average beam energy with an error around 1.5 eV per 20 keV beam energy.

  11. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  12. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    Energy Technology Data Exchange (ETDEWEB)

    Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.

    2016-12-15

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)

  13. Dual-energy decomposition using a kinestatic charge detector

    Science.gov (United States)

    Endorf, Robert J.; Schmithorst, Vincent J.; Kulatunga, Sunil; Spelic, David C.; Thomas, Stephen R.; DiBianca, Frank A.; Rodriguez, Carlos; Zeman, Herbert D.; Zhu, Zeping; Giakos, George C.

    1998-07-01

    The Kinestatic Charge Detector (KCD) is an electronic digital strip beam x-ray detector which has been shown to possess a high detective quantum efficiency, good spatial resolution, and good scatter rejection. We have investigated its use as a dual-energy x-ray detector detector, which involves the acquisition of two images with different mean x-ray energies that can be reconstructed using a suitable algorithm to form images of two basis materials such as bone and soft tissue. Dual-energy imaging with a single exposure may be performed with a KCD by segmenting its x-ray collection region into front and back regions. The lower x-ray photons will then be preferentially absorbed in the front region. Computer simulations were performed to evaluate a segmented KCD's ability to reconstruct various combinations of Plexiglas and aluminum. Actual experimental data were also taken for various Plexiglas and aluminum combinations with a non-imaging research KCD. The suitability of using analytic calibration functions as decomposition algorithms for aluminum and Plexiglas basis material images was investigated. Fits were performed for the computer simulations using the high-energy and low-energy data, with and without the addition of noise. Similar fitting techniques were used with the experimental KCD data. A true rms accuracy of 150 micrometer for aluminum and 500 micrometer for Plexiglas was obtainable from fits for the computer simulated data, even with the addition of noise. The experimental data taken with the non-imaging KCD yielded rms errors of approximately 250 micrometer for aluminum and 1000 micrometer for Plexiglas, comparable to simulated noisy data. We conclude that suitable decomposition algorithms exist for a segmented dual-energy KCD to be able to reconstruct aluminum and Plexiglas material thicknesses to an accuracy sufficient for clinical diagnosis in chest radiography.

  14. Nucleon charge-exchange reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  15. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards

    Science.gov (United States)

    Forrest, Kate E.; Tarroja, Brian; Zhang, Li; Shaffer, Brendan; Samuelsen, Scott

    2016-12-01

    Increased usage of renewable energy resources is key for energy system evolution to address environmental concerns. Capturing variable renewable power requires the use of energy storage to shift generation and load demand. The integration of plug-in electric vehicles, however, impacts the load demand profile and therefore the capacity of energy storage required to meet renewable utilization targets. This study examines how the intelligence of plug-in electric vehicle (PEV) integration impacts the required capacity of energy storage systems to meet renewable utilization targets for a large-scale energy system, using California as an example for meeting a 50% and 80% renewable portfolio standard (RPS) in 2030 and 2050. For an 80% RPS in 2050, immediate charging of PEVs requires the installation of an aggregate energy storage system with a power capacity of 60% of the installed renewable capacity and an energy capacity of 2.3% of annual renewable generation. With smart charging of PEVs, required power capacity drops to 16% and required energy capacity drops to 0.6%, and with vehicle-to-grid (V2G) charging, non-vehicle energy storage systems are no longer required. Overall, this study highlights the importance of intelligent PEV charging for minimizing the scale of infrastructure required to meet renewable utilization targets.

  16. Independent sensitization of β-adrenoceptors and adenylate cyclase in acute myocardial ischaemia

    Science.gov (United States)

    Strasser, R. H.; Marquetant, R.; Kübler, W.

    1990-01-01

    1 Acute myocardial ischaemia provokes sensitization of the adenylate cyclase system. This sensitization could be differentiated in a receptor-linked and an enzyme-linked sensitization. The increase in the number of β-adrenoceptors in the plasma membranes was observed already after 15 min of global ischaemia (50 ± 2 to 67 ± 6 fmol mg-1 protein) and persisted after 50 min of ischaemia. The maximally isoprenaline-stimulated adenylate cyclase activity rose from 66 ± 7 to 100 ± 10 pmol cAMP min-1 mg-1 protein after 15 min of global ischaemia indicating the receptor-mediated sensitization of the β-adrenergic system. However, after 50 min of ischaemia the isoprenaline-stimulated adenylate cyclase was reduced by about 50% despite the continuous increase of β-adrenoceptors in the plasma membranes. 2 Additionally direct stimulation of the adenylate cyclase by forskolin revealed an increased enzyme activity after 15 min of global ischaemia (300 ± 20 vs 378 ± 25 pmol cAMP min-1 mg-1). Prolonged periods of ischaemia, however, caused a decline of the total adenylate cyclase activity (232 ± 24 pmol cAMP min-1 mg-1 protein). This demonstrates an enzyme-specific sensitization of the adenylate cyclase, which in contrast to the rise in β-adrenoceptors is only transient. This enzyme-specific sensitization or the late inactivation of the enzyme occur independently of receptor activation and cannot be prevented by β-adrenoceptor blockade (10-6 M alprenolol) prior to the ischaemic insult. For the first time it could be demonstrated that the enzyme-linked sensitization is carried by the adenylate cyclase even after partial purification of the enzyme including solubilization and wheatgerm affinity chromatography. These data may suggest an ischaemia-induced covalent modification of the adenylate cyclase. The enzyme-linked sensitization and the late inactivation of the enzyme do not occur after cyanide perfusion demonstrating that energy depletion is not solely responsible for

  17. Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons

    CERN Document Server

    Coutu, S; Duvernois, M A; Barwick, S W; Schneider, E; Bhattacharya, A; Bower, C; Musser, J A; Labrador, A W; Müller, D; Swordy, S P; Torbet, E; Chaput, C; McKee, S; Tarle, G; Tomasch, A D; Nutter, S L; De Nolfo, G A

    2000-01-01

    We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.

  18. Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice

    NARCIS (Netherlands)

    Hancock, C.R.; Janssen, E.E.W.; Terjung, R.L.

    2005-01-01

    The production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (-/-) on adenine nucleotide management and whole

  19. Strong subadditivity, null energy condition and charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima,Bernal Diaz del Castillo 340, Colima (Mexico); Theory Group, Department of Physics, The University of Texas,Austin, TX 78712 (United States); Kundu, Arnab [Theory Group, Department of Physics, The University of Texas,Austin, TX 78712 (United States); Pedraza, Juan F.; Tangarife, Walter [Theory Group, Department of Physics, The University of Texas,Austin, TX 78712 (United States); Texas Cosmology Center, The University of Texas,Austin, TX 78712 (United States)

    2014-01-16

    Using the Hubeny-Rangamani-Takayanagi (HRT) conjectured formula for entanglement entropy in the context of the AdS/CFT correspondence with time-dependent backgrounds, we investigate the relation between the bulk null energy condition (NEC) of the stress-energy tensor with the strong sub-additivity (SSA) property of entanglement entropy in the boundary theory. In a background that interpolates between an AdS to an AdS-Reissner-Nordstrom-type geometry, we find that generically there always exists a critical surface beyond which the violation of NEC would naively occur. However, the extremal area surfaces that determine the entanglement entropy for the boundary theory, can penetrate into this forbidden region only for certain choices for the mass and the charge functions in the background. This penetration is then perceived as the violation of SSA in the boundary theory. We also find that this happens only when the critical surface lies above the apparent horizon, but not otherwise. We conjecture that SSA, which is thus non-trivially related to NEC, also characterizes the entire time-evolution process along which the dual field theory may thermalize.

  20. Bordetella Adenylate Cyclase-Hemolysin Toxins

    Science.gov (United States)

    Guiso, Nicole

    2017-01-01

    Adenylate cyclase-hemolysin toxin is secreted and produced by three classical species of the genus Bordetella: Bordetella pertussis, B. parapertussis and B. bronchiseptica. This toxin has several properties such as: (i) adenylate cyclase activity, enhanced after interaction with the eukaryotic protein, calmodulin; (ii) a pore-forming activity; (iii) an invasive activity. It plays an important role in the pathogenesis of these Bordetella species responsible for whooping cough in humans or persistent respiratory infections in mammals, by modulating host immune responses. In contrast with other Bordetella toxins or adhesins, lack of (or very low polymorphism) is observed in the structural gene encoding this toxin, supporting its importance as well as a potential role as a vaccine antigen against whooping cough. In this article, an overview of the investigations undertaken on this toxin is presented. PMID:28892012

  1. A robust force field based method for calculating conformational energies of charged drug-like molecules

    DEFF Research Database (Denmark)

    Pøhlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen

    2012-01-01

    molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force-field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic...

  2. Charge while driving” for electric vehicles: road traffic modeling and energy assessment

    National Research Council Canada - National Science Library

    DEFLORIO, Francesco Paolo; CASTELLO, Luca; PINNA, Ivano; GUGLIELMI, Paolo

    2015-01-01

    ...) electric vehicles, from both traffic and energy points of view. To accurately quantify the electric power required from an energy supplier for the proper management of the charging system, a traffic simulation model is implemented...

  3. Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations

    Science.gov (United States)

    Sangeeta; Kaur, Varinderjit

    2017-10-01

    The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.

  4. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    DEFF Research Database (Denmark)

    Forero Camacho, Oscar Mauricio; Mihet-Popa, Lucian

    2016-01-01

    Electric Vehicles (EV) technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents......, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages...

  5. Charge Exchange Cross Sections Measured at Low Energies in Q-Machines

    DEFF Research Database (Denmark)

    Andersen, S. A.; Jensen, Vagn Orla; Michelsen, Poul

    1972-01-01

    A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%.......A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%....

  6. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing.

    Science.gov (United States)

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-10

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  7. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  8. Pituitary adenylate cyclase activating polypeptide and migraine

    DEFF Research Database (Denmark)

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients...... with moderate or severe migraine headache had elevated PACAP in the external jugular vein during headache (n = 15), that was reduced 1 h after treatment with sumatriptan 6 mg (n = 11), and further reduced interictally (n = 9). The data suggest PACAP, or its receptors, are a promising target for migraine...

  9. The Most Energy Efficient Way to Charge the Capacitor in an RC Circuit

    Science.gov (United States)

    Wang, Dake

    2017-01-01

    The voltage waveform that minimizes the energy loss in the resistance when charging the capacitor in a resistor-capacitor circuit is investigated using the calculus of variation. A linear voltage ramp gives the best efficiency, which means a constant current source should be used for charging. Comparison between constant current source and…

  10. Research on Charging Combination Based on Batch Weight Fit Rule for Energy Saving in Forging

    Directory of Open Access Journals (Sweden)

    Zhu Baiqing

    2015-01-01

    Full Text Available As a traditional high energy-consuming industry, the forging industry consumes a lot of energy. The activity consuming the highest energy during forging process is the heating. The problem regarding how to separate workpieces with the same holding temperature and holding time and combine them for charging in forging was analyzed and a model based on batch weight fit rule for optimizing the charging combination with the goal of energy saving was proposed. A genetic algorithm was adopted to optimize and solve the model in order to reduce energy consumption in forging. In addition, an instance was given to prove the effectiveness of the proposed model.

  11. VOYAGER 1 SAT LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN....

  12. VOYAGER 2 JUP LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  13. VOYAGER 2 SAT LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN....

  14. VOYAGER 1 JUP LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  15. Array of micro-machined mass energy micro-filters for charged particles

    Science.gov (United States)

    Stalder, Roland E. (Inventor); Van Zandt, Thomas R. (Inventor); Hecht, Michael H. (Inventor); Grunthaner, Frank J. (Inventor)

    1996-01-01

    An energy filter for charged particles includes a stack of micro-machined wafers including plural apertures passing through the stack of wafers, focusing electrodes bounding charged particle paths through the apertures, an entrance orifice to each of the plural apertures and an exit orifice from each of the plural apertures and apparatus for biasing the focusing electrodes with an electrostatic potential corresponding to an energy pass band of the filter.

  16. The most energy efficient way to charge the capacitor in a RC circuit

    Science.gov (United States)

    Wang, Dake

    2017-11-01

    The voltage waveform that minimize the energy loss in the resistance when charging the capacitor in a resistor-capacitor circuit is investigated using the calculus of variation. A linear voltage ramp gives the best efficiency, which means a constant current source should be used for charging. Comparison between constant current source and battery-powered system is made to illustrate the energy advantage of the former.

  17. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  18. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  19. Beam Energy and System Size Dependence of Dynamical Net Charge Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll

    2008-07-21

    We present measurements of net charge fluctuations in Au + Au collisions at {radical}s{sub NN} = 19.6, 62.4, 130, and 200 GeV, Cu + Cu collisions at {radical}s{sub NN} = 62.4, 200 GeV, and p + p collisions at {radical}s = 200 GeV using the dynamical net charge fluctuations measure {nu}{sub {+-},dyn}. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N{sub ch} scaling, but display approximate 1/N{sub part} scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

  20. Imaging the potential distribution of individual charged impurities on graphene by low-energy electron holography.

    Science.gov (United States)

    Latychevskaia, Tatiana; Wicki, Flavio; Escher, Conrad; Fink, Hans-Werner

    2017-11-01

    While imaging individual atoms can routinely be achieved in high resolution transmission electron microscopy, visualizing the potential distribution of individually charged adsorbates leading to a phase shift of the probing electron wave is still a challenging task. Low-energy electrons (30 - 250 eV) are sensitive to localized potential gradients. We employed low-energy electron holography to acquire in-line holograms of individual charged impurities on free-standing graphene. By applying an iterative phase retrieval reconstruction routine we recover the potential distribution of the localized charged impurities present on free-standing graphene. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study of neutral-charged particle correlations in high energy collisions

    CERN Document Server

    Dao, F T

    1973-01-01

    Recent experiments at Serpukhov, NAL, and CERN indicate a strong correlation between neutral and charged pions produced in high energy collisions, in contrast to the trend shown by data at lower energies. This study of the energy and charge dependence of these correlations indicates that they do not depend upon the initial state particles and that they are in reasonable agreement with the critical fluid gas model. These high energy correlation data are also studied in terms of a semi-inclusive Koba- Nielsen-Olesen scaling relation. (9 refs).

  2. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  3. Research on Quantitative Models of Electric Vehicle Charging Stations Based on Principle of Energy Equivalence

    Directory of Open Access Journals (Sweden)

    Zhenpo Wang

    2013-01-01

    Full Text Available In order to adapt the matching and planning requirements of charging station in the electric vehicle (EV marketization application, with related layout theories of the gas stations, a location model of charging stations is established based on electricity consumption along the roads among cities. And a quantitative model of charging stations is presented based on the conversion of oil sales in a certain area. Both are combining the principle based on energy consuming equivalence substitution in process of replacing traditional vehicles with EVs. Defined data are adopted in the example analysis of two numerical case models and analyze the influence on charging station layout and quantity from the factors like the proportion of vehicle types and the EV energy consumption at the same time. The results show that the quantitative model of charging stations is reasonable and feasible. The number of EVs and the energy consumption of EVs bring more significant impact on the number of charging stations than that of vehicle type proportion, which provides a basis for decision making for charging stations construction layout in reality.

  4. Adenylate Cyclase from Brevibacterium liquefaciens. III. In Situ Regulation of Adenylate Cyclase by Pyruvate

    Science.gov (United States)

    Umezawa, Kazuo; Takai, Katsuji; Tsuji, Shoji; Kurashina, Yoshikazu; Hayaishi, Osamu

    1974-01-01

    In the presence of DL-alanine intracellular cyclic AMP in nonproliferating cells of Brevibacterium liquefaciens increased rapidly to the maximum level of approximately 180 μM, and extracellular cyclic AMP increased to 100 μM within 4 hr at 25°. Adenylate cyclase (EC 4.6.1.1) induction was not observed during this incubation. The concentration of pyruvate in the total culture increased concomitantly with that of cyclic AMP and reached approximately 20 mM after 4 hr of incubation. Since the activity of cyclic nucleotide phosphodiesterase is extremely low in this bacterium, the accumulation of cyclic AMP with DL-alanine appeared to be due to the activation of adenylate cyclase by pyruvate. D-alanine was more effective than L-alanine in producing pyruvate, and a high activity of D-alanine oxidation was detected in the cell lysate of B. liquefaciens. Thus, adenylate cyclase in this bacterium appeared to be regulated in vivo by pyruvate which was formed, in this case, predominantly from D-alanine through the action of D-aminoacid oxidase (EC 1.4.3.3). Pyruvate, added extracellularly, also caused a rapid accumulation of intracellular cyclic AMP. Glucose did not change the level of cyclic AMP significantly. It also did not affect the intracellular accumulation of cyclic AMP with DL-alanine. PMID:4373721

  5. Adenylate cyclases involvement in pathogenicity, a minireview.

    Science.gov (United States)

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.

  6. Modelling and Energy Management Optimisation of Battery Energy Storage System Based Photovoltaic Charging Station (PV-CS) for University Campus

    OpenAIRE

    Esfandyari, Ayda; Norton, Brian; Conlon, Michael

    2016-01-01

    As utilization of Photovoltaic Charging Stations (PV-CS) that generate clean electricity from the sun increase, Dublin Institute of Technology (DIT) adopts this application for accommodating the required charge of small campus Battery Electric Vehicles (BEVs). This paper presents the virtual simulation of the 10.5 kW Battery Energy Storage System (BESS) based PV-CS model. Transient System Simulation (TRNSYS) built-in climatic data and modular structure properties were adopted to replicate the...

  7. Structural studies of Schistosoma mansoni adenylate kinases

    Energy Technology Data Exchange (ETDEWEB)

    Marques, I.A. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Pereira, H.M.; Garrat, R.C. [Universidade de Sao Paulo (USP-SC), Sao Carlos, SP (Brazil)

    2012-07-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  8. Flux normalized charged current neutrino cross sections up to neutrino energies of 260 GeV

    CERN Document Server

    Barish, B C; Blair, R; Bodek, A; Edwards, D N; Edwards, H; Fackler, O; Fisk, E; Fukushima, Y; Jenkins, K; Kerns, Q; Kondo, T; Krafczyk, G; Lee, J; Linsay, P; Ludwig, J; Marsh, W; Messner, R; Nease, D; Sciulli, F; Segler, S; Shaevitz, M; Theriot, D

    1979-01-01

    Preliminary measurements of flux normalized charged current neutrino cross sections are presented. From a sample of 6000 neutrino events with energies between 50 and 260 GeV the authors find that sigma /sub nu //E/sub nu /=(0.67+or-0.04)*10/sup -38/ cm/sup 2//GeV independent of neutrino energy. (0 refs).

  9. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    Science.gov (United States)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  10. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    2017-04-01

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of the proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.

  11. Potential energy curves for neutral and multiply charged carbon ...

    Indian Academy of Sciences (India)

    Potential energy curves of various electronic states of CO+ (0 ≤ ≤ 6) are generated at MRCI/CASSCF level using cc-pvQZ basis set and the results are compared with available experimental and theoretical data. Author Affiliations. Pradeep Kumar1 N Sathyamurthy1 2 3. Department of Chemistry, Indian Institute of ...

  12. Parameter-free calculation of charge-changing cross sections at high energy

    Science.gov (United States)

    Suzuki, Y.; Horiuchi, W.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Tanihata, I.; Vargas, J.; Weick, H.; Winfield, J. S.

    2016-07-01

    Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around 900 A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C+12C consistently with the known charge radii. Next we show that the cross sections of C-1912 on a proton target are all well reproduced provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing cross sections.

  13. Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, B; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Border, P M; Bower, C; Buckley-Geer, E; Bungau, C; Cabrera, A; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Culling, A J; De Jong, J K; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drakoulakos, D; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Holin, A; Howcroft, C; Hylen, J; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M S; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Lebedev, A; Lee, R; Ling, J; Liu, J; Litchfield, P J; Litchfield, R P; Lucas, P; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovic, Z; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Plunkett, R K; Rahman, D; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Seun, S M; Shanahan, P; Smart, W; Smirnitsky, V; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Velissaris, C; Verebryusov, V; Viren, B; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Wu, Q K; Yang, T; Yumiceva, F X; Zheng, H; Zois, M; Zwaska, R

    2007-01-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitativ...

  14. Controlling Charge and Energy Transfer Processes in Artificial Photosynthesis : From Picosecond to Millisecond Dynamics

    OpenAIRE

    Borgström, Magnus

    2005-01-01

    This thesis describes an interdisciplinary project, where the aim is to mimic the initial reactions in photosynthesis. In photosynthesis, the absorption of light is followed by the formation of charge-separated states. The energy stored in these charge-separated states is further used for the oxidation of water and reduction of carbon dioxide. In this thesis the photo-induced processes in a range of supramolecular complexes have been investigated with time resolved spectroscopic techniques. T...

  15. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...... power ancillary service to the overhead power system. In that sense, when the active power is not being extracted from the grid, FESS provides the power required to sustain the continuous charging process of PEV battery. A key characteristic of the whole control system is that it is able to work without...

  16. Energy and Charge Transfer in Open Plasmonic Systems

    Science.gov (United States)

    Thakkar, Niket

    Coherent and collective charge oscillations in metal nanoparticles (MNPs), known as localized surface plasmons, offer unprecedented control and enhancement of optical processes on the nanoscale. Since their discovery in the 1950's, plasmons have played an important role in understanding fundamental properties of solid state matter and have been used for a variety of applications, from single molecule spectroscopy to directed radiation therapy for cancer treatment. More recently, experiments have demonstrated quantum interference between optically excited plasmonic materials, opening the door for plasmonic applications in quantum information and making the study of the basic quantum mechanical properties of plasmonic structures an important research topic. This text describes a quantitatively accurate, versatile model of MNP optics that incorporates MNP geometry, local environment, and effects due to the quantum properties of conduction electrons and radiation. We build the theory from first principles, starting with a silver sphere in isolation and working our way up to complex, interacting plasmonic systems with multiple MNPs and other optical resonators. We use mathematical methods from statistical physics and quantum optics in collaboration with experimentalists to reconcile long-standing discrepancies amongst experiments probing plasmons in the quantum size regime, to develop and model a novel single-particle absorption spectroscopy, to predict radiative interference effects in entangled plasmonic aggregates, and to demonstrate the existence of plasmons in photo-doped semiconductor nanocrystals. These examples show more broadly that the theory presented is easily integrated with numerical simulations of electromagnetic scattering and that plasmonics is an interesting test-bed for approximate methods associated with multiscale systems.

  17. Low-energy charged particles in Saturn's magnetosphere - Results from Voyager 1

    Science.gov (United States)

    Krimigis, S. M.; Bostrom, C. O.; Keath, E. P.; Carbary, J. F.; Roelof, E. C.; Armstrong, T. P.; Axford, W. I.; Gloeckler, G.; Hamilton, D. C.; Lanzerotti, L. J.

    1981-01-01

    The Voyager 1 low-energy charged particle instrument measured electrons and ions with energies below 26 and 40 kiloelectron volts, respectively, in the Saturn magnetosphere. Spectra of all ion species were found to have an energy cutoff at levels greater than 2 million electron volts. In contrast to the magnetospheres of Jupiter and earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. One novel feature of the Saturn magnetosphere is a pervasive population of energetic molecular hydrogen.

  18. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  19. Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2018-01-01

    The vibrations of mechanical systems and structures are often a combination of periodic and random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting systems for charging microelectronics may be challenged by such reality due to the potential to transition between favorable and unfavorable dynamic regimes for DC power delivery. Therefore, a need exists to devise an optimization method whereby charging power from nonlinear energy harvesters remains maximized when excitation conditions are neither purely harmonic nor purely random, which have been the attention of past research. This study meets the need by building from an analytical approach that characterizes the dynamic response of nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base accelerations. Here, analytical expressions are formulated and validated to optimize charging power while the influences of the relative proportions of excitation types are concurrently assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the charging power by 20% when the system is more prominently driven by harmonic base accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in power for the same resistance deviation. In addition, the results reveal that when the frequency of a predominantly harmonic excitation deviates by 50% from optimal conditions the charging power reduces by 70%, whereas the same frequency deviation for a more stochastically dominated excitation reduce total DC power by only 20%. These results underscore the need for maximizing direct current power delivery for nonlinear energy harvesting systems in practical operating environments.

  20. Charging plug-in hybrid electric vehicles (PHEVs) with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Lopes, L.A.C.; Williamson, S.S. [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2008-08-15

    Sizing requirements for the photovoltaic (PV) panels used to charge plug-in hybrid electric vehicles (PHEVs) operating in an all-electric mode for 40 miles per day were discussed. A set of case studies were used to consider methods of reducing costs, and a comprehensive comparison between different methods was conducted. The PHEV used a lithium-ion battery pack as an on-board energy source. The battery state of charge (SOC) was used to describe the charging state of the battery pack, with an upper limit of 95 per cent and a lower limit of 20 per cent. The size of the PV panel was calculated based on the energy requirements needed to charge the PHEV. A bidirectional DC-DC converter connected the battery to a high voltage bus and delivered energy back to the battery during regenerative breaking events. The required size of the panel was expanded according to the number of vehicles that needed charging. Solar power radiation data were used to determine PV array efficiency and DC-DC conversion efficiency. Case studies were prepared in order to compare costs for conventional vehicles (CVs), hybrid electric vehicles (HEVs), PHEVs and electric vehicles (EVs). Results of the study showed that the PV-based PHEV was more cost-efficient than other vehicles evaluated in the study. As a clean and renewable energy source, the PV-based PHEV provided a low-cost, pollution-free and low maintenance method of transportation. 10 refs., 4 tabs., 5 figs.

  1. Charge transfer and association of Na+ with 87Rb atoms from extremely low to intermediate energies

    Science.gov (United States)

    Yan, L. L.; Liu, L.; Wu, Y.; Qu, Y. Z.; Wang, J. G.; Buenker, R. J.

    2013-07-01

    The nonradiative charge-transfer processes in Na++87Rb(5s) collisions have been investigated by using the quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling method for the energy range of 10-4-5 and 0.3-100 keV/u, respectively. The radiative charge-transfer, radiative-decay, and radiative-association processes have been investigated by using the fully quantum, optical-potential, and semiclassical methods for the energy range of 10-18-0.2 eV/u. The nonradiative charge-transfer processes dominate the collisions for energies above 0.2 eV/u and radiative-decay processes dominate in the lower-energy region. At the very low collision energies of 10-18-10-3 eV/u, the radiative-association process is more important than the radiative charge-transfer process. Most importantly, it is found that the radiative cross sections exhibit Langevin behavior as E-1/2 for energies less than 10-2 eV/u.

  2. Multiforms of mammalian adenylate kinase and its monoclonal antibody against AK1.

    Science.gov (United States)

    Kurokawa, Y; Takenaka, H; Sumida, M; Oka, K; Hamada, M; Kuby, S A

    1990-01-01

    An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.

  3. Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity

    Directory of Open Access Journals (Sweden)

    Trung Thanh Thach

    2014-01-01

    Full Text Available Streptococcus pneumoniae (pneumococcus infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S. pneumoniae (SpAdK serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A. Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.

  4. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-04

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes.

  5. Synthetic system mimicking the energy transfer and charge separation of natural photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gust, D.; Moore, T.A.

    1985-05-01

    A synthetic molecular triad consisting of a porphyrin P linked to both a quinone Q and a carotenoid polyene C has been prepared as a mimic of natural photosynthesis for solar energy conversion purposes. Laser flash excitation of the porphyrin moiety yields a charge-separated state Csup(+.)-P-Qsup(-.) within 100 ps with a quantum yield of more than 0.25. This charge-separated state has a lifetime on the microsecond time scale in suitable solvents. The triad also models photosynthetic antenna function and photoprotection from singlet oxygen damge. The successful biomimicry of photosynthetic charge separation is in part the result of multistep electron transfers which rapidly separate the charges and leave the system at high potential, but with a considerable barrier to recombination.

  6. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  7. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  8. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.

    Science.gov (United States)

    Wang, Mingliang; Wong, Chung F

    2006-04-13

    We have combined ultrasoft pseudopotential density functional theory utilizing plane wave basis with a Poisson-Boltzmann/solvent-accessible surface area (PB/SA) model to calculate the solvation free energy of small neutral organic compounds in water. The solute charge density obtained from density functional theory was directly used in solving the Poisson-Boltzmann equation to obtain the reaction field. The polarized electronic wave function of the solute in the solvent was solved by including the reaction field in the density functional Hamiltonian. The quantum mechanical and Poisson-Boltzmann equations were solved self-consistently until the charge density and reaction field converged. Using the solute charge density directly instead of a point-charge representation permitted asymmetric distortion and spreading out of the electron cloud. Because the electron density could leave the van der Waals surface to penetrate into the high-dielectric solvent, the reaction field generated by this density was generally smaller than that obtained by using the point-charge representation. In applying this model to calculate the solvation free energy of 31 small neutral organic molecules spanning a range of 25 kcal/mol, we obtained a root-mean-square error of only 1.3 kcal/mol if we allowed one adjustable parameter to shift the calculated solvation free energy.

  9. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, Timothy T. [Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Baer, Marcel D. [Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Schenter, Gregory K. [Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Mundy, Chistopher J. [Department of Chemical Engineering, University of Washington, Seattle, Washington 98185, USA

    2017-10-28

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for coarse grained models of electrolyte solution. Here, we provide rigorous definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation (DFT-MD) and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to highly unphysical values for the solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry (CHA) for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation. We would like to thank Thomas Beck, Shawn Kathmann, Richard Remsing and John Weeks for helpful discussions. Computing resources were generously allocated by PNNL's Institutional Computing program. This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TTD, GKS, and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across

  10. The role of electron capture and energy exchange of positively charged particles passing through matter

    CERN Document Server

    Ulmer, W

    2011-01-01

    The conventional treatment of the Bethe-Bloch equation for protons accounts for electron capture at the end of the projectile track by the small Barkas correction. This is only a possible way for protons, whereas for light and heavier charged nuclei the exchange of energy and charge along the track has to be accounted for by regarding the projectile charge q as a function of the residual energy. This leads to a significant modification of the Bethe-Bloch equation, otherwise the range in a medium is incorrectly determined. The LET in the Bragg peak domain and distal end is significantly influenced by the electron capture. A rather significant result is that in the domain of the Bragg peak the superiority of carbon ions is reduced compared to protons.

  11. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    Science.gov (United States)

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  12. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  13. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  14. Photoinduced energy and charge transfer in layered porphyrin-gold nanoparticle thin films

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2008-01-01

    In thin films of porphyrin (H2P) and gold nanoparticles (AuNPs), photoexcitation of porphyrins leads to energy and charge transfer to the gold nanoparticles. Alternating layers of porphyrins and octanethiol protected gold nanoparticles (dcore ∼3 nm) were deposited on solid substrates via the

  15. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  16. "Blue energy" from ion adsorption and electrode charging in sea- and river water

    OpenAIRE

    Boon, Niels; van Roij, René

    2011-01-01

    Abstract A huge amount of entropy is produced at places where fresh water and seawater mix, for example at river mouths. This mixing process is a potentially enormous source of sustainable energy, provided it is harnessed properly, for instance by a cyclic charging and discharging process of porous electrodes immersed in salt and fresh water, respectively [D. Brogioli, Phys. Rev. Lett. 103 , 058501 (2009)]. Here we employ a modified Poisson-Boltzmann free-energy density functional ...

