Sample records for adenovirus-mediated gene transfer

  1. Isolated limb perfusion for local gene delivery: efficient and targeted adenovirus-mediated gene transfer into soft tissue sarcomas

    W.K. de Roos; J.H.W. de Wilt (Johannes); M.E. van der Kaaden; E.R. Manusama (Eric); M.W. de Vries; A. Bout; T.L.M. ten Hagen (Timo); D. Valerio (Dinko); A.M.M. Eggermont (Alexander)


    textabstractOBJECTIVE: To evaluate the potential of isolated limb perfusion (ILP) for efficient and tumor-specific adenovirus-mediated gene transfer in sarcoma-bearing rats. SUMMARY BACKGROUND DATA: A major concern in adenovirus-mediated gene therapy in cancer is the transfer of ge

  2. Adenovirus-mediated gene transfer to tumor cells.

    Cascalló, Manel; Alemany, Ramon


    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting.

  3. Adenovirus-mediated nitric oxide synthase gene transfer.

    Raman, Kathleen G; Shapiro, Richard A; Tzeng, Edith; Kibbe, Melina R


    The varied biological effects of nitric oxide (NO) have led to intense research into its diverse physiologic and pathophysiologic roles in multiple disease processes. It has been implicated in the development of altered vasomotor tone, intimal hyperplasia, atherosclerosis, impotence, host defense, and wound healing. Using the modern technologies of recombinant DNA and gene transfer using adenoviral vectors, the effects of NO derived from various NO synthase (NOS) enzymes can be studied in a variety of tissues and the therapeutic applications of NOS is possible. Such uses of NOS gene transfer have been investigated extensively in the vasculature where NO is critical to regulating vascular homeostasis. NOS gene therapy has the theoretical advantage of allowing NO delivery to be localized, thereby limiting potential adverse effects of NO. The benefits of adenoviral vectors in gene transfer include relatively high transduction efficiencies, both replicating and nonreplicating cells may be infected, and the high titers of adenovirus that can be produced. The methods described in this chapter include the cloning of the iNOS cDNA into a recombinant adenoviral vector, large-scale production of that vector AdiNOS preparation, and the use of the vector to transduce tissue in vitro and in vivo.

  4. Adenovirus-mediated Gene Transfer of MMP-2 into Cultured Porcine Trabecular Meshwork Cells


    This study aimed to use adenoviral gene transfer to express matrix metalloproteinase (MMP)-2 in cultured porcine trabecular meshwork cells and to evaluate the duration of adenovirus-mediated MMP-2 expression and its enzymatic activity. MMP-2 cDNA was synthesized by ligating three segments of MMP-2 cDNA obtained by reverse transcription-polymerase chain reaction (RT-PCR) with mRNA extracted from mouse lungs. MMP-2 cDNA was inserted into replication-deficient adenoviral vectors. Western blottin...



    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  6. Suppression of gastric cancer growth by adenovirus-mediated transfer of the PTEN gene

    Ying Hang; Yong-Chen Zheng; Yan Cao; Qing-Shan Li; Yu-Jie Sui


    AIM: To investigate the tumor-suppressive effect of the phosphatase and tensin homologue deleted from chromosome (PTEN) in human gastric cancer cells th atwere wild type for PTEN.METHODS: Adenoviruses expressing PTEN or luciferase as a control were introduced into gastric cancer cells.The effect of exogenous PTEN gene on the growth and apoptosis of gastric cancer cells that are wtPTEN were examined in vitro and in vivo.RESULTS: Adenovirus-mediated transfer of PTEN (AdPTEN) suppressed cell growth and induced apoptosis significantly in gastric cancer cells (MGC-803, SGC-7901)carrying wtPTEN in comparison with that in normal gastric epithelial cells (GES-1) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase and mitogen-activated protein kinase and cell-cycle arrest at the G2/M phase but not at the G1 phase. Furthermore,treatment of human gastric tumor xenografts (MGC-803,SGC-7901) with Ad-PTEN resulted in a significant (P<0.01)suppression of tumor growth.CONCLUSION: These results indicate a significant tumorsuppressive effect of Ad-PTEN against human gastric cancer cells. Thus, Ad-PTEN may be used as a potential therapeutic strategy for treatment of gastric cancers.

  7. Angiogenesis effects of adenovirus-mediated gene transfer of VEGF-B on chronic ischemic myocardium

    DONG Shu-qiang; ZHANG Bao-ren; MEI Ju; XU Zhi-yun; ZOU Liang-jian; HUANG Sheng-dong


    Objective: To study the angiogenesis effects of adenovirus-mediated gene transfer of VEGF-B on chronic ischemic myocardium. Methods: Domestic pigs underwent thoracotomy and placement of an ameroid constrictor on the circumflex coronary artery. Four weeks later, Ad. VEGF-B, Ad. LacZ or PBS were administrated directly into the myocardium at 10 sites in the circumflex distribution (109 PFU or 100 μl) according to groups. Echocardiography and ex vivo coronary angiography were performed. The injection sites around myocardium were harvested and subjected to histological analysis and immunochemical staining. Results: Echocardiography assessment 4 weeks after vector administration demonstrated significant improvement of regional wall systolic function. Collateral vesseldevelopment assessed by angiography was also significantly greater in Ad. VEGF-B animals than that in control animals. Vascular density analysis revealed a mean of 43±5 neovessels per high-power field in Ad.VEGF-B group versus 19±4 and 17±6 in Ad.LacZ and PBS group. Conclusion:Direct intramyocardial administration of Ad.VEGF-B can induce focal angiogenesis and result in improvement in regional myocardial function, which may be useful in patients with ischemic heart disease who are not eligible for conventional therapies.



    To observe the synergistic efficacy between Adenovirus-mediated bcl-Xs(Adv-bcl-Xs) gene transfer and chemotherapy on ovarian cancer cell growth. Methods: NuTu-19 cells were infected by different titers of Adv-bcl-Xs and treated with topotecan in the meantime. Cell proliferation was measured 3 days later by MTT. Graphical representations and statistical analyses for their interaction in tumor cells were done. Results: The statistical result and Graphical representations of the statistical modeling showed synergy effect on cell growth inhibition (P<0.01). Conclusion: There were synergistic efficacies between Adv-bcl-Xs gene therapy and Topotecan in ovarian cancer cell growth.


    张珊文; 肖绍文; 吕有勇


    Objective: To evaluate the effect of adenovirus- mediated p53 gene (Adp53) on apoptosis and radiosensitivity of human gastric carcinoma cell lines. Methods: Recombinant adenovirus expressing wild-type p53 gene was transferred into four human gastric carcinoma cell lines with different p53 genetic status. p53 protein expression was detected by immunohistochemistry assay and western blot assay. Cell survival was assessed using a clonogenic assay. TUNEL assay was used in determination of apoptosis. Four human gastric carcinoma cells infected with Adp53 were irradiated with 4Gy and cell cycle distribution and Sub-G1 peak were assayed by flow cytometry. Results: G2/M arrest, apoptosis and inhibition of tumor cell proliferation were induced by infection at Adp53 at 100 MOI which caused high transfer rate of wild-type p53 and strong expression of p53 protein in four human gastric carcinoma cells. The radio-enhancement ratio of Adp53 at 4Gy were 3.0 for W cell, 3.6 for M cell, 2.2 for neo cell and 2.5 for 823 cell in vitro. Conclusion: This study demonstrated that Adp53 transfer increased cellular apoptosis and radiosensitivity of human gastric carcinoma cell lines in vitro independently on cellular intrinsic p53 status thus supporting the combination of p53 gene therapy with radiotherapy in clinical trials.

  10. Adenovirus-mediated transfer of RA538 gene and its antitumor effect

    程金科; 林晨; 隗玥; 张雪艳; 邢嵘; 牟巨伟; 王秀琴; 吴旻


    The RA538 cDNA was transferred into human ovarian cancer cell line SK-OV-3 and human melanoma cell line WM-983A by its recombinant adenoviral vector constructed through homologous recombination. It was demonstrated that the recombinant adenovirus could transfer RA538 gene with high efficiency, and could obviously inhibit tumor growth, with the inhibiting rates of 85% and 73% respectively, at the same time greatly repress the colony forming ability of the cells. The therapeutic experiments on transplanted subcutaneous tumor model in nude mice demonstrated that RA538 could significantly inhibit tumor growth. Flow cytometry and DNA fragmentation analysis indicated that RA538 could induce the cell cycle G1 arrest/apoptosis of the tumor cells. The expression of cmyc gene was found pronouncedly reduced by Western blot analysis. These results suggest that the RA538 recombinant adenovirus could be a promising drug in cancer gene therapy.

  11. Treatment of chronical myocardial ischemia by adenovirus-mediated hypatocyte growth factor gene transfer in minipigs

    YUAN Biao; ZHANG YouRong; ZHAO Zhong; WU DanLi; YUAN LiZhen; WU Bin; WANG LiSheng; HUANG Jun


    Growth factor gene transfer-induced therapeutic angiogenesis has become a novel approach for the treatment of myocardial ischemia. In order to provide a basis for the clinical application of an adeno-virus with hepatocyte growth factor gene (Ad-HGF) in the treatment of myocardial ischemia, we estab-lished a minipig model of chronically ischemic myocardium in which an Ameroid constrictor was placed around the left circumflex branch of the coronary artery (LCX). A total of 18 minipigs were ran-domly divided into 3 groups: a surgery control group, a model group and an Ad-HGF treatment group implanted with Ameroid constrictor. Ad-HGF or the control agent was injected directly into the ischemic myocardium, and an improvement in heart function and blood supply were evaluated. The results showed that myocardial perfusion remarkably improved in the Ad-HGF group compared with that in both the control and model groups. Four weeks after the treatment, the density of newly formed blood vessels was higher and the number of collateral blood vessels was greater in the Ad-HGF group than in the model group. The area of myocardial ischemia reduced evidently and the left ventricular ejection fraction improved significantly in the Ad-HGF group. These results suggest that HGF gene therapy may become a novel approach in the treatment of chronically ischemic myocardium.

