WorldWideScience

Sample records for adenylate cyclase-activating polypeptide

  1. Pituitary adenylate cyclase activating polypeptide and migraine

    DEFF Research Database (Denmark)

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients...

  2. Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors

    DEFF Research Database (Denmark)

    Hautmann, Matthias; Friis, Ulla G; Desch, Michael;

    2007-01-01

    Besides of its functional role in the nervous system, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of cardiovascular function. Therefore, PACAP is a potent vasodilator in several vascular beds, including the renal vasculature. Because t...

  3. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Directory of Open Access Journals (Sweden)

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  4. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  5. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating.

    Science.gov (United States)

    Hurley, Matthew M; Maunze, Brian; Block, Megan E; Frenkel, Mogen M; Reilly, Michael J; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  6. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  7. The Role of Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase-Activating Polypeptide in the Neural Pathways Controlling the Lower Urinary Tract

    OpenAIRE

    Yoshiyama, Mitsuharu; de Groat, William C.

    2008-01-01

    Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are expressed in the neural pathways regulating the lower urinary tract. VIP-immunoreactivity (IR) is present in afferent and autonomic efferent neurons innervating the bladder and urethra, whereas PACAP-IR is present primarily in afferent neurons. Exogenously applied VIP relaxes bladder and urethral smooth muscle and excites parasympathetic neurons in bladder ganglia. PACAP relaxes bladder ...

  8. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard;

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...

  9. The effects of isatin (indole-2, 3-dione on pituitary adenylate cyclase-activating polypeptide-induced hyperthermia in rats

    Directory of Open Access Journals (Sweden)

    Tóth Gábor

    2002-02-01

    Full Text Available Abstract Background Previous studies have demonstrated that centrally administered natriuretic peptides and pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38 have hyperthermic properties. Isatin (indole-2, 3-dione is an endogenous indole that has previously been found to inhibit hyperthermic effects of natriuretic peptides. In this study the aim was to investigate the effects of isatin on thermoregulatory actions of PACAP-38, in rats. Results One μg intracerebroventricular (icv. injection of PACAP-38 had hyperthermic effect in male, Wistar rats, with an onset of the effect at 2 h and a decline by the 6th h after administration. Intraperitoneal (ip. injection of different doses of isatin (25-50 mg/kg significantly decreased the hyperthermic effect of 1 μg PACAP-38 (icv., whereas 12.5 mg/kg isatin (ip. had no inhibiting effect. Isatin alone did not modify the body temperature of the animals. Conclusion The mechanisms that participate in the mediation of the PACAP-38-induced hyperthermia may be modified by isatin. The capability of isatin to antagonize the hyperthermia induced by all members of the natriuretic peptide family and by PACAP-38 makes it unlikely to be acting directly on receptors for natriuretic peptides or on those for PACAP in these hyperthermic processes.

  10. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    Science.gov (United States)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  11. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Science.gov (United States)

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.

  12. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Lugo, Juana María; Carpio, Yamila; Morales, Reynold; Rodríguez-Ramos, Tania; Ramos, Laida; Estrada, Mario Pablo

    2013-12-01

    The high conservation of the pituitary adenylate cyclase activating polypeptide (PACAP) sequence indicates that this peptide fulfills important biological functions in a broad spectrum of organisms. However, in invertebrates, little is known about its presence and its functions remain unclear. Up to now, in non-mammalian vertebrates, the majority of studies on PACAP have focused mainly on the localization, cloning and structural evolution of this peptide. As yet, little is known about its biological functions as growth factor and immunomodulator in lower vertebrates. Recently, we have shown that PACAP, apart from its neuroendocrine role, influences immune functions in larval and juvenile fish. In this work, we isolated for the first time the cDNA encoding the mature PACAP from a crustacean species, the white shrimp Litopenaeus vannamei, corroborating its high degree of sequence conservation, when compared to sequences reported from tunicates to mammalian vertebrates. Based on this, we have evaluated the effects of purified recombinant Clarias gariepinus PACAP administrated by immersion baths on white shrimp growth and immunity. We demonstrated that PACAP improves hemocyte count, superoxide dismutase, lectins and nitric oxide synthase derived metabolites in treated shrimp related with an increase in total protein concentration and growth performance. From our results, PACAP acts as a regulator of shrimp growth and immunity, suggesting that in crustaceans, as in vertebrate organisms, PACAP is an important molecule shared by both the endocrine and the immune systems.

  13. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor.

    Science.gov (United States)

    Xu, Zhifang; Ohtaki, Hirokazu; Watanabe, Jun; Miyamoto, Kazuyuki; Murai, Norimitsu; Sasaki, Shun; Matsumoto, Minako; Hashimoto, Hitoshi; Hiraizumi, Yutaka; Numazawa, Satoshi; Shioda, Seiji

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1(+) were large in size, had oval nuclei, and merged with CD34(+) cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1(-/-) mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1(-/-) and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1. PMID:26925806

  14. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease.

    Science.gov (United States)

    Lamine-Ajili, Asma; Fahmy, Ahmed M; Létourneau, Myriam; Chatenet, David; Labonté, Patrick; Vaudry, David; Fournier, Alain

    2016-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that leads to destruction of the midbrain dopaminergic (DA) neurons. This phenomenon is related to apoptosis and its activation can be blocked by the pituitary adenylate cyclase-activating polypeptide (PACAP). Growing evidence indicates that autophagy, a self-degradation activity that cleans up the cell, is induced during the course of neurodegenerative diseases. However, the role of autophagy in the pathogenesis of neuronal disorders is yet poorly understood and the potential ability of PACAP to modulate the related autophagic activation has never been significantly investigated. Hence, we explored the putative autophagy-modulating properties of PACAP in in vitro and in vivo models of PD, using the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively, to trigger alterations of DA neurons. In both models, following the toxin exposure, PACAP reduced the autophagic activity as evaluated by the production of LC3 II, the modulation of the p62 protein levels, and the formation of autophagic vacuoles. The ability of PACAP to inhibit autophagy was also observed in an in vitro cell assay by the blocking of the p62-sequestration activity produced with the autophagy inducer rapamycin. Thus, the results demonstrated that autophagy is induced in PD experimental models and that PACAP exhibits not only anti-apoptotic but also anti-autophagic properties.

  15. A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate.

    Science.gov (United States)

    Pirger, Zsolt; László, Zita; Kemenes, Ildikó; Tóth, Gábor; Reglodi, Dóra; Kemenes, György

    2010-10-13

    Similar to other invertebrate and vertebrate animals, cAMP-dependent signaling cascades are key components of long-term memory (LTM) formation in the snail Lymnaea stagnalis, an established experimental model for studying evolutionarily conserved molecular mechanisms of long-term associative memory. Although a great deal is already known about the signaling cascades activated by cAMP, the molecules involved in the learning-induced activation of adenylate cyclase (AC) in Lymnaea remained unknown. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy in combination with biochemical and immunohistochemical methods, recently we have obtained evidence for the existence of a Lymnaea homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) and for the AC-activating effect of PACAP in the Lymnaea nervous system. Here we first tested the hypothesis that PACAP plays an important role in the formation of robust LTM after single-trial classical food-reward conditioning. Application of the PACAP receptor antagonist PACAP6-38 around the time of single-trial training with amyl acetate and sucrose blocked associative LTM, suggesting that in this "strong" food-reward conditioning paradigm the activation of AC by PACAP was necessary for LTM to form. We found that in a "weak" multitrial food-reward conditioning paradigm, lip touch paired with sucrose, memory formation was also dependent on PACAP. Significantly, systemic application of PACAP at the beginning of multitrial tactile conditioning accelerated the formation of transcription-dependent memory. Our findings provide the first evidence to show that in the same nervous system PACAP is both necessary and instructive for fast and robust memory formation after reward classical conditioning.

  16. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W;

    2014-01-01

    samples (plasma PACAP38 and vasoactive intestinal polypeptide and serum tryptase), and vital signs (blood pressure, heart rate, respiratory frequency, and end-tidal pressure of CO2) was recorded before and up to 5 h after infusion. Twenty-two patients [mean age 24 years (range 19-36)] completed the study...... on both days. Sixteen patients (73%) reported migraine-like attacks after PACAP38 and four after vasoactive intestinal polypeptide (18%) infusion (P = 0.002). Three of four patients, who reported migraine-like attacks after vasoactive intestinal polypeptide, also reported attacks after PACAP38. Both...... the start of PACAP38 infusion only in those patients who later reported migraine attacks. Blood levels of vasoactive intestinal polypeptide and tryptase were unchanged after PACAP38 infusion. In conclusion, PACAP38-induced migraine was associated with sustained dilatation of extracranial arteries...

  17. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) regulate murine neural progenitor cell survival, proliferation, and differentiation.

    Science.gov (United States)

    Scharf, Eugene; May, Victor; Braas, Karen M; Shutz, Kristin C; Mao-Draayer, Yang

    2008-11-01

    Neural stem/progenitor cells (NPC) have gained wide interest over the last decade from their therapeutic potential, either through transplantation or endogenous replacement, after central nervous system (CNS) disease and damage. Whereas several growth factors and cytokines have been shown to promote NPC survival, proliferation, or differentiation, the identification of other regulators will provide much needed options for NPC self-renewal or lineage development. Although previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) can regulate stem/progenitor cells, the responses appeared variable. To examine the direct roles of these peptides in NPCs, postnatal mouse NPC cultures were withdrawn from epidermal growth factor (EGF) and fibroblastic growth factor (FGF) and maintained under serum-free conditions in the presence or absence of PACAP27, PACAP38, or VIP. The NPCs expressed the PAC1(short)null receptor isoform, and the activation of these receptors decreased progenitor cell apoptosis more than 80% from TUNEL assays and facilitated proliferation more than fivefold from bromodeoxyuridine (BrdU) analyses. To evaluate cellular differentiation, replicate control and peptide-treated cultures were examined for cell fate marker protein and transcript expression. In contrast with previous work, PACAP peptides downregulated NPC differentiation, which appeared consistent with the proliferation status of the treated cells. Accordingly, these results demonstrate that PACAP signaling is trophic and can maintain NPCs in a multipotent state. With these attributes, PACAP may be able to promote endogenous NPC self-renewal in the adult CNS, which may be important for endogenous self-repair in disease and ageing processes.

  18. Structural and functional identification of the pituitary adenylate cyclase-activating polypeptide receptor VPAC2 from the frog Rana tigrina rugulosa.

    Science.gov (United States)

    Hoo, R L; Alexandre, D; Chan, S M; Anouar, Y; Pang, R T; Vaudry, H; Chow, B K

    2001-10-01

    Recently, a frog pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) receptor (fPVR) has been characterized, and interestingly, this receptor exhibits characteristics of both mammalian PACAP type II receptors VPAC(1)R and VPAC(2)R. In order to investigate the receptors responsible for mediating the actions of VIP and PACAP in amphibians, in this report, a frog VPAC(2) receptor (fVPAC(2)R) cDNA was isolated. fVPAC(2)R shares 47.7, 46.9 and 62.5% amino acid sequence identity with fPVR, human VPAC(1)R and human VPAC(2)R respectively. Functionally, fVPAC(2)R, when expressed in CHO cells, was responsive to both frog peptides including VIP, PACAP38 and PACAP27 where the EC(50) values of these peptides in intracellular cAMP production were 0.15, 0.18 and 0.16 microM respectively. The pharmacological profiles of human peptides (VIP, PACAP38 and peptide histidine methionine) to stimulate frog and human VPAC(2)Rs were compared, and it was found that these peptides could only activate the frog receptor at micromolar concentrations. fVPAC(2)R was found to be widely distributed in various peripheral tissues as well as several regions of the brain. The presence of the receptor transcripts suggests the functional roles of the receptor in mediating the actions of PACAP and/or VIP in these tissues. As VIP and particularly PACAP27 are highly conserved peptides in vertebrate evolution, comparative studies of these peptides and their receptors in non-mammalian vertebrates should provide clues to better understand the physiology of these important peptides in human and other vertebrates. PMID:11564605

  19. Changes in brain mRNA levels of gonadotropin-releasing hormone, pituitary adenylate cyclase activating polypeptide, and somatostatin during ovulatory luteinizing hormone and growth hormone surges in goldfish.

    Science.gov (United States)

    Canosa, Luis Fabián; Stacey, Norm; Peter, Richard Ector

    2008-12-01

    In goldfish, circulating LH and growth hormone (GH) levels surge at the time of ovulation. In the present study, changes in gene expression of salmon gonadotropin-releasing hormone (sGnRH), chicken GnRH-II (cGnRH-II), somatostatin (SS) and pituitary adenylate cyclase activating polypeptide (PACAP) were analyzed during temperature- and spawning substrate-induced ovulation in goldfish. The results demonstrated that increases in PACAP gene expression during ovulation are best correlated with the GH secretion profile. These results suggest that PACAP, instead of GnRH, is involved in the control of GH secretion during ovulation. Increases of two of the SS transcripts during ovulation are interpreted as the activation of a negative feedback mechanism triggered by high GH levels. The results showed a differential regulation of sGnRH and cGnRH-II gene expression during ovulation, suggesting that sGnRH controls LH secretion, whereas cGnRH-II correlates best with spawning behavior. This conclusion is further supported by the finding that nonovulated fish induced to perform spawning behavior by prostaglandin F2alpha treatment increased cGnRH-II expression in both forebrain and midbrain, but decreased sGnRH expression in the forebrain. PMID:18815210

  20. Changes in vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide and neuropeptide Y-ergic structures of the enteric nervous system in the carcinoma of the human large intestine.

    Directory of Open Access Journals (Sweden)

    Ireneusz Mirosław Łakomy

    2010-08-01

    Full Text Available This investigation was aimed at immunohistochemical analysis of potential changes in the enteric nervous system caused by cancer of the large intestine. In this purpose, neurons and nerve fibers of intestinal plexuses containing neuropeptides: vasoactive intestinal peptide (VIP, pituitary adenylate cyclase-activating polypeptide (PACAP and neuropeptide Y (NPY, in pathologically changed part of the large intestine were microscpically observed and compared. Samples were taken from patients operated due to cancer of the sigmoid colon and rectum. The number of neurons and density of nerve fibres containing neuropeptides found in sections with cancer tissues were compared to those observed in sections from the uninvolved intestinal wall. Changes relating to reductions in the number of NPY-ergic neurons and density of nerve fibres in submucous and myenteric plexuses in the sections with cancer tissues (pathological sections were statistically significant. A statistically similar presence of VIP-ergic and PACAP-ergic neurons in the submucosal and myenteric plexuses was observed in both the pathological and control sections. On the other hand, in the pathological sections, VIP-ergic nerve fibres in the myenteric plexuses and PACAP-ergic nerve fibres in the submucosal and myenteric plexuses were found to be less dense. Analysis revealed changes in pathologically affected part of the large intestine may caused disruption of proper intestinal function. Observed changes in the neural elements which are responsible for relaxation of the intestine may suggest dysfunction in the innervation of this part of the colon.

  1. 斜带石斑鱼PACAP的原核表达及活性分析%The prokaryotic expression and biological activity of the pituitary adenylate cyclase activating polypeptide in groupers Epinephelus coioides

    Institute of Scientific and Technical Information of China (English)

    江湧; 李文笙; 林浩然

    2005-01-01

    自1989年从绵羊下丘脑提取物发现垂体腺苷酸环化酶激活多肽(Pituitary adenylate cyclase activating polypeptide,PACAP)以来(Miyata et al.,1989),已证明它能促进垂体激素释放,同时还具有神经递质、神经调质和神经营养等作用,使对PACAP的研究成为十分活跃的领域。PACAP属于血管活性肠肽(VIP)-胰高血糖素-生长激素释放因子-分泌素家族(Campbell and Scanes,1992)成员,已鉴别出包含27和38个氨基酸两种类型。对原索动物(McRory et al.,1997)、两栖类(蛙)(Alexandre et al.,2000)、爬行类(蜥蜴)(Pohland Wank,1998)、鸟类(鸡)(McRory et al.,1997),啮齿类(鼠)(Ghatei et al.,1993)等脊椎动物PACAP的研究多集中在结构与进化方面,对功能了解甚少。

  2. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    International Nuclear Information System (INIS)

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [125I]iodocyanopindolol. Binding sites had the characteristics of mixed β1- and β2-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β1-adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  3. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems

    OpenAIRE

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexi...

  4. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments.

    Science.gov (United States)

    Imbert, M; Chabardès, D; Montégut, M; Clique, A; Morel, F

    1975-01-01

    A method is described, which allows adenylate cyclase activity measurement in single pieces of various nephron segments. Tubular samples of 0.5 to 2 mm length were isolated by microdissection from collagenase treated slices of rabbit kidney. A photograph of each piece was taken in order to measure its length. After a permeabilisation treatment involving preincubation in a hypoosmotic medium and a freezing step, each sample was incubated for 30 mm at 30 degrees C in a medium containing high specific (alpha-32-P)-ATP 3-10-4 M, final volume 2.5 mu 1. The (32P)-cAMP formed was separated from the other labelled nucleotides by filtering the incubate on a dry aluminium oxide microcolumn, 3H cAMP was added as a tracer for measuring cAMP recovery. The sensitivity of the method was found to be a few fentomoles (10-15 M) cAMP. cAMP generation increased linearly as a function of the incubation time up to more than 30 min, and as a function of the length of the segment used. Control and fluoride (5 mM) stimulated adenvlate cyclase activities were measured in the following segments of the nephron: early proximal convoluted tubule (PCT), pars recta of the proximal tubule (PR), thin descending limb of the loop (TDL), cortical portion of the thick ascending limb (CAL), distal convoluted tubule (dct), first branched portion of the collecting tubule (BCT), further cortical (CCT) and medullary (MCT) portions of the collecting tubule. Mean control adenylate cyclase activity varied from 7 (PR) to 75 (BCT) fmoles/mm/30 min. Flouride addition resulted in a 10 (BCT) to 50 (PR) fold increase in enzyme activity. Series of replicates gave a scatter equal to plus or minus 20% (S.D. as a per cent of the mean). The method described appears to be suitable to determine which nephron segments contain hormone-dependent adenylate cyclase.

  5. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  6. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.L.; Pelton, J.T.; Trivedi, D.; Johnson, D.G.; Coy, D.H.; Sueiras-Diaz, J.; Hruby, V.J.

    1986-04-08

    In this study, we determined the ability of four N-terminally modified derivatives of glucagon, (3-Me-His1,Arg12)-, (Phe1,Arg12)-, (D-Ala4,Arg12)-, and (D-Phe4)glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, (3-Me-His1,Arg12)glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. (Phe1,Arg12)glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. (D-Ala4,Arg12)glucagon and (D-Phe4)glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. (D-Ala4,Arg12)glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the (D-Phe4) derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.

  7. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  8. Glucose Repression of Fbp1 Transcription in Schizosaccharomyces Pombe Is Partially Regulated by Adenylate Cyclase Activation by a G Protein α Subunit Encoded by Gpa2 (Git8)

    OpenAIRE

    Nocero, M.; Isshiki, T.; Yamamoto, M.; Hoffman, C. S.

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, genetic studies have identified genes that are required for glucose repression of fbp1 transcription. The git2 gene, also known as cyr1, encodes adenylate cyclase. Adenylate cyclase converts ATP into the second messenger cAMP as part of many eukaryotic signal transduction pathways. The git1, git3, git5, git7, git8 and git10 genes act upstream of adenylate cyclase, presumably encoding an adenylate cyclase activation pathway. In mammalian cells, a...

  9. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J; Kuris, A;

    2012-01-01

    for the demonstration of vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), nitric oxide synthase (NOS), glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), VIP and PACAP common receptors (VPAC1, VPAC2), and PACAP receptor (PAC1). In addition, double labeling...

  10. Effects of cimetidine on adenylate cyclase activity of guinea pig gastric mucosa stimulated by histamine, sodium fluoride and 5'-guanylylimidodiphosphate.

    Science.gov (United States)

    Anttila, P; Westermann, E

    1976-08-01

    Cimetidine, a recently developed histamine H2-receptor blocking agent has been shown to be a potent inhibitor of histamine-stimulated gastric acid secretion in rat, cat, dog and man. To study the mode of action of cimetidine the modification of stimulatory effects of histamine, sodium flouride and 5'-guanylylimidodiphosphate by cimetidine on the adenylate cyclase activity of guinea pig gastric mucosa was studied. The effect of cimetidine was also compared to that of metiamide, an older histamine H2-receptor antagonist. The effect of cimetidine was qualitatively similar to that of metiamide, i.e. a selective blockade of histamine H2-receptors. Quantitatively cimetidine was about 10-fold more potent than metiamide.

  11. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    Science.gov (United States)

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF. PMID:25649277

  12. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    Science.gov (United States)

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF.

  13. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    Energy Technology Data Exchange (ETDEWEB)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oil than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.

  14. Pituitary adenylate cyclase activating-peptide and its receptor antagonists in development of acute pancreatitis in rats

    Institute of Scientific and Technical Information of China (English)

    You-Dai Chen; Zong-Guang Zhou; Zhao Wang; Hong-Kai Gao; Wen-Wei Yan; Cun Wang; Gao-Ping Zhao; Xiao-Hui Peng

    2005-01-01

    AIM: Pituitary adenylate cyclase activating-peptide (PACAP) is a late member of the secretin/glucagon/vasoactive intestinal peptide (VIP) family of brain-gut peptides. It is unknown whether PACAP takes part in the development of acute pancreatitis and whether PACAP or its antagonists can be used to suppress the progression of acute pancreatitis.We investigated the actions of PACAP and its receptor antagonists in acute pancreatitis on rats.METHODS: Acute pancreatitis was induced in rats with caerulein or 3.5% sodium taurocholate. The rats were continuously infused with 5-30 μg/kg PACAP via jugular vein within the first 90 min, while 10-100 μg/kg PACAP6-27 and (4-Cl-D-Phe6, Leu17) VIP (PACAP receptor antagonists) were intravenously infused for 1 h. Biochemical and histopathological assessments were made at 4 h after infusion. Pancreatic and duodenal PACAP concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Chinese ink-perfused pancreas was fixed, sectioned and cleared for counting the functional capillary density.RESULTS: PACAP augmented caerulein-induced pancreatitis and failed to ameliorate sodium taurocholate-induced pancreatitis. ELISA revealed that relative concentrations of PACAP in pancreas and duodenum were significantly increased in both sodium taurocholate- and caeruleininduced pancreatitis compared with those in normal controls.Unexpectedly, PACAP6-27 and (4-Cl-DPhe6, Leu17) VIP could induce mild acute pancreatitis and aggravate caeruleininduced pancreatitis with characteristic manifestations of acute hemorrhagic/necrotizing pancreatitis. Functional capillary density of pancreas was interpreted in the context of pancreatic edema, and calibrated functional capillary density (calibrated FCD), which combined measurement of functional capillary density with dry weight/wet weight ratio, was introduced. Hyperemia or congestion, rather than ischemia, characterized pancreatic microcirculatory changes in acute pancreatitis

  15. Six git genes encode a glucose-induced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe

    OpenAIRE

    Susan M. Byrne; Hoffman, Charles S.

    1993-01-01

    An important eukaryotic signal transduction pathway involves the regulation of the effector enzyme adenylate cyclase, which produces the second messenger, cAMP. Previous genetic analyses demonstrated that glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene requires the function of adenylate cyclase, encoded by the git2 gene. As mutations in git2 and in six additional git genes are suppressed by exogenous cAMP, these ‘upstream’ git genes were proposed to act to produ...

  16. Pituitary adenylate cyclase-activating polypeptide: occurrence and relaxant effect in female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Alm, P; Hannibal, J;

    1995-01-01

    tract. The highest concentrations of PACAP-38 were detected in the ovary, the upper part of vagina, and the perineum. The concentrations of PACAP-27 were generally low, in some regions below the detection limit and in other regions 1 to 5% of the PACAP-38 concentrations. Immunocytochemistry revealed...

  17. Intein-mediated Rapid Purification of Recombinant Human Pituitary Adenylate Cyclase Activating Polypeptide

    Institute of Scientific and Technical Information of China (English)

    Rong-jie YU; An HONG; Yun DAI; Yuan GAO

    2004-01-01

    In order to obtain the recombinant human PACAP efficiently by intein-mediated single column purification, a gene encoding human PACAP was synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-PAC was transferred into E. coli ER2566 cells and the target protein was over-expressed as a fusion to the N-terminus of a self-cleavable affinity tag. After the PACAPintein-CBD fusion protein was purified by chitin-affinity chromatography, the self-cleavage activity of the intein was induced by DTT and the rhPACAP was released from the chitin-bound intein tag. The activity of the rhPACAP to stimulate cyclic AMP accumulation was detected using the human pancreas carcinoma cells SW1990. Twenty-two milligrams of rhPACAP with the purity over 98% was obtained by single column purification from 1 liter of induced culture. The preliminary biological assay indicated that the rhPACAP, which has an extra Met at its N-terminus compared with the native human PACAP, had the similar activity of stimulating cAMP accumulation with the standard PACAP38 in the SW1990 cells. A new efficient production procedure of the active recombinant human PACAP was established.

  18. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su;

    2005-01-01

    neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. Udgivelsesdato: 2005-Jun...... a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans...... is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel...

  19. Molecular cloning and amplification of the adenylate cyclase gene.

    OpenAIRE

    Wang, J Y; Clegg, D O; Koshland, D E

    1981-01-01

    A segment of DNA containing cya, the gene for adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1], has been isolated from Salmonella typhimurium. The phage lambda gt4 was used as a cloning vector and adenylate cyclase-positive hybrid phages were isolated that complemented adenylate cyclase-negative bacteria. The cloned DNA fragment encodes a polypeptide of molecular weight 81,000 that gives rise to adenylate cyclase activity. This protein represents a functional mutant of the ...

  20. The fission yeast git5 gene encodes a Gbeta subunit required for glucose-triggered adenylate cyclase activation.

    OpenAIRE

    Landry, S; Pettit, M T; Apolinario, E; Hoffman, C. S.

    2000-01-01

    Fission yeast adenylate cyclase is activated by the gpa2 Galpha subunit of a heterotrimeric guanine-nucleotide binding protein (G protein). We show that the git5 gene, also required for this activation, encodes a Gbeta subunit. In contrast to another study, we show that git5 is not a negative regulator of the gpa1 Galpha involved in the pheromone response pathway. While 43% identical to mammalian Gbeta's, the git5 protein lacks the amino-terminal coiled-coil found in other Gbeta subunits, yet...

  1. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress

    Institute of Scientific and Technical Information of China (English)

    Shuang Liang; Renbin Huang; Xing Lin; Jianchun Huang; Zhongshi Huang; Huagang Liu

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression were significantly elevated, and depression-like behaviors were improved. Open-field and novelty-suppressed feeding tests showed that mouse activity levels were increased and feeding latency was shortened following treatment. Our results indicate that YLSPS inhibits depression by upregulating monoamine neurotransmitters, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression.

  2. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress☆

    OpenAIRE

    Liang, Shuang; Huang, Renbin; Lin, Xing; Huang, Jianchun; Huang, Zhongshi; Liu, Huagang

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity ...

  3. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Directory of Open Access Journals (Sweden)

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  4. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion

    Institute of Scientific and Technical Information of China (English)

    Yi Ma; Tianjie Luo; Wenna Xu; Zulu Ye; An Hong

    2012-01-01

    The recombinant peptide,DBAYL,a promising therapeutic peptide for type 2 diabetes,is a new,potent,and highly selective agonist for VPAC2 generated through sitedirected mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP),vasoactive intestinal peptide (VIP),and related analogs.The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization.As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 I of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q,V18L,N29Q,and M added to the N-terminal)were much more stable than BAY55-9837.The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro.The bioactivity assay of DBAYL showed that it displaced [125I]PACAP38 and [125I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM,respectively,which were significantly lower than that of BAY55-9837,one established VPAC2 agonists.DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC5o) of 0.68 nM,whereas the receptor potency of DBAYL at human VPAC1 (ECso of 737 nM) was only 1/1083of that at human VPAC2,and DBAYL had no activity toward human PAC1 receptor.Western blot analysis of the key proteins of insulin receptor signaling pathway:insulin receptor substrate 1 (IRS-1) and glucose transporter 4(GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes.Compared with BAY55-9837 and PACAP38,the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice.These results suggested that DBAYL could efficiently improve glucose uptake and glucose-dependent insulin

  5. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    Janna eBlechman

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  6. Neuronal localization of pituitary adenylate cyclase-activating polypeptide 38 in the adrenal medulla and growth-inhibitory effect on chromaffin cells

    DEFF Research Database (Denmark)

    Frödin, M; Hannibal, J; Wulff, B S;

    1995-01-01

    medulla showed PACAP38 immunoreactivity in a widely distributed network of delicate nerve fibers surrounding the chromaffin cells. In a primary culture system, PACAP38 inhibited growth factor-stimulated DNA synthesis by 90% in neonatal and adult rat chromaffin cells with half-maximal inhibition at 4 and 0...... cells, 100 nM PACAP38 and 1 microM corticosterone added together abolished proliferation completely (99.8% inhibition). Finally, PACAP38 increased cell survival but showed little neurite-promoting activity in the chromaffin cells. Our data suggest that neurally derived PACAP38, in conjunction...

  7. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu.

    Science.gov (United States)

    Mansouri, Shiva; Lietzau, Grazyna; Lundberg, Mathias; Nathanson, David; Nyström, Thomas; Patrone, Cesare

    2016-01-01

    Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia. PMID:27305000

  8. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  9. NCBI nr-aa BLAST: CBRC-ACAR-01-0801 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0801 ref|NP_001092076.1| adenylate cyclase activating polypeptide 1 (pituitary...) receptor type I [Gallus gallus] gb|ABQ63080.1| pituitary adenylate cyclase-activating polypeptide

  10. NCBI nr-aa BLAST: CBRC-XTRO-01-3244 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-3244 ref|NP_001092076.1| adenylate cyclase activating polypeptide 1 (pituitary...) receptor type I [Gallus gallus] gb|ABQ63080.1| pituitary adenylate cyclase-activating polypeptide

  11. NCBI nr-aa BLAST: CBRC-TNIG-22-0273 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-22-0273 ref|NP_001092076.1| adenylate cyclase activating polypeptide 1 (pituitary...) receptor type I [Gallus gallus] gb|ABQ63080.1| pituitary adenylate cyclase-activating polypeptide

  12. Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYR1 and RAS2 genes in Escherichia coli.

    OpenAIRE

    Uno, I.; Mitsuzawa, H.; Matsumoto, K.; Tanaka, K; Oshima, T.; Ishikawa, T

    1985-01-01

    Plasmids carrying the CYR1 gene of yeast Saccharomyces cerevisiae, which encodes adenylate cyclase, were introduced into the cya mutant strain of Escherichia coli. The transformants had a GTP-independent adenylate cyclase activity but did not produce cAMP. The E. coli transformant carrying the yeast RAS2 or RAS2val19 gene had no adenylate cyclase activity. Transformant cells carrying both CYR1 and RAS2 produced GTP-dependent adenylate cyclase and cAMP, and those carrying CYR1 and RAS2val19 pr...

  13. GABAB receptor modulation of adenylate cyclase activity in rat brain slices.

    OpenAIRE

    Hill, D R

    1985-01-01

    An investigation of the effects of gamma-aminobutyric acid (GABA) and the selective GABAB receptor agonist, baclofen, on basal and stimulated adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in slices of rat cerebral cortex has been carried out. Neither GABA nor baclofen produced any significant change in basal cyclic AMP levels. By contrast noradrenaline and forskolin both produced dose-dependent increases in cellular cyclic AMP accumulation. GABA (in the presence of nipecotic acid) ...

  14. 大鼠三叉神经节垂体腺苷环化酶激活肽免疫反应神经元对松果体的神经支配%Innervation of the rat pineal gland by pituitary adenylate cyclase activating polypeptide (PACAP)-immunoreactive nerve fibres originating in the trigeminal gangluon

    Institute of Scientific and Technical Information of China (English)

    刘伟; 金芳华; 彭华; 何建波

    2002-01-01

    目的证实大鼠松果体的垂体腺苷环化酶激活肽(PACAP)免疫反应神经纤维来源于三叉神经节神经元.方法 采用颞下窝入路切断大鼠眼-上颌神经,存活3d~1周后,观察松果体的PACAP免疫反应神经纤维并计数,与未经手术的对照组动物比较.结果在切断了眼-上颌神经的大鼠,其松果体的PACAP免疫反应神经纤维明显减少.结论大鼠三叉神经节是松果体PACAP能神经纤维的主要来源,该类神经纤维可能参与调节松果体腺细胞分泌褪黑素.

  15. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    Science.gov (United States)

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  16. NCBI nr-aa BLAST: CBRC-OLAT-04-0016 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OLAT-04-0016 ref|NP_001098686.1| pituitary adenylate cyclase-activating polype...ptide 1B [Takifugu rubripes] emb|CAD38842.1| pituitary adenylate cyclase-activating polypeptide 1B [Takifugu rubripes] NP_001098686.1 0.0 88% ...

  17. NCBI nr-aa BLAST: CBRC-TNIG-22-0273 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-22-0273 ref|NP_001098686.1| pituitary adenylate cyclase-activating polype...ptide 1B [Takifugu rubripes] emb|CAD38842.1| pituitary adenylate cyclase-activating polypeptide 1B [Takifugu rubripes] NP_001098686.1 0.0 89% ...

  18. NCBI nr-aa BLAST: CBRC-GACU-08-0006 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-08-0006 ref|NP_001098686.1| pituitary adenylate cyclase-activating polype...ptide 1B [Takifugu rubripes] emb|CAD38842.1| pituitary adenylate cyclase-activating polypeptide 1B [Takifugu rubripes] NP_001098686.1 0.0 89% ...

  19. NCBI nr-aa BLAST: CBRC-DRER-06-0099 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-06-0099 ref|NP_001098686.1| pituitary adenylate cyclase-activating polype...ptide 1B [Takifugu rubripes] emb|CAD38842.1| pituitary adenylate cyclase-activating polypeptide 1B [Takifugu rubripes] NP_001098686.1 0.0 82% ...

  20. NCBI nr-aa BLAST: CBRC-TSYR-01-0228 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TSYR-01-0228 ref|NP_001098686.1| pituitary adenylate cyclase-activating polype...ptide 1B [Takifugu rubripes] emb|CAD38842.1| pituitary adenylate cyclase-activating polypeptide 1B [Takifugu rubripes] NP_001098686.1 8e-04 40% ...

  1. NCBI nr-aa BLAST: CBRC-XTRO-01-0270 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0270 ref|NP_001098685.1| pituitary adenylate-cyclase activating polype...ptide receptor 1A [Takifugu rubripes] emb|CAD35690.1| pituitary adenylate-cyclase activating polypeptide receptor 1A [Takifugu rubripes] NP_001098685.1 2e-07 30% ...

  2. NCBI nr-aa BLAST: CBRC-OLAT-17-0031 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OLAT-17-0031 ref|NP_001098686.1| pituitary adenylate cyclase-activating polype...ptide 1B [Takifugu rubripes] emb|CAD38842.1| pituitary adenylate cyclase-activating polypeptide 1B [Takifugu rubripes] NP_001098686.1 0.0 79% ...

  3. Studies on cell migration, adenylate cyclase and membrane-coating granules in the buccal epithelium of the zinc-deficient rabbit, including the influence of isoproterenol.

    Science.gov (United States)

    Chen, S Y

    1988-01-01

    Cell migration was slightly increased; cytochemical reaction deposits of adenylate cyclase and the area density of membrane-coating granules (MCG) were significantly increased. Upon isoproterenol stimulation, the MCG area density was significantly increased, whereas the cell migration rate was unchanged. Thus in zinc deficiency, there may be a simultaneous increase in the production and secretion of MCGs, in adenylate cyclase activity, and in cell migration. The non-significantly increased cell migration rate may not keep pace with the significantly increased cell-production rate, resulting in thickening of the epithelium.

  4. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    Energy Technology Data Exchange (ETDEWEB)

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. (Univ. of Miami School of Medicine, FL (USA))

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  5. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    International Nuclear Information System (INIS)

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking [125I]PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by [125I]PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that [a] no other AC-regulatory proteins are known to be of this size, [b] the catalytic unit of bovine brain enzyme is in the same range and [c] this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase

  6. Product identification and adenylyl cyclase activity in chloroplasts of Nicotiana tabacum.

    Science.gov (United States)

    Witters, Erwin; Quanten, Lieve; Bloemen, Jo; Valcke, Roland; Van Onckelen, Harry

    2004-01-01

    In view of the ongoing debate on plant cyclic nucleotide metabolism, especially the functional presence of adenylyl cyclase, a novel detection method has been worked out to quantify the reaction product. Using uniformly labelled (15)N-ATP as a substrate for adenylyl cyclase, a qualitative and quantitative liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) method was developed to measure de novo formed (15)N-adenosine 3',5'-cyclic monophosphate. Adenylyl cyclase activity was observed in chloroplasts obtained from Nicotiana tabacum cv. Petit Havana and the kinetic parameters and influence of various metabolic effectors are discussed in their context.

  7. Role of Guanylate Cyclase Activating Proteins in photoreceptor cells of the retina in health and disease

    OpenAIRE

    López del Hoyo, Natalia

    2014-01-01

    In the last two decades, it has been done a thoroughly research about the role of Guanylate Cyclase Activating Proteins (GCAPs) in photoreceptor cells of the retina as activity regulators of Retinal Guanylate Cyclase (RetGC), which allow to restore cGMP levels to darkness ones when intracellular Ca2+ falls. However, little is known about: a) ¿What determines GCAPs distribution within the cell?, b) ¿Which other functions GCAP proteins, GCAP1 and GCAP2, carry out at other cellular compartm...

  8. Antifungal polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Altier, Daniel J. (Granger, IA); Dahlbacka, Glen (Oakland, CA); Ellanskaya, Irina (Kyiv, UA); Ellanskaya, legal representative, Natalia (Kyiv, UA); Herrmann, Rafael (Wilmington, DE); Hunter-Cevera, Jennie (Elliott City, MD); McCutchen, Billy F. (College Station, TX); Presnail, James K. (Avondale, PA); Rice, Janet A. (Wilmington, DE); Schepers, Eric (Port Deposit, MD); Simmons, Carl R. (Des Moines, IA); Torok, Tamas (Richmond, CA); Yalpani, Nasser (Johnston, IA)

    2012-04-03

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  9. Effects of papaverine and vasointestinal polypeptide on penile and vascular cAMP and cGMP in control and diabetic animals: an in vitro study.

    Science.gov (United States)

    Miller, M A; Morgan, R J; Thompson, C S; Mikhailidis, D P; Jeremy, J Y

    1995-06-01

    Adenosine 3'5'-cyclic monophosphate (cAMP) and guanosine 3'5'-cyclic monophosphate (cGMP) mediate penile erection. We have previously established that adenylate and guanylate cyclase activity is elevated in the diabetic rat penis and aorta. This study investigates the action of papaverine and vasoactive intestinal polypeptide (VIP) on these cyclases. The aortae and penes of Sprague Dawley rats (n = 7) were stimulated with VIP and papaverine. Diabetes mellitus (DM) was induced in Sprague Dawley rats (n = 7) with streptozotocin and the penile and aortic tissues were treated with VIP. The penes, aortae and carotid arteries of New Zealand White rabbits were similarly processed. cAMP and cGMP generation was measured by radioimmunoassay. In all tissues: VIP stimulated cAMP synthesis; VIP did not increase cGMP levels; papaverine was without effect on either cAMP or cGMP synthesis. VIP-stimulated cAMP was significantly enhanced in the diabetic rat penis and aorta; there was also a significant elevation in the basal levels of cGMP in these tissues. These data: (1) consolidate that cAMP is a mediator of penile erection, (2) indicate that papaverine and VIP elicit erection by different mechanisms, (3) suggest that an enhanced penile capacity to generate cAMP in DM may constitute an adaptive response to counteract the previously reported reduction in VIP content and VIP receptors, and (4) indicate that the penile and vascular tissues of the rabbit respond in a similar manner to VIP and papaverine. PMID:7496446

  10. A Continuous Kinetic Assay for Adenylation Enzyme Activity and Inhibition

    OpenAIRE

    Daniel J. Wilson; Aldrich, Courtney C.

    2010-01-01

    Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PPi). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hy...

  11. Uridylation and adenylation of RNAs.

    Science.gov (United States)

    Song, JianBo; Song, Jun; Mo, BeiXin; Chen, XueMei

    2015-11-01

    The posttranscriptional addition of nontemplated nucleotides to the 3' ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3' ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area. PMID:26563174

  12. Expression of neuropeptides and their receptors in the developing retina of mammals

    OpenAIRE

    bagnoli, P; M. Dal Monte; Casini, G.

    2003-01-01

    The present review examines various aspects of the developmental expression of neuropeptides and of their receptors in mammalian retinas, emphasizing their possible roles in retinal maturation. Different peptidergic systems have been investigated with some detail during retinal development, including substance P (SP), somatostatin (SRIF), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY...

  13. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Salvatore, Christopher A; Johansson, Sara;

    2015-01-01

    ) and related this to the expression of CGRP and its receptor in rhesus trigeminal ganglion. Pituitary adenylate cyclase-activating polypeptide (PACAP) and glutamate were examined and related to the CGRP system. Furthermore, we examined if the trigeminal ganglion is protected by the blood-brain barrier...

  14. Headache and prolonged dilatation of the middle meningeal artery by PACAP38 in healthy volunteers

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Asghar, Mohammad Sohail; Guo, Song;

    2012-01-01

    To explore a possible relationship between vasodilatation and delayed headache we examined the effect of pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) on the middle meningeal artery (MMA) and middle cerebral artery (MCA) using high resolution magnetic resonance angiography (MRA)....

  15. Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress

    OpenAIRE

    Hammack, Sayamwong E.; Roman, Carolyn W.; Lezak, Kimberly R.; Kocho-Shellenberg, Margaret; Grimmig, Bethany; Falls, William A; Braas, Karen; May, Victor

    2010-01-01

    Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial evidence has implicated regions of the central extended amygdala, including the bed nucleus of the stria terminalis (BNST) and the central nucle...

  16. Cytosolic adenylate changes during exercise in prawn muscle

    Energy Technology Data Exchange (ETDEWEB)

    Thebault, M.T. [College de France, 29 - Concarneau (France); Raffin, J.P.; Pichon, R. [Brest Univ., 29 (France)

    1994-11-01

    {sup 31}P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs.

  17. Adenylate cyclases involvement in pathogenicity, a minireview.

    Science.gov (United States)

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.

  18. Structural studies of Schistosoma mansoni adenylate kinases

    Energy Technology Data Exchange (ETDEWEB)

    Marques, I.A. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Pereira, H.M.; Garrat, R.C. [Universidade de Sao Paulo (USP-SC), Sao Carlos, SP (Brazil)

    2012-07-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  19. Adenyl cyclase in the human placenta.

    Science.gov (United States)

    Sato, K; Ryan, K J

    1971-09-21

    This study demonstrated that the human placenta possesses an adenyl cyclase system responsive to catecholamines and sodium flouride (NaF). 2.5 gm human term placentas were homogenized, centrifuged, washed, resuspended, and used as the enzyme system when placed with various agents. Incubations and the determination of adenosine 3', 5' monophosphate (cyclic AMP) formed were performed. Samples stimulated by .0001 M catecholamines (L-epinephrine or L-norepinephrine) or .01 M NaF had higher levels of cyclic AMP than the controls (p. 005 for catecholamine-treated samples and p. 001 for NaF-treated samples). A concentration of .0001 M L-epinephrine or L-norepinephrine appeared to be a maximum effective dose and .0000001 M a minimum. L=epinephrine was 10 times as effective in the stimulation as L-norepinephrine. With .0001 M, 499 and 439 pmoles/10 minutes per 25 mg of tissue was formed, whereas in the control (no added hormones) 256 pmoles/10 minutes were formed. 3.2% ethanol activated the system by a small amount (p.02). Propranolol alone did not appear to have any effect; however, the effect of .0001 M L-epinephrine was reduced by 95% in the presence of .00001 M propranolol. Propranolol had no effect on NaF-stimulated activity.