  17. Charging operation with high energy efficiency for electric vehicle valve-regulated lead-acid battery system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry (CRIEPI), Komae Res. Lab., Lithium Battery Project, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power Co., Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power Co. Inc., Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power Co., Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power Co., Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power Co., Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power Co., Osaka (Japan); Kato, Satoru [The Chugoku Electric Power Co., Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst. Inc., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power Co., Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power Co., Fukuoka (Japan)

    2000-12-01

    A new, high-energy-efficiency charging operation with as little amount of overcharge as possible is proposed to improve the energy efficiency and the cycle life for an EV valve-regulated lead-acid battery. Under this operation, the EV battery system is charged with 105% of amount of the preceding discharge five out of six times and once with 115% in order that it is fully charged. The cycle lives were estimated using a valve-regulated lead-acid battery system of 12 modules connected in series, by SFUDS79 pattern discharging and measurement of the amount of discharge every 50 cycles. Three-step constant current charging with 115% of amount of the preceding discharge required more than 5 h with the final charging step of more than 210 min, with coulomb efficiency of only 87% and energy efficiency of 74%. On the other hand, under the high-energy-efficiency charging operation, three-step charging with 105% shortens the final charging time to 132 min. It was completed in less than 4 h with coulomb and energy efficiency of 95% and 84%, respectively. This operation increased the energy efficiency from 74% to 83% on average in six charging, and extended the cycle life by about 30% to more than 400 cycles. Decreasing the amount of charge by as much as possible suppressed the corrosion of the grids in the positive plate and the heat evolution in batteries due to shortening of the final charging step. Although the high-energy-efficiency charging operation led to the accumulation of inactive PbSO{sub 4} at the upper part of the negative plate, possibly due to the decreasing amount of overcharge, this operation could prolong the cycle life. Full charging once every six times is though to be effective in suppressing degradation caused by the accumulation of inactive PbSO{sub 4} in the negative plate due to the shortage of charge. (orig.)

  18. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  19. Modeling plug-in electric vehicle charging demand with BEAM: the framework for behavior energy autonomy mobility

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Colin; Waraich, Rashid; Campbell, Andrew; Pozdnukov, Alexei; Gopal, Anand R.

    2017-05-01

    This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding charging infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.

  20. Imaging charge and energy transfer in molecules using free-electron lasers

    Science.gov (United States)

    Rudenko, Artem

    2014-05-01

    Charge and energy transfer reactions drive numerous important processes in physics, chemistry and biology, with applications ranging from X-ray astrophysics to artificial photosynthesis and molecular electronics. Experimentally, the central goal in studies of transfer phenomena is to trace the spatial localization of charge at a given time. Because of their element and site sensitivity, ultrafast X-rays provide a promising tool to address this goal. In this talk I will discuss several experiments where free-electron lasers were employed to study charge and energy transfer dynamics in fragmenting molecules. In a first example, we used intense, 70 femtosecond 1.5 keV pulses from the Linac Coherent Light Source (LCLS) to study distance dependence of electron transfer in laser-dissociated methyl iodide molecules. Inducing well-localized positive charge on the heavy iodine atom, we observe signature of electron transition from the separated methyl group up to the distances of 35 atomic units. In a complementary experiment, we studied charge exchange between two partners in a dissociating molecular iodine employing a pump-probe arrangement with two identical 90 eV pulses from the Free-Electron LASer in Hamburg (FLASH). In both cases, the effective spatial range of the electron transfer can be reasonably described by a classical over-the-barrier model developed for ion-atom collisions. Finally, I will discuss a time-resolved measurement on non-local relaxation mechanism based on a long-range energy transfer, the so-called interatomic Coulombic decay. This work was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy and by the Kansas NSF ``First Award'' program.

  1. Instantaneous charging & discharging cycle analysis of a novel supercapacitor based energy harvesting circuit

    Science.gov (United States)

    Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur

    2017-12-01

    In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.

  2. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  3. Monospecific antibody against Bordetella pertussis Adenylate Cyclase protects from Pertussis

    Directory of Open Access Journals (Sweden)

    Yasmeen Faiz Kazi

    2012-06-01

    Full Text Available Objectives: Acellular pertussis vaccines has been largely accepted world-wide however, there are reports about limitedantibody response against these vaccines suggesting that multiple antigens should be included in acellular vaccinesto attain full protection. The aim of present study was to evaluate the role of Bordetella pertussis adenylate cyclase as aprotective antigen.Materials and methods: Highly mono-specific antibody against adenylate cyclase (AC was raised in rabbits usingnitrocellulose bound adenylate cyclase and the specificity was assessed by immuoblotting. B.pertussis 18-323, wasincubated with the mono-specific serum and without serum as a control. Mice were challenged intra-nasally and pathophysiolgicalresponses were recorded.Results: The production of B.pertussis adenylate cyclase monospecific antibody that successfully recognized on immunoblotand gave protection against fatality (p< 0.01 and lung consolidation (p <0.01. Mouse weight gain showedsignificant difference (p< 0.05.Conclusion: These preliminary results highlight the role of the B.pertussis adenylate cyclase as a potential pertussisvaccine candidate. B.pertussis AC exhibited significant protection against pertussis in murine model. J Microbiol InfectDis 2012; 2(2: 36-43Key words: Pertussis; monospecific; antibody; passive-protection

  4. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  5. Photoelectrochemical reaction in conducting polymers for solar energy harvesting and charge storage

    Science.gov (United States)

    Rahimi, Fatemeh; Tevi, Tete; Takshi, Arash

    2016-09-01

    Energy storage is an essential ground for solar energy systems, particularly for the off-grid applications. Concurrent energy harvesting and charge storage in a photoactive supercapacitor has already been demonstrated. The key element in such a device is a conducting polymer which stores the charge via change in its redox states. In this work, we have studied the photoelectrochemical reactions in composites of polyaniline (PANI). We used the electrochemical deposition method for the polymer growth. The results of the current study indicate that the photo-reactivity of the materials largely depends on the electrolyte and the type of the dye molecule. Among different synthetic dyes, methylene blue has shown the strongest photoelectrochemical reaction in an HCl electrolyte. The cyclic voltammetry (CV) results showed that the amplitude of the redox peaks changes significantly upon illumination. The amount of stored charges in the polymer was estimated from the CV results. The results encourage the application of PANI for charge storage in a photoactive supercapacitor.

  6. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  7. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon

    Science.gov (United States)

    Goetzke, L. W.; Aprile, E.; Anthony, M.; Plante, G.; Weber, M.

    2017-11-01

    The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper, we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV /cm . Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anticorrelated above ˜3 keV and that the field dependence becomes negligible below ˜6 keV . However, below 3 keV, we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.

  8. Dynamics of energy charge and adenine nucleotides during uncoupling of catabolism and anabolism in Penicillium ochrochloron.

    Science.gov (United States)

    Vrabl, Pamela; Mutschlechner, Wolfgang; Burgstaller, Wolfgang

    2009-12-01

    Filamentous fungi are able to spill energy when exposed to energy excess by uncoupling catabolism from anabolism, e.g. via overflow metabolism. In current study we tested the hypothesis that overflow metabolism is regulated via the energetic status of the hyphae (i.e. energy charge, ATP concentration). This hypothesis was studied in Penicillium ochrochloron during the steady state of glucose- or ammonium-limited chemostat cultures as well as during three transient states ((i) glucose pulse to a glucose-limited chemostat, (ii) shift from glucose-limited to ammonium-limited conditions in a chemostat, and (iii) ammonium exhaustion in batch culture). Organic acids were excreted under all conditions, even during exponential growth in batch culture as well as under glucose-limited conditions in a chemostat. Partial uncoupling of catabolism and anabolism via overflow metabolism was thus constitutively present. Under all tested conditions, overflow metabolism was independent of the energy charge or the ATP concentration of the hyphae. There was a reciprocal correlation between glucose uptake rate and intracellular adenine nucleotide content. During all transients states a rapid decrease in energy charge and the concentrations of nucleotides was observed shortly after a change in glycolytic flux ("ATP paradoxon"). A possible connection between the change in adenine nucleotide concentrations and the purine salvage pathway is discussed.

  9. The mobility in disordered molecular systems with energies given by a charge-induced dipoles interaction.

    Science.gov (United States)

    Tonezer, Camila; Freire, José A

    2010-12-07

    We investigate the field dependence of the mobility in a model for a disordered molecular system containing spatial and energetic disorders. In this model we assign an isotropic polarizability to each site and take the site energies to be the site polarization energies, the interaction energy of a charge in the given site with the induced dipoles in the neighboring sites. This model was shown, in a previous publication, to contain short-ranged energetic correlations and we show in this work that this correlation produces a charge mobility proportional to the exponential of the square root of the applied field, the Poole-Frenkel dependence observed in various disordered organic materials, over a significant range of fields. We present an expression for the field dependence of the mobility in terms of the average intersite separation and of the isotropic polarizability of the electronic states, the two model parameters.

  10. Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions

    CERN Document Server

    Sá Ben-Hao; Tai, A; Zhou Dai Mei; Sa, Ben-Hao; Tai, An; Zhou, Dai-Mei

    2001-01-01

    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic $p+\\bar p$ experimental data and the PHOBOS and PHENIX $Au+Au$ data at $\\sqrt s_{nn}$=130 GeV could be reproduced fairly well without retuning the model parameters. The predictions for full RHIC energy $Au+Au$ collisions and for $Pb+Pb$ collisions at the ALICE energy were given. Participant nucleon distributions were calculated based on different methods. It was found that the number of participant nucleons, $$, is not a well defined variable both experimentally and theoretically. Therefore, it is inappropriate to use charged particle pseudorapidity density per participant pair as a function of $$ for distinguishing various theoretical models.

  11. Experimental study of influence of inlet geometry on thermal stratification in thermal energy storage during charging process

    Directory of Open Access Journals (Sweden)

    Švarc Petr

    2014-03-01

    Full Text Available Various analyses of charging processes of real single-medium thermal energy storage were applied in this work. Two different inlet geometries of direct intakes into thermal energy storage were investigated for the process of charging in Richardson numbers 0.4 and 15. Temperature distributions for both cases are shown and compared in selected time steps. Several simple methods for assessment of an ability to maintain and support thermal stratification during charging processes were compared with exergy analysis.

  12. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  13. Combustion of biomass - Energy recovery and dust separation with conventional and electrically charged scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Rawe, R.; Kuhrmann, H. (Univ. of Applied Sciences, Gelsenkirchen (Germany)), e-mail: rudolf.rawe@fh-gelsenkirchen.de

    2010-07-01

    In the last years a combined heat exchanger and spray scrubber for condensing operation of biomass boilers was investigated at the University of Applied Sciences in Gelsenkirchen. Flue gases are chilled more deeply as compared with conventional condensing boilers. This leads to the fact, that the rate of condensation is higher and more heat of vaporization can be recovered. Depending on temperatures and mode of operation, energy savings up to 17 % are realized. The high efficiency reduces overall emissions as less fuel is fired at the same heat output. In addition the wet separator minimizes emissions of particles, water-soluble flue gases and odours. With conventional scrubbers dust separation-efficiencies > 50 % can be achieved at high injection pressure of 3,5 bar. Looking at the different electrically charged scrubber types, either the particles and / or the scrubber fields are charged. Thus, up to 86 % efficiency is achieved using a dust-charging voltage of 25 kV. (orig.)

  14. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  15. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  16. Tuning Charge Transfer in Ion-Surface Collisions at Hyperthermal Energies.

    Science.gov (United States)

    Yao, Yunxi; Giapis, Konstantinos P

    2016-05-18

    Charge exchange in ion-surface collisions may be influenced by surface adsorbates to alter the charge state of the scattered projectiles. We show here that the positive-ion yield, observed during ion scattering on metal surfaces at low incident energies, is greatly enhanced by adsorbing electronegative species onto the surface. Specifically, when beams of N(+) and O(+) ions are scattered off of clean Au surfaces at hyperthermal energies, no positive ions are observed exiting. Partial adsorption of F atoms on the Au surface, however, leads to the appearance of positively charged primary ions scattering off of Au, a direct result of the increase in the Au work function. The inelastic energy losses for positive-ion exits are slightly larger than the corresponding ionization energies of the respective N and O atoms, which suggest that the detected positive ions are formed by surface reionization during the hard collision event. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue.

    Science.gov (United States)

    Cimen, Behzat; Uz, Ali; Cetin, Ihsan; Cimen, Leyla; Cetin, Aysun

    2017-09-01

    Regular physical exercises may help people to be more resistant to everyday problems; however, how acute and intense exercises affect the heart tissues functioning with maximum capacity and how melatonin changes the effect of acute and intense exercises are still not obvious. We aimed to comprehend whether melatonin intravenous injection supports the oxidative/antioxidative conditions and energy charge in heart tissues of rats exposed to acute swimming exercise. Thirty Wistar-albino male rats were categorized into 3 groups with equal number of subjects. Control group performed no application, and acute intensive swimming exercise group were subjected to acute intensive swimming exercise for 30 minutes, and melatonin group were applied 25 mg/kg single dose melatonin administration prior to 30 minutes acute intensive swimming exercise. The levels of malondialdehyde (MDA), and superoxide dismutase, catalase and glutathione peroxidase activities were measured by spectrophotometric method; and the levels of 3-nitrotyrosine (3-NT) and energy charge were determined by a high performance liquid chromatography. Tissue MDA and 3-NT levels of the acute intensive exercise group were found to be higher than the control group. It was also found that the melatonin administration increased the energy charge and antioxidant activities, while decreased tissue MDA and 3-NT levels in heart tissues. Our results provide evidence for melatonin that can exert potent protective effects on oxidative stress and energy charge for heart tissues in acute swimming exercise. These findings suggest that the direct beneficial effects of melatonin could be potentially applied on prevention of oxidative stress and energy deficit.

  18. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439, USA and Illinois Institute of Technology, Chicago, IL 60616 (United States); Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×10{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  19. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  20. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  1. Energy dependence of the charged multiplicity in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-03-15

    The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb{sup -1}. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in e{sup +}e{sup -} collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions. (orig.)

  2. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  3. Universal transport characteristics of multiple topological superconducting wires with large charging energy

    Energy Technology Data Exchange (ETDEWEB)

    Kashuba, Oleksiy; Trauzettel, Bjoern [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Timm, Carsten [Institut fuer Theoretische Physik, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    The system with multiple Majorana states coupled to the normal lead can potentially support the interaction between Majorana fermions and electrons. Such system can be implemented by several floating topological superconducting wires with large charging energy asymmetrically coupled to two normal leads. The analysis of the renormalization flow shows that there is a single fixed point - the strong coupling limit of isotropic antiferromagnetic Kondo model. The topological Kondo-like interaction leads also to the selective renormalization of the tunneling coefficients, strongly enhancing one component and suppressing others. Thus, charging energy crucially changes the transport properties of the system leading to the universal single-channel conductance independently from the values of the initial leads-wires coupling.

  4. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  5. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    Science.gov (United States)

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.

  6. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  7. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...... shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange....

  8. Damage induced by high energy multiply charged oxygen ions in oxide coated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kulkarni, V.R. [Department of Physics, University of Pune, Pune 411 007 (India); Bogle, K.A. [Department of Physics, University of Pune, Pune 411 007 (India); Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    P-type oxide coated silicon samples of resistivity 120 {omega} cm were irradiated with 60 MeV oxygen ions of fixed charge states 4{sup +}, 5{sup +}, 6{sup +} and 7{sup +} at an equal fluence of, {phi}, {approx}10{sup 13} ions/cm{sup 2}. The induced damage was estimated by Hall voltage, Hall coefficient, carrier concentration and lifetime of minority carriers. The results indicate that Hall voltage (V {sub H}) and Hall coefficient (R {sub H}) increases, while carrier concentration (n) decreases with the charge state of impinging oxygen ions. The V {sub H} increases from 22 mV to 76.5 mV at typical current of 0.5 mA, R {sub H} from 0.42 x 10{sup 5} cm{sup 3}/C to 2.16 x 10{sup 5} cm{sup 3}/C and n decreases from 9 x 10{sup 13} cm{sup -3} to 2.88 x 10{sup 13} cm{sup -3} for the different charge states. This fact is an evidence that the oxygen ions with an individual fixed charge state passing through very thin 40 A layer of silicon dioxide, induces significant damage at the SiO{sub 2}-Si interface through the mechanism of electronic stopping power. The lifetime of minority charge carriers, {tau} (bulk property), remains constant at around 6 {mu}s for all the charge states of the 60 MeV energy oxygen ion irradiated samples at a constant fluence of, {phi}, 10{sup 13} ions/cm{sup 2}.

  9. Special charges related to household energy use. Documentations 1970-2012; Saeravgifter relatert til husholdningenes energiforbruk

    Energy Technology Data Exchange (ETDEWEB)

    Wessmann, Sandra; Halvorsen, Bente; Larsen, Bodil M.

    2012-11-15

    This paper provides an overview of special charges related to household energy use in Norway from 1970 to 2012. Excise duties are presented by the object they apply (rather than to describe the fee arrangements separately). Moreover, they are categorized into three groups: tax on stationary energy, taxes on mobile purposes relating to the ownership and usage-dependent charges on mobile applications. Chapter 2 collects taxes in the first category. The author describes the special taxes imposed on households' stationary energy, such as heating the home. Chapter 3 discusses the various fees imposed on the owner of the vehicle, and how these fees are independent of the amount of transport used. Chapter 4 describes the history of usage-dependent charges on mobile purposes, which include taxes on fuel. This paper is intended to be an encyclopedia for use in future analyzes of the Special Tax behavioral effects in Norwegian households. It is first and foremost in the project households respond to energy and environmental policy measures, funded by the Research Council of the project is not only to look at the excise taxes separately but also how various energy and environmental policy instruments work together. This is one of the reasons for the division of special taxes that have been made in the note. Household energy use contributes to a significant proportion of greenhouse gas emissions and a reduction in household energy consumption is an important goal of climate policy. A number of policy instruments have been eager cat to move household energy consumption away from fossil fuels to renewable energy and increase energy efficiency in Norwegian homes. To ensure the effectiveness of current and future policies, and minimize adverse behavioral effects, information from analyzes of several means changing household adaptation would be of great importance. Project Support: The work of this paper is funded within the Research Council Renergie program (project {sup H

  10. High electrokinetic energy conversion efficiency in charged nanoporous nitrocellulose/sulfonated polystyrene membranes.

    Science.gov (United States)

    Haldrup, Sofie; Catalano, Jacopo; Hansen, Michael Ryan; Wagner, Manfred; Jensen, Grethe Vestergaard; Pedersen, Jan Skov; Bentien, Anders

    2015-02-11

    The synthesis, characterization, and electrokinetic energy conversion performance have been investigated experimentally in a charged polymeric membrane based on a blend of nitrocellulose and sulfonated polystyrene. The membrane is characterized by a moderate ion exchange capacity and a relatively porous structure with average pore diameter of 11 nm. With electrokinetic energy conversion, pressure can be converted directly into electric energy and vice versa. From the electrokinetic transport properties, a remarkably large intrinsic maximum efficiency of 46% is found. It is anticipated that the results are an experimental verification of theoretical models that predict high electrokinetic energy conversion efficiency in pores with high permselectivity and hydrodynamic slip flow. Furthermore, the result is a promising step for obtaining efficient low-cost electrokinetic generators and pumps for small or microscale applications.

  11. Synchronous inversion and charge extraction (SICE): a hybrid switching interface for efficient vibrational energy harvesting

    Science.gov (United States)

    Lallart, Mickaël; Wu, Wen-Jong; Hsieh, Yuchieh; Yan, Linjuan

    2017-11-01

    This paper aims at proposing an electrical interface taking advantage of nonlinear treatment for both significantly increasing the voltage of a piezoelectric device and extracting the corresponding electrostatic energy in an independent way from the connected electrical load. The principles of the proposed system lies in quickly inverting the piezoelectric voltage on each extremum (synchronized switch on inductor operations) for a given number of extremum occurrences, and then extracting the total electrostatic energy available on the piezoelectric element through the so-called synchronous electric charge extraction (SECE) for energy harvesting purpose. Compared to classical SECE approach, which consists in extracting the energy on each voltage extremum occurrence, the proposed scheme shows a significant improvement in low-coupled systems thanks to a fine control of the trade-off between voltage amplification and number of extraction events.

  12. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, M.

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP + (d)NDP ¿ ADP + (d)NTP. This reaction, suggested to occur...

  13. Determination of charge transport activation energy and injection barrier in organic semiconductor devices

    Science.gov (United States)

    Züfle, S.; Altazin, S.; Hofmann, A.; Jäger, L.; Neukom, M. T.; Brütting, W.; Ruhstaller, B.

    2017-09-01

    Charge carrier transport in organic semiconductor devices is thermally activated with characteristic activation energies in the range of 0.2-0.6 eV, leading to strongly temperature-dependent behaviour. For designing efficient organic semiconductor materials and devices, it is therefore indispensable to understand the origin of these activation energies. We propose that in bilayer organic light-emitting diodes (OLEDs) employing a polar electron transport layer, as well as in metal-insulator-semiconductor (MIS) devices, the hole injection barrier Einj and the hole mobility activation energy Eμ can be decoupled from each other if temperature-dependent capacitance-frequency (C-f-T) and MIS-CELIV (charge extraction by linearly increasing voltage) experiments are combined. While the C-f-T signal contains information of both injection and transport, the CELIV current is expected to be insensitive to the electrode injection properties. We employ numerical drift-diffusion simulations to investigate the accuracy of this analytical parameter extraction approach and to develop criteria for its validity. We show that the implicit assumption of constant charge density and field profiles leads to systematic errors in determining the activation energies. Thus, one should be aware of the intrinsic limitations of the analytical Arrhenius fit, and for more accurate parameter determination a full drift-diffusion modelling is advised. Applying the analytical method to a standard bilayer OLED, we find that the total activation energy of 0.5 eV for the hole current can be split into contributions of ≈0.25 eV each for injection barrier and mobility. Finally, we also discuss the broader applicability of this method for other device stacks and material combinations.

  14. Energy loss and charge transfer effects of low energy protons in thin organic films

    CERN Document Server

    Byrne, C M

    2000-01-01

    observed in TRIM simulations. It is possible that this might be attributed to a quasi-channelling effect in the 12-8 PDA at these low energies. Attempts were made to apply the same techniques to the study of thin films of double-stranded DNA. It proved difficult to produce reliable measurements over the considerable lengths of time the samples had to reside in a high vacuum. Energy loss measurements were nevertheless made for some of the DNA films although these, together with the estimates of film thickness, could not be used for any quantitative measurements. The energy loss and stopping power of protons with incident energies between 4.93 and 15 keV has been determined for self-supporting Langmiur-Blodgett films of polymerised 12-8 diacetylene (12-8 PDA), of 54 and 60 nm thicknesses, in a transmission mode. Energy loss as a function of both incident proton energy and energy loss as a function of angle has been determined for the two thicknesses of 12-8 PDA in this energy range and the experimental data com...

  15. An edge-on charge-transfer design for energy-resolved x-ray detection

    Science.gov (United States)

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  16. Measurement of beam energy spread in a space-charge dominated electron beam

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2004-07-01

    Full Text Available Characterization of beam energy spread in a space-charge dominated beam is very important to understanding the physics of intense beams. It is believed that coupling between the transverse and longitudinal directions via Coulomb collisions will cause an increase of the beam longitudinal energy spread. At the University of Maryland, experiments have been carried out to study the energy evolution in such intense beams with a high-resolution retarding field energy analyzer. The temporal beam energy profile along the beam pulse has been characterized at the distance of 25 cm from the anode of a gridded thermionic electron gun. The mean energy of the pulsed beams including the head and tail is reported here. The measured rms energy spread is in good agreement with the predictions of the intrabeam scattering theory. As an application of the beam energy measurement, the input impedance between the cathode and the grid due to beam loading can be calculated and the impedance number is found to be a constant in the operation region of the gun.

  17. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.

    Science.gov (United States)

    Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-01-01

    One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pseudo Open Drain IO Standards Based Energy Efficient Solar Charge Sensor Design on 20nm FPGA

    DEFF Research Database (Denmark)

    Kalia, K; Pandey, B; Nanda, K

    2015-01-01

    In this paper an approach is made to design Pseudo open drain IO standards Based Energy efficient solar charge sensor design on 20nm and 28nm technology. We have used LVCMOS18, POD10, POD10_DCI and POD12 I/O standard. In this design, we have taken two main parameters for analysis that are frequen......In this paper an approach is made to design Pseudo open drain IO standards Based Energy efficient solar charge sensor design on 20nm and 28nm technology. We have used LVCMOS18, POD10, POD10_DCI and POD12 I/O standard. In this design, we have taken two main parameters for analysis...... solar charge inverter. We also observed maximum total power reduction in LVCMOS18 (Artix-7 FPGA) as compared to other I/O standards at 10 GHz. Also there is maximum total power reduction in POD12 (Ultra Scale Kintex) as compared to other I/O standards at 2 GHz. There is also a significant change...... in device static, I/O power and Clock Power....

  19. Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials

    Science.gov (United States)

    Komsa, Hannu-Pekka; Berseneva, Natalia; Krasheninnikov, Arkady V.; Nieminen, Risto M.

    2014-07-01

    Impurities and defects frequently govern materials properties, with the most prominent example being the doping of bulk semiconductors where a minute amount of foreign atoms can be responsible for the operation of the electronic devices. Several computational schemes based on a supercell approach have been developed to get insights into types and equilibrium concentrations of point defects, which successfully work in bulk materials. Here, we show that many of these schemes cannot directly be applied to two-dimensional (2D) systems, as formation energies of charged point defects are dominated by large spurious electrostatic interactions between defects in inhomogeneous environments. We suggest two approaches that solve this problem and give accurate formation energies of charged defects in 2D systems in the dilute limit. Our methods, which are applicable to all kinds of charged defects in any 2D system, are benchmarked for impurities in technologically important h-BN and MoS2 2D materials, and they are found to perform equally well for substitutional and adatom impurities.

  20. Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials

    Directory of Open Access Journals (Sweden)

    Hannu-Pekka Komsa

    2014-09-01

    Full Text Available Impurities and defects frequently govern materials properties, with the most prominent example being the doping of bulk semiconductors where a minute amount of foreign atoms can be responsible for the operation of the electronic devices. Several computational schemes based on a supercell approach have been developed to get insights into types and equilibrium concentrations of point defects, which successfully work in bulk materials. Here, we show that many of these schemes cannot directly be applied to two-dimensional (2D systems, as formation energies of charged point defects are dominated by large spurious electrostatic interactions between defects in inhomogeneous environments. We suggest two approaches that solve this problem and give accurate formation energies of charged defects in 2D systems in the dilute limit. Our methods, which are applicable to all kinds of charged defects in any 2D system, are benchmarked for impurities in technologically important h-BN and MoS_{2} 2D materials, and they are found to perform equally well for substitutional and adatom impurities.

  1. Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power.

    Science.gov (United States)

    Wang, Xuehang; Mehandzhiyski, Aleksandar Yordanov; Arstad, Bjørnar; Van Aken, Katherine L; Mathis, Tyler S; Gallegos, Alejandro; Tian, Ziqi; Ren, Dingding; Sheridan, Edel; Grimes, Brian Arthur; Jiang, De-En; Wu, Jianzhong; Gogotsi, Yury; Chen, De

    2017-12-27

    Ion-ion interactions in supercapacitor (SC) electrolytes are considered to have significant influence over the charging process and therefore the overall performance of the SC system. Current strategies used to weaken ionic interactions can enhance the power of SCs, but consequently, the energy density will decrease due to the increased distance between adjacent electrolyte ions at the electrode surface. Herein, we report on the simultaneous enhancement of the power and energy densities of a SC using an ionic mixture electrolyte with different types of ionic interactions. Two types of cations with stronger ionic interactions can be packed in a denser arrangement in mesopores to increase the capacitance, whereas only cations with weaker ionic interactions are allowed to enter micropores without sacrificing the power density. This unique selective charging behavior in different confined porous structure was investigated by solid-state nuclear magnetic resonance experiments and further confirmed theoretically by both density functional theory and molecular dynamics simulations. Our results offer a distinct insight into pairing ionic mixture electrolytes with materials with confined porous characteristics and further propose that it is possible to control the charging process resulting in comprehensive enhancements in SC performance.

  2. Combined Solar Charging Stations and Energy Storage Units Allocation for Electric Vehicles by Considering Uncertainties

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Electric vehicles (EVs) are becoming a key feature of smart grids. EVs will be embedded in the smart grids as a mobile load-storage with probabilistic behavior. In order to manage EVs as flexible loads, charging stations (CSs) have essential roles. In this paper, a new method for optimal sitting...... and sizing of solar CSs using energy storage (ES) options is presented. Also, behavior of EVs in the presence of other loads, electricity price and solar power generation uncertainties are considered. The proposed optimization model maximizes the distribution company (DisCo) benefit by appropriate use of CSs...... are considered based on time-of-use (TOU) demand response programs (DRPs). In order to solve the optimization problem considering uncertainty of load growth, electricity price, initial state of charge of batteries and solar power generation, genetic algorithm method using Monte-Carlo simulation is used...

  3. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    Science.gov (United States)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  4. Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip

    CERN Document Server

    Schioppa, E. J.; van Beuzekom, M.; Visser, J.; Koffeman, E.; Heijne, E.; Engel, K. J.; Uher, J.

    2015-01-01

    A 300 μm thick thin p-on-n silicon sensor was connected to an energy sensitive pixel readout ASIC and exposed to a beam of highly energetic charged particles. By exploiting the spectral information and the fine segmentation of the detector, we were able to measure the evolution of the transverse profile of the charge carriers cloud in the sensor as a function of the drift distance from the point of generation. The result does not rely on model assumptions or electric field calculations. The data are also used to validate numerical simulations and to predict the detector spectral response to an X-ray fluorescence spectrum for applications in X-ray imaging.

  5. Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Therien

    2012-06-01

    This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

  6. Provision of Flexible Load Control by Multi-Flywheel-Energy-Storage System in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Andrade, Fabio

    2015-01-01

    Electrical vehicle (EV) chargers are going to occupy a considerable portion of total energy consumption in the future smart grid. Fast charging stations (FCS), as the most demanding representatives of charging infrastructure, will be requested to provide some ancillary services to the power system...

  7. Improved grid operation through power smoothing control strategies utilizing dedicated energy storage at an electric vehicle charging station

    DEFF Research Database (Denmark)

    Martinsen, Thomas; Holjevac, Ninoslav; Bremdal, Bernt A.

    2016-01-01

    This paper addresses the principal service aspects for electric vehicles (EV), as well as issues related to energy storage design, charging station integration into power system and load management issues. It builds on the research conducted in the Flexible Electric Vehicle Charging Infrastructure...

  8. New energy-efficient method of electrical propulsion in air by using charged microdroplets

    Science.gov (United States)

    Lukyanchikov, Gennadii S.; Khaziev, Timur R.

    2010-12-01

    A novel type of thrust system is proposed that operates in air and consists of an emitter of charged droplets and a multigrid electrode system in which the stream of these droplets flows in a constant longitudinal electric field, thereby initiating an air flow. The reactive force caused by the air flow and the efficiency with which the electric current energy is converted into the energy of this flow are estimated. It is shown that if a battery of hydrogen fuel elements is used as a power supply, this method of electrical propulsion makes it possible to reduce energy expenditure more than fourfold as compared to existing propeller vehicles. A feasible scheme is presented for a vehicle using such an engine.