  12. Treatment of chronical myocardial ischemia by adenovirus-mediated hepatocyte growth factor gene transfer in minipigs


    Growth factor gene transfer-induced therapeutic angiogenesis has become a novel approach for the treatment of myocardial ischemia. In order to provide a basis for the clinical application of an adeno- virus with hepatocyte growth factor gene (Ad-HGF) in the treatment of myocardial ischemia, we estab- lished a minipig model of chronically ischemic myocardium in which an Ameroid constrictor was placed around the left circumflex branch of the coronary artery (LCX). A total of 18 minipigs were ran- domly divided into 3 groups: a surgery control group, a model group and an Ad-HGF treatment group implanted with Ameroid constrictor. Ad-HGF or the control agent was injected directly into the ischemic myocardium, and an improvement in heart function and blood supply were evaluated. The results showed that myocardial perfusion remarkably improved in the Ad-HGF group compared with that in both the control and model groups. Four weeks after the treatment, the density of newly formed blood vessels was higher and the number of collateral blood vessels was greater in the Ad-HGF group than in the model group. The area of myocardial ischemia reduced evidently and the left ventricular ejection fraction improved significantly in the Ad-HGF group. These results suggest that HGF gene therapy may become a novel approach in the treatment of chronically ischemic myocardium.

  13. Adenovirus-mediated heme oxygenase-1 gene transfer into rabbit ocular tissues.

    Abraham, N G; da Silva, J L; Lavrovsky, Y; Stoltz, R A; Kappas, A; Dunn, M W; Schwartzman, M L


    Heme oxygenase-1 (HO-1) is a stress protein induced up to 100-fold within a few hours after exposure to oxidative stress, and it has been shown to counteract oxidative injury induced by ultraviolet light or free radicals. The current study was undertaken to determine whether the HO-1 gene can be introduced into adult rabbit ocular tissues by microinjection of a recombinant replication-deficient adenovirus human HO-1 cDNA (Adv-HHO). Human HO-1 gene was used for transfection studies to differentiate endogenous from transfected HO. The purified Adv-HHO construct (10(8) pfu/ml) was mixed with lipofectamine and microinjected into the anterior chamber, vitreous cavity, and subretinal space of New Zealand rabbit eyes. After 2 weeks, total RNA was extracted from different ocular tissues, reverse transcription-polymerase chain reaction was performed using specific human HO-1 primers, and amplification products were subjected to Southern hybridization. Transfection with the Adv-HHO construct into rabbit corneal epithelial cells in culture resulted in a functional expression of the human HO-1 gene; the human HO-1 mRNA was detected, and enzyme activity increased threefold. Human HO-1 mRNA was detected in the retina after microinjection of the Adv-HHO construct into the subretinal space. Microinjection into the vitreous resulted in HO-1 mRNA expression in the corneal endothelium, iris, lens, and retina; after intracameral injection of the Adv-HHO construct, human HO-1 mRNA was detected in corneal epithelium and endothelium, ciliary body, lens, and iris. Regardless of the injection site, transfected human HO-1 mRNA was undetectable in tissues outside the eye, that is, brain, liver, and kidney. These results demonstrated a tissue-selective functional transfer of the human HO-1 gene into rabbit ocular tissues in vivo. This technique may be a promising means for delivering HO-1 gene in vivo as a protective mechanism against oxidative stress that contributes to the pathogenesis of

  14. Suppression of experimental osteoarthritis by adenovirus-mediated double gene transfer

    WANG Hai-jun; YU Chang-long; Kishi Hiroyuki; Motoki Kazumi; MAO Ze-bin; Muraguchi Atsushi


    (cartilage). The samples were examined by light microscopy and quantitatively evaluated. Results Intra-articular delivery of IL-1Ra resulted in a significant inhibition of cartilage degradation, but did not affect synovial changes. In contrast, rabbit knee joints receiving sTNF-RI alone showed no detectable reduction in cartilage degradation. However, double gene transfer of IL-1Ra and sTNF-RI resulted in a higher suppression of the cartilage degradation and an observable reduction in synovitis. These data add to and confirm that IL-1Ra has good chondroprotective properties, but TNF-α blockade has little effect on joint destruction.Conclusion The enhanced therapeutic effects of both antagonists in combination suggest inhibition of multiple inflammatory cytokines may be more efficaciousthan blockade of either cytokine alone in treating OA.

  15. Adenovirus-mediated CTLA4-FasL gene transfer prevents autoimmune diabetes in mice induced by multiple low doses of streptozotocin

    JIN Yongzhu; WANG Guangming; LI Ailing; HAO Jie; GAO Xiang; XIE Shusheng


    Type 1 diabetes is the result of a selective destruction of insulin-producing β cells in pancreatic islets by autoreactive T cells. Depletion of autoreactive T cell through apoptosis may be a potential strategy for the prevention of autoimmune diabetes. Simultaneous stimulation of Fas-mediated pathway and blockade of costimulation by a CTLA4-FasL fusion protein has been reported to lead to substantial inhibition of mixed lymphocyte reaction and enhanced in vitro apoptosis of peripheral lymphocytes. To test the feasibility of CTLA4-FasL-based gene therapy to prevent autoimmune diabetes, we developed recombinant adenovirus containing human CTLA4-FasL gene (AdCTLA4-FasL). A single injection of 2 × 108 plaque forming units (PFU) of AdCTLA4-FasL via tail vein dramatically reduced the incidence of autoimmune diabetes in mice induced by multiple low doses of streptozotocin. AdCTLA4-FasL administration maintained islet insulin content, significantly increased apoptosis of pancreatic lymphocytes, quantitatively reduced IFN-γand Vβ8.2 TCR chain mRNA expression in pancreatic iymphocytes. These results indicate the therapeutic potential of simultaneous stimulation of Fas-mediated pathway and blockade of costimulation by adenovirus-mediated CTLA4-FasL gene transfer in the prevention of autoimmune diabetes.

  16. Adenovirus-mediated human β-nerve growth factor gene transfer has a protective effect on cochlear spiral ganglion after blast exposure


    Objective: To study whether adenovirus-mediated human β-nerve growth factor (Ad-hNGFβ) gene has any protective effect on blast hearing impairment. Methods:Deafness was induced by blast exposure (172. 0 dB) in 30 healthy guinea pigs. On day 7 of blast exposure, Ad-hNGFβ was infused into the perilymphatic space of 20 animals as the study group (hNGFβ group), and artificial perilymph fluid (APF) was infused into the perilymphatic space of the other 10 animals as the control group. At weeks 1, 4 and 8 after blast exposure, the animals were sacrificed and the cochleae were removed for immunohis-tochemical and HE stainings. Results: Expression of Ad-hNGFβ protein was detected in each turn of the cochlea at the 1st week, with almost equal intensity in all turns. At the 4th week, the reactive intensity of the expression of Ad-hNGFβ protein decreased. At the 8th week, no expression was detectable. The results of HE staining showed that the amount of spiral ganglions in hNGFβ group was significantly greater than that of the control group at week 4 (F<0. 01). Conclusion: Ad-hNGFβ can be expressed at a high level and for a relatively long period in the blast impaired cochlea, suggesting that Ad-hNGFβ has a protective effect on cochlear spiral ganglion cells after blast exposure and the efficient gene transfer into cochlea had been achieved without toxicity.

  17. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents


    34--- I lr_ Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Recent Development in Gene Therapy , 2007: 77-94...ISBN: 81-7895-262-9 Editor: Jim Xiang Adenovirus-mediated gene therapy against viral biothreat agents Josh Q.H. Wu Chemical Biological Defence... therapy , which introduces therapeutic genes into mammalian cells to achieve therapeutic effective, hds a great potential for use as a defensive

  18. Adenovirus-mediated hypoxia-inducible factor-1 alpha gene transfer induces angiogenesis and neurogenesis following cerebral ischemia in rats

    Wanfu Wu; Xiu Chen; Zhen Yu; Changlin Hu; Wenqin Cai


    BACKGROUND: Hypoxia-inducible factor-1 (HIF-1) accumulates under conditions of hypoxia. HIF-1α target genes have pleiotropic effects on neurogenesis, neuroprotection and angiogenesis in the brain.OBJECTIVE: To investigate whether a recombinant adenovirus carrying HIF-1α can increase the expression of HIF-1α in vivo and thus promote angiogenesis and neurogenesis in a rat model of focal cerebral ischemia.DESIGN, TIME AND SETTING: The randomized, controlled experiment was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA from September 2006 to October 2007.MATERIALS: 68 healthy adult male Sprague-Dawley (SD) rats, weighing 230-250 g, were used. HIF-1α antibody was purchased from Wuhan Boster Company. Vascular endothelial growth factor (VEGF) antibody was purchased from Santa Cruz Biotech Company.METHODS: All 68 rats were induced with a transient middle cerebral artery occlusion (MCAO), according to the method of intra-luminal vascular occlusion. 54 rats, in which MCAO was successfully induced, were randomly divided into adenovirus (Ad) group and recombinant adenovirus with HIF-1αgene (Ad-HIF-1α) group (27 rats for each group). Rats were injected with 10 μL Ad (Ad group) or Ad-HIF-1α (Ad-HIF-1α group) into the lateral ventricle, 1 day after MCAO induction. MAIN OUTCOME MEASURES: Reverse transcription polymerase chain reaction was used to measure the expression of HIF-1α and of VEGF. Immunohistochemistry was used to detect the localization of HIF-1α, VEGF and factor Ⅷ in ischemic penumbra. Rat newborn nerve cells were labeled with 5-bromodeoxyuridine (BrdU) after ischemia. BrdU/neurofilament 200 (NF200) and BrdU/glial fibrillary acidic protein (GFAP) double labeled immunofluorescent histochemistry was used to identify the differentiation of newborn cells. Neurological function was evaluated using the modified neurological severity score (NSS).RESULTS: Compared with Ad, Ad-HIF-1αenhanced the expression of HIF-1