  20. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface.

    Science.gov (United States)

    Peshenko, Igor V; Olshevskaya, Elena V; Dizhoor, Alexander M

    2015-08-01

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823).

  1. Monospecific antibody against Bordetella pertussis Adenylate Cyclase protects from Pertussis

    Directory of Open Access Journals (Sweden)

    Yasmeen Faiz Kazi

    2012-06-01

    Full Text Available Objectives: Acellular pertussis vaccines has been largely accepted world-wide however, there are reports about limitedantibody response against these vaccines suggesting that multiple antigens should be included in acellular vaccinesto attain full protection. The aim of present study was to evaluate the role of Bordetella pertussis adenylate cyclase as aprotective antigen.Materials and methods: Highly mono-specific antibody against adenylate cyclase (AC was raised in rabbits usingnitrocellulose bound adenylate cyclase and the specificity was assessed by immuoblotting. B.pertussis 18-323, wasincubated with the mono-specific serum and without serum as a control. Mice were challenged intra-nasally and pathophysiolgicalresponses were recorded.Results: The production of B.pertussis adenylate cyclase monospecific antibody that successfully recognized on immunoblotand gave protection against fatality (p< 0.01 and lung consolidation (p <0.01. Mouse weight gain showedsignificant difference (p< 0.05.Conclusion: These preliminary results highlight the role of the B.pertussis adenylate cyclase as a potential pertussisvaccine candidate. B.pertussis AC exhibited significant protection against pertussis in murine model. J Microbiol InfectDis 2012; 2(2: 36-43Key words: Pertussis; monospecific; antibody; passive-protection

  2. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  3. Adenylate cyclase toxin-mediated delivery of the S1 subunit of pertussis toxin into mammalian cells.

    Science.gov (United States)

    Iwaki, Masaaki; Konda, Toshifumi

    2016-02-01

    The adenylate cyclase toxin (ACT) of Bordetella pertussis internalizes its catalytic domain into target cells. ACT can function as a tool for delivering foreign protein antigen moieties into immune effector cells to induce a cytotoxic T lymphocyte response. In this study, we replaced the catalytic domain of ACT with an enzymatically active protein moiety, the S1 (ADP-ribosyltransferase) subunit of pertussis toxin (PT). The S1 moiety was successfully internalized independent of endocytosis into sheep erythrocytes. The introduced polypeptide exhibited ADP-ribosyltransferase activity in CHO cells and induced clustering typical to PT. The results indicate that ACT can act as a vehicle for not only epitopes but also enzymatically active peptides to mammalian cells.

  4. Hydrogenase polypeptide and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W.W.; Hopkins, Robert C.; Jenney, JR, Francis E.; Sun, Junsong

    2016-02-02

    Provided herein are polypeptides having hydrogenase activity. The polypeptide may be multimeric, and may have hydrogenase activity of at least 0.05 micromoles H.sub.2 produced min.sup.-1 mg protein.sup.-1. Also provided herein are polynucleotides encoding the polypeptides, genetically modified microbes that include polynucleotides encoding one or more subunits of the multimeric polypeptide, and methods for making and using the polypeptides.

  5. Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways.

    Directory of Open Access Journals (Sweden)

    Giorgio Fedele

    Full Text Available The complex pathology of B. pertussis infection is due to multiple virulence factors having disparate effects on different cell types. We focused our investigation on the ability of B. pertussis to modulate host immunity, in particular on the role played by adenylate cyclase toxin (CyaA, an important virulence factor of B. pertussis. As a tool, we used human monocyte derived dendritic cells (MDDC, an ex vivo model useful for the evaluation of the regulatory potential of DC on T cell immune responses. The work compared MDDC functions after encounter with wild-type B. pertussis (BpWT or a mutant lacking CyaA (BpCyaA-, or the BpCyaA- strain supplemented with either the fully functional CyaA or a derivative, CyaA*, lacking adenylate cyclase activity. As a first step, MDDC maturation, cytokine production, and modulation of T helper cell polarization were evaluated. As a second step, engagement of Toll-like receptors (TLR 2 and TLR4 by B. pertussis and the signaling events connected to this were analyzed. These approaches allowed us to demonstrate that CyaA expressed by B. pertussis strongly interferes with DC functions, by reducing the expression of phenotypic markers and immunomodulatory cytokines, and blocking IL-12p70 production. B. pertussis-treated MDDC promoted a mixed Th1/Th17 polarization, and the activity of CyaA altered the Th1/Th17 balance, enhancing Th17 and limiting Th1 expansion. We also demonstrated that Th1 effectors are induced by B. pertussis-MDDC in the absence of IL-12p70 through an ERK1/2 dependent mechanism, and that p38 MAPK is essential for MDDC-driven Th17 expansion. The data suggest that CyaA mediates an escape strategy for the bacterium, since it reduces Th1 immunity and increases Th17 responses thought to be responsible, when the response is exacerbated, for enhanced lung inflammation and injury.

  6. Tritium labelling of PACAP-38 using a synthetic diiodinated precursor peptide

    DEFF Research Database (Denmark)

    Pedersen, Martin Holst Friborg; Baun, Michael

    2012-01-01

    In the interest of developing efficient methods for tritium labelling peptides, we here demonstrate the successful labelling of PACAP-38 (pituitary adenylate cyclase-activating polypeptide), a 38-mer peptide, using a synthetic diiodinated PACAP-38 precursor. In this example, we employ standard hy...... hydrogenation chemistry with the use of a heterogeneous palladium catalyst and carrier-free tritium gas on a tritium manifold system....

  7. Extrapyramidal disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008119 Therapeutic effect of neuropeptide PACAP27 on Parkinson′s disease in mice. WANG Gang(王刚), et al.Dept Neurol & Neurol Instit, Ruijin Hosp, Shanghai Jiaotong Univ, Med Sch, Shanghai 200025. Chin J Neurol 2007;40(12):837-841. Objective To investigate the effects of different doses of pituitary adenylate cyclase-activating polypeptide (PACAP) on the functional and morphological outcome in a mice model of Parkinson′s disease (PD) re

  8. Maxadilan Prevents Apoptosis in iPS Cells and Shows No Effects on the Pluripotent State or Karyotype

    OpenAIRE

    Zhiyi Zhao; Rongjie Yu; Jiayin Yang; Xiaofei Liu; Meihua Tan; Hongyang Li; Jiansu Chen

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. Maxadilan, a 61-amino acid vasodilatory peptide, specifically activates the PACAP type I receptor (PAC1). Although PAC1 has been identified in embryonic stem cells, little is known about its presence or effects in human induced pluripotent stem (iPS) cells. In the present study, we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase...

  9. Correlated inter-domain motions in adenylate kinase.

    Directory of Open Access Journals (Sweden)

    Santiago Esteban-Martín

    2014-07-01

    Full Text Available Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK, using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs measured under steric alignment by nuclear magnetic resonance (NMR. We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.

  10. Polypeptide cartography of Spiroplasma taiwanense.

    Science.gov (United States)

    Humphery-Smith, I; Guyonnet, F; Chastel, C

    1994-01-01

    Spiroplasma taiwanense is the first member of the Class Mollicutes to be subjected to polypeptide cartography using computerized image analysis. The small genome size characteristic of this group was shown to code for low numbers of polypeptides when compared to other bacterial species. Silver-stained two-dimensional electrophoresis gels, following separation by either isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (ISO-DALT) or nonequilibrium pH gradient electrophoresis (NEPHGE), were used to create databases from 10 and 6 gels, respectively, for each technique and produced, respectively, 263 and 287 replicated spots. Polypeptides were mapped with respect to molecular mass and glyceraldehyde-3-phosphate dehydrogenase carbamylation standards. Of interest was the unexpectedly high percentage (50.2%) of the total normalised optical intensity associated with all 263 spots detected by ISO-DALT electrophoresis, having been contributed by just 29 dominant protein spots. These 29 polypeptides are to be given priority in microsequencing and microanalysis aimed at their identification.

  11. Methods for using polypeptides having cellobiohydrolase activity

    Energy Technology Data Exchange (ETDEWEB)

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. A Novel Polypeptide from Cervus elaphus Linnaeus

    Institute of Scientific and Technical Information of China (English)

    LiangWENG; QiuLiZHOU; 等

    2002-01-01

    A novel polypeptide having stimulant effect on some cell proliferation was isolated from the velvet antler (Cervus elaphus Linnaeus). The velvet antler polypeptide consists of a single chain of 32 amino acid residues. Amino acid sequence of the polypeptide was identified as:VLSAADKSNVKAAWGKVGGNAPAFGAEALLRM.

  13. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    Science.gov (United States)

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity. PMID:22383530

  14. Nano polypeptide particles reinforced polymer composite fibers.

    Science.gov (United States)

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  15. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  16. Galanin and vasoactive intestinal polypeptide

    DEFF Research Database (Denmark)

    Harling, H; Messell, T; Poulsen, Steen Seier;

    1991-01-01

    By immunohistochemistry and double staining technique, almost complete coexistence of galanin-like immunoreactivity (GAL-LI) and vasoactive intestinal polypeptide-like immunoreactivity (VIP-LI) was demonstrated in submucosal ganglionic cells and mucosal nerve fibers of the porcine ileum. The....../min (p less than 0.001), respectively. In conclusion, the coexistence and parallel release of GAL and VIP suggest that GAL/VIP neurons may be involved in intramural secretory and motor reflexes....

  17. Electrospun Synthetic Polypeptide Nanofibrous Biomaterials

    Science.gov (United States)

    Khadka, Dhan; Haynie, Donald

    2011-03-01

    Water-insoluble nanofiber mats of synthetic polypeptides of defined composition have been prepared from fibers electrospun from aqueous solution in the absence of organic co-solvents. 20-50 kDa poly(L-glutamate, L-tyrosine) 4:1 (PLGY) but not 15-50 kDa or 50-100 kDa poly(L-glutamate) was spinnable at 20-55% (w/v) polymer in water. Applied voltage and needle-collector distance were crucial for spinnability. Attractive fibers were obtained at 50% polymer. Fiber diameter and mat morphology have been characterized by electron microscopy. Exposure of spun fiber mats to 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), which reacts with carboxylate, decreased fiber solubility. Fluorescein-conjugated poly(L-lysine) (FITC-PLL) but not the fluorophore alone was able bind PLGY fiber mats electrostatically, judging by fluorescence microscopy. Key advances of this work are the avoidance of an animal source of peptides and of an inorganic co-solvent to achieve polypeptide spinnability. Polypeptide fiber mats are a promising type of nano-structured biomaterial for applications in biomedicine and biotechnology.

  18. Pertussis toxin inhibits cAMP-induced desensitization of adenylate cyclase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Snaar-Jagalska, B. Ewa; Haastert, Peter J.M. van

    1990-01-01

    cAMP binds to surface receptors of Dictyostelium discoideum cells, transducing the signal to adenylate cyclase, guanylate cyclase and to chemotaxis. The activation of adenylate cyclase is maximal after 1 min and then declines to basal levels due to desensitization, which is composed of two component

  19. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase

    NARCIS (Netherlands)

    Roelofs, J; Snippe, H; Kleineidam, RG; Van Haastert, PJM

    2001-01-01

    The core of adenylate and guanylate cyclases is formed by an intramolecular ol intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a he

  20. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same

    Science.gov (United States)

    Liu, Ye; Tang, Lan; Duan, Junxin

    2015-12-15

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2016-06-28

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Shaghasi, Tarana

    2016-11-01

    The present invention provides hybrid polypeptides having cellobiohydrolase activity. The present invention also provides polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  5. Pleiotropic and retinoprotective functions of PACAP.

    Science.gov (United States)

    Shioda, Seiji; Takenoya, Fumiko; Wada, Nobuhiro; Hirabayashi, Takahiro; Seki, Tamotsu; Nakamachi, Tomoya

    2016-09-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues of the eye, including the retina, cornea and lacrimal gland, and PACAP is known to exert pleiotropic effects throughout the central nervous system. This review provides an overview of current knowledge regarding the cell protective effects, mechanisms of action and therapeutic potential of PACAP in response to several types of eye injury. PMID:27324639

  6. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  7. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Tumbale, Percy [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Williams, Jessica S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Schellenberg, Matthew J. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Kunkel, Thomas A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. of Molecular Genetics; Williams, R. Scott [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. Molecular Genetics

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  8. Ca 2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca 2+ channels

    KAUST Repository

    Qia, Zhi

    2010-11-18

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogendefense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca 2+ permeable channels in mesophyll cells, resulting in cytosolic Ca 2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor- like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2- dependent cytosolic Ca 2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca 2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca 2+ conductance and resulting cytosolic Ca 2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen- defense genes in a Ca 2+-dependent manner.

  9. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels.

    Science.gov (United States)

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A; Berkowitz, Gerald A

    2010-12-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca(2+) permeable channels in mesophyll cells, resulting in cytosolic Ca(2+) elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca(2+) elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca(2+) signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca(2+) conductance and resulting cytosolic Ca(2+) elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca(2+)-dependent manner.

  10. Biolubricant Polypeptides and Therapeutic Uses Thereof

    NARCIS (Netherlands)

    SHARMA PRASHANT, KUMAR; HERRMANN, ANDREAS; KOLBE, ANKE; HALENAHALLY VEEREGOWDA, DEEPAK; VEEREGOWDA DEEPAK, HALENAHALLY

    2015-01-01

    The invention relates to the field of medicine. In particular, it relates to recombinant cationic polypeptides and their use as biolubricant. Provided is a biolubricant substance comprising the amino acid sequence[(GKGVP)9]n, wherein n is >=5.

  11. Restriction/modification polypeptides, polynucleotides, and methods

    Energy Technology Data Exchange (ETDEWEB)

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  12. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis.

    Science.gov (United States)

    Tükenmez, Hasan; Magnussen, Helge Magnus; Kovermann, Michael; Byström, Anders; Wolf-Watz, Magnus

    2016-01-01

    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies. PMID:27642758

  13. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  14. Adenylate cyclase regulates elongation of mammalian primary cilia

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  15. Interconversion of functional motions between mesophilic and thermophilic adenylate kinases.

    Directory of Open Access Journals (Sweden)

    Michael D Daily

    2011-07-01

    Full Text Available Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK, for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō simulation of mesophilic AK from E. coli (AKmeso to simulations of thermophilic AK from Aquifex aeolicus (AKthermo. In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A "heated" simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the "corresponding states" hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways.

  16. Adenylate cyclase regulates elongation of mammalian primary cilia

    International Nuclear Information System (INIS)

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  17. VIP/PACAP receptors in cerebral arteries of rat

    DEFF Research Database (Denmark)

    Erdling, André; Sheykhzade, Majid; Maddahi, Aida;

    2013-01-01

    BACKGROUND: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP)-containing nerves surround cerebral blood vessels. The peptides have potent vasodilator properties via smooth muscle cell receptors and activation of adenylate cyclase. The purpose of this s...

  18. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin.

    Science.gov (United States)

    Bouhss, A; Krin, E; Munier, H; Gilles, A M; Danchin, A; Glaser, P; Bârzu, O

    1993-01-25

    The catalytic domain of Bordetella pertussis adenylate cyclase located within the first 400 amino acids of the protein can be cleaved by trypsin in two subdomains (T25 and T18) corresponding to ATP-(T25) and calmodulin (CaM)-(T18) binding sites. Reassociation of subdomains by CaM is a cooperative process, which is a unique case among CaM-activated enzymes. To understand better the molecular basis of this phenomenon, we used several approaches such as partial deletions of the adenylate cyclase gene, isolation of peptides of various size, and site-directed mutagenesis experiments. We found that a stretch of 72 amino acid residues overlapping the carboxyl terminus of T25 and the amino terminus of T18 accounts for 90% of the binding energy of adenylate cyclase-CaM complex. The hydrophobic "side" of the helical region situated around Trp242 plays a major role in the interaction of adenylate cyclase with CaM, whereas basic residues that alternate with acidic residues in bacterial enzyme play a much less important role. The amino-terminal half of the catalytic domain of adenylate cyclase contributes only 10% to the binding energy of CaM, whereas the last 130 amino acid residues are not at all involved in binding. However, these segments of adenylate cyclase might affect protein/protein interaction and catalysis by propagating conformational changes to the CaM-binding sequence which is located in the middle of the catalytic domain of bacterial enzyme. PMID:8420945

  19. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity

    OpenAIRE

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R Scott

    2013-01-01

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions employed by ATP-dependent DNA ligases 1,2 . Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5′-adenylated (5′-AMP) DNA lesions 3–6 (Fig. 1a). Aprataxin (Aptx) reverses DNA-adenylation but the context for dead...

  20. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the S

  1. Tuning Ice Nucleation with Supercharged Polypeptides.

    Science.gov (United States)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C M; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-07-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the SUP backbone is another parameter to control it. PMID:27119590

  2. Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice

    NARCIS (Netherlands)

    Hancock, C.R.; Janssen, E.E.W.; Terjung, R.L.

    2005-01-01

    The production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (-/-) on adenine nucleotide management and whole

  3. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Science.gov (United States)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  10. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  11. Altered pupillary light reflex in PACAP receptor 1-deficient mice

    DEFF Research Database (Denmark)

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian Paul;

    2012-01-01

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN......), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP...

  12. Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands

    DEFF Research Database (Denmark)

    Fahrenkrug, Jan; Hannibal, Jens

    2011-01-01

    PACAP (pituitary adenylate cyclase activating polypeptide) is widely distributed neuropeptide acting via three subtypes of receptors, PAC(1), VPAC(1) and VPAC(2). Here we examined the localisation and nature of PACAP-immunoreactive nerves in the rat thyroid and parathyroid glands and defined...... with relation to blood vessels co-stored NPY (neuropeptide Y), whereas only a few fibres co-stored CGRP. PAC(1) and VPAC(1) receptor mRNA's occurred in follicular cells and blood vessels, whereas the expression of the VPAC(2) receptor was low. The findings suggest that PACAP plays a role in the regulation...

  13. Expression Analysis of PAC1-R and PACAP Genes in Zebrafish Embryos

    OpenAIRE

    Alexandre, David; Alonzeau, Jessy; Bill, Brent R.; Ekker, Stephen C.; Waschek, James A

    2010-01-01

    This study describes the expression of the pituitary adenylate cyclase-activating polypeptide (PACAP1 and PACAP2) and PAC1 receptor genes (PAC1a-R and PAC1b-R) in the brain of zebrafish (Danio rerio) during development. In situ hybridization of the 24- and 48-hpf embryos revealed that PACAP genes were expressed in the telencephalon, the diencephalon, the rhombencephalon, and the neurons in the dorsal part of the spinal cord. PACAP2 mRNA appears to be the most abundant form during brain develo...

  14. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.;

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...... for the folding of such peptide molecules and proteins). The potential energy surfaces have been calculated ab initio within the framework of the density functional theory taking into account all electrons in the system. The probabilities of transitions between various stable conformations of polypeptide...... molecules are evaluated. The results are compared to the data obtained by molecular dynamics simulations and to the available experimental data. The influence of the secondary structure of the polypeptide chain on its conformational properties with respect to rotations has been studied. It is shown that...

  15. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  16. Chain stiffness of elastin-like polypeptides

    OpenAIRE

    Fluegel, Sabine; Fischer, Karl; McDaniel, Jonathan R.; Chilkoti, Ashutosh; Schmidt, Manfred

    2010-01-01

    The hydrodynamic radii of a series of genetically engineered monodisperse elastin like polypeptides (ELP) was determined by dynamic light scattering in aqueous solution as function of molar mass. Utilizing the known theoretical expression for the hydrodynamic radius of wormlike chains, the Kuhn statistical segment length was determined to be lk = 2.1 nm, assuming that the length of the peptide repeat unit was b = 0.365 nm, a value derived for a coiled conformation of ELP. The resulting chain ...

  17. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  18. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    Science.gov (United States)

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  19. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    Science.gov (United States)

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  20. Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis.

    OpenAIRE

    Glaser, P; Elmaoglou-Lazaridou, A; Krin, E.; Ladant, D.; Bârzu, O; Danchin, A

    1989-01-01

    In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture sup...

  1. Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera

    Directory of Open Access Journals (Sweden)

    Rouhiainen Leo

    2008-09-01

    Full Text Available Abstract Background Cyanobacteria produce a wealth of secondary metabolites, including the group of small cyclic heptapeptide hepatotoxins that constitutes the microcystin family. The enzyme complex that directs the biosynthesis of microcystin is encoded in a single large gene cluster (mcy. mcy genes have a widespread distribution among cyanobacteria and are likely to have an ancient origin. The notable diversity within some of the Mcy modules is generated through various recombination events including horizontal gene transfer. Results A comparative analysis of the adenylation domains from the first module of McyB (McyB1 and McyC in the microcystin synthetase complex was performed on a large number of microcystin-producing strains from the Anabaena, Microcystis and Planktothrix genera. We found no decisive evidence for recombination between strains from different genera. However, we detected frequent recombination events in the mcyB and mcyC genes between strains within the same genus. Frequent interdomain recombination events were also observed between mcyB and mcyC sequences in Anabaena and Microcystis. Recombination and mutation rate ratios suggest that the diversification of mcyB and mcyC genes is driven by recombination events as well as point mutations in all three genera. Sequence analysis suggests that generally the adenylation domains of the first domain of McyB and McyC are under purifying selection. However, we found clear evidence for positive selection acting on a number of amino acid residues within these adenylation domains. These include residues important for active site selectivity of the adenylation domain, strongly suggesting selection for novel microcystin variants. Conclusion We provide the first clear evidence for positive selection acting on amino acid residues involved directly in the recognition and activation of amino acids incorporated into microcystin, indicating that the microcystin complement of a given strain may

  2. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  3. Age-associated alterations in hepatic. beta. -adrenergic receptor/adenylate cyclase complex

    Energy Technology Data Exchange (ETDEWEB)

    Graham, S.M.; Herring, P.A.; Arinze, I.J.

    1987-09-01

    The effect of age on catecholamine regulation of hepatic glycogenolysis and on hepatic adenylate cyclase was studied in male rats up to 24 mo of age. Epinephrine and norepinephrine stimulated glycogenolysis in isolated hepatocytes at all age groups studied. Isoproterenol, however, stimulated glycogenolysis only at 24 mo. In isolated liver membranes, usual activators of adenylate cyclase increased the activity of the enzyme considerably more in membranes from 24-mo-old rats than in membranes from either 3- or 22-mo-old rats. The Mn/sup 2 +/-dependent activity of the cyclase was increased by 2.9-fold in 3-mo-old animals and approx. 5.7-fold in 24-mo-old rats, indicating a substantial age-dependent increase in the intrinsic activity of the catalytic unit. The density of the ..beta..-adrenergic receptor, as measured by the binding of (/sup 125/I)-iodocyanopindolol to plasma membranes, was 5-8 fmol/mg protein in rats aged 3-12 mo but increased to 19 fmol/mg protein in 24-mo-old rats. Computer-aided analysis of isoproterenol competition of the binding indicated a small age-dependent increase in the proportion of ..beta..-receptors in the high-affinity state. These observations suggest that ..beta..-receptor-mediated hepatic glycogenolysis in the aged rat is predicated upon increases in the density of ..beta..-receptors as well as increased intrinsic activity of the catalytic unit of adenylate cyclase.

  4. Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity

    Directory of Open Access Journals (Sweden)

    Trung Thanh Thach

    2014-01-01

    Full Text Available Streptococcus pneumoniae (pneumococcus infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S. pneumoniae (SpAdK serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A. Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.

  5. Multiforms of mammalian adenylate kinase and its monoclonal antibody against AK1.

    Science.gov (United States)

    Kurokawa, Y; Takenaka, H; Sumida, M; Oka, K; Hamada, M; Kuby, S A

    1990-01-01

    An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.

  6. NMR studies of the AMP-binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Kuby, S.A.; Mildvan, A.S.

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr/sup 3 +/AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T/sub 1/ method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine.

  7. Polypeptide having beta-glucosidase activity and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius

    2016-09-13

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  8. Endogenous pancreatic polypeptide in different vascular beds

    DEFF Research Database (Denmark)

    Henriksen, J H; Schwartz, Tania; Bülow, J B

    1986-01-01

    The plasma concentration of pancreatic polypeptide (PP-like immunoreactivity) was measured in different vascular beds in order to determine regional kinetics of endogenous PP in fasting, supine subjects with normal or moderately decreased kidney function. Patients with kidney disease (n = 10) had a...... concentration (r = 0.70, P less than 0.01). Hepatic venous PP was significantly higher than systemic PP in both controls and patients with kidney disease (P less than 0.001, n = 15). The values were positively correlated (r = 0.98, P less than 0.001; slope = 1.37 +/- 0.05, P less than 0.001), indicating a...

  9. Ordered Nanostructures Made Using Chaperonin Polypeptides

    Science.gov (United States)

    Trent, Jonathan; McMillan, Robert; Paavola, Chad; Mogul, Rakesh; Kagawa, Hiromi

    2004-01-01

    A recently invented method of fabricating periodic or otherwise ordered nanostructures involves the use of chaperonin polypeptides. The method is intended to serve as a potentially superior and less expensive alternative to conventional lithographic methods for use in the patterning steps of the fabrication of diverse objects characterized by features of the order of nanometers. Typical examples of such objects include arrays of quantum dots that would serve as the functional building blocks of future advanced electronic and photonic devices. A chaperonin is a double-ring protein structure having a molecular weight of about 60 plus or minus 5 kilodaltons. In nature, chaperonins are ubiquitous, essential, subcellular structures. Each natural chaperonin molecule comprises 14, 16, or 18 protein subunits, arranged as two stacked rings approximately 16 to 18 nm tall by approximately 15 to 17 nm wide, the exact dimensions depending on the biological species in which it originates. The natural role of chaperonins is unknown, but they are believed to aid in the correct folding of other proteins, by enclosing unfolded proteins and preventing nonspecific aggregation during assembly. What makes chaperonins useful for the purpose of the present method is that under the proper conditions, chaperonin rings assemble themselves into higher-order structures. This method exploits such higher-order structures to define nanoscale devices. The higher-order structures are tailored partly by choice of chemical and physical conditions for assembly and partly by using chaperonins that have been mutated. The mutations are made by established biochemical techniques. The assembly of chaperonin polypeptides into such structures as rings, tubes, filaments, and sheets (two-dimensional crystals) can be regulated chemically. Rings, tubes, and filaments of some chaperonin polypeptides can, for example, function as nano vessels if they are able to absorb, retain, protect, and release gases or

  10. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕

    2001-01-01

    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  11. Computer simulation of polypeptides in a confinement.

    Science.gov (United States)

    Sikorski, Andrzej; Romiszowski, Piotr

    2007-02-01

    A coarse-grained model of polypeptide chains confined in a slit formed by two parallel impenetrable surfaces was studied. The chains were flexible heteropolymers (polypeptides) built of two kinds of united atoms-hydrophobic and hydrophilic. The positions of the united atoms were restricted to the vertices of a [310] lattice. The force field consisted of a rigorous excluded volume, a long-distance potential between a pair of amino-acid residues and a local preference for forming secondary structure (helices). The properties of the chains were studied at a wide range of temperatures from good to bad solvent conditions. Monte-Carlo simulations were carried out using the algorithm based on the chain's local changes of conformation and employing the Replica Exchange technique. The influence of the chain length, the distances between the confining surfaces, the temperature and the force field on the dimension and the structure of chains were studied. It was shown that the presence of the confinement chain complicates the process of the chain collapse to low-temperature structures. For some conditions, one can find a rapid decrease of chain size and a second transition indicated by the rapid decrease of the total energy of the system.

  12. Phase transitions in polypeptides: analysis of energy fluctuations

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2009-01-01

    The helix random coil transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids is studied in vacuo using the Langevin molecular dynamics approach. The influence of side chain radicals on internal energy and heat capacity of the polypeptides is discussed. The heat...

  13. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  14. Fibrillar dimer formation of islet amyloid polypeptides

    Science.gov (United States)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  15. Nucleic acids encoding antifungal polypeptides and uses thereof

    Science.gov (United States)

    Altier, Daniel J.; Ellanskaya, I. A.; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-11-02

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include an amino acid sequence, and variants and fragments thereof, for an antipathogenic polypeptide that was isolated from a fungal fermentation broth. Nucleic acid molecules that encode the antipathogenic polypeptides of the invention, and antipathogenic domains thereof, are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  16. Smart systems related to polypeptide sequences

    Directory of Open Access Journals (Sweden)

    Lourdes Franco

    2016-03-01

    Full Text Available Increasing interest for the application of polypeptide-based smart systems in the biomedical field has developed due to the advantages given by the peptidic sequence. This is due to characteristics of these systems, which include: biocompatibility, potential control of degradation, capability to provide a rich repertoire of biologically specific interactions, feasibility to self-assemble, possibility to combine different functionalities, and capability to give an environmentally responsive behavior. Recently, applications concerning the development of these systems are receiving greater attention since a targeted and programmable release of drugs (e.g. anti-cancer agents can be achieved. Block copolymers are discussed due to their capability to render differently assembled architectures. Hybrid systems based on silica nanoparticles are also discussed. In both cases, the selected systems must be able to undergo fast changes in properties like solubility, shape, and dissociation or swelling capabilities. This review is structured in different chapters which explain the most recent advances on smart systems depending on the stimuli to which they are sensitive. Amphiphilic block copolymers based on polyanionic or polycationic peptides are, for example, typically employed for obtaining pH-responsive systems. Elastin-like polypeptides are usually used as thermoresponsive polymers, but performance can be increased by using techniques which utilize layer-by-layer electrostatic self-assembly. This approach offers a great potential to create multilayered systems, including nanocapsules, with different functionality. Recent strategies developed to get redox-, magnetic-, ultrasound-, enzyme-, light- and electric-responsive systems are extensively discussed. Finally, some indications concerning the possibilities of multi-responsive systems are discussed.

  17. NMR studies of the AMP-binding site and mechanism of adenylate kinase.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase [Fry, D. C., Kuby, S. A., & Mildvan, A. S. (1985) Biochemistry 24, 4680-4694]. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr3+AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T1 method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high anti-glycosyl torsional angle (chi = 110 +/- 10 degrees), a 3'-endo,2'-exo ribose pucker (delta = 105 +/- 10 degrees), and gauche-trans orientations about the C4'-C5' bond (gamma = 180 +/- 10 degrees) and the C5'-O5' bond (beta = 170 +/- 20 degrees). The distance from Cr3+ to the phosphorus of AMP is 5.9 +/- 0.3 A, indicating a reaction coordinate distance of approximately 3 A, which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near (less than or equal to 4 A from) Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine [Kuby, S. A., Palmieri, R. H., Frischat, A., Fischer, A. H., Wu, L. H., Maland, L., & Manship, M. (1984) Biochemistry 23, 2393-2399], and chicken adenylate kinase [Kishi, F., Maruyama, M., Tanizawa, Y

  18. Presumed isolation stress but not reserpine affects cerebral vasoactive intestinal polypeptide (VIP) in the rat

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Geoffroy, Marianne; Bek, Toke;

    1993-01-01

    Neurobiologi, reserpin, præfrontal cortex, rotte, VIP (vasoactive intestinal polypeptid), isolationsstress......Neurobiologi, reserpin, præfrontal cortex, rotte, VIP (vasoactive intestinal polypeptid), isolationsstress...

  19. Selective posttranslational modification of phage-displayed polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-11-19

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  20. Selective posttranslational modification of phage-displayed polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-02-05

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  1. Path ensembles for conformational transitions in adenylate kinase using weighted--ensemble path sampling

    CERN Document Server

    Bhatt, Divesh

    2009-01-01

    We perform first path sampling simulations of conformational transitions of semi--atomistic protein models. We generate an ensemble of pathways for conformational transitions between open and closed forms of adenylate kinase using weighted ensemble path sampling method. Such an ensemble of pathways is critical in determining the important regions of configuration space sampled during a transition. To different semi--atomistic models are used: one is a pure Go model, whereas the other includes level of residue specificity via use of Miyajawa--Jernigan type interactions and hydrogen bonding. For both the models, we find that the open form of adenylate kinase is more flexible and the the transition from open to close is significantly faster than the reverse transition. We find that the transition occurs via the AMP binding domain snapping shut at a fairly fast time scale. On the other hand, the flexible lid domain fluctuates significantly and the shutting of the AMP binding domain does not depend upon the positi...

  2. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  3. The effect of adrenergic receptor—adenyl cyclase system on myocardial ischemic preconditioning in rats

    Institute of Scientific and Technical Information of China (English)

    LANXiao-Li; LANJi-Cheng; 等

    2002-01-01

    In order to study the effects of every part of adrenergic receptor-adenyl cyclase system on ischemic preconditioning of myocardium in rats in vivo,SD rats were divided into three groups:IP group,I/R group and CON group.Rate were received surgical procedure and undergone left coronary artery occlusion and reperfusion.Hearts were extracted to analyze the infarct size by TTC staining,to measure serum myocardial enzymes,to study β-AR Bamx and Kd by radioligand binding assay of receptors(RAB),and to check the activity of AC and the content of cAMP by radioimmunoassay(RIA).The infarct area was found much smaller in IP group than I/R group(P<0.001);CK,CK-MB and LDH were found significantly higher in I/R group (P<0.001),The Bmax of β-AR in IP group were higher than in I/R group (P<0.001), No difference of Kd could be seen between IP and I/R group,In IP group,the activity of Ac and the content of cAMP were higher than I/R group(P<0.05 and 0.001,respectively).It is concluded that ischemic preconditioning can protect the hearts from necrosis and reduce endo-enzyme leakage.The system of adrenergic receptor-adenyl cyclase system probably takes part in the protection of the IP.

  4. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances.

    Science.gov (United States)

    Howell, Stanley C; Richards, David H; Mitch, William A; Wilson, Corey J

    2015-10-16

    Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study, we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary structure, protein hydrodynamics, and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance, namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites. PMID:26266833

  5. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    Science.gov (United States)

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  6. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    Science.gov (United States)

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  7. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  8. Synthesis and Cleavage Activity of Artifical Minic Polypeptides

    Institute of Scientific and Technical Information of China (English)

    Yong YE; Xiao Lian HU; Ping LI; Ming Yu NIU; Li Feng CAO; Yu Fen ZHAO

    2006-01-01

    Two artificial minic polypeptides which are synthetic analogues of natural products with DNA affinity were synthesized, and theirs cleavage activity with DNA were examined. The structures of these compounds was confirmed by 1H NMR, MS and IR.

  9. New Polypeptides from Chinese Mistletoe,Viscum coloratum (Kom.) Nakai

    Institute of Scientific and Technical Information of China (English)

    Shi Lei LIU; Xiu Bao DU; Jing Lin KONG

    2006-01-01

    Three viscotoxins have been isolated from Chinese mistletoe, Viscum coloratum (Kom.) Nakai. The primary structures were determined unambiguously by the combination of Edman degradation, endoproteinase Elu-c digestion, and Q-TOF mass spectrometry. One was identified as viscotoxin C1, which was for the first time isolated from Chinese mistletoe. The other two were new polypeptides, named as viscotoxin B5 and viscotoxin B8. Pharmacological studies showed that the polypeptides exhibit distinct cytotoxicity to human cancer cells.

  10. Isolation and characterization of lipid-associated and neurosecretory polypeptides

    OpenAIRE

    Stark, Margareta

    2000-01-01

    Lipid-interacting proteins play important roles in all living organisms. This thesis focuses on isolation and characterization of an enzyme in the triacylglycerol biosynthesis (phosphatidic acid phosphatase, PAP), hydrophobic polypeptides in bile, and polypeptides in cerebrospinal fluid. These fields constitute methodological challenges and mean development of suitable tools in between lipid and protein biochemistry. Two methods used to measure PAP activity were compared. I...

  11. Ab initio study of alanine polypeptide chain twisting

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.;

    2006-01-01

    We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles ph$ and psi, which are widely used for the characterization of the polypeptide...... investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids....

  12. BIOTIC STRESS IMPACT ON ACTIVITY OF VARIOUS FORMS OF ADENYLATE CYCLASE IN ORGANELLES OF POTATO PLANT CELLS

    Directory of Open Access Journals (Sweden)

    Lomovatskaya L.A.

    2006-12-01

    Full Text Available Notwithstanding significant interest towards study of adenylate cyclase plant signal system, there is still no complete picture of functioning and regulation mechanisms of this signal system in plants under biotic stress. With this in view, our study was aimed at identification of various forms of adenylate cyclase (transmembrane and “soluble” in the nucleus and chloroplasts of potato cells and modulation of their activity under the impact of exopolysaсcharides ofpotato ring rot pathogen. The investigations conducted allowed to conclude that two forms of adenylate cyclase function in nuclei and chloroplasts of potato plants: transmembrane and “soluble”. Activity of these forms of the enzyme extracted from plant cells of the two potato varieties contrasted by resistance to potato ring rot pathogen Clavibacter michiganensis subsp. sepedonicus, changed in the reverse manner with the mediated impact of exopolysaсcharides secreted by virulent and mucinous strain of bacterial pathogen: in the plants of resistant сultivar it increased, in the plants of sensitive сultivar it was oppressed. It was concluded that activity of both forms of adenylate cyclase directly depended on the degree of resistance of a particular potato variety to given pathogen.

  13. Study on Hydrolysis Conditions of Flavourzyme in Soybean Polypeptide Alcalase Hydrolysate and Soybean Polypeptide Refining Process

    Directory of Open Access Journals (Sweden)

    Yongsheng Ma

    2014-10-01

    Full Text Available Soybean protein Alcalase hydrolysate was further hydrolyzed by adopting Flavourzyme as hydrolytic enzyme. The optimal hydrolysis conditions of Flavourzyme was that pH was 7.0 at temperature 50°C and E/S(ratio of enzyme and substrate was 20LAPU/g. Bitterness value was reduced to 2 after Flavourzyme hydrolysis reaction in optimal hydrolysis conditions. The change of molecular weight distribution range from Alcalase hydrolysate to Flavourzyme hydrolysate was not obvious. DH (Degree of hydrolysis of soybean protein hydrolysate was increased to 24.2% which was improved 3.5% than Alcalase hydrolysate. Protein recovery proportion was increased to 73.2% which was improved 0.8% than Alcalase hydrolysate. Soybean polypeptide Flavourzyme hydrolysate was decolorized with activated carbon which optimal dosage was 1.2% solution amount (w/w. Anion/cation exchange process was used in the desalination processing of soybean polypeptide. Ratio of anion resin and cation resin was 2:3(V/V. The volume of hydrolysate processed was 5 times as the volume of anion resin. Ash content of soybean peptide solution reduced to 2.11% (dry basis, salinity decreased by 86% after desalination processing.

  14. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    Science.gov (United States)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  15. Long-Term Exposure to High Corticosterone Levels Inducing a Decrease of Adenylate Kinase 1 Activity

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu'nan; SHEN Jia; SU Hui; HUANG Yufang; XING Dongming; DU Lijun

    2009-01-01

    Corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex, can be cumula-tively toxic to hippocampal neurons, the cause of which is not known. The present study determined whether the cytosol adenylate kinase (AK) system was involved in the neuronal damage induced by long-term exposure to high corticosterone levels. We investigated the effects of long-term exposure to high corticosterone levels on AK1 activity, AK1 mRNA expression, and energy levels in cultured hippocampal neurons. The results show that long-term exposure to high corticosterone levels induces a reduction of the cultured hippocampal neuron viability, significantly reduces energy levels, and causes a time-dependant re-duction of the AK1 activity. These findings indicate that changes in the AK system might be the mechanism underlying neuronal damage induced by long-term exposure to high corticosterone levels.

  16. Adenylate cyclase 5 is required for melanophore and male pattern development in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Kottler, Verena A; Künstner, Axel; Koch, Iris; Flötenmeyer, Matthias; Langenecker, Tobias; Hoffmann, Margarete; Sharma, Eshita; Weigel, Detlef; Dreyer, Christine

    2015-09-01

    Guppies (Poecilia reticulata) are colorful fish that have attracted the attention of pigmentation researchers for almost a century. Here, we report that the blond phenotype of the guppy is caused by a spontaneous mutation in the guppy ortholog of adenylate cyclase 5 (adcy5). Using double digest restriction site-associated DNA sequencing (ddRADseq) and quantitative trait locus (QTL) mapping, we linked the blond phenotype to a candidate region of 118 kb, in which we subsequently identified a 2-bp deletion in adcy5 that alters splicing and leads to a premature stop codon. We show that adcy5, which affects life span and melanoma growth in mouse, is required for melanophore development and formation of male orange pigmentation traits in the guppy. We find that some components of the male orange pattern are particularly sensitive to loss of Adcy5 function. Our work thus reveals a function for Adcy5 in patterning of fish color ornaments.

  17. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    Science.gov (United States)

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  18. NMr studies of the AMP binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kuby, S.A.; Fry, D.C.; Mildvan, A.S.

    1986-05-01

    The authors recently located by NMR the MgATP binding site on adenylate kinase correcting the proposed location for this site based on X-ray studies of the binding of salicylate. To determine the conformation and location of the other substrate, they have determined distances from Cr/sup 3 +/ AMPPCP to 6 protons and to the phosphorus atom of AMP on adenylate kinase using the paramagnetic-probe-T/sub 1/ method. They have also used time-dependent NOEs to measure five interproton distances on AMP, permitting evaluation of the conformation of enzyme-bound AMP and its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high-anti glycosyl torsional angle (X = 110/sup 0/), a 3'-endo sugar pucker (delta = 105/sup 0/), and a gauche-trans orientation about the C/sub 4/'-C/sub 5/' bond (..gamma.. = 180/sup 0/). The distance from Cr/sup 3 +/ to the phosphorus of AMP is 6.4 +/- 0.3 A, indicating a reaction coordinate distance of greater than or equal to A which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP were detected. These constraints, together with the conformation of AMP and the X-ray structure of the enzyme, suggest proximity (less than or equal to A) of AMP to leu 116, arg 171, val 173, gln 185, thr 188, and asp 191.

  19. Distribution of mRNA for VIP and PACAP receptors in human cerebral arteries and cranial ganglia

    DEFF Research Database (Denmark)

    Knutsson, Mikael; Edvinsson, Lars

    2002-01-01

    The distribution of mRNA for pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 (PAC1) and vasoactive intestinal polypeptide (VIP) types 1 and 2 (VPAC1 and VPAC2, respectively) receptors was examined by reverse transcriptase polymerase chain reaction (RT-PCR) in human cerebral...... arteries and in trigeminal, otic, sphenopalatine and superior cervical ganglia. RT-PCR products of the expected sizes were detected in the arteries, in both the presence and absence of endothelium. In the majority (80%) of the trigeminal, otic and superior cervical ganglia, mRNA for all three receptors...... were found (n = 5). However, in the sphenopalatine ganglion neither VPAC2 nor PAC1 was detected (n = 2). This finding indicates the occurrence of both prejunctional (ganglia) and postjunctional (vessels) location of VIP and PACAP receptors....

  20. Vascular effects and cyclic AMP production produced by VIP, PHM, PHV, PACAP-27, PACAP-38, and NPY on rabbit ovarian artery

    DEFF Research Database (Denmark)

    Yao, W; Sheikh, S P; Ottesen, B;

    1996-01-01

    The relationship between vessel tone and cAMP production induced by vasoactive intestinal polypeptide (VIP), peptide histidine methionine (PHM), peptide histidine valine (PHV), pituitary adenylate cyclase activating polypeptide (PACAP-27 and PACAP-38), and neuropeptide Y (NPY) was investigated......-38 all increased cyclic adenosine monophosphate (cAMP) accumulation. The cAMP accumulation induced by PACAP-27 and PACAP-38 was five times higher than the cAMP content induced by the other three peptides. The peptide-induced smooth muscle relaxation did not correlate to the cAMP accumulation. NPY (10......(-7) M) markedly reversed the relaxations induced by VIP, PHM, PHV, PACAP-27, and PACAP-38, but did not influence the cAMP production induced by these peptides. In conclusion, the relaxation induced by VIP, PHM, PHV, PACAP-27, and PACAP-38 and the contraction induced by NPY are not solely related...