  9. Transmission of electrons through insulating PET foils: Dependence on charge deposition, tilt angle and incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Keerthisinghe, D., E-mail: darshika.keerthisinghe@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Dassanayake, B.S. [Department of Physics, University of Peradeniya, Peradeniya (Sri Lanka); Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Stolterfoht, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin (Germany); Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2016-09-01

    Transmission of electrons through insulating polyethylene terephthalate (PET) nanocapillaries was observed as a function of charge deposition, angular and energy dependence. Two samples with capillary diameters 100 and 200 nm and pore densities 5 × 10{sup 8}/cm{sup 2} and 5 × 10{sup 7}/cm{sup 2}, respectively, were studied for incident electron energies of 300, 500 and 800 eV. Transmission and steady state of the electrons were attained after a time delay during which only a few electron counts were observed. The transmission through the capillaries depended on the tilt angle with both elastic and inelastic electrons going through. The guiding ability of electrons was found to increase with the incident energy in contrast to previous measurements in our laboratory for a similar PET foil.

  10. Influence of the nuclear symmetry energy on the collective flows of charged pions

    Science.gov (United States)

    Gao, Yuan; Yong, Gao-Chan; Zhang, Lei; Zuo, Wei

    2018-01-01

    Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we studied charged pion transverse and elliptic flows in semicentral 197Au+197Au collisions at 600 MeV/nucleon. It is found that π+-π- differential transverse flow and the difference of π+ and π- transverse flows almost show no effects of the symmetry energy. Their corresponding elliptic flows are largely affected by the symmetry energy, especially at high transverse momenta. The isospin-dependent pion elliptic flow at high transverse momenta thus provides a promising way to probe the high-density behavior of the symmetry energy in heavy-ion collisions at the Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt or at the Cooling Storage Ring (CSR) at HIRFL, Lanzhou.

  11. Charge-collection efficiency of single-crystal CVD diamond detector for low-energy charged particles with energies ranging from 100 keV to 2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: sato.yuki@jaea.go.jp [Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency, 2–4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Murakami, Hiroyuki [RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2–1Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan)

    2016-10-21

    The performance of a diamond detector created from a single-crystal diamond grown by chemical vapor deposition was studied for application in detecting charged particles having energies ranging from 100 keV to 2 MeV. Energy peaks of different low-energy ions were clearly observed. However, we observed that the pulse height for individual incident ions decreases with increasing atomic number of the ions. We estimated the charge collection efficiency of the generated charge carriers by the incident charged particles. The charge collection efficiencies are 97.0 ± 0.7% for 2 MeV helium-ions (He{sup +}). On the other hand, compared with that of He{sup +}, silicon-ions (Si{sup +}) and gold-ions (Au{sup 3+}) show low charge collection efficiency: 70.6 ± 2.2% and 29.5 ± 4.2% for 2 MeV-Si{sup +} and 2 MeV-Au{sup 3+}, respectively. We also found that the charge collection efficiency decreases as the generated charge density inside the diamond crystal increases.

  12. A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yan Bao

    2018-01-01

    Full Text Available Fast charging stations enable the high-powered rapid recharging of electric vehicles. However, these stations also face challenges due to power fluctuations, high peak loads, and low load factors, affecting the reliable and economic operation of charging stations and distribution networks. This paper introduces a battery energy storage system (BESS for charging load control, which is a more user-friendly approach and is more robust to perturbations. With the goals of peak-shaving, total electricity cost reduction, and minimization of variation in the state-of-charge (SOC range, a BESS-based bi-level optimization strategy for the charging load regulation of fast charging stations is proposed in this paper. At the first level, a day-ahead optimization strategy generates the optimal planned load curve and the deviation band to be used as a reference for ensuring multiple control objectives through linear programming, and even for avoiding control failure caused by insufficient BESS energy. Based on this day-ahead optimal plan, at a second level, real-time rolling optimization converts the control process to a multistage decision-making problem. The predictive control-based real-time rolling optimization strategy in the proposed model was used to achieve the above control objectives and maintain battery life. Finally, through a horizontal comparison of two control approaches in each case study, and a longitudinal comparison of the control robustness against different degrees of load disturbances in three cases, the results indicated that the proposed control strategy was able to significantly improve the charging load characteristics, even with large disturbances. Meanwhile, the proposed approach ensures the least amount of variation in the range of battery SOC and reduces the total electricity cost, which will be of a considerable benefit to station operators.

  13. An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range.

    Science.gov (United States)

    Grimes, David Robert; Warren, Daniel R; Partridge, Mike

    2017-08-29

    Charged particles such as protons and carbon ions are an increasingly important tool in radiotherapy. There are however unresolved physics issues impeding optimal implementation, including estimation of dose deposition in non-homogeneous tissue, an essential aspect of treatment optimization. Monte Carlo (MC) methods can be employed to estimate radiation profile, and whilst powerful, these are computationally expensive, limiting practicality. In this work, we start from fundamental physics in the form of the Bethe equation to yield a novel approximate analytical solution for particle range, energy and linear energy transfer (LET). The solution is given in terms of the exponential integral function with relativistic co-ordinate transform, allowing application at radiotherapeutic energy levels (50-350 MeV protons, 100-600 Mev/a.m.u carbon ions). Model results agreed closely for protons and carbon-ions (mean error within ≈1%) of literature values. Agreement was high along particle track, with some discrepancy manifesting at track-end. The model presented has applications within a charged particle radiotherapy optimization framework as a rapid method for dose and LET estimation, capable of accounting for heterogeneity in electron density and ionization potential.

  14. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  15. Surface charges and J H Poynting’s disquisitions on energy transfer in electrical circuits

    Science.gov (United States)

    Matar, M.; Welti, R.

    2017-11-01

    In this paper we review applications given by J H Poynting (1884) on the transfer of electromagnetic energy in DC circuits. These examples were strongly criticized by O Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature of the electric field in the vicinity of a wire through which a current flows. The historical review of this conflict and its resolution based on the consideration of electrical charges on the surface of the wires can be useful for student courses on electromagnetism or circuit theory.

  16. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  17. Energy and charge distribution of energetic helium ions in the outer radiation belt of the earth

    Science.gov (United States)

    Klecker, B.; Hovestadt, D.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.

    1983-01-01

    The first direct measurement of the charge states of helium at energies greater than 0.5 MeV/nucleon in the outer radiation belt, obtained aboard the ISEE-1 spacecraft in 1977, is reported. High abundances of singly ionized helium, with He(+)/He(2+) = 0.4 + or - 0.1 at L = 3.3 was found during one perigee pass, with a sudden decrease of that ratio by a factor of about 10 between L = 3.3 and 3.7. It is shown that nonstationary and/or nonadiabatic processes may play an important role for the distribution of helium ions in the outer radiation belt.

  18. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers....... Distributed DC-bus signaling (DBS) and method resistive virtual impedance are employed in the power coordination of grid and flywheel converters, and a centralized secondary controller generates DC voltage correction term to adjust the local voltage set point. The control system is able to realize the power...

  19. High resolution probe of coherence in low-energy charge exchange collisions with oriented targets

    CERN Document Server

    Leredde, A; Cassimi, A; Hennecart, D; Pons, B

    2013-01-01

    The trapping lasers of a magneto-optical trap (MOT) are used to bring Rb atoms into well defined oriented states. Coupled to recoil-ion momentum spectroscopy (RIMS), this yields a unique MOTRIMS setup which is able to probe scattering dynamics, including their coherence features, with unprecedented resolution. This technique is applied to the low-energy charge exchange processes Na$^+$+Rb($5p_{\\pm 1}$) $\\rightarrow$ Na($3p,4s$)+Rb$^+$. The measurements reveal detailed features of the collisional interaction which are employed to improve the theoretical description. All of this enables to gauge the reliability of intuitive pictures predicting the most likely capture transitions.

  20. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for HnA-BHm molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H3C-F, and Li-CH3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH3, -NH2, -OH, and -F have on the resonance energy (bonding atom.

  1. Effect of spatio-energy correlation in PCD due to charge sharing, scatter, and secondary photons

    Science.gov (United States)

    Rajbhandary, Paurakh L.; Hsieh, Scott S.; Pelc, Norbert J.

    2017-03-01

    Charge sharing, scatter and fluorescence events in a photon counting detector (PCD) can result in multiple counting of a single incident photon in neighboring pixels. This causes energy distortion and correlation of data across energy bins in neighboring pixels (spatio-energy correlation). If a "macro-pixel" is formed by combining multiple small pixels, it will exhibit correlations across its energy bins. Charge sharing and fluorescence escape are dependent on pixel size and detector material. Accurately modeling these effects can be crucial for detector design and for model based imaging applications. This study derives a correlation model for the multi-counting events and investigates the effect in virtual non-contrast and effective monoenergetic imaging. Three versions of 1 mm2 square CdTe macro-pixel were compared: a 4×4 grid, 2×2 grid, or 1×1 composed of pixels with side length 250 μm, 500 μm, or 1 mm, respectively. The same flux was applied to each pixel, and pulse pile-up was ignored. The mean and covariance matrix of measured photon counts is derived analytically using pre-computed spatio-energy response functions (SERF) estimated from Monte Carlo simulations. Based on the Cramer-Rao Lower Bound, a macro-pixel with 250×250 μm2 sub-pixels shows 2.2 times worse variance than a single 1 mm2 pixel for spectral imaging, while its penalty for effective monoenergetic imaging is <10% compared to a single 1 mm2 pixel.

  2. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  3. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    Science.gov (United States)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  4. Initial Energy Logistics Cost Analysis for Stationary, Quasi-Dynamic, and Dynamic Wireless Charging Public Transportation Systems

    Directory of Open Access Journals (Sweden)

    Young Jae Jang

    2016-06-01

    Full Text Available This paper presents an initial investment cost analysis of public transportation systems operating with wireless charging electric vehicles (EVs. There are three different types of wireless charging systems, namely, stationary wireless charging (SWC, in which charging happens only when the vehicle is parked or idle, quasi-dynamic wireless charging (QWC, in which power is transferred when a vehicle is moving slowly or in stop-and-go mode, and dynamic wireless charging (DWC, in which power can be supplied even when the vehicle is in motion. This analysis compares the initial investment costs for these three types of charging systems for a wireless charging-based public transportation system. In particular, this analysis is focused on the energy logistics cost in transportation, which is defined as the cost of transferring and storing the energy needed to operate the transportation system. Performing this initial investment analysis is complicated, because it involves considerable tradeoffs between the costs of batteries in the EV fleet and different kinds of battery-charging infrastructure. Mathematical optimization models for each type of EV and infrastructure system are used to analyze the initial costs. The optimization methods evaluate the minimum initial investment needed to deploy the public transportation system for each type of EV charging solution. To deal with the variable cost estimates for batteries and infrastructure equipment in the current market, a cost-sensitivity analysis is performed. The goal of this analysis is to identify the market cost conditions that are most favorable for each type of wireless charging solution. Furthermore, the cost analysis quantitatively verifies the qualitative comparison of the three different wireless charging types conducted in the previous research.

  5. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    Science.gov (United States)

    Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane

    2018-01-01

    Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe2 )] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene /MoSe2 is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps) room-temperature MoSe2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe2 Raman modes, which reveals net photoinduced electron transfer from MoSe2 to graphene and hole accumulation in MoSe2 . Remarkably, the steady-state Fermi energy of graphene saturates at 290 ±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene /MoSe2 . This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the

  6. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    Directory of Open Access Journals (Sweden)

    Guillaume Froehlicher

    2018-01-01

    Full Text Available Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe_{2}] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene/MoSe_{2} is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps room-temperature MoSe_{2} exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe_{2} Raman modes, which reveals net photoinduced electron transfer from MoSe_{2} to graphene and hole accumulation in MoSe_{2}. Remarkably, the steady-state Fermi energy of graphene saturates at 290±15  meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene/MoSe_{2}. This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron

  7. Polarization charge densities provide a predictive quantification of hydrogen bond energies.

    Science.gov (United States)

    Klamt, Andreas; Reinisch, Jens; Eckert, Frank; Hellweg, Arnim; Diedenhofen, Michael

    2012-01-14

    A systematic density functional theory based study of hydrogen bond energies of 2465 single hydrogen bonds has been performed. In order to be closer to liquid phase conditions, different from the usual reference state of individual donor and acceptor molecules in vacuum, the reference state of donors and acceptors embedded in a perfect conductor as simulated by the COSMO solvation model has been used for the calculation of the hydrogen bond energies. The relationship between vacuum and conductor reference hydrogen bond energies is investigated and interpreted in the light of different physical contributions, such as electrostatic energy and dispersion. A very good correlation of the DFT/COSMO hydrogen bond energies with conductor polarization charge densities of separated donor and acceptor atoms was found. This provides a method to predict hydrogen bond strength in solution with a root mean square error of 0.36 kcal mol(-1) relative to the quantum chemical dimer calculations. The observed correlation is broadly applicable and allows for a predictive quantification of hydrogen bonding, which can be of great value in many areas of computational, medicinal and physical chemistry.

  8. Characterization and Modeling of Received Signal Strength and Charging Time for Wireless Energy Transfer

    Directory of Open Access Journals (Sweden)

    Uthman Baroudi

    2015-01-01

    Full Text Available Wireless sensor networks can provide effective means for monitoring and controlling a wide range of applications. Recently, tremendous effort was directed towards devising sensors powered from ambient sources such as heat, wind, and vibration. Wireless energy transfer is another source that has attractive features that make it a promising candidate for supplying power to wireless sensor nodes. This paper is concerned with characterizing and modeling the charging time and received signal strength indicator for wireless energy transfer system. These parameters play a vital role in deciding the geometry of sensor network and the routing protocols to be deployed. The development of communication protocols for wireless-powered wireless sensor networks is also improved with the knowledge of such models. These two quantities were computed from data acquired at various coordinates of the harvester relative to a fixed position of RF energy source. Data was acquired for indoor and outdoor scenarios using the commercially available PowerCast energy harvester and evaluation board. Mathematical models for both indoor and outdoor environments were developed and analyzed. A few guidelines on how to use these models were suggested. Finally, the possibility of harvesting the energy from the ambient RF power to energize wireless sensor nodes was also investigated.

  9. Self-regulation of charged defect compensation and formation energy pinning in semiconductors.

    Science.gov (United States)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.

  10. Energy & mass-charge distribution peculiarities of ion emitted from penning source

    Science.gov (United States)

    Mamedov, N. V.; Kolodko, D. V.; Sorokin, I. A.; Kanshin, I. A.; Sinelnikov, D. N.

    2017-05-01

    The optimization of hydrogen Penning sources used, in particular, in plasma chemical processing of materials and DLC deposition, is still very important. Investigations of mass-charge composition of these ion source emitted beams are particular relevant for miniature linear accelerators (neutron flux generators) nowadays. The Penning ion source energy and mass-charge ion distributions are presented. The relation between the discharge current abrupt jumps with increasing plasma density in the discharge center and increasing potential whipping (up to 50% of the anode voltage) is shown. Also the energy spectra in the discharge different modes as the pressure and anode potential functions are presented. It has been revealed that the atomic hydrogen ion concentration is about 5-10%, and it weakly depends on the pressure and the discharge current (in the investigated range from 1 to 10 mTorr and from 50 to 1000 μA) and increases with the anode voltage (up 1 to 3,5 kV).

  11. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Ikeda, T. [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Dassanayake, B.S. [Department of Physics, Faculty of Science, University of Peradeniya (Sri Lanka); Keerthisinghe, D.; Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2016-09-01

    An experimental study of electron transmission and guiding through a tapered glass capillary has been performed. Electrons were transmitted for tilt angles up to ∼6.5° and ∼9.5° (laboratory angles) for incident energies of 500 and 1000 eV, respectively. It is found that elastic and inelastic contributions give rise to distinguishable peaks in the transmitted profile. For 500 eV elastic transmission dominates the profile, while for 1000 eV both elastic and inelastic contributions are present. The transmission for both energies was studied as a function of the charge (time) deposition and found to be strongly dependent. Results suggest fundamental differences between 500 and 1000 eV incident electrons. For 500 eV the transmission slowly increases suggesting charge up of the capillary wall, reaching relative stability with infrequent breakdowns for all angles investigated. For 1000 eV for tilt angles near zero degrees the time dependent profile shows oscillations in the transmission, which never reached a stable condition, while for the larger angle investigated the transmission reached near equilibrium. Inelastic processes dominated the transmission for 1000 eV even at very small tilt angles, but was generally elastic (due to Coulomb deflection) for 500 eV even for the largest tilt angle measured.

  12. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Peter A.; Back, B.B.; Baker, M.D.; Barton, D.S.; Betts, R.R.; Ballintijn, M.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M.P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G.A.; Henderson, C.; Hofman, D.J.; Hollis, R.S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C.M.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.C.; Pernegger, H.; Reed, C.; Remsberg, L.P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S.G.; Steinberg, P.; Stephans, G.S.F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G.J. van; Verdier, R.; Wadsworth, B.; Wolfs, F.L.H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.H.; Wyslouch, B

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}S{sub NN} = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/p-barp and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  13. Energy loss of a high-charge bunched electron beam in plasma: Analysis

    Directory of Open Access Journals (Sweden)

    N. Barov

    2004-06-01

    Full Text Available There has been much recent experimental and theoretical interest in the blowout regime of plasma wakefield acceleration, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. A quantitative understanding of the blowout regime including all these effects has, to this point, been available only through detailed simulations. This paper represents an initial step towards an analytical theory of this regime, in which the mechanism of energy loss in the drive beam is investigated. We find, first from examination of electromagnetic particle-in-cell simulations, and then through analytical investigations, that under short pulse, high-charge conditions, the plasma electrons receive a strong initial push along the direction of beam motion. This nonlinear effect is unanticipated by linear theory, where the return current motion is in the opposite direction. In the limit of short pulses (the δ-function limit, the beam energy loss is shown to be linear in charge even with a nonlinear plasma response dominated by relativistic, electromagnetic effects, despite the fact that the initial plasma electron response changes qualitatively from the familiar electrostatic, nonrelativistic limit.

  14. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    OpenAIRE

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explai...

  15. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines

    Czech Academy of Sciences Publication Activity Database

    Šebo, Peter; Osička, Radim; Mašín, Jiří

    2014-01-01

    Roč. 13, č. 10 (2014), s. 1215-1227 ISSN 1476-0584 R&D Projects: GA ČR GA13-14547S; GA ČR(CZ) GAP302/11/0580; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * antigen delivery * Bordetella pertussis Subject RIV: EE - Microbiology, Virology Impact factor: 4.210, year: 2014

  16. Seasonal trends in adenylate nucleotide content in eggs of recruit and repeat spawning Atlantic cod (Gadus morhua L.) and implications for egg quality and buoyancy

    Science.gov (United States)

    Jung, Kyung-Mi; Svardal, Asbjørn M.; Eide, Torunn; Thorsen, Anders; Kjesbu, Olav Sigurd

    2012-10-01

    Seasonal and ontogenetic variation in egg buoyancy (egg specific gravity; ρ) (n = 63) and nucleotide content (n = 46) were examined for wild-caught Atlantic (Barents Sea) cod (Gadus morhua) held in captivity over two successive spawning seasons, i.e. each female (n = 5) was studied both as recruit and repeat spawner. All eggs were naturally spawned and fertilized, and incubated under optimal condition in flow-through aquaria. Egg diameter and egg dry weight declined steadily during the spawning period, while stage-specific ρ was approximately constant between egg batches (typically around 15 in total). Within each egg batch, i.e. during egg incubation, ρ significantly decreased from the time of gastrulation to before hatching, accompanied by increased contents of ATP and ADP. Altogether, we found that adenylate energy charge (EC) (EC = ([ATP] + 0.5 [ADP]) / ([ATP] + [ADP] + [AMP]) positively affected egg buoyancy (P = 0.013) in concert with egg developmental stage (P cod eggs in the field would show comparably similar trends in ρ and levels of nucleotides.

  17. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation.

    Science.gov (United States)

    Reif, Maria M; Oostenbrink, Chris

    2014-01-30

    The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved. © The Authors Journal of Computational Chemistry

  18. Low-energy charged particle environment at Jupiter - A first look

    Science.gov (United States)

    Krimigis, S. M.; Bostrom, C. O.; Keath, E. P.; Zwickl, R. D.; Carbary, J. F.; Armstrong, T. P.; Axford, W. I.; Fan, C. Y.; Gloeckler, G.; Lanzerotti, L. J.

    1979-01-01

    Preliminary results of measurements obtained by the low energy charged particle instrument on board the Voyager 1 spacecraft during its traversal of the Jovian magnetosphere are reported. The instrument consists of the low energy particle telescope and the low energy magnetospheric particle analyzer, designed to perform measurements in the inner and outer magnetosphere respectively. Ions and electrons comprising the Jovian magnetosphere were first detected at a distance of about 600 Jupiter radii from the planet, with the first bow shock crossing at 85.6 Jupiter radii. Upon crossing the magnetopause at about 67 Jupiter radii, the flows of electrons and ions were observed to change direction from away from the planet to the corotational direction. The hot plasma near the magnetosphere boundary is comprised predominantly of protons, sulfur and oxygen. Selective particle absorption near the Io flux tube indicates some form of particle deflection by Io. Fluxes in the outbound region were found to be enhanced from 90 to 160 deg longitude, and 5- and 10-hour low energy particle flux periodicities were observed.

  19. Comparison of domestic olivine and European magnesite for electrically charged thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Laster, W.R.; Gay, B.M.; Palmour, H.; Schoenhals, R.J.

    1982-01-01

    Electrically charged thermal energy storage (TES) heaters employing high heat capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these devices, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored energy from the core by forced air circulation. The recent increase in use of off-peak TES units in the U.S. has led to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but underutilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper the suitability of North Carolina olivine for heat storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two commercially available room-size TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons are made and conclusions are drawn.

  20. Charge Transfer in Ultrafine LDH Nanosheets/Graphene Interface with Superior Capacitive Energy Storage Performance.

    Science.gov (United States)

    Jiang, Yingchang; Song, Yun; Li, Yanmei; Tian, Wenchao; Pan, Zhichang; Yang, Peiyu; Li, Yuesheng; Gu, Qinfen; Hu, Linfeng

    2017-11-01

    Two-dimensional LDH nanosheets recently have generated considerable interest in various promising applications because of their intriguing properties. Herein, we report a facile in situ nucleation strategy toward in situ decorating monodispersed Ni-Fe LDH ultrafine nanosheets (UNs) on graphene oxide template based on the precise control and manipulation of LDH UNs anchored, nucleated, grown, and crystallized. Anion-exchange behavior was observed in this Ni-Fe LDH UNs@rGO composite. The Ni-Fe LDH UNs@rGO electrodes displayed a significantly enhanced specific capacitance (2715F g(-1) at 3 A g(-1)) and energy density (82.3 Wh kg(-1) at 661 W kg(-1)), which exceeds the energy densities of most previously reported nickel iron oxide/hydroxides. Moreover, the asymmetric supercapacitor, with the Ni-Fe LDH UNs @rGO composite as the positive electrode material and reduced graphene oxide (rGO) as the negative electrode material, exhibited a high energy density (120 Wh kg (-1)) at an average power density of 1.3 kW kg (-1). A charge transfer from LDH layer to graphene layer, which means a built in electric field directed from LDH to graphene can be established by DFT calculations, which can significantly accelerate reaction kinetics and effectively optimize the capacitive energy storage performance.

  1. Direct electron-pair production by high energy heavy charged particles

    Science.gov (United States)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  2. What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals.

    Science.gov (United States)

    Burykin, Anton; Warshel, Arieh

    2003-12-01

    The nature of the control of water/proton selectivity in biological channels is a problem of a fundamental importance. Most studies of this issue have proposed that an interference with the orientational requirements of the so-called proton wire is the source of selectivity. The elucidation of the structures of aquaporins, which have evolved to prevent proton transfer (PT), provided a clear benchmark for exploring the selectivity problem. Previous simulations of this system have not examined, however, the actual issue of PT, but only considered the much simpler task of the transfer of water molecules. Here we take aquaporin as a benchmark and quantify the origin of the water/proton selectivity in this and related systems. This is done by evaluating in a consistent way the free energy profile for transferring a proton along the channel and relating this profile to the relevant PT rate constants. It is found that the water/proton selectivity is controlled by the change in solvation free energy upon moving the charged proton from water to the channel. The reason for the focus on the elegant concept of the proton wire and the related Grotthuss-type mechanism is also considered. It is concluded that these mechanisms are clearly important in cases with flat free energy surfaces (e.g., in bulk water, in gas phase water chains, and in infinitely long channels). However, in cases of biological channels, the actual PT mechanism is much less important than the energetics of transferring the proton charge from water to different regions in the channels.

  3. Research on the application of PPP model in the Chinese construction and operation of new energy vehicle charging facilities

    Science.gov (United States)

    Zhu, Liping

    2017-05-01

    New energy car charging equipment is the development and popularization of new energy vehicles. It has the nature of quasi-public goods. Due to the large number of construction projects, wide distribution, big investment, it needs huge sums of money. PPP mode is a new financing model and has the inherent driving force to lead the idea the technology and the system innovation. The government and the social subject cooperate on the basis of the spirit of contract thus achieve benefit sharing. This mode effectively improve the operation of new energy vehicle charging facilities operating efficiency

  4. State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC MicroGrid Applications

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2014-01-01

    This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU), an SoC-based adaptive droop control method is proposed. In this decentralized control method, the droop...

  5. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges

    Science.gov (United States)

    Morawietz, Tobias; Sharma, Vikas; Behler, Jörg

    2012-02-01

    Understanding the unique properties of water still represents a significant challenge for theory and experiment. Computer simulations by molecular dynamics require a reliable description of the atomic interactions, and in recent decades countless water potentials have been reported in the literature. Still, most of these potentials contain significant approximations, for instance a frozen internal structure of the individual water monomers. Artificial neural networks (NNs) offer a promising way for the construction of very accurate potential-energy surfaces taking all degrees of freedom explicitly into account. These potentials are based on electronic structure calculations for representative configurations, which are then interpolated to a continuous energy surface that can be evaluated many orders of magnitude faster. We present a full-dimensional NN potential for the water dimer as a first step towards the construction of a NN potential for liquid water. This many-body potential is based on environment-dependent atomic energy contributions, and long-range electrostatic interactions are incorporated employing environment-dependent atomic charges. We show that the potential and derived properties like vibrational frequencies are in excellent agreement with the underlying reference density-functional theory calculations.

  6. High performance charge-state resolving ion energy analyzer optimized for intense laser studies on low-density cluster targets

    Science.gov (United States)

    Komar, D.; Meiwes-Broer, K.-H.; Tiggesbäumker, J.

    2016-10-01

    We report on a versatile ion analyzer which is capable to resolve ion charge states and energies with a resolution of E/ΔE = 100 at 75 keV/nucleon. Charge states are identified by their characteristic deflection in a magnetic field, whereas the ion energies are independently determined by a time-of-flight measurement. To monitor the signals a delay-line detector is used which records ion impact positions and times in each laser shot. Compared to conventional Thomson parabola spectrometers our instrument provides a low background measurement, hence a superior dynamic range. Further features are an improved energy resolution and a significantly increased transmission. We demonstrate the performance by showing charge-state resolved ion energy spectra from the Coulomb explosion of a low-density target, i.e., silver clusters exposed to intense femtosecond laser pulses.

  7. Exploring Energy Consumption of Juice Filming Charging Attack on Smartphones: A Pilot Study

    DEFF Research Database (Denmark)

    Jiang, Lijun; Meng, Weizhi; Wang, Michael Yu

    2017-01-01

    With the increasing demand of smartphone charging, more and more public charging stations are under construction (e.g., airports, subways, shops). This scenario may expose a good chance for cybercriminals to launch charging attacks and steal user’s private information. Juice filming charging (JFC...

  8. Electric Vehicles Integration in the Electric Power System with Intermittent Energy Sources - The Charge/Discharge infrastructure

    DEFF Research Database (Denmark)

    Marra, Francesco

    components such as a lithiumion battery pack, a battery management system and charging/discharging units. The second part of the research exploits the use of EV load coordination to facilitate the integration of wind power in the Danish power system. A proof of concept of regulating power reserves......The replacement of conventional fuelled vehicles with electric vehicles (EVs) is going to increase in the coming years, following the trend seen for renewable energy sources (RES), as photovoltaic (PV) and wind power. In this scenario, the electric power systems in Europe are going to accommodate...... increased levels of non-dispatchable and fluctuating energy sources, as well as additional power demand due to EV charging. If the charging of EVs can be intelligently managed, several advantages can be offered to the power system. How useful coordinated EV charging can be, in combination with RES...

  9. Energy of charged states in the acetanilide crystal: trapping of charge-transfer states at vacancies as a possible mechanism for optical damage.

    Science.gov (United States)

    Tsiaousis, D; Munn, R W

    2004-04-15

    Calculations for the acetanilide crystal yield the effective polarizability (16.6 A(3)), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic, with E(scr) approximately E(C)/2.7. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G(**) level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, deltaW(D) reaches -0.9 eV and modifies the sequence of CT energies markedly from that of E(scr), giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and W(D) near a vacancy are calculated; W(D) changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but deltaW(D) and E(C) do not change. A vacancy yields a positive change DeltaP that scatters a charge or CT pair, but the change DeltaW(D) can be negative and large enough to outweigh DeltaP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can

  10. Parton energy loss in heavy-ion collisions via direct-photon and charged-particle Azimuthal Correlations

    NARCIS (Netherlands)

    Abelev, B.I.; Benedosso, F.; Braidot, E|info:eu-repo/dai/nl/304840874; Mischke, A.|info:eu-repo/dai/nl/325781435; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Russcher, M.J.|info:eu-repo/dai/nl/304847844

    2010-01-01

    Charged-particle spectra associated with direct photon (γdir ) and π0 are measured in p+p and Au+Au collisions at center-of-mass energy √sNN=200 GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between γdir and π0. Assuming no associated charged particles

  11. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    Science.gov (United States)

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rapidity dependence of charged pion production at relativistic energies using Tsallis statistics

    Energy Technology Data Exchange (ETDEWEB)

    Ristea, Oana; Jipa, Alexandru [University of Bucharest, Faculty of Physics, Bucharest - Magurele (Romania); Ristea, Catalin [University of Bucharest, Faculty of Physics, Bucharest - Magurele (Romania); Institute of Space Science, Bucharest - Magurele (Romania)

    2017-05-15

    Transverse momentum distributions of charged pions produced in Au+Au collisions at 62.4 GeV, 130 GeV, 200 GeV, Cu+Cu and d+Au collisions at 200 GeV, p+p collisions at 62.4 and 200 GeV and Pb+Pb collisions at 17.3 GeV are studied using the Tsallis distribution as a parametrization. The non-extensivity parameter and Tsallis volume increase with energy, while the Tsallis temperature shows a decrease at higher energies. Using BRAHMS p{sub T} spectra obtained in Au+Au collisions at 62.4 GeV and 200 GeV, Tsallis fit parameters are obtained on a very wide rapidity range. Results are compared with p+p and Cu+Cu data and changes of Tsallis parameters with rapidity and energy are investigated. We found that non-extensivity parameter q shows a decrease from midrapidity to forward rapidities for all the studied systems. Tsallis volume, V, increases with the system size from p+p, Cu+Cu to Au+Au, both in central rapidity region and at forward rapidities. The values of temperatures increase with rapidity, but the T/cosh(y) ratio is constant as a function of rapidity. (orig.)