  19. Construction and identification of recombinant adenovirus-mediated gene transfer system for rat vascular endothelial growth factor

    Hongyu Yang; Hong Qi; Junjie Zou; Xiwei Zhang


    Objective: To construct the recombinant adenovirus vector carrying rat vascular endothelial growth factor(VEGF), as preparation for genetic transfection that follows. Methods: Rat VEGF was obtained by using RT-PCR amplification and then cloned into the shutter plasmid pDC316. Subsequently, this newly constructed plasmid pDC316-VEGF, after identification by nuclease digestion analysis and sequencing analysis, was transfected into human embryonic kidney cells HEK293 by Lipofectamine 2000 mediation, together with adenovirus-packaging plasmid pBHGE3. Based on the homologous recombination of the two plasmids within HEK293 cells, the recombinant adenovirus vector carrying VEGF and VDC316-VEGF was created. VDC316-VEGF was subsequently identified using PCR, purified using repeated plaque passages, proliferated using freezing and melting within HEK293 cells, and titrated using 50% Tissue Culture Infective Dose(TCID50) assay. Results:The newly constructed recombinant adenovirus was confirmed to carry rat VEGF based on PCR results, and its titration value determined based on TCID50 assay was 3×109 pfu/ml. Conclusion:The recombinant adenovirus carrying rat VEGF was successfully constructed. The newly constructed adenovirus can produce a sufficiently high titration value within HEK293 cells, providing a reliable tool for genetic transfection in further gene therapy researches.

  20. Adenovirus-mediated interteukin-13 gene therapy attenuates acute kidney allograft injury

    Sandovici, Maria; Deelmani, Leo E.; van Goor, Harry; Helfrich, Wijnand; de Zeeuw, Dick; Henning, Robert H.


    Background Kidney transplantation is possible by virtue of systemic immunosuppression, which is in turn accompanied by serious side effects. The search for novel therapeutic agents and strategies is ongoing. Here we investigate the effects of adenovirus-mediated gene therapy with interleukin (IL)-13

  1. Increase in muscarinic stimulation-induced Ca(2+) response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo.

    Morita, Takao; Nezu, Akihiro; Tojyo, Yosuke; Tanimura, Akihiko


    Adenoviruses have been used for gene transfer to salivary gland cells in vivo. Their use to study the function of salivary acinar cells was limited by a severe inflammatory response and by the destruction of fluid-secreting acinar cells. In the present study, low doses of adenovirus were administered to express Stim1-mKO1 by retrograde ductal injection to submandibular glands. The approach succeeded in increasing muscarinic stimulation-induced Ca(2+) responses in acinar cells without inflammation or decreased salivary secretions. This increased Ca(2+) response was notable upon weak muscarinic stimulation and was attributed to increased Ca(2+) release from internal stores and increased Ca(2+) entry. The basal Ca(2+) level was higher in Stim1-mKO1-expressing cells than in mKO1-expressing and non-expressing cells. Exposure of permeabilized submandibular acinar cells, where Ca(2+) concentration was fixed at 50 nM, to inositol 1,4,5-trisphosphate (IP3) produced similar effects on the release of Ca(2+) from stores in Stim1-mKO1-expressing and non-expressing cells. The low toxicity and relative specificity to acinar cells of the mild gene transfer method described herein are particularly useful for studying the molecular functions of salivary acinar cells in vivo, and may be applied to increase salivary secretions in experimental animals and human in future.

  2. Effects of adenovirus mediated vascular endothelial growth factor gene transfer on reconstitution of hematopoiesis in post-bone marrow transplantation mice

    ZHONG Zhao-dong; ZOU Ping; HU Xian-shi; YOU Yong; CHEN Zhi-chao; HUANG Shi-ang


    Background Bone marrow transplantation (BMT) conditioning procedure is considered as the cause of damage to bone marrow microvasculature and the delay of hematopoiesis recovery. However, hematopoiesis regulation post BMT by vascular endothelial growth factor (VEGF) has not yet been studied. In this study, adenovirus were used to investigate the effects of VEGF gene transfer on preventing damages to bone marrow microenvironment and its promotion of hematopoiesis in post-BMT mice.Methods Recombinant adenovirus (Ad)-enhanced green fluorescent protein (EGFP)/hVEGF165 was injected via tail vein into BALB/c mice undergoing syngeneic BMT. During the different phases post BMT, the distribution of adenovirus and the plasma levels of hVEGF were measured as well as the numbers of white blood cells (WBC), platelet (PLT) and red blood cells (RBC) in peripheral blood. At the same time, the mice were injected with Chinese ink via tail vein, following which the tibias were separated and were used for analysis of bone marrow microvasculature surface area and cellularity.Results Significant expression of EGFP and hVEGF was observed in multiple organs at different phases post BMT, and the plasma level of hVEGF was up to (866.67±97.13) pg/ml. The recovery of WBC, PLT and RBC of the group treated with recombinant adenovirus Ad-EGFP/hVEGF165 were significantly more rapid than those of other BMT groups (P0.05]. The restoration of hematopoiesis was retarded more than that of microvasculature. The cellularity of bone marrow in each group was still lower than that of normal control [(62.3±4.0)%, P<0.05] at the 30th day post BMT, but the percentage in group treated with VEGF at the 20th and 30th days post BMT [(46.5±5.0)% and (55.1±4.5)%] exceeded those of other BMT groups (P<0.05, respectively).Conclusion VEGF gene transfer mediated by adenovirus may protect the hematopoietic microenvironment to promote the restoration of hematopoiesis in post-BMT mice.

  3. Periluminal expression of a secreted transforming growth factor-β type II receptor inhibits in-stent neointima formation following adenovirus-mediated stent-based intracoronary gene transfer.

    Appleby, Clare E; Ranjzad, Parisa; Williams, Paul D; Kakar, Salik J; Driessen, Anita; Tijsma, Edze; Fernandes, Brian; Heagerty, Anthony M; Kingston, Paul A


    Transforming growth factor-β1 (TGF-β1) has been shown unequivocally to enhance neointima formation in carotid and ileo-femoral arteries. In our previous studies, however, TGF-β1 expression in coronary arteries actually reduced neointima formation without affecting luminal loss postangioplasty, while expression of a TGF-β1 antagonist (RIIs) in balloon-injured coronary arteries reduced luminal loss without affecting neointima formation. These observed effects may be a consequence of the mode of coronary artery gene transfer employed, but they may also represent differences in the modes of healing of coronary, carotid, and ileo-femoral arteries after endoluminal injury. To help clarify whether a gene therapy strategy to antagonize TGF-β might have application within the coronary vasculature, we have investigated the effect of high-level periluminal expression of RIIs using stent-based adenovirus-mediated intracoronary gene transfer. Porcine coronary arteries were randomized to receive a custom-made CoverStent preloaded with saline only, or with 1×10(9) infectious units of adenovirus expressing RIIs or β-galactosidase (lacZ). Vessels were analyzed 28 days poststenting, at which time angiographic in-stent diameter was significantly greater in RIIs-treated arteries, and in-stent luminal loss significantly reduced. Computerized morphometric minimum in-stent lumen area was ~300% greater in RIIs-exposed vessels than in lacZ or saline-only groups. This was because of significantly reduced neointima formation in the RIIs group. RIIs had no demonstrable effect on cellular proliferation or apoptosis, but greater normalized neointimal/medial collagen content was observed in RIIs-exposed arteries. These data highlight the qualitatively similar effect of TGF-β antagonism on neointima formation in injured coronary and noncoronary arteries, and suggest that since cellular proliferation is unaffected, TGF-β1 antagonism might prevent in-stent restenosis without the delayed

  4. Adenovirus-mediated p53 and ING4 gene co-transfer elicits synergistic antitumor effects through enhancement of p53 acetylation in breast cancer.

    Wu, Jie; Zhu, Yanbo; Xu, Chun; Xu, Hong; Zhou, Xiumin; Yang, Jicheng; Xie, Yufeng; Tao, Min


    Multigene-based combination therapy may be an effective practice in cancer gene therapy. Substantial studies have demonstrated that tumor suppressor p53 acetylation is indispensable for p53 activation. Inhibitor of growth 4 (ING4), as a novel tumor suppressor, is capable of remarkably enhancing p53 acetylation and its transcriptional activity. Hence, we assumed that combined treatment of p53 and ING4 double tumor suppressors would exhibit enhanced antitumor effects. The combined therapeutic efficacy of p53 and ING4 for human cancers has not been previously reported. We thus generated multiple promoter expression cassette-based recombinant adenovirus-co-expressing ING4 and p53 double tumor suppressor genes (AdVING4/p53), evaluated the combined effects of AdVING4/p53 on breast cancer using the MDA-MB-231 (mutant p53) human breast cancer cell line, and also elucidated its underlying molecular mechanisms. We demonstrated that AdVING4/p53-mediated p53 and ING4 co-expression induced synergistic growth inhibition and apoptosis as well as enhanced effects on upregulation of acetylated p53, P21, Bax, PUMA, Noxa, cleaved caspase-9, cleaved caspase-3 and cleaved PARP, and downregulation of Bcl-2, CD31 and microvessel density (MVD) in MDA-MB-231 breast cancer in vitro and/or in vivo subcutaneous (s.c.) xenografted tumors. The synergistic antitumor activity elicited by AdVING4/p53 was closely associated with the enhanced activation of the intrinsic apoptotic pathway and synergistic inhibition of tumor angiogenesis, very possibly via ING4-mediated enhancement of p53 acetylation and activity. Thus, our results indicate that cancer gene therapy combining two or more tumor suppressors such as p53 and ING4 may constitute a novel and effective therapeutic modality for human breast cancer and other cancers.