  1. Tunable drug loading and release from polypeptide multilayer nanofilms

    Directory of Open Access Journals (Sweden)

    Bingbing Jiang

    2009-03-01

    Full Text Available Bingbing Jiang1, Bingyun Li1,2,31Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV, USA; 2WVNano Initiative, WV, USA; 3Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA Abstract: Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibiotic-loaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients.Keywords: polypeptide, self-assembly, polyelectrolyte multilayer, nanofilm, charged molecule, tunable release

  2. SURFACE MODIFICATION OF POLYPROPYLENE MICROPOROUS MEMBRANE BY TETHERING POLYPEPTIDES

    Institute of Scientific and Technical Information of China (English)

    Zhen-mei Liu; Zhi-kang Xu; Mathias Ulbricht

    2006-01-01

    Two kinds of polypeptides were tethered onto the surface of polypropylene microporous membrane (PPMM)through a ring opening polymerization of L-glutamate N-carboxyanhydride initiated by amino groups which were introduced by ammonia plasma and γ-aminopropyl triethanoxysilane treatments. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR), scanning electron microscopy (SEM), together with water contact angle measurements were used to characterize the modified membranes. XPS analyses and FT-IR/ATR spectra demonstrated that polypeptides are actually grafted onto the membrane surface. The wettability of the membrane surface increases at first and then decreases with the increase in grafting degrees of polypeptide. Platelet adhesion and murine macrophage attachment experiments reveal an enhanced hemocompatibility for the polypeptide modified PPMMs. All these results give evidence that polypeptide grafting can simultaneously improve the hemocompatibility as well as reserve the hydrophobicity for the membrane, which will provide a potential approach to improve the performance of polypropylene hollow fiber microporous membrane used in artificial oxygenator.

  3. Structural Polypeptides of the Granulosis Virus of Plodia interpunctella.

    Science.gov (United States)

    Tweeten, K A; Bulla, L A; Consigli, R A

    1980-02-01

    Techniques were developed for the isolation and purification of three structural components of Plodia interpunctella granulosis virus: granulin, enveloped nucleocapsids, and nucleocapsids. The polypeptide composition and distribution of protein in each viral component were determined by sodium dodecyl sulfate discontinuous and gradient polyacrylamide slab gel electrophoresis. Enveloped nucleocapsids consisted of 15 structural proteins ranging in molecular weight from 12,600 to 97,300. Five of these proteins, having approximate molecular weights of 17,800, 39,700, 42,400, 48,200, and 97,300, were identified as envelope proteins by surface radioiodination of the enveloped nucleocapsids. Present in purified nucleocapsids were eight polypeptides. The predominant proteins in this structural component had molecular weights of 12,500 and 31,000. Whereas no evidence of polypeptide glycosylation was obtained, six of the viral proteins were observed to be phosphorylated.

  4. Methods of increasing secretion of polypeptides having biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  5. Methods of increasing secretion of polypeptides having biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  6. Methods of increasing secretion of polypeptides having biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  7. Comparison of polypeptides from cultured human fibroblasts and sarcoma cells.

    Science.gov (United States)

    Vartio, T; Kaelin, H; Vaheri, A

    1978-10-23

    The proteins in cell layers of cultured normal diploid human skin (ES, ER) and lung (WI-38) fibroblasts were compared to those of SV40-transformed human fibroblasts (WI-38/VA-13), human rhabdomyosarcoma (RD) and fibrosarcoma (HT-1080) cells using metabolic amino acid and sugar labeling and surface labeling with tritiated sodium borohydride after oxidation with galactose oxidase. The labeled proteins were analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography (fluorography). A transformation-associated decrease in the pericellular glycoprotein fibronectin (subunit molecular weight, 220 000) and in the synthesis of a set of polypeptides in the 130 000--180 000 dalton region was seen. Synthesis of a glycosylated 160 000 dalton polypeptide was markedly reduced. In transformed cells distinct increases of several specific polypeptides was detected in both [35S]methionine and [3H] mannose incorporation experiments but not using the surface labeling method.

  8. Optimal screening of surface-displayed polypeptide libraries.

    Science.gov (United States)

    Boder, E T; Wittrup, K D

    1998-01-01

    Cell surface display of polypeptide libraries combined with flow cytometric cell sorting presents remarkable potential for enhancement of protein-ligand recognition properties. To maximize the utility of this approach, screening and purification conditions must be optimized to take full advantage of the quantitative feature of this technique. In particular, discrimination of improved library mutants from an excess of wild-type polypeptides is dependent upon an effective screening methodology. Fluorescence discrimination profiles for improved library mutants were derived from a mathematical model of expected cell fluorescence intensities for polypeptide libraries screened with fluorescent ligand. Profiles for surface-displayed libraries under equilibrium or kinetic screening conditions demonstrate distinct discrimination optima from which optimal equilibrium and kinetic screening parameters were derived. In addition, a statistical model of low cytometrically analyzed cell populations indicates the importance of low-stringency sorting followed by amplification through regrowth and resorting at increased stringency. This analysis further yields quantitative recommendations for cell-sorting stringency.

  9. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    Directory of Open Access Journals (Sweden)

    Chen Yun-Ru

    2012-09-01

    Full Text Available Abstract Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples.

  10. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies

    OpenAIRE

    Drakou, Christina E.; Malekkou, Anna; Hayes, Joseph M.; Carsten W Lederer; Leonidas, Demetres D.; Oikonomakos, Nikos G.; Lamond, Angus I.; Santama, Niovi; Zographos, Spyros E.

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. D...

  11. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages. PMID:22379133

  12. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-01-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages. PMID:22379133

  13. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  14. Polypeptide Modulators of TRPV1 Produce Analgesia without Hyperthermia

    Directory of Open Access Journals (Sweden)

    Yaroslav A. Andreev

    2013-12-01

    Full Text Available Transient receptor potential vanilloid 1 receptors (TRPV1 play a significant physiological role. The study of novel TRPV1 agonists and antagonists is essential. Here, we report on the characterization of polypeptide antagonists of TRPV1 based on in vitro and in vivo experiments. We evaluated the ability of APHC1 and APHC3 to inhibit TRPV1 using the whole-cell patch clamp approach and single cell Ca2+ imaging. In vivo tests were performed to assess the biological effects of APHC1 and APHC3 on temperature sensation, inflammation and core body temperature. In the electrophysiological study, both polypeptides partially blocked the capsaicin-induced response of TRPV1, but only APHC3 inhibited acid-induced (pH 5.5 activation of the receptor. APHC1 and APHC3 showed significant antinociceptive and analgesic activity in vivo at reasonable doses (0.01–0.1 mg/kg and did not cause hyperthermia. Intravenous administration of these polypeptides prolonged hot-plate latency, blocked capsaicin- and formalin-induced behavior, reversed CFA-induced hyperalgesia and produced hypothermia. Notably, APHC3’s ability to inhibit the low pH-induced activation of TRPV1 resulted in a reduced behavioural response in the acetic acid-induced writhing test, whereas APHC1 was much less effective. The polypeptides APHC1 and APHC3 could be referred to as a new class of TRPV1 modulators that produce a significant analgesic effect without hyperthermia.

  15. On the theory of phase transitions in polypeptides

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2008-01-01

    We suggest a theoretical method based on the statistical mechanics for treating the alpha-helix random coil transition in polypeptides. This process is considered as a first-order-like phase transition. The developed theory is free of model parameters and is based solely on fundamental physical...

  16. Adenylate kinase 2 (AK2 promotes cell proliferation in insect development

    Directory of Open Access Journals (Sweden)

    Chen Ru-Ping

    2012-09-01

    Full Text Available Abstract Background Adenylate kinase 2 (AK2 is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP ↔ ATP(GTP + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development.

  17. Phylogenetic relationships of 18 passerines based on Adenylate Kinase Intron 5 sequences

    Institute of Scientific and Technical Information of China (English)

    GUO Hui-yan; YU Hui-xin; BAI Su-ying; MA Yu-kun

    2008-01-01

    The 18 species of bird studied originally are known to belong to muscicapids, robins and sylviids of passerines, but some disputations are always present in their classification systems. In this experiment, phylogenetic relationships of 18 species of passerines were studied using Adenylate Kinase Intron 5 (AK5) sequences and DNA techniques. Through sequences analysis in comparison with each other, phylogenetic tree figures of 18 species of passerines were constructed using Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods . The results showed that sylviids should be listed as an independent family, while robins and flycatchers should be listed into Muscicapidae. Since the phylogenetic relationships between long-tailed tits and old world warblers are closer than that between long-tailed tits and parids, the long-tailed tits should be independent of paridae and be categorized into aegithalidae. Muscicapidae and Paridae are known to be two monophylitic families, but Sylviidae is not a monophyletic group. AK5 sequences had better efficacy in resolving close relationships of interspecies among intrageneric groups.

  18. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    Science.gov (United States)

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  19. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  20. Structure and function of adenylate kinase isozymes in normal humans and muscular dystrophy patients.

    Science.gov (United States)

    Hamada, M; Takenaka, H; Fukumoto, K; Fukamachi, S; Yamaguchi, T; Sumida, M; Shiosaka, T; Kurokawa, Y; Okuda, H; Kuby, S A

    1987-01-01

    Two isozymes of adenylate kinase from human Duchenne muscular dystrophy serum, one of which was an aberrant form specific to DMD patients, were separated by Blue Sepharose CL-6B affinity chromatography. The separated aberrant form possessed a molecular weight of 98,000 +/- 1,500, whereas the normal serum isozyme had a weight of 87,000 +/- 1,600, as determined by SDS-polyacrylamide gel electrophoresis, gel filtration, and sedimentation equilibrium. The sedimentation coefficients were 5.8 S and 5.6 S for the aberrant form and the normal form, respectively. Both serum isozymes are tetramers. The subunit size of the aberrant isozyme (Mr = 24,700) was very similar to that of the normal human liver isozyme, and the subunit size of the normal isozyme (Mr = 21,700) was very similar to that of the normal human muscle enzyme. The amino acid composition of the normal serum isozyme was similar to that of the muscle-type enzyme, and that of the aberrant isozyme was similar to that of the liver enzyme, with some exceptions in both cases.

  1. Basal serum pancreatic polypeptide is dependent on age and gender in an adult population

    DEFF Research Database (Denmark)

    Brimnes Damholt, M; Rasmussen, B K; Hilsted, L;

    1997-01-01

    a monospecific radioimmunoassay. Fasting serum pancreatic polypeptide depended on age and gender. The results demonstrated that fasting pancreatic polypeptide levels increase exponentially with age. Fitted separately for each sex, basal serum pancreatic polypeptide was found to increase by approximately 3% per...... reports on the fasting levels of serum pancreatic polypeptide are most likely due to lack of adjustment for age and gender. Thus, variation due to age and gender should be considered in evaluating fasting levels of serum pancreatic polypeptide. Whether similar considerations are important when evaluating...

  2. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    Science.gov (United States)

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  3. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.

    Science.gov (United States)

    Agüero-Chapin, Guillermin; Pérez-Machado, Gisselle; Sánchez-Rodríguez, Aminael; Santos, Miguel Machado; Antunes, Agostinho

    2016-01-01

    Identifying adenylation domains (A-domains) and their substrate specificity can aid the detection of nonribosomal peptide synthetases (NRPS) at genome/proteome level and allow inferring the structure of oligopeptides with relevant biological activities. However, that is challenging task due to the high sequence diversity of A-domains (~10-40 % of amino acid identity) and their selectivity for 50 different natural/unnatural amino acids. Altogether these characteristics make their detection and the prediction of their substrate specificity a real challenge when using traditional sequence alignment methods, e.g., BLAST searches. In this chapter we describe two workflows based on alignment-free methods intended for the identification and substrate specificity prediction of A-domains. To identify A-domains we introduce a graphical-numerical method, implemented in TI2BioP version 2.0 (topological indices to biopolymers), which in a first step uses protein four-color maps to represent A-domains. In a second step, simple topological indices (TIs), called spectral moments, are derived from the graphical representations of known A-domains (positive dataset) and of unrelated but well-characterized sequences (negative set). Spectral moments are then used as input predictors for statistical classification techniques to build alignment-free models. Finally, the resulting alignment-free models can be used to explore entire proteomes for unannotated A-domains. In addition, this graphical-numerical methodology works as a sequence-search method that can be ensemble with homology-based tools to deeply explore the A-domain signature and cope with the diversity of this class (Aguero-Chapin et al., PLoS One 8(7):e65926, 2013). The second workflow for the prediction of A-domain's substrate specificity is based on alignment-free models constructed by transductive support vector machines (TSVMs) that incorporate information of uncharacterized A-domains. The construction of the models was

  4. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.

    Science.gov (United States)

    Agüero-Chapin, Guillermin; Pérez-Machado, Gisselle; Sánchez-Rodríguez, Aminael; Santos, Miguel Machado; Antunes, Agostinho

    2016-01-01

    Identifying adenylation domains (A-domains) and their substrate specificity can aid the detection of nonribosomal peptide synthetases (NRPS) at genome/proteome level and allow inferring the structure of oligopeptides with relevant biological activities. However, that is challenging task due to the high sequence diversity of A-domains (~10-40 % of amino acid identity) and their selectivity for 50 different natural/unnatural amino acids. Altogether these characteristics make their detection and the prediction of their substrate specificity a real challenge when using traditional sequence alignment methods, e.g., BLAST searches. In this chapter we describe two workflows based on alignment-free methods intended for the identification and substrate specificity prediction of A-domains. To identify A-domains we introduce a graphical-numerical method, implemented in TI2BioP version 2.0 (topological indices to biopolymers), which in a first step uses protein four-color maps to represent A-domains. In a second step, simple topological indices (TIs), called spectral moments, are derived from the graphical representations of known A-domains (positive dataset) and of unrelated but well-characterized sequences (negative set). Spectral moments are then used as input predictors for statistical classification techniques to build alignment-free models. Finally, the resulting alignment-free models can be used to explore entire proteomes for unannotated A-domains. In addition, this graphical-numerical methodology works as a sequence-search method that can be ensemble with homology-based tools to deeply explore the A-domain signature and cope with the diversity of this class (Aguero-Chapin et al., PLoS One 8(7):e65926, 2013). The second workflow for the prediction of A-domain's substrate specificity is based on alignment-free models constructed by transductive support vector machines (TSVMs) that incorporate information of uncharacterized A-domains. The construction of the models was

  5. Compositions and methods for making selenocysteine containing polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Soll, Dieter; Aldag, Caroline; Hohn, Michael

    2016-10-11

    Non-naturally occurring tRNA.sup.Sec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNA.sup.Sec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNA.sup.Sec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNA.sup.Sec.

  6. Polypeptide synthesis induced in Nicotiana clevelandii protoplasts by infection with raspberry ringspot nepovirus.

    Science.gov (United States)

    Acosta, O; Mayo, M A

    1993-01-01

    Infection of Nicotiana clevelandii protoplasts by raspberry ringspot nepovirus resulted in the accumulation of about 24 polypeptides that differed in M(r) and pI from polypeptides accumulating in mock-inoculated protoplasts. Similar polypeptides accumulated in protoplasts infected with the S and E strains of RRV but different infection-specific polypeptides were detected in protoplasts infected with tobacco ringspot nepovirus. The M(r) of RRV-specific polypeptides ranged from 210,000 to 18,000 and most are presumed to be derived from others by proteolytic cleavage. No evidence was found for marked changes in polypeptide abundance with time after inoculation or for any virus-specific polypeptide becoming disproportionately abundant in the medium during culture. PMID:8470949

  7. Polypeptide synthesis induced in Nicotiana clevelandii protoplasts by infection with raspberry ringspot nepovirus.

    Science.gov (United States)

    Acosta, O; Mayo, M A

    1993-01-01

    Infection of Nicotiana clevelandii protoplasts by raspberry ringspot nepovirus resulted in the accumulation of about 24 polypeptides that differed in M(r) and pI from polypeptides accumulating in mock-inoculated protoplasts. Similar polypeptides accumulated in protoplasts infected with the S and E strains of RRV but different infection-specific polypeptides were detected in protoplasts infected with tobacco ringspot nepovirus. The M(r) of RRV-specific polypeptides ranged from 210,000 to 18,000 and most are presumed to be derived from others by proteolytic cleavage. No evidence was found for marked changes in polypeptide abundance with time after inoculation or for any virus-specific polypeptide becoming disproportionately abundant in the medium during culture.

  8. Supersonic Vibron Solitons and Their Possible Existence in Polypeptides

    OpenAIRE

    Takeno, Shozo

    1999-01-01

    Nonlinear interactions of vibrons with lattice solitons due to the soft cubic nonlinearity in a quasi-one-dimensional lattice yield supersonic vibron solitons. Their binding energy is larger than those of the conventional Davydov solitons and vibron solitons, and their propagation velocity is uniquely determined in contrast to the latter two. Examination of parameters in the model Hamiltonian for polypeptides leads to the result that the supersonic vibron solitons obtained here are more likel...

  9. Side chain and backbone ordering in a polypeptide

    CERN Document Server

    Wei, Y; Hansmann, U H E

    2006-01-01

    We report results from multicanonical simulations of polyglutamic acid chains of length of ten residues. For this simple polypeptide we observe a decoupling of backbone and side-chain ordering in the folding process. While the details of the two transitions vary between the peptide in gas phase and in an implicit solvent, our results indicate that, independent of the specific surroundings, upon continuously lowering the temperature side-chain ordering occurs only after the backbone topology is completely formed.

  10. Folding induced assembly of polypeptide decorated gold nanoparticles.

    Science.gov (United States)

    Aili, Daniel; Enander, Karin; Rydberg, Johan; Nesterenko, Irina; Björefors, Fredrik; Baltzer, Lars; Liedberg, Bo

    2008-04-30

    Reversible assembly of gold nanoparticles controlled by the homodimerization and folding of an immobilized de novo designed synthetic polypeptide is described. In solution at neutral pH, the polypeptide folds into a helix-loop-helix four-helix bundle in the presence of zinc ions. When immobilized on gold nanoparticles, the addition of zinc ions induces dimerization and folding between peptide monomers located on separate particles, resulting in rapid particle aggregation. The particles can be completely redispersed by removal of the zinc ions from the peptide upon addition of EDTA. Calcium ions, which do not induce folding in solution, have no effect on the stability of the peptide decorated particles. The contribution from folding on particle assembly was further determined utilizing a reference peptide with the same primary sequence but containing both D and L amino acids. Particles functionalized with the reference peptide do not aggregate, as the peptides are unable to fold. The two peptides, linked to the nanoparticle surface via a cysteine residue located in the loop region, form submonolayers on planar gold with comparable properties regarding surface density, orientation, and ability to interact with zinc ions. These results demonstrate that nanoparticle assembly can be induced, controlled, and to some extent tuned, by exploiting specific molecular interactions involved in polypeptide folding. PMID:18380430

  11. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  12. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.

    OpenAIRE

    Rocha-Singh, K J; Honbo, N Y; Karliner, J S

    1991-01-01

    We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by...

  13. Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase.

    OpenAIRE

    Tippetts, M T; Robertson, D L

    1988-01-01

    The Bacillus anthracis exotoxin is composed of a lethal factor, a protective antigen, and an edema factor (EF). EF is a calmodulin-dependent adenylate cyclase which elevates cyclic AMP levels within cells. The entire EF gene (cya) has been cloned in Escherichia coli, but EF gene expression by its own B. anthracis promoter could not be detected in E. coli. However, when the EF gene was placed downstream from the lac or the T7 promoter, enzymatically active EF was produced. The EF gene, like th...

  14. Effect of Cardiopulmonary Bypass on Beta Adrenergic ReceptorAdenylate Cyclase System on Surfaces of Peripheral Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    LUO Ailin; TIAN Yuke; JIN Shiao

    2000-01-01

    The experimental results showed that the level of CAMP, the ratio of cAPM to cGMP,IL-2R expression and IL-2 production in vitro in lymphocytes immediate and 2 weeks after cardiopulmonary bypass (CPB) were significantly lower than those before anesthetics in the patients undergoing cardiac surgery with CPB. These findings suggested that CPB could cause serious damage to adrenergic beta receptor-adenylate cyclase system on circulating lymphocytes surfaces,which might be one of the mechanisms resulting in immunosuppression after open heart surgery with CPB.

  15. Artemia hemoglobins. Increase in net synthesis of the beta-polypeptide (relative to the alpha-polypeptide) in hypoxia.

    Science.gov (United States)

    Ferry, J A; Nichols, R C; Condon, S J; Stubbs, J D; Bowen, S T

    1983-04-15

    Previous studies have shown that in the brine shrimp there are three dimeric hemoglobins with polypeptide composition alpha 2, alpha beta, beta 2. Concentrations of the alpha- and beta-polypeptides increase in hypoxia. We now report a two-dimensional electrophoretic method for assay of radiolabelled polypeptides in each hemoglobin. Net synthesis (synthesis minus degradation) of the beta-chain, relative to that of the alpha-chain, increases more than 3-fold (in male and female adults) within 3 days following a downshift in oxygen concentration from 0.2 to 0.1 mM in the culture medium. 3 days after downshift (2 days after in vivo incorporation of radiolabelled leucine), the beta-homodimer contained 10-20% of the radiolabel in the three hemoglobins although beta 2 was usually not detectable in the protein stain of an overloaded gel. The amount of radioactive leucine incorporated per unit amount of protein was more than 300-times greater in the beta 2 homodimer than in the beta-subunit of the heterodimer, suggesting that beta 2 does not dissociate rapidly during electrophoresis on the first dimension non-denaturing gel. This evidence for stable association of the two beta-monomers and the 5-8 heme-binding domains within each monomer (in vivo and during electrophoresis on non-denaturing gels) allows us to exclude one of two alternative interpretations of genetic data published previously. We present an independent line of evidence for the dimer model of the native hemoglobins (which states that each polypeptide has many heme-binding domains). PMID:6830806

  16. Conformational Study of Polypeptide Chains Grafted on the Surface of Polylactide Latex Particle

    Directory of Open Access Journals (Sweden)

    Satoshi Tanimoto

    2009-01-01

    Full Text Available Polylactide (PLA latex particle covered with polypeptide chains were prepared by means of solvent exchange method from PLA and PLA-block-polypeptide block copolymer solutions. PLA segment of the block copolymer and PLA homopolymer formed a core of the particle, and the polypeptide segment of the block copolymer, which is designed as tightly fixed biodegradable emulsifier, formed corona around the particle surface. This picture was supported by the fact that zeta-potential of PLA latex particle covered with polypeptide segment was different from that of bare PLA particle because of the presence of the ionizable group in the polypeptide chains. To clarify the effect of the ionizable group on conformation of the polypeptide chain, the relation between the polypeptide chain length and the area occupied by the single block chain was evaluated. The result that the occupied area per a polypeptide chain was linearly increased with the increase in the polypeptide chain length indicates that the polypeptide chains trail on the particle surface and did not take helical structures.

  17. Comparative effect of methioninyl adenylate on the growth of Salmonella typhimurium and Pseudomonas aeruginosa.

    Science.gov (United States)

    Enouf, J; Laurence, F; Farrugia, G; Blanchard, P; Robert-Gero, M

    1976-10-11

    The bacteriostatic effect of methioninyl adenylate(MAMP)--a specific inhibitor of the enzyme methionyl-tRNA synthetase--was investigated on Salmonella typhimurium and Pseudomonas aeruginosa. 0.1 mM of this molecule added to the culture, inhibits the growth of S. typhimurium. The inhibition is specifically reversible by 0.1 mM L-methionine. In the same conditions even 1-2 mM MAMP has a very slight effect on the growth rate of P. aeruginosa and only during the first two generations. The same observation was made with the two other members of the fluorescens group P.fluorescens and P.putida. The growth rate of P. testosteroni with 1 mM MAMP in the medium is similar to the growth rate of P. aeruginosa but the other member of the acidovorans group P. acidovorans is much more affected by the smae concentration of the inhibitor. --P. multivorans is inhibited by MAMP like P. acidovorans but with a somewhat higher yield at the end of the culture. --MAMP has no effect on P. alcaligenes. The possible reasons for the weak bacteriostatic effect of MAMP on P. aeruginosa were investigated. It was established that the inhibitor enters the cells and is not used as a carbon and energy source. The intracellular methionine concentration in S. typhimurium and in P. aeruginosa is about the same and does not increase when bacteria are cultivated with MAMP. The MTS of the two microorganisms is inhibited by MAMP in vitro to about the same extent. Furthermore the tRNAmet from P. aeruginosa are fully acylated after 3 to 4 generations with this compound. Nevertheless MAMP elicits higher MTS activity in P. aeruginosa and in P. acidovorans after 1 h of incubation. The most striking difference between S. typhimurium and P. aeruginosa is that the intra and extracellular level of 5'phosphodiesterase which degrades MAMP is 10-20 fold higher in the second than in the first species.

  18. Calpain-Mediated Processing of Adenylate Cyclase Toxin Generates a Cytosolic Soluble Catalytically Active N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Kepa B Uribe

    Full Text Available Bordetella pertussis, the whooping cough pathogen, secretes several virulence factors among which adenylate cyclase toxin (ACT is essential for establishment of the disease in the respiratory tract. ACT weakens host defenses by suppressing important bactericidal activities of the phagocytic cells. Up to now, it was believed that cell intoxication by ACT was a consequence of the accumulation of abnormally high levels of cAMP, generated exclusively beneath the host plasma membrane by the toxin N-terminal catalytic adenylate cyclase (AC domain, upon its direct translocation across the lipid bilayer. Here we show that host calpain, a calcium-dependent Cys-protease, is activated into the phagocytes by a toxin-triggered calcium rise, resulting in the proteolytic cleavage of the toxin N-terminal domain that releases a catalytically active "soluble AC". The calpain-mediated ACT processing allows trafficking of the "soluble AC" domain into subcellular organella. At least two strategic advantages arise from this singular toxin cleavage, enhancing the specificity of action, and simultaneously preventing an indiscriminate activation of cAMP effectors throughout the cell. The present study provides novel insights into the toxin mechanism of action, as the calpain-mediated toxin processing would confer ACT the capacity for a space- and time-coordinated production of different cAMP "pools", which would play different roles in the cell pathophysiology.

  19. PACAP-38 infusion causes sustained vasodilation of the middle meningeal artery in the rat

    DEFF Research Database (Denmark)

    Bhatt, Deepak K; Gupta, Saurabh; Olesen, Jes;

    2014-01-01

    BACKGROUND: In healthy human volunteers and in migraineurs, pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) infusion caused sustained vasodilation of the middle meningeal artery (MMA) and an immediate as well as a delayed headache. All the study subjects experienced facial flushing....... Mast cells (MCs) might have a role in the long-lasting effect of PACAP-38 infusion. We hypothesized that in mast cell-depleted (MCD) rats the vascular responses to PACAP-38 would be lesser than in control rats because of a lack of vasodilatory products released during MC degranulation. METHODS: MCs...... were depleted by chronic treatment with compound 48/80. The effect of 20 minutes' intravenous (i.v.) infusion of calcitonin gene-related peptide (CGRP), PACAP-38, PACAP(6-38) (PAC-1 receptor antagonist) and PACAP-27 on the diameter of the MMA and on mean arterial blood pressure (MABP) in control...

  20. PACAP in the Defense of Energy Homeostasis.

    Science.gov (United States)

    Rudecki, Alexander P; Gray, Sarah L

    2016-09-01

    The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) mediates diverse physiology from neuroprotection to thermoregulation. PACAP is well established as a master regulator of the stress response, regulating psychological and physiological equilibrium via the autonomic nervous system. Neuroanatomical and functional evidence support a role for PACAP in energy metabolism, including thermogenesis, activity, mobilization of energy stores, and appetite. Through integration of this evidence we suggest PACAP be included in the growing list of neuropeptides that mediate energy homeostasis. Future work to uncover the intricacies of PACAP expression and the molecular pathways responsible for PACAP signaling may show potential for this neuropeptide as a therapeutic target as well as further elucidate the complex neuroanatomical networks involved in defending energy balance. PMID:27166671

  1. Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2016-02-16

    The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  2. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    International Nuclear Information System (INIS)

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs

  3. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei

    2016-03-18

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  4. Biochemical map of polypeptides specified by foot-and-mouth disease virus.

    OpenAIRE

    Grubman, M J; Robertson, B H; Morgan, D O; Moore, D M; Dowbenko, D

    1984-01-01

    Pulse-chase labeling of foot-and-mouth disease virus-infected bovine kidney cells revealed stable and unstable viral-specific polypeptides. To identify precursor-product relationships among these polypeptides, antisera against a number of structural and nonstructural viral-specific polypeptides were used. Cell-free translations programmed with foot-and-mouth disease virion RNA or foot-and-mouth disease virus-infected bovine kidney cell lysates, which were shown to contain almost identical pol...

  5. Conformational Study of Polypeptide Chains Grafted on the Surface of Polylactide Latex Particle

    OpenAIRE

    Satoshi Tanimoto; Toshiya Iwata; Hitoshi Yamaoka; Masahiro Yamada; Kana Kobori

    2009-01-01

    Polylactide (PLA) latex particle covered with polypeptide chains were prepared by means of solvent exchange method from PLA and PLA-block-polypeptide block copolymer solutions. PLA segment of the block copolymer and PLA homopolymer formed a core of the particle, and the polypeptide segment of the block copolymer, which is designed as tightly fixed biodegradable emulsifier, formed corona around the particle surface. This picture was supported by the fact that zeta-potential of PLA latex partic...

  6. Analysis of the structural polypeptides of a porcine group C rotavirus.

    OpenAIRE

    Bremont, M; Cohen, J.; McCrae, M A

    1988-01-01

    Polyacrylamide gel analysis of the structural polypeptides of purified group C virions allowed six major proteins to be identified. Of these, two (52,000- and 39,000-molecular-weight polypeptides) were shown to be in the outer virion shell as judged by the ability to strip them from virions by treatment with EDTA. Treatment of purified particles with endo-beta-N-acetylglucosaminidase F showed that the 39,000-molecular-weight outer shell polypeptide is probably posttranslationally glycosylated...

  7. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  8. Self-assembly of high molecular weight polypeptide copolymers studied via diffusion limited aggregation.

    Science.gov (United States)

    Meier, Christoph; Wu, Yuzhou; Pramanik, Goutam; Weil, Tanja

    2014-01-13

    The assembly of high molecular weight polypeptides into complex architectures exhibiting structural complexity ranging from the nano- to the mesoscale is of fundamental importance for various protein-related diseases but also hold great promise for various nano- and biotechnological applications. Here, the aggregation of partially unfolded high molecular weight polypeptides into multiscale fractal structures is investigated by means of diffusion limited aggregation and atomic force microscopy. The zeta potential, the hydrodynamic radius, and the obtained fractal morphologies were correlated with the conformation of the polypeptide backbones as obtained from circular dichroism measurements. The polypeptides are modified with polyethylene oxide side chains to stabilize the polypeptides and to normalize intermolecular interactions. The modification with the hydrophobic thioctic acid alters the folding of the polypeptide backbone, resulting in a change in solution aggregation and fractal morphology. We found that a more compact folding results in dense and highly branched structures, whereas a less compact folded polypeptide chain yields a more directional assembly. Our results provide first evidence for the role of compactness of polypeptide folding on aggregation. Furthermore, the mesoscale-structured biofilms were used to achieve a hierarchical protein assembly, which is demonstrated by deposition of Rhodamine-labeled HSA with the preassembled fractal structures. These results contribute important insights to the fundamental understanding of the aggregation of high molecular weight polypeptides in general and provide opportunities to study nanostructure-related effects on biological systems such as adhesion, proliferation, and the development of, for example, neuronal cells. PMID:24354281

  9. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-10-04

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  10. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  11. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  12. Synthesis and interactions with blood of polyetherurethaneurea/polypeptide block copolymers.

    Science.gov (United States)

    Ito, Y; Miyashita, K; Kashiwagi, T; Imanishi, Y

    1993-01-01

    Polyurethane/polypeptide block copolymers were synthesized. Infrared spectroscopy and differential scanning calorimetry revealed that in the block copolymers both segments undergo phase-mixing, while in polyurethane/polypeptide blend both components undergo phase-separation. Contact angle measurement showed that in the block copolymers polyurethane segments tended to appear on the membrane surface, whereas in polyurethane/polypeptide blend polypeptide components appeared on the membrane surface. In vitro nonthrombogenicity of the block copolymers was similar to that of homopolymers or polymer blends, though adhesion and deformation of platelets were suppressed on the block copolymer membranes. PMID:8260582

  13. Crystal structures at 2.5 Angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate

    DEFF Research Database (Denmark)

    Belrhali, H.; Yaremchuk, A.; Tukalo, M.;

    1994-01-01

    Crystal structures of seryl-tRNA synthetase from Thermus thermophilus complexed with two different analogs of seryl adenylate have been determined at 2.5 Angstrom resolution. The first complex is between the enzyme and seryl-hydroxamate-AMP (adenosine monophosphate), produced enzymatically...

  14. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance

    DEFF Research Database (Denmark)

    Ottesen, B; Fahrenkrug, J

    1995-01-01

    in the genital tracts (i.e., blood flow and nonvascular smooth muscle relaxation). In the ovary vasoactive intestinal polypeptide seems to play an important role as regulator and/or modulator of folliculogenesis and steroidogenesis. In the male genital tract vasoactive intestinal polypeptide seems to participate...... be important for control of the low resistance in the fetomaternal vascular bed and is therefore a putative factor involved in the development of preeclampsia. The therapeutic potential of vasoactive intestinal polypeptide and future agonists and antagonists will be revealed by ongoing and forthcoming studies....

  15. Polypeptide profiles of South Indian isolate of Trypanosoma evansi.

    Science.gov (United States)

    Sivajothi, S; Rayulu, V C; Bhaskar Reddy, B V; Malakondaiah, P; Sreenivasulu, D; Sudhakara Reddy, B

    2016-09-01

    The field isolates of Trypanosoma evansi was collected from the infected cattle and it was propagated in rats. Trypanosoma evansi parasites were separated from the blood of infected rats by using diethylaminoethyl cellulose column chromatography. Whole cell lysate antigen (WCL) was prepared from purified trypanosomes by ultrasonication and centrifugation. The prepared WCL antigen was further purified by 50 % ammonium sulphate precipitation. Protein concentration of WCL antigen of T. evansi was 60 mg/ml. Protein concentration was adjusted to 1.0 mg/ml in PBS, pH 8.0 and stored at -20(0) C.   Polypeptide profiles of WCL antigen of T. evansi was determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis. A total of eight polypeptide bands of the size ranging from 25 to 85 kDa in WCL antigen of T. evansi were obtained. Five prominent bands with molecular weight of 74, 60, 53, 42 and 37 kDa and three light bands with molecular weight of 85, 34 and 25 kDa were observed. PMID:27605761

  16. Kinetic study of the swelling process of the polypeptide gel

    International Nuclear Information System (INIS)

    The polymer gels are well known for the high absorbency and applied to various commodities. They are also utilized as the functional material with dramatic volume change in water absorption. The polypeptide gel is mentioned as one of such the materials. It is well known that a certain polypeptide gel film is accompanied by the helix-coil transition in water absorption and swelling, simultaneously with the transition molecular rigidity, volume, specific gravity, etc. greatly change, and large difference appears in the mechanical characteristic. However, only few attempts have so far been made to explore the in-situ structural change during the swelling process. The purpose of this research is to observe the change by the scattering technique. The time-resolved small-angle X-ray scattering (SAXS) and the wide-angle X-ray scattering (WAXS) techniques were employed to investigate the structural change, using synchrotron radiation. The specimen used was the crosslinked poly (N-hydroxyethyl L-glutamine) (PHEG) films. The result tells that they composed of the helices with the average distance of 13.1A, and cylindrically aggregated with its radius of ca. 18A and its height of ca. 160A, at dry condition. Both the distance between helices and the cylindrical aggregation gradually became larger. The time dependence of the distances was in good agreement with that of the swelling ratio in its early stage, which means that the micro and the macro structures swelled similarly. (author)

  17. Uncharged Helical Modular Polypeptide Hydrogels for Cellular Scaffolds.

    Science.gov (United States)

    Ahrens, Caroline C; Welch, M Elizabeth; Griffith, Linda G; Hammond, Paula T

    2015-12-14

    Grafted synthetic polypeptides hold appeal for extending the range of biophysical properties achievable in synthetic extracellular matrix (ECM) hydrogels. Here, N-carboxyanhydride polypeptide, poly(γ-propargyl-l-glutamate) (PPLG) macromers were generated by fully grafting the "clickable" side chains with mixtures of short polyethylene glycol (PEG) chains terminated with inert (-OH) or reactive (maleimide and/or norbornene) groups, then reacting a fraction of these groups with an RGD cell attachment motif. A panel of synthetic hydrogels was then created by cross-linking the PPLG macromers with a 4-arm PEG star molecule. Compared to well-established PEG-only hydrogels, gels containing PPLG exhibited dramatically less dependence on swelling as a function of cross-link density. Further, PPLG-containing gels, which retain an α-helical chain conformation, were more effective than standard PEG gels in fostering attachment of a human mesenchymal stem cell (hMSC) line for a given concentration of RGD in the gel. These favorable properties of PPLG-containing PEG hydrogels suggest they may find broad use in synthetic ECM.

  18. The Arabidopsis thalianaK+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre

    KAUST Repository

    Al-Younis, Inas

    2015-11-27

    Adenylate Cyclases (ACs) catalyze the formation of the second messenger cyclic adenosine 3′, 5′-monophosphate (cAMP) from adenosine 5’-triphosphate (ATP). Although cAMP is increasingly recognized as an important signaling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP71-100 is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP71-100 generates cAMP in vitro.

  19. The Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre.

    Science.gov (United States)

    Al-Younis, Inas; Wong, Aloysius; Gehring, Chris

    2015-12-21

    Adenylate cyclases (ACs) catalyse the formation of the second messenger cyclic adenosine 3',5'-monophosphate (cAMP) from adenosine 5'-triphosphate (ATP). Although cAMP is increasingly recognised as an important signalling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP7(1-100) is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP7(1-100) generates cAMP in vitro. PMID:26638082

  20. A Multiple-Labeling Strategy for Nonribosomal Peptide Synthetases Using Active-Site-Directed Proteomic Probes for Adenylation Domains.

    Science.gov (United States)

    Ishikawa, Fumihiro; Suzuki, Takehiro; Dohmae, Naoshi; Kakeya, Hideaki

    2015-12-01

    Genetic approaches have greatly contributed to our understanding of nonribosomal peptide biosynthetic machinery; however, proteomic investigations are limited. Here, we developed a highly sensitive detection strategy for multidomain nonribosomal peptide synthetases (NRPSs) by using a multiple-labeling technique with active-site-directed probes for adenylation domains. When applied to gramicidin S-producing and -nonproducing strains of Aneurinibacillus migulanus (DSM 5759 and DSM 2895, respectively), the multiple technique sensitively detected an active multidomain NRPS (GrsB) in lysates obtained from the organisms. This functional proteomics method revealed an unknown inactive precursor (or other inactive form) of GrsB in the nonproducing strain. This method provides a new option for the direct detection, functional analysis, and high-resolution identification of low-abundance active NRPS enzymes in native proteomic environments. PMID:26467472

  1. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.

    Directory of Open Access Journals (Sweden)

    Radovan Fiser

    Full Text Available Bordetella adenylate cyclase toxin-hemolysin (CyaA penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC⁻ toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P toxoid, unable to conduct Ca²⁺ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca²⁺ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca²⁺ influx promoted by molecules locked in a Ca²⁺-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.

  2. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    DEFF Research Database (Denmark)

    Nybroe, O; Albrechtsen, M; Dahlin, J;

    1985-01-01

    The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B...

  3. Directed evolution methods for improving polypeptide folding and solubility and superfolder fluorescent proteins generated thereby

    Science.gov (United States)

    Waldo, Geoffrey S.

    2007-09-18

    The current invention provides methods of improving folding of polypeptides using a poorly folding domain as a component of a fusion protein comprising the poorly folding domain and a polypeptide of interest to be improved. The invention also provides novel green fluorescent proteins (GFPs) and red fluorescent proteins that have enhanced folding properties.

  4. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    Science.gov (United States)

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  5. Vasoactive intestinal polypeptide (VIP) in the pig pancreas

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    Vasoactive intestinal polypeptide (VIP) in the pig pancreas is localized to nerves, many of which travel along the pancreatic ducts. VIP stimulates pancreatic fluid and bicarbonate secretion like secretin. Electrical vagal stimulation in the pig causes an atropine-resistant profuse secretion...... of bicarbonate-rich pancreatic juice. In an isolated perfused preparation of the pig pancreas with intact vagal nerve supply, electrical vagal stimulation caused an atropine-resistant release of VIP, which accurately parallelled the exocrine secretion of juice and bicarbonate. Perfusion of the pancreas...... with a potent VIP-antiserum inhibited the effect of vagal stimulation on the exocrine secretion. It is concluded, that VIP is responsible for (at least part of) the neurally controlled fluid and bicarbonate secretion from the pig pancreas....

  6. Immunohistochemical localization of pancreatic spasmolytic polypeptide (PSP) in the pig

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Poulsen, Steen Seier; Thim, L;

    1992-01-01

    , PSP immunoreactivity was seen in some of the cells in the epithelium of the crypts of Lieberkühn. A peptide chromatographically identical to highly purified PSP was identified in pancreas and stomach extracts. Thus epithelial cells in all parts of the stomach and small intestine contribute......Pancreatic spasmolytic polypeptide (PSP) is a peptide that is isolated from the porcine pancreas and that affects intestinal motility and growth of intestinal tumour cells in vitro. The peptide was recently demonstrated to be present in large amounts in pancreatic juice. The cellular origin...... of the peptide, however, is largely unclarified and the localization was therefore studied of PSP in pigs using immunohistochemistry. Positive immunoreactions were seen in the pancreas, the stomach, the duodenum, the jejunum and the ileum. In the pancreas, the PSP immunoreaction was seen in all acinar cells...