  13. Improved near surface heavy impurity detection by a novel charged particle energy filter technique

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, K.; Patnaik, B.K.; Parikh, N.R.; Tateno, H. [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Physics and Astronomy; Hunn, J.D. [Oak Ridge National Lab., TN (United States)

    1994-12-31

    As the typical feature size of silicon integrated circuits, such as in VLSI technology, has become smaller, the surface cleanliness of silicon wafers has become more important. Hence, detection of trace impurities introduced during the processing steps is essential. A novel technique, consisting of a ``Charged Particle Energy Filter (CPEF)`` used in the path of the scattered helium ions in the conventional Rutherford Backscattering geometry, is proposed and its merits and limitations are discussed. In this technique, an electric field is applied across a pair of plates placed before the detector so that backscattered particles of only a selected energy range go through slits to strike the detector. This can be used to filter out particles from the lighter substrate atoms and thus reduce pulse pileup in the region of the impurity signal. The feasibility of this scheme was studied with silicon wafers implanted with 1{times}10{sup 14} and 1{times}10{sup 13} {sup 54}Fe/cm{sup 2} at an energy of 35 keV, and a 0.5 MeV He{sup +} analysis beam. It was found that the backscattered ion signals from the Si atoms can be reduced by more than three orders of magnitude. This suggests the detection limit for contaminants can be improved by at least two orders of magnitude compared to the conventional Rutherford Backscattering technique. This technique can be incorporated in 200--300 kV ion implanters for monitoring of surface contaminants in samples prior to implantation.

  14. Molecular (Feshbach) treatment of charge exchange Li/sup 3 +/+He collisions. I. Energies and couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Riera, A.; Yanez, M.

    1986-05-15

    We point out a fundamental difference between the molecular treatment of charge exchange X/sup n/++H(1s) and X/sup n/++He(1s/sup 2/) collisions, which is that the latter process involves molecular states that are formally autoionizing. Then standard ab initio methods do not, in general, yield the relevant wave functions that are needed in the collision treatment, irrespective of whether quasimolecular autoionization be significant or not during the collision. We implement a particularly simple and useful form of the Feshbach formalism to calculate the energies of those two electron systems, and a method to evaluate the corresponding dynamical couplings is presented for the first time. Our implementation of this formalism together with the new computational techniques involved are presented in detail.

  15. Splitting of a high-energy positively-charged particle beam with a bent crystal

    Science.gov (United States)

    Bandiera, L.; Kirillin, I. V.; Bagli, E.; Berra, A.; De Salvador, D.; Guidi, V.; Lietti, D.; Mazzolari, A.; Prest, M.; Shul'ga, N. F.; Sytov, A.; Vallazza, E.

    2017-07-01

    The possibility of high-energy positively-charged particle beam splitting by means of a short bent axially oriented silicon crystal was recently reported in an experiment carried out at CERN SPS H8 extracted line with a 400 GeV/c proton beam. Here, we investigate more deeply such a possibility focusing our attention on the efficiency of beam splitting and its modulation for different crystal-to-beam orientations. New experimental results confirm the possibility of modulating the 400 GeV/c proton beam intensity in different planar channels by adjusting the orientation of the crystal. Furthermore, an analysis of the beam splitting efficiency vs. the curvature of the crystal was carried out through simulation, highlighting that there exists a bending radius for which the efficiency is maximal.

  16. Effect of injection energy on residual dose around the charge exchange foil

    Directory of Open Access Journals (Sweden)

    Kazami Yamamoto

    2012-12-01

    Full Text Available The rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC and the accumulator ring (AR of Spallation Neutron Source (SNS can be used as high-power pulsed neutron sources. In both cases, the injection region becomes one of the highest activation areas in the ring. However, residual dose distributions have revealed that the highest activation points in the J-PARC RCS and the SNS AR are different in detail. The dose of the charge exchange chamber in the SNS is more than 100 times larger than that of the RCS though the ratio of beam power is less than 10. We investigated the reason of this difference by Geant4 and MARS, and the calculation results indicated that the difference was due to the dependence of the neutron and pion production rate on the injection energy.

  17. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac.

    Science.gov (United States)

    Raparia, D; Alessi, J; Atoian, G; Zelenski, A

    2016-02-01

    The H(-) magnetron source provides about 100 mA H(-) beam to be match into the radio-frequency quadrupole accelerator. As H(-) beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H(-) beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H(-) beam from optically pumped polarized ion source.

  18. Electrostatic Vibration Energy Harvester Pre-charged Wirelessly at 2.45 GHz

    Science.gov (United States)

    Saddi, Z.; Takhedmit, H.; Karami, A.; Basset, P.; Cirio, L.

    2016-11-01

    This paper reports the design, fabrication and experiments of an electrostatic vibration harvester (e-VEH), pre-charged wirelessly for the first time by using an electromagnetic waves harvester at 2.4 GHz. The rectenna uses the Cockcroft-Walton voltage doubler rectifier. It is designed and optimized to operate at low power densities and provides high voltage levels: 0.5 V at 0.5 μW/cm2 and 0.8 V at 1 μW/cm2 The e-VEH uses the Bennet doubler as conditioning circuit. Experiments show 23 V voltage across the transducer terminal when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum power of 0.4 μW are available for the load.

  19. Pre-equilibrium effects in charge-asymmetric low-energy reactions

    Directory of Open Access Journals (Sweden)

    H. Zheng

    2017-06-01

    Full Text Available We study the pre-equilibrium dipole response in the charge-asymmetric reaction Sn132+Ni58 at Elab=10 MeV/A, within a semi-classical transport model employing effective interactions for the nuclear mean-field. In particular, we adopt the recently introduced SAMi-J Skyrme interactions, whose parameters are specifically tuned to improve the description of spin–isospin properties of nuclei. Within the same framework, we also discuss pre-equilibrium nucleon emission. Our results show that both mechanisms, i.e., pre-equilibrium dipole oscillations and nucleon emission, are sensitive to the symmetry energy below the saturation density ρ0 (in the range 0.6ρ0−ρ0, to the momentum dependence of the mean-field potential and to the nucleon–nucleon cross section. Finally, a correlation analysis is applied to examine the impact of the model parameters on observables of experimental interest.

  20. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  1. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Shafiee, Qobad; Wu, Dan

    2014-01-01

    of power introduced by HEV charger, avoiding big initial stress in grid converter and also is able to limit the maximum extracted power. In addition, feed-forward compensation has been implemented to reduce the voltage dip within the station. Real time simulation results, that prove the validity......This paper deals with the design of a fast DC charging station (FCS) for hybrid electric vehicles (HEVs) that is connected at a remote location. Power rating of this new technology can go up to a hundred kW and it represents a main challenge for its broad acceptance in distribution systems....... In that sense, growing number of these stations, if operated in a nonflexible regime, will start to cause problems in future distribution systems such as overloads of local network’s corridors and reduction of its total equivalent spinning reserves. A power balancing strategy based on a local energy storage...

  2. Electric field and energy of a point electric charge between confocal hyperbolaidal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Koo, E. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    2001-06-01

    The electric potential and intensity field, as well as the energy of a point electric charge between confocal hyperboloidal electrodes is evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to model the electric field between the tip and the sample in a scanning tunnelling microscope, and it can also be applied to a conductor-insulator-conductor junction. [Spanish] Los campos de potencial y de intensidad electrica, asi como la energia de una carga electrica puntual entre electrodos hiperboloidales confocales se evaluan como superposiciones de armonicos esferoidales prolatos usando la tecnica de la funcion de Green. Este estudio ha sido motivado por la necesidad de modelar el campo electrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se puede aplicar tambien a una union de conductor-aislante-conductor.

  3. Pseudorapidity distributions of charged particles in p-p¯ or p-p collisions at high energies and predictions at ultrahigh energies

    Science.gov (United States)

    Sun, Jian-Xin; Liu, Fu-Hu; Wang, Er-Qin; Sun, Yan; Sun, Zhu

    2011-01-01

    Pseudorapidity distributions of charged particles produced in p-p¯ or p-p collisions at different energies were reported by the UA5, UA1, P238, CDF, and ALICE collaborations. A multisource ideal gas model is used to fit the experimental data in this paper. According to the parameter values obtained from fitting the data, we find different linear relationships between different parameters and logarithmic center-of-mass energy. A prediction for the pseudorapidity distributions of charged particles produced in p-p¯ or p-p collisions at the higher Large Hadron Collider energies is given.

  4. The Roles of Structural Order and Intermolecular Interactions in Determining Ionization Energies and Charge-Transfer State Energies in Organic Semiconductors

    KAUST Repository

    Graham, Kenneth

    2016-08-17

    The energy landscape in organic semiconducting materials greatly influences charge and exciton behavior, which are both critical to the operation of organic electronic devices. These energy landscapes can change dramatically depending on the phases of material present, including pure phases of one molecule or polymer and mixed phases exhibiting different degrees of order and composition. In this work, ultraviolet photoelectron spectroscopy measurements of ionization energies (IEs) and external quantum efficiency measurements of charge-transfer (CT) state energies (ECT) are applied to molecular photovoltaic material systems to characterize energy landscapes. The results show that IEs and ECT values are highly dependent on structural order and phase composition. In the sexithiophene:C60 system both the IEs of sexithiophene and C60 shift by over 0.4 eV while ECT shifts by 0.5 eV depending on molecular composition. By contrast, in the rubrene:C60 system the IE of rubrene and C60 vary by ≤0.11 eV and ECT varies by ≤0.04 eV as the material composition varies. These results suggest that energy landscapes can exist whereby the binding energies of the CT states are overcome by energy offsets between charges in CT states in mixed regions and free charges in pure phases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The charge-energy-mass spectrometer for 0.3-300 keV/e ions on the AMPTE CCE

    Science.gov (United States)

    Gloeckler, G.; Ipavich, F. M.; Hamilton, D. C.; Lundgren, R. A.; Studemann, W.; Wilken, B.; Kremser, G.; Hovestadt, D.; Gliem, F.; Rieck, W.

    1985-01-01

    The charge-energy-mass (CHEM) spectrometer on the Charge Composition Explorer (CCE) has the function to measure the energy spectra, pitch-angle distributions, and ionization states of ions in the earth's magnetosphere and magnetosheath in the energy range from 0.3 to 300 keV/charge with a time resolution of less than 1 min. The obtained data will provide essential information on outstanding problems related to ion sources and dynamical processes of space plasmas and of suprathermal ions. A description of the CHEM experiment is given, taking into account the principle of operation, the sensor, the electronics, instrument characteristics, specifications, and requirements. Questions of postlaunch performance are also discussed.

  6. Double-Quadrant State-of-Charge-Based Droop Control Method for Distributed Energy Storage Systems in Autonomous DC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2015-01-01

    In this paper, a double-quadrant state-of-charge (SoC) based droop control method for distributed energy storage system (DESS) is proposed to reach the proper power distribution in autonomous DC microgrids. Since DESS is commonly used in DC microgrids, it is necessary to achieve the rational power...... sharing in both charging and discharging process. In order to prolong the lifetime of the energy storage units (ESUs) and avoid the overuse of a certain unit, the SoC of each unit should be balanced and the injected/output power should be gradually equalized. Droop control as a decentralized approach...... is used as the basis of the power sharing method for distributed energy storage units (DESUs). In the charging process, the droop coefficient is set to be proportional to the nth order of SoC, while in the discharging process, the droop coefficient is set to be inversely proportional to the nth order...

  7. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  8. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    Science.gov (United States)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  9. A Wearable Wireless Energy Link for Thin-Film Batteries Charging

    Directory of Open Access Journals (Sweden)

    Giuseppina Monti

    2016-01-01

    Full Text Available A wireless charger for low capacity thin-film batteries is presented. The proposed device consists of a nonradiative wireless resonant energy link and a power management unit. Experimental data referring to a prototype operating in the ISM band centered at 434 MHz are presented and discussed. In more detail, in order to facilitate the integration into wearable accessories (such as handbags or suitcases, the prototype of the wireless energy link was implemented by exploiting a magnetic coupling between two planar resonators fabricated by using a conductive fabric on a layer of leather. From experimental data, it is demonstrated that, at 434 MHz, the RF-to-RF power transfer efficiency of the link is approximately 69.3%. As for the performance of the system as a whole, when an RF power of 7.5 dBm is provided at the input port, a total efficiency of about 29.7% is obtained. Finally, experiments performed for calculating the charging time for a low capacity thin-film battery demonstrated that, for RF input power higher than 6 dBm, the time necessary for recharging the battery is lower than 50 minutes.

  10. Response of radiochromic dye films to low energy heavy charged particles

    CERN Document Server

    Buenfil, A E; Gamboa-Debuen, I; Aviles, P; Avila, O; Olvera, C; Robledo, R; Rodriguez-Ponce, M; Mercado-Uribe, H; Rodriguez-Villafuerte, M; Brandan, M E

    2002-01-01

    We have studied the possible use of radiochromic dye films (RCF) as heavy charged particle dosemeters. We present the results of irradiating two commercial RCF (GafChromic HD-810 and MD-55-1) with 1.5, 2.9 and 4.4 MeV protons, 1.4, 2.8, 4.7, 5.9, 6.8 MeV sup 4 He ions and 8.5 and 12.4 MeV sup 1 sup 2 C ions, at proton doses from about 1 Gy up to 3 kGy, helium ions doses from 3 Gy to 5 kGy and carbon ion doses from 30 Gy to 20 kGy. The films were scanned and digitized using commercial equipment. For a given particle, the response per unit dose at different energies indicates an energy dependence of the sensitivity, which is discussed. Comparison was made for the use of a standard spectrophotometer to obtain optical density readings versus a white light scanner.

  11. U.S. Department of Energy Workplace Charging Challenge - Progress Update 2016: A New Sustainable Commute

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    In June 2016, the Workplace Charging Challenge distributed its third annual survey to 295 partners with the goal of tracking partners' progress and identifying trends in workplace charging. This document summarizes findings from the survey and highlights accomplishments of the EV Everywhere Workplace Charging Challenge.

  12. Electrostatics in ionic solution : work and energy, charge regulation, and inhomogeneous surfaces

    NARCIS (Netherlands)

    Boon, N.J.H.

    2012-01-01

    This thesis concerns the electrostatic properties of charged objects that are immersed into an ionic solvent, for example water with dissolved salt. Typically, the ions inside such a solvent form layers of countercharge close to the charged objects, causing `screening' of the charges. By employing

  13. Advantages in energy efficiency of flooded lead-acid batteries when using partial state of charge operation

    Science.gov (United States)

    Büngeler, Johannes; Cattaneo, Eduardo; Riegel, Bernhard; Sauer, Dirk Uwe

    2018-01-01

    Today lead acid batteries are the most commonly used energy storage technology in material handling systems. Evaluation methods for the energy efficiency of forklifts, traction batteries and chargers have gained in relevance in this field. Generally, representative cycles are used to determine the energy efficiency in order to avoid multiple long lasting cycle live tests. At first glance this seems to be the adequate approach. However, for electrochemical storage systems with significant side reactions - like lead acid batteries - this procedure leads, to significantly lower values for energy efficiencies than in real life applications. While these battery systems need some overcharging to reach fully charged state, an overcharge is not necessary at every charge/discharge cycle. We report on results obtained with flooded lead acid batteries demonstrating that with a management strategy which includes operation in a partial state of charge, energy efficiencies of about 0.87 can be reached with minimal impact on lifetime. The usage of a typical representative cycle leads to an efficiency value of 0.77 with active electrolyte circulation respectively 0.70 without. We were able to identify the so called 'hard sulfation' of the negative plates as the major failure mode of insufficiently charged batteries.

  14. Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group, Montpelier, Vermont

    2017-08-07

    This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States -- a key predictor of the financial performance of behind-the-meter battery storage systems. Notably, the analysis estimates that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of $15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States. While the economic viability of installing battery energy storage must be determined on a case-by-case basis, high demand charges are often cited as a critical factor in battery project economics. Increasing use of demand charges in utility tariffs and anticipated future declines in storage costs will only serve to unlock additional markets and strengthen existing ones.

  15. Lead-carbon electrode designed for renewable energy storage with superior performance in partial state of charge operation

    Science.gov (United States)

    Zhang, Wen-Li; Yin, Jian; Lin, Zhe-Qi; Shi, Jun; Wang, Can; Liu, De-Bo; Wang, Yue; Bao, Jin-Peng; Lin, Hai-Bo

    2017-02-01

    Renewable energy storage is a key issue in our modern electricity-powered society. Lead acid batteries (LABs) are operated at partial state of charge in renewable energy storage system, which causes the sulfation and capacity fading of Pb electrode. Lead-carbon composite electrode is a good solution to the sulfation problem of LAB. In this paper, a rice-husk-derived hierarchically porous carbon with micrometer-sized large pores (denoted as RHC) has been used as the component of lead-carbon composite electrode. Scanning electron microscopy was used to characterize the morphology of lead-carbon composite electrode. Electrochemical impedance spectroscopy was used to determine the charge transfer capability of lead-carbon composite electrode. Both full charge-discharge method and charge-discharge method operating at harsh partial state of charge condition have been used to prove the superior energy storage capability of lead-carbon composite electrode. Experiment results prove that the micrometer-sized pores of RHC are beneficial to the construction and stability of lead-carbon composite electrode. Microporous carbon material with high surface area is not suitable for the construction of lead-carbon electrode due to the ruin of lead-carbon structure caused by severe electrochemical hydrogen evolution.

  16. Irradiation of Neurons with High-Energy Charged Particles: An In Silico Modeling Approach.

    Science.gov (United States)

    Alp, Murat; Parihar, Vipan K; Limoli, Charles L; Cucinotta, Francis A

    2015-08-01

    In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron's morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy (56)Fe, (12)C, and (1)H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale.

  17. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell.

    Science.gov (United States)

    Xue, Xinyu; Wang, Sihong; Guo, Wenxi; Zhang, Yan; Wang, Zhong Lin

    2012-09-12

    Energy generation and energy storage are two distinct processes that are usually accomplished using two separated units designed on the basis of different physical principles, such as piezoelectric nanogenerator and Li-ion battery; the former converts mechanical energy into electricity, and the latter stores electric energy as chemical energy. Here, we introduce a fundamental mechanism that directly hybridizes the two processes into one, in which the mechanical energy is directly converted and simultaneously stored as chemical energy without going through the intermediate step of first converting into electricity. By replacing the polyethylene (PE) separator as for conventional Li battery with a piezoelectric poly(vinylidene fluoride) (PVDF) film, the piezoelectric potential from the PVDF film as created by mechanical straining acts as a charge pump to drive Li ions to migrate from the cathode to the anode accompanying charging reactions at electrodes. This new approach can be applied to fabricating a self-charging power cell (SCPC) for sustainable driving micro/nanosystems and personal electronics.

  18. Charge-exchange, ionization and excitation in low-energy Li$^{+}-$ Ar, K$^{+}-$ Ar, and Na$^{+}-$He collisions

    CERN Document Server

    Lomsadze, Ramaz A; Kezerashvili, RomanYa; Schulz, Michael

    2016-01-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation within the same experimental setup for the Li$^{+}-$Ar, K$^{+}-$ Ar, and Na$^{+}-$ He collisions in the ion energy range $0.5-10$ keV. Results of our measurements along with existing experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes are realized with high probabilities and electrons are predominately captured in ground states. The cross section ratio for charge exchange, ionization and excitation processes roughly attains the value $10:2:1$, respectively. The contributions of various partial inelastic channels to the total ionization cross sections are estimated and a primary mechanism for the process is defined. The energy-loss spectrum, in addition, is applied to estimate the relative contribution of different inelastic channels and to determine the mechanisms for the ionization and f...

  19. IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS

    Energy Technology Data Exchange (ETDEWEB)

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

    2005-12-01

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling

  20. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl

    2013-01-31

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  1. Effect of bridge on energy transfer and photoinduced charge separation in perylene-diimide-naphthalene-bisimide-hexathiophene based donor-bridge-acceptor triads

    Directory of Open Access Journals (Sweden)

    Tilley T.D.

    2013-03-01

    Full Text Available Femtosecond transient absorption spectroscopy is performed to assess bridge effects on energy transfer and charge separation in molecular junctions. A short, conjugated bridge can facilitate charge separation from both donor and acceptor, whereas in longer bridges charge separation only occurs from the excited donor.

  2. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  3. Multi-Agent-Based Distributed State of Charge Balancing Control for Distributed Energy Storage Units in AC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    In this paper, a multiagent based distributed control algorithm has been proposed to achieve state of charge (SoC) balance of distributed energy storage (DES) units in an AC microgrid. The proposal uses frequency scheduling instead of adaptive droop gain. Each DES unit is taken as an agent and th...

  4. Multiagent-Based Distributed State of Charge Balancing Control for Distributed Energy Storage Units in AC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Coelho, Ernane Antônio Alves; Dragicevic, Tomislav

    2017-01-01

    In this paper, a multiagent-based distributed control algorithm has been proposed to achieve state of charge (SoC) balance of distributed energy storage (DES) units in an ac microgrid. The proposal uses frequency scheduling instead of adaptive droop gain to regulate the active power. Each DES uni...

  5. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  6. Intermittency signal in charge distributions of nuclear fragments in collisions of gold nuclei at energy 400 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, K.; Siwek-Wilczynska, K.; Sikora, B. [Warsaw Univ., Inst. of Experimental Physics, Warsaw (Poland); FOPI

    1996-12-31

    The factorial moments method has been used for analysis of the charge, azimuthal angle and rapidity distribution of nuclear fragments produced in central collisions of gold nuclei at energies 150 A and 400 A MeV. The results of the analysis is discussed. 7 refs, 3 figs.

  7. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Shikhaliev, Polad M [Department of Radiological Sciences, University of California, Irvine, CA 92697 (United States)

    2005-12-21

    Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do

  8. Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale.

    Science.gov (United States)

    Kautz, J; Jobst, J; Sorger, C; Tromp, R M; Weber, H B; van der Molen, S J

    2015-09-04

    Charge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations. Spatially resolved information is particularly important when studying novel materials like topological insulators, where the current is localized at the edges, or quasi-two-dimensional (2D) systems, where small-scale variations can determine global properties. Here, we demonstrate a new method to determine spatially-resolved voltage maps of current-carrying samples. This technique is based on low-energy electron microscopy (LEEM) and is therefore quick and non-invasive. It makes use of resonance-induced contrast, which strongly depends on the local potential. We demonstrate our method using single to triple layer graphene. However, it is straightforwardly extendable to other quasi-2D systems, most prominently to the upcoming class of layered van der Waals materials.

  9. Azimuthal asymmetries of charged hadrons produced in high-energy muon scattering off longitudinally polarised deuterons

    CERN Document Server

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grabmuller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d’Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jorg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kramer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Roskot, M; Rossiyskaya, N S; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schonning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tasevsky, M; Tessaro, S; Tessarotto, F; Thibaud, F; Thiel, A; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M; Zink, A

    2016-01-01

    Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\\phi$ is obtained by means of a five-parameter fitting function that besides a $\\phi$-independent term includes four modulations predicted by theory: $\\sin\\phi$, $\\sin 2 \\phi$, $\\sin 3\\phi$ and $\\cos\\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. In further fits, the $\\phi$-dependence is determined as a function of one of three kinematic variables (Bjorken-$x$, fractional energy of virtual photon taken by the outgoing hadron and hadron transverse momentum), while disregarding the other two. Except the $\\phi$-independent term, all the modulation amplitudes are very small, and no cl...

  10. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  11. Wireless Energy Transfer Using Resonant Magnetic Induction for Electric Vehicle Charging Application

    Science.gov (United States)

    Dahal, Neelima

    The research work for this thesis is based on utilizing resonant magnetic induction for wirelessly charging electric vehicles. The background theory for electromagnetic induction between two conducting loops is given and it is shown that an RLCequivalent circuit can be used to model the loops. An analysis of the equivalent circuit is used to show how two loosely coupled loops can be made to exchange energy efficiently by operating them at a frequency which is the same as the resonant frequency of both. Furthermore, it is shown that the efficiency is the maximum for critical coupling (determined by the quality factors of the loops), and increasing the coupling beyond critical coupling causes double humps to appear in the transmission efficiency versus frequency spectrum. In the experiment, as the loops are brought closer together which increases the coupling between them, doubles humps, as expected from the equivalent circuit analysis is seen. Two models for wireless energy transfer are identified: basic model and array model. The basic model consists of the two loosely coupled loops, the transmitter and the receiver. The array model consists of a 2 x 2 array of the transmitter and three parasites, and the receiver. It is shown that the array model allows more freedom for receiver placement at the cost of degraded transmission efficiency compared to the basic model. Another important part of the thesis is software validation. HFSS-IE and 4NEC2 are the software tools used and the simulation results for wire antennas are compared against references obtained from a textbook and a PhD dissertation. It is shown that the simulations agree well with the references and also with each other.

  12. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    Science.gov (United States)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  13. Real-Time Forecasting of EV Charging Station Scheduling for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Bharatiraja Chokkalingam

    2017-03-01

    Full Text Available The enormous growth in the penetration of electric vehicles (EVs, has laid the path to advancements in the charging infrastructure. Connectivity between charging stations is an essential prerequisite for future EV adoption to alleviate user’s “range anxiety”. The existing charging stations fail to adopt power provision, allocation and scheduling management. To improve the existing charging infrastructure, data based on real-time information and availability of reserves at charging stations could be uploaded to the users to help them locate the nearest charging station for an EV. This research article focuses on an a interactive user application developed through SQL and PHP platform to allocate the charging slots based on estimated battery parameters, which uses data communication with charging stations to receive the slot availability information. The proposed server-based real-time forecast charging infrastructure avoids waiting times and its scheduling management efficiently prevents the EV from halting on the road due to battery drain out. The proposed model is implemented using a low-cost microcontroller and the system etiquette tested.

  14. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  16. Charge exchange and energy loss of slowed down heavy ions channeled in silicon crystals; Echanges de charge et perte d'energie d'ions lourds ralentis, canalises dans des cristaux de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E

    2005-10-15

    This work is devoted to the study of charge exchange processes and of the energy loss of highly charged heavy ions channeled in thin silicon crystals. The two first chapters present the techniques of heavy ion channeling in a crystal, the ion-electron processes and the principle of our simulations (charge exchange and trajectory of channeled ions). The next chapters describe the two experiments performed at the GSI facility in Darmstadt, the main results of which follow: the probability per target atom of the mechanical capture (MEC) of 20 MeV/u U{sup 91+} ions as a function of the impact parameter (with the help of our simulations), the observation of the strong polarization of the target electron gas by the study of the radiative capture and the slowing down of Pb{sup 81+} ions from 13 to 8,5 MeV/u in channeling conditions for which electron capture is strongly reduced. (author)

  17. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale

    Directory of Open Access Journals (Sweden)

    Nikolaus Knorr

    2011-06-01

    Full Text Available Though triboelectric charging of insulators is common, neither its mechanism nor the nature of the charge is well known. Most research has focused on the integral amount of charge transferred between two materials upon contact, establishing, e.g., a triboelectric series. Here, the charge distribution of tracks on insulating polymer films rubbed by polymer-covered pointed swabs is investigated in high resolution by Kelvin probe force microscopy. Pronounced bipolar charging was observed for all nine rubbing combinations of three different polymers, with absolute surface potentials of up to several volts distributed in streaks along the rubbing direction and varying in polarity on μm-length scales perpendicular to the rubbing direction. Charge densities increased considerably for rubbing in higher relative humidity, for higher rubbing loads, and for more hydrophilic polymers. The ends of rubbed tracks had positively charged rims. Surface potential decay with time was strongly accelerated in increased humidity, particularly for polymers with high water permeability. Based on these observations, a mechanism is proposed of triboelectrification by extrusions of prevalently hydrated protons, stemming from adsorbed and dissociated water, along pressure gradients on the surface by the mechanical action of the swab. The validity of this mechanism is supported by explanations given recently in the literature for positive streaming currents of water at polymer surfaces and by reports of negative charging of insulators tapped by accelerated water droplets and of potential built up between the front and the back of a rubbing piece, observations already made in the 19th century. For more brittle polymers, strongly negatively charged microscopic abrasive particles were frequently observed on the rubbed tracks. The negative charge of those particles is presumably due in part to triboemission of electrons by polymer chain scission, forming radicals and negatively

  18. Reduction and scientific analysis of data from the charge-energy-mass (CHEM) spectrometer on the AMPTE/CCE spacecraft

    Science.gov (United States)

    Gloeckler, G.; Hamilton, D. C.; Ipavich, F. M.

    1987-01-01

    The Charge-Energy-Mass (CHEM) spectrometer instrument on the AMPTE/Charge Composition Explorer (CCE) spacecraft is designed to measure the mass and charge-state abundance of magnetospheric and magnetosheath ions between 0.3 and 315 keV/e, an energy range that includes the bulk of the ring current and the dynamically important portion of the plasma sheet population. Continuing research is being conducted using the AMPTE mission data set, and in particular, that of the CHEM spectrometer which has operated flawlessly since launch and still provides excellent quality data. The requirted routine data processing and reduction, and software develpment continues to be performed. Scientific analysis of composition data in a number of magnetospheric regions including the ring current region, near-earth plasma sheet and subsolar magnetosheath continues to be undertaken. Correlative studies using data from the sister instrument SULEICA, which determines the mass and charge states of ions in the energy range of approximately 10 to 250 keV/e on the IRM, as well as other data from the CCE and IRM spacecraft, particularly in the upstream region and plasma sheet have also been undertaken.

  19. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  20. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    Science.gov (United States)

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  1. pi-Conjugated chelating polymers with charged iridium complexes in the backbones: synthesis, characterization, energy transfer, and electrochemical properties.

    Science.gov (United States)

    Liu, Shu-Juan; Zhao, Qiang; Chen, Run-Feng; Deng, Yun; Fan, Qu-Li; Li, Fu-You; Wang, Lian-Hui; Huang, Chun-Hui; Huang, Wei

    2006-05-24

    A series of pi-conjugated chelating polymers with charged iridium (Ir) complexes in the backbones were synthesized by a Suzuki polycondensation reaction, leading to homogeneous polymeric materials that phosphoresce red light. The fluorene and bipyridine (bpy) segments were used as polymer backbones. 5,5'-Dibromobipyridine served as a ligand to form a charged iridium complex monomer with 1-(9'9-dioctylfluorene-2-yl)isoquinoline (Fiq) as the cyclometalated ligand. Chemical and photophysical characterization confirmed that Ir complexes were incorporated into the backbones as one of the repeat units by means of the 5,5'-dibromobipyridine ligand. Chelating polymers showed almost complete energy transfer from the host fluorene segments to the guest Ir complexes in the solid state when the feed ratio was 2 mol %. In the films of the corresponding blend system, however, energy transfer was not complete even when the content of Ir complexes was as high as 16 mol %. Both intra- and intermolecular energy-transfer processes existed in this host-guest system, and the intramolecular energy transfer was a more efficient process. All chelating polymers displayed good thermal stability, redox reversibility, and film formation. These chelating polymers also showed more efficient energy transfer than the corresponding blended system and the mechanism of incorporation of the charged Ir complexes into the pi-conjugated polymer backbones efficiently avoided the intrinsic problems associated with the blend system, thus offering promise in optoelectronic applications.