  5. Combination Adenovirus-Mediated HSV-tk/GCV and Antisense IGF-1 Gene Therapy for Rat Glioma


    Objective To investigate the effects of combination adenovirus-mediated HSV-tk/GCV system and antisense IGF-1 gene therapy for rat glioma and analyze the mechanism.Methods Using the recombinant adenovirus vector,GCV killing effeciency after combined gene transfer of HSV-tk and antisense IGF-1 was observed in vitro.Rat glioma was treated with HSV-tk/GCV and antisense IGF-1 and the survival rate of rats was observed.Results C6 cells transfected with tk and antisense IGF-1 gene were more sensitive to GCV than that transfected with tk gene alone.The survival of the combination gene therapy group was prolonged significantly and large amounts of CD+4,CD+8 lymphocytes were detected in the tumor tissues.Conclusion Antisense IGF-1 gene may enhance the tumor-killing effects of HSV-tk/GCV.

  6. Gene therapy for human nasopharyngeal carcinoma by adenovirus-mediated transfer of human p53, GM-CSF, and B7-1 genes in a mouse xenograft tumor model.

    Ren, Su-Ping; Wang, Lan; Wang, Hua; Wu, Bin; Han, Ying; Wang, Li-Sheng; Wu, Chu-Tse


    Incidence of nasopharyngeal carcinoma (NPC) remains high in endemic regions. Prevention of tumor recurrences and metastases is a crucial approach to improve therapeutic outcome in NPC patients. In this study, we investigated the effects of the cotransfer of the tumor suppressor gene, p53, in combination with the immunostimulatory genes, GM-CSF and B7-1, on tumor regression and subsequent tumor recurrence. We constructed a recombinant adenovirus carrying human wild-type p53, granulocyte-macrophage colony-stimulating factor (GM-CSF), and B7-1 genes (Ad-p53/GM-CSF/B7-1), which mediated high-level expression of these three genes in NPC CNE-1 cells. Ad-p53/GM-CSF/B7-1 infection inhibited the growth of CNE-1 cells and induced tumor-specific cytotoxic T-lymphocytes (CTLs) in vitro. In CNE-1 xenograft tumor models in huPBL-nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, an intratumoral injection of Ad-p53/GM-CSF/B7-1 resulted in a reduced tumor burden, compared to normal saline (NS) and Ad-p53 controls. Tumors in the Ad-p53/GM-CSF/B7-1 group displayed diffuse necrosis and infiltration of human T-cells. Further, the tumor occurrence of CNE-1 cell rechallenge largely decreased after the primary tumor was intratumorally injected with Ad-p53/GM-CSF/B7-1 in the HuPBL-NOD/SCID mice model. Only 2 of 8 (25%) animals in the Ad-p53/GM-CSF/B7-1 group had developed measurable tumors, which demonstrated extensive necrosis and much more human T-cell infiltration, compared to 5 of 7 (71%) in the NS and Ad-p53 groups. Therefore, the adenovirus-mediated introduction of p53, GM-CSF, and B7-1 genes could improve local control and prevent the recurrence or metastases of NPC tumors, which suggests a potential therapeutic value in NPC treatment.

  7. Effect of adenovirus-mediated gene transfection of vascular endothelial growth factor on survival of random flaps in rats

    崔磊; 李发成; 张群; 钱云良; 关文祥


    Objective: To evaluate the effect of local application of vascular endothelial growth factor (VEGF) via adenovirus-mediated gene transfer on survival of full thickness flaps selected randomly in rats.Methods: Thirty Sprague-Dawley rats weighing 480-520 g were used in this study. A dorsal flap (8 cm×2 cm) in full thickness with the pedicle located at the level of the iliac crest was designed. Then the rats received 1 012 pfu replication-deficient recombinant adenovirus carrying VEGF (AdCMV-VEGF group, n=10), 1 012 pfu recombinant β-galactosidase adenovirus (AdCMV-Gal group, n=10) and 1 ml saline (saline group, n=10), respectively, in the distal two thirds of the proposed flap by means of subdermal injection at 8 different locations. Three days after treatment, the flaps were elevated as originally designed and sutured back in situ. The survival rate of the flaps was evaluated on day 7 after operation. Results: The survival rate of the flaps in the AdCMV-VEGF group increased significantly as compared with those of the AdCMV-Gal group (P<0.01) and the saline group (P<0.01). Immunohistochemical staining showed that VEGF was expressed in the survival flaps injected with AdCMV-VEGF. Histological analysis showed that more granulation tissues and angiogenesis were observed in the AdCMV-VEGF group than those in the AdCMV-Gal and the saline groups.Conclusions: Local application of adenovirus-mediated VEGF165 cDNA 05- efficiently improve the survival of ischemic skin flaps.

  8. Potential of mesenchymal stem cells by adenovirus-mediated erythropoietin gene therapy approaches for bone defect.

    Li, Chen; Ding, Jian; Jiang, Liming; Shi, Ce; Ni, Shilei; Jin, Han; Li, Daowei; Sun, Hongchen


    Regeneration of large bone defects is a common clinical problem. Recent studies have shown that mesenchymal stem cells (MSCs) have emerged as a promising alternative to traditional surgical techniques. However, it is still a key question how to enhance the osteogenic potential of MSCs for possible clinical trials. The aim of the present study was to investigate the effect of adenovirus-mediated erythropoietin (Ad-EPO) transfer on BMSCs, we performed extensive in vitro/in vivo assays in this study. Flow cytometry analysis and the result of MTT showed that EPO could promote BMSCs proliferation. QPCR data demonstrated that EPO increased expressions of Runx2, Sp7, and Col1 in osteoblast at various time points and also increased alkaline phosphatase activity and the calcium deposition. These results indicate that EPO can increase the differentiation of osteoblast. Importantly, in vivo assays clearly demonstrate that EPO can efficiently induce new bone formation in the bone defect model. Our results strongly suggest that EPO can affect osteoblast differentiation and play important roles in bone regeneration leading to an increase in bone formation.


    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei


    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  10. 神经生长因子基因转染联合强化铁营养防治豚鼠爆震性聋的实验研究%Protective effects of adenovirus-mediated human bta-nerve growth factor gene transfer combined with iron fortified nutrition on blast hearing damage in guinea pigs

    吴建; 武江; 范静平; 何金; 孙爱华


    目的 探讨人类神经生长因子β基因(human beta-nerve growth factor,hNGFβ)转染联合强化铁营养(fortified iron nutrition,FIN)防治豚鼠爆震性聋的可能性.方法 制作强脉冲噪声(172 dBSPL)致聋豚鼠模型35只,爆震后第7天,10只豚鼠经耳蜗底周鼓阶骨壁钻孔向外淋巴腔内导入腺病毒携带hNGFβ基因(adenovirus-mediated hNGFβ,Ad-hNGFβ)为基因组,10只豚鼠导入hNGFβ基因并进行强化铁营养为联合组,10只豚鼠经耳蜗底周鼓阶骨壁钻孔向外淋巴腔内导入人工外淋巴液(artificialperilymphatic fluid,APF)为APF组.5只豚鼠作正常对照组,不经暴露噪声,也不用药物治疗.测定爆震前及基因转染后豚鼠脑干听觉诱发电位(auditory brain stem response,ABR)阈值.取材时间:基因导入后第1周及第4周实验组各取5只动物进行耳蜗取材,并进行免疫组织化学染色和HE染色,检测Ad-hNGFβ蛋白表达并进行螺旋神经节细胞计数.结果 基因导入后第1周,可见Ad-hNGFβ在耳蜗内成功转染.耳蜗各回均有表达,强度基本相等;联合组豚鼠ABR反应阈恢复较基因组快,较APF组明显快;4周后,联合组豚鼠ABR反应阈完全恢复正常,基因组基本恢复正常,APF组未能恢复;联合组豚鼠螺旋神经节细胞数目多于基因组,两者均明显多于对照组,计数结果差异有统计学意义(P<0.01),且细胞形态与正常相近.结论 腺病毒介导的hNGFβ基因联合强化铁营养能协同作用防治豚鼠爆震性听力损伤.%Objective To study the protective effects of adenovirus-mediated human beta-nerve growth factor gene (hNGFβ) transfer combined with iron fortified nutrition on blast hearing damage in guinea pigs. Methods Deafness was induced by blast (172dB SPL) in 35 healthy guinea pigs. Seven days after noise exposure, 10 guinea pigs were inoculated with adenovirus-mediated hNGFβ (Ad-hNGFβ) into the perilymphatic space (the gene group), another 10 guinea pigs were given h

  11. p53基因转移至移植心脏的安全性%Security for adenovirus-mediated p53 gene transfer to the donor heart

    王丽平; 宋芳芳; 李祥禄; 刘越; 贾智博; 尹新华


    BACKGROUND: Wild-typep53 gene transfer to the donor heart can greatry inhibit graft co to nan/ artery intima hyperplasia andlumen narrowness.OBJECT P/E: To study the security of adenoviral-mediated wild-type p53 gene transfer to the donor heart after hearttransplantation.METHODS: Rat modee of heterotopic (abdomen) heart transplantation over e developed. Wetar rats served as donors and SOrats as recipients. After donor hearts were removed. 800 u Ladenoviral vector encoding the wild-type p53gene(Ajdp53group)adenoviral vector encoding the &-galactosidase gene (LacZ) (Ad-LacZ group) or saline (control group) were infused into thedonor heart respectively before transplantation. The donor heart was stored in the 4 ~C saline for 30 minutes before hearttransplantation. At5 days after operation. P53 protein expressions in coronary artery of donor hearts were tested by western blotanalyse. £123 days after transplantation, the serum specimen was collected for the biochemical indicators, and the major organsof the recipients were tested by the hetopathological analysis and the reverse transcription polymerase chain reaction of theadenoviral E1A sequences.RESULTS AND CONCLUSION: The expression of P53 protein was found in donor hearts inAd-p53 group at 5 days afteroperation, and no expression in Ad-LacZ group and control group. At28 days after operation, rat serum biochemistry values inthree groups was normal, the major organs of the recipients were not affected seriously, no virus spread to other organs in theexperimental protocol. The results confirmed that the ex vivo adenoviral-mediated gene transfer to the donor heart via thecoronary artery during the heart transplantation e safe.%背景:课题组前期实验表明野生型p53基因具有抑制移植心脏冠状动脉内膜增厚的作用.目的:研究腺病毒介导的野生型p53基因转移至移植心脏的安全性.方法:以Wistar大鼠为供体,SD大鼠为受体建立大鼠腹腔异位心脏移植模型,在取出