  7. Discovery and characterization of smORF-encoded bioactive polypeptides.

    Science.gov (United States)

    Saghatelian, Alan; Couso, Juan Pablo

    2015-12-01

    Analysis of genomes, transcriptomes and proteomes reveals the existence of hundreds to thousands of translated, yet non-annotated, short open reading frames (small ORFs or smORFs). The discovery of smORFs and their protein products, smORF-encoded polypeptides (SEPs), points to a fundamental gap in our knowledge of protein-coding genes. Various studies have identified central roles for smORFs in metabolism, apoptosis and development. The discovery of these bioactive SEPs emphasizes the functional potential of this unexplored class of biomolecules. Here, we provide an overview of this emerging field and highlight the opportunities for chemical biology to answer fundamental questions about these novel genes. Such studies will provide new insights into the protein-coding potential of genomes and identify functional genes with roles in biology and disease. PMID:26575237

  8. Fractionation and Analysis of Polypeptides of Euglena gracilis Chloroplasts.

    Science.gov (United States)

    Vasconcelos, A C; Mendiola-Morgenthaler, L R; Floyd, G L; Salisbury, J L

    1976-07-01

    Intact Euglena gracilis chloroplasts, purified on gradients of silica sol, were lysed osmotically and fractionated by centrifugation on discontinuous gradients of sucrose into their soluble, envelope membrane, and thylakoid membrane components. The proteins of the different subchloroplast fractions, as well as those of whole chloroplasts, were analyzed by electrophoresis on sodium dodecyl sulfate polyacrylamide gels. The polypeptide profile of each fraction was distinctive and was in general similar to the profile obtained for analogous fractions of the chloroplasts of higher plants.The envelope membranes were separated into two fractions in the gradients according to their banding densities. Electron micrographs showed that the light envelope fraction consisted mostly of single-membrane vesicles, whereas the heavy envelope fraction consisted of multiple layers of folded membranes. Both envelope fractions were ultrastructurally distinct from the thylakoid membranes. PMID:16659627

  9. Mechanisms of fat-induced gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide secretion from K cells.

    Science.gov (United States)

    Yamane, Shunsuke; Harada, Norio; Inagaki, Nobuya

    2016-04-01

    Gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) is one of the incretins, which are gastrointestinal hormones released in response to nutrient ingestion and potentiate glucose-stimulated insulin secretion. Single fat ingestion stimulates GIP secretion from enteroendocrine K cells; chronic high-fat diet (HFD) loading enhances GIP secretion and induces obesity in mice in a GIP-dependent manner. However, the mechanisms of GIP secretion from K cells in response to fat ingestion and GIP hypersecretion in HFD-induced obesity are not well understood. We generated GIP-green fluorescent protein knock-in (GIP (gfp/+)) mice, in which K cells are labeled by enhanced GIP-green fluorescent protein. Microarray analysis of isolated K cells from GIP (gfp/+) mice showed that both fatty acid-binding protein 5 and G protein-coupled receptor 120 are highly expressed in K cells. Single oral administration of fat resulted in significant reduction of GIP secretion in both fatty acid-binding protein 5- and G protein-coupled receptor 120-deficient mice, showing that fatty acid-binding protein 5 and G protein-coupled receptor 120 are involved in acute fat-induced GIP secretion. Furthermore, the transcriptional factor, regulatory factor X6 (Rfx6), is highly expressed in K cells. In vitro experiments using the mouse enteroendocrine cell line, STC-1, showed that GIP messenger ribonucleic acid levels are upregulated by Rfx6. Expression levels of Rfx6 messenger ribonucleic acid as well as that of GIP messenger ribonucleic acid were augmented in the K cells of HFD-induced obese mice, in which GIP content in the small intestine is increased compared with that in lean mice fed a control diet. These results suggest that Rfx6 is involved in hypersecretion of GIP in HFD-induced obese conditions by increasing GIP gene expression. PMID:27186351

  10. Decreased expression of plastidial adenylate kinase in potato tubers results in an enhanced rate of respiration and a stimulation of starch synthesis that is attributable to post-translational redox-activation of ADP-glucose pyrophosphorylase

    OpenAIRE

    Oliver, S; Tiessen, A.; Fernie, A.; P. Geigenberger

    2008-01-01

    Adenine nucleotides are of general importance for many aspects of cell function, but their role in the regulation of biosynthetic processes is still unclear. It was previously reported that decreased expression of plastidial adenylate kinase, catalysing the interconversion of ATP and AMP to ADP, leads to increased adenylate pools and starch content in transgenic potato tubers. However, the underlying mechanisms were not elucidated. Here, it is shown that decreased expression of plastidial ade...

  11. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery

    Science.gov (United States)

    Yang, Jie; Yao, Ming-Hao; Wen, Lang; Song, Ji-Tao; Zhang, Ming-Zhen; Zhao, Yuan-Di; Liu, Bo

    2014-09-01

    A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy.A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron

  12. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    OpenAIRE

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, ...

  13. Cancer Nano technology Using Elastin-Like Polypeptides

    International Nuclear Information System (INIS)

    Despite progress in understanding cancer biology, this knowledge has not translated into comparable advances in the clinic. Two fundamental problems currently stalling the efficient treatment of cancer have been detecting cancer early enough for successful treatment and avoiding excessive toxicity to normal tissues. In view of this, cancer still remains one of the leading causes of mortality worldwide, affecting over 10 million new patients every year. Clearly the development of novel approaches for early detection and treatment of cancer is urgently needed to increase patient survival. Recently, nano technology-based systems have emerged as novel therapeutic modalities for cancer treatment. Tiny man made nanoparticles, much smaller than a virus, are being developed to package, transport, and deliver imaging and therapeutic agents. Co-inclusion of these agents, into nano carriers might be advantageous because they increase solubility of hydrophobic drugs, enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce side effects. Initial findings have been promising and nanoparticles have been shown to deliver therapeutic agents to target cells and effect tumor growth. To this end our lab is investigating a class of biodegradable and biocompatible polymers known as elastin-like polypeptides (ELP). Elastin like polypeptide is a bio polymer derived from the structural motif found in mammalian elastin protein and has a sequence dependent transition temperature that can be used as nano carriers to treat diseases. ELPs are characterized by the pentameric repeat VPGXG, where X can be any amino acid. All functional ELPs undergo inverse phase transition whereby below its transition temperature, they exist in a solubilized form while above its transition temperature they undergo phase separation which leads to their aggregation in solution. This process is reversible. Phase transition can also be triggered by other

  14. Ectomycorrhizins - symbiosis-specific or artitactual polypeptides from ectomycorrhizas?

    Science.gov (United States)

    Guttenberger, M; Hampp, R

    1992-08-01

    Fungal mycelium of the fly agaric (Amanita muscaria [L. ex Fr.] Hooker), and inoculated or noninoculated seedlings of Norway spruce (Picea abies [L.] Karst.) were grown aseptically under controlled conditions. In order to detect symbiosis-specific polypeptides ('ectomycorrhizins', see Hubert and Martin, 1988, New Phytol. 110, 339-346) the protein patterns of (i) fungal mycelium, (ii) mycorrhizal, and (iii) non-mycorrhizal root tips were compared by means of one- and twodimensional electrophoresis on a microscale. Because of the sensitivity of these micromethods (50 and 200 ng of protein, respectively), single mycorrhizal root tips and even the minute quantities of extramatrical mycelium growing between the roots of inoculated plants could be analysed. Differences in the protein patterns of root tips could be shown within the root system of an individual plant (mycorrhizal as well as non-mycorrhizal). In addition, the protein pattern of fungal mycelium grown on a complex medium (malt extract and casein hydrolysate) differed from that of extramatrical mycelium collected from the mycorrhiza culture (pure mineral medium). Such differences in protein patterns are obviously due to the composition of the media and/or different developmental stages. Consequently, conventional analyses which use extracts of a large number of root tips, are not suitable for differentiating between these effects and symbiosis-specific differences in protein patterns. In order to detect ectomycorrhizins, it is suggested that roots and mycelium from individual, inoculated plants should be analysed. This approach eliminates the influence of differing media, and at the same time allows a correct discrimination between developmental and symbiosisspecific changes. In our gels we could only detect changes in spot intensity but could not detect any ectomycorrhizins or the phenomenon of polypeptide 'cleansing', which both characterize the Eucalyptus-Pisolithus symbiosis (Martin and Hubert, 1991

  15. Ectomycorrhizins - symbiosis-specific or artifactual polypeptides from ectomycorrhizas?

    Science.gov (United States)

    Guttenberger, M; Hampp, R

    1992-03-01

    Fungal mycelium of the fly agaric (Amanita muscaria [L. ex Fr.] Hooker), and inoculated or noninoculated seedlings of Norway spruce (Picea abies [L.] Karst.) were grown aseptically under controlled conditions. In order to detect symbiosis-specific polypeptides ('ectomycorrhizins', see Hubert and Martin, 1988, New Phytol.110, 339-346) the protein patterns of (i) fungal mycelium, (ii) mycorrhizal, and (iii) non-mycorrhizal root tips were compared by means of one- and twodimensional electrophoresis on a microscale. Because of the sensitivity of these micromethods (50 and 200 ng of protein, respectively), single mycorrhizal root tips and even the minute quantities of extramatrical mycelium growing between the roots of inoculated plants could be analysed. Differences in the protein patterns of root tips could be shown within the root system of an individual plant (mycorrhizal as well as non-mycorrhizal). In addition, the protein pattern of fungal mycelium grown on a complex medium (malt extract and casein hydrolysate) differed from that of extramatrical mycelium collected from the mycorrhiza culture (pure mineral medium). Such differences in protein patterns are obviously due to the composition of the media and/or different developmental stages. Consequently, conventional analyses which use extracts of a large number of root tips, are not suitable for differentiating between these effects and symbiosis-specific differences in protein patterns. In order to detect ectomycorrhizins, it is suggested that roots and mycelium from individual, inoculated plants should be analysed. This approach eliminates the influence of differing media, and at the same time allows a correct discrimination between developmental and symbiosisspecific changes. In our gels we could only detect changes in spot intensity but could not detect any ectomycorrhizins or the phenomenon of polypeptide 'cleansing', which both characterize theEucalyptus-Pisolithus symbiosis (Martin and Hubert, 1991

  16. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin.

    Science.gov (United States)

    Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L

    2014-10-10

    Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM.

  17. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides.

    Science.gov (United States)

    Bellomo, Enrico G; Davidson, Patrick; Impéror-Clerc, Marianne; Deming, Timothy J

    2004-07-28

    The aqueous, lyotropic liquid-crystalline phase behavior of the alpha-helical polypeptide, poly(N(epsilon)-2-[2-(2-methoxyethoxy)ethoxy]acetyl-lysine) (1), has been studied using optical microscopy and X-ray scattering. Solutions of optically pure 1 were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples L-1 and D-1, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of 1 in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. PMID:15264844

  18. Stimulation of growth hormone by vasoactive intestinal polypeptide in acromegaly.

    Science.gov (United States)

    Chihara, K; Kaji, H; Minamitani, N; Kodama, H; Kita, T; Goto, B; Chiba, T; Coy, D H; Fujita, T

    1984-01-01

    Vasoactive intestinal polypeptide (VIP) was administered as an iv bolus of 1 micrograms/kg BW to 8 acromegalic patients and in doses of 0.5 and 1 microgram/kg BW to 15 normal volunteers. Both systolic and diastolic blood pressures decreased, and pulse rate increased transiently after VIP injection. VIP stimulated PRL release from the anterior pituitary in normal subjects. Plasma PRL responses to VIP in women were dose dependent and larger than those in men. On the other hand, plasma GH levels rose markedly after VIP injection in all 6 patients with untreated acromegaly. In 2 patients studied after transsphenoidal microadenomectomy, there was no plasma GH response to VIP. In 2 other patients with inactive acromegaly as well as in normal subjects, VIP failed to affect plasma GH levels. In all 6 patients with active acromegaly, LRH (1-2 micrograms/kg BW, iv) did not increase plasma GH levels, but TRH (5-10 micrograms/kg BW, iv) caused significant increases in plasma GH, the magnitude of which was not similar to that of increases seen after VIP injection. Paradoxical GH responses to TRH were not observed in patients in the inactive phase after transsphenoidal surgery. These findings suggest that VIP stimulates GH release in vivo in acromegalic patients. A VIP test as well as a TRH test offer promise as simple and reliable techniques to evaluate the activity of acromegaly, particularly after transsphenoidal surgery.

  19. Osmotic concentration of polypeptides from hemofiltrate of uremic patients.

    Science.gov (United States)

    Ehrlich, K; Holland, F; Turnham, T; Klein, E

    1980-07-01

    Hemofiltrate from uremic patients was concentrated 15- to 40-fold by osmotic removal of water across a reverse osmosis membrane which retains salts and proteins. Salts and low molecular weight components were removed from the concentrate by partial dialysis using a highly impermeable cellulose membrane. Following this desalting step, 100- to 500-fold concentration could be achieved by evaporation at low pressure. The concentrate was fractionated on Sephadex G15 columns. Fractions were tested for their toxicity to human cells in culture. Fractions containing components with molecular weights greater than 700 daltons inhibited 3H-thymidine incorporation into the DNA of HeLa and skin fibroblast cells more than did low molecular weight peptides and an iso-osmolar control. Components eluting in the molecular weight range of angiotensin I and vitamin B-12 were most inhibitory. These studies show that hemofiltrate from uremic patients is a readily available source of toxic polypeptides. The osmotic concentration and gel chromatographic procedures described should make available large amounts of these molecules for further studies. PMID:7408253

  20. POLYPEPTIDE EXTRACTION FROM ALGINATE HYDROGELS in vitro AND in vivo

    Directory of Open Access Journals (Sweden)

    T. V. Shkand

    2014-06-01

    Full Text Available Dependence of rheological and diffusion properties of gels on their composition as well as desorption of active components from the resulted implants in biological objects have been studied. The work has been performed in vitro using step-wise extraction of polypeptides form the heart of newborn piglets and also in vivo by implanting the «gel-extract» complex into muscular tissue of rats. The dynamics of peptide transfer was assessed using photometric and fluorometric methods. It has been established that with the growth of alginate concentration in gel there is a transition from convective mechanism of mass transfer to molecular diffusion. The study of the dynamics of mass transfer of fluorescent protein (R-phycoerythrin has shown that peptides release from a gel into surrounding tissues for 5 hrs with the rate of 8‒9% per hours with following decrease in the extraction rate due to cross diffusion, which contributes to prolonged effect of peptides to a target organ. Thus the data presented about mass transfer in alginate gels should be taken into account when designing the compositions of «peptide-extract gels» during transplantation into biological objects.

  1. Self-assembled elastin-like polypeptide particles.

    Science.gov (United States)

    Osborne, Jill L; Farmer, Robin; Woodhouse, Kimberly A

    2008-01-01

    In this work, the self-assembly of a recombinant elastin-based block copolymer containing both hydrophobic and cross-linking domains from the human elastin protein was investigated. The particle formation and dynamic behavior were characterized using inverted microscopy and dynamic light scattering. The morphology and stability were evaluated using scanning and transmission electron microscopy. Above a critical temperature the molecules self-assembled into a bimodal distribution of nano- and micron-sized particles. The larger particles increased in size through coalescence. Micron-sized particle formation appeared largely reversible, although a self-assembly/disassembly hysteresis was observed. At high polyethylene glycol (PEG) concentrations particle coalescence and settling were reduced, particle stability seemed enhanced and PEG coated the particles. Particle stabilization was also achieved through covalent cross-linking using glutaraldehyde. This study laid the foundation for optimization of particle size and stability through modification of the solvent system and has shown that this family of elastin-based polypeptides holds potential for use as particulate drug carriers. PMID:17881311

  2. Free radical scavenging abilities of polypeptide from Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    HAN Zhiwu; CHU Xiao; LIU Chengjuan; WANG Yuejun; SUN Mi; WANG Chunbo

    2006-01-01

    We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O-2), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O-2) (IC50 =0.3 mg/ml), hydroxyl radicals (OH·) (IC50 = 0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50 = 0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43 %. The scavenging effect of PCF on (O-2), OH·and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.

  3. Aspects of structural landscape of human islet amyloid polypeptide

    International Nuclear Information System (INIS)

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation

  4. Aspects of structural landscape of human islet amyloid polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianfeng, E-mail: hjf@bit.edu.cn; Dai, Jin, E-mail: daijing491@gmail.com [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Jing, E-mail: jinglichina@139.com [Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206 (China); Peng, Xubiao, E-mail: xubiaopeng@gmail.com [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2015-01-28

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  5. Papain-Catalyzed Chemoenzymatic Synthesis of Telechelic Polypeptides Using Bis(Leucine Ethyl Ester) Initiator.

    Science.gov (United States)

    Tsuchiya, Kousuke; Numata, Keiji

    2016-07-01

    In order to construct unique polypeptide architectures, a novel telechelic-type initiator with two leucine ethyl ester units is designed for chemoenzymatic polymerization. Glycine or alanine ethyl ester is chemoenzymatically polymerized using papain in the presence of the initiator, and the propagation occurs at each leucine ethyl ester unit to produce the telechelic polypeptide. The formation of the telechelic polypeptides is confirmed by (1) H NMR and MALDI-TOF mass spectroscopies. It is revealed by AFM observation that long nanofibrils are formed from the telechelic polyalanine, whereas a conventional linear polyalanine with a similar degree of polymerization shows granule-like structures. The telechelic polyglycine and polyalanine show the crystalline structures of Polyglycine II and antiparallel β-sheet, respectively. It is demonstrated that this method to synthesize telechelic-type polypeptides potentially opens up a pathway to construct novel hierarchical structures by self-assembly. PMID:26947148

  6. Biosynthesis of metal-binding polypeptides and their precursors in response to cadmium in Datura innoxia

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.J.; Delhaize, E.; Kuske, C.R.

    1991-01-01

    Metal-tolerant Datura innoxia cells synthesize large amounts of a class of metal-binding polypeptides, poly({gamma}-glutamylcysteinyl) glycines (({gamma}-EC){sub n}G, n=2-5), when exposed to Cd. These polypeptides have a high affinity for Cd (2) and certain other metal ions and are thought to play a role in metal tolerance in higher plants. ({gamma}-EC){sub n}G is biosynthetically derived from glutathione. Therefore, the response of Datura cells to Cd must include an increase in production of glutathione and its precursors, since cells rapidly accumulate very high concentrations of these metal-binding polypeptides. The biosynthesis of ({gamma}-EC){sub n}Gs, glutathione, and cysteine in response to Cd exposure is described. The physiological significance of the synthesis of these polypeptides and their precursors and its relevance to Cd tolerance and metal homeostasis are discussed. 34 refs., 6 figs., 1 tab.

  7. Vasoactive intestinal polypeptide (VIP) in cirrhosis: arteriovenous extraction in different vascular beds

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Staun-Olsen, P; Fahrenkrug, J;

    1980-01-01

    The concentration of vasoactive intestinal polypeptide (VIP) was determined in peripheral venous plasma from 136 patients with liver cirrhosis without gastrointestinal bleeding or coma and from 112 controls. In eight patients (cirrhosis, six; fibrosis, one; steatosis, one) arteriovenous extraction...

  8. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    Science.gov (United States)

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  9. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions

    Directory of Open Access Journals (Sweden)

    Joensuu Jussi J

    2009-08-01

    Full Text Available Abstract Background Elastin-like polypeptides are synthetic biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the simple non-chromatographic purification of recombinant proteins. In addition, elastin-like polypeptide fusions have been shown to enhance the accumulation of a range of different recombinant proteins in plants, thus addressing the major limitation of plant-based expression systems, which is a low production yield. This study's main objectives were to determine the general utility of elastin-like polypeptide protein fusions in various intracellular compartments and to elucidate elastin-like polypeptide's mechanism of action for increasing recombinant protein accumulation in the endoplasmic reticulum of plants. Results The effect of elastin-like polypeptide fusions on the accumulation of green fluorescent protein targeted to the cytoplasm, chloroplasts, apoplast, and endoplasmic reticulum was evaluated. The endoplasmic reticulum was the only intracellular compartment in which an elastin-like polypeptide tag was shown to significantly enhance recombinant protein accumulation. Interestingly, endoplasmic reticulum-targeted elastin-like polypeptide fusions induced the formation of a novel type of protein body, which may be responsible for elastin-like polypeptide's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover. Although expressed in the leaves of plants, these novel protein bodies appeared similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. The elastin-like polypeptide-induced protein bodies were highly mobile organelles, exhibiting various dynamic patterns of movement throughout the cells, which were dependent on intact actin microfilaments and a functional actomyosin motility system. Conclusion An endoplasmic reticulum-targeted elastin-like polypeptide fusion approach

  10. Theoretical investigations on model ternary polypeptides using genetic algorithm-Some new results

    International Nuclear Information System (INIS)

    Graphical abstract: Model ternary polypeptide chains consisting of glycine, alanine and serine amino acids as repeat units in anti-parallel β-pleated sheet conformation have been theoretically investigated and designed using the genetic algorithm. The optimum solution or the polypeptide chain being searched for using the algorithm is the one having minimum band gap and maximum electronic delocalization in the polypeptide chain. The effects of (i) change of basis set from minimal to double zeta, (ii) change in secondary structure from β-pleated to α-helical, (iii) presence of solvation shell, and (iv) binding of ions such as H+ and Li+ to the peptide group on the resulting optimum solution as well as on electronic structure and conduction properties of polypeptides have been investigated taking the ab initio Hartree-Fock crystal orbital results as input. The band gap value was also found to decrease in presence of a solvation shell, in presence of cations in the vicinity of the polypeptide chain as well as with the use of an improved basis set. Highlights: → GA has been used for theoretical tailoring of aperiodic ternary polypeptides. → Band gap of polypeptide chain decreases in presence of solvation shell. → Band gap decreases in presence of cations in the vicinity of the chain. → H+ ion acts as a strong electron acceptor than Li+ ion due to smaller size. - Abstract: Using genetic algorithm (GA) model ternary polypeptides containing glycine, alanine and serine in β-pleated conformation have been theoretically investigated. In designing, the criterion to attain the optimum solution at the end of GA run is minimum band gap and maximum delocalization in the polypeptide chain. Ab initio results obtained using Clementi's minimal basis set are used as input. Effects of (i) change of basis set from minimal to double zeta, (ii) change in secondary structure from β-pleated to α-helical, (iii) presence of solvation shell and (iv) binding of H+ and Li+ ions to

  11. Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis.

    Science.gov (United States)

    Šmídková, Markéta; Dvoráková, Alexandra; Tloust'ová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.

  12. Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity.

    Science.gov (United States)

    Sampaio, Lucia de Fatima S; Maia, José Guilherme S; de Parijós, Amanda M; de Souza, Rita Z; Barata, Lauro Euclides S

    2012-01-01

    Rosewood oil (RO) (Aniba rosaeodora Ducke) is rich in linalool, a monoterpene alcohol, which has well studied anxiolytic, sedative and anticonvulsant effects. The inhibition of the increases in cAMP protects against seizures in a diversity of models of epilepsy. In this paper, the principal aim was to investigate the effects of RO, (±)-linalool and (-)-linalool) on adenylate cyclase. They were tested in chick retinas and forskolin was used to stimulate the enzyme target. The phosphodiesterase inhibitor, 4-(3-butoxy-4-methoxybenzyl)-imidazolidin-2-one, and the non-selective adenosine receptor antagonist 3-isobutyl-methyl-xanthine (IBMX), were used to control the participation of phosphodiesterase and adenosine receptors in the resulting effects, respectively. The cAMP accumulation was measured by enzyme immune assay (EIA). Rosewood oil, (-)-linalool and (±)-linalool inhibited exclusively the cAMP accumulation stimulated by forskolin, even when adenosine receptors were blocked with IBMX. The IC(50) values (in μ m concentration range) calculated from their concentration response-curves were not statistically different, however, the compounds presented a different relative efficacy. These results extend the range of subcellular mechanisms underlying the relaxant action of linalool on the central nervous system.

  13. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Mathias A. S.; Liu, Wei-Min [Leiden University, Leiden Institute of Chemistry (Netherlands); Agafonov, Roman V.; Otten, Renee; Phung, Lien A. [Brandeis University, Department of Biochemistry, Howard Hughes Medical Institute (United States); Schilder, Jesika T. [Leiden University, Leiden Institute of Chemistry (Netherlands); Kern, Dorothee [Brandeis University, Department of Biochemistry, Howard Hughes Medical Institute (United States); Ubbink, Marcellus, E-mail: m.ubbink@chem.leidenuniv.nl [Leiden University, Leiden Institute of Chemistry (Netherlands)

    2015-02-15

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements.

  14. PPARgamma-dependent regulation of adenylate cyclase 6 amplifies the stimulatory effect of cAMP on renin gene expression.

    Science.gov (United States)

    Desch, Michael; Schubert, Thomas; Schreiber, Andrea; Mayer, Sandra; Friedrich, Björn; Artunc, Ferruh; Todorov, Vladimir T

    2010-11-01

    The second messenger cAMP plays an important role in the regulation of renin gene expression. Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is known to stimulate renin gene transcription acting through PPARγ-binding sequences in renin promoter. We show now that activation of PPARγ by unsaturated fatty acids or thiazolidinediones drastically augments the cAMP-dependent increase of renin mRNA in the human renin-producing cell line Calu-6. The underlying mechanism involves potentiation of agonist-induced cAMP increase and up-regulation of adenylate cyclase 6 (AC6) gene expression. We identified a palindromic element with a 3-bp spacer (Pal3) in AC6 intron 1 (AC6Pal3). AC6Pal3 bound PPARγ and mediated trans-activation by PPARγ agonist. AC6 knockdown decreased basal renin mRNA level and attenuated the maximal PPARγ-dependent stimulation of the cAMP-induced renin gene expression. AC6Pal3 decoy oligonucleotide abrogated the PPARγ-dependent potentiation of cAMP-induced renin gene expression. Treatment of mice with PPARγ agonist increased AC6 mRNA kidney levels. Our data suggest that in addition to its direct effect on renin gene transcription, PPARγ "sensitizes" renin gene to cAMP via trans-activation of AC6 gene. AC6 has been identified as PPARγ target gene with a functional Pal3 sequence.

  15. Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases.

    Science.gov (United States)

    Beltz, Stephanie; Bassler, Jens; Schultz, Joachim E

    2016-02-27

    Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates.

  16. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.

    Science.gov (United States)

    Vianna, Cristina R; Ferreira, Mariana C; Silva, Carol L C; Tanghe, An; Neves, Maria J; Thevelein, Johan M; Rosa, Carlos A; Van Dijck, Patrick

    2010-01-01

    Fermentation-induced loss of stress resistance in yeast is an important phenotype from an industrial point of view. It hampers optimal use of frozen dough applications as well as high gravity brewing fermentations because these applications require stress-tolerant yeast strains during active fermentation. Different mutants (e.g. fil1, an adenylate cyclase mutant CYR1(lys1682)) that are affected in this loss of stress resistance have been isolated, but so far the identification of the target genes important for the increased tolerance has failed. Previously we have shown that neither trehalose nor Hsp104 nor STRE-controlled genes are involved in the higher stress tolerance of the fil1 mutant. The contribution of other putative downstream factors of the PKA pathway was investigated and here we show that the small heat-shock protein Hsp26 is required for the high heat stress tolerance of the fil1 mutant, both in stationary phase cells as well as during active fermentation. PMID:20924200

  17. Cell surface polypeptides of murine T-cell clones expressing cytolytic or amplifier activity.

    OpenAIRE

    Sarmiento, M.; Glasebrook, A L; Fitch, F. W.

    1980-01-01

    Murine cytolytic T-cell and amplifier T-cell clones derived from secondary unidirectional mixed leukocyte cultures were labeled with 125I by the lactoperoxidase method and their polypeptide profiles were analyzed by NaDodSO4/polyacrylamide gel electrophoresis. All cytolytic T-cell clones derived from the same mouse strain yeilded similar cell surface polypeptide profiles. However, profiles obtained with three amplifier T-cell clones were strikingly different from each other as well as from th...

  18. Rubella virion polypeptides. Characterization by polyacrylamide gel electrophoresis, isoelectric focusing and peptide mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ho-Terry, L.; Cohen, A. (University Coll. Hospital Medical School, London (UK))

    1982-01-01

    Four polypeptides with molecular weights of 55K, 47K, 45K, and 33K have been resolved by polyacrylamide gel electrophoresis of immune precipitated rubella virus. The 47K and 45K components have similar peptide maps but different isoelectric points so that the same polypeptide may exist in more than one charged form. The 55K and 45K components have similar isoelectric points but different peptide maps showing that similarity of isoelectric point is not evidence of identity.

  19. Purification and Primary Structure Determination of a Novel Polypeptide Isolated from Mistletoe Viscum coloratum

    Institute of Scientific and Technical Information of China (English)

    Jing Lin KONG; Xiu Bao DU; Chong Xu FAN; Ying CAO; Hui JIANG; Jian Fu XU; Xiao Jun ZHENG

    2004-01-01

    A novel polypeptide was isolated from mistletoe Viscum coloratum. The primary structure of the polypeptide 'named viscotoxin B2' was determined to be KSCCKNTTGRNIYNT CRFAGGSRERCAKLSGCKIISASTCPSDYPK by Edman degradation. Viscotoxin B2 shared high sequence homology with viscotoxins isolated from Viscum album. Pharmacological experiments showed that viscotoxin B2 had distinct cytotoxic activity on tumor cells. Viscotoxin B2 could be used as a leading compound in cancer therapy.

  20. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: new advances

    DEFF Research Database (Denmark)

    Asmar, Meena; Holst, Jens Juul

    2010-01-01

    This article highlights recent advances in our understanding of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) physiology and their various sites of action beyond the incretin effect.......This article highlights recent advances in our understanding of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) physiology and their various sites of action beyond the incretin effect....

  1. Algorithm to design inhibitors using stereochemically mixed l,d polypeptides: Validation against HIV protease.

    Science.gov (United States)

    Gupta, Pooja; Durani, Susheel

    2015-11-01

    Polypeptides have potential to be designed as drugs or inhibitors against the desired targets. In polypeptides, every chiral α-amino acid has enantiomeric structural possibility to become l or d amino acids and can be used as design monomer. Among the various possibilities, use of stereochemistry as a design tool has potential to determine both functional specificity and metabolic stability of the designed polypeptides. The polypeptides with mixed l,d amino acids are a class of peptidomimitics, an attractive drug like molecules and also less susceptible to proteolytic activities. Therefore in this study, a three step algorithm is proposed to design the polypeptides against desired drug targets. For this, all possible configurational isomers of mixed l,d polyleucine (Ac-Leu8-NHMe) structure were randomly modeled with simulated annealing molecular dynamics and the resultant library of discrete folds were scored against HIV protease as a model target. The best scored folds of mixed l,d structures were inverse optimized for sequences in situ and the resultant sequences as inhibitors were validated for conformational integrity using molecular dynamics. This study presents and validates an algorithm to design polypeptides of mixed l,d structures as drugs/inhibitors by inverse fitting them as molecular ligands against desired target.

  2. Purification and Characterization of a Novel Tetradecapeptide from Ginseng Polypeptides with Enhancing Memory Activity for Mice

    Institute of Scientific and Technical Information of China (English)

    LUO Hao-ming; JIANG Rui-zhi; YANG Xiao-hong; CHEN Ying-hong; HONG Tie; WANG Ying

    2013-01-01

    Aiming at isolating and investigating the active ingredients of the aqueous extract from Panax ginseng which showed enhancing memory activity,the authors characterized one ingredient.To separate the oligosaccharides and polypeptides,a DEAE-Sephadex A-50 colum was used.The enhanced memory activity in mice was studied by Mirros water maze tesk in mice.The dose of oligosacchrides,polypeptides or Piracetam was 30 mg/kg per day with intraperitoneal administration.The oligosaccharides did not show enhancing memory effect,but polypeptides did show.This result demonstrates that the active ingredients of the aqueous extract from Panax ginseng which showed enhancing memory effect was polypeptides.The purification of the polypeptides was performed on a Sephadex G-25 column.A novel tetradecapeptide was purified from the polypeptides and its structure was determined by liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry(LC-ESI-Q-TOF-MS) with the amino acid sequence of Lys-Ser-Leu-Thr-Leu-Thr-Ser-Ser-Leu-Ser-Tyr-Thr-Asp-Ser.

  3. Islet amyloid polypeptide inserts into phospholipid monolayers as monomer.

    Science.gov (United States)

    Engel, Maarten F M; Yigittop, HaciAli; Elgersma, Ronald C; Rijkers, Dirk T S; Liskamp, Rob M J; de Kruijff, Ben; Höppener, Jo W M; Antoinette Killian, J

    2006-02-24

    Amyloid deposits in the pancreatic islets of Langerhans are thought to be a main factor responsible for death of the insulin-producing islet beta-cells in type 2 diabetes. It is hypothesized that beta-cell death is related to interaction of the 37 amino acid residue human islet amyloid polypeptide (hIAPP), the major constituent of islet amyloid, with cellular membranes. However, the mechanism of hIAPP-membrane interactions is largely unknown. Here, we study the nature and the molecular details of the initial step of hIAPP-membrane interactions by using the monolayer technique. It is shown that both freshly dissolved hIAPP and the non-amyloidogenic mouse IAPP (mIAPP) have a pronounced ability to insert into phospholipid monolayers, even at lipid packing conditions that exceed the conditions that occur in biological membranes. In contrast, the fibrillar form of hIAPP has lost the ability to insert. These results, combined with the observations that both the insertion kinetics and the dependence of insertion on the initial surface pressure are similar for freshly dissolved hIAPP and mIAPP, indicate that hIAPP inserts into phospholipid monolayers most likely as a monomer. In addition, our results suggest that the N-terminal part of hIAPP, which is nearly identical with that of mIAPP, is largely responsible for insertion. This is supported by experiments with hIAPP fragments, which show that a peptide consisting of the 19 N-terminal residues of hIAPP efficiently inserts into phospholipid monolayers, whereas an amyloidogenic decapeptide, consisting of residues 20-29 of hIAPP, inserts much less efficiently. The results obtained here suggest that hIAPP monomers might insert with high efficiency in biological membranes in vivo. This process could play an important role as a first step in hIAPP-induced membrane damage in type 2 diabetes. PMID:16403520

  4. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  5. Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides.

    Science.gov (United States)

    Read, G S; Frenkel, N

    1983-05-01

    Six mutants isolated from herpes simplex virus type 1 were judged to be defective with respect to the virion-associated function acting to rapidly shut off host polypeptide synthesis in herpes simplex virus-infected cells. The mutants were capable of proper entry into the cells, but, unlike the parent wild-type virus, they failed to shut off host polypeptide syntehsis in the presence of actinomycin D. They were consequently designated as virion-associated host shutoff (vhs) mutants. In the presence of actinomycin D, three of the mutants, vhs1, -2, and -3, failed to shut off the host at both 34 and 39 degrees C, whereas vhs4, -5, and -6 exhibited a temperature-dependent vhs phenotype. Since the mutants were capable of growth at 34 degrees C, it appeared that the vhs function was not essential for virus replication in cultured cells. Temperature-shift experiments performed with the vhs4 mutant showed that an active vhs function was required throughout the shutoff process and that, once established, the translational shutoff could not be reversed. In the absence of actinomycin D, the mutants induced a generalized, secondary shutoff of host translation, which required the synthesis of beta (early) or gamma (late) viral polypeptide(s). The vhs mutants appeared to be defective also with respect to post-transcriptional shutoff of alpha (immediate early) viral gene expression, since (i) cells infected with mutant viruses overproduced alpha viral polypeptides, (ii) there was an increased functional stability of alpha mRNA in the vhs1 mutant virus-infected cells, and (iii) superinfection of vhs1-infected cells with wild-type virus, in the presence of actinomycin D, resulted in a more pronounced shutoff of alpha polypeptide synthesis from preformed alpha mRNA than equivalent superinfection with vhs1 virus. The data suggest that the synthesis of alpha polypeptides in wild-type virus infections is subject to a negative post-transcriptional control involving viral gene product

  6. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna

    2012-03-27

    We show how the self-assembly of miktoarm star copolymers can be controlled by modifying the side chains of their polypeptide arms, using A 2B and A 2B 2 type polymer/polypeptide hybrids (macromolecular chimeras). Initially synthesized PS 2PBLL and PS 2PBLL 2 (PS, polystyrene; PBLL, poly(ε-tert-butyloxycarbonyl-l-lysine) ) miktoarms were first deprotected to PS 2PLLHCl and PS 2PLLHCl 2 miktoarms (PLLHCl, poly(l-lysine hydrochloride)) and then complexed ionically with sodium dodecyl sulfonate (DS) to give the supramolecular complexes PS 2PLL(DS) and PS 2(PLL(DS)) 2. The solid-state self-assemblies of these six miktoarm systems were studied by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and small- and wide-angle X-ray scattering (SAXS, WAXS). The side chains of the polypeptide arms were observed to have a large effect on the solubility, polypeptide conformation, and self-assembly of the miktoarms. Three main categories were observed: (i) lamellar self-assemblies at the block copolymer length scale with packed layers of α-helices in PS 2PBLL and PS 2PBLL 2; (ii) charge-clustered polypeptide micelles with less-defined conformations in a nonordered lattice within a PS matrix in PS 2PLLHCl and PS 2PLLHCl 2; (iii) lamellar polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between the coil-like PS arms and rigid polypeptide conformations can be relieved by the right number of arms, leading to differences in the extent of order. © 2012 American Chemical Society.

  7. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies.

    Science.gov (United States)

    Drakou, Christina E; Malekkou, Anna; Hayes, Joseph M; Lederer, Carsten W; Leonidas, Demetres D; Oikonomakos, Nikos G; Lamond, Angus I; Santama, Niovi; Zographos, Spyros E

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  8. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B.Tracy; (IIT); (Penn)

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.

  9. Principles Governing the Self Assembly of Polypeptide Nanoparticles

    Science.gov (United States)

    Wahome, Newton

    Self assembling systems on the nanometer scale afford the advantage of being able to control submicron level events. In this study, we focus on the self-assembling polypeptide nanoparticles (SAPN). The SAPN scaffold is made up of oligomerizing domains that align along the principle rotational axes of icosahedral symmetry. By aligning them along these axes, a particle with spherical geometry can be achieved. This particle can be utilized as a vaccine, as a drug delivery vehicle, or as a biomedical imaging device. This research will try to answer why the SAPN self-assembles into distinct molecular weight ranges while mostly maintaining a spherical morphology. The first means will be theoretical and computational, where we will utilize a mathematical formalism to find out how the packing of SAPN's monomeric units can occur within symmetric space. Then molecular dynamics will be run within this symmetric space to test the per amino acid residue susceptibility of SAPN towards becoming polymorphic in nature. Means for examining the aggregation propensity of SAPN will be also be tested. Specifically, the relationship of different sequences of SAPN with pH will be elucidated. Co-assembly of SAPN to reduce the surface density of an aggregation prone epitope will be tested. Also, aggregation reduction consisting of the exchange of an anionic denaturant with a positively charged suppressor in order to mitigate a priori peptide association and misfolding, will also be attempted. SAPN has been shown to be an immunogenic platform for the presentation of pathogen derived antigens. We will attempt to show the efficacy of presenting an antigen from HIV-1 which is structurally restrained to best match the native conformation on the virus. Immunological studies will be performed to test the effect of this approach, as well testing the antigenicity of the nanoparticle in the absence of adjuvant. Finally, the antigen presenting nanoparticles will undergo formulation testing, to measure

  10. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides

    OpenAIRE

    Zhang, Rujing; Zheng, Nan; Song, Ziyuan; Yin, Lichen; Cheng, Jianjun

    2014-01-01

    The rational design of effective and safe non-viral gene vectors is largely dependent on the understanding of the structure-property relationship. We herein report the design of a new series of cationic, α-helical polypeptides with different side charged groups (amine and guanidine) and hydrophobicity, and mechanistically unraveled the effect of polypeptide structure on the gene delivery capability. Guanidine-containing polypeptides displayed superior membrane activities to their amine-contai...

  11. Identification of three coated vesicle components as alpha- and beta- tubulin linked to a phosphorylated 50,000-dalton polypeptide

    OpenAIRE

    1983-01-01

    Coated vesicles are involved in the intracellular transport of membrane proteins between a variety of membrane compartments. The coats of bovine brain coated vesicles contain at least six polypeptides in addition to an 180,000-dalton polypeptide called clathrin. In this report we show that the 54,000- and 56,000-dalton coated vesicle polypeptides are alpha- and beta-tubulin, determined by immunoblotting and two-dimensional gel electrophoresis. An affinity-purified tubulin antiserum can precip...

  12. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex. PMID:3100577

  13. Controlled surface modification of tissue culture polystyrene for selective cell binding using resilin-inspired polypeptides

    International Nuclear Information System (INIS)

    Modified tissue culture polystyrene (TCP) surfaces have been fabricated by attachment of recombinant polypeptides based on Drosophila melanogaster resilin and the Anopheles gambiae resilin-like protein. The D. melanogaster polypeptide (Rec-1) was from the first exon of resilin and consisted of 17 very similar repeats of a 15 residue sequence. The A. gambiae polypeptide consisted of 16 repeats of an 11 residue consensus sequence (An16). Polypeptides were attached to the TCP surface through tyrosine-based photo-crosslinking using blue light in combination with (RuII(bpy)3)Cl2 and sodium persulfate. TCP that has been manufactured by mild oxidation has surface phenolic groups that are believed to participate in this crosslinking process. X-ray photoelectron spectroscopy and contact angle analyses were used to demonstrate polypeptide binding. At higher coating concentrations of Rec-1 and An16, the surface was passivated and fibroblasts no longer attached and spread. At coating concentrations of 1 mg ml−1 for Rec-1 and 0.1 mg ml−1 for An16, where the surface was fully passivated against fibroblast attachment, addition of a cell attachment peptide, cyclo(Arg-Gly-Asp-D-Tyr-Lys) during coating and photo-crosslinking at >0.1 mg ml−1, led to the restoration of fibroblast binding that was dependent on the integrin αV chain. (paper)

  14. Competition between surface adsorption and folding of fibril-forming polypeptides

    Science.gov (United States)

    Ni, Ran; Kleijn, J. Mieke; Abeln, Sanne; Cohen Stuart, Martien A.; Bolhuis, Peter G.

    2015-02-01

    Self-assembly of polypeptides into fibrillar structures can be initiated by planar surfaces that interact favorably with certain residues. Using a coarse-grained model, we systematically studied the folding and adsorption behavior of a β -roll forming polypeptide. We find that there are two different folding pathways depending on the temperature: (i) at low temperature, the polypeptide folds in solution into a β -roll before adsorbing onto the attractive surface; (ii) at higher temperature, the polypeptide first adsorbs in a disordered state and folds while on the surface. The folding temperature increases with increasing attraction as the folded β -roll is stabilized by the surface. Surprisingly, further increasing the attraction lowers the folding temperature again, as strong attraction also stabilizes the adsorbed disordered state, which competes with folding of the polypeptide. Our results suggest that to enhance the folding, one should use a weakly attractive surface. They also explain the recent experimental observation of the nonmonotonic effect of charge on the fibril formation on an oppositely charged surface [C. Charbonneau et al., ACS Nano 8, 2328 (2014), 10.1021/nn405799t].

  15. Covalent aspartylation of aspartyl-tRNA synthetase from Bakers' yeast by its cognat aspartyl adenylate: identification of the labeled residues

    Energy Technology Data Exchange (ETDEWEB)

    Mejdoub, H.; Kern, D.; Giege, R.; Ebel, J.P.; Boulanger, Y.; Reinbolt, J.

    1987-04-07

    Aspartyl-tRNA synthetase from bakers' yeast gives an unstable complex with the cognate adenylate, which reacts after dissociation with amino acid side chains of the protein. This leads to a covalent incorporation of (/sup 14/C)-aspartic acid into aspartyl-tRNA synthetase via amide or ester bonds formed between the ..cap alpha..-carboxyl group of activated aspartic acid and accessible lysines, serines, and threonines. This property is used to label the peptides at the surface of the enzyme. The main labeled residues have been identified, and their location in the primary structure is discussed in relation to structural properties of aspartyl-tRNA synthetase.

  16. Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai; Swaminathan, Kunchithapadam; Xu, H. Eric (Van Andel); (NU Singapore)

    2012-02-21

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 {angstrom} crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  17. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Shiva Kumar

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR. Crystal structures of a number of Class B GPCR extracellular domains (ECD bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  18. Postulated Role of Vasoactive Neuropeptide-Related Immunopathology of the Blood Brain Barrier and Virchow-Robin Spaces in the Aetiology of Neurological-Related Conditions

    Directory of Open Access Journals (Sweden)

    D. R. Staines

    2008-01-01

    Full Text Available Vasoactive neuropeptides (VNs such as pituitary adenylate cyclase-activating polypeptide (PACAP and vasoactive intestinal peptide (VIP have critical roles as neurotransmitters, vasodilators including perfusion and hypoxia regulators, as well as immune and nociception modulators. They have key roles in blood vessels in the central nervous system (CNS including maintaining functional integrity of the blood brain barrier (BBB and blood spinal barrier (BSB. VNs are potent activators of adenylate cyclase and thus also have a key role in cyclic AMP production affecting regulatory T cell and other immune functions. Virchow-Robin spaces (VRSs are perivascular compartments surrounding small vessels within the CNS and contain VNs. Autoimmunity of VNs or VN receptors may affect BBB and VRS function and, therefore, may contribute to the aetiology of neurological-related conditions including multiple sclerosis, Parkinson's disease, and amyotrophic lateral sclerosis. VN autoimmunity will likely affect CNS and immunological homeostasis. Various pharmacological and immunological treatments including phosphodiesterase inhibitors and plasmapheresis may be indicated.