  2. Multi-Party Energy Management for Networks of PV-Assisted Charging Stations: A Game Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Nian Liu

    2017-07-01

    Full Text Available Motivated by the development of electric vehicles (EVs, this paper addresses the energy management problem for the PV-assisted charging station (PVCS network. An hour-ahead optimization model for the operation of PVCS is proposed, considering the profit of the PVCS, the local consumption of the photovoltaic (PV energy and the impacts on the grid. Moreover, a two-level feasible charging region (FCR model is built to guarantee the service quality for EVs and learning-based decision-making is designed to assist the optimization of the PVCS in various scenarios. The multi-party energy management problem, including several kinds of energy flows of the PVCS network, is formulated as a non-cooperative game. Then, the strategies of the PVCSs are modeled as the demand response (DR activities to achieve their own optimization goals and a two-level distributed heuristic algorithm is introduced to solve the problem. The simulation results show that the economic profit of the network is increased by 6.34% compared with the common time of use (TOU prices approach. Besides, the percentage of the PV energy in total charging load (PPTCL and load rate are promoted by 28.93% and 0.3125, respectively, which demonstrates the validity and practicability of the proposed method.

  3. Full charge-density scheme with a kinetic-energy correction: Application to ground-state properties of the 4d metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J.; Skriver, Hans Lomholt

    1997-01-01

    We present a full charge-density technique to evaluate total energies from the output of self-consistent linear muffin-tin orbitals (LMTO) calculations in the atomic-sphere approximation (ASA). The Coulomb energy is calculated exactly from the complete, nonspherically symmetric charge density...

  4. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    Energy Technology Data Exchange (ETDEWEB)

    Vanden Bout, David A. [Univ. of Texas, Austin, TX (United States)

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  5. Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

    Energy Technology Data Exchange (ETDEWEB)

    Raj K. Rajamani; Jose Angel Delgadillo

    2006-07-21

    A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and Outokumpu Technology. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The recirculation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton. After completing the shell lifter design, the pulp lifter design was taken up. Through a series of mill surveys and

  6. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I. B.; Azarenkov, N. A. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61022 Kharkiv (Ukraine); Kersten, H. [Institut für Experimentelle und Angewandte Physik, Leibnizstr. 19, Kiel D-24098 (Germany)

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  7. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Science.gov (United States)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  8. Exposure to elevated temperature and Pco(2) reduces respiration rate and energy status in the periwinkle Littorina littorea.

    Science.gov (United States)

    Melatunan, Sedercor; Calosi, Piero; Rundle, Simon D; Moody, A John; Widdicombe, Stephen

    2011-01-01

    In the future, marine organisms will face the challenge of coping with multiple environmental changes associated with increased levels of atmospheric Pco(2), such as ocean warming and acidification. To predict how organisms may or may not meet these challenges, an in-depth understanding of the physiological and biochemical mechanisms underpinning organismal responses to climate change is needed. Here, we investigate the effects of elevated Pco(2) and temperature on the whole-organism and cellular physiology of the periwinkle Littorina littorea. Metabolic rates (measured as respiration rates), adenylate energy nucleotide concentrations and indexes, and end-product metabolite concentrations were measured. Compared with values for control conditions, snails decreased their respiration rate by 31% in response to elevated Pco(2) and by 15% in response to a combination of increased Pco(2) and temperature. Decreased respiration rates were associated with metabolic reduction and an increase in end-product metabolites in acidified treatments, indicating an increased reliance on anaerobic metabolism. There was also an interactive effect of elevated Pco(2) and temperature on total adenylate nucleotides, which was apparently compensated for by the maintenance of adenylate energy charge via AMP deaminase activity. Our findings suggest that marine intertidal organisms are likely to exhibit complex physiological responses to future environmental drivers, with likely negative effects on growth, population dynamics, and, ultimately, ecosystem processes.

  9. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  10. Phenobarbital selectively modulates the glucagon-stimulated activity of adenylate cyclase by depressing the lipid phase separation occurring in the outer half of the bilayer of liver plasma membranes.

    OpenAIRE

    Houslay, M D; Dipple, I; Gordon, L M

    1981-01-01

    The glucagon-stimulated (coupled) activity of rat liver plasma-membrane adenylate cyclase could be selectively modulated by the anionic drug phenobarbital, whereas the fluoride-stimulated (uncoupled) activity remained unaffected. It is suggested that the cationic drug phenobarbital preferentially interacts with the external half of the bilayer, as the negatively charged phospholipids are found at the cytosol-facing side. This results in a selective fluidization of the external half of the bil...

  11. Energy dependence of negatively charged pion production in proton-proton interactions at the CERN SPS

    CERN Document Server

    AUTHOR|(SzGeCERN)663936; Dominik, Wojciech; Gaździck, Marek

    2016-01-01

    This thesis presents inclusive spectra of the negatively charged pions produced in inelastic proton-proton interactions measured at five beam momenta: 20, 31, 40, 80 and 158 GeV/c. The measurements were conducted in the NA61/SHINE experiment at CERN using a system of five Time Projection Chambers. The negatively charged pion spectra were calculated based on the negatively charged hadron spectra. Contribution of hadrons other than the primary pions was removed using EPOS simulations. The results were corrected for effects related to detection, acceptance, reconstruction efficiency and the analysis technique. Two-dimensional spectra were derived as a function of rapidity and transverse momentum or transverse mass. The spectra were parametrised by widths of the rapidity distributions, inverse slope parameters of the transverse mass distributions, mean transverse masses and the total pion multiplicities. The negatively charged pion spectra in proton-proton interactions belong to a broad NA61/SHINE programme of se...

  12. "Charge while driving" for electric vehicles: road traffic modeling and energy assessment

    National Research Council Canada - National Science Library

    Francesco Paolo DEFLORIO; Luca CASTELLO; Ivano PINNA; Paolo GUGLIELMI

    2015-01-01

      Issue Title: Special Issue on Electric Vehicles and Their Integration with Power Grid The aim of this research study is to present a method for analyzing the performance of the wireless inductive charge-while-driving (CWD...

  13. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  14. Energy, Environmental and Economic Performance of a Micro-trigeneration System upon Varying the Electric Vehicle Charging Profiles

    Directory of Open Access Journals (Sweden)

    Sergio Sibilio

    2017-09-01

    Full Text Available The widespread adoption of electric vehicles and electric heat pumps would result in radically different household electrical demand characteristics, while also possibly posing a threat to the stability of the electrical grid. In this paper, a micro-trigeneration system (composed of a 6.0 kWel cogeneration device feeding a 4.5 kWcool electric air-cooled vapor compression water chiller serving an Italian residential multi-family house was investigated by using the dynamic simulation software TRNSYS. The charging of an electric vehicle was considered by analyzing a set of seven electric vehicle charging profiles representing different scenarios. The simulations were performed in order to evaluate the capability of micro-cogeneration technology in: alleviating the impact on the electric infrastructure (a; saving primary energy (b; reducing the carbon dioxide equivalent emissions (c and determining the operating costs in comparison to a conventional supply system based on separate energy production (d.

  15. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  16. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    Energy Technology Data Exchange (ETDEWEB)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  17. CHARGE IMBALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  18. Optimal radius of crystal curvature for planar channeling of high-energy negatively charged particles in a bent crystal

    Directory of Open Access Journals (Sweden)

    I. V. Kirillin

    2017-10-01

    Full Text Available The problem of planar channeling of high-energy negatively charged particles in a bent crystal was considered on the basis of analytical calculation and numerical simulation. We show the existence of an optimal radius of crystal curvature for planar channeling, corresponding to the maximum deflection of the particle beam. The analytical calculation was carried out in the parabolic planar potential approximation, and in the numerical simulation the Doyle-Turner approximation was used.

  19. Optimal radius of crystal curvature for planar channeling of high-energy negatively charged particles in a bent crystal

    Science.gov (United States)

    Kirillin, I. V.

    2017-10-01

    The problem of planar channeling of high-energy negatively charged particles in a bent crystal was considered on the basis of analytical calculation and numerical simulation. We show the existence of an optimal radius of crystal curvature for planar channeling, corresponding to the maximum deflection of the particle beam. The analytical calculation was carried out in the parabolic planar potential approximation, and in the numerical simulation the Doyle-Turner approximation was used.

  20. Quightness: A proposed figure of merit for sources of low-energy, high-charge-state ions

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W. (Sandia National Laboratories, Livermore, California 94551 (US))

    1990-03-01

    A variety of ion sources, including the EBIS and ECRIS, are distinguished by their ability to produce low-energy ions of very high charge state. It would be useful to have some figure of merit that is particularly sensitive to this performance. I propose here such a quantity, called Quightness,'' which is related to brightness but which enhances the contrast between sources supplying multicharged ions of low energy. The rationale for introducing this quantity, its etymology and relationship to other figures of merit, and some representative values are presented.

  1. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  2. Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chunxia [Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province (China); Traditional Chinese Medicine College of Gansu, Gansu (China); Bu, Weifeng, E-mail: buwf@lzu.edu.cn [Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province (China)

    2014-11-15

    A cationic amphiphilic molecule was synthesized and employed to encapsulate Lindqvist ([M{sub 6}O{sub 19}]{sup 2−}) and Keggin polyoxometalates ([SiM{sub 12}O{sub 40}]{sup 4−}, M=Mo, W) to form hybrid molecules through electrostatic interaction. The X-ray diffraction results illustrate that the former hybrids possess lamellar nanostructures in their solid states, while the latter hybrids show a cubic Im3m packing model with low intensities and poor long-range order. These hybrids have clear charge-transfer characters as shown in their deeper colors and UV–vis diffuse reflectance spectra. According to the reported reduction potentials of the POM acceptors and the band gaps deduced from their diffuse reflectance spectra, we have calculated the theoretical values of the lowest unoccupied molecular orbital (LUMO) position similar to the electron affinity (E{sub A}) of solid materials. Such energy level parameters are comparable to those of electroluminescence and electron-transport materials commonly used in organic electroluminescence devices. These organic–polyoxometalate charge-transfer salts have more advantages, such as higher decomposition temperatures, easier film fabrication and better electron affinities, which presumably would be used for electron-transport materials in the area of the electroluminescence. - Graphical abstract: Hybrid molecular materials with charge-transfer characters formed by a positively charged donor L and acceptors of the Lindqvist-type and Keggin-type POMs have lamellar and cubic structures in their solid state. - Highlights: • Charge-transfer salts are obtained by self-assembling POMs with an anthracene cation. • Their energy parameters are comparable to those of optoelectronic materials in OLEDs. • These POM-based hybrids could be applied in the area of optoelectronic devices.

  3. Charge Exchange in Low-Energy H, D + C4+ Collisions with Full Account of Electron Translation

    Directory of Open Access Journals (Sweden)

    N. Vaeck

    2002-03-01

    Full Text Available We report the application of the quantum approach, which takes full account of electron translation at low collisional energies, to the charge exchange process H, D + C4+ → H+, D+ + C3+(3s; 3p; 3d. The partial and the total integral cross sections of the process are calculated in the energy range from 1 till 60 eV/amu. It is shown that the present results are independent from the upper integration limit for numerical solution of the coupled channel equations although nonadiabatic couplings remain nonzero up to infinity. The calculated partial and total cross sections are in agreement with the previous low-energy calculations and the available experimental data. It is shown that for low collisional energies the isotopic effect takes place. The observed effect is explained in terms of the nonadiabatic dynamics.

  4. Advice and recommendations to the US Department of Energy in response to the charge letter of September 20, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In Jan. 1996, the Fusion Energy Advisory Committee (FEAC) provided recommendations to DOE on how to restructure the fusion program in light of compressional guidance and budget realities. DOE endorsed these recommendations and prepared a strategic plan. The FEAC report concluded that the goals of the restructured program could most effectively be accomplished at a funding level of $275 million per year, including Federal government management costs. DOE requested that Congress appropriate $255.6 million in FY97 for the fusion energy sciences program exclusive of Federal government management costs (about $8 million). On Sept. 11, 1996, the Energy and Water Development Conference Committee settled on a FY97 appropriation for the fusion energy sciences program of $232.5 million. This report contains the response to the charge letter, on how the program described in the strategic plan could be changed to make it consistent with the $232.5 million appropriation.

  5. Binding energy of (Lambda)He-7 and test of charge symmetry breaking in the Lambda N interaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, O; Honda, D; Kaneta, M; Kato, F; Kawama, D; Maruyama, N; Matsumura, A; Nakamura, S N; Nomura, H; Nonaka, K; Ohtani, A; Okayasu, Y; Osaka, M; Oyamada, M; Sumihama, M; Tamura, H; Baker, O K; Cole, L; Christy, M; Gueye, P; Keppel, C; Tang, L; Yuan, L; Acha, A; Baturin, P; Boeglin, W; Kramer, L; Markowitz, P; Pamela, P; Perez, N; Raue, B; Reinhold, J; Rivera, R; Kato, S; Sato, Y; Takahashi, T; Daniel, A; Hungerford, Ed V; Ispiryan, M; Kalantarians, N; Lan, K J; Li, Y; Miyoshi, T; Randeniya, S; Rodriguez, V M; Bosted, P; Carlini, R; Ent, R; Fenker, H; Gaskell, D; Jones, M; Mack, D; Roche, J; Smith, G; Tvaskis, V; Vulcan, W; Wood, S; Yan, C; Asaturyan, A; Asaturyan, R; Egiyan, K; Mkrtchyan, H; Margaryan, A; Navasardyan, T; Tadevosyan, V; Zamkochian, S; Hu, B; Song, Y; Luo, W; Androic, D; Furic, M; Petkovic, T; Seva, T; Ahmidouch, A; Danagoulian, S; Gasparian, A; Halkyard, R; Johnson, K; Simicevic, N; Wells, S; Niculescu, G; Niculescu, M I; Gan, L; Benmokhtar, F; Horn, T; Elassar, M

    2011-09-01

    The binding energy of 7LambdaHe has been obtained for the first time with reaction spectroscopy using the (e, e'K+) reaction at Jefferson Lab's Hall C. A comparison among the binding energies of the A = 7 T = l iso-triplet hypernuclei, 7LambdaHe, 7LambdaLi*and 7LambdaBe, is made and possible charge symmetry breaking (CSB) in the LambdaN potential is discussed. For 7LambdaHe and 7LambdaBe, the shifts in binding energies are opposite to those predicted by a recent cluster model calculation, which assumes that the unexplained part of the binding energy difference between 4LambdaH and 4LambdaHe, is due to the CSB of the LambdaN potential. Further examination of CSB in light hypernuclear systems is required both experimentally and theoretically.

  6. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  7. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Tumbale, Percy [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Williams, Jessica S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Schellenberg, Matthew J. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Kunkel, Thomas A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. of Molecular Genetics; Williams, R. Scott [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. Molecular Genetics

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  8. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity

    Science.gov (United States)

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R. Scott

    2014-01-01

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions employed by ATP-dependent DNA ligases1,2. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5′-adenylated (5′-AMP) DNA lesions3–6 (Fig. 1a). Aprataxin (Aptx) reverses DNA-adenylation but the context for deadenylation repair is unclear. Here we examine the importance of Aptx to RNaseH2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5′-ends containing a ribose characteristic of RNaseH2 incision. Aptx efficiently repairs adenylated RNA-DNA, and acting in an RNA-DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure-function studies of human Aptx/RNA-DNA/AMP/Zn complexes define a mechanism for detecting and reversing adenylation at RNA-DNA junctions. This involves A-form RNA-binding, proper protein folding and conformational changes, all of which are impacted by heritable APTX mutations in Ataxia with Oculomotor Apraxia 1 (AOA1). Together, these results suggest that accumulation of adenylated RNA-DNA may contribute to neurological disease. PMID:24362567

  9. On the Remarkable Features of the Lower Limits of Charge and the Radiated Energy of Antennas as Predicted by Classical Electrodynamics

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-05-01

    Full Text Available Electromagnetic energy radiated by antennas working in both the frequency domain and time domain is studied as a function of the charge associated with the current in the antenna. The frequency domain results, obtained under the assumption of sinusoidal current distribution, show that, for a given charge, the energy radiated within a period of oscillation increases initially with L/λ and then starts to oscillate around a steady value when L/λ > 1. The results show that for the energy radiated by the antenna to be equal to or larger than the energy of one photon, the oscillating charge in the antenna has to be equal to or larger than the electronic charge. That is, U ≥ hν or UT ≥ h ⇒ q ≥ e, where U is the energy dissipated over a period, ν is the frequency of oscillation, T is the period, h is Planck’s constant, q is the rms value of the oscillating charge, and e is the electronic charge. In the case of antennas working in the time domain, it is observed that UΔt ≥ h/4π ⇒ q ≥ e, where U is the total energy radiated, Δt is the time over which the energy is radiated, and q is the charge transported by the current. It is shown that one can recover the time–energy uncertainty principle of quantum mechanics from this time domain result. The results presented in this paper show that when quantum mechanical constraints are applied to the electromagnetic energy radiated by a finite antenna as estimated using the equations of classical electrodynamics, the electronic charge emerges as the smallest unit of free charge in nature.

  10. Single and double charge transfer of He(2+) ions with molecules at near-thermal energies

    Science.gov (United States)

    Tosh, R. E.; Johnsen, R.

    1993-01-01

    Rate coefficients were measured for charge-transfer reactions of He(2+) ions with H2, N2, O2, CO, CO2, and H2O. The experiments were carried out using a selected-ion drift-tube mass spectrometer. Total rate coefficients are found to be very large and are generally close to the limiting Langevin capture rate coefficients or the corresponding ADO-model (Su and Bowers, 1973) coefficients. The product-ion spectra indicate that both single and double charge transfer and possibly transfer ionization occur in these reactions.

  11. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    Science.gov (United States)

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei

    2014-08-01

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  12. On the charge dispersion in high-energy proton-xenon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yuming; Massmann, H.; Xu Shuyan; Gross, D.H.E.; Zhang Xiaoze; Lu Zhaoqi; Sa Benhao

    1987-08-06

    The mass yield and the charge dispersion of secondary fragments produced in high-energetic proton-xenon bombardment are analysed in the frame of our statistical multifragmentation model. The critical mass distribution as well as the charge dispersion, which have led to the discussion of a nuclear liquid-gas phase transition, are easily reproduced within our model. A clear signal of a 'phase transition' at T = 5 MeV is found and is analysed in terms of various multifragment correlations.

  13. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Al Amin [Kent State Univ., Kent, OH (United States)

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreement using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.

  14. Shape similarity of charge-transfer (CT) excitation energy curves in a series of donor-acceptor complexes and its description with a transferable energy of CT orbital

    Science.gov (United States)

    Gritsenko, O. V.

    2017-08-01

    A simple nature of charge-transfer (CT) in the prototype complexes Dp -F2 (Dp =NH3 , H2O) manifests itself in a very close shape of their CT excitation energy curves ωCT (R) along the donor-acceptor separation R. It affords a simple orbital description in terms of the CT orbitals (CTOs) obtained with a transformation of the virtual orbitals of the standard local density approximation (LDA). The transferable energy of the relevant CTO as a function of R closely approximates the common shape of ωCT (R) , while the height of the individual curve is determined with the ionization potential of Dp .

  15. Ag Nanoparticle-Based Triboelectric Nanogenerator To Scavenge Wind Energy for a Self-Charging Power Unit.

    Science.gov (United States)

    Jiang, Qiang; Chen, Bo; Zhang, Kewei; Yang, Ya

    2017-12-20

    Li-ion batteries are a green energy storage technology with advantages of high energy density, long lifetime, and sustainability, but they cannot generate electric energy by themselves. As a novel energy-harvesting technology, triboelectric nanogenerators (TENGs) are a promising power source for supplying electronic devices, however it is difficult to directly use their high output voltage and low output current. Here, we designed a Ag nanoparticle-based TENG for scavenging wind energy. After including a transformer and a power management circuit into the system, constant output voltages such as 3.6 V and a pulsed current of about 100 mA can be obtained, which can be used to directly light up a light-emitting diode. Furthermore, the produced electric energy can be effectively stored in a WO 3 /LiMn 2 O 4 electrode based Li-ion battery. Our present work provides a new approach to effectively scavenge wind energy and store the obtained electric energy, which is significant for exploring self-charging power units.

  16. Distributed Bus Signaling Control for a DC Charging Station with Multi Paralleled Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    Fast charging stations (FCS) will become an essential part of future transportation systems with an increasing number of electrical vehicles. However, since these FCS plugs have power ratings of up to 100 kW, serious stress caused by large number of FCS could threaten the stability of the main po...

  17. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    Science.gov (United States)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  18. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-05-31

    We probe the energetic landscape at a model pentacene/fullerene-C60 interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e. the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  19. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  20. Search for charged Higgs bosons in $e^{+} e^{-}$ collisions at energies up to $\\sqrt{s}$ = 209 GeV

    CERN Document Server

    Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2002-01-01

    A search for charged Higgs bosons produced in pairs is performed with data collected at centre-of-mass energies ranging from 189 to 209 GeV by ALEPH at LEP, corresponding to a total luminosity of 629 invpb. The three final states taunutaunu, taunucs and cscs are considered. No evidence for a signal is found and lower limits are set on the mass M_H+ as a function of the branching fraction B(H to taunu). In the framework of a two-Higgs-doublet model, and assuming B(H+ to taunu + B(H+ to cs) = 1 charged Higgs bosons with masses below 79.3 Gev/c2 are excluded at 95% confidence level independently of the branching ratios.

  1. Search for charged Higgs bosons in $e^+ e^-$ collisions at energies up to $\\sqrt{s}$ = 189 GeV

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Hutchcroft, D.E.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Loomis, C.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.

    2000-01-01

    The data collected at centre-of-mass energies of 188.6 GeV by ALEPH at LEP, corresponding to an integrated luminosity of 176.2 pb-1, are analysed in a search for pair-produced charged Higgs bosons H+/-. Three analyses are employed to select the taunutaunu, taunucs and cscs final states. No evidence for a signal is found. Upper limits are set on the production cross section as a function of the branching fraction BR(H+ to tau nu) and of the mass M(H+), assuming that the sum of the branching ratios is equal to one. In the framework of a two-Higgs-doublet model, charged Higgs bosons with masses below 65.4 GeV/c2 are excluded at 95% confidence level independently of the decay mode.

  2. Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability.

    Science.gov (United States)

    Roy, Swagata; Thakur, Pradip; Hoque, Nur Amin; Bagchi, Biswajoy; Sepay, Nayim; Khatun, Farha; Kool, Arpan; Das, Sukhen

    2017-07-19

    Herein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive β crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of β-polymorphs in PVDF. Significant improvements of both β-phase crystallization (F(β) ≈ 71.4%) and dielectric constant (ε ≈ 218 at 20 Hz for PFA of 7.5 mass %) are the twosome realizations of our current study. Enhancement of β-phase nucleation in the composites can be thought as a contribution of the strong interaction of the FA particles with the PVDF chains. Maxwell-Wagner-Sillars (MWS) interfacial polarization approves the establishment of thermally stable high dielectric values measured over a wide temperature spectrum. The optimized high dielectric and electroactive films are further employed as an active energy storage material in designing our device named as OPSESC. Self-charging under visible light irradiation without an external biasing electrical field and simultaneous remarkable self-storage of photogenerated electrical energy are the two foremost aptitudes and the spotlight of our present investigation. Our as fabricated device delivers an impressively high energy density of 7.84 mWh/g and an excellent specific capacitance of 61 F/g which is superior relative to the other photon induced two electrode organic self-charging energy storage devices reported so far. Our device also proves the realistic utility with good recycling capability by facilitating commercially available light emitting diode.

  3. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    National Research Council Canada - National Science Library

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2015-01-01

    ... as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast...

  4. Overproduction, Purification and Characterization of Adenylate Deaminase from Aspergillus oryzae.

    Science.gov (United States)

    Li, Shubo; Qian, Yi; Liang, Yunlong; Chen, Xinkuan; Zhao, Mouming; Guo, Yuan; Pang, Zongwen

    2016-12-01

    Adenylate deaminase (AMPD, EC 3.5.4.6) is an aminohydrolase that widely used in the food and medicine industries. In this study, the gene encoding Aspergillus oryzae AMPD was cloned and expressed in Escherichia coli. Induction with 0.75 mM isopropyl β-D-l-thiogalactopyranoside resulted in an enzyme activity of 1773.9 U/mL. Recombinant AMPD was purified to electrophoretic homogeneity using nickel affinity chromatography, and its molecular weight was calculated as 78.6 kDa. Purified AMPD exhibited maximal activity at 35 °C, pH 6.0 and 30 mM K+, with apparent K m and V max values of 2.7 × 10-4 M and 77.5 μmol/mg/min under these conditions. HPLC revealed that recombinant AMPD could effectively catalyse the synthesis of inosine-5'-monophosphate (IMP) with minimal by-products, indicating high specificity and suggesting that it could prove useful for IMP production.

  5. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...

  6. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases.

    Science.gov (United States)

    Miller, Bradley R; Sundlov, Jesse A; Drake, Eric J; Makin, Thomas A; Gulick, Andrew M

    2014-10-01

    Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation-PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C-terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. © 2014 Wiley Periodicals, Inc.

  7. Analysis of the Linker Region Joining the Adenylation and Carrier Protein Domains of the Modular Non-Ribosomal Peptide Synthetases

    Science.gov (United States)

    Miller, Bradley R.; Sundlov, Jesse A.; Drake, Eric J.; Makin, Thomas A.; Gulick, Andrew M.

    2014-01-01

    Non-Ribosomal Peptide Synthetases (NRPSs) are multi-modular proteins capable of producing important peptide natural products. Using an assembly-line process the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation-PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C-terminal sub-domain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. PMID:24975514

  8. A numerical model for charge transport and energy conversion of perovskite solar cells.

    Science.gov (United States)

    Zhou, Yecheng; Gray-Weale, Angus

    2016-02-14

    Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.

  9. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Sidharth Mehan

    2017-01-01

    Full Text Available Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity, resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  10. Pituitary adenylate cyclase-activating peptide affects homeostatic sleep regulation in healthy young men.

    Science.gov (United States)

    Murck, Harald; Steiger, Axel; Frieboes, Ralf M; Antonijevic, Irina A

    2007-03-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is involved in autonomous regulation, including timekeeping, by its action on the suprachiasmatic nucleus and on neuroendocrine secretion, energy metabolism, and transmitter release. In particular, the interactions between PACAP and the glutamatergic system are well recognized. We compared the effect of intravenously administered PACAP to that of placebo in eight healthy male subjects. PACAP in a concentration of 4x12.5 microg was administered in a pulsatile fashion hourly between 2200 and 0100. Sleep EEG was recorded from 2300 to 1000, which was also the time when subjects were allowed to sleep. Blood samples were taken every 20 min between 2200 and 0700 for the determination of cortisol, GH, and prolactin. PACAP administration led to no changes in the macro-sleep structure as assessed according to standard criteria. Spectral analysis revealed a significant reduction in the theta-frequency range in the first 4-h interval and of the spindle frequency range in the second 4-h interval of the registration period. This was accompanied by an increase in the time constant tau of the physiological delta-power decline in the course of the night, i.e., a less pronounced dynamic of the reduction of delta-power with time. This was accompanied by a trend (Pnapping, i.e., a reduced sleep propensity. This implies that PACAP might be involved in homeostatic sleep regulation.

  11. Sequential energy and charge transfer processes in mixed host-guest complexes of subphthalocyanine, porphyrin and phthalocyanine chromophores.

    Science.gov (United States)

    Menting, Roel; Ng, Dennis K P; Röder, Beate; Ermilov, Eugeny A

    2012-11-14

    Porphyrins, phthalocyanines and subphthalocyanines are three attractive classes of chromophores with intriguing properties making them suitable for the design of artificial photosynthetic systems. The assembly of these components by a supramolecular approach is of particular interest as it provides a facile means to build multi-chromophoric arrays with various architectures and tuneable photophysical properties. In this paper, we show the formation of mixed host-guest supramolecular complexes that consist of a β-cyclodextrin-conjugated subphthalocyanine, a tetrasulfonated porphyrin and a series of silicon(IV) phthalocyanines substituted axially with two β-cyclodextrins via different spacers. We found that the three components form supramolecular complexes held by host-guest interactions in aqueous solution. Upon excitation of the subphthalocyanine part of the complex, the excitation energy is delivered to the phthalocyanine unit via excitation energy transfer and the porphyrin chromophore acts as an energy transfer bridge enabling this process. It was shown that photo-induced charge transfer also takes place. A sequential electron transfer process from the porphyrin unit to the phthalocyanine moiety and subsequently from the subphthalocyanine moiety to the porphyrin unit takes place, and the probability of this process is controlled by the linker between β-cyclodextrin and phthalocyanine. The lifetime of the charge-separated state was found to be 1.7 ns by transient absorption spectroscopy.

  12. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    Directory of Open Access Journals (Sweden)

    Minh Y Nguyen

    2012-12-01

    Full Text Available Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e., uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

  13. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Grosnick, D; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Haque, R; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Munhoz, M G; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Peterson, A; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-29

    We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

  14. Research on Energy-Saving Scheduling of a Forging Stock Charging Furnace Based on an Improved SPEA2 Algorithm

    Directory of Open Access Journals (Sweden)

    Fei He

    2017-11-01

    Full Text Available In order to help the forging enterprise realize energy conservation and emission reduction, the scheduling problem of furnace heating was improved in this paper. Aiming at the charging problem of continuous heating furnace, a multi-objective furnace charging model with minimum capacity difference and waiting time was established in this paper. An improved strength Pareto evolutionary algorithm 2 (SPEA2 algorithm was designed to solve this problem. The original fitness assignment strategy, crossover operator and population selection mechanism of SPEA2 are replaced with DOPGA (Domination Power of an Individual Genetic Algorithm, adaptive cross operator, and elitist strategy. Finally, the effectiveness and feasibility of the improved SPEA2 was verified by actual arithmetic example. The comparison of results gained from three methods shows the superiority of the improved SPEA2 in solving this problem. Compared with strength Pareto evolutionary algorithm (SPEA and SPEA2, the improved SPEA2 can get a better solution without increasing time complexity, the heating time is reduced by total 93 min, and can save 7533GJ energy. The research in this paper can help the forging enterprise improve furnace utilization, reduce heating time and unnecessary heating preservation time, as well as achieve sustainable energy savings and emissions reduction.

  15. A closed parameterization of DNA-damage by charged particles, as a function of energy - a geometrical approach.

    Directory of Open Access Journals (Sweden)

    Frank Van den Heuvel

    Full Text Available PURPOSE: To present a closed formalism calculating charged particle radiation damage induced in DNA. The formalism is valid for all types of charged particles and due to its closed nature is suited to provide fast conversion of dose to DNA-damage. METHODS: The induction of double strand breaks in DNA-strings residing in irradiated cells is quantified using a single particle model. This leads to a proposal to use the cumulative Cauchy distribution to express the mix of high and low LET type damage probability generated by a single particle. A microscopic phenomenological Monte Carlo code is used to fit the parameters of the model as a function of kinetic energy related to the damage to a DNA molecule embedded in a cell. The model is applied for four particles: electrons, protons, alpha-particles, and carbon ions. A geometric interpretation of this observation using the impact ionization mean free path as a quantifier, allows extension of the model to very low energies. RESULTS: The mathematical expression describes the model adequately using a chi-square test ([Formula: see text]. This applies to all particle types with an almost perfect fit for protons, while the other particles seem to result in some discrepancies at very low energies. The implementation calculating a strict version of the RBE based on complex damage alone is corroborated by experimental data from the measured RBE. The geometric interpretation generates a unique dimensionless parameter [Formula: see text] for each type of charged particle. In addition, it predicts a distribution of DNA damage which is different from the current models.