  12. Reversal of 5-flouroucial resistance by adenovirus-mediated transfer of wild-type p53 gene in multidrug-resiatant human colon carcinoma LoVo/5-FU cells

    Zhi-Wei Yu; Peng Zhao; Ming Liu; Xin-Shu Dong; Ji Tao; Xue-Qin Yao; Xin-Hua Yin; Yu Li; Song-Bin Fu


    AIM: To observe the reversal effects of wide-type p53 gene on multi-drug resistance to 5-FU (LOVO/5-FU).METHODS: After treatment with Ad-p53, LOVO/5-FU sensitivity to 5-Fu was investigated using tetrazolium dye assay. Multidrug resistance gene-1 (MDR1) gene expression was assayed by semi-quantitative reverse transcriptionpolymerase chain reaction and the expression of p53 protein was examined by Western blotting.RESULTS: The reversal activity after treatment with widetype p53 gene was increased up to 4.982 fold at 48 h. The expression of MDR1 gene decreased significantly after treatment with wide-type p53 gene, and the expression of p53 protein lasted for about 5 d, with a peak at 48 h, and began to decrease at 72 h.CONCLUSION: Wide-type p53 gene has a remarkable reversal activity for the high expression of MDR1 gene in colorectal cancers. The reversal effects seem to be in a time dependent manner. It might have good prospects in clinical application.

  13. Adenovirus Mediated BIMS Transfer Induces Growth Supression and Apoptosis in Raji Lymphoma Cells

    ZHAO Ya Ning; LI Qiang


    Objective To transfer pro-apoptotic BIM directly into tumor cells bypass the complicated biological processes of BIM activation so as to reverse the chemoresistance of cancer cells. Methods BIMS was specifically amplified from HL-60 cells by RT-PCR, confirmed to be correct by sequencing and cloned into shuttle vector pAdTrack-CMV carrying a green fluorescence protein gene to generate a recombinant plasmid pAdTrack-CMV-BIMS. This plasmid and adenovirus backbone plasmid pAdEasy-1 were linearized and electroporated into E.coli BJ5183 host bacteria to mediate homologous recombination. The positive clone was identified by restrict endonuclease digestion. The recombinant pAdEasy-CMV-BIMS was transferred into HEK293 cells for packaging and amplification. The successful construction of recombinant human BIMS adenovirus (Ad-BIMS) was demonstrated by Western blot. To test whether Ad-BIMS has the capability of inducing apoptosis of tumor cells, Ad-BIMS was used to infect GC resistant Burkitt lymphoma Raji cells. Results After infected for 2-5 days, BIMS expression in Raji cells was detected by RT-PCR and Western blot. The significant growth retardation and apoptosis of Raji cells were also observed by MTT and flow cytometry. Conclusion These results indicated that BIMS might be a potential candidate of gene therapy for chemoresistant tumor cells.

  14. Adenovirus mediated BIMS transfer induces growth supression and apoptosis in Raji lymphoma cells.

    Zhao, Ya Ning; Li, Qiang


    To transfer pro-apoptotic BIM directly into tumor cells bypass the complicated biological processes of BIM activation so as to reverse the chemoresistance of cancer cells. BIMS was specifically amplified from HL-60 cells by RT-PCR, confirmed to be correct by sequencing and cloned into shuttle vector pAdTrack-CMV carrying a green fluorescence protein gene to generate a recombinant plasmid pAdTrack-CMV-BIMS. This plasmid and adenovirus backbone plasmid pAdEasy-1 were linearized and electroporated into E.coli BJ5183 host bacteria to mediate homologous recombination. The positive clone was identified by restrict endonuclease digestion. The recombinant pAdEasy-CMV-BIMS was transferred into HEK293 cells for packaging and amplification. The successful construction of recombinant human BIMS adenovirus (Ad-BIMS) was demonstrated by Western blot. To test whether Ad-BIMS has the capability of inducing apoptosis of tumor cells, Ad-BIMS was used to infect GC resistant Burkitt lymphoma Raji cells. After infected for 2-5 days, BIMS expression in Raji cells was detected by RT-PCR and Western blot. The significant growth retardation and apoptosis of Raji cells were also observed by MTT and flow cytometry. These results indicated that BIMS might be a potential candidate of gene therapy for chemoresistant tumor cells. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up

    Yong-song GUAN; Yuan LIU; Qing ZOU; Qing HE; Zi LA; Lin YANG; Ying HU


    Objective: In the present study, we have examined the safety and efficacy of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) injection in patients with advanced non-small-cell lung cancer (NSCLC) in the combination with the therapy of bronchial arterial infusion (BAI). Methods: A total of 58 patients with advanced NSCLC were enrolled in a non-randomized, two-armed clinical trial. Of which, 19 received a combination treatment of BAI and rAd-p53 (the combo group), while the remaining 39 were treated with only BAI (the control group). Patients were followed up for 12 months, with safety and local response evaluated by the National Cancer Institute's Common Toxicity Criteria and response evaluation criteria in solid tumor (RECIST), respectively. Time to progression (TTP) and survival rates were also analyzed by Kaplan-Meier method. Results: In the combo group,19 patients received a total of 49 injections of rAd-p53 and 46 times of BAI, respectively, while 39 patients in the control group received a total of 113 times of BAI. The combination treatment was found to have less adverse events such as anorexia, nausea and emesis, pain, and leucopenia (P0.05). Patients in the combo group had a longer TTP than those in the control group (a median 7.75 vs 5.5 months, P=0.018). However, the combination treatment did not lead to better survival, with survival rates at 3, 6, and 12 months in the combo group being 94.74%, 89.47%, and 52.63%, respectively, com-pared with 92.31%, 69.23%, and 38.83% in the control group (P=0.224). Conclusion: Our results show that the combination of rAd-p53 and BAI was well tolerated in patients with NSCLC and may have improved the quality of life and delayed the disease progression. A further study to better determine the efficacy of this combination therapy is warranted.

  16. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    Zandi, Roza; Xu, Kai; Poulsen, Hans S


    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  17. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    Zandi, Roza; Xu, Kai; Poulsen, Hans S


    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  18. Effects of gene transfer of adenovirus-mediated brain-derived neurotrophic factor on apoptosis after traumatic brain injury%腺病毒介导脑源性神经营养因子基因转移对大鼠脑损伤后细胞凋亡的影响

    王国强; 廖维宏; 沈岳; 李芳


    Objective To investigate the effects of gene transfer of adenovirus-mediated brain-derived neurotrophic factor (BDNF) on apoptosis after traumatic brain injury. Methods  Adult Wistar rats experienced a weight-drop strike on the right cerebral cortex, and then 4 μl recombinant adenovirus vector (RAV) and 4 μl virus buffer were injected into the hippocampus in the expermental group and in the controls, respectively. Immunohistochemistry and/or in situ hybridization, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and flowcytometry were used to determine the expressions of BDNF and apoptosis-associated signals in the hippocampus and cerebral cortex areas at 3 hour, 1, 3, 7 and 14 days following injury.  Results  Compared with the controls at 3 and 7 days after injury, BDNF positive cells increased significantly, while the apoptotic cells decreased significantly in CA1 and CA3 areas in the RAV group (P<0.01). Meanwhile, the cells expressing BDNF showed less apoptotic signals.  Conclusions  RAV-mediated BDNF gene transfer protects hippocampal neurons through up-regulating BDNF expression and inhibiting programmed cell death.%目的研究腺病毒介导的脑源性神经营养因子(BDNF)基因转移对脑损伤后细胞凋亡的影响。方法将重组腺病毒载体4 μl注入承受单侧大脑皮质重锤打击伤的海马区,对照组注射病毒缓冲液。伤后3 h、1,3,7,14 d利用免疫组化单标和(或)双标染色、原位杂交-免疫组化双标染色、DNA末端原位标记以及流式细胞仪等方法,检测伤侧大脑皮质、海马区BDNF及凋亡相关信号表达的改变。结果与对照组相比,注射病毒载体组动物术后3,7 d海马CA1、CA3区BDNF神经元显著增多,而凋亡细胞显著减少(P<0.01);表达BDNF的神经元较少并同时表达凋亡相关信号。结论腺病毒介导的BDNF基因转移对海马神经元具有保护作用。

  19. Downregulation of matrix metalloproteinase-2 (MMP-2) utilizing adenovirus-mediated transfer of small interfering RNA (siRNA) in a novel spinal metastatic melanoma model.

    Tsung, Andrew J; Kargiotis, Odysseas; Chetty, Chandramu; Lakka, Sajani S; Gujrati, Meena; Spomar, Daniel G; Dinh, Dzung H; Rao, Jasti S


    Matrix metalloproteinases (MMPs) comprise a class of secreted zinc-dependent endopeptidases implicated in the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix (ECM) and basement membrane. Matrix metalloproteinase-2 (MMP-2) has been detected in high levels and correlates with invasiveness in human melanoma. We have studied the effect of adenovirus-mediated transfer of small interfering RNA (siRNA) against MMP-2 in the human melanoma cell line A2058. The delivery of these double-stranded RNA molecules represents an efficient technology in silencing disease-causing genes with known sequences at the post-transcriptional level. siRNA against MMP-2 mRNA (Ad-MMP-2) was found to decrease MMP-2 protein expression and activity in melanoma cells as demonstrated by western blotting and gelatin zymography. Furthermore, infection of cells with Ad-MMP-2 inhibited cellular migration and invasion as indicated by spheroid and matrigel assays. We also observed dose-dependent suppression of vascular network formation in an angiogenesis assay. Finally, we developed a nude mouse spinal metastatic model to investigate the local effects of tumor metastasis. Intravenous tail vein injection with Ad-MMP-2 on days 5, 9 and 11 after tumor implantation resulted in complete retention of neurological function as compared to control and scrambled vector (Ad-SV)-treated groups that showed complete paraplegia by day 14+/-2 days. Hematoxylin and eosin staining revealed decreased tumor size in the Ad-MMP-2-treated animals. This novel experimental model revealed that adenoviral-mediated transfer of RNA interference against MMP-2 results in the retention of neurological function and significantly inhibited tumor growth.