  19. Beaded nanofibers assembled from double-hydrophobic elastin-like block polypeptides: Effects of trifluoroethanol.

    Science.gov (United States)

    Le, Duc H T; Okubo, Tatsuya; Sugawara-Narutaki, Ayae

    2015-03-01

    A "double-hydrophobic" elastin-like triblock polypeptide GPG has been constructed by mimicking the localization of proline- and glycine-rich hydrophobic domains of native elastin, a protein that provides elasticity and resilience to connective tissues. In this study, the effects of trifluoroethanol (TFE), an organic solvent that strongly affects secondary structures of polypeptides on self-assembly of GPG in aqueous solutions were systematically studied. Beaded nanofiber formation of GPG, where nanoparticles are initially formed by coacervation of the polypeptides followed by their connection into one-dimensional nanostructures, is accelerated by the addition of TFE at the concentrations up to 30% (v/v), whereas aggregates of nanoparticles are formed at 60% TFE. The concentration-dependent assembly pattern discussed is based on the influence of TFE on the secondary structures of GPG. Well-defined nanofibers whose diameter and secondary structures are controlled by TFE concentration may be ideal building blocks for constructing bioelastic materials in tissue engineering.

  20. Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants.

    Science.gov (United States)

    Muñoz, G; González, C; Flores, P; Prado, B; Campos, V

    1997-12-01

    Changes in the polypeptide profile induced by salt stress in halotolerant and halophilic bacteria, isolated from the Atacama desert (northern Chile), were compared with those in the cotyledons of Prosopis chilensis (Leguminoseae) seedlings, a salt tolerant plant. SDS-PAGE analyses show the presence of four predominant polypeptides, with molecular weights around 78, 70, 60 and 44 kDa respectively, both in bacteria and in cotyledons from P. chilensis seedlings raised under salt stress conditions. Moreover, the 60 and 44 kDa polypeptides seem to be salt responsive, since their concentration increases with increasing NaCl in the growth medium. Our results suggest a common mechanism for salt tolerance in prokaryotes and in eukaryotes.

  1. [POLYPEPTIDES INFLUENCE ON TISSUE CELL CULTURES REGENERATION OF VARIOUS AGE RATS].

    Science.gov (United States)

    Ryzhak, A P; Chalisova, N I; Lin'kova, N S; Khalimov, R I; Ryzhak, G A; Zhekalov, A N

    2015-01-01

    A comparative study of polypeptides extracted from the tissues of calves: Cortexin (from brain cortex), Epinorm (from pineal gland), Ventvil (from liver), Prostatilen (from prostate), Thymalin (from thymus), Chelohart (from heart), Chondrolux (from cartilage) on the relevant organotypic tissue cultures of young and old rats, in concentration 0,01-100 ng/ml was performed. Polypeptides specifically stimulated "young" and "old" cell cultures growth in concentration 20-50 ng/ml. This effect correlates with increasing of PCNA and decreasing of p53 expression in brain cortex, pineal gland, liver, prostate, heart, cartilage. Moreover, Thymalin activated CD5, CD20 expression--markers of B-cells differentiation. These data show that polypeptides isolated from different tissues have selective molecular activity on the regeneration of suitable tissues in aging.

  2. Immunohistochemical localization of polypeptide hormones in pancreatic endocrine cells of a dipnoan fish, Protopterus aethiopicus.

    Science.gov (United States)

    Scheuermann, D W; Adriaensen, D; Timmermans, J P; De Groodt-Lasseel, M H

    1991-01-01

    Light microscopical immunohistochemistry was used to demonstrate the regulatory peptides present in the endocrine pancreas of Protopterus aethiopicus. The peptides studied included insulin, glucagon, pancreatic polypeptide and somatostatin. The results showed that the 4 regulatory peptides commonly detected in the mammalian endocrine pancreas were immunologically discernible in this dipnoan fish. Large amounts of insulin-immunoreactive cells, in the centre of the pancreatic islets, were surrounded by a small rim of glucagon-or pancreatic polypeptide-immunoreactive cells. In addition, adjacent sections stained with anti-glucagon and anti-pancreatic polypeptide revealed that these hormones could be found in the same cells. Somatostatin-positive cells were scattered throughout the islets. Their processes were seen to contact many different endocrine pancreatic cells, suggesting that the somatostatin-immunoreactive cells control the functions of other endocrine pancreatic cells. PMID:1687100

  3. Identification, synthesis, and characterization of the yolk polypeptides of Plodia interpunctella.

    Science.gov (United States)

    Shirk, P D; Bean, D; Millemann, A M; Brookes, V J

    1984-10-01

    The mature eggs of Plodia interpunctella were found to contain four major polypeptides. These yolk polypeptides (YPs) were found to have approximate molecular weights of 153,000 daltons (YP1), 69,000 daltons (YP2), 43,000 daltons (YP3), and 33,000 daltons (YP4) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In addition, we found YP1 was resolved by a 5% polyacrylamide gel into two separate polypeptides of 153,000 and 147,000 daltons. All of the YPs could be labeled in vivo or in vitro with [35S]-methionine. Yolk peptide 1 and YP3 were synthesized by fat body of pharate adult and adult females and secreted into the hemolymph. Yolk peptide 2 and YP4 were synthesized and secreted into incubation medium by ovaries that contained vitellogenic oocytes, but these polypeptides were not found in the hemolymph. Fat bodies of males synthesized and secreted an immunoprecipitable polypeptide similar to YP3 as well as immunoprecipitable polypeptides larger than 200,000 daltons that had no counterparts in the oocytes. Peptide mapping by protease digestion showed each YP to be cleaved into unique fragments, suggesting that no precursor-product relationship exists between the YPs. Ion exchange chromatography and gel permeation chromatography separated that yolk proteins into two groups with approximate molecular weights of 462,000 and 264,000 daltons. By resolving these peaks on SDS-PAGE, it was found that YP1 and YP3 formed the 462,000-dalton yolk protein and YP2 and YP4 formed the 264,000-dalton yolk protein.

  4. On the Helix-coil Transition in Alanine-based Polypeptides in Gas Phase

    CERN Document Server

    Wei, Y; Hansmann, U H E

    2007-01-01

    Using multicanonical simulations, the authors study the effect of charged end groups on helix formation in alanine based polypeptides. They confirm earlier reports that neutral polyalanine exhibits a pronounced helix-coil transition in gas phase simulations. Introducing a charged Lys+ at the C terminal stabilizes the helix and leads to a higher transition temperature. On the other hand, adding the Lys+ at the N terminal inhibits helix formation. Instead, a more globular structure was found. These results are in agreement with recent experiments on alanine based polypeptides in gas phase. They indicate that present force fields describe accurately the intramolecular interactions in proteins.

  5. Fast collapse but slow formation of secondary structure elements in the refolding transition of E. coli adenylate kinase.

    Science.gov (United States)

    Ratner, V; Amir, D; Kahana, E; Haas, E

    2005-09-23

    The various models proposed for protein folding transition differ in their order of appearance of the basic steps during this process. In this study, steady state and time-resolved dynamic non-radiative excitation energy transfer (FRET and trFRET) combined with site specific labeling experiments were applied in order to characterize the initial transient ensemble of Escherichia coli adenylate kinase (AK) molecules upon shifting conditions from those favoring denaturation to refolding and from folding to denaturing. Three sets of labeled AK mutants were prepared, which were designed to probe the equilibrium and transient distributions of intramolecular segmental end-to-end distances. A 176 residue section (residues 28-203), which spans most of the 214 residue molecule, and two short secondary structure chain segments including an alpha-helix (residues 169-188) and a predominantly beta-strand region (residues 188-203), were labeled. Upon fast change of conditions from denaturing to folding, the end-to-end distance of the 176 residue chain section showed an immediate collapse to a mean value of 26 A. Under the same conditions, the two short secondary structure elements did not respond to this shift within the first ten milliseconds, and retained the characteristics of a fully unfolded state. Within the first 10 ms after changes of the solvent from folding to denaturing, only minor changes were observed at the local environments of residues 203 and 169. The response of these same local environments to the shift of conditions from denaturing to folding occurred within the dead time of the mixing device. Thus, the response of the CORE domain of AK to fast transfer from folding to unfolding conditions is slow at all three conformational levels that were probed, and for at least a few milliseconds the ensemble of folded molecules is maintained under unfolding conditions. A different order of the changes was observed upon initiation of refolding. The AK molecules undergo

  6. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Adenylate kinase (AK) from D. gigas was purified and crystallized in three different metal-bound forms: Zn2+–AK, Co2+–AK and Fe2+–AK. Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 Å resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 Å resolution, respectively. Zn2+–AK and Fe2+–AK crystallized in space group I222 with similar unit-cell parameters, whereas Co2+–AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn2+–AK and Fe2+–AK forms and a dimer was present for the Co2+–AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes

  7. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis.

    Science.gov (United States)

    Česnek, Michal; Jansa, Petr; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Brust, Tarsis F; Pávek, Petr; Trejtnar, František; Watts, Val J; Janeba, Zlatko

    2015-08-01

    Novel small-molecule agents to treat Bordetella pertussis infections are highly desirable, as pertussis (whooping cough) remains a serious health threat worldwide. In this study, a series of 2-substituted derivatives of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA, adefovir), in their isopropyl ester bis(L-phenylalanine) prodrug form, were designed and synthesized as potent inhibitors of adenylate cyclase toxin (ACT) isolated from B. pertussis. The series consists of PMEA analogues bearing either a linear or branched aliphatic chain or a heteroatom at the C2 position of the purine moiety. Compounds with a small C2 substituent showed high potency against ACT without cytotoxic effects as well as good selectivity over human adenylate cyclase isoforms AC1, AC2, and AC5. The most potent ACT inhibitor was found to be the bisamidate prodrug of the 2-fluoro PMEA derivative (IC50 =0.145 μM). Although the bisamidate prodrugs reported herein exhibit overall lower activity than the bis(pivaloyloxymethyl) prodrug (adefovir dipivoxil), their toxicity and plasma stability profiles are superior. Furthermore, the bisamidate prodrug was shown to be more stable in plasma than in macrophage homogenate, indicating that the free phosphonate can be effectively distributed to target tissues, such as the lungs. Thus, ACT inhibitors based on acyclic nucleoside phosphonates may represent a new strategy to treat whooping cough.

  8. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    Science.gov (United States)

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  9. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-02-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme.

  10. In vitro mutagenesis studies at the arginine residues of adenylate kinase. A revised binding site for AMP in the X-ray-deduced model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Joon; Nishikawa, Satoshi; Tokutomi, Yuiko; Uesugi, Seiichi (Osaka Univ. (Japan)); Takenaka, Hitoshi; Hamada, Minoru (Miyazaki Medical College (Japan)); Kuby, S.A. (Univ. of Utah, Salt Lake City (USA))

    1990-02-06

    Although X-ray crystallographic and NMR studies have been made on the adenylate kinases, the substrate-binding sites are not unequivocally established. In an attempt to shed light on the binding sites for MgATP{sup 2{minus}} and for AMP{sup 2{minus}} in human cytosolic adenylate kinase, the authors have investigated the enzymic effects of replacement of the arginine residues, which had been assumed by Pai et al. to interact with the phosphoryl groups of AMP{sup 2{minus}} and MgATP{sup 2{minus}}. With use of the site-directed mutagenesis method, point mutations were made in the artificial gene for hAK1 to replace these arginine residues with alanyl residues and yield the mutants R44A hAK1, R132A hAK1, R138A hAK1, and R149A hAK1. The resulting large increases in the K{sub m,app} values for AMP{sup 2{minus}} of the mutant enzymes, the relatively small increases in the K{sub m,app} values for MgATP{sup 2{minus}}, and the fact that the R132A, R138A, and R149A mutant enzymes proved to be very poor catalysts are consistent with the idea that the assigned substrate binding sites of Pai et al. have been reversed and that their ATP-binding site may be assigned as the AMP site.

  11. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps.

    Directory of Open Access Journals (Sweden)

    Ladislav Bumba

    2010-05-01

    Full Text Available Bordetella adenylate cyclase toxin (CyaA binds the alpha(Mbeta(2 integrin (CD11b/CD18, Mac-1, or CR3 of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin 'translocation intermediate', which can be 'locked' in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the 'intermediate' permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca(2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the 'translocation intermediate' promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol.

  12. TOPOFOLD, the designed modular biomolecular folds: polypeptide-based molecular origami nanostructures following the footsteps of DNA.

    Science.gov (United States)

    Kočar, Vid; Božič Abram, Sabina; Doles, Tibor; Bašić, Nino; Gradišar, Helena; Pisanski, Tomaž; Jerala, Roman

    2015-01-01

    Biopolymers, the essential components of life, are able to form many complex nanostructures, and proteins in particular are the material of choice for most cellular processes. Owing to numerous cooperative interactions, rational design of new protein folds remains extremely challenging. An alternative strategy is to design topofolds-nanostructures built from polypeptide arrays of interacting modules that define their topology. Over the course of the last several decades DNA has successfully been repurposed from its native role of information storage to a smart nanomaterial used for nanostructure self-assembly of almost any shape, which is largely because of its programmable nature. Unfortunately, polypeptides do not possess the straightforward complementarity as do nucleic acids. However, a modular approach can nevertheless be used to assemble polypeptide nanostructures, as was recently demonstrated on a single-chain polypeptide tetrahedron. This review focuses on the current state-of-the-art in the field of topological polypeptide folds. It starts with a brief overview of the field of structural DNA and RNA nanotechnology, from which it draws parallels and possible directions of development for the emerging field of polypeptide-based nanotechnology. The principles of topofold strategy and unique properties of such polypeptide nanostructures in comparison to native protein folds are discussed. Reasons for the apparent absence of such folds in nature are also examined. Physicochemical versatility of amino acid residues and cost-effective production makes polypeptides an attractive platform for designed functional bionanomaterials. PMID:25196147

  13. Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon.

    OpenAIRE

    Conley, P. B.; Lemaux, P G; Lomax, T L; Grossman, A R

    1986-01-01

    The polypeptide composition of the phycobilisome, the major light-harvesting complex of prokaryotic cyanobacteria and certain eukaryotic algae, can be modulated by different light qualities in cyanobacteria exhibiting chromatic adaptation. We have identified genomic fragments encoding a cluster of phycobilisome polypeptides (phycobiliproteins) from the chromatically adapting cyanobacterium Fremyella diplosiphon using previously characterized DNA fragments of phycobiliprotein genes from the eu...

  14. Zwitterionic states in gas-phase polypeptide ions revealed by 157-nm ultra-violet photodissociation

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Silivra, Oleg A; Zubarev, Roman A

    2006-01-01

    carboxylic groups relative to competing COOH losses (45 Da) from neutral carboxylic groups. Loss of CO2 is a strong indication of the presence of a zwitterionic [(+)...(-)...(+)] salt bridge in the gas-phase polypeptide cation. This method provides a tool for studying, for example, the nature of binding...

  15. Molecular cloning and protein structure of a human blood group Rh polypeptide

    International Nuclear Information System (INIS)

    cDNA clones encoding a human blood group Rh polypeptide were isolated from a human bone marrow cDNA library by using a polymerase chain reaction-amplified DNA fragment encoding the known common N-terminal region of the Rh proteins. The entire primary structure of the Rh polypeptide has been deduced from the nucleotide sequence of a 1384-base-pair-long cDNA clone. Translation of the open reading frame indicates that the Rh protein is composed of 417 amino acids, including the initiator methionine, which is removed in the mature protein, lacks a cleavable N-terminal sequence, and has no consensus site for potential N-glycosylation. The predicted molecular mass of the protein is 45,500, while that estimated for the Rh protein analyzed in NaDodSO4/polyacrylamide gels is in the range of 30,000-32,000. These findings suggest either that the hydrophobic Rh protein behaves abnormally on NaDodSO4 gels or that the Rh mRNA may encode a precursor protein, which is further matured by a proteolytic cleavage of the C-terminal region of the polypeptide. Hydropathy analysis and secondary structure predictions suggest the presence of 13 membrane-spanning domains, indicating that the Rh polypeptide is highly hydrophobic and deeply buried within the phospholipid bilayer. These results suggest that the expression of the Rh gene(s) might be restricted to tissues or cell lines expressing erythroid characters

  16. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    Science.gov (United States)

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  17. Distance Measurements on Orthogonally Spin-Labeled Membrane Spanning WALP23 Polypeptides

    NARCIS (Netherlands)

    Lueders, P.; Jäger, H.; Hemminga, M.A.; Jeschke, G.; Yulikov, M.

    2013-01-01

    EPR-based Gd(III)-nitroxide distance measurements were performed on a series of membrane-incorporated orthogonally labeled WALP23 polypeptides. The obtained distance distributions were stable upon the change of detection frequency from 10 GHz (X-band) to 35 GHz (Q-band). The alpha-helical pitch of W

  18. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    Science.gov (United States)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  19. Human placental DNA polymerase δ: identification of a 170-kilodalton polypeptide by activity staining and immunoblotting

    International Nuclear Information System (INIS)

    DNA polymerase δ was isolated from human placenta and identified as such on the basis of its association with a 3'- to 5'-exonuclease activity. The association of the polymerase and exonuclease activities was maintained throughout purification and attempted separations by physical or electrophoretic methods. Moreover, ratios of the two activities remained constant during the purification steps, and both activities were inhibited by aphidicolin, oxidized glutathione, and n-ethylmaleimide. The purified enzyme had an estimated molecular weight of 172,000, on the basis of a Stokes radius of 53.6 A and a sedimentation coefficient of 7.8 S. On sodium dodecyl sulfate (SDS) gel electrophoresis, polymerase δ preparations contained a band of ca. 170 kilodaltons (kDa) as well as several smaller polypeptides. The 170-kDa polypeptide was identified as the largest polypeptides component in the preparation possessing DNA polymerase activity by an activity staining procedure following gel electrophoresis in the presence of SDS. Western blotting of DNA polymerase δ with polyclonal antisera also revealed a single 170-kDa immunoreactive polypeptide. Monoclonal antibodies to KB cell polymerase α inhibited placental polymerase α but did not inhibit DNA polymerase δ, while the murine polyclonal antisera to polymerase δ inhibited δ but not α. These findings establish the existence of DNA polymerase δ in a human tissue and support the view that both its polymerase and its exonuclease activities may be associated with a single protein

  20. Synthesis and Characterization of Periodic Polypeptides Containing Repeating —(AlaGly)_xGluGly— Sequences

    OpenAIRE

    Deguchi, Yoshikuni; Krejchi, Mark T.; Borbely, Janos; Fournier, Maurille J.; Mason, Thomas L.; Tirrell, David A.

    1993-01-01

    We have expressed in E. coli a series of periodic polypeptides represented by sequence 1. Our objective has been an understanding of the role of chemical sequence in determining the chain folding behavior of periodic macromolecules. Molecular organization has been examined by infrared spectroscopy and ^1H and ^(13)C NMR methods and a preliminary model of the folded structure has been developed.

  1. Ectomycorrhizin Synthesis and Polypeptide Changes during the Early Stage of Eucalypt Mycorrhiza Development 1

    Science.gov (United States)

    Hilbert, Jean-Louis; Costa, Guy; Martin, Francis

    1991-01-01

    In functioning eucalypt ectomycorrhizas, biochemical alterations are accompanied by a differential accumulation of polypeptides including the synthesis of symbiosis-related proteins (JL Hilbert, Martin FM [1988] New Phytol 110: 339-346). In the present study, protein biosynthesis in the early stages of ectomycorrhiza formation on Eucalyptus globulus subsp. bicostata Kirkp. was examined using compatible and incompatible isolates of the basidiomycete Pisolithus tinctorius (Coker & Couch). Changes in polypeptide composition were observed within hours following contact of the compatible mycelium with the roots, well before the differentiation of typical symbiotic tissues. At this stage, at least seven symbiosis-related proteins (ectomycorrhizins) accumulated in root tissues. In vivo incorporation of [35S]methionine by ectomycorrhizas followed by electrophoresis of the labeled proteins revealed that most of these differences in polypeptide concentrations, including the ectomycorrhizin accumulation, are the result of differential protein biosynthesis rather than posttranslational modifications of the polypeptides. The initial development of eucalypt ectomycorrhizas, therefore, coincides with the synthesis of symbiosis-related proteins and the data presented here provide essential evidence to ascribe a functional developmental role to these proteins. ImagesFigure 2Figure 3Figure 4Figure 5 PMID:16668539

  2. Proline-rich polypeptides in Alzheimer's disease and neurodegenerative disorders - Therapeutic potential or a mirage?

    NARCIS (Netherlands)

    Gladkevich, A.; Bosker, F.; Korf, J.; Yenkoyan, K.; Vahradyan, H.; Aghajanov, M.

    2007-01-01

    The development of effective and safe drugs for a growing Alzheimer disease population is an increasing need at present. Both experimental and clinical evidence support a beneficial effect of proline-rich polypeptides in a number of neurodegenerative diseases, including Alzheimer disease. Experiment

  3. Cellular Interactions and Biocompatibility of Self-Assembling Diblock Polypeptide Hydrogels

    Science.gov (United States)

    Pakstis, Lisa; Ozbas, Bulent; Pochan, Darrin; Robinson, Clifford; Nowak, Andrew; Deming, Timothy

    2002-03-01

    Self-assembling peptide based hydrogels having a unique nano- and microscopic morphology are being studied for potential use as tissue engineering scaffolds. Low molecular weight ( ~20 kg/mol), amphiphilic, diblock polypeptides of hydrophilic lysine (K) or glutamic acid (E) and hydrophobic leucine (L) or valine (V) form hydrogels in aqueous solution at neutral pH and at very low volume fraction of polymer (vol. fraction polypeptide >=0.5 wt%). The morphology of these hydrogels has been characterized using laser confocal microscopy (LCM), small angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryoTEM) imaging. Studies of the interactions of the hydrogels with bacterial and mammalian cells reveal that these materials are non-cytotoxic and biocompatible. Hence, the chemistry of the assembled diblock polypeptides allows for cellular proliferation whereas the same chemistry in the homopolyeric form is cytotoxic. Current research is directed at the design and incorporation of binding sites within the polypeptide to specifically target interactions of the hydrogel with desired cells types.

  4. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  5. The 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide is a DnaK-like protein

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1990-01-01

    The gene coding for the 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide has been cloned in Escherichia coli, and the nucleotide sequence has been determined. The cloned DNA fragment contained the coding region as well as the putative promoter. The deduced amino acid sequence of the 1...

  6. Oral Delivery of Antidiabetic Polypeptide-k: Journey so far and the Road Ahead.

    Science.gov (United States)

    Kaur, Puneet; Garg, Varun; Gulati, Monica; Singh, Sachin Kumar

    2016-01-01

    The prevalence of diabetes mellitus is growing rapidly. According to the global report of International Diabetes Fedration (IDF), about 382 million people are suffering from diabetes and among them, 90% cases were of type-II. By 2035, it is expected that this number will reach to 592 million. In the last 5 decades, various efforts have been put towards the development of synthetic medicines or synergistic combination of herbal and synthetic medicines to treat diabetes mellitus. Polypeptide-k is an antihyperglycaemic protein isolated from dried seeds collected from ripened fruits of Momordica charantia. Extensive research has been carried out in the last fifteen years on polypeptide-k to explore its potential applications for the treatment of both types of diabetes mellitus. This review highlights the available marketed formulations and research investigations conducted on humans to prove the potential of polypeptide-k as an antihyperglycaemic agent. This article also marks the reasons and need for oral delivery of polypeptide-k. PMID:26456213

  7. The capsid polypeptides of the 190S virus of Helminthosporium victoriae.

    Science.gov (United States)

    Ghabrial, S A; Bibb, J A; Price, K H; Havens, W M; Lesnaw, J A

    1987-07-01

    SDS-PAGE of the 190S virus of Helminthosporium victoriae, using a discontinuous buffer system, revealed two major capsid polypeptides of mol. wt. 88K and 83K (p88 and p83) and a minor polypeptide, p78. Peptide mapping by both limited proteolysis and selective chemical cleavage showed p83 and p78 to be closely related to p88. The origin of p83/p78 could not be explained by proteolysis of p88 during virus preparation and storage. In rabbit reticulocyte lysates, denatured dsRNA directed the synthesis of a single major translation product which was identical to capsid polypeptide p88 on the basis of coelectrophoresis, immunoprecipitation and peptide mapping. No translation products comparable in size to p83 or p78 were detected in vitro. These data indicated that the capsid of the 190S virus is encoded by a single gene and verified the classification of the virus as a member of the family Totiviridae. Radioiodination of intact virus under conditions considered optimum for surface-specific iodination showed p88 to be more readily available for labelling than p83 or p78. Furthermore, when Western blots of capsid polypeptides were reacted with an antiserum to glutaraldehyde-stabilized virus (190S-G), p88 was more reactive to 190S-G antibodies than was p83/p78. These results suggest p88 is external to p83/p78 in the capsid.

  8. On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Tangaa, Winnie; Madsbad, Sten;

    2010-01-01

    We investigated the role of glucose-dependent insulintropic polypeptide (GIP) in the regulation of gastric emptying (GE), appetite, energy intake (EI), energy expenditure (EE), plasma levels of triglycerides (TAG), and free fatty acids (FFA) in humans. First, 20 healthy males received intravenous....../saline days and on Intralipid + GIP day (P data suggest that GIP does not affect GE, appetite, energy intake, EE...

  9. Adhesive polypeptides of Staphylococcus aureus identified using a novel secretion library technique in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2011-05-01

    Full Text Available Abstract Background Bacterial adhesive proteins, called adhesins, are frequently the decisive factor in initiation of a bacterial infection. Characterization of such molecules is crucial for the understanding of bacterial pathogenesis, design of vaccines and development of antibacterial drugs. Because adhesins are frequently difficult to express, their characterization has often been hampered. Alternative expression methods developed for the analysis of adhesins, e.g. surface display techniques, suffer from various drawbacks and reports on high-level extracellular secretion of heterologous proteins in Gram-negative bacteria are scarce. These expression techniques are currently a field of active research. The purpose of the current study was to construct a convenient, new technique for identification of unknown bacterial adhesive polypeptides directly from the growth medium of the Escherichia coli host and to identify novel proteinaceous adhesins of the model organism Staphylococcus aureus. Results Randomly fragmented chromosomal DNA of S. aureus was cloned into a unique restriction site of our expression vector, which facilitates secretion of foreign FLAG-tagged polypeptides into the growth medium of E. coli ΔfliCΔfliD, to generate a library of 1663 clones expressing FLAG-tagged polypeptides. Sequence and bioinformatics analyses showed that in our example, the library covered approximately 32% of the S. aureus proteome. Polypeptides from the growth medium of the library clones were screened for binding to a selection of S. aureus target molecules and adhesive fragments of known staphylococcal adhesins (e.g coagulase and fibronectin-binding protein A as well as polypeptides of novel function (e.g. a universal stress protein and phosphoribosylamino-imidazole carboxylase ATPase subunit were detected. The results were further validated using purified His-tagged recombinant proteins of the corresponding fragments in enzyme-linked immunoassay and

  10. REGULATION OF POSTNATAL B-ADRENERGIC RECEPTOR/ADENYLATE CYCLASE DEVELOPMENT BY PRENATAL AGONIST STIMULATION AND STEROIDS: ALTERATIONS IN RAT KIDNEY AND LUNG AFTER EXPOSURE TO TERBUTALINE OR DEXAMETHASONE

    Science.gov (United States)

    Glucocorticoids and adrenergic stimulation are both thought to control the development of adrenergic receptors/responses. n the current study, rats were exposed to dexamethasone or terbutaline during late gestation and the development of B-binding capabilities and adenylate cycla...

  11. Substrate specificity of the adenylation enzyme SgcC1 involved in the biosynthesis of the enediyne antitumor antibiotic C-1027.

    Science.gov (United States)

    Van Lanen, Steven G; Lin, Shuangjun; Dorrestein, Pieter C; Kelleher, Neil L; Shen, Ben

    2006-10-01

    C-1027 is an enediyne antitumor antibiotic composed of a chromophore with four distinct chemical moieties, including an (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety that is derived from l-alpha-tyrosine. SgcC4, a novel aminomutase requiring no added co-factor that catalyzes the formation of the first intermediate (S)-beta-tyrosine and subsequently SgcC1 homologous to adenylation domains of nonribosomal peptide synthetases, was identified as specific for the SgcC4 product and did not recognize any alpha-amino acids. To definitively establish the substrate for SgcC1, a full kinetic characterization of the enzyme was performed using amino acid-dependent ATP-[(32)P]PP(i) exchange assay to monitor amino acid activation and electrospray ionization-Fourier transform mass spectroscopy to follow the loading of the activated beta-amino acid substrate to the peptidyl carrier protein SgcC2. The data establish (S)-beta-tyrosine as the preferred substrate, although SgcC1 shows promiscuous activity toward aromatic beta-amino acids such as beta-phenylalanine, 3-chloro-beta-tyrosine, and 3-hydroxy-beta-tyrosine, but all were <50-fold efficient. A putative active site mutant P571A adjacent to the invariant aspartic acid residue of all alpha-amino acid-specific adenylation domains known to date was prepared as a preliminary attempt to probe the substrate specificity of SgcC1; however the mutation resulted in a loss of activity with all substrates except (S)-beta-tyrosine, which was 142-fold less efficient relative to the wild-type enzyme. In total, SgcC1 is now confirmed to catalyze the second step in the biosynthesis of the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety of C-1027, presenting downstream enzymes with an (S)-beta-tyrosyl-S-SgcC2 thioester substrate, and represents the first beta-amino acid-specific adenylation enzyme characterized biochemically. PMID:16887797

  12. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.

    Science.gov (United States)

    Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and

  13. PACAP enhances axon outgrowth in cultured hippocampal neurons to a comparable extent as BDNF.

    Directory of Open Access Journals (Sweden)

    Katsuya Ogata

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP exerts neurotrophic activities including modulation of synaptic plasticity and memory, hippocampal neurogenesis, and neuroprotection, most of which are shared with brain-derived neurotrophic factor (BDNF. Therefore, the aim of this study was to compare morphological effects of PACAP and BDNF on primary cultured hippocampal neurons. At days in vitro (DIV 3, PACAP increased neurite length and number to similar levels by BDNF, but vasoactive intestinal polypeptide showed much lower effects. In addition, PACAP increased axon, but not dendrite, length, and soma size at DIV 3 similarly to BDNF. The PACAP antagonist PACAP6-38 completely blocked the PACAP-induced increase in axon, but not dendrite, length. Interestingly, the BDNF-induced increase in axon length was also inhibited by PACAP6-38, suggesting a mechanism involving PACAP signaling. K252a, a TrkB receptor inhibitor, inhibited axon outgrowth induced by PACAP and BDNF without affecting dendrite length. These results indicate that in primary cultured hippocampal neurons, PACAP shows morphological actions via its cognate receptor PAC1, stimulating neurite length and number, and soma size to a comparable extent as BDNF, and that the increase in total neurite length is ascribed to axon outgrowth.

  14. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, G.W.; Robinson, H.; Abendroth, J.; Staker, B. L.; Myler, P. J.

    2010-04-16

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 {angstrom} resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP{sub bd}) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 {angstrom}. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.

  15. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Science.gov (United States)

    Penzkofer, A.; Tanwar, M.; Veetil, S. K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-09-01

    The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr-Tyr cross-linking (o,o‧-ditysosine formation) and partial flavin cofactor reduction.

  16. Phosphorolytic activity of Escherichia coli glycyl-tRNA synthetase towards its cognate aminoacyl adenylate detected by 31P-NMR spectroscopy and thin-layer chromatography

    DEFF Research Database (Denmark)

    Led, Jens Jørgen; Switon, Werner K.; Jensen, Kaj Frank

    1983-01-01

    The catalytic activity of highly purified Escherichia coli glycyl-tRNA synthetase has been studied by 31P-NMR spectroscopy and thin-layer chromatography on poly(ethyleneimine)-cellulose. It was found that this synthetase, besides the activation of its cognate amino acid and the syntheses of...... adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A), also catalyzes the formation of ADP from inorganic phosphate and the enzyme-bound glycyl adenylate. Accordingly it was shown that E. coli glycyl-tRNA synthetase, in the presence of inorganic phosphate, glycine...... remaining catalytic activities of aminoacyl-tRNA synthetases is discussed, as well as the biological significance of the reaction....

  17. In vitro mutagenesis studies at the arginine residues of adenylate kinase. A revised binding site for AMP in the X-ray-deduced model.

    Science.gov (United States)

    Kim, H J; Nishikawa, S; Tokutomi, Y; Takenaka, H; Hamada, M; Kuby, S A; Uesugi, S

    1990-02-01

    Although X-ray crystallographic and NMR studies have been made on the adenylate kinases, the substrate-binding sites are not unequivocally established. In an attempt to shed light on the binding sites for MgATP2- and for AMP2- in human cytosolic adenylate kinase (EC 2.7.4.3, hAK1), we have investigated the enzymic effects of replacement of the arginine residues (R44, R132, R138, and R149), which had been assumed by Pai et al. [Pai, E. F., Sachsenheimer, W., Schirmer, R. H., & Schulz, G. E. (1977) J. Mol. Biol. 114, 37-45] to interact with the phosphoryl groups of AMP2- and MgATP2-. With use of the site-directed mutagenesis method, point mutations were made in the artificial gene for hAK1 [Kim, H. J., Nishikawa, S., Tanaka, T., Uesugi, S., Takenaka, H., Hamada, M., & Kuby, S. A. (1989) Protein Eng. 2, 379-386] to replace these arginine residues with alanyl residues and yield the mutants R44A hAK1, R132A hAK1, R138A hAK1, and R149A hAK1. The resulting large increases in the Km,app values for AMP2- of the mutant enzymes, the relatively small increases in the Km,app values for MgATP2-, and the fact that the R132A, R138A, and R149A mutant enzymes proved to be very poor catalysts are consistent with the idea that the assigned substrate binding sites of Pai et al. (1977) have been reversed and that their ATP-binding site may be assigned as the AMP site.

  18. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, M.; Kuby, S.A.; Mildvan A.S.

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme, appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase, with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of ..beta..-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% ..cap alpha..-helix, 38% ..beta..-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possible due to disorder, it can be fit by using methods developed on well-characterized globular proteins. The CD spectrum is best fit by assuming the presence of at most 13% ..cap alpha..-helix in the peptide, 24 +/- 2% ..beta..-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformation changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assess by CD.

  19. Characterization of antibodies to the structural polypeptides of HB/sub s/Ag: evidence for subtype-specific determinants

    Energy Technology Data Exchange (ETDEWEB)

    Gold, J.W.M. (Oak Ridge National Lab., Rockville, MD); Shih, J.W.K.; Purcell, R.H.; Gerin, J.L.

    1976-10-01

    Antisera prepared in guinea pigs to the structural polypeptides of HB/sub s/Ag/adw and HB/sub s/Ag/ayw were examined by a modified passive hemagglutination assay for antibodies to the subtype-specific d and y determinants. All of the isolated polypeptide fractions stimulated antibodies to both group-specific and subtype-specific antigens of the native HB/sub s/Ag particle from which they were derived. These data indicate that the polypeptides have similarities in their immunochemical structure.

  20. The Role of the 14–20 Domain of the Islet Amyloid Polypeptide in Amyloid Formation

    Directory of Open Access Journals (Sweden)

    Sharon Gilead

    2008-01-01

    Full Text Available The molecular mechanism of amyloid formation by the islet amyloid polypeptide (IAPP has been intensively studied since its identification in the late 1980s. The IAPP(20–29 region is considered to be the central amyloidogenic module of the polypeptide. This assumption is mainly based on the amyloidogenic properties of the region and on the large sequence diversity within this region between the human and mouse IAPP, as the mouse IAPP does not form amyloids. A few years ago, another region within IAPP was identified that seems to be at least as important as IAPP(20–29 in facilitation of molecular recognition that leads to amyloid formation. Here, we reinforce our and others' previous findings by analyzing supporting evidence from the recent literature. Moreover, we provide new proofs to our hypothesis by comparing between the amyloidogenic properties of the two regions derived from the IAPP of cats, which is also known to form amyloid fibrils.

  1. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    Science.gov (United States)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  2. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    Science.gov (United States)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  3. Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor

    International Nuclear Information System (INIS)

    Gastric inhibitory polypeptide (GIP) is a 42-amino acid hormone that stimulates insulin secretion in the presence of glucose. Complementary DNA clones encoding human GIP were isolated from a library prepared with RNA from duodenum. The predicted amino acid sequence indicates that GIP is derived by proteolytic processing of a 153-residue precursor, preproGIP. The GIP moiety is flanked by polypeptide segments of 51 and 60 amino acids at its NH2 and COOH termini, respectively. The former includes a signal peptide of about 21 residues and an NH2-terminal propeptide of 30 amino acids. GIP is released from the precursor by processing at single arginine residues. There is a region of nine amino acids in the COOH-terminal propeptide of the GIP precursor that has partial homology with a portion of chromogranin A as well as pancreastatin

  4. Effect of external field on phase behavior of ternary systems involving polypeptide

    Institute of Scientific and Technical Information of China (English)

    LIN; Shaoliang; LIN; Jiaping; CHEN; Tao; TIAN; Xiaohui

    2005-01-01

    The lattice theory regarding ternary systems involving a conformationally variable polypeptide and a randomly coiled polymer presented recently is extended to the case where an external orientational field is present. Chemical potentials of the components in the isotropic and anisotropic phases were obtained. The calculations carried out show that the external field exerts a marked effect on the phase behavior of the ternary systems. The isotropic-anisotropic biphasic gap is predicted to shift to lower polymer concentrations and become narrower when the external field exists. The entrance of the randomly coiled polymers into the anisotropic phase is promoted. Influences of chain conformation of polypeptide, chain length and temperature have been studied in the presence of the external field. The comparison between theory and experimental results was also carried out.

  5. Construction and Expression of Eukaryotic Expression Vector of Mature Polypeptide of Duck Interferon Alpha Gene

    Institute of Scientific and Technical Information of China (English)

    PEI Fucheng; LI Jingpeng; LI Lu; ZHANG Jianguang; REN Guiping

    2006-01-01

    To study biological activities of Duck Interferon Alpha (DuIFN-α) and prepare antivirus medicine, the eukaryotic expression vector of mature polypeptide of Duck Interferon Alpha (mDuIFN-α) gene was constructed and expressed in insect cell. By means of PCR technique, the mDuIFN-α gene was cloned from pMD-18-duIFN-αrecombinant. The gene was then inserted to pGEM-T vector and identified by restriction endonuclease analysis and sequencing. The mDuIFN-α gene was ligated with the eukaryotic expression vector pMelBacA, then transfected into Sf9cell line. Recombinant polypeptide was effectively expressed in insect cell and its molecular weight was 34 ku.

  6. Maleimide-Functionalized Poly(2-Oxazoline)s and Their Conjugation to Elastin-Like Polypeptides.

    Science.gov (United States)

    Nawroth, Jonas F; McDaniel, Jonathan R; Chilkoti, Ashutosh; Jordan, Rainer; Luxenhofer, Robert

    2016-03-01

    The design of drug delivery systems capable of efficiently delivering poorly soluble drugs to target sites still remains a major challenge. Such materials require several different functionalities; typically, these materials should be biodegradable and nontoxic, nonimmunogenic, responsive to their environment, and soluble in aqueous solution while retaining the ability to solubilize hydrophobic drugs. Here, a polypeptide-polymer hybrid of elastin-like polypeptides (ELPs) and poly(2-oxazoline)s (POx) is reported. This paper describes the chemical synthesis, physical characteristics, and drug loading potential of these novel hybrid macromolecules. A novel method is introduced for terminal functionalization of POx with protected maleimide moieties. Following recovery of the maleimide group via a retro Diels-Alder reaction, the consecutive Michael addition of thiol-functionalized ELPs yields the desired protein-polymer conjugate. These conjugates form nanoparticles in aqueous solution capable of solubilizing the anti-cancer drug paclitaxel with up to 8 wt% loading. PMID:26756582

  7. Wet-spinnability and crosslinked fibre properties of two collagen polypeptides with varied molecular weight

    CERN Document Server

    Tronci, Giuseppe; Arafat, M Tarik; Yin, Jie; Wood, David J; Russell, Stephen J

    2015-01-01

    The formation of naturally-derived materials with wet stable fibrous architectures is paramount in order to mimic the features of tissues at the molecular and microscopic scale. Here, we investigated the formation of wet-spun fibres based on collagen-derived polypeptides with comparable chemical composition and varied molecular weight. Gelatin and hydrolysed fish collagen (HFC) were selected as widely-available linear amino-acidic chains of high and low molecular weight, respectively, and functionalised in the wet-spun fibre state in order to preserve the material geometry in physiological conditions. Wet-spun fibre diameter and morphology were dramatically affected depending on the polypeptide molecular weight, wet-spinning solvent (i.e. 2,2,2-Trifluoroethanol and dimethyl sulfoxide) and coagulating medium (i.e. acetone and ethanol), resulting in either bulky or porous internal geometry. Dry-state tensile moduli were significantly enhanced in gelatin and HFC samples following covalent crosslinking with activ...

  8. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes.

    Science.gov (United States)

    Finka, Andrija; Mattoo, Rayees U H; Goloubinoff, Pierre

    2016-06-01

    Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.

  9. A prospective study of serum tumour markers carcinoembryonic antigen, carbohydrate antigens 50 and 242, tissue polypeptide antigen and tissue polypeptide specific antigen in the diagnosis of pancreatic cancer with special reference to multivariate diagnostic score.

    OpenAIRE

    Pasanen, P. A.; Eskelinen, M.; Partanen, K.; Pikkarainen, P; Penttilä, I.; Alhava, E

    1994-01-01

    The aim of this study was to assess by a stepwise multivariate discriminant analysis the value of four current serum tumour markers - carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 50 and CA 242 and tissue polypeptide antigen (TPA) - and a new serum tumour marker, tissue polypeptide specific antigen (TPS), in the diagnosis of pancreatic cancer. The serum values were measured in a prospective series of patients with jaundice, with unjaundiced cholestasis and with a suspicion of chro...

  10. Independent prognostic value of preoperative serum markers CA 242, specific tissue polypeptide antigen and human chorionic gonadotrophin beta, but not of carcinoembryonic antigen or tissue polypeptide antigen in colorectal cancer.

    OpenAIRE

    Carpelan-Holmström, M; Haglund, C.; Lundin, J; Alfthan, H.; Stenman, U H; Roberts, P. J.

    1996-01-01

    The prognostic value of preoperative serum concentrations of carcinoembryonic antigen (CEA), CA 242, tissue polypeptide antigen (TPA), specific tissue polypeptide antigen (TPS) and human chorionic gonadotrophin beta (hCG beta) in 251 patients with colorectal cancer (39 Dukes' A, 98 Dukes' B, 56 Dukes' C and 58 Dukes' D) was investigated. When using the cut-off levels recommended for diagnostic purposes, there was a significantly longer overall survival in patients with low tumour marker level...

  11. Antibody responses to virion polypeptides in gnotobiotic dogs infected with canine distemper virus.

    OpenAIRE

    Miele, J A; KRAKOWKA, S

    1983-01-01

    A radioimmunoprecipitation-polyacrylamide gel electrophoresis technique was applied to sera from canine distemper virus-infected dogs. Sera from fatally infected dogs precipitated only the nucleoprotein, the matrix protein, and trace amounts of fusion glycoprotein. Sera from normal convalescent dogs precipitated all five major polypeptides. In contrast, sera from persistently infected dogs were characterized by a modest overall response compared with sera from convalescent dogs and by no or l...

  12. Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa

    OpenAIRE

    Lemaux, Peggy G.; Grossman, Arthur

    1984-01-01

    Antibodies raised against mixtures of phycobilisome polypeptides from the eukaryotic alga Cyanidium caldarium were used in an immunological screen to detect expression of phycobiliprotein genes in an Escherichia coli library containing segments of plastid (chloroplast, cyanelle) DNA from another eukaryotic alga, Cyanophora paradoxa. The four candidate clones obtained were mapped by restriction analysis and found to be overlapping. The clone with the smallest insert (1.4 kilobases) was partial...

  13. Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation

    Science.gov (United States)

    Fluitt, Aaron Michael

    Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.

  14. Islet amyloid polypeptide in pancreatic islets from type 2 diabetic subjects

    OpenAIRE

    Tomita, Tatsuo

    2012-01-01

    Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to...