  16. Evaluation of the differential capacitance for ferroelectric materials using either charge-based or energy-based expressions

    Directory of Open Access Journals (Sweden)

    C. M. Krowne

    2014-07-01

    Full Text Available Differential capacitance is derived based upon energy, charge or current considerations, and determined when it may go negative or positive. These alternative views of differential capacitances are analyzed, and the relationships between them are shown. Because of recent interest in obtaining negative capacitance for reducing the subthreshold voltage swing in field effect type of devices, using ferroelectric materials characterized by permittivity, these concepts are now of paramount interest to the research community. For completeness, differential capacitance is related to the static capacitance, and conditions when the differential capacitance may go negative in relation to the static capacitance are shown.

  17. Two-dimensional semimetal in wide HgTe quantum wells: Charge-carrier energy spectrum and magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Germanenko, A. V., E-mail: Alexander.Germanenko@usu.ru [Ural Federal University, Institute of Natural Sciences (Russian Federation); Minkov, G. M. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Rut, O. E. [Ural Federal University, Institute of Natural Sciences (Russian Federation); Sherstobitov, A. A. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Dvoretsky, S. A.; Mikhailov, N. N. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2013-12-15

    The magnetoresistivity and the Hall and Shubnikov-de Haas effects in heterostructures with a single 20.2-nm-wide quantum well made from the gapless semiconductor HgTe are studied experimentally. The measurements are performed on gated samples over a wide range of electron and hole densities. The data obtained are used to reconstruct the energy spectrum of electrons and holes in the vicinity of the extrema of the quantum-confinement subbands. It is shown that the charge-carrier dispersion relation in the investigated systems differs from that calculated within the framework of the conventional kp model.

  18. Ultrafast broadband laser spectroscopy reveals energy and charge transfer in novel donor-acceptor triads for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Roland, T; Ramirez, G Hernandez; Leonard, J; Mery, S; Haacke, S, E-mail: stefan.haacke@ipcms.u-strasbg.fr [Institut de Physique et Chimie des Materiaux de Strasbourg, Strasbourg University - CNRS UMR 7504, F-67034 Strasbourg (France)

    2011-02-01

    Triggered by the quest for new organic materials and micro-structures for photovoltaic applications, a novel class of donor-acceptor-donor (DAD) triads extended with siloxane chains has been synthesized in our labs. Because of the siloxane chains, the molecules self-organize into a smectic liquid crystal phase, resulting in a stacking of the DAD cores.We report here a preliminary study of the ultrafast dynamics of energy and charge transfer studied by femtosecond broadband transient absorption experiments on isolated triads in chloroform.

  19. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    Science.gov (United States)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide

  20. Elliptic flow due to charged hadrons for Au+Au collisions at RHIC energy 62.4 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Somani Ajit, E-mail: ajit.somani@gmail.com [Department of Physics, Suresh Gyan Vihar University, Jaipur, Rajasthan, INDIA (Presently working at Govt. Polytechnic College, Hanumangarh, Rajasthan, INDIA) (India); Sudhir, Bhardwaj [Govt. College of Engineering & Technology, Bikaner, Rajasthan (India); Ashish, Agnihotri [Department of Physics, SBCET, Jaipur, Rajasthan (India)

    2016-05-06

    Elliptic flow is an important observable in search of Quark Gluon Plasma. The elliptic flow parameter dependence on centrality due to charged hadrons were studied using events generated by event generator AMPT at center of mass energy of 62.4 GeV per nucleon pair for Au+Au collisions. This study performed for pseudorapidity range from −0.35 to 0.35 and transverse momentum bins p{sub t} = 0.2 to 1 GeV/c and 1 to 2 GeV/c. We compared the results obtained from simulated data and RHIC-PHENIX data.

  1. The effect of polarization charges on energy of univalent and bivalent donors in a spherical quantum dot

    Directory of Open Access Journals (Sweden)

    V.I. Boichuk

    2008-12-01

    Full Text Available The energy of electrons of univalent and bivalent impurity of a spherical β-HgS/CdS nanoheterostructure is calculated as a function of quantum dot radius by the variation technique in the case of finite and infinite wells in the effective mass approximation. The effect of polarization charges which arise at the separation boundary of the media is studied taking into account both the existence and the absence of an intermediate layer, where dielectric permittivity depends on the coordinate.

  2. Charge Exchange in Low-Energy H, D + C4+ Collisions with Full Account of Electron Translation

    Directory of Open Access Journals (Sweden)

    A. Riera

    2002-03-01

    Full Text Available The effect of the anisotropy of the interaction potential on ion-diatom non-adiabatic collisions is analized by considering the influence of the anisotropy on orientation averaged total cross sections for charge transfer in H++H2(X1Σ+g collisions. We discuss the possibility of employing simpli ed methods such as an isotropic approximation, where only the electronic energies and interactions of a single orientation are necessary. The use of several isotropic calculations to evaluate the orientation averaged cross section is analized.

  3. Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS

    Directory of Open Access Journals (Sweden)

    Sean Vig, Anshul Kogar, Matteo Mitrano, Ali A. Husain, Vivek Mishra, Melinda S. Rak, Luc Venema, Peter D. Johnson, Genda D. Gu, Eduardo Fradkin, Michael R. Norman, Peter Abbamonte

    2017-10-01

    Full Text Available One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, $\\chi({\\bf q},\\omega$. The imaginary part, $\\chi''({\\bf q},\\omega$, defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. $\\chi$ quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure $\\chi({\\bf q},\\omega$ at the meV energy scale relevant to modern electronic materials. Here, we demonstrate a way to measure $\\chi$ with quantitative momentum resolution by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS. This approach, which we refer to here as ``M-EELS" allows direct measurement of $\\chi''({\\bf q},\\omega$ with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-{\\bf q} excitations in the optimally-doped high temperature superconductor, Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi2212, which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. Our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.

  4. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy.

    Science.gov (United States)

    Ayoub, Ahmed Taha; Staelens, Michael; Prunotto, Alessio; Deriu, Marco A; Danani, Andrea; Klobukowski, Mariusz; Tuszynski, Jack Adam

    2017-09-22

    Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs)-tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole-dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by - 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  5. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  6. Multi-genome analysis identifies functional and phylogenetic diversity of basidiomycete adenylate-forming reductases.

    Science.gov (United States)

    Brandenburger, Eileen; Braga, Daniel; Kombrink, Anja; Lackner, Gerald; Gressler, Julia; Künzler, Markus; Hoffmeister, Dirk

    2016-07-22

    Among the invaluable benefits of basidiomycete genomics is the dramatically enhanced insight into the potential capacity to biosynthesize natural products. This study focuses on adenylate-forming reductases, which is a group of natural product biosynthesis enzymes that resembles non-ribosomal peptide synthetases, yet serves to modify one substrate, rather than to condense two or more building blocks. Phylogenetically, these reductases fall in four classes. The phylogeny of Heterobasidion annosum (Russulales) and Serpula lacrymans (Boletales) adenylate-forming reductases was investigated. We identified a previously unrecognized phylogenetic branch within class III adenylate-forming reductases. Three representatives were heterologously produced and their substrate preferences determined in vitro: NPS9 and NPS11 of S. lacrymans preferred l-threonine and benzoic acid, respectively, while NPS10 of H. annosum accepted phenylpyruvic acid best. We also investigated two class IV adenylate-forming reductases of Coprinopsis cinerea, which each were active with l-alanine, l-valine, and l-serine as substrates. Our results show that adenylate-forming reductases are functionally more diverse than previously recognized. As none of the natural products known from the species investigated in this study includes the identified substrates of their respective reductases, our findings may help further explore the diversity of these basidiomycete secondary metabolomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    -chlorophylls chromophore to the reaction center by sending an electromagnetic wave (a photon) which provides a novel new mechanism for energy production. In the simplest version of the Förster–Dexter theory, the excitation energy of a donor is transferred to an acceptor and then de-excited to the ground state...

  8. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    Science.gov (United States)

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  9. Optimization of charging strategies for electric vehicles in PowerMatcher-driven smart energy grids

    NARCIS (Netherlands)

    Kempker, Pia; van Dijk, N.M.; Scheinhardt, Willem R.W.; van den Berg, Hans Leo; Hurink, Johann L.; Knottenbelt, W.; Wolter, K.; Busic, A.; Gribaudo, M.; Reinecke, P.

    2015-01-01

    A crucial challenge in future smart energy grids is the large-scale coordination of distributed energy demand and generation. The well-known PowerMatcher is a promising approach that integrates demand and supply exibility in the operation of the electricity system through dynamic pricing and a

  10. Antenna entropy in plant photosystems does not reduce the free energy for primary charge separation.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-12-01

    We have investigated the concept of the so-called "antenna entropy" of higher plant photosystems. Several interesting points emerge: 1. In the case of a photosystemwhich harbours an excited state, the “antenna entropy” is equivalent to the configurational (mixing) entropy of a thermodynamic canonical ensemble. The energy associated with this parameter has been calculated for a hypothetical isoenergetic photosystem, photosystem I and photosystem II, and comes out in the range of 3.5 - 8% of the photon energy considering 680 nm. 2. The “antenna entropy” seems to be a rather unique thermodynamic phenomenon, in as much as it does not modify the free energy available for primary photochemistry, as has been previously suggested. 3. It is underlined that this configurational (mixing) entropy, unlike heat dispersal in a thermal system, does not involve energy dilution. This points out an important difference between thermal and electronic energy dispersal. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Assessment of the Charging Policy in Energy Efficiency of the Enterprise

    Science.gov (United States)

    Shutov, E. A.; E Turukina, T.; Anisimov, T. S.

    2017-04-01

    The forecasting problem for energy facilities with a power exceeding 670 kW is currently one of the main. In connection with rules of the retail electricity market such customers also pay for actual energy consumption deviations from plan value. In compliance with the hierarchical stages of the electricity market a guaranteeing supplier is to respect the interests of distribution and generation companies that require load leveling. The answer to this question for industrial enterprise is possible only within technological process through implementation of energy-efficient processing chains with the adaptive function and forecasting tool. In such a circumstance the primary objective of a forecasting is reduce the energy consumption costs by taking account of the energy cost correlation for 24 hours for forming of pumping unit work schedule. The pumping unit virtual model with the variable frequency drive is considered. The forecasting tool and the optimizer are integrated into typical control circuit. Economic assessment of the optimization method was estimated.

  12. Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

    Energy Technology Data Exchange (ETDEWEB)

    Raj K. Rajamani

    2006-07-21

    A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Outokumpu Technology, Kennecott Utah Copper Corporation, and Process Engineering Resources Inc. At Cortez Gold Operations the shell and pulp lifters of the semiautogenous grinding mill was redesigned. The redesigned shell lifter has been in operation for over three years and the redesigned pulp lifter has been in operation for over nine months now. This report summarizes the dramatic reductions in energy consumption. Even though the energy reductions are very large, it is safe to say that a 20% minimum reduction would be achieved in any future installations of this technology.

  13. Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration.

    Science.gov (United States)

    Swope, William C; Horn, Hans W; Rice, Julia E

    2010-07-08

    Polarization cost is the energy needed to distort the wave function of a molecule from one appropriate to the gas phase to one appropriate for some condensed phase. Although it is not currently standard practice, polarization cost should be considered when deriving improved fixed charge force fields based on fits to certain types of experimental data and when using such force fields to compute observables that involve changes in molecular polarization. Building on earlier work, we present mathematical expressions and a method to estimate the effect of polarization cost on free energy and enthalpy implied by a charge model meant to represent a solvated state. The charge model can be any combination of point charges, higher-order multipoles, or even distributed charge densities, as long as they do not change in response to environment. The method is illustrated by computing the effect of polarization cost on free energies of hydration for the neutral amino acid side chain analogues as predicted using two popular fixed charge force fields and one based on electron densities computed using quantum chemistry techniques that employ an implicit model to represent aqueous solvent. From comparison of the computed and experimental hydration free energies, we find that two commonly used force fields are too underpolarized in their description of the solute-water interaction. On the other hand, a charge model based on the charge density from a hybrid density functional calculation that used an implicit model for aqueous solvent performs well for hydration free energies of these molecules after the correction for dipole polarization is applied. As such, an improved description of the density (e.g., B3LYP, MP2) in conjunction with an implicit solvent (e.g., PCM) or explicit solvent (e.g., QM/MM) approach may offer promise as a starting point for the development of improved fixed charge models for force fields.

  14. Pseudorapidity distributions of charged particles in Pb-Pb collisions at super proton synchrotron energies from the NA50 experiment

    CERN Document Server

    Idzik, M; Alessandro, B; Alexa, C; Arnaldi, R; Atayan, M; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; MacCormick, M; Macciotta, P; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2003-01-01

    We present the measurements of charged particle pseudorapidity distributions dN/sub ch//d eta performed by the NA50 experiment in Pb-Pb collisions at the CERN SPS. Measurements were done at incident energies of 40 GeV ( square root s = 8.77 GeV) and 158 GeV ( square root s = 17.3 GeV) per nucleon over a broad impact parameter range. The multiplicity distributions are studied as a function of centrality using the number of participating nucleons (N/sub part/), or the number of binary nucleon-nucleon collisions (N/sub coll/). Their values at midrapidity exhibit a linear scaling with N/sub part/ at both energies. Particle yield increases approximately by a factor of 2 between square root s = 8.77 GeV and square root s = 17.3 GeV. (5 refs).

  15. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach

    Science.gov (United States)

    Plehn, Thomas; May, Volkhard

    2017-01-01

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  16. Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-11-01

    Full Text Available The transportation sector is severely correlated with major problems in environment, citizens’ health, climate and economy. Issues such as traffic, fuel cost and parking space have make life more difficult, especially in the dense urban environment. Thus, there is a great need for the development of the electric vehicle (EV sector. The number of cars in cities has increased so much that the current transportation system (roads, parking places, traffic lights, etc. cannot accommodate them properly. The increasing number of vehicles does not affect only humans but also the environment, through air and noise pollution. According to EPA, the 39.2% of total gas emissions in 2007 was caused by transportation activities. Studies have shown that the pollutants are not only gathered in the major roads and/or highways but can travel depending on the meteorological conditions leading to generic pollution. The promotion of EVs and the charging stations are both equally required to be further developed in order EVs to move out of the cities and finally confront the range problem. In this work, a wind resource and a GIS analysis optimizes in a wider area the sitting of wind based charging stations and proposes an optimizing methodology.

  17. Multiple Electron Charge Transfer Chemistries for Electrochemical Energy Storage Systems: The Metal Boride and Metal Air Battery

    Science.gov (United States)

    Stuart, Jessica F.

    The primary focus of this work has been to develop high-energy capacity batteries capable of undergoing multiple electron charge transfer redox reactions to address the growing demand for improved electrical energy storage systems that can be applied to a range of applications. As the levels of carbon dioxide (CO2) increase in the Earth's atmosphere, the effects on climate change become increasingly apparent. According to the Energy Information Administration (EIA), the U.S. electric power sector is responsible for the release of 2,039 million metric tons of CO2 annually, equating to 39% of total U.S. energy-related CO2 emissions. Both nationally and abroad, there are numerous issues associated with the generation and use of electricity aside from the overwhelming dependence on fossil fuels and the subsequent carbon emissions, including reliability of the grid and the utilization of renewable energies. Renewable energy makes up a relatively small portion of total energy contributions worldwide, accounting for only 13% of the 3,955 billion kilowatt-hours of electricity produced each year, as reported by the EIA. As the demand to reduce our dependence on fossils fuels and transition to renewable energy sources increases, cost effective large-scale electrical energy storage must be established for renewable energy to become a sustainable option for the future. A high capacity energy storage system capable of leveling the intermittent nature of energy sources such as solar, wind, and water into the electric grid and provide electricity at times of high demand will facilitate this transition. In 2008, the Licht Group presented the highest volumetric energy capacity battery, the vanadium diboride (VB2) air battery, exceedingly proficient in transferring eleven electrons per molecule. This body of work focuses on new developments to this early battery such as fundamentally understanding the net discharge mechanism of the system, evaluation of the properties and

  18. Adenylate cyclase regulates elongation of mammalian primary cilia

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  19. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    Energy Technology Data Exchange (ETDEWEB)

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  20. Sequential charged-particle and neutron activation of Flibe in the HYLIFE-II inertial fusion energy power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J.F.; Tobin, M.T. [Lawrence Livermore National Lab., CA (United States); Vujic, J.L. [California Univ., Berkeley, CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain)

    1996-06-14

    Most radionuclide generation/depletion codes consider only neutron reactions and assume that charged particles, which may be generated in these reactions, deposit their energy locally without undergoing further nuclear interactions. Neglect of sequential charged-particle (x,n) reactions can lead to large underestimation in the inventories of radionuclides. PCROSS code was adopted for use with the ACAB activation code to enable calculation of the effects of (x,n) reactions upon radionuclide inventories and inventory-related indices. Activation calculations were made for Flibe (2LiF + BeF{sub 2}) coolant in the HYLIFE-II inertial fusion energy (IFE) power plant design. For pure Flibe coolant, it was found that (x,n) reactions dominate the residual contact dose rate at times of interest for maintenance and decommissioning. For impure Flibe, however, radionuclides produced directly in neutron reaction dominate the contact dose rate and (x,n) reactions do not make a significant contribution. Results demonstrate potential importance of (x,n) reactions and that the relative importance of (x,n) reactions varies strongly with the composition of the material considered. Future activation calculations should consider (x,n) reactions until a method for pre-determining their importance is established.

  1. Energy Dependence of Moments of Net-Proton, Net-Kaon, and Net-Charge Multiplicity Distributions at STAR

    CERN Document Server

    ,

    2016-01-01

    One of the main goals of the RHIC Beam Energy Scan (BES) program is to study the QCD phase structure, which includes the search for the QCD critical point, over a wide range of chemical potential. Theoretical calculations predict that fluctuations of conserved quantities, such as baryon number (B), charge (Q), and strangeness (S), are sensitive to the correlation length of the dynamical system. Experimentally, higher moments of multiplicity distributions have been utilized to search for the QCD critical point in heavy-ion collisions. In this paper, we report recent efficiency-corrected cumulants and cumulants ratios of the net- proton, net-kaon, and net-charge multiplicity distributions in Au+Au collisions at 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV collected in the years 2010, 2011, and 2014 with STAR at RHIC. The centrality and energy dependence of the cumulants up to the fourth order, as well as their ratios, are presented. Furthermore, the comparisons with baseline calculations (Poisson) and non-c...

  2. High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    Science.gov (United States)

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  3. Effects of dark energy on the efficiency of charged AdS black holes as heat engines

    Science.gov (United States)

    Liu, Hang; Meng, Xin-He

    2017-08-01

    In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the P- V plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density ρ _q grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(V_1) and the bigger black holes(V_2 ) will lead to a lower efficiency, while the bigger pressure difference P_1-P_4 will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity.

  4. Charge transfer of positive hydrogen ions and Ca vapour at keV energies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, H; Amaya-Tapia, A [Centro de Ciencias Fisicas, UNAM, AP 48-3, Cuernavaca, Morelos 62250 (Mexico)

    2003-08-28

    Total and partial single-electron-capture cross sections for H{sup +} + Ca collisions have been calculated by the semiclassical impact-parameter method. A two-centre atomic basis expansion was used in the impact ion energy range 1-100 keV. The present total cross sections are in good agreement with previous experimental data. The most important contributions to the total cross sections come from the capture in the n = 2 shell in almost the entire energy range studied in this work, but the contribution from the n = 1 level is increasingly important at energies higher than 60 keV.

  5. Evaluation of excitation energy and spin from light charged particles multiplicities in heavy-ion collisions

    CERN Document Server

    Steckmeyer, J C; Grotowski, K; Pawowski, P; Aiello, S; Anzalone, A; Bini, M; Borderie, B; Bougault, R; Cardella, G; Casini, G; Cavallaro, S; Charvet, J L; Dayras, R; De Filippo, E; Durand, D; Femin, S; Frankland, J D; Galíchet, E; Geraci, M; Giustolisi, F; Guazzoni, P; Iacono-Manno, M; Lanzalone, G; Lanzan, G; Le Neindre, N; Lo Nigro, S; Lo Piano, F; Olmi, A; Pagano, A; Papa, M; Pârlog, M; Pasquali, G; Piantelli, S; Pirrone, S; Politi, G; Porto, F; Rivet, M F; Rizzo, F; Rosato, E; Roy, R; Sambataro, S; Sperduto, M L; Stefanini, A A; Sutera, C; Tamain, B; Vient, E; Volant, C; Wieleczko, J P; Zetta, L

    2005-01-01

    A simple procedure for evaluating the excitation energy and the spin transfer in heavy-ion dissipative collisions is proposed. It is based on a prediction of the GEMINI evaporation code : for a nucleus with a given excitation energy, the average number of emitted protons decreases with increasing spin, whereas the average number of alpha particles increases. Using that procedure for the reaction 107Ag+58Ni at 52 MeV/nucleon, the excitation energy and spin of quasi-projectiles have been evaluated. The results obtained in this way have been compared with the predictions of a model describing the primary dynamic stage of heavy-ion collisions.

  6. Design of Power Converters for Renewable Energy Sources and Electric Vehicles Charging

    Directory of Open Access Journals (Sweden)

    Martin Tvrdon

    2013-01-01

    Full Text Available This paper describes the design and construction of new series of power converters equipped with liquid cooling system. This power series is created for project ENET – Energy Units for Utilization of non Traditional Energy Sources. First power converter is determined for stationary battery system use, the second one is used as an inverter/rectifier for a small solar plant system and the last power inverter is used as a fast charger for electric vehicles. Energy balance is performed for the fast charger converter, which is solved using numerical simulations of the system.

  7. The Low Energy Charged Particle /LECP/ experiment on the Voyager spacecraft

    Science.gov (United States)

    Krimigis, S. M.; Bostrom, C. O.; Armstrong, T. P.; Axford, W. I.; Fan, C. Y.; Gloeckler, G.; Lanzerotti, L. J.

    1977-01-01

    The Low Energy Magnetosphere Particle Analyzer (LEMPA) and the Low Energy Particle Telescope (LEPT) on board the Voyager spacecraft are described. The LEMPA has an energy range of about 10 keV to greater than 11 MeV for electrons and about 15 keV to greater than 150 MeV for protons and heavier ions; the LEPT covers a range of about 0.05 to 40 MeV/nucleon with good energy and species resolution. The LEPT and LEMPA subsystems are mounted on a stepping platform which rotates at variable rate through eight angular sectors. Comprehensive measurements of particles in the Jovian, Saturnian, Uranian, and interplanetary environments are expected from the experiment.

  8. Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE.

    Science.gov (United States)

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S A; Ahn, S U; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Botje, M; Botta, E; Böttger, S; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, K; Das, D; Das, I; Dash, A; Dash, S; De, S; Delagrange, H; Deloff, A; Dénes, E; Deppman, A; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; D Erasmo, G; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; González-Zamora, P; Gorbunov, S; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Khan, K H; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, V; Ivanov, M; Ivanytskyi, O; Jachołkowski, A; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, S A; Khan, M M; Khan, P; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, S; Kim, D W; Kim, D J; Kim, B; Kim, T; Kim, M; Kim, M; Kim, J S; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; La Pointe, S L; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Jacobs, P M; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nystrand, J; Oeschler, H; Oh, S K; Oh, S; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, S; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Spacek, M; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Vannucci, L; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wagner, J; Wang, Y; Wang, Y; Wang, M; Watanabe, D; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, F; Zhang, Y; Zhang, H; Zhang, X; Zhou, D; Zhou, Y; Zhou, F; Zhu, X; Zhu, J; Zhu, J; Zhu, H; Zichichi, A; Zimmermann, M B; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    Differential cross sections of charged particles in inelastic pp collisions as a function of p T have been measured at [Formula: see text] at the LHC. The p T spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual [Formula: see text] cannot be described by NLO-pQCD, the relative increase of cross section with [Formula: see text] is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at [Formula: see text] up to p T =50 GeV/ c as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

  9. Energy Dependence of the Transverse Momentum Distributions of Charged Particles in pp Collisions Measured by ALICE

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sul-Ah; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki Eskeli; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bornschein, Joerg; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Kushal; Das, Debasish; Das, Indranil; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; Deppman, Airton; Oliveira Valeriano De Barros, Gabriel; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Doenigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; D'Erasmo, Ginevra; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gorlich, Lidia Maria; Gomez Jimenez, Ramon; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Vladimir; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Palash; Khan, Mohammed Mohisin; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratyev, Valery; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexey; Kurepin, Alexander; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasilij; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz Arkadiusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Jacobs, Peter Martin; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mazer, Joel Anthony; Mazumder, Rakesh; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes Prado, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nyatha, Anitha; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woojin; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang Hans; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Seo, Jeewon; Serci, Sergio; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Maria; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vande Vyvre, Pierre; Vannucci, Luigi; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Sergey; Voloshin, Kirill; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wagner, Jan; Wang, Yifei; Wang, Yaping; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Kengo; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Fan; Zhang, Yonghong; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, You; Zhou, Fengchu; Zhu, Xiangrong; Zhu, Jianlin; Zhu, Jianhui; Zhu, Hongsheng; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-12-06

    Differential cross sections of charged particles in inelastic pp collisions as a function of $p_T$ have been measured at $\\sqrt{s}$ = 0.9, 2.76 and 7 TeV at the LHC. The $p_T$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\\sqrt{s}$ = 2.76 and 5.02 TeV up to $p_T$ = 50 GeV/c as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

  10. Energy and exergy analyses of homogeneous charge compressin ignition (HCCI engine

    Directory of Open Access Journals (Sweden)

    Fatehi Ghahfarokhi Rasool

    2013-01-01

    Full Text Available In the present investigation, a single-cylinder, four-stroke cycle, TD43 engine has been used to evaluate the first and second laws of thermodynamics terms. To this aim, the first law analysis is done by using a thermo-kinetic model. The results show a good agreement with the experimental data. Also for the second law analysis, a developed in house computational code is applied. Behaviors of the results have a good accordance with the literature. The result show that an increase in the inlet charge temperature causes the maximum pressure, indicated work availability and entropy generation per cycle be reduced and the in-cylinder temperature, heat loss availability and total availability be increased. Also the results show that an increase in the engine speed causes the total availability be increased and the heat loss availability be decreased. When the engine speed increases, reduction in the duration of cycle evolution causes the reduction of heat transfer.

  11. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1993-01-01

    A systematic study of intramolecular photoassociation and photoinduced charge transfer (CT) was initiated in bichromophoric systems of M-X-M, where two identical aromatic hydrocarbons M are joined by X=CH[sub 2], O, NH, etc. Dinaphthylamines, dinaphthylethers, and dinaphthylmethanes in nonpolar solvents form triplet excimers, following inter system crossing of singlets to the triplet manifold; in polar solvents, the molecule forms an intramolecular CT state. The interchromophore interaction study was extended to N-phenyl-2-naphthylamine. The lowest excited singlet states of the dinaphthylamines were studied by semiempirical quantum chemical methods. Exciplex formation was studied in excited states of jet-cooled van der Waals complexes, such as fluorene/substituted benzenes and 1-cyanonaphthalene-aliphatic amines.

  12. Azimuthal asymmetries in production of charged hadrons by high energy muons on polarized deuterium targets

    CERN Document Server

    Savin, Igor A.

    2010-01-01

    Search for azimuthal asymmetries in semi-inclusive production of charged hadrons by 160 GeV muons on the longitudinally polarized deuterium target, has been performed using the 2002- 2004 COMPASS data. The observed asymmetries integrated over the kinematical variables do not depend on the azimuthal angle of produced hadrons and are consistent with the ratio $g_1^d(x)/f_1^d(x)$. The asymmetries are parameterized taking into account possible contributions from different parton distribution functions and parton fragmentation functions depending on the transverse spin of quarks.They can be modulated (either/or/and) with $\\sin(\\phi), \\sin(2\\phi), \\sin(3\\phi)$ and $\\cos(\\phi)$. The $x$-, $z$- and $p_h^T$-dependencies of these amplitudes are studied.

  13. Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells.

    Science.gov (United States)

    Leppla, S H

    1984-01-01

    Studies on the mechanism of action of anthrax toxin have led to the discovery that the edema factor component is a calmodulin-dependent adenylate cyclase. This enzyme can be obtained in milligram amounts at high purity from culture supernatants of avirulent B. anthracis strains. The cyclase binds to and probably enters eucaryotic cells to cause large, unregulated increases in cyclic AMP concentrations, an effect that may decrease an animal's ability to limit B. anthracis infection. The similarity of this bacterial adenylate cyclase to calmodulin-dependent eucaryotic adenylate cyclases suggests that EF may have originated as a eucaryotic enzyme. Such a relationship may eventually be established through comparison of the antigenic and genetic properties of the enzymes or by demonstrating that the genes have related DNA sequences. Even if such a relationship is not found, the edema factor cyclase will be a useful model for study of the properties of calmodulin-dependent enzymes.

  14. Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements

    Directory of Open Access Journals (Sweden)

    Matthias Rogge

    2015-05-01

    Full Text Available The electrification of public transport bus networks can be carried out utilizing different technological solutions, like trolley, battery or fuel cell buses. The purpose of this paper is to analyze how and to what extent existing bus networks can be electrified with fast charging battery buses. The so called opportunity chargers use mainly the regular dwell time at the stops to charge their batteries. This results in a strong linkage between the vehicle scheduling and the infrastructure planning. The analysis is based on real-world data of the bus network in Muenster, a mid-sized city in Germany. The outcomes underline the necessity to focus on entire vehicle schedules instead on individual trips. The tradeoff between required battery capacity and charging power is explained in detail. Furthermore, the impact on the electricity grid is discussed based on the load profiles of a selected charging station and a combined load profile of the entire network.

  15. Urea-Dependent Adenylate Kinase Activation following Redistribution of Structural States.

    Science.gov (United States)

    Rogne, Per; Wolf-Watz, Magnus

    2016-10-04

    Proteins are often functionally dependent on conformational changes that allow them to sample structural states that are sparsely populated in the absence of a substrate or binding partner. The distribution of such structural microstates is governed by their relative stability, and the kinetics of their interconversion is governed by the magnitude of associated activation barriers. Here, we have explored the interplay among structure, stability, and function of a selected enzyme, adenylate kinase (Adk), by monitoring changes in its enzymatic activity in response to additions of urea. For this purpose we used a 31P NMR assay that was found useful for heterogeneous sample compositions such as presence of urea. It was found that Adk is activated at low urea concentrations whereas higher urea concentrations unfolds and thereby deactivates the enzyme. From a quantitative analysis of chemical shifts, it was found that urea redistributes preexisting structural microstates, stabilizing a substrate-bound open state at the expense of a substrate-bound closed state. Adk is rate-limited by slow opening of substrate binding domains and the urea-dependent redistribution of structural states is consistent with a model where the increased activity results from an increased rate-constant for domain opening. In addition, we also detected a strong correlation between the catalytic free energy and free energy of substrate (ATP) binding, which is also consistent with the catalytic model for Adk. From a general perspective, it appears that urea can be used to modulate conformational equilibria of folded proteins toward more expanded states for cases where a sizeable difference in solvent-accessible surface area exists between the states involved. This effect complements the action of osmolytes, such as trimethylamine N-oxide, that favor more compact protein states. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  17. Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure

    Science.gov (United States)

    Ma, Xingchen; Zhang, Xiaoqing

    2017-08-01

    Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure were designed in this study. Strips of such energy harvesters were excited by applying mechanical stress in length direction. A current in a terminating resistor was generated due to the capacitance variation of the samples. For a typical double-periodic folded-structure electrostatic vibration energy harvester sample whose effective length and width were 30 mm and 10 mm, respectively, the generated power across a matching resistor at a resonance frequency of 36 Hz amounts to 641 μW for a seismic mass of 4 g and an acceleration of 1 g (g is the gravity of the Earth). Similar structures which were designed and fabricated in this study were also tested for energy harvesting and high output power in the order of a few hundred microwatt was gained. Following the presentation of a theoretical model allowing for the calculation of the power generated in a load resistance at the resonance frequency of the harvesters, experimental results are shown and compared to theoretical prediction. It turns out that the experiment results accord well with the theoretical predictions.