  20. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen


    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  1. Inhibitory Effect of Pulmonary Carcinoma by Adenovirus-Mediated CD/UPRT Gene

    HUANG Qi; CHEN Dayu; FU Xiangning; ZU Yukun


    The cell killing effects and bystander effects of double suicide gene on pulmonary carcinoma cells were explored. Lung adenocarcinoma cells (A549) were transfected with different titers of adenovirus vector and followed with different concentrations of 5-FC after a recombinant adenovirus vector carrying CD/UPRT gene (Ad-CD/UPRT) was constructed. The cell viability was measured by MTT assay 4 days later. The cell viability was dropped to 30.57 %-8.62 % after 10 MOI of Ad-CD/UPRT transfected and 5-FC (10-1000 μg/mL) administration. Furthermore, Ad-CD/UPRT-infected A549 cells showed a profound neighbor cell killing effect in the same methods. These results suggested that Ad-CD/UPRT/5-FC system can effectively suppress growth of lung adenocarcinoma cells, which may provide a novel and powerful candidate for lung cancer gene therapy strategies.

  2. Promoting lumbar spinal fusion by adenovirus-mediated bone morphogenetic protein-4 gene therapy

    ZHAO Jian; ZHAO Dun-yan; SHEN Ai-guo; LIU Fan; ZHANG Feng; SUN Yu; WU Hong-fu; LU Chun-feng; SHI Hong-guang


    Objective: To determine whether an adenoviral construct containing bone morphogenetic protein-4 (BMP-4) gene can be used for lumbar spinal fusion. Methods: Twelve New Zealand white rabbits were randomly divided into two groups, 8 in the experimental group and 4 in the control group. Recombinant, replication-defective type 5 adenovirus with the cytomegalovirus (CMV) promoter and BMP-4 gene (Ad-BMP-4) was used. Another adenovirus constructed with the CMV promoter and β-galactosidase gene (Ad-β-gal) was used as control. Using collagen sponge as a carrier, Ad-BMP-4 (2.9×108 pfu/ml ) was directly implanted on the surface of L5-L6 lamina in the experimental group, while Ad-β-gal was implanted simultaneously in the control group. X-ray was obtained at 3, 6, and 12 weeks postoperatively to observe new bone formation. When new bone formation was identified, CT scans and three-dimensional reconstruction were obtained. After that, the animals were killed and underwent histological inspection.Results: In 12 weeks after operation, new bone formation and fusion were observed on CT scans in the experimental group, without the evidence of ectopic calcification in the canal. Negative results were found in the control group. Histological analysis demonstrated endochondral bone formation at the operative site and fusion at early stage was testified.Conclusions: In vivo gene therapy using Ad-BMP-4 for lumbar posterolateral spinal fusion is practicable and effective.

  3. Gene therapy for colorectal cancer by adenovirus-mediated siRNA targeting CD147 based on loss of the IGF2 imprinting system.

    Pan, Yuqin; He, Bangshun; Chen, Jie; Sun, Huiling; Deng, Qiwen; Wang, Feng; Ying, Houqun; Liu, Xian; Lin, Kang; Peng, Hongxin; Xie, Hongguang; Wang, Shukui


    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) gene is an epigenetic abnormality phenomenon in CRC. Recently observed association of CRC with cluster of differentiation 147 (CD147) could provide a novel approach for gene therapy. In the present study, we investigated the feasibility of using adenovirus‑mediated siRNA targeting CD147 based on the IGF2 LOI system for targeted gene therapy of CRC. A novel adenovirus-mediated siRNA targeting CD147, rAd-H19-CD147mirsh, which was driven by the IGF2 imprinting system, was constructed. The results showed that the EGFP expression was detected only in the IGF2 LOI cell lines (HT-29 and HCT-8), but that no EGFP was produced in cell lines with maintenance of imprinting (MOI) (HCT116). Moreover, rAd-H19-CD147mirsh significantly inhibited the expression of CD147, decreased cell viability and invasive ability, and increased sensitivity to chemotherapeutic drugs only in the LOI cell lines in vitro. Furthermore, mice bearing HT-29 xenografted tumors, which received intratumoral administration of the rAd-H19-CD147mirsh, showed significantly reduced tumor growth and enhanced survival. We conclude that recombinant adenovirus-mediated siRNA targeting CD147 based on the IGF2 LOI system inhibited the growth of the LOI cells in vitro and in vivo, which would provide a novel approach for targeted CRC gene therapy.

  4. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    Freytag, Svend O., E-mail: [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Stricker, Hans [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Lu, Mei [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Peabody, James [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Oja-Tebbe, Nancy; Bourgeois, Renee [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Gupta, Nilesh; Lane, Zhaoli [Pathology, Henry Ford Health System, Detroit, Michigan (United States); Rodriguez, Ron [Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); DeWeese, Theodore [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others


    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.

  5. Adenovirus-Mediated p202 Gene Transfer in Breast Cancer Gene Therapy


    Jares P, Cazorla M, Fernandez PL, Sanjuan X, Dawson MJ and Trapani JA. (1995). J. Cell. Biochem., 57, Hernandez L, Pinyol M, Aldea M, Mallofre C...C., K. Doctor, A. Rojas , J. M. Zapata, C. Stehlik, L. Fiorentino, J. Damiano, W. Roth, S. Matsuzawa, R. Newman, S. Takayama, H. Marusawa, F. Xu, G

  6. Recombinant adenovirus-mediated shRNA silencing of midkine gene in BxPC-3 cells

    Mingyue Xiong; Kunzheng Wang


    Objective:To investigate the silencing effects of recombinant adenovirus Ad-shRNA-MK on midkine(MK) gene in pancreatic cancer cells. Methods:Ad-shRNA-MK was used to infect pancreatic cancer BxPC-3 cells. Assays were conducted for knockdown of the MK gene on the day of infection and on the 1a, 3rd, 5th, 7th, and 9th days post-infection by using immunocytochemistry, real-time RT-PCR, and Western blot analysis. Results:The adenoviral Ad-shRNA-PTN was constructed successfully, and infection was confirmed by electron microscopic observation. By using real-time RT-PCR, the inhibition rates of MK mRNA expression in the BxPC-3 cells were 20%, 80%, 55%, and 23% on the 1st, 3rd, 5th, and 7th days post-infection. Immunocytochemistry and Western blot analysis confirmed this effect at the gene product level. Conclusion:Efficient and specific knockdown of MK in pancreatic cancer cells by adenoviral Ad-shRNA-PTN is a potentially powerful tool for the study of gene therapy of pancreatic cancer nerve infiltration.

  7. Gene transfer strategies for augmenting cardiac function.

    Peppel, K; Koch, W J; Lefkowitz, R J


    Recent transgenic as well as gene-targeted animal models have greatly increased our understanding of the molecular mechanisms of normal and compromised heart function. These studies have raised the possibility of using somatic gene transfer as a means for improving cardiac function. DNA transfer to a significant portion of the myocardium has thus far been difficult to accomplish. This review describes current efforts to achieve myocardial gene transfer in several model systems, with particular emphasis placed on adenovirus-mediated gene delivery, its possibilities, and current limitations. (Trend Cardiovasc Med 1997;7:145-150). © 1997, Elsevier Science Inc.

  8. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    Mu, Haixi [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Ren, Guosheng [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Xu, Yongzhu [Chongqing Health Service Center, Chongqing 400020 (China); Zhou, Xiangyang [The Wistar Institute, Philadelphia, PA (United States); Xiang, Tingxiu, E-mail: [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)


    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  9. Inhibition of tumor growth in xenografted nude mice with adenovirus-mediated endostatin gene comparison with recombinant endostatin protein

    梁志慧; 吴沛宏; 李立; 薛刚; 曾益新; 黄文林


    Background Inhibition of tumor growth by endostatin has been shown to be an effective strategy in cancer therapy in mice. However, its widespread application has been hampered by difficulties in a large-scale production of the recombinant endostatin protein, rapid loss bioactivity of the protein, and the cumbersome daily administration. These limitations could be resolved by in vivo delivery and expression of the endostatin gene. In this study, we observed the effect and advantage of endostatin gene therapy mediated by a recombinant adenoviral vector (Ad/hEndo) on the growth of hepatocellular carcinoma BEL-7402 xenografted tumors, comparison with recombinant endostatin protein.Results After 4 courses of treatment, the tumor growth rates of high-dose treated group with 1×109 pfu of Ad/hEndo were inhibited by 42.26% compared with the Ad/LacZ control group (P=0.001) and by 46.26% compared with the NIH buffer control group (P=0.003), respectively. However, in this study, Ad/hEndo at low dose of 5×108 pfu failed to demonstrate significant inhibition of tumor growth, compared with control groups. After daily administration of recombinant human endostatin protein (rhEndo) for 9 days, the ratio of T/C (rhEndo group versus PBS group) was less than 47%. However, two days after rhEndo treatment ceased, the ratio of T/C was more than 50%. The peak of expression of endostatin mRNA in tumor tissue was at 2 or 3 days after administration intratumorally with Ad/hEndo of 1×109 pfu and gradually dropped undetectable by day 7. Dynamic analysis of endostatin concentration in tumor tissue showed that the highest level of mRNA is up at the third day after injection, and dropped to basal level three weeks later.Conclusions Endostatin gene therapy mediated by a recombinant adenoviral vector had significantly inhibited the growth of hepatocellular carcinoma BEL-7402 xenografted tumors at a high dose of 1×109 pfu compared with other groups. The analysis of dynamic expression of

  10. Adenovirus-mediated HSV-TK Gene Therapy Using hTERT Promoter in CNE Cells in vitro

    ZHANG Yu; YU Xiang-hui; ZHA Xiao; KONG Wei


    Human telomerase reverse transcriptase(hTERT) activity was detected in human nasopharyngeal carci-noma ceII(CNE) but not in human normal lung fibroblas t(CCD-11Lu). Recombinant adenoviruses Ad-CMV-TK-enh and Ad-hTERT-TK-enh were constructed and infected into normal fibroblasts and nasopharyngeal carcinoma cells. Ad-CMV-TK-enh with 100 μmol/L of ganciclovir(GCV) caused 87% of CCD-11 Lu cells death and 91% of CNE cells death, Ad-hTERT-TK-enh with 100 μmol/L of GCV caused 24% of CCD-11Lu cells death and 79% of CNE cells death. These results indicate that the Ad-hTERT-TK-enh with GCV may be a useful method in suppressing tumor growth in targeted nasopharyngeal carcinoma gene therapy.