  15. Human antibody response to herpes simplex virus-specific polypeptides after primary and recurrent infection.

    OpenAIRE

    Kahlon, J; Lakeman, F. D.; Ackermann, M; Whitley, R J

    1986-01-01

    Human antibody responses to specific polypeptides of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively) were assessed in serial serum specimens from 18 infected patients by immunoblot technology. Nine patients had HSV-1 infections (six genital and three oral) and nine had HSV-2 genital infections. Antibodies to homologous and heterologous HSV antigens were studied and correlated with total microneutralization and enzyme-linked immunosorbent assay antibodies as well as correlat...

  16. Wall-associated kinase-like polypeptide mediates nutritional status perception and response

    Science.gov (United States)

    Yang, Zhenbiao; Karr, Stephen

    2014-02-11

    The disclosure relates to methods for modulating plant growth and organogenesis using dominant-negative receptor-like kinases. The disclosure further provides a method for increasing plant yield relative to corresponding wild type plants comprising modulating the expression in a plant of a nucleic acid encoding a Wall-Associated Kinase-like 14 polypeptide or a homolog thereof, and selecting for plants having increased yield or growth on a nutrient deficient substrate.

  17. Azotobacter vinelandii nifD- and nifE-encoded polypeptides share structural homology

    OpenAIRE

    Dean, Dennis R.; Brigle, Kevin E.

    1985-01-01

    The Azotobacter vinelandii nifE gene was isolated and its complete nucleotide sequence was determined. The amino acid sequences deduced from the A. vinelandii nifE and nifD gene sequences were compared and found to share striking primary sequence homology. This homology implies a functional and possibly an evolutionary relationship between these two gene products. The structural homology is discussed with regard to the potential FeMo cofactor binding properties of these polypeptides and the p...

  18. Polypeptide hybrid biomaterials developed from protein precursors - a novel strategy and biomedical applications

    OpenAIRE

    Wu, Yuzhou

    2013-01-01

    A convenient approach for the synthesis of narrowly dispersed protein based polypeptide copolymers (PbPs) of defined compositions is presented in this thesis. The controlled denaturation of the native proteins followed by an in situ stabilization with polyethylene(oxide) chains yielded PbPs with precisely defined backbone lengths as well as secondary structure elements. PbPs exhibited excellent solubility and stability in aqueous media, and insignificant cytotoxicity. Via a priori and a poste...

  19. Polypeptide-Nanoparticle Interactions and Corona Formation Investigated by Monte Carlo Simulations

    OpenAIRE

    Carnal, Fabrice; Clavier, Arnaud; Stoll, Serge

    2016-01-01

    Biomacromolecule activity is usually related to its ability to keep a specific structure. However, in solution, many parameters (pH, ionic strength) and external compounds (polyelectrolytes, nanoparticles) can modify biomacromolecule structure as well as acid/base properties, thus resulting in a loss of activity and denaturation. In this paper, the impact of neutral and charged nanoparticles (NPs) is investigated by Monte Carlo simulations on polypeptide (PP) chains with primary structure bas...

  20. Hybrid Nanomaterials by Surface Grafting of Synthetic Polypeptides Using N-Carboxyanhydride (NCA) Polymerization.

    Science.gov (United States)

    Borase, Tushar; Heise, Andreas

    2016-07-01

    The interaction of materials with their environment is largely dictated by interfacial phenomena. Polymers are very versatile materials to modulate material interfaces to provide functionality, stability and compatibility. A class of polymers that can close the gap between fully synthetic and natural macromolecules are polypeptides derived from N-carboxyanhydride (NCA) polymerization. Recent advances in using this technique to create biomimetic interfaces and hybrid materials are highlighted, with special emphasis on nanomaterials.

  1. Pairwise energies for polypeptide coarse-grained models derived from atomic force fields

    Science.gov (United States)

    Betancourt, Marcos R.; Omovie, Sheyore J.

    2009-05-01

    The energy parametrization of geometrically simplified versions of polypeptides, better known as polypeptide or protein coarse-grained models, is obtained from molecular dynamics and statistical methods. Residue pairwise interactions are derived by performing atomic-level simulations in explicit water for all 210 pairs of amino acids, where the amino acids are modified to closer match their structure and charges in polypeptides. Radial density functions are computed from equilibrium simulations for each pair of residues, from which statistical energies are extracted using the Boltzmann inversion method. The resulting models are compared to similar potentials obtained by knowledge based methods and to hydrophobic scales, resulting in significant similarities in spite of the model simplicity. However, it was found that glutamine, asparagine, lysine, and arginine are more attractive to other residues than anticipated, in part, due to their amphiphilic nature. In addition, equally charged residues appear more repulsive than expected. Difficulties in the calculation of knowledge based potentials and hydrophobicity scale for these cases, as well as sensitivity of the force field to polarization effects are suspected to cause this discrepancy. It is also shown that the coarse-grained model can identify native structures in decoy databases nearly as well as more elaborate knowledge based methods, in spite of its resolution limitations. In a test conducted with several proteins and corresponding decoys, the coarse-grained potential was able to identify the native state structure but not the original atomic force field.

  2. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview.

    Science.gov (United States)

    Liu, Lu-Ning; Chen, Xiu-Lan; Zhang, Yu-Zhong; Zhou, Bai-Cheng

    2005-06-30

    Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker polypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed.

  3. Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands

    International Nuclear Information System (INIS)

    A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pI and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion

  4. Detection of Matrilysin Activity Using Polypeptide Functionalized Reduced Graphene Oxide Field-Effect Transistor Sensor.

    Science.gov (United States)

    Chen, Hu; Chen, Peng; Huang, Jingfeng; Selegård, Robert; Platt, Mark; Palaniappan, Alagappan; Aili, Daniel; Tok, Alfred Iing Yoong; Liedberg, Bo

    2016-03-15

    A novel approach for rapid and sensitive detection of matrilysin (MMP-7, a biomarker involved in the degradation of various macromolecules) based on a polypeptide (JR2EC) functionalized reduced graphene oxide (rGO) field effect transistor (FET) is reported. MMP-7 specifically digests negatively charged JR2EC immobilized on rGO, thereby modulating the conductance of rGO-FET. The proposed assay enabled detection of MMP-7 at clinically relevant concentrations with a limit of detection (LOD) of 10 ng/mL (400 pM), attributed to the significant reduction of the net charge of JR2EC upon digestion by MMP-7. Quantitative detection of MMP-7 in human plasma was further demonstrated with a LOD of 40 ng/mL, illustrating the potential for the proposed methodology for tumor detection and carcinoma diagnostic (e.g., lung cancer and salivary gland cancer). Additionally, excellent specificity of the proposed assay was demonstrated using matrix metallopeptidase 1 (MMP-1), a protease of the same family. With appropriate selection and modification of polypeptides, the proposed assay could be extended for detection of other enzymes with polypeptide digestion capability. PMID:26887256

  5. Polycarbophil-cysteine conjugates as platforms for oral polypeptide delivery systems.

    Science.gov (United States)

    Bernkop-Schnürch, A; Thaler, S C

    2000-07-01

    The purpose of the present study was to evaluate the potential of polycarbophil-cysteine conjugates as carrier systems for orally administered peptide and protein drugs. Mediated by a carbodiimide, cysteine was covalently attached to polycarbophil. The properties of resulting conjugates, displaying 35-50 microM thiol groups per gram of polymer, to bind polypeptides and to inhibit pancreatic proteases was evaluated in vitro. Results demonstrated that only some polypeptides are immobilized to the polycarbophil-cysteine conjugate. Due to the covalent attachment of cysteine to polycarbophil, the inhibitory effect of the polymer toward carboxypeptidase A (EC 3.4. 17.1) and carboxypeptidase B (EC 3.4.17.2) could be significantly (p polycarbophil could be improved by the covalent attachment of cysteine, the raised inhibitory effect seems to be based on the complexation of this divalent cation from the enzyme structure. Whereas the covalent attachment of cysteine on polycarbophil had no influence on the enzymatic activity of trypsin (EC 3.4.21.4) and elastase (EC 3.4.21. 36), the inhibitory effect of the polymer-cysteine conjugate toward chymotrypsin (EC 3.4.21.1) was significantly (p polycarbophil-cysteine conjugates seem to be a promising tool in protecting orally administered therapeutic polypeptides, which are not bound to the polymer, from presystemic metabolism in the intestine.

  6. Beta-glucosidase enzymatic activity of crystal polypeptide of the Bacillus thuringiensis strain 1.1.

    Science.gov (United States)

    Papalazaridou, A; Charitidou, L; Sivropoulou, A

    2003-01-01

    The crystals of Bacillus thuringiensis strain 1.1 consist of the 140 kDa delta-endotoxin, which exhibits beta-glucosidase enzymatic activity, based on the following data. (i) Purified crystals exhibit beta-glucosidase enzymatic activity. When the crystals are reacted with specific antibodies directed either against the commercial (almond purified) beta-glucosidase or against the 140 kDa polypeptide, then considerable reduction of enzymatic activity is observed almost at the same level with both antibodies. (ii) Commercial beta-glucosidase and the 140 kDa crystal polypeptide share antigenic similarities; in Western immunoblots, the 140 kDa crystal polypeptide is recognized by anti-beta-glucosidase antibodies, and commercial beta-glucosidase is recognized by anti-140-kDa antibodies. (iii) The enzymatic properties of commercial beta-glucosidase and that resident in the crystals of B. thuringiensis strain 1.1 are very similar. Thus, both enzymes hydrolyze a wide range of substrates (aryl-beta-glucosides, disaccharides with alpha- or beta-linkage polysaccharides) and have an optimum activity at 40 degrees C and pH 5. Both enzymes are relatively thermostable and are resistant to end-product inhibition by glucose. Additionally, they show the same pattern of inhibition or activation by several chemical compounds. (iv) The crystals and commercial beta-glucosidase show almost equivalent levels of insecticidal activity against Drosophila melanogaster larvae and, furthermore, cause reduction in adult flies that emerge from larvae surviving treatment.

  7. Thermal expansivities of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry.

    Science.gov (United States)

    Pandharipande, Pranav P; Makhatadze, George I

    2015-04-01

    The main goal of this work was to provide direct experimental evidence that the expansivity of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry (PPC), can serve as a proxy to characterize relative compactness of proteins, especially the denatured state ensemble. This is very important as currently only small angle X-ray scattering (SAXS), intrinsic viscosity and, to a lesser degree, fluorescence resonance transfer (FRET) experiments are capable of reporting on the compactness of denatured state ensembles. We combined the expansivity measurements with other biophysical methods (far-UV circular dichroism spectroscopy, differential scanning calorimetry, and small angle X-ray scattering). Three case studies of the effects of conformational changes on the expansivity of polypeptides in solution are presented. We have shown that expansivity appears to be insensitive to the helix-coil transition, and appears to reflect the changes in hydration of the side-chains. We also observed that the expansivity is sensitive to the global conformation of the polypeptide chain and thus can be potentially used to probe hydration of different collapsed states of denatured or even intrinsically disordered proteins.

  8. Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-05-31

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound. The present invention also relates to methods of using the compositions.

  9. Build-a-Polypeptide: A Hands-On Worksheet to Enhance Student Learning in an Introductory Biology Course †

    OpenAIRE

    Kristi Hall; Jackson Dunitz; Patty Shields

    2014-01-01

    Many introductory biology students have a weak (or nonexistent) chemistry background. Due to this apparent knowledge gap, many students struggle to understand the process of polypeptide formation via dehydration synthesis as well as the interactions between individual polypeptide chains. This inability to reason about how individual amino acids interact with one another prevents students from making the cognitive leap from primary to secondary structure. In turn, students do not fully underst...

  10. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity.

    OpenAIRE

    Mor, A.; Chartrel, N; Vaudry, H.; Nicolas, P

    1994-01-01

    Pancreatic polypeptide, peptide tyrosine-tyrosine (PYY), and neuropeptide tyrosine (NPY), three members of a family of structurally related peptides, are mainly expressed in the endocrine pancreas, in endocrine cells of the gut, and in the brain, respectively. In the present study, we have isolated a peptide of the pancreatic polypeptide family from the skin of the South American arboreal frog Phyllomedusa bicolor. The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Gl...

  11. Butanol tolerance in microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bramucci, Michael G.; Nagarajan, Vasantha

    2016-03-01

    Provided herein are recombinant yeast host cells and methods for their use for production of fermentation products from a pyruvate utilizing pathway. Yeast host cells provided herein comprise reduced pyruvate decarboxylase activity and modified adenylate cyclase activity. In embodiments, yeast host cells provided herein comprise resistance to butanol and increased biomass production.

  12. Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and VIP

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther; Holst, Helle; Arendt-Nielsen, Lars;

    2010-01-01

    Pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) belong to the same secretin-glucagon superfamily and are present in nerve fibers in dura and skin. Using a model of acute cutaneous pain we explored differences in pain perception and vasomotor res...

  13. PACAP38 induces migraine-like attacks in patients with migraine without aura

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther; Birk, Steffen; Wienecke, Troels;

    2009-01-01

    Experimental studies have shown that infusion of vasoactive neurotransmitters may trigger headache or migraine-like attacks in man. Pituitary adenylate cyclase activating peptide-38 (PACAP38) is a strong vasodilator found in trigeminal sensory and parasympathetic perivascular nerve fibers. We the...

  14. Enhanced expression of CGRP in rat trigeminal ganglion neurons during cell and organ culture

    DEFF Research Database (Denmark)

    Kuris, Anikó; Xu, Cang-Bao; Zhou, Ming Fang;

    2007-01-01

    The sensory innervation of intracranial vessels originates in the trigeminal ganglion with calcitonin gene-related peptide (CGRP), substance P (SP) and pituitary adenylate cyclase activating peptide (PACAP) as frequent neuronal messengers. The present study was designed to study the expression of...

  15. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels.

  16. Effects of Gene Tranfection with CH50 Polypeptide on the Invasion Ability of Bladder Cancer Cell Line BIU-87

    Institute of Scientific and Technical Information of China (English)

    WU Zhuang; CHEN Zhong; YE Zhangqun; ZHANG Jianhua; YE Shiqiao; ZHANG Guimei; FENG Zuohua

    2005-01-01

    Summary: The expression of CH50 polypoptide in bladder cancer cell line BIU-87 and the effects on the invasion ability of BIU-87 were investigated. The eukaryotic expressing vector pCH510 of polypeptide CH50 was introduced into BIU-87 cells by gene transfection in vitro. The expression of CH50 polypeptide was detected by using immunohistochemical S-P method. The expression of the transfected gene was identified by RT-PCR. Cell invasion assay kit was applied to detect the effect of CH50 polypeptide on the invasion ability of BIU-87. The results showed that the BIU-87 cells transfected with pCH510 could express the CH50 polypeptide, while in the control group, no CH50 polypeptide was detectable. In the transfection group, the invasion ability of BIU-87 in vitro was lower than in control group (P<0.05). It was concluded that CH50 polypeptide was successfully expressed in BIU-87 cells by gene transfection, by which the in vitro invasion ability of BIU-87 was inhibited.

  17. Effect of peptides corresponding to extracellular domains of serotonin 1B/1D receptors and melanocortin 3 and 4 receptors on hormonal regulation of adenylate cyclase in rat brain.

    Science.gov (United States)

    Shpakova, E A; Derkach, K V; Shpakov, A O

    2014-03-01

    The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor. PMID:24770752

  18. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    KAUST Repository

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  19. Nature of the polypeptide encoded by each of the 10 double-stranded RNA segments of reovirus type 3

    Energy Technology Data Exchange (ETDEWEB)

    McCrae, M.A.; Joklik, W.K.

    1978-09-01

    Under suitable conditions of denaturation, the double-stranded (ds) RNA segments of reovirus can be translated in cell-free protein synthesizing systems. Since all 10 segments of reovirus ds RNA can be isolated in virtually pure form, this provides a means for determining the nature of the polypeptide encoded by each individual segment. The complete coding assignment set was determined for the Dearing strain of reovirus serotype 3. Polypeptide identification was made not only on the basis of electrophoretic migration rates in both the phosphate- and Tri-glycine (Laemmli)-based polyacrylamide gel systems, but also on the basis of comparing peptide profiles of in vitro translation products and authentic reovirus polypeptides after digestion with staphylococcal V8 protease. The latter method provides absolute identification. The assignment set is (using the commonly accepted designation for the ds RNA segments, but a newly proposed nomenclature for the polypeptides); segment L1 codes for the minor virion components lambda 3, and segments L2 and L3 code for the two major virion core components lambda 2 and lambda 1, respectively; segment M1 codes for a minor virion component ..mu..2, segment M2 codes for the polypeptide that is present in virions both in the form of the minor component ..mu..1 and as the major component ..mu..1C which is derived from it by cleavage, and segment M3 codes for the nonstructural polypeptide ..mu..NS; and segment S1 codes for the minor outer capsid shell component sigma 1, segment S2 codes for the core component sigma 2, segment S3 codes for the nonstructural polypeptide sigma NS, and segment S4 codes for the major outer capsid shell component sigma 3.

  20. Three-Dimensional Polypeptide Architectures Through Tandem Catalysis and Click Chemistry

    Science.gov (United States)

    Rhodes, Allison Jane

    Rapid renal clearance, liver accumulation, proteolytic degradation and non-specificity are challenges small molecule drugs, peptides, proteins and nucleic acid therapeutics encounter en route to their intended destination within the body. Nanocarriers (i.e. dendritric polymers, vesicles, and micelles) of approximately 100 nm in diameter, shuttle small molecule drugs to their desired location through passive (EPR effect) and active (ligand-mediated) targeting, maximizing therapeutic efficiency. Polypeptide-based polymers are water-soluble, biocompatible, non-toxic and are therefore excellent candidates for nanocarriers. Dendritic polymers, including dendrimers, cylindrical brushes, and star polymers, are the newest class of nanomedicine drug delivery vehicles. The synthesis and characterization of dendritic polymers is challenging, with tedious and costly procedures. Dendritic polymers possess peripheral pendent functional groups that can potentially be used in ligand-mediated drug delivery vehicles and bioimaging applications. More specifically, cylindrical brushes are dendritic polymers where a single linear polymer (primary chain) has polymer chains (secondary chains) grafted to it. Recently, research groups have shown that cylindrical brush polymers are capable of nanoparticle and supramolecular structure self-assembly. The facile preparation of high-density brush copolypeptides by the "grafting from" approach will be discussed. This approach utilizes a novel, tandem catalytic methodology where alloc-alpha-aminoamide groups are installed within the side-chains of the alpha-amino-N-carboxyanhydride (NCA) monomer serving as masked initiators. These groups are inert during cobalt initiated NCA polymerization, and give alloc-alpha-aminoamide substituted polypeptide main-chains. The alloc-alpha-aminoamide groups are activated in situ using nickel to generate initiators for growth of side-chain brush segments. This method proves to be efficient, yielding well

  1. Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers

    Science.gov (United States)

    Khadka, Dhan Bahadur

    This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different

  2. Quantum dot-polypeptide hybrid assemblies: Synthesis, fundamental properties, and application

    Science.gov (United States)

    Thedjoisworo, Bayu Atmaja

    We report the development of a multifunctional system that has the capability to target cancer cells, as well as simultaneously image and deliver therapeutics to these targeted cells. Such a "three-in-one" technology that has integrated targeting, imaging, and drug delivery capabilities is highly desirable in the field of cancer therapy. The material that we have developed for this application is a quantum dot (QD)-polypeptide hybrid assembly system that is spontaneously formed through the self-assembly of carboxyl-functionalized QDs and poly(diethylene glycol L-lysine)-poly(L-lysine) (PEGLL-PLL) diblock copolypeptide molecules. The hybrid assemblies could be modified to target a great variety of cancer biomarkers and have potential ability to carry therapeutic agents with diverse chemical and physical properties. In addition, the QD-polypeptide assemblies have the advantage of extensive tunability and versatility that allow their properties to be tailored and optimized for a broad range of applications. Cancer targeting can be achieved by modifying the QD-polypeptide hybrid assemblies with ligands that have affinity for certain biomarkers, which are overexpressed on cancer cells. Upon binding and uptake by the target cells through specific ligand-receptor mediated interactions, the assemblies could then allow for the simultaneous imaging of the cells and delivery of therapeutic agents to these cells. Imaging of the cells is done through detection of the QD fluorescence, and drug-delivery can be effected by loading the assembly with therapeutic agents and releasing them by means that disrupt the self-assembly. When compared to other dual imaging and drug-delivery systems, our QD-polypeptide hybrid assemblies have the advantage of extensive tunability and versatility. To showcase the tunability of the assembly, we demonstrated how its tumor-cell binding characteristics could be modulated and optimized by changing the PEGLL x-PLLy, architecture and the self

  3. Computation of the amide I band of polypeptides and proteins using a partial Hessian approach.

    Science.gov (United States)

    Besley, Nicholas A; Metcalf, Katie A

    2007-01-21

    A partial Hessian approximation for the computation of the amide I band of polypeptides and proteins is introduced. This approximation exploits the nature of the amide I band, which is largely localized on the carbonyl groups of the backbone amide residues. For a set of model peptides, harmonic frequencies computed from the Hessian comprising only derivatives of the energy with respect to the displacement of the carbon, oxygen, and nitrogen atoms of the backbone amide groups introduce mean absolute errors of 15 and 10 cm(-1) from the full Hessian values at the Hartree-Fock/STO-3G and density functional theory EDF16-31G(*) levels of theory, respectively. Limiting the partial Hessian to include only derivatives with respect to the displacement of the backbone carbon and oxygen atoms yields corresponding errors of 24 and 22 cm(-1). Both approximations reproduce the full Hessian band profiles well with only a small shift to lower wave number. Computationally, the partial Hessian approximation is used in the solution of the coupled perturbed Hartree-Fock/Kohn-Sham equations and the evaluation of the second derivatives of the electron repulsion integrals. The resulting computational savings are substantial and grow with the size of the polypeptide. At the HF/STO-3G level, the partial Hessian calculation for a polypeptide comprising five tryptophan residues takes approximately 10%-15% of the time for the full Hessian calculation. Using the partial Hessian method, the amide I bands of the constituent secondary structure elements of the protein agitoxin 2 (PDB code 1AGT) are calculated, and the amide I band of the full protein estimated. PMID:17249900

  4. The generalized model of polypeptide chain describing the helix-coil transition in biopolymers

    International Nuclear Information System (INIS)

    In this paper we summarize some results of our theoretical investigations of helix-coil transition both in single-strand (polypeptides) and two-strand (polynucleotides) macromolecules. The Hamiltonian of the Generalized Model of Polypeptide Chain (GMPC) is introduced to describe the system in which the conformations are correlated over some dimensional range Δ (it equals 3 for polypeptide, because one H-bond fixes three pairs of rotation, for double strand DNA it equals to one chain rigidity because of impossibility of loop formation on the scale less than Δ). The Hamiltonian does not contain any parameter designed especially for helix-coil transition and uses pure molecular microscopic parameters (the energy of hydrogen bond formation, reduced partition function of repeated unit, the number of repeated units fixed by one hydrogen bond, the energies of interaction between the repeated units and the solvent molecules). To calculate averages we evaluate the partition function using the transfer-matrix approach. The GMPC allowed to describe the influence of a number of factors, affecting the transition, basing on a unified microscopic approach. Thus we obtained, that solvents change transition temperature and interval in different ways, depending on type of solvent and on energy of solvent- macromolecule interaction; stacking on the background of H-bonding increases stability and decreases cooperativity of melting. For heterogeneous DNA we could analytically derive well known formulae for transition temperature and interval. In the framework of GMPC we calculate and show the difference of two order parameters of helix-coil transition - the helicity degree, and the average fraction of repeated units in helical conformation. Given article has the aim to review the results obtained during twenty years in the context of GMPC. (author)

  5. Gene profiles between non-invasive and invasive colon cancer using laser microdissection and polypeptide analysis

    Institute of Scientific and Technical Information of China (English)

    Jin-Shui Zhu; Hua Guo; Ming-Quan Song; Guo-Qiang Chen; Qun Sun; Qiang Zhang

    2008-01-01

    AIM: To explore the expression of differential gene expression profiles of target cell between non-invasive submucosal and invasive advanced tumor in colon carcinoma using laser microdissection (LMD) in combination with polypeptide analysis.METHODS: Normal colon tissue samples from 20 healthy individuals and 30 cancer tissue samples from early non-invasive colon cancer cells were obtained. The cells from these samples were used LMD independently after P27-based amplification. aRNA from advanced colon cancer cells and metastatic cancer cells of 40 cases were applied to LMD and polypeptide analysis, semiquantitative reverse transcribed polymerase chain reaction (RT-PCR) and immunohistochemical assays were used to verify the results of microarray and further identify differentially expressed genes in non-invasive early stages of colon cancer.RESULTS: Five gene expressions were changed in colon carcinoma cells compared with that of controls. Of the five genes, three genes were downregulated and two were upregulated in invasive submucosal colon carcinoma compared with non-invasive cases. The results were confirmed at the level of aRNA and gene expression. Five genes were further identified as differentially expressed genes in the majority of cases (50%, 25/40) in progression of colon cancer, and their expression patterns of which were similar to tumor suppressor genes or oncogenes.CONCLUSION: This study suggested that combined use of polypeptide analysis might identify early expression profiles of five differential genes associated with the invasion of colon cancer. These results reveal that this gene may be a marker of submucosal invasion in early colon cancer.

  6. Labelling polypeptide with 99mTc and bioactivity get back

    International Nuclear Information System (INIS)

    A method for labelling polypeptide (insulin) with technetium-99 (99mTc) was established without marked loss of biological activity. Following reduction of intrinsic disulfide bonds by mercaptoethanol and purification on a Sephadex G50 column, the polypeptide was labelled with 99mTc by trans-chelation from methylene diphosphonate (MDP). 99mTc labelled insulin was identified by thin layer chromatography (TLC) and the change of blood sugar of mice injected, their hypo-glycemic shock symptom was also observed. Six hours after labelling, the dissociation of labelled insulin was only 3%, From then on to 24 h, there was no more dissociation. The blood sugar concentration of mice injected with the mercaptoethanol-reduced insulin was (5.0 +- 3.2) μmol·L-1, while those injected with the original insulin was (1.4 +- 1.2) μmol·L-1, the difference was significant (Q test, p -1 for the labelled insulin, and was about the same with that for the original insulin. The labelling efficiency was 74.31% for the labelled insulin, whereas the original insulin cannot be labelled with 99mTc. The result suggests that while disulfide bonds of polypeptide were reduced by mercaptoethanol, it became free sulfhydryl group, and its bioactivity descended. Then free sulfhydryl group was chelated with 99mTc under mild condition, re-establishing the disulfide bond, therefore, the bioactivity came back. The 99mTc-labelled insulin was stable during 24 h

  7. CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides.

    Science.gov (United States)

    O'Neill, R C; Minuk, J; Cox, M E; Braun, P E; Gravel, M

    1997-10-15

    The ribosome scanning model for translational initiation predicts that eukaryotic mRNAs should, as a rule, be monocistronic. However, cases have recently been described of eukaryotic mRNAs producing more than one protein through alternative translational initiation at several different AUG codons. The present work reports the occurrence of two translational start sites on the mRNA encoding isoform 2 of the myelin marker enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in rat and mouse. We show that the CNP2 mRNA is able to direct synthesis of not only CNP2, but also CNP1 polypeptide. Immunoprecipitation experiments using a polyclonal antibody directed against CNP detect both CNP isoforms in tissues or cell lines expressing only the CNP2 transcript. Thus, the synthesis of CNP1 and CNP2 polypeptides must be encoded by the CNP2 transcript. In vitro translation of synthetic CNP2 mRNA demonstrates that both CNP isoforms are synthesized by initiation at different AUG codons. Furthermore, by introducing mutations to "switch off" translation from the second in-frame AUG codon in the CNP2 cDNA, and transfecting 293T cells with those constructs, we are able to correlate the production of CNP1 and CNP2 with different translational start sites. These results lead us to conclude that the CNP2 mRNA is able to produce both CNP1 and CNP2 polypeptides. This investigation has altered our understanding of the temporal expression of the CNP protein isoforms during development of the central nervous system (CNS). PMID:9373034

  8. Control of stability of polypeptide multilayer nanofilms by quantitative control of disulfide bond formation

    International Nuclear Information System (INIS)

    The crosslinking of polymers in a polymeric material will alter the mechanical properties of the material. Control over the mechanical properties of polyelectrolyte multilayer films (PEMs) could be useful for applications of the technology in medicine and other areas. Disulfide bonds are 'natural' polypeptide crosslinks found widely in wild-type proteins. Here, we have designed and synthesized three pairs of oppositely charged 32mer polypeptide to have 0, 4, or 8 cysteine (Cys) residues per molecule, and we have characterized physical properties of the peptides in a PEM context. The average linear density of free thiol in the designed peptides was 0, 0.125, or 0.25 per amino acid residue. The peptides were used to make 10-bilayer PEMs by electrostatic layer-by-layer self-assembly (LBL). Cys was included in the peptides to study specific effects of disulfide bond formation on PEM properties. Features of film assembly have been found to depend on the amino acid sequence, as in protein folding. Following polypeptide self-assembly into multilayer films, Cys residues were disulfide-crosslinked under mild oxidizing conditions. The stability of the crosslinked films at acidic pH has been found to depend on the number of Cys residues per peptide for a given crosslinking procedure. Crosslinked and non-crosslinked films have been analysed by ultraviolet spectroscopy (UVS), ellipsometry, and atomic force microscopy (AFM) to characterize film assembly, surface morphology, and disassembly. A selective etching model of the disassembly process at acidic pH is proposed on the basis of the experimental data. In this model, regions of film in which the disulfide bond density is low are etched at a higher rate than regions where the density is high

  9. Control of stability of polypeptide multilayer nanofilms by quantitative control of disulfide bond formation

    Science.gov (United States)

    Zhong, Yang; Li, Bingyun; Haynie, Donald T.

    2006-12-01

    The crosslinking of polymers in a polymeric material will alter the mechanical properties of the material. Control over the mechanical properties of polyelectrolyte multilayer films (PEMs) could be useful for applications of the technology in medicine and other areas. Disulfide bonds are 'natural' polypeptide crosslinks found widely in wild-type proteins. Here, we have designed and synthesized three pairs of oppositely charged 32mer polypeptide to have 0, 4, or 8 cysteine (Cys) residues per molecule, and we have characterized physical properties of the peptides in a PEM context. The average linear density of free thiol in the designed peptides was 0, 0.125, or 0.25 per amino acid residue. The peptides were used to make 10-bilayer PEMs by electrostatic layer-by-layer self-assembly (LBL). Cys was included in the peptides to study specific effects of disulfide bond formation on PEM properties. Features of film assembly have been found to depend on the amino acid sequence, as in protein folding. Following polypeptide self-assembly into multilayer films, Cys residues were disulfide-crosslinked under mild oxidizing conditions. The stability of the crosslinked films at acidic pH has been found to depend on the number of Cys residues per peptide for a given crosslinking procedure. Crosslinked and non-crosslinked films have been analysed by ultraviolet spectroscopy (UVS), ellipsometry, and atomic force microscopy (AFM) to characterize film assembly, surface morphology, and disassembly. A selective etching model of the disassembly process at acidic pH is proposed on the basis of the experimental data. In this model, regions of film in which the disulfide bond density is low are etched at a higher rate than regions where the density is high.

  10. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    Science.gov (United States)

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex. PMID:9259831

  11. Labeling polypeptide with 99mTc and bioactivity get back

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A method for labeling polypeptide(insulin) with technetium-99(99mTc) was established without marked loss of biological activity. Following reduction of intrinsic disulfide bonds by mercaptoethanol and purification on a Sephadex G50 column,the polypeptide was labeled with 99mTc by transchelation from methylene diphosphonate (MDP). 99mTc labeled insulin was identified by thin layer chromatograph (TLC)and the change of blood sugar of mice injected, their hypoglycemic shock symptom was also observed. Six hours after labeling, the dissociation of labeled insulin was only 3%,From then on to 24h, there was no more dissociation. The blood sugar concentration of mice injected with the mercaptoethanol-reduced insulin was (5.0±3.2)μmol·L-1, while those injected with the original insulin was (l.4±l.2)μmol·L-1, the difference was significant(Q test, p<0.01). Blood sugar concentration of the mice was 0.3±0.2μmol·L-1for the labeled insulin, and was about the same with that for the original insulin.The labeling efficiency was 74.31% for the labeled insulin, whereas the original insuin cannot be labeled with 99mTc. The result suggests that while disulfide bonds of polypeptide were reduced by mercaptoethanol, it became free sulfhydryl group, and its bioactivity descended. Then free sulfhydryl group was chelated with 99mTc under mild condition, restablishing the disulfide bond, therefore, the bioactivity came back.The 99mTc-labeled insulin was stable during 24 h.

  12. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    Science.gov (United States)

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex.

  13. Relationship among Photosys- tem Ⅱ carbonic anhydrase, extrinsic polypeptides and manganese cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Photosystem Ⅱ (PS Ⅱ) extrinsic poly- peptides of oxygen-evolving complex and manganese clusters on PSⅡ carbonic anhydrase (CA) were studied with spinach PSⅡ membranes. The result supported that membrane-bound CA is located in the donor side of PSⅡ. The extrinsic polypeptides played an important role of maintaining CA activity. After removing manganese clusters, oxygen evolution activity was inhibited, but PSⅡ-CA activity was unchanged. It was concluded that CA activity is independent of the presence of manganese clusters, and was not directly correlated with oxygen evolution activity.

  14. Impaired pancreatic polypeptide response to a meal in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Rasmussen, M H; Carstensen, H; List, S;

    1993-01-01

    The pancreatic polypeptide (PP) response to a mixed meal was investigated in seven insulin-dependent diabetics without measurable signs of diabetic autonomic neuropathy, and in seven healthy subjects. Since acute changes in metabolic regulation might influence the meal-induced PP response...... is independent of short-term changes in metabolic control. Since the response was attenuated in the insulin-dependent diabetic patients, who had no otherwise measurable signs of neuropathy, the PP response to a meal could be a sensitive indicator of dysfunction of the reflex arc controlling PP secretion...

  15. Secretion of goblet cell serine proteinase, ingobsin, is stimulated by vasoactive intestinal polypeptide and acetylcholine

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1987-01-01

    Ingobsin is localized to the intestinal goblet cells in the rat and in man. In the present study, we investigated the effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on the secretion of ingobsin from the proximal duodenum. Intravenous infusion of VIP or acetylcholine increased...... the concentration of ingobsin in duodenal secretion, while the concentration in the duodenum was unchanged. Simultaneous infusion of VIP and acetylcholine increased the concentration of ingobsin in duodenal secretion and decreased the concentration of ingobsin in the duodenum. This study demonstrates that secretion...... of ingobsin from the proximal duodenum is exocrine and can be stimulated by VIP and acetylcholine....

  16. Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available In this study, a series of poly(γ-benzyl L-glutamate/poly(acrylic acid (PBLG/PAA polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO. The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC, Thermogravimetric (TG Analysis, Tensile Tests, and measurements of Surface Contact Angles. The results revealed that the introduction of PAA could exert great effects on the structure and properties of the polypeptide films.

  17. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia

    DEFF Research Database (Denmark)

    Meier, J J; Gallwitz, B; Siepmann, N;

    2003-01-01

    AIMS/HYPOTHESIS: In the isolated perfused pancreas, gastric inhibitory polypeptide (GIP) has been shown to enhance glucagon secretion at basal glucose concentrations, but in healthy humans no glucagonotropic effect of GIP has yet been reported. Therefore, we studied the effect of GIP on glucagon...... secretion under normoglycaemic conditions. METHODS: Ten healthy subjects (9 men, 1 woman; age 33+/-11; BMI 26.8+/-2.2 kg/m(2)) received three different doses of intravenous GIP (7, 20, and 60 pmol/kg body weight) and placebo. Venous blood samples were drawn over 30 min for glucagon and GIP concentrations...

  18. Long-acting lipidated analogue of human pancreatic polypeptide is slowly released into circulation

    DEFF Research Database (Denmark)

    Bellmann-Sickert, Kathrin; Elling, Christian E; Madsen, Andreas N;

    2011-01-01

    The main disadvantages of peptide pharmaceuticals are their rapid degradation and excretion, their low hydrophilicity, and low shelf lifes. These bottlenecks can be circumvented by acylation with fatty acids (lipidation) or polyethylene glycol (PEGylation). Here, we describe the modification...... of a human pancreatic polypeptide analogue specific for the human (h)Y(2) and hY(4) receptor with PEGs of different size and palmitic acid. Receptor specificity was demonstrated by competitive binding studies. Modifications had only a small influence on binding affinities and no influence on secondary...

  19. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form.

    Science.gov (United States)

    Karst, Johanna C; Ntsogo Enguéné, V Yvette; Cannella, Sara E; Subrini, Orso; Hessel, Audrey; Debard, Sylvain; Ladant, Daniel; Chenal, Alexandre

    2014-10-31

    The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.

  20. A High Throughput Screening Assay for Anti-Mycobacterial Small Molecules Based on Adenylate Kinase Release as a Reporter of Cell Lysis.

    Directory of Open Access Journals (Sweden)

    Lauren Forbes

    Full Text Available Mycobacterium tuberculosis (Mtb is well-established to be one of the most important bacterial pathogens for which new antimicrobial therapies are needed. Herein, we describe the development of a high throughput screening assay for the identification of molecules that are bactericidal against Mycobacteria. The assay utilizes the release of the intracellular enzyme adenylate kinase into the culture medium as a reporter of mycobacterial cell death. We demonstrate that the assay is selective for mycobactericidal molecules and detects anti-mycobacterial activity at concentrations below the minimum inhibitory concentration of many molecules. Thus, the AK assay is more sensitive than traditional growth assays. We have validated the AK assay in the HTS setting using the Mtb surrogate organism M. smegmatis and libraries of FDA approved drugs as well as a commercially available Diversity set. The screen of the FDA-approved library demonstrated that the AK assay is able to identify the vast majority of drugs with known mycobactericidal activity. Importantly, our screen of the Diversity set revealed that the increased sensitivity of the AK assay increases the ability of M. smegmatis-based screens to detect molecules with relatively poor activity against M. smegmatis but good to excellent activity against Mtb.

  1. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Junichi [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Takada, Shoji [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Saito, Shinji, E-mail: shinji@ims.ac.jp [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); The Graduate University for Advanced Studies, Okazaki 444-8585 (Japan)

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  2. Fast closure of N-terminal long loops but slow formation of β strands precedes the folding transition state of Escherichia coli adenylate kinase.

    Science.gov (United States)

    Orevi, Tomer; Ben Ishay, Eldad; Gershanov, Sivan Levin; Dalak, Mayan Ben; Amir, Dan; Haas, Elisha

    2014-05-20

    The nature of the earliest steps of the initiation of the folding pathway of globular proteins is still controversial. To elucidate the role of early closure of long loop structures in the folding transition, we studied the folding kinetics of subdomain structures in Escherichia coli adenylate kinase (AK) using Förster type resonance excitation energy transfer (FRET)-based methods. The overall folding rate of the AK molecule and of several segments that form native β strands is 0.5 ± 0.3 s(-1), in sharp contrast to the 1000-fold faster closure of three long loop structures in the CORE domain. A FRET-based "double kinetics" analysis revealed complex transient changes in the initially closed N-terminal loop structure that then opens and closes again at the end of the folding pathway. The study of subdomain folding in situ suggests a hierarchic ordered folding mechanism, in which early and rapid cross-linking by hydrophobic loop closure provides structural stabilization at the initiation of the folding pathway. PMID:24787383

  3. Alternative Respiration Induced by Glucose Stimulation and Variation of Adenylate Energy Charge in Glucose-Starved Cells of Green Alga Chlorella Protothecoides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of inhibitors and glucose on cytochrome and alternative respiration and on adenylate energy charge (AEC) in glucose-starved Chlorella protothecoides were investigated. 1 mmol/L azide (NaN3), which immediately caused an increase of O2 uptake by inhibiting the cytochrome pathway and stimulating alternative respiration, resulted in a decrease of AEC value from 0. 83 to 0. 34 within 3 minutes. When 1 mmol/L salicylhydroxamic acid (SHAM) was added into the cell suspension, there was no apparent variation in AEC. Adding NaN3 and SHAM together into cell suspension to inhibit both cytochrome and alternative pathways showed a same change of AEC as that of adding NaN3 alone. When 2.0 mmol/L of glucose was added to a suspension of glucose-starved cells, the O2 uptake rate was immediately stimulated from 0.81 up to 1.34 [μrnol/L O2 · min-] · (mL PCV)-1]. The respiration stimulated by glucose could be inhibited about 20% by adding 1 mmol/L SHAM. It was found by titration with SHAM in the absence and presence of NaN3 that 53% of O2 uptake went through the cytochrome pathway and 45% of the alternate pathway was operational in enhanced respiration. It implied that induced operation of the alternative respiratory pathway probably resulted from the burst of the electron flux into the electron transport chain by glucose stimulation.

  4. Testosterone regulates levels of cystic fibrosis transmembrane regulator, adenylate cyclase, and cAMP in the seminal vesicles of orchidectomized rats.

    Science.gov (United States)

    Ramli, Nur Siti Khadijah; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-01-15

    Secretions of chloride (Cl(-))- and bicarbonate (HCO3(-))-rich fluid by the seminal vesicles could involve cystic fibrosis transmembrane regulator (CFTR), which activity can be stimulated by cAMP generated from the reaction involving adenylate cyclase (AC). In this study, we investigated levels of CFTR, AC, and cAMP in the seminal vesicles under testosterone influence. Orchidectomized adult male rats received 7-day treatment with 125 or 250 μg/kg/day of testosterone with or without flutamide or finasteride. At the end of the treatment, animals were sacrificed and seminal vesicles were harvested for analyses of CFTR and AC protein expression level by Western blotting. Distribution of CFTR and AC in seminal vesicles was observed by immunohistochemistry. Levels of cAMP and dihydrotestosterone in seminal vesicle homogenates were measured by ELISA. Cystic fibrosis transmembrane regulator, AC, and cAMP levels increased with increasing doses of testosterone (P seminal vesicle lumen with higher expression levels observed in testosterone-treated rats than in non-treated orchidectomized rats (P seminal vesicle homogenates after treatment with 250 μg/kg/day than with 125 μg/kg/day of testosterone (P seminal vesicles might contribute toward an increase in Cl(-) and HCO3(-) concentrations in the seminal fluid as reported under testosterone influence.

  5. Changes in Adenylate Nucleotides Concentration and Na+, K+-ATPase Activities in Erythrocytes of Horses in Function of Breed and Sex

    Directory of Open Access Journals (Sweden)

    Maria Suska

    2010-01-01

    Full Text Available The aim of this study was to examine the relationships between the concentrations of ATP, ADP, AMP (HPLC methods, total nucleotide pool (TAN, adenylate energy charge (AEC and Na+, K+-ATPase erythrocytic activities (by Choi's method of horses as a function of breed and sex. The studies were conducted on 54 horses (stallions and mares of different constitution types: breathing constitution (Wielkopolska and Hanoverian breed and digestive constitution (Ardenian breed. Horse erythrocytes, independently of examined breed, present low ATP concentration in comparison to other mammal species while retaining relatively high AEC. Erythrocytes of breathing constitution type horses appear to have a more intensive glucose metabolism and a more efficient energetic metabolism when compared to digestive constitution type horses. The conclusions may be proven by significantly higher ATP concentration, higher TAN and significantly higher AEC in breathing constitution type horses compared to the digestive constitution type. Sex does not significantly influence adenine nucleotides concentration in the erythrocytes of the examined horses, however, stallions have slightly higher values in comparison to mares. A positive correlation was found between Na+, K+, -ATPase activity, ATP, ADP and AMP concentration and TAN in Wielkopolska and Ardenian breeds, which was not confirmed for the Hanoverian breed.

  6. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany); Tanwar, M.; Veetil, S.K.; Kateriya, S. [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Stierl, M.; Hegemann, P. [Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2013-09-23

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction.

  7. Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport

  8. N-terminus conservation in the anchor polypeptide of a prokaryotic and eukaryotic alga. [Nostoc; Porphydium cruentum

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, E.; Lipschultz, C.A.; Cunningham, F.X. Jr.; Mimuro, M.