  18. Contribution of High Charge and Energy (HZE) Ions During Solar-Particle Event of September 29, 1989

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.; Simonsen, Lisa C.; Atwell, William; Badavi, Francis F.; Miller, Jack

    1999-01-01

    The solar-particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 A GeV with an approximate spectral slope parameter of 2.5. These high charge and energy (HZE) ions challenge conventional methods of shield design and assessment of astronaut risks. In the past, shield design and risk assessment have relied on proton shielding codes and biological response models derived from X-ray and neutron exposure data. Because the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels and distributions of linear energy transfer. Local tissue environments during the SPE of September 29, 1989, with its f= components are examined to analyze the importance of these ions to human SPE exposure. Typical space suit and lightly shielded structures leave significant contributions from HZE components to certain critical body tissues and have important implications on the models for risk assessment. A heavily shielded equipment room of a space vehicle or habitat requires knowledge of the breakup of these ions into lighter components, including neutrons, for shield design specifications.

  19. Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    2017-11-01

    Full Text Available The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT controlled subsystem, photovoltaic (PV MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs simultaneously to fulfil the grid-to-vehicle (G2V, vehicle-to-grid (V2G, grid-to-battery storage system (G2BSS, battery storage system-to-grid (BSS2G, battery storage system-to-vehicle (BSS2V, vehicle-to-battery storage system (V2BSS and vehicle-to-vehicle (V2V charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.

  20. Investigation on the technical implementation of controlled charging of electric vehicles with renewable energy; Untersuchung zur technischen Umsetzung des Gesteuerten Ladens von Elektrofahrzeugen mit regenerativ erzeugtem Strom

    Energy Technology Data Exchange (ETDEWEB)

    Zickler, Uwe; Roscher, Torsten [E.ON Thueringer Energie AG, Erfurt (Germany); Agsten, Michael; Arnoldt, Alexander [Fraunhofer IOSB, Ilmenau (Germany). Institutsteil Angewandte Systemtechnik (AST); Schlegel, Steffen [Technische Univ. Ilmenau (Germany)

    2012-07-01

    Besides the funding of the renewable energies the extension of electric mobility is an essential element of the energy turnaround proclaimed by the German Government. Both aspects will cause major changes to the electricity supply system and require a comprehensive network expansion. The method presented in this paper is intended to control the charging process of electric vehicles to the extent that the required charging current is generated by locally available, renewable energy sources. Thus, the difference between the power supply and demand is equalized not only on balance sheet but physically and time related in fact to reduce grid expansion specifically. (orig.)

  1. Clay catalyzed polymerization of amino acid adenylates and its relationship to biochemical reactions

    Science.gov (United States)

    Paecht-Horowitz, M.

    1978-01-01

    The adsorption and polymerization of alanine adenylate on montmorillonite at pH 7 when either its interspacial faces or its edger are blocked by an excess of histidine or sodium hexametaphosphate was investigated. Results indicate that alanine adenylate can be adsorbed any place on the interspacial spaces of the clay; however, adsorption of its phosphate part, which is limited to the edges of the clay, is necessary for polymerization to occur. As a result, polymerization takes place only at sites on the interspacial faces bordering the edges.

  2. A Green's function method for high charge and energy ion transport

    Science.gov (United States)

    Chun, S. Y.; Khandelwal, G. S.; Wilson, J. W.

    1996-01-01

    A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.

  3. Interaction of slow highly charged ions with a metal surface covered with a thin dielectric film. The role of the neutralization energy in the nanostructures formation

    Science.gov (United States)

    Majkić, M. D.; Nedeljković, N. N.; Dojčilović, R. J.

    2017-09-01

    We consider the slow highly charged ions impinging upon a metal surface covered with a thin dielectric film, and formation of the surface nanostructures (craters) from the standpoint of the required energy. For the moderate ionic velocities, the size of the surface features depends on the deposited kinetic energy of the projectile and the ionic neutralization energy. The neutralization energy is calculated by employing the recently developed quasi-resonant two-state vector model for the intermediate Rydberg state population and the micro-staircase model for the cascade neutralization. The electron interactions with the ionic core, polarized dielectric and charge induced on the metal surface are modelled by the appropriate asymptotic expressions and the method for calculation of the effective ionic charges in the dielectric is proposed. The results are presented for the interaction of \\text{X}{{\\text{e}}Z+} ions (velocity v=0.25 a.u.; 25) with the metal surface (Co) covered with a thin dielectric film, for model values of dielectric constant inside the interaction region. In the absence of dielectric film, the neutralization energy is lower than the potential (ionization) energy due to the incomplete neutralization. The presence of dielectric film additionally decreases the neutralization energy. We calculate the projectile neutralization energy in the perturbed dielectric (perturbation is caused by the ionic motion and the surface structure formation). We correlate the neutralization energy added to the deposited kinetic energy with the experimentally obtained energy necessary for the formation of the nano-crater of a given depth.

  4. Regge approach to charged-pion photoproduction at invariant energies above 2 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Sibirtsev, A; Haidenbauer, J; Krewald, S; Lee, T S.H.; Meissner, U -G; Thomas, A W

    2007-10-01

    A Regge model with absorptive corrections is employed in a global analysis of the world data on positive and negative pion photoproduction for photon energies from 3 to 8~GeV. In this region resonance contributions are expected to be negligible so that the available experimental information on differential cross sections and single polarization observables at $-t{\\leq}2$ GeV$^2$ allows us to determine the non-resonant part of the reaction amplitude reliably. The model amplitude is then used to predict observables for photon energies below $3$ GeV. Differences between our predictions and data in this energy region are systematically examined as possible signals for the presence of excited baryons. We find that the data available for the polarized photon asymmetry show promising resonance signatures at invariant energies around 2~GeV. With regard to differential cross sections the analysis of negative pion photoproduction data, obtained recently at JLab, indicates likewise the presence of resonance structures around 2~GeV.

  5. Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply

    NARCIS (Netherlands)

    Walraven, E.M.P.; Spaan, M.T.J.; Kaminka, Gal A.; Fox, Maria; Bouquet, Paolo; Hüllermeier, Eyke; Dignum, Virginia; Dignum, Frank; van Harmelen, Frank

    2016-01-01

    Renewable energy sources introduce uncertainty regarding generated power in smart grids. For instance, power that is generated by wind turbines is time-varying and dependent on the weather. Electric vehicles will become increasingly important in the development of smart grids with a high penetration

  6. Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer

    NARCIS (Netherlands)

    Ganguly, S.; Mohan Kumar, M.S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    A three-dimensional (3D) coupled thermo-hydrogeological numerical model for a confined aquifer thermal energy storage (ATES) system underlain and overlain by rock media has been presented in this paper. The ATES system operates in cyclic mode. The model takes into account heat transport processes of

  7. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  8. Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC

    Science.gov (United States)

    Biedermann, Benedikt; Denner, Ansgar; Hofer, Lars

    2017-10-01

    The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ + μ -e+ ν e, {μ}+{μ}-{e}-{\\overline{ν}}e , μ + μ - μ + ν μ , and {μ}+{μ}-{μ}-{\\overline{ν}}_{μ } at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between -3% and -6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to -30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.

  9. Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Jin-Sun Yang

    2016-11-01

    Full Text Available An energy storage system (ESS in a power system facilitates tasks such as renewable integration, peak shaving, and the use of ancillary services. Among the various functions of an ESS, this study focused on frequency regulation (or secondary reserve. This paper presents an optimal scheduling algorithm for frequency regulation by an ESS. This algorithm determines the bidding capacity and base point of an ESS in each operational period to achieve the maximum profit within a stable state-of-charge (SOC range. However, the charging/discharging efficiency of an ESS causes SOC errors whenever the ESS performs frequency regulation. With an increase in SOC errors, the ESS cannot respond to an automatic generation control (AGC signal. This situation results in low ESS performance scores, and finally, the ESS is disqualified from performing frequency regulation. This paper also presents a real-time SOC management algorithm aimed at solving the SOC error problem in real-time operations. This algorithm compensates for SOC errors by changing the base point of the ESS. The optimal scheduling algorithm is implemented in MATLAB by using the particle swarm optimization (PSO method. In addition, changes in the SOC when the ESS performs frequency regulation in a real-time operation are confirmed using the PSCAD/EMTDC tool. The simulation results show that the optimal scheduling algorithm manages the SOC more efficiently than a commonly employed planning method. In addition, the proposed real-time SOC management algorithm is confirmed to be capable of performing SOC recovery.

  10. The ISPM experiment for spectral, composition and anistropy measurements of charged particles at low energie

    Science.gov (United States)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1983-01-01

    The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.

  11. Space charge and working point studies in the CERN Low Energy Ion Ring

    CERN Document Server

    Huschauer, A; Hancock, S; Kain, V

    2017-01-01

    The Low Energy Ion Ring (LEIR) is at the heart ofCERN’s heavy ion physics programme and was designed toprovide the high phase space densities required by the exper-iments at the Large Hadron Collider (LHC). LEIR is the firstsynchrotron of the LHC ion injector chain and it receives aquasi-continuous pulse of lead ions (Pb54+) from Linac3, ex-ploiting a sophisticated multi-turn injection scheme in bothtransverse and longitudinal planes. Seven of these pulses areinjected and accumulated, which requires continuous elec-tron cooling (EC) at low energy to decrease the phase spacevolume of the circulating beam in between two injections.Subsequently, the coasting beam is adiabatically capturedin two bunches, which are then accelerated and extractedtowards the Proton Synchrotron (PS). Figure 1 shows theLEIR magnetic cycle and the different steps required forbeam production.

  12. Abundances, charge states, and energy spectra of helium and heavy ions during solar particle events

    Science.gov (United States)

    Gloeckler, G.; Sciambi, R.; Fan, C. Y.; Hovestadt, D.

    1975-01-01

    Carbon and oxygen energy spectra observed during several solar events indicate a systematic deviation of these spectra from a simple power law: the spectra bend down below about 100 keV/nuc and the amount of this bending is highly correlated with the size of the flare, as measured by the 'event averaged' flux of 130-220 keV protons. The energy spectra of helium computed for the same time periods do not show a similar feature. A large variability of the alpha/CNO ratio is found from event to event (from 2 to about 20 at 40 keV/nuc), and in all cases examined the carbon and oxygen nuclei are nearly fully stripped. These results are interpreted as evidence for storage of energetic ions in hot coronal regions, followed by strong adiabatic deceleration.

  13. Moment-Preserving Computational Approach for High Energy Charged Particle Transport

    Science.gov (United States)

    2016-05-16

    250-303 (2003). [4] L. Evans and P. Bryant, LHC machine , Jinst 3, S08001; DOI: 10.1088/1748-0221/3/08/S08001 (2008). [5] V. N. Ivanchenko, et al...the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this...58 Table 13: Timing results for energy deposition calculations for 500

  14. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization.

    Directory of Open Access Journals (Sweden)

    Gianvito Grasso

    Full Text Available The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.

  15. Estimation of individual binding energies in some dimers involving multiple hydrogen bonds using topological properties of electron charge density

    Science.gov (United States)

    Ebrahimi, A.; Habibi Khorassani, S. M.; Delarami, H.

    2009-11-01

    Individual hydrogen bond (HB) energies have been estimated in several systems involving multiple HBs such as adenine-thymine and guanine-cytosine using electron charge densities calculated at X⋯H hydrogen bond critical points (HBCPs) by atoms in molecules (AIM) method at B3LYP/6-311++G ∗∗ and MP2/6-311++G ∗∗ levels. A symmetrical system with two identical H bonds has been selected to search for simple relations between ρHBCP and individual EHB. Correlation coefficient between EHB and ρHBCP in the base of linear, quadratic, and exponential equations are acceptable and equal to 0.95. The estimated individual binding energies EHB are in good agreement with the results of atom-replacement approach and natural bond orbital analysis (NBO). The EHB values estimated from ρ values at H⋯X BCP are in satisfactory agreement with the main geometrical parameter H⋯X. With respect to the obtained individual binding energies, the strength of a HB depends on the substituent and the cooperative effects of other HBs.

  16. Predictions on the transverse momentum spectra for charged particle production at LHC-energies from a two component model

    Energy Technology Data Exchange (ETDEWEB)

    Bylinkin, A.A. [Moscow Institute of Physics and Technology, MIPT, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Chernyavskaya, N.S. [Moscow Institute of Physics and Technology, MIPT, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, ITEP, Moscow (Russian Federation); Rostovtsev, A.A. [Institute for Information Transmission Problems, IITP, Moscow (Russian Federation)

    2015-04-01

    Transversemomentum spectra, d{sup 2}σ/(dηdp{sub T}{sup 2}), of charged hadron production in pp-collisions are considered in terms of a recently introduced two component model. The shapes of the particle distributions vary as a function of the c.m.s. energy in the collision and the measured pseudorapidity interval. As a result the pseudorapidity of a secondary hadron in the moving proton rest frame is shown to be a universal parameter describing the shape of the spectra in pp-collisions. In order to extract predictions on the doubledifferential cross sections d{sup 2}σ/(dηdp{sub T}{sup 2}) of hadron production for future LHC-measurements the different sets of available experimental data have been used in this study. (orig.)

  17. Core-ion temperature measurement of the ADITYA tokamak using passive charge exchange neutral particle energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Santosh P.; Ajay, Kumar; Mishra, Priyanka; Dhingra, Rajani D.; Govindarajan, J. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Core-ion temperature measurements have been carried out by the energy analysis of passive charge exchange (CX) neutrals escaping out of the ADITYA tokamak plasma (minor radius, a= 25 cm and major radius, R= 75 cm) using a 45 Degree-Sign parallel plate electrostatic energy analyzer. The neutral particle analyzer (NPA) uses a gas cell configuration for re-ionizing the CX-neutrals and channel electron multipliers (CEMs) as detectors. Energy calibration of the NPA has been carried out using ion-source and {Delta}E/E of high-energy channel has been found to be {approx}10%. Low signal to noise ratio (SNR) due to VUV reflections on the CEMs was identified during the operation of the NPA with ADITYA plasma discharges. This problem was rectified by upgrading the system by incorporating the additional components and arrangements to suppress VUV radiations and improve its VUV rejection capabilities. The noise rejection capability of the NPA was experimentally confirmed using a standard UV-source and also during the plasma discharges to get an adequate SNR (>30) at the energy channels. Core-ion temperature T{sub i}(0) during flattop of the plasma current has been measured to be up to 150 eV during ohmically heated plasma discharges which is nearly 40% of the average core-electron temperature (typically T{sub e}(0) {approx} 400 eV). The present paper describes the principle of tokamak ion temperature measurement, NPA's design, development, and calibration along with the modifications carried out for minimizing the interference of plasma radiations in the CX-spectrum. Performance of the NPA during plasma discharges and experimental results on the measurement of ion-temperature have also been reported here.

  18. Effects of dark energy on the efficiency of charged AdS black holes as heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hang [Nankai University, School of Physics, Tianjin (China); Meng, Xin-He [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Science, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-08-15

    In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the P-V plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density ρ{sub q} grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(V{sub 1}) and the bigger black holes(V{sub 2}) will lead to a lower efficiency, while the bigger pressure difference P{sub 1} - P{sub 4} will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity. (orig.)

  19. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  20. pi-N charge exchange and pi(+)-pi(0) scattering at low energies

    OpenAIRE

    Pocanic, D.; Frlez, E.

    1997-01-01

    pi-N and pi-pi interactions near threshold are uniquely sensitive to the chiral symmetry breaking part of the strong interaction. The pi-N sigma-term value with its implications for nucleon quark structure and the recent controversy concerning the size of the scalar quark condensate have renewed the experimental interest in these two fundamental systems. We report new differential cross sections for the reaction $pi^-p \\to \\pi^0n$ at 27.5 MeV pion incident kinetic energy, measured between $\\t...

  1. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  2. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity

    NARCIS (Netherlands)

    Roettig, Marc; Medema, Marnix H.; Blin, Kai; Weber, Tilmann; Rausch, Christian; Kohlbacher, Oliver

    The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great

  3. Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Tyrode, Eric

    2015-01-01

    Interactions between a silica surface and a surface coated with a grafted cross-linked hydrogel made from chitosan/PAA multilayers are investigated, utilizing colloidal probe atomic force microscopy. Attractive double-layer forces are found to dominate the long-range interaction over a broad range...... of pH and ionic strength conditions. The deduced potential at the hydrogel/aqueous interface is found to be very low. This situation is maintained in the whole pH-range investigated, even though the degree of protonation of chitosan changes significantly. This demonstrates that pH-variations change......, but not the friction coefficient. This suggests that the main energy dissipation mechanism arises from processes occurring within the hydrogel layer, rather than at the silica/hydrogel interface, and we suggest that it is related to stretching of polymer chains between the cross-linking points. We also find...

  4. Extraction of energy by a variable mass plate from an explosive charge

    Energy Technology Data Exchange (ETDEWEB)

    Karmanova, T.I.; Loboiko, G.B.

    1987-07-01

    This paper shows how the motion of plates with variable and constant mass is different. An equation of motion of a body with variable mass is presented which takes into account the decrease in the velocity after the collision. The authors explain how the work performed by the explosion products on a plate with increasing mass does not equal the kinetic energy acquired by the plate in the absence of an external pressure, but that the presence of the pressure from the explosion products partially compensates the loss in the velocity on collision. As the plate moves and its mass increases, the relative fraction of uncompensated losses will increase, since the pressure decreases on expansion.

  5. Bent silicon strip crystals for high-energy charged particle beam collimation

    Science.gov (United States)

    Germogli, G.; Mazzolari, A.; Guidi, V.; Romagnoni, M.

    2017-07-01

    For applications in high energy particles accelerators, such as the crystal-assisted beam collimation, several strip crystals exploiting anticlastic curvature were produced in the last decade at the Sensor and Semiconductor Laboratory (SSL) of Ferrara by means of revisited techniques for silicon micromachining, such as photolitography and wet etching. Those techniques were recently enhanced by introducing a further treatment called Magnetorheological Finishing (MRF), which allowed to fabricate crystals with ultraflat surface and miscut very close to zero. The technology of the mechanical devices used to hold and bend crystals has been also improved by employing a titanium alloy to realize the holders. Characterization method were also improved: the usage of a high resolution X-rays diffractometer was introduced to directly measure crystal bending and torsion. Accuracy of the diffractometer was furtherly enhanced with an autocollimator, which found an important application in miscut characterization. A new infrared light interferometer was used to map the thickness of the starting swafers with sub-micrometric precision, as well as to measure the length along the beam of the strips. Crystals were characterized at the H8 external lines of CERN-SPS with various hundreds-GeV ion beams, which gave results in agreement with the precharacterization performed at SSL. One strip was selected among the crystals to be installed in the LHC beam pipe during the Long Shutdown 1 in 2014. These crystals were very recently tested in a crystal-assisted collimation experiment with a 6.5 TeV proton beam, resulting in the first observation of channeling at this record energy, being also the first observation of channeling of the beam circulating in the LHC.

  6. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  7. Identification and analysis of charged hadrons in p+p interactions from NA61/SHINE experiment at CERN SPS energies

    CERN Document Server

    Pulawski, Szymon

    The phase-transition of strongly interacting matter is a very interesting phenom- ena, which still is not fully understood. Signi cant contribution to improving knowledge about properties of the onset of decon nement of strongly interact- ing matter might come from the NA61/SHINE experiment at CERN. The main goal of this xed-target experiment is to discover the critical point and study the properties of the onset of decon nement. This goal has been reached by the pre- cise measurement of the hadron production in proton-proton, proton-nucleus and nucleus-nucleus interactions in a wide range of system sizes and collision energies. The main goal of this thesis was to obtained two-dimensional spectra of positively and negatively charged pions, kaons and protons produced in p + p interactions at SPS energy range (20 ; 30 : 9 ; 40 ; 80 ; 158 GeV=c ). This studies are necessary for understanding of the onset of decon nement. For this purpose, identi cation and correction techniques dedicated...

  8. Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes

    CERN Document Server

    Daudé, Thierry

    2017-01-01

    In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)-that the Dirac equation can be separated into radial and angular ordinary differential equations-to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of ...

  9. Identified charged hadron production in pp, p-Pb and Pb-Pb collisions at LHC energies with ALICE

    Science.gov (United States)

    Volpe, Giacomo

    2015-05-01

    The ALICE detector is dedicated to the study of strongly interacting matter in the extremely high temperature and energy density conditions reached in relativistic heavy-ions collisions at the LHC. ALICE has unique particle identification (PID) capabilities among the LHC experiments thanks to the use of the combination of different PID techniques, i.e. energy loss and time of flight measurements, Cherenkov and transition radiation detection, calorimetry and topological ID. The latest results on charged pions, kaons and (anti)protons transverse momentum (pT) spectra, ratios and integrated yields, measured in pp collisions at √s = 7 TeV and √s = 2.76 TeV, Pb-Pb collisions at √sNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV, will be presented. The nuclear modification factors as a function of pT, for Pb-Pb and p-Pb interactions, will be shown. The results from different colliding systems will be compared. These will also be compared with calculations from hydrodynamical and statistical hadronization models.

  10. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles.

    Science.gov (United States)

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2014-03-20

    During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.

  11. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N. A. S.

    2017-01-01

    Full Text Available In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sultan Zainal Abidin (UNISZA weather station. For load profile, the information about fishing activities and the amount of subsidy spent by the government were obtained from the interview session with the fishermen and validated with Lembaga Kemajuan Ikan Malaysia (LKIM. The results acquired are compared between grid-only and grid-connected RE systems in term of net present cost (NPC, operational cost and payback period. A sensitivity analysis is done to find the minimal Feed-in Tariff (FiT rate that can be implemented in order to encourage the use of RE system in this sector. Then, the relationship between FiT and NPC, payback period and emission of pollutants are analyzed. At current FiT rates RM 0.813/kWh, hybrid grid-PV system manages to achieve its optimal in generating high income from selling the power to the grid with convincing amount of electricity production and short payback period. It is concluded at minimum RM 0.56/kWh of FiT, the grid-connected RE system is possible to be developed because its performance shows better outcome compared to the grid-only system.

  12. Characterization of charge and kinetic energy distribution of ions emitted during nanosecond pulsed laser ablation of several metals

    Science.gov (United States)

    Dogar, A. H.; Ullah, S.; Qayyum, H.; Rehman, Z. U.; Qayyum, A.

    2017-09-01

    The ion flux from various metals (Al, Ti, Cu, Sn and W) ablated with 20 ns Nd:YAG laser radiation at a wavelength of 1064 nm was investigated by an ion collector operating in time-of-flight (TOF) configuration. The laser irradiance at the target was varied in the range of 1.7  ×  108-5.73  ×  108 W cm-2. Ion yield from various metals showed a linearly increasing trend with increasing laser irradiance, whereas ion yield was found to decrease with an increasing atomic mass of the target. Our results clearly indicate that ion yield is not a function of the volatility of the metal. TOF ion spectra showed at least two groups of low intensity peaks due to fast ions. The first group of ion peaks, which was present in the spectra of all five metals, was due to surface contamination. The additional fast ion structures in the spectra of Sn and W can be related to the ion acceleration due to the prompt electron emission from these high-Z metals. The ion velocity follows the anticipated inverse square root dependence on the ion mass. For the range of laser irradiance investigated here, the most probable energy of the Cu ions increases from about 100-600 eV. The fast increase in ion energy above ~3  ×  108 W cm-2 is related to the increase of the Columb part of the ion energy due to the production of multiply charged ions.

  13. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    Science.gov (United States)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  14. State of Charge Balancing Control of a Multi-Functional Battery Energy Storage System Based on a 11-Level Cascaded Multilevel PWM Converter

    DEFF Research Database (Denmark)

    Wang, Songcen; Teodorescu, Remus; Máthé, Lászlo

    2015-01-01

    This paper focuses on modeling and SOC (State of Charge) balancing control of lithium-ion battery energy storage system based on cascaded multilevel converter for both grid integration and electric vehicle propulsion applications. The equivalent electrical circuit model of lithium-ion battery...

  15. Fuzzy-Logic-Based Gain-Scheduling Control for State-of-Charge Balance of Distributed Energy Storage Systems for DC Microgrids

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    -charge or deep-discharge in one of the energy storage units. Primary control in a microgrid is responsible for power sharing among units; and droop control is typically used in this stage. This paper proposes a modular and decentralized gain-scheduling control strategy based on fuzzy logic that ensures balanced...

  16. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  17. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    Science.gov (United States)

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  18. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating pep...

  19. Development of a Cantilever-Type Electrostatic Energy Harvester and Its Charging Characteristics on a Highway Viaduct

    Directory of Open Access Journals (Sweden)

    Hideaki Koga

    2017-09-01

    Full Text Available We have developed a micro-electro-mechanical systems (MEMS electrostatic vibratory power generator with over 100 μ W RMS of (root-mean-square output electric power under 0.03 G RMS (G: the acceleration of gravity accelerations. The device is made of a silicon-on-insulator (SOI wafer and is fabricated by silicon micromachining technology. An electret built-in potential is given to the device by electrothermal polarization in silicon oxide using potassium ions. The force factor, which is defined by a proportional coefficient of the output current with respect to the vibration velocity, is 2.34 × 10 − 4 C/m; this large value allows the developed vibration power generator to have a very high power efficiency of 80.7%. We have also demonstrated a charging experiment by using an environmental acceleration waveform with an average amplitude of about 0.03 G RMS taken at a viaduct of a highway, and we obtained 4.8 mJ of electric energy stored in a 44 μ F capacitor in 90 min.

  20. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  1. Space charge

    CERN Document Server

    Schindl, Karlheinz

    2005-01-01

    The Coulomb forces between the charged particles of a high-intensity beam in an accelerator create a self-field which acts on the particles inside the beam like a distributed lens, defocusing in both transverse planes. A beam moving with speed n is accompanied by a magnetic field which partially cancels the electrostatic defocusing effect, with complete cancellation at c, the speed of light. The effect of this 'direct space charge' is evaluated for transport lines and synchrotrons where the number of betatron oscillations per machine turn, Q, is reduced by DQ. In a real accelerator, the beam is also influenced by the environment (beam pipe, magnets, etc.) which generates 'indirect' space charge effects. For a smooth and perfectly conducting wall, they can easily be evaluated by introducing image charges and currents. These 'image effects' do not cancel when n approaches c, thus they become dominant for high-energy synchrotrons. Each particle in the beam has its particular incoherent tune Q and incoherent tune...

  2. Activation of insect cell adenylate cyclase by Bacillus thuringiensis delta-endotoxins and melittin. Toxicity is independent of cyclic AMP.

    OpenAIRE

    Knowles, B H; Farndale, R W

    1988-01-01

    Insecticidal Bacillus thuringiensis (Bt) delta-endotoxins are cytolytic to a range of insect cell lines in vitro. Addition of Bt var. aizawai or var. israelensis toxins to Mamestra brassicae (cabbage moth) cells in vitro increased intracellular cyclic AMP, which was paralleled by activation of adenylate cyclase in isolated membranes. Var. kurstaki toxin, which does not lyse M. brassicae cells, had no effect on cyclic AMP concentrations in intact cells, but was able to stimulate adenylate cycl...

  3. A High-Energy Charge-Separated State of 1.70 eV from a High-Potential Donor-Acceptor Dyad: A Catalyst for Energy-Demanding Photochemical Reactions.

    Science.gov (United States)

    Lim, Gary N; Obondi, Christopher O; D'Souza, Francis

    2016-09-12

    A high potential donor-acceptor dyad composed of zinc porphyrin bearing three meso-pentafluorophenyl substituents covalently linked to C60 , as a novel dyad capable of generating charge-separated states of high energy (potential) has been developed. The calculated energy of the charge-separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin-fullerene dyad. Intramolecular photoinduced electron transfer leading to charge-separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto- to nanosecond transient absorption techniques. The high energy stored in the form of charge-separated states along with its persistence of about 50-60 ns makes this dyad a potential electron-transporting catalyst to carry out energy-demanding photochemical reactions. This type of high-energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light-to-fuel products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    Science.gov (United States)

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Influence of the energy of charge transfer on non-covalent interactions between fullerenes and a designed bisporphyrin.

    Science.gov (United States)

    Pal, Debabrata; Ray, Anamika; Bhattacharya, Sumanta

    2012-09-01

    The present paper reports the spectroscopic and theoretical investigations on the formation of supramolecular complexes of a designed bisporphyrin (1) with C(60) and C(70) in toluene. Absorption spectrophotometric studies establish appreciable amount of ground state electronic interaction between fullerenes and 1. The interaction is facilitated through charge transfer (CT) transition as evidenced from well defined CT absorption bands in the visible region of the electronic spectra. In our present case, the CT interaction may be claimed as one of the rare findings, especially on account of interaction between fullerenes and bisporphyrin in a non-polar solvent. Other than fullerenes C(60) and C(70), various other electron acceptors, viz., 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoethylene, o-chloranil and p-chloranil form CT complexes with 1. Utilizing the CT transition energies for various electron donor-acceptor complexes of 1, vertical ionization potential (I(D)(v)) of 1 is determined to be 6.37 eV in solution. Estimation of degrees of CT, oscillator and transition dipole strengths evoke that the fullerene-1 non-covalent complexes are of neutral character in ground state. Higher magnitude of electronic coupling elements for the C(70)-1 complex compared to C(60)-1 complex indicates strong binding between C(70) and 1. Steady state fluorescence studies elicit efficient quenching of the fluorescence of 1 in presence of fullerenes. Both UV-Vis and steady state fluorescence measurements reveal large value of binding constant (K) for C(70)-1 system (∼6.94 × 10(4)dm(3)mol(-1)) than that of C(60)-1 system (K∼2.1 × 10(4)dm(3)mol(-1)). Time resolved emission studies establish charge-separated state for the fullerene-1 systems. Transient absorption measurements in the visible region establish the formation of 1(+) and fullerene(-) in toluene medium. Molecular mechanics calculations employing force field method in vacuo evoke the single projection structures of

  6. D/sup -/ production by multiple charge-transfer collisions of low-energy D ions and atoms in cesium vapor

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. Jr.; Willmann, P.A.; Schlachter, A.S.

    1978-01-22

    The production of D/sup -/ by multiple charge-transfer collisions of a D/sup +/ beam in a cesium-vapor target is considered for D/sup +/ energies above 300 eV. The cross sections relevant to D/sup -/ formation are obtained by a least-squares fit of three-charge-state differential equations to experimental yield curves. Implications for production of intense negative-ion beams are discussed, and speculations are made about extrapolation to lower engeries.