  11. [Adenovirus-mediated delivery of nm23-H1 gene inhibits growth of colorectal carcinoma cell line Lovo].

    Wang, Qi; He, Xueling; Liu, Yan; Yin, Hailin


    This experimental study sought to find out the inhibitory effects of Ad-GFP-nm23-H1 on proliferation and metastasis of human colorectal carcinoma cell line Lovo, and, further, to gain an insight into some theoretical and methodical basis for instituting nm23-H1 gene therapy of cancers. MTT assay and Transwell chamber were used to detect the rates of proliferation and invasion as well as the adhesion of Lovo cells in vitro. The results demonstrated that the proliferation inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 84.9% +/- 1.51%, 48.5% +/- 7.23% and 22.5% +/- 5.47%, that the adherence inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 70.3% +/- 2.40%, 60.1% +/- 5.68% and 18.5% +/- 3.61%, and that the invasiveness inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 83.2% +/- 5.71%, 52.2% +/- 6.94% and 28.1% +/- 8.21%. These data suggested that Ad-GFP-nm23-H1 exerted significant inhibitory effects on the proliferation and metastasis of human colorectal carcinoma cell line Lovo in a dose-dependent way.

  12. 腺病毒介导的hCTLA4-Ig和FasL基因转移诱导大鼠同种异体肾移植长期存活的作用%Adenovirus-mediated CTLA4-Ig and FasL gene transfer induces long-term survival of renal allografts in rats

    平季根; 温端改; 侯建全; 吕金星; 严春寅


    Objective To investigate the potential role of adenovirus-CTLA4-Ig and adenovirus-FasL recombinant in inducing transplantation tolerance using renal-graft model and its related mecha-nisms. Methods Allogeneic kidney transplants were performed between SD donors and Wistar recipients. The experimental rats were divided into 4 groups. In Ad-CTLA4-Ig group and Ad-CTLA4-Ig + Ad-FasL group, the donor kidney of the SD rats was locally transfected by Ad-CTLA4-Ig and Ad-CTLA4-Ig + Ad-FasL with the dose of 1 × 10~9-5 × 10~9 PFUml respectively and then transplanted to the recipient Wistar rats. In control group, the kidneys of the SD rats were directly transplanted to Wistar rats without any thera-py. The rats treated with Ad-EGFP served as empty vector group. After kidney transplantation, the survival time and the kidney function in each group were observed. Kidney allografts were evaluated by HE staining and immunohistochemical staining. The pathological features and ultrastructures of the grafts were ob-served. Results The survival time of allografts were prolonged significantly in recipients receiving Ad-CT-LA4-Ig + Ad-FasL with a mean survival time of (64.67 ± 6.41) days ,significantly longer than that in Ad-CTLA4-Ig treated group (31.33±6.77) days,control group (8.17 ± 1.17) days and empty vector group (8.00 ± 1.55) days (P < 0.01). After transplantation, the levels of creatinine in serum were significantly higher in control group and empety vector group than in Ad-CTLA4-Ig + Ad-FasL treated group and Ad-CTLA4-Ig treated group. Conclusion Adenoviral vectors can be successfully transduced into rat kidneys with the CTLA4-Ig and FasL cDNA. Ad-mediated transduction of the CTLA4-Ig and FasL gene can signifi-cantly prolong the survival of rat renal allograft. The induced tolerance is donor specific, and may result from regulatory T cells and the deletion of alloreactive T cells.%目的 探讨腺病毒介导hCTLA4-Ig和FasL基因转移延长异基因大鼠肾移植物

  13. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao


    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  14. Adenovirus-mediated Transfer of p53 and p16 Inhibiting Proliferating Activity of Human Bladder Cancer Cell EJ in vitro and in vivo

    朱朝辉; 邢诗安; 林晨; 曾甫清; 鲁功成; 付明; 张雪艳; 梁萧; 吴旻


    Summary: To evaluate the effects of adenovirus (Ad)-mediated transfer of p53 and p16 on humanbladder cancer cells EJ, EJ were transfected with Ad-p53 and Ad-p16. Cell growth, morphologi-cal change, cell cycle, apoptosis were measured using MTT assay, flow gytometry, cloning forma-tion, immunocytochemical assays. Ad-p16 or Ad-p53 alone could inhibit the proliferating activityof EJ cells in vitro. Ad-p53 could induce apoptosis of partial EJ cells. G1 arrest was observed 72 hafter infection with Ad-p16, but apoptosis was not obvious. The transfer of Ad-p16 and Ad-p53could significantly inhibit the growth of EJ cells, decrease the cloning formation rate and induceapoptosis of large number of EJ cells. The occurrence time of subcutaneous tumor was delayed andthe tumor volume in 4 weeks was diminished by using Ad-p53 combined with Ad-p16 and the dif-ference was significant compared with using Ad-p53 or Ad-p16 alone. It was suggested that thetransfer of wild-type p53 and p16 could significantly inhibit the growth of human bladder cancer invitro and in vivo.

  15. Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model

    SeoJin Lee


    Full Text Available Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV. It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease.

  16. Down-regulation of collagen synthesis and matrix metalloproteinase expression in myofibroblasts from Dupuytren nodule using adenovirus-mediated relaxin gene therapy.

    Kang, Young-Mi; Choi, Yun-Rak; Yun, Chae-Ok; Park, Jin-Oh; Suk, Kyung-Soo; Kim, Hak-Sun; Park, Moon-Soo; Lee, Byung-Ho; Lee, Hwan-Mo; Moon, Seong-Hwan


    Dupuytren's disease is a fibroproliferative connective tissue disorder characterized by contracture of the palmer fascia of the hand. Relaxin (RLN) is a multifunctional factor which contributes to the remodeling of the pelvic ligament by inhibiting fibrosis and inflammatory activities. The aim of this study was to investigate the effect of the RLN gene on the inhibition of fibrosis in myofibroblastic cells. Myofibroblast cells with adenovirus LacZ (Ad-LacZ) as a marker gene or adenovirus relaxin (Ad-RLN) as therapeutic gene showed transgene expressions in beta-galactosidase assay and Western blot analysis. Myofibroblastic cells with Ad-RLN demonstrated a 22% and 48% reduction in collagen I and III mRNA expressions respectively, a 50% decrease in MMP-1, 70% decrease in MMP-2, 80% decrease in MMP-9, and a 15% reduction in MMP-13 protein expression compared with cultures with viral control and saline control. In addition, myofibroblastic cells with Ad-RLN showed a 40% decrease in TIMP 1 and a 15% increase in TIMP 3 protein expression at 48 h compared to cultures with viral control and saline control. Also, myofibroblastic cell with Ad-RLN demonstrated a 74% inhibition of fibronectin and a 52% decrease in total collagen synthesis at 48 h compared with cultures with viral control and saline control. In conclusion, the RLN gene render antifibrogenic effect on myofibroblastic cells from Dupuytren's nodule via direct inhibition of collagen synthesis not through collagenolytic pathway such as MMP-1, -13, TIMP 1, and 3. Therefore relaxin can be an alternative therapeutic strategy in initial stage of Dupuytren's disease by its antifibrogenic effect.



    Objective: Interleukin 18 (IL-18) is a strong activator of NK cells and promotes the generation of IL-2, IFN-g, and GM-CSF. In the present study, we constructed adenovirus encoding IL-18 gene (AdIL-18), and observed the biological characteristics of IL-18 gene-modified murine colorectal adenocarcinoma cell (CT26) in vivo and in vitro. Methods: Gene modification was mediated by adenovirus. The proliferation of the cells was determined by MTT and IL-18 was assayed by ELISA. The cytotoxicity of NK and CTL was detected by four-hour 51Cr release assay. Results: IL-18 gene modification had no effect on the proliferation and morphology of CT-26 cells in vitro, but the growth of IL-18-modified CT26 cells was obviously inhibited in vivo. In addition, although IL-18-modified CT26 cells could form tumor nodules in vivo as well as LacZ-modified CT26 cells or wild-type CT26 cells, the mean survival time of the mice inoculated with IL-18-modified CT26 cells was significantly prolonged as compared with that of control groups. Thus, the anti-tumor immune responses were induced in the group of mice inoculated with IL-18-modified CT26 cells, which might be related to the activation of NK cells and CTL. However, all the three groups ultimately died of facility for all experiments. CT26, Yac-1 and 293 cells were from the American Type Culture Collection (ATCC, Manassas, VA). All cell lines were cultured in RPMI1640 (GIBCO-BRL, Grandisland, NY) supple-mented with penicillin (100 units/ml), streptomycin (100 mg/ml), 2-mercaptoethanol (5′10-5 M), and 10% FCS (GIBCO-BRL) at 37℃ in a humidified atmosphere of 5% CO2 in air.