    1987-04-01

    Energy flow between the extrinsic phycobilisomes and the photosystems within thylakoids, is probably mediated by a blue anchor polypeptide. Polypeptides in the 94 kD range, purified by LiDS-PAGE from phycobilisomes of Nostoc and Porphyrdium cruentum, crossreacted with anti-Nostoc-94 (although weakly with the latter). Though rich in ASP and GLU, the polypeptides were very hydrophobic, and low in MET, CYS, and HIS. Partial sequence of the N-terminus shows considerable homology 1 - 5 - 10 - 15 - 20 N: (S)-V-K-A-S-G-G-S-S-V-A-(R)-P-Q-L-Y-Q-(G)-L-(A)-V- P: V-()-K-A-S-G-G-S-P-V-V-K-P-Q-L-Y-(K)-()-A-(S)- between the species. There is a lack of homology when compared with ..cap alpha.. and ..beta.. polypeptides of allophycocyanin with rod linkers of phycobilisomes and other phycobiliproteins. Polypeptides of 94 and 92 kD from thylakoids of Nostoc, also immunoreactive with anti-94, were blocked at the N-terminus.

  9. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  10. Oxidation of Methionine Residues in Polypeptide Ions Via Gas-Phase Ion/Ion Chemistry

    Science.gov (United States)

    Pilo, Alice L.; McLuckey, Scott A.

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M + H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to `label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  11. Effect of explosive noise on gastrointestinal transit and plasma levels of polypeptide hormones

    Institute of Scientific and Technical Information of China (English)

    Zhen-Bin Mu; Yu-Xin Huang; Bao-Min Zhao; Zhen-Xiong Liu; Bing-Hua Zhang; Qing-Li Wang

    2006-01-01

    AIM: To investigate the effect of firing noise on gastrointestinal transit and probe its mechanism by measuring the levels of plasma polypeptide hormones.METHODS: Atotal of 64 SD rats were randomly divided into a control group and three stimulating groups. Firing noise of different intensity by sub-machine guns was used as inflicting factor. The effect of firing noise on liquid substance gastrointestinal transit and solid substance gastrointestinal transit was observed by measuring the ratio of carbon powder suspension transmitting and barium sticks transmitting respectively.Plasma levels of polypeptide hormones were measured by radio-immunoassay.RESULTS: The noise accelerated gastrointestinal transit of solid food by more than 80 db;and accelerated gastrointestinal transit of liquid food significantly by more than 120 db. Meantime, plasma levels of plasma motilin (MTL)(157.47±16.08; 151.90±17.08), somatostatin (SS)(513.97±88.77; 458.25±104.30), substance P (SP)(115.52±20.70; 110.28±19.96) and vasoactive intestinal peptide (VIP) (214.21±63.17; 251.76±97.24)remarkably changed also.CONCLUSION: Within a certain intensity range,the firing noise changes the levels of rat plasma gastrointestinal hormones, but the gastrointestinal transit is still normal. Beyond the range, the noise induces plasma hormone levels disturbance and gastrointestinal transit disorder.

  12. Direct targeting of Arabidopsis cysteine synthase complexes with synthetic polypeptides to selectively deregulate cysteine synthesis.

    Science.gov (United States)

    Wawrzyńska, Anna; Kurzyk, Agata; Mierzwińska, Monika; Płochocka, Danuta; Wieczorek, Grzegorz; Sirko, Agnieszka

    2013-06-01

    Biosynthesis of cysteine is one of the fundamental processes in plants providing the reduced sulfur for cell metabolism. It is accomplished by the sequential action of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they constitute the hetero-oligomeric cysteine synthase (CS) complex through specific protein-protein interactions influencing the rate of cysteine production. The aim of our studies was to deregulate the CS complex formation in order to investigate its function in the control of sulfur homeostasis and optimize cysteine synthesis. Computational modeling was used to build a model of the Arabidopsis thaliana mitochondrial CS complex. Several polypeptides based on OAS-TL C amino-acid sequence found at SAT-OASTL interaction sites were designed as probable competitors for SAT3 binding. After verification of the binding in a yeast two-hybrid assay, the most strongly interacting polypeptide was introduced to different cellular compartments of Arabidopsis cell via genetic transformation. Moderate increase in total SAT and OAS-TL activities, but not thiols content, was observed dependent on the transgenic line and sulfur availability in the hydroponic medium. Though our studies demonstrate the proof of principle, they also suggest more complex interaction of both enzymes underlying the mechanism of their reciprocal regulation. PMID:23602110

  13. Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging.

    Science.gov (United States)

    Gong, Ping; Yang, Yueting; Yi, Huqiang; Fang, Shengtao; Zhang, Pengfei; Sheng, Zonghai; Gao, Guanhui; Gao, Duyang; Cai, Lintao

    2014-05-21

    pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence in an alkaline environment. Hence, DPNs exhibited a dual response signal with strong red fluorescence and weak green fluorescence under acidic conditions; in contrast, they showed strong green fluorescence and almost no red fluorescence under alkaline and neutral conditions. The favorable inverse pH responses of the two fluorescent dyes resulted in ratiometric pH determination for DPNs with an optimized pH-sensitive range of pH 4.5-7.5. Quantitative analysis of the intracellular pH of intact MCF-7 cells has been successfully demonstrated with our nanosensor. Moreover, single acid activatable fluorescent dye doped polypeptide nanoparticles that only contained RBLC can distinguish tumor tissue from normal tissue by monitoring the acidic extracellular environment.

  14. Polypeptide and antigenic variability among strains of Mycoplasma ovipneumoniae demonstrated by SDS-PAGE and immunoblotting.

    Science.gov (United States)

    Thirkell, D; Spooner, R K; Jones, G E; Russell, W C

    1990-01-01

    Comparison of the polypeptide patterns of 22 isolates of M. ovipneumoniae by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a marked degree of heterogeneity with only limited groupings identifiable. Of the 50 major polypeptides identified in one strain (956/2), 35 were shown to be antigenic using immunoblotting with a homologous polyclonal serum. Radioimmune precipitation of 125I-surface-labelled proteins and phase partition using Triton X-114 detergent indicated that these were membrane associated. Cross-reactivity between the isolates was examined by immunoblotting using one polyclonal serum and four monoclonal antibodies (MAbs), all raised against strain 956/2. The polyclonal serum revealed considerable antigenic heterogeneity, but at least nine major antigens were conserved across all isolates. Two MAbs cross-reacted with all 22 strains, but the other two MAbs allowed some differentiation of the strains. One (MO/3) divided the isolates into groups of 16 and 6 based on the presence of absence of a 26-kDa antigen. All strains isolated from sheep with pulmonary adenomatosis fell into the smaller group and did not possess the 26-kDa antigen.

  15. Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders.

    Science.gov (United States)

    Huang, Huang-Chiao; Walker, Candace Rae; Nanda, Alisha; Rege, Kaushal

    2013-04-23

    Approximately 1.5 million people suffer from colorectal cancer and inflammatory bowel disease in the United States. Occurrence of leakage following standard surgical anastomosis in intestinal and colorectal surgery is common and can cause infection leading to life-threatening consequences. In this report, we demonstrate that plasmonic nanocomposites, generated from elastin-like polypeptides (ELPs) cross-linked with gold nanorods, can be used to weld ruptured intestinal tissue upon exposure to near-infrared (NIR) laser irradiation. Mechanical properties of these nanocomposites can be modulated based on the concentration of gold nanorods embedded within the ELP matrix. We employed photostable, NIR-absorbing cellularized and noncellularized GNR-ELP nanocomposites for ex vivo laser welding of ruptured porcine small intestines. Laser welding using the nanocomposites significantly enhanced the tensile strength, leakage pressure, and bursting pressure of ruptured intestinal tissue. This, in turn, provided a liquid-tight seal against leakage of luminal liquid from the intestine and resulting bacterial infection. This study demonstrates the utility of laser tissue welding using plasmonic polypeptide nanocomposites and indicates the translational potential of these materials in intestinal and colorectal repair. PMID:23530530

  16. Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.

    Science.gov (United States)

    Pilo, Alice L; McLuckey, Scott A

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  17. Colostrinin: a proline-rich polypeptide complex of potential therapeutic interest.

    Science.gov (United States)

    Janusz, M; Zabłocka, A

    2013-01-01

    A proline-rich polypeptide complex (PRP) subsequently known as ColostrininTM was found for the first time in ovine colostrum as a fraction accompanying colostral IgG2. Subsequently, similar polypeptides were found in human, bovine and caprine colostrum. PRP is a complex of peptides of molecular masses from 500 to 3000 Da. It contains 25% proline residues and 40% hydrophobic amino acids. It is not species specific, and is active both in vivo and in vitro. PRP possesses immunoregulatory properties, including effects on humoral and cellular immune responses, shows regulatory activity in Th1 and Th2 cytokine induction, and has the ability to inhibit the overproduction of reactive oxygen species and nitric oxide. PRP has also shown psychotropic properties. Both immunoregulatory and psychotropic properties suggest potential clinical use of PRP for neurodegenerative disorders. Beneficial effects of PRP/Colostrinin in the case of Alzheimer's disease were shown in double-blind placebo-controlled trials, in long-term open-label studies and in multicenter clinical trials. A very important property of PRP/Colostrinin and one of its components, a nonapeptide (NP), is the prevention of Aβ aggregation and the disruption of aggregates already formed. Moreover, PRP has been found to modulate neurite outgrowth, suppress uncontrolled activation of cells, and reduce 4-HNE-mediated cellular damage. Biological response modifying activity of PRP/Colostrinin can play an important role in its use in the treatment of Alzheimer's disease and suggests its application beyond neurodegenerative disorders. PMID:24200016

  18. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    Science.gov (United States)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  19. Polyelectrolyte complex micelles by self-assembly of polypeptide-based triblock copolymer for doxorubicin delivery

    Directory of Open Access Journals (Sweden)

    Jeong Hwan Kim

    2014-08-01

    Full Text Available Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy. The triblock copolymer, poly(l-aspartic acid-b-poly(ethylene glycol-b-poly(l-aspartic acid (PLD-b-PEG-b-PLD, spontaneously self-assembled with doxorubicin (DOX via electrostatic interactions to form spherical micelles with a particle size of 60–80 nm (triblock ionomer complexes micelles, TBIC micelles. These micelles exhibited a high loading capacity of 70% (w/w at a drug/polymer ratio of 0.5 at pH 7.0. They showed pH-responsive release patterns, with higher release at acidic pH than at physiological pH. Furthermore, DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line. Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis. These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats. Overall, these findings indicate that PLD-b-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery.

  20. Schistosoma mansoni polypeptides immunogenic in mice vaccinated with radiation-attenuated cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, J.P.; Strand, M.

    1987-10-01

    We compared the humoral immune response of mice protected against Schistosoma mansoni by vaccination with radiation-attenuated cercariae to that of patently infected mice, and we identified antigens that elicit a greater, or unique, immune response in the vaccinated mice. These comparisons were based upon radioimmunoprecipitations and immunodepletion of (/sup 35/S)methionine-labeled schistosomular and adult worm polypeptides, followed by one- and two-dimensional polyacrylamide gel analyses. The humoral responses of patently infected mice and of mice vaccinated once were remarkably similar and were directed against schistosome glycoproteins ranging in molecular size from greater than 300 to less than 10 kDa. Exposing mice to a second vaccination resulted in a marked change in the immune response, to one predominantly directed toward high molecular size glycoproteins. Sequential immunodepletion techniques identified five schistosomular and seven adult worm antigens that showed a greater or unique immunogenicity in vaccinated mice as compared with patently infected mice. These adult worm antigens were purified by preparative sequential immunoaffinity chromatography and used to prepare a polyclonal antiserum, anti-irradiated vaccine. This antiserum bound to the surface of live newly transformed and lung-stage schistosomula, as assessed by immunofluorescence assays, and was reactive with a number of /sup 125/I-labeled schistosomular surface polypeptides, including a doublet of 150 kDa that was also recognized by sera of vaccinated mice but not by sera of patently infected mice.

  1. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, G.R.; Rayle, D.L.; Jones, A.M.; Lomax, T.L. (Oregon State Univ., Corvallis (USA))

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-(7-{sup 3}H)IAA(({sup 3}H)N{sub 3}IAA), in a manner similar to the accumulation of ({sup 3}H)IAA. The association of the ({sup 3}H)N{sub 3}IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of ({sup 3}H)N{sub 3}IAA to plasma membrane vesicles prior to exposure to UV light and detected by subsequent NaDodSO{sub 4}/PAGE and fluorography. When the reaction temperature was lowered to {minus}196{degree}C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  2. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands

  3. Self-assembling Polypeptide Nanoparticles: Design, Synthesis, Biophysical Characterization and Biomedical Applications

    Science.gov (United States)

    Araujo Pereira Falcao Pimentel, Tais de

    Inspired by the architecture of icosahedral viruses, self-assembling polypeptide nanoparticles (SAPN) with icosahedral symmetry were developed. The building block for the SAPN was a single polypeptide chain. Similarly, the capsid of quite a few small viruses are built from one single peptide chain. The polypeptide chain of the SAPN consists of a pentameric coiled-coil domain at the N-terminus joined by a short linker segment to a trimeric coiled-coil domain at the C-terminus. Here we have studied factors governing self-assembly of the SAPN such as linker constitution and trimer length. The interdomain linker 2i88 afforded the most homogenous nanoparticles as verified by TEM and DLS. Furthermore, AUC and STEM analyses suggest that the nanoparticles formed using the linker 2i88 have a T=3-like architecture confirming computer modeling predictions. As for trimer length, we have shown that it is possible to synthesize SAPN with a trimer that is as short as only 17 amino acids. Given that the N-terminus and C-terminus of the SAPN can be extended to include epitopes and give rise to a repetitive antigen display system, vaccine applications of the SAPN were also investigated here. We grafted parts of the SARS virus' spike protein onto our SAPN to repetitively display this B-cell epitope. Biophysical characterization showed that single nanoparticles of the expected size range were formed. Immunization experiments in mice at University of Colorado Denver revealed that the antibodies elicited were conformation-specific. Moreover, the antibodies significantly inhibited SARS virus infection of Vero E6 cells. SAPN were also functionalized at the C-terminus with a B-cell epitope from the circumsporozoite protein (CSP) of the malaria parasite Plasmodium falciparum and at the N-terminus with CTL epitopes from CSP. The trimeric coiled-coil domains of these malaria SAPN were modified to include a HTL epitope. Even will all these modifications, self-assembly occurred as confirmed by

  4. Clostridium pasteurianum W5 synthesizes two NifH-related polypeptides under nitrogen-fixing conditions.

    Science.gov (United States)

    Kasap, Murat; Chen, Jiann-Shin

    2005-07-01

    Previous studies identified five nifH-like genes (nifH2 through nifH6) in Clostridium pasteurianum (strain W5), where the nifH1 gene encodes the nitrogenase iron protein. Transcripts of these nifH genes, with the exception of nifH3, were detected in molybdenum-sufficient nitrogen-fixing cells. However, the size of the transcripts, the level of transcription and the presence of polypeptides encoded by the nifH-like genes were not reported. The nifH2 and nifH6 genes were extremely similar, as they seemed to differ by only two bases in a span of 2481 bp, one in the coding region and another in the upstream region. Re-examination of the DNA sequences revealed that the coding region of nifH2 and nifH6 was identical, whereas the difference in the upstream region was confirmed. Results from the authors' ongoing study of the nif genes of single-colony isolates of C. pasteurianum suggest that the nifH6 designation should be eliminated. Here the size of mRNA from nifH2 and the detection of the NifH2 polypeptide in nitrogen-fixing cells of C. pasteurianum are reported. Northern blot analysis of periodically collected nitrogen-fixing cells showed that the nifH1 and nifH2 mRNAs were present throughout growth. Addition of ammonium acetate repressed the transcription of both these genes similarly. Using an antiserum raised against NifH of Azotobacter vinelandii, two NifH-related bands were detected by Western blot analysis after electrophoretic separation of proteins in extracts of nitrogen-fixing C. pasteurianum cells. After separation of proteins by preparative SDS-PAGE, the NifH polypeptides were characterized by MALDI-TOF-MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and by ES-MS/MS (electrospray tandem mass spectrometry) analyses. The results confirmed the presence of NifH2, in addition to NifH1, in nitrogen-fixing C. pasteurianum cells. PMID:16000725

  5. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1985-08-13

    Proton NMR was used to study the interaction of beta,gamma-bidentate Cr3+ATP and MgATP with rabbit muscle adenylate kinase, which has 194 amino acids, and with a synthetic peptide consisting of residues 1-45 of the enzyme, which has previously been shown to bind MgepsilonATP [Hamada, M., Palmieri, R. H., Russell, G. A., & Kuby, S. A. (1979) Arch. Biochem. Biophys. 195, 155-177]. The peptide is globular and binds Cr3+ATP competitively with MgATP with a dissociation constant, KD(Cr3+ATP) = 35 microM, comparable to that of the complete enzyme [KI(Cr3+ATP) = 12 microM]. Time-dependent nuclear Overhauser effects (NOE's) were used to measure interproton distances on enzyme- and peptide-bound MgATP. The correlation time was measured directly for peptide-bound MgATP by studying the frequency dependence of the NOE's at 250 and 500 MHz. The H2' to H1' distance so obtained (3.07 A) was within the range established by X-ray and model-building studies of nucleotides (2.9 +/- 0.2 A). Interproton distances yielded conformations of enzyme- and peptide-bound MgATP with indistinguishable anti-glycosyl torsional angles (chi = 63 +/- 12 degrees) and 3'-endo/O1'-endo ribose puckers (sigma = 96 +/- 12 degrees). Enzyme- and peptide-bound MgATP molecules exhibited different C4'-C5' torsional angles (gamma) of 170 degrees and 50 degrees, respectively. Ten intermolecular NOE's from protons of the enzyme and four such NOE's from protons of the peptide to protons of bound MgATP were detected, which indicated proximity of the adenine ribose moiety to the same residues on both the enzyme and the peptide. Paramagnetic effects of beta,gamma-bidentate Cr3+ATP on the longitudinal relaxation rates of protons of the peptide provided a set of distances to the side chains of five residues, which allowed the location of the bound Cr3+ atom to be uniquely defined. Distances from enzyme-bound Cr3+ATP to the side chains of three residues of the protein agreed with those measured for the peptide. The mutual

  6. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y;

    1992-01-01

    Recently, we described the establishment of a computerized database of rat liver epithelial (RLE) cellular polypeptides (Wirth et al., Electrophoresis, 1991, 12, 931-954). This database has now been expanded to include the analysis of cellular polypeptide alterations during chemically (aflatoxin B1...

  7. Application of evolutionary algorithm methods to polypeptide folding: comparison with experimental results for unsolvated Ac-(Ala-Gly-Gly)5-LysH+

    DEFF Research Database (Denmark)

    Damsbo, Martin; Kinnear, Brian S; Hartings, Matthew R;

    2004-01-01

    We present an evolutionary method for finding the low-energy conformations of polypeptides. The application, called FOLDAWAY,is based on a generic framework and uses several evolutionary operators as well as local optimization to navigate the complex energy landscape of polypeptides. It maintains...

  8. Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Irena Adkins

    Full Text Available Adenylate cyclase toxin (CyaA is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR-activated murine and human dendritic cells (DCs. cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4(+ and CD8(+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4(+CD25(+Foxp3(+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8(+ T cell proliferation and limited the induction of IFN-γ producing CD8(+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.

  9. Optogenetic Modulation of an Adenylate Cyclase in Toxoplasma gondii Demonstrates a Requirement of the Parasite cAMP for Host-Cell Invasion and Stage Differentiation*

    Science.gov (United States)

    Hartmann, Anne; Arroyo-Olarte, Ruben Dario; Imkeller, Katharina; Hegemann, Peter; Lucius, Richard; Gupta, Nishith

    2013-01-01

    Successful infection and transmission of the obligate intracellular parasite Toxoplasma gondii depends on its ability to switch between fast-replicating tachyzoite (acute) and quiescent bradyzoite (chronic) stages. Induction of cAMP in the parasitized host cells has been proposed to influence parasite differentiation. It is not known whether the parasite or host cAMP is required to drive this phenomenon. Other putative roles of cAMP for the parasite biology also remain to be identified. Unequivocal research on cAMP-mediated signaling in such intertwined systems also requires a method for an efficient and spatial control of the cAMP pool in the pathogen or in the enclosing host cell. We have resolved these critical concerns by expressing a photoactivated adenylate cyclase that allows light-sensitive control of the parasite or host-cell cAMP. Using this method, we reveal multiple roles of the parasite-derived cAMP in host-cell invasion, stage-specific expression, and asexual differentiation. An optogenetic method provides many desired advantages such as: (i) rapid, transient, and efficient cAMP induction in extracellular/intracellular and acute/chronic stages; (ii) circumvention of the difficulties often faced in cultures, i.e. poor diffusion, premature degradation, steady activation, and/or pleiotropic effects of cAMP agonists and antagonists; (iii) genetically encoded enzyme expression, thus inheritable to the cell progeny; and (iv) conditional and spatiotemporal control of cAMP levels. Importantly, a successful optogenetic application in Toxoplasma also illustrates its wider utility to study cAMP-mediated signaling in other genetically amenable two-organism systems such as in symbiotic and pathogen-host models. PMID:23525100

  10. Event Detection and Sub-state Discovery from Bio-molecular Simulations Using Higher-Order Statistics: Application To Enzyme Adenylate Kinase

    Science.gov (United States)

    Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2012-01-01

    Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562

  11. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR.

    Science.gov (United States)

    Yan, H G; Tsai, M D

    1991-06-01

    Earlier magnetic resonance studies suggested no direct interaction between Mg2+ ions and adenylate kinase (AK) in the AK.MgATP (adenosine 5'-triphosphate) complex. However, recent NMR studies concluded that the carboxylate of aspartate 119 accepts a hydrogen bond from a water ligand of the bound Mg2+ ion in the muscle AK.MgATP complex [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694]. On the other hand, in the 2.6-A crystal structure of the yeast AK.MgAP5A [P1,P5-bis(5'-adenosyl)pentaphosphate] complex, the Mg2+ ion is in proximity to aspartate 93 [Egner, U., Tomasselli, A.G., & Schulz, G.E. (1987) J. Mol. Biol. 195, 649-658]. Substitution of Asp-93 with alanine resulted in no change in dissociation constants, 4-fold increases in Km, and a 650-fold decrease in kcat. Notable changes have been observed in the chemical shifts of the aromatic protons of histidine 36 and a few other aromatic residues. However, the results of detailed analyses of the free enzymes and the AK.MgAP5A complexes by one- and two-dimensional NMR suggested that the changes are due to localized perturbations. Thus it is concluded that Asp-93 stabilizes the transition state by ca. 3.9 kcal/mol. The next question is how. Since proton NMR results indicated that binding of Mg2+ to the AK.AP5A complex induces some changes in the proton NMR signals of WT but not those of D93A, the functional role of Asp-93 should be in binding to Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Solution structure of the 45-residue ATP-binding peptide of adenylate kinase as determined by 2-D NMR, FTIR, and CD spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, E.M.; Kuby, S.A.; Mildyan, A.S.

    1986-05-01

    In the X-ray structure of adenylate kinase residues 1-45 exist as 47% ..cap alpha..-helix, 29% ..beta..-structure (strands and turns) and 24% coil. The solution structure of a synthetic peptide corresponding to residues 1-45, which constitutes the MgATP binding site was studied by 3 independent spectroscopic methods. Globularity of the peptide was shown by its broad NMR resonances which narrow upon denaturation, and by its ability to bind MgATP with similar affinity and conformation as the intact enzyme does. COSY and NOESY NMR methods at 250 and 500 MHz reveal proximities among NH, C..cap alpha.., and C..beta.. protons indicative of >20% ..cap alpha..-helix, and >20% ..beta..-structure. Correlation of regions of secondary structure with the primary sequence by 2D NMR indicates at least one ..cap alpha..-helix (res. 23 to 29) and two ..beta..-strands (res. 12 to 15 and 34 to 38). The broad amide I band in the deconvoluted FTIR spectrum could be fit as the sum of 4 peaks due to specific secondary structures, yielding less than or equal to=45% ..cap alpha..-helix, less than or equal to=40% ..beta..-structure and greater than or equal to=15% coil. The CD spectrum, from 185-250 nm, interpreted with a 3-parameter basis set, yielded 20 +/- 5% ..cap alpha..=helix, and less than or equal to=20% ..beta..-structure. The solution structure of peptide 1-45 thus approximates that of residues 1-45 in the crystal.

  13. l-Cystine-Crosslinked Polypeptide Nanogel as a Reduction-Responsive Excipient for Prostate Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Liang He

    2016-01-01

    Full Text Available Smart polymer nanogel-assisted drug delivery systems have attracted more and more attention in cancer chemotherapy because of their well-defined morphologies and pleiotropic functions in recent years. In this work, an l-cystine-crosslinked reduction-responsive polypeptide nanogel of methoxy poly(ethylene glycol-poly(l-phenylalanine-co-l-cystine (mPEG-P(LP-co-LC was employed as a smart excipient for RM-1 prostate cancer (PCa chemotherapy. Doxorubicin (DOX, as a regular chemotherapy drug, was embedded in the nanogel. The loading nanogel marked as NG/DOX was shown to exhibit glutathione (GSH-induced swelling and GSH-accelerated DOX release. Subsequently, NG/DOX showed efficient cellular uptake and proliferation inhibition. Furthermore, NG/DOX presented enhanced antitumor efficacy and security in an RM-1 PCa-grafted mouse model in vivo, indicating its great potential for clinical treatment.

  14. Expression of a Deschampsia antarctica Desv. Polypeptide with Lipase Activity in a Pichia pastoris Vector

    Directory of Open Access Journals (Sweden)

    Claudia Rabert

    2014-02-01

    Full Text Available The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628, which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed.

  15. Development of the kits for RIA simultaneous determination of polypeptide hormones

    International Nuclear Information System (INIS)

    A simple and universal modification of chloramine T technique has been developed for the radioactive iodination of several polypeptide hormones such as insulin, human growth hormone (HGH), human TSH, synthetic human gastrin and beta-endorphine. The prepared products proved to have good immunoreactivity suitable for RIA purposes. The technique is inexpensive and quick. A new procedure has also been worked out utilizing horse myeloperoxidase in solid state as catalyser. The hormones iodinated with this technique show better parameters (e.g. longer stability, better binding to antibody, more favourable adsorption on dextran-coated charcoal); however the specific activities achieved were lower. The possibilities of simultaneous measurement of insulin and HGH have been studied. In this connection, a comparatively simple method for the determination of the endogenous anti-insulin antibodies was developed and used for the control of patients with diabetes and for the checking of new insulin preparations. However, the technique requires relatively sophisticated equipment and computerized calculations

  16. Lectin Domains of Polypeptide GalNAc Transferases Exhibit Glycopeptide Binding Specificity

    DEFF Research Database (Denmark)

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G;

    2011-01-01

    UDP-GalNAc:polypeptide a-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection...... of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence...... on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate...

  17. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis

    DEFF Research Database (Denmark)

    Kong, Yun; Joshi, Hiren J; Schjoldager, Katrine Ter-Borch Gram;

    2015-01-01

    N-acetylgalactosaminyltransferase (GalNAc)-type (mucin-type) O-glycosylation is an abundant and highly diverse modification of proteins. This type of O-glycosylation is initiated in the Golgi by a large family of up to 20 homologous polypeptide GalNAc-T isoenzymes that transfer GalNAc to Ser, Thr...... and possibly Tyr residues. These GalNAc residues are then further elongated by a large set of glycosyltransferases to build a variety of complex O-glycan structures. What determines O-glycan site occupancy is still poorly understood, although it is clear that the substrate specificities of individual...... isoenzymes and the repertoire of GalNAc-Ts in cells are key parameters. The GalNAc-T isoenzymes are differentially expressed in cells and tissues in principle allowing cells to produce unique O-glycoproteomes dependent on the specific subset of isoforms present. In vitro analysis of acceptor peptide...

  18. Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers.

    Science.gov (United States)

    Sparr, Emma; Engel, Maarten F M; Sakharov, Dmitri V; Sprong, Mariette; Jacobs, Jet; de Kruijff, Ben; Höppener, Jo W M; Killian, J Antoinette

    2004-11-01

    Fibril formation of islet amyloid polypeptide (IAPP) is associated with cell death of the insulin-producing pancreatic beta-cells in patients with Type 2 Diabetes Mellitus. A likely cause for the cytotoxicity of human IAPP is that it destroys the barrier properties of the cell membrane. Here, we show by fluorescence confocal microscopy on lipid vesicles that the process of hIAPP amyloid formation is accompanied by a loss of barrier function, whereby lipids are extracted from the membrane and taken up in the forming amyloid deposits. No membrane interaction was observed when preformed fibrils were used. It is proposed that lipid uptake from the cell membrane is responsible for amyloid-induced membrane damage and that this represents a general mechanism underlying the cytotoxicity of amyloid forming proteins. PMID:15527771

  19. Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells

    Directory of Open Access Journals (Sweden)

    YH Huang

    2009-08-01

    Full Text Available We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells and PP-cells (PPsecreting cells were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells.

  20. Blue copper proteins as a model for investigating electron transfer processes within polypeptide matrices

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1994-01-01

    Intramolecular long-range electron transfer (ET) processes have been investigated in two types of blue copper proteins; the single-copper protein, azurin and the multi-copper oxidase, ascorbate oxidase. These have several advantages for investigating the parameters that control the above reactions...... resolution. (3) These proteins have no other cofactors except for the copper ions, thus the role of the polypeptide matrix can be addressed in a more straightforward manner. In azurins, the ET from the cystine (3-26) radical-ion produced by pulse-radiolytic reduction of this single disulfide bridge......, to the Cu(II) ion bound at a distance of approximately 2.6 nm has been studied, in naturally occurring and in single-site mutated azurins. The role of changing specific amino acid residues on the internal long-range electron transfer (LRET) process and its potential pathways has been investigated...

  1. Comparative assessment of the polypeptide profiles from lateral and primary roots of Phaseolus vulgaris L

    Science.gov (United States)

    Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.

  2. Synthesis and micellization behavior of stimuli-responsive polypeptide hybrid triblock copolymer

    Institute of Scientific and Technical Information of China (English)

    RAO JingYi; ZHU ZhiYuan; LIU ShiYong

    2009-01-01

    Polypeptide hybrid triblock copolymer, poly(L-glutamic acid)-b-poly(propylene oxide)-b-poly (L-gluo tamic acid) (PLGA-b-PPO-b-PLGA), was synthesized by the ring-opening polymerization of benzyI-L-glutamic N-carboxyanhydride (BLG-NCA) using poly(propylene glycol) bis(2-aminopropyl ether) as initiator, followed by the subsequent deprotection step. The obtained double hydrophilic triblock co-polymer exhibits "schizophrenic" micellization behavior in aqueous solution upon dually playing with solution pH and temperature. The multi-responsive micellization behavior of this poiypeptide hybrid triblock copolymer has been thoroughly investigated by 1H NMR, laser light scattering (LLS), tempera-ture-dependent optical transmittance, and circular dichroism spectroscopy (CD).

  3. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon.

    Science.gov (United States)

    Sekar, R; Singh, K; Arokiaraj, A W R; Chow, B K C

    2016-01-01

    Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon. PMID:27572131

  4. Biological effect of velvet antler polypeptides on neural stem cells from embryonic rat brain

    Institute of Scientific and Technical Information of China (English)

    LU Lai-jin; CHEN Lei; MENG Xiao-ting; YANG Fan; ZHANG Zhi-xin; CHEN Dong

    2005-01-01

    Background Velvet antler polypeptides (VAPs), which are derived from the antler velvets, have been reported to maintain survival and promote growth and differentiation of neural cells and, especially the development of neural tissues. This study was designed to explore the influence of VAPs on neural stem cells in vitro derived from embryonic rat brain. Methods Neural stem cells derived from E12-14 rat brain were isolated, cultured, and expanded for 7 days until neural stem cell aggregations and neurospheres were generated. The neurospheres were cultured under the condition of different concentration of VAPs followed by immunocytochemistry to detect the differentiation of neural stem cells. Results VAPs could remarkablely promote differentiation of neural stem cells and most neural stem cells were induced to differentiate towards the direction of neurons under certain concentration of VAPs.Conclusion Neural stem cells can be successfully induced into neurons by VAPs in vitro, which could provide a basis for regeneration of the nervous system.

  5. Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides.

    Science.gov (United States)

    Ma, Jiao; Diedrich, Jolene K; Jungreis, Irwin; Donaldson, Cynthia; Vaughan, Joan; Kellis, Manolis; Yates, John R; Saghatelian, Alan

    2016-04-01

    Computational, genomic, and proteomic approaches have been used to discover nonannotated protein-coding small open reading frames (smORFs). Some novel smORFs have crucial biological roles in cells and organisms, which motivates the search for additional smORFs. Proteomic smORF discovery methods are advantageous because they detect smORF-encoded polypeptides (SEPs) to validate smORF translation and SEP stability. Because SEPs are shorter and less abundant than average proteins, SEP detection using proteomics faces unique challenges. Here, we optimize several steps in the SEP discovery workflow to improve SEP isolation and identification. These changes have led to the detection of several new human SEPs (novel human genes), improved confidence in the SEP assignments, and enabled quantification of SEPs under different cellular conditions. These improvements will allow faster detection and characterization of new SEPs and smORFs. PMID:27010111

  6. Emerging Role of PACAP as a New Potential Therapeutic Target in Major Diabetes Complications

    Directory of Open Access Journals (Sweden)

    Rubina Marzagalli

    2015-01-01

    Full Text Available Enduring diabetes increases the probability of developing secondary damage to numerous systems, and these complications represent a cause of morbidity and mortality. Establishing the causes of diabetes remains the key step to eradicate the disease, but prevention as well as finding therapies to ameliorate some of the major diabetic complications is an equally important step to increase life expectancy and quality for the millions of individuals already affected by the disease or who are likely to develop it before cures become routinely available. In this review, we will firstly summarize some of the major complications of diabetes, including endothelial and pancreatic islets dysfunction, retinopathy, and nephropathy, and then discuss the emerging roles exerted by the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP to counteract these ranges of pathologies that are precipitated by the prolonged hyperglycemic state. Finally, we will describe the main signalling routes activated by the peptide and propose possible future directions to focus on developing more effective peptide-based therapies to treat the major complications associated with longstanding diabetes.

  7. Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering

    Directory of Open Access Journals (Sweden)

    Armelle Tchoumi Neree

    2015-11-01

    Full Text Available Over the last two decades, the potential usage of cell-penetrating peptides (CPPs for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38 has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs. Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.

  8. Regulatory peptides in the upper respiratory system and oral cavity of man. An immunocytochemical and radioimmunological study

    International Nuclear Information System (INIS)

    In the present study a dense network of peptide-immunoreactive nerve fibres in the upper respiratory system and the oral cavity of man was investigated. The occurrence, distribution and concentrations of regulatory peptide immunoreactivities in human nasal mucosa, soft palate, ventricular fold, vocal cord, epiglottis, subglottis, glandula submandibularis and glandula parotis were investigated using highly efficient immunocytochemical and radio-immunological methods. In the tissues investigated vasoactive intestinal polypeptide (VIP) and other derivatives from the VIP-precursor (peptide histidine methionine = PHM), prepro VIP (111-122)), neuropeptide tyrosine (NPY) and its C-flanking peptide (CPON), calcitonin gene-related peptide (CGRP), substance P, neurokinin A, bombesin-flanking peptide and somatostatin were detected. The regulatory peptides demonstrated also included the recently isolated peptides helospectin and pituitary adenylate cyclase activating peptide (PACAP). Single endocrine-like cells were for the first time demonstrated within the respiratory epithelium and in the lamina propria of the nasal mucosa and soft palate and in groups within ducts. Ultrastructural immunelectronmicroscopy was performed using an ABC-pre-embedding method. In addition, semithin Epon resin sections were immunostained. The concentrations of VIP, NPY, CGRP, substance P and neurokinin A were measured using radioimmunological methods. The peptide immunoreactivities demonstrated in a dense network of neuronal structures and endocrine cells give indication for the presence of a complex regulatory system with potent physiological mechanisms in the upper respiratory system and allocated tissues of man

  9. Analysis of the chemical coding of neurons in the intermediate thoracic ganglion of the pig.

    Science.gov (United States)

    NouriNezhad, J; Wasowicz, K; Bukowski, R; Skobowiat, C

    2010-01-01

    The pig has been widely used as a model in cardiovascular research. A unique feature of the porcine extrinsic sympathetic cardiac nerves is that they arise from intermediate ganglia in the thoracic cavity. The localization and pattern of distribution of nerve cell bodies and fibers containing tyrosine hydroxylase (TH), dopamine B-hydroxylase (DBH), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), methionine-enkephalin (MET) as well as calcitonin gene-related peptide (CGRP), substance P (SP) and pituitary adenylate cyclase-activating peptide (PACAP) was studied with immunohistochemistry. Almost all the neurons showed immunoreactivity to TH. Immunoreactivity to NPY, VIP, SOM, GAL, MET and PACAP was displayed by nerve cell bodies while nerve fibers exhibited immunoreactivity to all the neuropeptides studied. Therefore, it seems that the chemical coding of neurons and especially nerve fibers in the porcine intermediate ganglion share general similarities (with certain neurochemical variability), with porcine prevertebral ganglia (e.g., celiacomesenteric and caudal mesenteric ganglia). PMID:21033570

  10. Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells.

    Science.gov (United States)

    Mäkelä, Johanna; Koivuniemi, Raili; Korhonen, Laura; Lindholm, Dan

    2010-01-01

    Inflammation is part of many neurological disorders and immune reactions may influence neuronal progenitor cells (NPCs) contributing to the disease process. Our knowledge about the interplay between different cell types in brain inflammation are not fully understood. It is important to know the mechanisms and factors involved in order to enhance regeneration and brain repair. We show here that NPCs express receptors for interferon-gamma (IFNgamma), and IFNgamma activates the signal transducer and activator of transcription (STAT) protein-1. IFNgamma reduced cell proliferation in NPCs by upregulation of the cell cycle protein p21 as well as induced cell death of NPCs by activating caspase-3. Studies of putative factors for rescue showed that the neuropeptide, Pituitary adenylate cyclase-activating polypeptide (PACAP) increased cell viability, the levels of p-Bad and reduced caspase-3 activation in the NPCs. Medium from cultured microglia contained IFNgamma and decreased the viability of NPCs, whilst blocking with anti-IFNgamma antibodies counteracted this effect. The results show that NPCs are negatively influenced by IFNgamma whereas PACAP is able to modulate its action. The interplay between IFNgamma released from immune cells and PACAP is of importance in brain inflammation and may affect the regeneration and recruitment of NPCs in immune diseases. The observed effects of IFNgamma on NPCs deserve to be taken into account in human anti-viral therapies particularly in children with higher rates of brain stem cell proliferation.

  11. Altered pupillary light reflex in PACAP receptor 1-deficient mice.

    Science.gov (United States)

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens

    2012-05-01

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances.

  12. Roles of PACAP-containing retinal ganglion cells in circadian timing.

    Science.gov (United States)

    Hannibal, Jens

    2006-01-01

    The brain's biological clock located in the suprachiasmatic nucleus (SCN) generates circadian rhythms in physiology and behavior. The clock-driven rhythms need daily adjustment (entrainment) to be synchronized with the astronomical day of 24 h. The most important stimulus for entrainment of the clock is the light-dark (LD) cycle. In this review functional elements of the light entrainment pathway will be considered with special focus on the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP), which is found exclusively in the monosynaptic neuronal pathway mediating light information to the SCN, the retinohypothalamic tract (RHT). The retinal ganglion cells of the RHT are intrinsically photosensitive due to the expression of melanopsin and seem to constitute a non-image forming photosensitive system in the mammalian eye regulating circadian timing, masking behavior, light-regulated melatonin secretion, and the pupillary light reflex. Evidence from in vitro and in vivo studies and studies of mice lacking PACAP and the specific PACAP receptor (PAC1) indicate that PACAP and glutamate are neurotransmitters in the RHT which in a clock and concentration-dependent manner interact during light entrainment of the clock.

  13. GHRH, PRP-PACAP and GHRHR Target Sequencing via an Ion Torrent Personal Genome Machine Reveals an Association with Growth in Orange-Spotted Grouper (Epinephelus coioides).

    Science.gov (United States)

    Guo, Liang; Xia, Junhong; Yang, Sen; Li, Mingming; You, Xinxin; Meng, Zining; Lin, Haoran

    2015-11-02

    Growth hormone-releasing hormone (GHRH) and the receptor, GHRHR, constitute important components of the hypothalamus-pituitary growth axis and act on the downstream growth hormone (GH). PACAP-related peptide/pituitary adenylate cyclase activating polypeptide (PRP-PACAP) is a paralog of GHRH. These genes all play key roles in development and growth patterns. To improve the quality of cultured fish strains, natural genetic variation must be examined and understood. A mixed linear model has been widely used in association mapping, taking the population structures and pairwise kinship patterns into consideration. In this study, a mass cross population of orange-spotted grouper (Epinephelus coioides) was examined. These candidate genes were found to harbor low nucleotide diversity (θw from 0.00154 to 0.00388) and linkage disequilibrium levels (delay of 50% within 2 kbp). Association mapping was employed, and two single-nucleotide polymorphisms (KR269823.1:g.475A>C and KR269823.1:g.2143T>C) were found to be associated with growth (false discovery rate Q C was also found via haplotype-based association (p < 0.05). The identified associations offer new insights into gene functions, and the associated single-nucleotide polymorphisms (SNPs) may be used for breeding purposes.

  14. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    Directory of Open Access Journals (Sweden)

    Grazia eMaugeri

    2016-05-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP and vasoactive intestinal peptide (VIP through the binding of vasoactive intestinal peptide receptors (VIPRs, perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM. This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs. HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to epidermal growth factor receptor (EGFR overexpression. Previous studies have shown that VIP interferes with the invasive nature of gliomas by regulating cell migration. However, the role of VIP family members in GBM infiltration under low oxygen tension has not been clarified yet. Therefore, in the present study we have investigated, for the first time, the molecular mechanisms involved in the anti-invasive effect of PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with desferrioxamine (DFX. The results suggest that either PACAP or VIP exert an anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR expression, key elements involved in cell migration and angiogenesis. These peptides act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are known to have a crucial role in HIFs regulation. In conclusion, the modulation of hypoxic event and the anti-invasive effect exerted by some VIP family members might open new insights in the therapeutic approach to GBM.

  15. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression.

    Science.gov (United States)

    Maugeri, Grazia; Grazia D'Amico, Agata; Reitano, Rita; Magro, Gaetano; Cavallaro, Sebastiano; Salomone, Salvatore; D'Agata, Velia

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) through the binding of vasoactive intestinal peptide receptors (VIPRs), perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM). This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs). HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to epidermal growth factor receptor (EGFR) overexpression. Previous studies have shown that VIP interferes with the invasive nature of gliomas by regulating cell migration. However, the role of VIP family members in GBM infiltration under low oxygen tension has not been clarified yet. Therefore, in the present study we have investigated, for the first time, the molecular mechanisms involved in the anti-invasive effect of PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with desferrioxamine (DFX). The results suggest that either PACAP or VIP exert an anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR expression, key elements involved in cell migration and angiogenesis. These peptides act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are known to have a crucial role in HIFs regulation. PMID:27303300

  16. Central Pathways Integrating Metabolism and Reproduction in Teleosts

    Directory of Open Access Journals (Sweden)

    Md eShahjahan

    2014-03-01

    Full Text Available Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH, orexin, neuropeptide-Y (NPY, ghrelin, pituitary adenylate cyclase-activating polypeptide (PACAP, α-melanocyte stimulating hormone (α-MSH, melanin-concentrating hormone (MCH, cholecystokinin (CCK, 26RFa, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone (GnIH. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.