  7. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer.

    Science.gov (United States)

    Winklehner, D; Leitner, D; Cole, D; Machicoane, G; Tobos, L

    2014-02-01

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  8. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2CuO2.

    Science.gov (United States)

    Johnston, Steve; Monney, Claude; Bisogni, Valentina; Zhou, Ke-Jin; Kraus, Roberto; Behr, Günter; Strocov, Vladimir N; Málek, Jiři; Drechsler, Stefan-Ludwig; Geck, Jochen; Schmitt, Thorsten; van den Brink, Jeroen

    2016-02-17

    Strongly correlated insulators are broadly divided into two classes: Mott-Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2.

  9. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres.

    Science.gov (United States)

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-25

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.

  10. Energy loss and electron and x-ray emission of slow highly charged Arq+ ions in grazing incidence on an Al(111) surface

    Science.gov (United States)

    Luo, Xianwen; Hu, Bitao; Zhang, Chengjun; Wang, Jijin; Chen, Chunhua

    2010-05-01

    Within the framework of the classical over-barrier model, energy loss, electron emission, and x-ray emission of slow highly charged ion Arq+ grazing on the Al(111) single-crystal surface under various azimuthal angles have been studied. The enhancement of energy loss, potential electron emission yields, intensity of KL1 satellite lines, or x-ray yields for the Ar17+ ion grazing along low-index crystallographic directions was observed. The calculated energy-loss spectra of atomic projectiles Ar0 interacting with metallic surface agree reasonably well with experiment. The inner-shell filling contributions through the side feeding mechanism, Auger transitions, and the radiative decay process are discussed by analyzing the final charge-state distributions of the reflected ions, potential electron emission yields, and x-ray yields under different azimuthal angles.

  11. Theoretical study of charge-remote fragmentation along the reaction coordinate of 1,4-hydrogen elimination in the gas-phase: Energy barrier and mechanism

    Science.gov (United States)

    Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi

    2018-01-01

    Density functional and Møller-Plesset perturbation approaches were applied to charge-remote fragmentation along the reaction coordinate of 1,4-hydrogen eliminations in the gas-phase. The mechanisms and energy barriers of the reactions are discussed. The calculations indicate that 1,4-hydrogen elimination via an aromatic-like six-atom transition state structure is energetically favorable with no involvement of the charge site. Cleavage of Csbnd C and Csbnd H bonds and the formation of Hsbnd H bonds occur simultaneously, and the energy barrier of this reaction is 4.01 eV. Energy decomposition analysis predicts a repulsive interaction between the formed H2 and the remaining substituents.

  12. Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide.

    Science.gov (United States)

    Green, J P; Johnson, C L; Weinstein, H; Maayani, S

    1977-01-01

    D-Lysergic acid diethylamide and D-2-bromolysergic acid diethylamide are competitive antagonists of the histamine activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); E.C. 4.6.1.1] in broken cell preparations of the hippocampus and cortex of guinea pig brain. The adenylate cyclase is linked to the histamine H2-receptor. Both D-lysergic acid diethylamide and D-2-bromolysergic acid diethylamide show topological congruency with potent H2-antagonists. D-2-Bromolysergic acid diethylamide is 10 times more potent as an H2-antagonist than cimetidine, which has been the most potent H2-antagonist reported, and D-lysergic acid diethylamide is about equipotent to cimetidine. Blockade of H2-receptors could contribute to the behavioral effects of D-2-bromolysergic acid diethylamide and D-lysergic acid diethylamide. Images PMID:23536

  13. [Analysis of ESR spectra in Mn2+-plant adenylate kinase complex].

    Science.gov (United States)

    Kharatian, S A; Kaiushin, L P

    1981-01-01

    Interaction of plant adenylate kinase with Mn2+-adenine nucleotide binary complex was studied by ESR technique at room temperature. The ligand environment of Mn2+ in the ternary Mn2+-adenine nucleotide-enzyme complex was shown to change, as a result of enzyme binding as compared with that of binary complex. These changes seem to be due to substitution of protein molecules for water and adenine nucleotide ones, coordinated to Mn2+ ion on ternary complex formation. The same results were obtained in ESR studies on rabbit muscle myokinase. This fact may be considered as an evidence, that plant adenylate kinase is identical to animal one in its interaction with adenine nucleotides and manganese ions.

  14. THE CONDENSATION OF THE ADENYLATES OF THE AMINO ACIDS COMMON TO PROTEIN

    Science.gov (United States)

    Krampitz, Gottfried; Fox, Sidney W.

    1969-01-01

    Simultaneous formation of the adenylates of the 18 amino acids common to protein, followed by cocondensation, has yielded polymers containing all of those amino acids. The condensation occurred rapidly at room temperature above pH 7. The activated amino acids were reacted with thermally synthesized polyanhydro-α-amino acids to yield polymers of substantially increased size. The modified polyamino acids form micron-sized particles which demonstrate internal synthesis by growth and budding. These particles are stable over a wide range of pH. From thermal polyamino acids alone, answers have earlier been obtained, in principle, to questions of the primordial origin of enzymes, cellular structure, membranes, systematic anhydroamino acid sequences, and propagation of microsystems. Such a model is largely heterotrophic; the mixed adenylate condensation provides, in principle, a partial answer to the origin of syntheses of peptide bonds within protocellular structures. Images PMID:5256219

  15. Computer simulations analysis for determining the polarity of charge generated by high energy electron irradiation of a thin film

    DEFF Research Database (Denmark)

    Malac, Marek; Hettler, Simon; Hayashida, Misa

    2017-01-01

    Detailed simulations are necessary to correctly interpret the charge polarity of electron beam irradiated thin film patch. Relying on systematic simulations we provide guidelines and movies to interpret experimentally the polarity of the charged area, to be understood as the sign of the electrost...

  16. Dysregulation of Alternative Poly-adenylation as a Potential Player in Autism Spectrum Disorder

    Science.gov (United States)

    Szkop, Krzysztof J.; Cooke, Peter I. C.; Humphries, Joanne A.; Kalna, Viktoria; Moss, David S.; Schuster, Eugene F.; Nobeli, Irene

    2017-01-01

    We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3′ untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs. However, the role of APA remains rather unexplored in neurodevelopmental conditions. In the human brain, where transcripts have the longest 3′ UTRs and are thus likely to be under more complex post-transcriptional regulation, erratic APA could be particularly detrimental. In the context of ASD, a condition that affects individuals in markedly different ways and whose symptoms exhibit a spectrum of severity, APA dysregulation could be amplified or dampened depending on the individual and the extent of the effect on specific genes would likely vary with genetic and environmental factors. If this hypothesis is correct, dysregulated APA events might be responsible for certain aspects of the phenotypes associated with ASD. Evidence supporting our hypothesis is derived from standard RNA-seq transcriptomic data but we suggest that future experiments should focus on techniques that probe the actual poly-adenylation site (3′ sequencing). To address issues arising from the use of post-mortem tissue and low numbers of heterogeneous samples affected by confounding factors (such as the age, gender and health of the individuals), carefully controlled in vitro systems will be required to model the effect of calcium signaling dysregulation in the ASD brain. PMID:28955198

  17. Trajectory-dependent energy- and charge-transfer in collisions of Br sup + ( sup 3 P sub 2) with Pt(1 1 1)

    CERN Document Server

    Maazouz, P L; Jacobs, D C

    2003-01-01

    Collisions of hyperthermal energy Br sup + ( sup 3 P sub 2) with Pt(1 1 1) produces scattered Br sup - ( sup 1 S sub 0) with a yield approaching 7%. The energy distribution of the scattered product exhibits an unusual dependence on the collision energy. Specifically, as the incident energy increases from 34 to 54 eV, the peak energy of scattered Br sup - ( sup 1 S sub 0) decreases. Furthermore, the anion yield reaches a sharp maximum when Br sup + ( sup 3 P sub 2) approaches the surface with 26 eV of translational energy. The unusual scattering behavior is attributed to a trajectory dependent collision-induced deformation of the lattice. The corresponding electronic perturbation evolves synchronously with the motion of the departing projectile - leading to an enhanced charge-transfer probability.

  18. Adenylate Cyclase Activity Not Found in Soybean Hypocotyl and Onion Meristem 1

    Science.gov (United States)

    Yunghans, Wayne N.; Morré, D. James

    1977-01-01

    Tissue, homogenates, and purified cell fractions prepared from hypocotyls of a dicot, soybean (Glycine max), and meristematic tissue of a monocot, onion (Allium cepa), were examined critically for evidence of adenylate cyclase activity. Three assay methods were used: chemical analysis, isotope dilution analysis, and enzyme cytochemistry. In both crude extracts or whole tissue, as well as purified membranes, with or without auxin, no adenylate cyclase was detected by any of the three methods. For plasma membranes, the specific activity was less than 1/40 or 1/25,000 that of rat liver plasma membranes, depending on the assay procedure, i.e. below the limits of detection. Using comparable methods, we could detect neither cyclic adenosine 3′:5′-monophosphate nor the phosphodiesterase responsible for its degradation in either purified membranes or homogenates. The results suggest that hormone responses in plants are not generally mediated by a mechanism involving the obligate production of cyclic adenosine 3′:5′-monophosphate by a plasma membrane associated adenylate cyclase. Images PMID:16660026

  19. Stimulatory action of lisuride on dopamine-sensitive adenylate cyclase in the rat striatal homogenate.

    Science.gov (United States)

    Azuma, H; Oshino, N

    1980-10-01

    Effect of lisuride, an ergot derivative of isolysergic structure, on dopamine-sensitive adenylate cyclase was studied in the homogenate of rat corpus striatum. Stimulatory action of lisuride, similar to the actions of dopamine and apomorphine, on striatal adenylate cyclase was potentiated significantly by guanosine triphosphate (GTP) and by guanyl-5'-yl imidodiphosphate (GMP-PNP), although with lisuride alone, there was only a slight stimulation. The maximal stimulation attained in the presence of GTP corresponded to about 1.4 times the basal rate of cyclic AMP formation in the homogenate and was abolished by an addition of haloperidol. Lisuride at a concentration about 3 microM inhibited stimulation of cyclic AMP formation by dopamine. The effect of lisuride and the extent of potentiation by the guanyl nucleotides were almost comparable to the effects of apomorphine, under corresponding conditions. Thus, lisuride, like apomorphine, acts as a partial agonist-antagonist, and has the ability to stimulate the dopamine-sensitive adenylate cyclase in the rat corpus striatum.

  20. NMR studies of the AMP-binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Kuby, S.A.; Mildvan, A.S.

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr/sup 3 +/AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T/sub 1/ method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine.

  1. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  2. Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform

    Science.gov (United States)

    Cámara, María de los Milagros; Bouvier, León A.; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3′ UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes. PMID:23409202

  3. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis

    Directory of Open Access Journals (Sweden)

    Daniel Braga

    2016-12-01

    Full Text Available Auriculamide is the first natural product known from the predatory bacterium Herpetosiphon aurantiacus. It is composed of three unusual building blocks, including the non-proteinogenic amino acid 3-chloro-L-tyrosine, the α-hydroxy acid L-isoleucic acid, and a methylmalonyl-CoA-derived ethane unit. A candidate genetic locus for auriculamide biosynthesis was identified and encodes four enzymes. Among them, the non-canonical 199 kDa four-domain nonribosomal peptide synthetase, AulA, is extraordinary in that it features two consecutive adenylation domains. Here, we describe the functional characterization of the recombinantly produced AulA. The observed activation of 3-methyl-2-oxovaleric acid by the enzyme supports the hypothesis that it participates in the biosynthesis of auriculamide. An artificially truncated version of AulA that lacks the first adenylation domain activated this substrate like the full-length enzyme which shows that the first adenylation domain is dispensable. Additionally, we provide evidence that the enzyme tolerates structural variation of the substrate. α-Carbon substituents significantly affected the substrate turnover. While all tested aliphatic α-keto acids were accepted by the enzyme and minor differences in chain size and branches did not interfere with the enzymatic activity, molecules with methylene α-carbons led to low turnover. Such enzymatic plasticity is an important attribute to help in the perpetual search for novel molecules and to access a greater structural diversity by mutasynthesis.

  4. A Gateway(®) -compatible bacterial adenylate cyclase-based two-hybrid system.

    Science.gov (United States)

    Ouellette, Scot P; Gauliard, Emilie; Antosová, Zuzana; Ladant, Daniel

    2014-06-01

    The bacterial adenylate cyclase two-hybrid (BACTH) system has been widely used to characterize protein-protein interactions in the prokaryotic world. This system relies on the interaction-mediated reconstitution of adenylate cyclase activity in Escherichia coli by bringing together two complementary fragments of the catalytic domain of the adenylate cyclase toxin of Bordetella pertussis. A limiting factor in performing large-scale two-hybrid interaction screens with full-length open reading frames (ORFs) is the need to clone each ORF individually into the plasmids used to express the hybrid proteins. The Gateway(®) (GW) cloning system (Life Technologies, Grand Island, NY, USA) partially circumvents this limitation, and we describe here modifications to the BACTH system for compatibility with this recombineering technology. We validated and tested the functionality of the BACTH Gateway (BACTHGW ) system using several models of protein-protein interactions, focusing particularly on those involved in bacterial cell division. We further modified the BACTH plasmids to incorporate a transmembrane (TM) segment downstream of the cyclase fragments to permit analysis of extracytoplasmic protein interactions. This approach was also useful to identify putative TM segments and to experimentally validate bioinformatically identified TM domains. The BACTHGW system will prove a useful addition to the study of protein-protein interactions. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Electrodynamics of Radiating Charges

    Directory of Open Access Journals (Sweden)

    Øyvind Grøn

    2012-01-01

    Full Text Available The theory of electrodynamics of radiating charges is reviewed with special emphasis on the role of the Schott energy for the conservation of energy for a charge and its electromagnetic field. It is made clear that the existence of radiation from a charge is not invariant against a transformation between two reference frames that has an accelerated motion relative to each other. The questions whether the existence of radiation from a uniformly accelerated charge with vanishing radiation reaction force is in conflict with the principle of equivalence and whether a freely falling charge radiates are reviewed. It is shown that the resolution of an electromagnetic “perpetuum mobile paradox” associated with a charge moving geodetically along a circular path in the Schwarzschild spacetime requires the so-called tail terms in the equation of motion of a charged particle.

  6. Phonon energy gaps in the charged incommensurate planes of the spin-ladder Sr14Cu24O41 compound by Raman and infrared spectroscopy.

    Science.gov (United States)

    Thorsmølle, V K; Homes, C C; Gozar, A; Blumberg, G; van Mechelen, J L M; Kuzmenko, A B; Vanishri, S; Marin, C; Rønnow, H M

    2012-05-25

    The terahertz (THz) excitations in the quantum spin-ladder system Sr14Cu24O41 have been determined along the c axis using THz time-domain, Raman, and infrared spectroscopy. Low-frequency infrared and Raman active modes are observed above and below the charge-ordering temperature T(co) is approximately equal to 200 K over a narrow interval approximately equal to 1-2 meV approximately equal to 8-16 cm(-1)). A new infrared mode at approximately equal to 1 meV develops below approximately equal to 100 K. The temperature dependence of these modes shows that they are coupled to the charge- and spin-density-wave correlations in this system. These low-energy features are conjectured to originate in the gapped sliding motion of the chain and ladder subsystems, which are both incommensurate and charged.

  7. Linear Free Energy Relationships for Metal-Ligand Complexation: Bidentate Binding to Negatively-Charged Oxygen Donor Atoms

    Science.gov (United States)

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-01-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO(αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand pKa values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for 5 and 6 membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems. PMID:21833149

  8. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    Science.gov (United States)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  9. Characteristics of the Shanghai high-temperature superconducting electron-beam ion trap and studies of the space-charge effect under ultralow-energy operating conditions

    Science.gov (United States)

    Tu, B.; Lu, Q. F.; Cheng, T.; Li, M. C.; Yang, Y.; Yao, K.; Shen, Y.; Lu, D.; Xiao, J.; Hutton, R.; Zou, Y.

    2017-10-01

    A high-temperature superconducting electron-beam ion trap (EBIT) has been set up at the Shanghai EBIT Laboratory for spectroscopic studies of low-charge-state ions. In the study reported here, beam trajectory simulations are implemented in order to provide guidance for the operation of this EBIT under ultralow-energy conditions, which has been successfully achieved with a full-transmission electron-beam current of 1-8.7 mA at a nominal electron energy of 30-120 eV. The space-charge effect is studied through both simulations and experiments. A modified iterative formula is proposed to estimate the space-charge potential of the electrons and shows very good agreement with the simulation results. In addition, space-charge compensation by trapped ions is found in extreme ultraviolet spectroscopic measurements of carbon ions and is studied through simulation of ion behavior in the EBIT. Based on the simulation results, the ion-cloud radius, ion density, and electron-ion overlap are obtained.

  10. Search for metastable heavy charged particles with large ionization energy loss in pp collisions at $\\sqrt{s} = 13$ TeV using the ATLAS experiment

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-06-28

    This paper presents a search for massive charged long-lived particles produced in pp collisions at $\\sqrt{s}=$ 13 TeV at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as $R$-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\\sqrt{s}=$ 8 TeV dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded d...

  11. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  12. Search for Charged Higgs Bosons in $e^{+}e^{-}$ Collisions at Centre-of-Mass Energies up to 202 GeV

    CERN Document Server

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; El Momouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gukik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofiev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Sarakinos, M.E.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2000-01-01

    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at centre-of-mass energies between 192 and 202 GeV, corresponding to an integrated luminosity of 233.2 pb^-1. Decays into a charm and a strange quark or into a tau lepton and its neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. Including data taken at lower centre-of-mass energies, lower limits on the charged Higgs mass are derived at the 95% confidence level. They vary from 67.4 to 79.9GeV as a function of the H^+/- --> tau nu branching ratio.

  13. The evaluations of the influence of surface conductivity to the energy of particles in discharge channel and interaction force in contact charging process

    Energy Technology Data Exchange (ETDEWEB)

    Alisoy, H.Z. [Department of Electric and Electronics Engineering, Inonu University, 44280 Malatya (Turkey)]. E-mail: halis@inonu.edu.tr; Alisoy, G.T. [Department of Mathematics Education, Inonu University, 44280 Malatya (Turkey); Sahin, A. [Department of Physics, Inonu University, 44280 Malatya (Turkey); Yeroglu, C. [Department of Electric and Electronics Engineering, Inonu University, 44280 Malatya (Turkey)

    2006-12-18

    In this Letter, we present some analytical expressions by using the equations of electric field, inside and outside of a cylindrical void, taking the surface conductivity into consideration. We apply the obtained expressions to the high voltage insulation and ion electron technology, such as: (i) energies of charged particles occurring in discharge channel in accordance with Townsend approach; (ii) interaction force between the dielectric particle and the electrode for DC and AC cases.

  14. Forward Energy Flow, Central Charged-Particle Multiplicities, and Pseudorapidity Gaps in W and Z Boson Events from pp Collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Trauner, Christine; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Raval, Amita; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Brito, Lucas; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Dietz-Laursonn, Erik; Erdmann, Martin; Hebbeker, Thomas; Heidemann, Carsten; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schröder, Matthias; Schum, Torben; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Berger, Joram; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Gupta, Pooja; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Sigamani, Michael; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Polujanskas, Mindaugas; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Pela, Joao; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Caminada, Lea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Özbek, Melih; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Henderson, Conor; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Rutherford, Britney; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Henriksson, Kristofer; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Liu, Yao; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Saelim, Michael; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pivarski, James; Pordes, Ruth; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Rinkevicius, Aurelijus; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Sakumoto, Willis; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Atramentov, Oleksiy; Barker, Anthony; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Safonov, Alexei; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Johnston, Cody; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goadhouse, Stephen; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Parker, William; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2012-01-20

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and ...

  15. Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at $\\sqrt{s}= 7$ TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; et al.

    2012-01-01

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.

  16. High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: formation and photoinduced electron-transfer studies.

    Science.gov (United States)

    Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis

    2014-08-25

    High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modified windmill porphyrin arrays: coupled light-harvesting and charge separattion, conformational relaxation in the S1 state, and S2-S2 energy transfer.

    Science.gov (United States)

    Nakano, A; Osuka, A; Yamazaki, T; Nishimura, Y; Akimoto, S; Yamazaki, I; Itaya, A; Murakami, M; Miyasaka, H

    2001-07-16

    The architecture of windmill hexameric zinc(II) -porphyrin array 1 is attractive as a light-harvesting functional unit in view of its three-dimensionally extended geometry that is favorable for a large cross-section of incident light as well as for a suitable energy gradient from the peripheral porphyrins to the meso-meso-linked diporphyrin core. Three core-modified windmill porphyrin arrays 2-4 were prepared for the purpose of enhancing the intramolecular energy-transfer rate and coupling these arrays with a charge-separation functional unit. Bisphenylethynylation at the meso and meso' positions of the diporphyrin core indeed resulted in a remarkable enhancement in the intramolecular S1-S1 energy transfer in 2 with tau=2 approximately 3 ps, as revealed by femtosecond time-resolved transient absorption spectroscopy. The fluorescence lifetime of the S2 state of the peripheral porphyrin energy donor determined by the fluorescence up-conversion method was 68 fs, and thus considerably shorter than that of the reference monomer (150 fs), suggesting the presence of the intramolecular energy-transfer channel in the S2 state manifold. Such a rapid energy transfer can be understood in terms of large Coulombic interactions associated with the strong Soret transitions of the donor and acceptor. Picosecond time-resolved fluorescence spectra and transient absorption spectra revealed conformational relaxation of the S1 state of the diporphyrin core with tau = 25 ps. Upon photoexcitation of models 3 and 4, which bear a naphthalenetetracarboxylic diimide or a meso-nitrated free-base porphyrin attached to the modified diporphyrin core as an electron acceptor, a series of photochemical processes proceeded, such as the collection of the excitation energy at the diporphyrin core, the electron transfer from the S1 state of the diporphyrin to the electron acceptor, and the electron transfer from the peripheral porphyrins to the diporphyrin cation radical, which are coupled to provide a

  18. Sequential bond energies and barrier heights for the water loss and charge separation dissociation pathways of Cd(2+)(H2O)n, n = 3-11.

    Science.gov (United States)

    Cooper, Theresa E; Armentrout, P B

    2011-03-21

    The bond dissociation energies for losing one water from Cd(2+)(H(2)O)(n) complexes, n = 3-11, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with a thermal electrospray ionization source. Kinetic energy dependent cross sections are obtained for n = 4-11 complexes and analyzed to yield 0 K threshold measurements for loss of one, two, and three water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are converted from 0 to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water from each complex. Theoretical geometry optimizations and single point energy calculations are performed on reactant and product complexes using several levels of theory and basis sets to obtain thermochemistry for comparison to experiment. The charge separation process, Cd(2+)(H(2)O)(n) → CdOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), is also observed for n = 4 and 5 and the competition between this process and water loss is analyzed. Rate-limiting transition states for the charge separation process at n = 3-6 are calculated and compared to experimental threshold measurements resulting in the conclusion that the critical size for this dissociation pathway of hydrated cadmium is n(crit) = 4.

  19. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, G.W.; Robinson, H.; Abendroth, J.; Staker, B. L.; Myler, P. J.

    2010-04-16

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 {angstrom} resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP{sub bd}) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 {angstrom}. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.

  20. Computer simulations analysis for determining the polarity of charge generated by high energy electron irradiation of a thin film.

    Science.gov (United States)

    Malac, Marek; Hettler, Simon; Hayashida, Misa; Kawasaki, Masahiro; Konyuba, Yuji; Okura, Yoshi; Iijima, Hirofumi; Ishikawa, Isamu; Beleggia, Marco

    2017-09-01

    Detailed simulations are necessary to correctly interpret the charge polarity of electron beam irradiated thin film patch. Relying on systematic simulations we provide guidelines and movies to interpret experimentally the polarity of the charged area, to be understood as the sign of the electrostatic potential developed under the beam with reference to a ground electrode. We discuss the two methods most frequently used to assess charge polarity: Fresnel imaging of the irradiated area and Thon rings analysis. We also briefly discuss parameter optimization for hole free phase plate (HFPP) imaging. Our results are particularly relevant to understanding contrast of hole-free phase plate imaging and Berriman effect. Copyright © 2017. Published by Elsevier Ltd.

  1. Impact of charging electric-powered vehicles on the management of power distribution systems at volatile wind energy input; Einfluss gesteuerten Ladens von Elektrofahrzeugen auf die Netzbetriebsfuehrung bei volatiler Windeinspeisung

    Energy Technology Data Exchange (ETDEWEB)

    Agsten, Michael

    2011-10-10

    This work summarizes findings obtained by controlled charging of Electric Vehicles (EVs) regarding volatile wind power generation. Based on the state of the art of the negotiation of the charging process between the EV and the charging point two approaches will be explained. The Wind-2-Vehicle method (W2V) is an example for using controlled EV charging in order to create a renewable supply following demand by optimizing the energy supply quota wind in each charging process. The Local Load Management (LLM) method is an example of using information from distribution grids to limit the charging power of EVs over time. In this work, two case studies are carried out to quantify the controlled/uncontrolled charging of EVs and their impact on electric power systems. The first case study describes charging of fifty EVs by a reduced W2V approach. The charging process has been analyzed from different point of views. Controlled/Uncontrolled charging results in peak demand (of EV fleets), due to synchronized charging. This may result in violation of preassigned operation limits. The utilization of the developed LLM method in the second case study shows that a small reduction of the achievable W2V quality results in an improved charging performance for small as well as large fleets. Therefore applying LLM can avoid violations of operation limits.

  2. Determination of the ADP concentration available to participate in energy metabolism in an actin-rich cell, the platelet.

    Science.gov (United States)

    Daniel, J L; Robkin, L; Molish, I R; Holmsen, H

    1979-08-25

    Almost all cells contain actin, which in its polymerized form, F-actin, binds 1 molecule of ADP/monomer. Little is known about the availability to metabolism of this bound ADP. A comparison was therefore made between perchloric acid and EDTA/ethanol extracts of human blood platelets. When the cells were extracted under conditions where the ATPase activity was negligible, the ethanol extracts had a 75% higher ATP/ADP ratio and a higher adenylate energy charge than perchloric acid extracts. The methods differed in that a considerable portion of protein-bound ADP was not extracted by ethanol. This bound ADP behaved as though it were unavailable to energy metabolism and should thus be considered as a compartment separate from the bulk metabolic pool of extragranular platelet adenine nucleotides. These results suggest that the level of ADP obtained with the common acid extraction overestimates the level available to participation in metabolism.

  3. The HLB dependency for detergent solubilization of hormonally sensitive adenylate cyclase.

    Science.gov (United States)

    Storm, D R; Field, S O; Ryan, J

    1976-01-01

    The HLB dependency for the solubilization of membrane proteins and adenylate cyclase activity from a plasma membrane-enriched fraction from rat liver has been determined. The HLB (hydrophilic/lipophilic/balance) number of a detergent is an empirical measure of its relative hydrophobicity. Detergent HLB numbers vary systematically with the length of the ethylene oxide chain for a homologous series of detergents such as the Triton X series. These detergents have a constant hydrophobic moiety, octylphenyl, and a variable polar portion, polyethoxyethanol. Basal-NaF-epinephrine-, and glucagon-stimulated adenylate cyclase activities were solubilized in the HLB range of 16.8-17.4. Solubilization was most effective in 0.01 M Tris buffers at pH 7.5 containing 1-5 mM mercaptoethanol, 1 mM MgCl2, and 0.1% Triton X-305. The detergent to membrane protein ratio used in these studies was 3:1. Criteria for solubilization included lack of sedimentation at 100,000 X g, the absence of particulate material in the supernatant when examined by electron microscopy, and inclusion of hormonally sensitive adenylate cyclase activity in Sephadex G-200 gels. The apparent molecular weight of the solubilized enzyme was approximately 200,000 in the presence of Triton X-305. The solubilized enzyme was stimulated 5-fold by NaF, 7-fold by glucagon, and 20-fold by epinephrine compared to the particulate enzyme used in this study which was stimulated 10-fold, 3.4-fold, and 4-fold by NaF, epinephrine, and glucagon, respectively. The solubilized enzyme is stable for several weeks when stored at -60 degrees C.

  4. Charged weak currents

    CERN Document Server

    Turlay, René

    1979-01-01

    In this review of charged weak currents the author concentrates on inclusive high energy neutrino physics. The authors discusses the general structure of charged currents, new results on total cross- sections, the Callan-Gross relation, antiquark distributions, scaling violations and tests of QCD. A very short summary on multilepton physics is given. (44 refs).

  5. Self-supporting CVD diamond charge state conversion surfaces for high resolution imaging of low-energy neutral atoms in space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Neuland, M.B., E-mail: neuland@space.unibe.ch; Riedo, A.; Scheer, J.A.; Wurz, P.

    2014-09-15

    Highlights: • We investigate two CVD diamond surfaces for their applicability as charge state conversion surfaces. • We measure angular scattering and ionisation efficiency for hydrogen and oxygen. • Results are compared, amongst others, to the data of the IBEX conversion surface. • The CVD diamond surface has great potential as conversion surface material for future space missions. - Abstract: Two polycrystalline diamond surfaces, manufactured by chemical vapour deposition (CVD) technique, are investigated regarding their applicability as charge state conversion surfaces (CS) for use in a low energy neutral atom imaging instrument in space research. The capability of the surfaces for converting neutral atoms into negative ions via surface ionisation processes was measured for hydrogen and oxygen with particle energies in the range from 100 eV to 1 keV and for angles of incidence between 6° and 15°. We observed surface charging during the surface ionisation processes for one of the CVD samples due to low electrical conductivity of the material. Measurements on the other CVD diamond sample resulted in ionisation efficiencies of ∼2% for H and up to 12% for O. Analysis of the angular scattering revealed very narrow and almost circular scattering distributions. Comparison of the results with the data of the CS of the IBEX-Lo sensor shows that CVD diamond has great potential as CS material for future space missions.

  6. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation of dedica...

  7. Energy level alignment at metal/organic semiconductor interfaces: "pillow" effect, induced density of interface states, and charge neutrality level.

    Science.gov (United States)

    Vázquez, H; Dappe, Y J; Ortega, J; Flores, F

    2007-04-14

    A unified model, embodying the "pillow" effect and the induced density of interface states (IDIS) model, is presented for describing the level alignment at a metal/organic interface. The pillow effect, which originates from the orthogonalization of the metal and organic wave functions, is calculated using a many-body linear combination of atomic orbitals Hamiltonian, whereby electron long-range interactions are obtained using an expansion in the metal/organic wave function overlap, while the electronic charge of both materials remains unchanged. This approach yields the pillow dipole and represents the first effect induced by the metal/organic interaction, resulting in a reduction of the metal work function. In a second step, we consider how charge is transferred between the metal and the organic material by means of the IDIS model: Charge transfer is determined by the relative position of the metal work function (corrected by the pillow effect) and the organic charge neutrality level, as well as by an interface parameter S, which measures how this potential difference is screened. In our approach, we show that the combined IDIS-pillow effects can be described in terms of the original IDIS alignment corrected by a screened pillow dipole. For the organic materials considered in this paper, we see that the IDIS dipole already represents most of the realignment induced at the metal/organic interface. We therefore conclude that the pillow effect yields minor corrections to the IDIS model.

  8. NMR studies of the AMP-binding site and mechanism of adenylate kinase.

    Science.gov (United