  17. Inhibitory neural pathway regulating gastric emptying in rats.

    Science.gov (United States)

    Ishiguchi, T; Nishioka, S; Takahashi, T

    2000-02-14

    The relaxation of the pylorus is one of the most important factors for promoting gastric emptying. However, the role of inhibitory neurotransmitters in the regulation of pyloric relaxation and gastric emptying remains unclear. In this study, we investigated the effects of NO biosynthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), and calcium dependent potassium channel blocker, apamin, on vagal stimulation-induced pyloric relaxation and gastric emptying in rats. Sodium nitroprusside (SNP), adenosine 5'-triphosphate (ATP), vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) caused pyloric relaxations in a dose dependent manner in vivo. Apamin (120 microg/kg) significantly reduced ATP and PACAP-induced pyloric relaxations without affecting SNP- or VIP-induced relaxations. Vagal stimulation (10 V, 1 ms, 1-20 Hz)-induced pyloric relaxation was significantly inhibited by L-NAME (10 mg/kg). The combined administration of L-NAME and apamin almost completely abolished vagal stimulation-induced pyloric relaxation. L-NAME and apamin significantly increased spontaneous contractions in the antrum, pylorus and duodenum. Increased motility index by L-NAME and apamin was significantly higher in the pylorus and duodenum, compared to that of antrum. L-NAME and apamin significantly delayed liquid gastric emptying. These results suggest that besides NO, probably ATP and PACAP, act as inhibitory neurotransmitters in the rat pylorus and regulate gastric emptying.

  18. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E;

    1995-01-01

    converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  19. Intein-mediated rapid purification of recombinant maxadilan and M65 and their acute effects on plasma glucose

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Maxadilan is a potent vasodilatory peptide present in the sali-vary glands of the sand fly. Maxadilan and M65, a deletion variation of maxadilan, are agonist- and antagonist-specific for the PAC1 receptor. In order to obtain the recombinant maxadilan and M65 efficiently by intein-mediated single col-umn purification, the genes encoding maxadilan and M65 were designed, synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant maxadilan and M65 with homogeneity over 95% were released from the chitin-bound intein tag by β-mercaptoethanol. Intraperitoneal in-jection of the recombinant maxadilan caused an acute eleva-tion of plasma glucose, imitating pituitary adenylate cyclase-activating polypeptide (PACAP) 27, in NIH mice, while the VPACl-agonist and VPAC2-agonist had no significant ef-fects on the levels of plasma glucose. M65 alone had no effect on the plasma glucose, but blocked the glucose excursion caused by maxadilan by 12.7% and blocked the glucose ex-cursion caused by the PACAP 27 by 11.6%. The acute ef-fects of the recombinant maxadilan and M65 on the plasma glucose indicated that they had the characteristics as the agonist and antagonist for PAC1.

  20. Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Johanna Mäkelä

    Full Text Available Inflammation is part of many neurological disorders and immune reactions may influence neuronal progenitor cells (NPCs contributing to the disease process. Our knowledge about the interplay between different cell types in brain inflammation are not fully understood. It is important to know the mechanisms and factors involved in order to enhance regeneration and brain repair. We show here that NPCs express receptors for interferon-gamma (IFNgamma, and IFNgamma activates the signal transducer and activator of transcription (STAT protein-1. IFNgamma reduced cell proliferation in NPCs by upregulation of the cell cycle protein p21 as well as induced cell death of NPCs by activating caspase-3. Studies of putative factors for rescue showed that the neuropeptide, Pituitary adenylate cyclase-activating polypeptide (PACAP increased cell viability, the levels of p-Bad and reduced caspase-3 activation in the NPCs. Medium from cultured microglia contained IFNgamma and decreased the viability of NPCs, whilst blocking with anti-IFNgamma antibodies counteracted this effect. The results show that NPCs are negatively influenced by IFNgamma whereas PACAP is able to modulate its action. The interplay between IFNgamma released from immune cells and PACAP is of importance in brain inflammation and may affect the regeneration and recruitment of NPCs in immune diseases. The observed effects of IFNgamma on NPCs deserve to be taken into account in human anti-viral therapies particularly in children with higher rates of brain stem cell proliferation.

  1. Migraine and neuropeptides.

    Science.gov (United States)

    Tajti, János; Szok, Délia; Majláth, Zsófia; Tuka, Bernadett; Csáti, Anett; Vécsei, László

    2015-08-01

    Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.

  2. Neuropeptides as targets for the development of anticonvulsant drugs.

    Science.gov (United States)

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  3. Role of neuropeptides in anxiety, stress, and depression: from animals to humans.

    Science.gov (United States)

    Kormos, Viktória; Gaszner, Balázs

    2013-12-01

    Major depression, with its strikingly high prevalence, is the most common cause of disability in communities of Western type, according to data of the World Health Organization. Stress-related mood disorders, besides their deleterious effects on the patient itself, also challenge the healthcare systems with their great social and economic impact. Our knowledge on the neurobiology of these conditions is less than sufficient as exemplified by the high proportion of patients who do not respond to currently available medications targeting monoaminergic systems. The search for new therapeutical strategies became therefore a "hot topic" in neuroscience, and there is a large body of evidence suggesting that brain neuropeptides not only participate is stress physiology, but they may also have clinical relevance. Based on data obtained in animal studies, neuropeptides and their receptors might be targeted by new candidate neuropharmacons with the hope that they will become important and effective tools in the management of stress related mood disorders. In this review, we attempt to summarize the latest evidence obtained using animal models for mood disorders, genetically modified rodent models for anxiety and depression, and we will pay some attention to previously published clinical data on corticotropin releasing factor, urocortin 1, urocortin 2, urocortin 3, arginine-vasopressin, neuropeptide Y, pituitary adenylate-cyclase activating polypeptide, neuropeptide S, oxytocin, substance P and galanin fields of stress research.

  4. Effect of VPAC1 Blockade on Adipose Tissue Formation and Composition in Mouse Models of Nutritionally Induced Obesity

    Directory of Open Access Journals (Sweden)

    H. Roger Lijnen

    2010-01-01

    Full Text Available Background. The pituitary adenylate cyclase activating polypeptide (PACAP may affect adipogenesis and adipose tissue formation through interaction with its G-protein-coupled receptor VPAC1. Methods. We have used a monoclonal antibody (MAb 23A11 blocking VPAC1 in mouse models of nutritionally induced obesity. Results. Administration of MAb 23A11 (25 mg/kg body weight i.p. twice weekly to 5-week old male C57Bl/6 mice kept on a high-fat diet for 15 weeks had no significant effect on weight gain, nor on subcutaneous (SC or gonadal (GON adipose tissue mass, as compared to the control MAb 1C8. However, adipocyte hypertrophy was observed in SC adipose tissue of MAb 23A11 treated mice. In a second study, 24 weeks old obese mice were treated for 5 weeks with MAb 23A11, without effect on body weight or fat mass, as compared to treatment with MAb 1C8. In addition, MAb 23A11 had no significant effect on glucose tolerance or insulin resistance in lean or obese C57Bl/6 mice. Conclusion. Blocking VPAC1 does not significantly affect adipose tissue formation in mouse models of diet-induced obesity, although it may be associated with mild adipocyte hypertrophy.

  5. GHRH, PRP-PACAP and GHRHR Target Sequencing via an Ion Torrent Personal Genome Machine Reveals an Association with Growth in Orange-Spotted Grouper (Epinephelus coioides

    Directory of Open Access Journals (Sweden)

    Liang Guo

    2015-11-01

    Full Text Available Growth hormone-releasing hormone (GHRH and the receptor, GHRHR, constitute important components of the hypothalamus-pituitary growth axis and act on the downstream growth hormone (GH. PACAP-related peptide/pituitary adenylate cyclase activating polypeptide (PRP-PACAP is a paralog of GHRH. These genes all play key roles in development and growth patterns. To improve the quality of cultured fish strains, natural genetic variation must be examined and understood. A mixed linear model has been widely used in association mapping, taking the population structures and pairwise kinship patterns into consideration. In this study, a mass cross population of orange-spotted grouper (Epinephelus coioides was examined. These candidate genes were found to harbor low nucleotide diversity (θw from 0.00154 to 0.00388 and linkage disequilibrium levels (delay of 50% within 2 kbp. Association mapping was employed, and two single-nucleotide polymorphisms (KR269823.1:g.475A>C and KR269823.1:g.2143T>C were found to be associated with growth (false discovery rate Q < 0.05, explaining 9.0%–17.0% of the phenotypic variance. The association of KR269823.1:g.2143T>C was also found via haplotype-based association (p < 0.05. The identified associations offer new insights into gene functions, and the associated single-nucleotide polymorphisms (SNPs may be used for breeding purposes.

  6. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  7. Glucose-dependent insulinotropic polypeptide (GIP) is associated with lower LDL but unhealthy fat distribution, independent of insulin

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Vistisen, Dorte; Færch, Kristine;

    2016-01-01

    CONTEXT: Glucose-dependent insulinotropic polypeptide (GIP) may increase lipid clearance by stimulating lipid uptake. However, as GIP promotes release of insulin by the pancreas, and insulin is anti-lipolytic, the effect may be indirect. OBJECTIVE: In this study, we examined the association betwe...

  8. UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Identification and separation of two distinct transferase activities

    DEFF Research Database (Denmark)

    Sørensen, T; White, T; Wandall, H H;

    1995-01-01

    Using a defined acceptor substrate peptide as an affinity chromatography ligand we have developed a purification scheme for a unique human polypeptide, UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) (White, T., Bennett, E.P., Takio, K., Sørensen, T., Bonding, N., an....... The identification of acceptor peptides that can be used to discriminate GalNAc-transferase activities is an important step toward understanding the molecular basis of GalNAc O-linked glycosylation in cells and organs and in pathological conditions.......Using a defined acceptor substrate peptide as an affinity chromatography ligand we have developed a purification scheme for a unique human polypeptide, UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) (White, T., Bennett, E.P., Takio, K., Sørensen, T., Bonding, N......., and Clausen, H. (1995) J. Biol. Chem. 270, 24156-24165). Here we report detailed studies of the acceptor substrate specificity of GalNAc-transferase purified by this scheme as well as the Gal-NAc-transferase activity, which, upon repeated affinity chromatography, evaded purification by this affinity ligand...

  9. Characterization of a multimeric polypeptide complex on the surface of thymus-derived cells in the Mexican axolotl.

    Science.gov (United States)

    Kerfourn, F; Guillet, F; Charlemagne, J; Tournefier, A

    1993-10-01

    We previously raised a rabbit antiserum (L12) against a 38 kD polypeptide which is expressed on the surface of thymocytes and peripheral T cells of an Urodele Amphibian, the Mexican axolotl (Ambystoma mexicanum). Here we show that L12 antibodies immunoprecipitate several labelled molecules from surface iodinated axolotl spleen cells, including the 38 kD molecule, but also two polypeptides of 43 and 22 kD which are covalently linked to other elements. Another rabbit antiserum (L10) was raised against detergent-solubilized axolotl thymocyte membranes and shown to recognize the majority of thymocytes and about half of the splenocytes in immunofluorescence. In Western blotting, L10 antibodies recognized a limited number of surface polypeptides in thymocyte and splenocyte lysates, including 43, 38, and 22 kD elements. Immune complexes formed between L10 antibodies and solubilized splenocyte membranes were used to immunize BALB/c mice intrasplenically in the aim of raising MoAbs specific for axolotl T cells. Monoclonal antibody 87.16 was shown to stain in immunofluorescence 26.7% of thymocytes and 26.8% of spleen cells. This MoAb recognized a 43 kD polypeptide that can covalently associate on the T-cell surface with several other molecules to form a multimeric complex. PMID:8211000

  10. Distance determination from dysprosium induced relaxation enhancement: a case study on membrane-inserted WALP23 polypeptides

    NARCIS (Netherlands)

    Lueders, P.; Razzaghi, S.; Jäger, H.; Tschaggelar, R.; Hemminga, M.A.; Yulikov, M.; Jeschke, G.

    2013-01-01

    Membrane incorporated synthetic a-helical polypeptides labelled with Dy(III) chelate complexes and nitroxide radicals were studied by the inversion recovery (IR) technique and Dy(III)-nitroxide distances were obtained. A comparison of obtained distances with the previously reported Gd(III)-nitroxide

  11. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides.

    Science.gov (United States)

    Zhang, Rujing; Zheng, Nan; Song, Ziyuan; Yin, Lichen; Cheng, Jianjun

    2014-03-01

    The rational design of effective and safe non-viral gene vectors is largely dependent on the understanding of the structure-property relationship. We herein report the design of a new series of cationic, α-helical polypeptides with different side charged groups (amine and guanidine) and hydrophobicity, and mechanistically unraveled the effect of polypeptide structure on the gene delivery capability. Guanidine-containing polypeptides displayed superior membrane activities to their amine-containing analogues via the pore formation mechanism, and thus possessed notably higher transfection efficiencies. Elongating the hydrophobic side chain also potentiated the membrane activities of the polypeptides, while at the meantime caused higher cytotoxicities. Upon an optimal balance between membrane activity and cytotoxicity, maximal transfection efficiency was achieved which outperformed commercial reagent Lipofectamine™ 2000 (LPF2000) by 3-6 folds. This study thus provides mechanistic insights into the rational design of non-viral gene delivery vectors, and the best-performing materials identified also serve as a promising addition to the existing systems. PMID:24439403

  12. Correlation between changes in light energy distribution and changes in thylakoid membrane polypeptide phosphorylation in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    We have used a new method to extensively modify the redox state of the plastoquinone pool in Chlamydomonas reinhardtii intact cells. This was achieved by an anaerobic treatment that inhibits the chlororespiratory pathway recently described by P. Bennoun. A state I (plus 3,4-dichlorophenyl-1,1-dimethylurea) → anaerobic state transition induced a decrease in the maximal fluorescence yield at room temperature and in the F/sub PSII//F/sub PSI/ ratio at 770K, which was three times larger than in a classical state I → state II transition. The fluorescence changes observed in vivo were similar in amplitude to those observed in vitro upon transfer to the light of dark-adapted, broken chloroplasts incubated in the presence of ATP. We then compared the phosphorylation pattern of thylakoid polypeptides in C. reinhardtii in vitro and in vivo using γ-[32P]ATP and [32P]orthophosphate labeling, respectively. The same set of polypeptides, mainly light-harvesting complex polypeptides, was phosphorylated in both cases. We observed that this phosphorylation process is reversible and is mediated by the redox state of the plastoquinone pool in vivo as well as in vitro. Similar changes of even larger amplitude were observed with the F34 mutant intact cells lacking in photosystem II centers. The presence of the photosystem II centers is then not required for the occurrence of the plastoquinone-mediated phosphorylation of light-harvesting complex polypeptides

  13. Evaluation of serum enzymes polypeptide, chemokine levels and peripheral blood immune cells contents in children with bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    Zhong-Yong Xie; Wei-Ming Chen; Wei-Zhong Zhang; Shang-Hong Tang

    2015-01-01

    Objective:To evaluate serum enzymes polypeptide, chemokine levels and peripheral blood immune cells contents of children with bronchial asthma.Methods:150 bronchial asthma children were enrolled as observation group, 120 healthy children received physical examination in our hospital over the same period were enrolled as control group. Then serum enzymes polypeptide, chemokine levels and peripheral blood immune cells contents were detected.Results:(1) Enzyme polypeptide: serum Cat K, MMP1, MMP2, MMP9 contents of observation group were significant higher than those of the control group; but TIMP1 content was lower than that of control group; (2)Chemokine: serum Eotaxin, MCP-1, MCP-4, MDC and IL-8 contents of observation group were higher than those of the control group; (3) Immune cell: Th1 cell, CD4+CD25+T cell and CD8+CD28+T cell contents of observation group were significant lower than those of the control; but Th2 cells and Th17 cells were higher than those of control group.Conclusions:Serum enzymes polypeptide and chemokine levels of children with bronchial asthma abnormally increase with presence of peripheral blood T cell subsets contents disorder, which is correlated with airway remodeling and inflammatory cell infiltration process.

  14. The EhADH112 recombinant polypeptide inhibits cell destruction and liver abscess formation by Entamoeba histolytica trophozoites.

    Science.gov (United States)

    Martínez-López, Carolina; Orozco, Esther; Sánchez, Tomás; García-Pérez, Rosa María; Hernández-Hernández, Fidel; Rodríguez, Mario A

    2004-04-01

    The Entamoeba histolytica EhCPADH complex, formed by a cysteine proteinase (EhCP112) and an adhesin (EhADH112), is involved in adherence, phagocytosis and cytolysis. This makes this complex an attractive candidate as a vaccine against amoebiasis. Here, we produced the recombinant polypeptide EhADH243, which includes the adherence epitope detected by a monoclonal antibody against the EhCPADH complex. EhADH243 was purified, and the effect of the polypeptide on in vitro and in vivo virulence was studied. Antibodies against EhADH243 reacted with the EhCPADH complex and with the recombinant polypeptide. EhADH243 and antibodies against this polypeptide inhibited adherence, phagocytosis and destruction of cell monolayers by live trophozoites, but had little effect on cell monolayer destruction by trophozoite extracts. EhADH243 recognized a 97 kDa protein in the MDCK membrane fraction that could be a putative receptor for E. histolytica trophozoites. Hamsters immunized with EhADH243 developed humoral response against EhCPADH, and animals were partially protected from amoebic liver abscess.

  15. Build-a-Polypeptide: A Hands-On Worksheet to Enhance Student Learning in an Introductory Biology Course

    Directory of Open Access Journals (Sweden)

    Kristi Hall

    2014-07-01

    Full Text Available Many introductory biology students have a weak (or nonexistent chemistry background. Due to this apparent knowledge gap, many students struggle to understand the process of polypeptide formation via dehydration synthesis as well as the interactions between individual polypeptide chains. This inability to reason about how individual amino acids interact with one another prevents students from making the cognitive leap from primary to secondary structure. In turn, students do not fully understand how even higher levels of organizations (i.e., tertiary and quaternary interactions form the final three-dimensional configurations of proteins.  We designed Build-a-Polypeptide in an attempt to help fill the part of the knowledge gap.  In this activity, students physically represent the process of polypeptide synthesis and R group interactions using a paper model. Essentially, this is a simple cut and paste project that allows students to build a beginner's (i.e., highly truncated and simplified model of protein folding. Previous research has shown that physical modeling can aid student understanding of complex topics (1,2.  With that in mind, we developed this interactive activity to improve student understanding of protein synthesis and structure formation. This activity requires no laboratory equipment and can be completed within one (50 minute class. Our worksheets were designed for use in introductory college-level biology courses, but could easily be adapted for high school or AP biology classes.

  16. The preparation of nucleotides uniformly labelled with carbon-14 by biosynthetic methods. Isolation of adenylic, uridylic, cytidylic,and guanylic acids, from the alkaline hydrolysate of escherichia coli RNA

    International Nuclear Information System (INIS)

    A method is described for the preparation and analysis of adenylic, uri dilic, cytidi- 11c and guanylic acids, labelled with 14C. Escherichia coli cells have been labelled by growing them in a medi dia containing glucose-14C as their only source of carbon. RNA is isolated from the cells, and after hydrolysis of the molecule the resulting nucleotides are separated by gel filtration and exchange chromatography. Chemical and radiochemical purity of the Isolated nucleotides is determined, and also its specific radioactivity. (Author) 30 refs

  17. Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons.

    Science.gov (United States)

    Fukuchi, Mamoru; Tabuchi, Akiko; Kuwana, Yuki; Watanabe, Shinjiro; Inoue, Minami; Takasaki, Ichiro; Izumi, Hironori; Tanaka, Ayumi; Inoue, Ran; Mori, Hisashi; Komatsu, Hidetoshi; Takemori, Hiroshi; Okuno, Hiroyuki; Bito, Haruhiko; Tsuda, Masaaki

    2015-04-01

    Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline β, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated.

  18. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    Science.gov (United States)

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. PMID:27582064

  19. Tuning calcium carbonate growth through physical confinement and templating with amyloid-like polypeptide aggregates

    Science.gov (United States)

    Colaco, Martin Francis

    that this methodology does not extend to three-dimensional confined systems, as the water has no method of escape. Through the addition of an insoluble hydroscopic polymer to our microreactors, amorphous calcium carbonate of controllable sizes can be grown. However, crystalline calcium carbonate cannot be grown without some type of templating. Studies of calcium carbonate templating have predominantly been performed on SAMs or in poorly characterized gels or protein films. The use of ordered protein or polypeptide aggregates for templating permits both geometry and charge surface density to be varied. We have studied the kinetics and final morphology of ordered aggregates of poly-L-glutamic acid and a copolymer of glutamic acid and alanine through experiments and simulations. Electrostatics, not structure, of the monomer appeared to be the dominating factor in the aggregation, as pH and salt concentration changes led to dramatic changes in the kinetics. Examining our experimental with existing models provided inconsistent results, so we developed a new model that yielded physically realistic rate constants, while generating better fits with longer lag phases and faster growths. However, despite the similarity of aggregation conditions, the two polypeptides yielded vastly different morphologies, with the PEA forming typical amyloid-like fibrils and PE forming larger, twisted lamellar aggregates. Templating with these aggregates also yielded dramatically different patterns. Polycrystalline rhombohedral calcite with smooth faces and edges grew on PEA fibrils, with minimal templating in evidence. However, on PE, numerous calcite crystals with triangular projections tracked the surface of the aggregate. The PE lamellae are characterized by extensive beta-sheet structure. In this conformation, the glutamic acid spacings on the surface of the aggregates can mimic the spacings of the carboxylates in the calcite lattice. In addition, the high negative charge density on the

  20. Generic phosphatase activity detection using zinc mediated aggregation modulation of polypeptide-modified gold nanoparticles

    Science.gov (United States)

    Selegård, Robert; Enander, Karin; Aili, Daniel

    2014-11-01

    A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme. Phosphatase activity generates inorganic phosphate that forms an insoluble complex with Zn2+. In a sample containing a preset concentration of Zn2+, phosphatase activity will markedly reduce the concentration of dissolved Zn2+ from the original value, which in turn affects the aggregation of gold nanoparticles functionalized with a designed Zn2+ responsive polypeptide. The change in nanoparticle stability thus provides a rapid and sensitive readout of the phosphatase activity. The assay is not limited to a particular enzyme or enzyme substrate, which is demonstrated using three completely different phosphatases and five different substrates, and thus constitutes a highly interesting system for drug screening and diagnostics.A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme

  1. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles

    Science.gov (United States)

    Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.

    2015-07-01

    The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well

  2. Polypeptide modification: an improved proglycinin design to stabilise oil-in-water emulsions.

    Science.gov (United States)

    Prak, Krisna; Naka, Masashi; Tandang-Silvas, Mary Rose Gecolea; Kriston-Vizi, Janos; Maruyama, Nobuyuki; Utsumi, Shigeru

    2015-09-01

    β-Conglycinin and glycinin are soybean major seed storage proteins. Previous studies have shown that adding the extension region of β-conglycinin α subunit improves the emulsifying properties of proglycinin and confers more favourable characteristics than fusing the extension region of β-conglycinin α' subunit or the hypervariable regions (A4IV) of glycinin A1aB1b subunit. To evaluate the polypeptide properties, we designed mutants of A1aB1b subunits fused with truncated versions of A4IV (A4IVcut), α (αcut) or α' (α'cut) extension regions lacking the C-terminus 25 or 31 residues (A4IVC25, αC25 or α'C31), and also A4IVcut and α'cut with αC25 residues added (A4IVcut-αC25 and α'cut-αC25). All the modified proteins displayed conformations similar to the wild type. With good solubilities, the emulsion properties of the modified proteins were much better at ionic strength μ = 0.08 than at μ = 0.5. The modified A1aB1bαcut and A1aB1bα'cut showed poorer emulsion properties than those of A1aB1bα and A1aB1bα'. Replacing the hydrophobic A4IVC25 region of A1aB1bA4IV with hydrophilic αC25 created A1aB1bA4IVcut-αC25, which had the best emulsion stability among these proglycinin mutants. We found that addition of αC25 improves the emulsifying properties of two C-terminally truncated proglycinin variants, thereby illustrating its potential general utility. Our investigation showed that in order to improve the emulsifying ability and emulsion stability of a globular protein, the introduced polypeptide should (i) be highly hydrophilic, (ii) consist of multiple hydrophobic-strong hydrophilic regions comprising at least two alpha helixes, (iii) harbour a terminal α-helix at the end of the C-terminus and (iv) have properties similar to those of αC25. PMID:26243884

  3. Assembly Properties of Divergent Tubulin Isotypes and Altered Tubulin Polypeptides in Vivo

    Science.gov (United States)

    Gu, Wei

    1990-01-01

    Mbeta1 is one of the closely related (though distinct) gene products termed isotypes encoded by the mouse beta-tubulin multigene family. These isotypes typically share 95%-98% homology at the amino acid level. However, Mbeta 1 is unusual in its relatively high degree of divergence compared to other beta-tubulin isotypes; furthermore, its tissue-restricted pattern of expression (Mbeta1 is only expressed in hematopoietic tissue) led to speculation that this isotype might be specialized for assembly into unique microtubule structures (such as the marginal band in some erythropoietic cell types). To test if this isotype is capable of coassembly into microtubules in cell types other than those in which it is normally expressed, a method was developed for the generation of an anti-Mbeta1 specific antibody. The Mbeta1 tubulin isotype was introduced into tissue culture cells by transfection and its expression and assembly properties were studied in both transiently transfected cells and stable cell lines using the anti -Mbeta1 specific antibody. The successful expression and coassembly of a 'foreign' tubulin isotype into microtubules in tissue culture cells and the generation of an antibody that can specifically recognize this isotype provided an approach to study the properties of altered beta-tubulin polypeptides in vivo. beta-tubulin synthesis in eukaryotic cells is autoregulated by a posttranscriptional mechanism in which the first four amino acids are responsible for determining the stability of beta -tubulin mRNA. To test if the beta -tubulin amino-terminal regulatory domain also contributes to the capacity of the tubulin monomer to polymerize into microtubules, altered sequences encoding Mbeta 1 but containing deletions encompassing amino acids 2-5 were expressed in HeLa cells. Stable cell lines expressing the altered Mbeta1 isotype were also generated. The assembly properties and stability of these altered Mbeta1 tubulin polypeptides were tested using the anti

  4. Viscoelastic Behavior of Aqueous Solutions of Hydrophobically-Modified Water-Soluble Polypeptides

    Science.gov (United States)

    Inomata, Katsuhiro; Takai, Tomokazu; Sugimoto, Hideki; Nakanishi, Eiji

    2008-07-01

    Water-soluble polypeptide, poly[N5-(2-hydroxyethyl) L-glutamine] (PHEG), was hydrophobiocally modified partially along the main chain by long alkyl chains -(CH2)n-1CH3 (Cn), and association and viscoelastic behavior of aqueous solution of these associative polymers (PHEG-g-Cn,n = 16 and 18) in water/ethylene glycol (EG) mixed solvent have been investigated. The main chain of PHEG-g-Cn changed its conformation from flexible random-coil to rigid α-helix with an increase in EG content of the mixed solvent. When the solvent was pure water, the existence of associative alkyl chains induced a drastic increase in solution viscosity, probably because of a formation of self-assembled large aggregates via intermolecular association. When EG was used as solvent, the steady-flow viscosity measurements exhibited non-Newtonian behavior, suggesting a formation of weakly associated network structure. Concentration dependence of the viscosity for EG solution was similar to that for lyotropic liquid crystalline solutions around isotropic-anisotropic transition concentration, which may suggest an orientational ordering of PHEG-g-Cn in rodlike conformation.

  5. Shotgun proteome analysis of beer and the immunogenic potential of beer polypeptides.

    Science.gov (United States)

    Picariello, Gianluca; Mamone, Gianfranco; Nitride, Chiara; Addeo, Francesco; Camarca, Alessandra; Vocca, Immacolata; Gianfrani, Carmen; Ferranti, Pasquale

    2012-10-22

    The majority of beer proteins originate from barley (Hordeum vulgare) which is used for brewing. Barley is known to contain celiacogenic gliadin-like prolamins (hordeins) along with other immunogenic proteins which endure malt proteases and the harsh conditions of brewing. In addition, a multitude of peptides that may retain or even amplify the immune-stimulating potential is released in beer because of proteolysis. The comprehensive annotation of the beer proteome is challenged both by the high concentration range of the protein entities and by a severe degree of processing-induced modifications. Overcoming the pitfalls of the classical two-dimensional electrophoresis approach coupled to mass spectrometry (MS), the gel-free shotgun proteomic analysis expanded the current inventory of a popular Italian beer to 33 gene products, including traces of intact B- and D-hordeins and 10 proteins from Saccharomyces spp. The high performance liquid chromatography-electrospray MS/MS peptidomic analysis of the low-molecular weight beer components disclosed a panel of hordein-derived peptides that encrypt gluten-like sequence motifs, potentially harmful to celiacs. The presence of antigliadin IgA-immunoresponsive prolamins was assayed by Western and dot blot using sera of N=4 celiac patients. Gliadin-reactive T-cell lines isolated from the intestine of N=5 celiacs activated an IFN-γ response when challenged with deamidated beer polypeptides.

  6. A Model for the Enantiomeric Enrichment of Polypeptides on the Primitive Earth

    Science.gov (United States)

    Blair, Neal E.; Bonner, William A.

    1981-12-01

    A mixture of D- and L-leucine N-Carboxyanhydride (NCA) having an enantiomeric composition of 65.6% L- and 34.4% D-isomer (i.e. 31.2% enantiomeric excess (e.e.)) was polymerized to the extent of 52% with sodium methoxide initiator to yield a polyleucine product the enantiomeric composition of which was 72.7% L- and 27.3% D-leucine (45.4% e.e.). This polymer was in turn partially hydrolyzed by acid, whereupon the unhydrolyzed polyleucine residue was found to have an enantiomeric composition of 77.5% L- and 22.5% D-leucine (55.0% e.e.). Thus the e.e. increase in the partial polymerization step (14.2%) and the partial hydrolysis step (9.6%) combined to total 23.8% for the overall polymerization-hydrolysis sequence. On the basis of these model experiments it is proposed that repetitive partial polymerization hydrolysis reactions, driven by environmental dry-wet cycles, might have been operative on the primitive Earth to engender the abiotic evolution of optically enriched polypeptides.

  7. Ferritin, heavy polypeptide 1 interacts with fragile X-related protein

    Institute of Scientific and Technical Information of China (English)

    Yun Ma; Shuya He; Yang Yang; Qiong Chen; Weichun Xiao; Binyuan Li; Jiao Su; Xianghui Fu

    2011-01-01

    Fragile X-related protein 1 (FXR1P) is a member of the FXR gene family, which also includes fragile X mental retardation protein and fragile X-related protein 2 (FXR2P). To understand the functions of FXR1P, we screened FXR1P-interacting proteins using a yeast two-hybrid system. FXR1P was fused to pGBKT7 and used as the bait to screen a human fetal brain cDNA library. This screening revealed 10 FXR1P-interacting proteins including FTH1. FTH1 encodes Homo sapiens ferritin,heavy polypeptide 1. The interaction between FXR1P and FTH1 was confirmed by retesting in yeast using both a β-galactosidase assay and growth studies on selective media. A co-immunoprecipitation assay in mammalian cells further confirmed the FXR1P/FTH1 interaction.Moreover, the results revealed that FTH1 colocalized with FXR1P in the cytoplasm around the nucleus in mammalian cells. The present findings suggest that FXR1P plays an important role in iron metabolism in the brain by interacting with FTH1. This provides clues for elucidating the relationship between FXR1P function and fragile X syndrome.

  8. Cytotoxic helix-rich oligomer formation by melittin and pancreatic polypeptide.

    Directory of Open Access Journals (Sweden)

    Pradeep K Singh

    Full Text Available Conversion of amyloid fibrils by many peptides/proteins involves cytotoxic helix-rich oligomers. However, their toxicity and biophysical studies remain largely unknown due to their highly dynamic nature. To address this, we chose two helical peptides (melittin, Mel and pancreatic polypeptide, PP and studied their aggregation and toxicity. Mel converted its random coil structure to oligomeric helical structure upon binding to heparin; however, PP remained as helix after oligomerization. Interestingly, similar to Parkinson's associated α-synuclein (AS oligomers, Mel and PP also showed tinctorial properties, higher hydrophobic surface exposure, cellular toxicity and membrane pore formation after oligomerization in the presence of heparin. We suggest that helix-rich oligomers with exposed hydrophobic surface are highly cytotoxic to cells irrespective of their disease association. Moreover as Mel and PP (in the presence of heparin instantly self-assemble into stable helix-rich amyloidogenic oligomers; they could be represented as models for understanding the biophysical and cytotoxic properties of helix-rich intermediates in detail.

  9. Glucose-Dependent Insulinotropic Polypeptide Augments Glucagon Responses to Hypoglycemia in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Calanna, Salvatore; Sparre-Ulrich, Alexander H;

    2015-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) is glucagonotropic, and glucagon-like peptide-1 (GLP-1) is glucagonostatic. We studied the effects of GIP and GLP-1 on glucagon responses to insulin-induced hypoglycemia in patients with type 1 diabetes mellitus (T1DM). Ten male subjects with T1DM...... days, significantly less exogenous glucose was needed to keep plasma glucose above 2 mmol/L (155 ± 36 [GIP] vs. 232 ± 40 [GLP-1] vs. 212 ± 56 [saline] mg ⋅ kg(-1), P < 0.05). Levels of insulin, cortisol, growth hormone, and noradrenaline, as well as hypoglycemic symptoms and cognitive function, were...... (C-peptide negative, age [mean ± SEM] 26 ± 1 years, BMI 24 ± 0.5 kg/m(2), HbA1c 7.3 ± 0.2%) were studied in a randomized, double-blinded, crossover study, with 2-h intravenous administration of saline, GIP, or GLP-1. The first hour, plasma glucose was lowered by insulin infusion, and the second hour...

  10. Complete nucleotide sequence of wound tumor virus genomic segments encoding nonstructural polypeptides.

    Science.gov (United States)

    Anzola, J V; Dall, D J; Xu, Z K; Nuss, D L

    1989-07-01

    Sequence analysis of the genomic segments which encode the five wound tumor virus nonstructural polypeptides has been completed. The complete nucleotide sequence of segments S4 (2565 bp), S6 (1700 bp), S9 (1182 bp), and S10 (1172 bp) are presented in this report while the sequence of segment S12 (851 bp) has been described previously (T. Asamizu, D. Summers, M. B. Motika, J. V. Anzola, and D. L. Nuss, 1985, Virology 144, 398-409). Comparison of the only published sequence for another member of the genus Phytoreovirus, that of rice dwarf virus segment S10, with the combined available wound tumor virus sequence data revealed similarity with WTV segment S10: 54.9 and 30.6% at the nucleotide and amino acid level, respectively. Although wound tumor virus and rice dwarf virus differ in plant host range, tissue specificity, vector range, and disease symptom expression, the level of sequence similarity shared by the two segments suggests a common origin for these viruses. The potential use of a phytoreovirus sequence database for predicting functions of viral encoded gene products is considered.

  11. A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria.

    Science.gov (United States)

    Collier, J L; Grossman, A R

    1994-03-01

    Phycobilisomes are the multiprotein complexes predominantly responsible for harvesting light energy in cyanobacteria and some eukaryotic algae. When the cyanobacterium Synechococcus sp. strain PCC 7942 is deprived of an essential nutrient, the phycobilisomes are specifically and rapidly degraded. Degradation may be either partial (after phosphorus deprivation) or complete (after sulfur or nitrogen deprivation). We have developed a visual screen to obtain mutants unable to degrade their phycobilisomes upon nutrient starvation. Complementation of one of these mutants led to the identification of a gene, designated nblA, that encodes a 59 amino acid polypeptide essential for phycobilisome degradation. Transcription of nblA increases dramatically in sulfur- or nitrogen-deprived cells and moderately in phosphorus-deprived cells. Using the phosphorus-regulated alkaline phosphatase (phoA) promoter as a tool, we engineered constructs from which we could control the expression of either sense or antisense nblA. Increased expression of sense nbLA caused complete phycobilisome degradation during phosphorus deprivation, while expression of antisense nblA prevented phycobilisome degradation. Hence, nblA is necessary, and may be sufficient, for the degradation of phycobilisomes under adverse environmental conditions. Further investigation of the mechanism by which nblA causes phycobilisome destruction may reveal general principles that govern the specificity of macromolecular complex degradation.

  12. Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas

    DEFF Research Database (Denmark)

    Mandel, U; Hassan, H; Therkildsen, M H;

    1999-01-01

    GalNAc-T1, -T2, and -T3. Application of this panel of novel antibodies revealed that GalNAc- transferases are differentially expressed in different cell lines, in spermatozoa, and in oral mucosa and carcinomas. For example, GalNAc-T1 and -T2 but not -T3 were highly expressed in WI38 cells, and GalNAc......Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc: polypeptide N -acetyl-galactosaminyltransferases (GalNAc-transferases). Individual GalNAc-transferases appear to have different functions and Northern analysis indicates that they are differently expressed in different organs....... This suggests that O-glycosylation may vary with the repertoire of GalNAc-transferases expressed in a given cell. In order to study the repertoire of GalNAc-transferases in situ in tissues and changes in tumors, we have generated a panel of monoclonal antibodies (MAbs) with well defined specificity for human...

  13. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis.

    Science.gov (United States)

    Kong, Yun; Joshi, Hiren J; Schjoldager, Katrine Ter-Borch Gram; Madsen, Thomas Daugbjerg; Gerken, Thomas A; Vester-Christensen, Malene B; Wandall, Hans H; Bennett, Eric Paul; Levery, Steven B; Vakhrushev, Sergey Y; Clausen, Henrik

    2015-01-01

    N-acetylgalactosaminyltransferase (GalNAc)-type (mucin-type) O-glycosylation is an abundant and highly diverse modification of proteins. This type of O-glycosylation is initiated in the Golgi by a large family of up to 20 homologous polypeptide GalNAc-T isoenzymes that transfer GalNAc to Ser, Thr and possibly Tyr residues. These GalNAc residues are then further elongated by a large set of glycosyltransferases to build a variety of complex O-glycan structures. What determines O-glycan site occupancy is still poorly understood, although it is clear that the substrate specificities of individual isoenzymes and the repertoire of GalNAc-Ts in cells are key parameters. The GalNAc-T isoenzymes are differentially expressed in cells and tissues in principle allowing cells to produce unique O-glycoproteomes dependent on the specific subset of isoforms present. In vitro analysis of acceptor peptide substrate specificities using recombinant expressed GalNAc-Ts has been the method of choice for probing activities of individual isoforms, but these studies have been hampered by biological validation of actual O-glycosylation sites in proteins and number of substrate testable. Here, we present a systematic analysis of the activity of 10 human GalNAc-T isoenzymes with 195 peptide substrates covering known O-glycosylation sites and provide a comprehensive dataset for evaluating isoform-specific contributions to the O-glycoproteome.

  14. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity.

    Science.gov (United States)

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G; Meldal, Morten; Holmér, Andreas P; Blixt, Ola; Cló, Emiliano; Levery, Steven B; Clausen, Henrik; Wandall, Hans H

    2011-09-16

    UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence specificity, whereas the primary function of the lectin domain is to increase affinity to previously glycosylated substrates. Whether the lectin domain also has peptide sequence selectivity has remained unclear. Using a glycopeptide array with a library of synthetic and recombinant glycopeptides based on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate an additional level of complexity in the initiation step of O-glycosylation by GalNAc-Ts.

  15. Effect of small nuclear ribonucleoprotein-associated polypeptide N on the proliferation of medulloblastoma cells.

    Science.gov (United States)

    Jing, Junjie; Zhao, Yang; Wang, Chengfeng; Zhao, Qingshuang; Liang, Qinchuan; Wang, Shousen; Ma, Jie

    2015-05-01

    Spliceosome mutations have been reported in various types of cancer and a number of antitumor drugs have been observed to tightly bind to spliceosome components. Small nuclear ribonucleoprotein‑associated polypeptide N (SNRPN) is a small ribonuclear protein and is a key spliceosome constituent. However, the role of SNRPN in human medulloblastoma remains unknown. In the present study, the effect of SNRPN on cell growth was investigated in vitro using the Daoy human medulloblastoma cell line. Lentivirus (Lv)-mediated short hairpin (sh) RNA was used to silence SNRPN expression, which was verified by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell proliferation was examined by MTT and colony formation assays. Knockdown of SNRPN markedly reduced the proliferation and colony formation ability of Daoy medulloblastoma cells. In addition, flow cytometric analysis revealed that the cell cycle distribution was altered when the Daoy cells were infected with Lv‑shSNRPN. To the best of our knowledge, this is the first study to investigate the effect of SNRPN on cell proliferation in medulloblastoma. The results indicate that SNRPN may be a potential novel target for the development of pharmacological therapeutics in human medulloblastoma.

  16. Small nuclear ribonucleoprotein associated polypeptide N accelerates cell proliferation in pancreatic adenocarcinoma.

    Science.gov (United States)

    Ma, Jin; Zhang, Zhuo; Wang, Jiancheng

    2015-10-01

    The spliceosome, the large RNA‑protein molecular complex, is crucial for pre‑mRNA splicing. Several antitumor drugs have been found to tightly bind to the components of the spliceosome and mutations in the spliceosome have been reported in several types of cancer. However, the involvement of the spliceosome in pancreatic adenocarcinoma remains unclear. In the present study, small nuclear ribonucleoprotein associated polypeptide N (SNRPN), a key constituent of spliceosomes, was disrupted in BxPC‑3 pancreatic adenocarcinoma cells using lentivirus‑mediated RNA interference (RNAi). It was found that knockdown of SNRPN reduced the proliferation ability of BxPC‑3 cells, as determined by an MTT assay. Furthermore, cell colony formation was impaired in SNRPN depleted adenocarcinoma cells and cell cycle analysis showed that depletion of SNRPN led to S phase cell cycle arrest and apoptosis. These results suggest that SNRPN is a key player in pancreatic adenocarcinoma cell growth, and targeted loss of SNRPN may be a potential therapeutic method for pancreatic cancer.

  17. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Myoung Sook Kim

    Full Text Available Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH in a significant proportion of primary esophageal squamous cell carcinoma (ESCC samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/beta-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of beta-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/beta-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.

  18. Multiscale characterization of a chimeric biomimetic polypeptide for stem cell culture

    International Nuclear Information System (INIS)

    Mesenchymal stem cells have attracted great interest in the field of tissue engineering and regenerative medicine because of their multipotentiality and relative ease of isolation from adult tissues. The medical application of this cellular system requires the inclusion in a growth and delivery scaffold that is crucial for the clinical effectiveness of the therapy. In particular, the ideal scaffolding material should have the needed porosity and mechanical strength to allow a good integration with the surrounding tissues, but it should also assure high biocompatibility and full resorbability. For such a purpose, protein-inspired biomaterials and, in particular, elastomeric-derived polypeptides are playing a major role, in which they are expected to fulfil many of the biological and mechanical requirements. A specific chimeric protein, designed starting from elastin, resilin and collagen sequences, was characterized over different length scales. Single-molecule mechanics, aggregation properties and compatibility with human mesenchymal stem cells were tested, showing that the engineered compound is a good candidate as a stem cell scaffold to be used in tissue engineering applications. (paper)

  19. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes

    Science.gov (United States)

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids.

  20. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients

    Institute of Scientific and Technical Information of China (English)

    Lin-yong XU; Hong-hao ZHOU; Zhen-qiu SUN; Yi-jing HE; Wei ZHANG; Sheng Deng; Qing LI; Wei-xia ZHANG; Zhao-qian LIU; Dan WANG; Yuan-fei HUANG

    2007-01-01

    Aim: To detect 388G>A and 521T>C variant alleles in the organic anion transporting polypeptide- 1B 1 (OATP 1B 1, encoding gene SLCOIB1) gene. Methods:One hundred and eleven healthy volunteers were screened for OATPIB 1 alleles in our study. PCR-restriction fragment length polymorphism was used to identify the 388G>A polymorphism and a 1-step tetra-primer method was developed for the determination of 521T>C mutation. Results: The frequencies of the 388G>A and 521T>C variant alleles in the Chinese population were 73.4%and 14.0%,respectively. The frequencies of the SLCO1BI*lb and *15 haplotypes were 59.9% and 14.0%, respectively. Conclusion: The SLCO1B1*1b and SLCO1B1*15 variants are relatively common in the Chinese population. Their frequencies are similar to that in the Japanese, but significantly different from that in Caucasians and blacks.