  18. Synergistic antitumor effects of in vivo production of human endostatin and tissue inhibitor of metalloproteinase-1 in mice after subcutaneous implantation of primary fibroblasts transfected by adenovirus-mediated gene delivery

    SHEN Wei-gan; ZHU Jun; ZHANG Yu; SU Qing


    Background Tissue inhibitor of metalloproteinase (TIMP)-1 is a multifunctional protein. The aim of the study was to examine the feasibility of using a combination of adenovirus-mediated gene delivery of TIMP-1 plus endostatin and cell transplantation techniques to treat tumor growth and metastasis in mouse melanoma.Methods A enzyme-linked immunosorbent assay (ELISA) was used to detect the level of TIMP-1 and endostatin in vitro and in vivo. A tumor bearing mouse model and an experimental lung metastasis model in animal experiments were used to explore the therapeutic effect of in vivo production of human TIMP-1 and endostatin after the implantation of primary fibroblasts infected with the indicated adenovirus into tumor-bearing mice and a cytochemical method was used to observe histopathological changes of the tumor. An experimental lung metastasis model was established by injecting B16BL6 cells into the tail vein of mice and adenovirus-infected primary fibroblasts were subcutaneously implanted into the mice 24 hours later. Twenty-one days after tumor cell injection, mice were sacrificed to examine the effect on nodules visible as black forms on the surface of the lungs in B16BL6 cells.Results TIMP-1 and endostatin were secreted into the supernatants of cultures of Ad-TIMP-1 and Ad-End-infected mouse primary fibroblasts. We also observed that implantation of fibroblasts infected with Ad-TIMP-1 alone, Ad-End alone, or Ad-TIMP-1 plus Ad-End resulted in detectable blood levels which may clearly inhibit the tumor growth and metastasis in a murine melanoma model.Conclusion These results suggest the high capacity of transfection for the delivery of TIMP-1 or endostatin gene constructs into primary fibroblasts, and demonstrate that the implantation of TIMP-1 and endostatin producing fibroblasts at a site in vivo where direct secretion of TIMP-1 and endostatin into the blood is possible represented a promising approach for the development of cancer therapy.


    SONG; Wen-gang


    [1]Meyer Zum Buschenfelde C, Cramer S, Trumpfheller C, et al. Trypanosoma cruzi induces strong IL-12 and IL-18 gene expression in vivo: correlation with interferon-gamma (IFN-gamma) production [J]. Clin Exp Immunol 1997; 110:378.[2]Tominaga K, Yoshimoto T, Torigoe K, et al. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells [J]. Int Immunol 2000; 12:151.[3]Takeda K, Tsutsui H, Yoshimoto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice [J]. Immunity 1998; 8:383.[4]Tomura M, Zhou XY, Maruo S, et al. A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3- cells [J]. J Immunol 1998; 160:4738.[5]Okamura H, Kashiwamura S, Tsutsui H, et al. Regulation of interferon-gamma production by IL-12 and IL-18 [J]. Curr Opin Immunol 1998; 10:259.[6]Osaki T, Hashimoto W, Gambotto A, et al. Potent antitumor effects mediated by local expression of the mature form of the interferon-gamma inducing factor, interleukin-18 (IL-18) [J]. Gene Ther 1999; 6:808.[7]Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family [J]. J Allergy Clin Immunol 1999; 103:11.[8]Matsui K, Yoshimoto T, Tsutsui H, et al. Propionibacterium acnes treatment diminishes CD4+ NK1.1+ T cells but induces type I T cells in the liver by induction of IL-12 and IL-18 production from Kupffer cells [J]. J Immunol 1997; 159:97.[9]Akira S. The role of IL-18 in innate immunity [J]. Curr Opin Immunol 2000; 12:59.[10]Lauwerys BR, Garot N, Renauld JC, et al. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18 [J]. J Immunol 2000; 165:1847.[11]Micallef MJ, Yoshida K, Kawai S, et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites [J]. Cancer Immunol Immunother 1997; 43:361.[12]Micallef MJ, Tanimoto T


    鲜成树; 王科学; 吴勇刚; 赖国维


    [目的]探讨以PLGA为支架,用含腺病毒介导的LNP-1修饰BMSCs修复胫骨缺损的可行性.[方法]分离兔骨髓间充质干细胞;应用AdEasy腺病毒载体系统构建人LMP-1基因的腺病毒重组体,并检测感染病毒的兔骨髓间充质干细胞.测定LNP-1阳性细胞的数量,测定各组细胞ALP、OC、COL1表达.建立胫骨近端骨缺损新西兰大白兔模型,以PLGA为支架材料,分为4组:Ad LMP-1转染组、AdLaeZ转染组、空白组和阳性对照组.术后2周、4周、8周每组处死动物,动态观察并比较缺损区新骨面积,分析其在骨缺损修复过程中的作用.[结果]成功分离兔MSC.同源重组成功构建AdLMP-1.体外实验MTT法分析表明AdLIVIP-1对MSC增殖无明显作用.AdLMP-1可促进OC和I型胶原蛋白的合成和分泌.第4、8周时阳性对照组和AdLMP-1转染组的成骨量明显增高(P0.05),第4、8周时尤为明显.说明AdLMP-1可促进成骨量增加.[结论]构建的Ad LNP-1能高效转染MSCs,且转染后的细胞能促进OC和I型胶原蛋白的合成和分泌.PLGA为支架携带腺病毒介导的LMP-1的BMSCs具有明确的骨缺损修复能力,为临床促进骨折愈合提供了一种有效的方法和材料.%[ Objective] To investigate the PLGA aa Scaffold, adenovirus mediated LMP-1 in BMSCs tibial defects.[Methods] Thc rabbit bone marrow mesenchymal stem cells; AdEasy adenovirus vector system was used to construct LMP-1 gene recombinant adenovirus. Detect the number of cells of LMP-1 positive cells, measured ALP, OC and COL1 expression. To establish proximal tibial bone defect model of New Zealand white rabbits, applying PLGA as a scaffold, divide all the animals into 4 groups : Ad LMP-1 transfection group, AdLacZ transfection group and blanle group and the positive control group. After 2 weeks, 4 weeks, 8 weeks of operation, animals were sacrificed in etcch group, and compare the dynamic observation of new bone defect area of bone defect in the process of role

  1. 制备源自HBsAg基因修饰树突状细胞的外切体%Generation of exosomes derived from adenovirus-mediated HBsAg gene-modified dendritic cells

    杨静悦; 高琳; 付蓉; 薛妍; 刘文超


    Objective: To obtain exosomes derived from adenovirus - mediated HBsAg gene - modified dendritic cells. Methods: Full length HBsAg cDNAs were cloned into shuttle2 vector. The HBsAg gene fragments resulted from the - S digested with PI - See and I - Ceu were linked to the linear adeno - X virus DNA. After packaged with HEK293 cells, the adenovirus expression vector was obtained. Then the recombinant adenovirus expression plasmid AdVHBsAg was transfected into human monocyte - derived dendritic cells. The exosomes were isolated from superna-tant of transfected DCs. Transmission electron microscopy was used to observe their structures. The expressions of several proteins were investigated by flow cytometry. Results: The shuttle2 - S showed that band with 630 bp by di-gested with PI - See and I - Ceu, HBsAg gene in the inserted DNA of AdVHBsAg was confirmed by PCR, and pre-dictive fragments proved by restriction enzyme digestion analysis were exhibited. CPE appear 10 after days HEK293 cells transfected AdVHBsAg. Application of the isolation procedure to transfected DCs revealed exosome vesicles by transmission electron microscopy. Protein analysis by Western blot was performed and revealed that the costimulatory molecule CD86,CD83 and HBsAg was detectable. Conclusion; The exosomes derived from HBsAg - DC may be a tool of the HBV related hepatocellular carcinoma immunotherapy.%目的:制备一种新型负载HBsAg基因的外切体(exosome)瘤苗,并探讨其生物学特性、免疫学功能.方法:运用分子克隆和病毒载体转染HBsAg基因构建AdVHBsAg-DC肝癌瘤苗,采用流式细胞术鉴定转染基因表达;提取exosome;以透射电镜观察、Western blot法鉴定exosome.结果:构建的重组AdVHBsAg腺病毒载体,经PCR和酶切鉴定,结果显示HBsAg基因片段已正确插入腺病毒载体中.包装的腺病毒载体具有良好的感染性,可以在293细胞中形成病毒颗粒.提取的exosome在透射电镜下可观察到直径为50-100nm

  2. Adenovirus-mediated heme oxygenase -1 gene therapy ameliorates transplant arteriosclerosis and the underlying mechanisms%血红素氧合酶-1基因治疗减缓移植物血管病及机制

    赵波; 宫念樵


    目的 观察血红素氧合酶-1(HO-1)基因治疗减缓同种移植物血管病的效果,探讨其机制.方法 以BN-Lewis大鼠血管移植为对象,依据基因治疗方案分为4组:同系对照组、空白对照组、载体对照组、腺病毒介导的HO-1( AdHO-1)组.移植后2个月,观察各组移植物纤维化和内膜增生,检测T细胞(CD3+)、B细胞(CD45RA)和巨噬细胞(CD68+)浸润数量,逆转录-聚合酶链反应(RT-PCR)和Western blot检测移植物HO-1基因和蛋白的表达,酶联免疫吸附试验(ELISA)法检测受体血清白细胞介素(IL)-10的浓度.结果 同系对照组无移植物血管病表现,空白对照组和载体对照组大量纤维沉积,AdHO-1组纤维沉积轻微.血管内膜/(内膜+中膜)百分比4组分别为7.6%、81.4%、85.9%、15.9%.每400倍视野浸润细胞数4组分别为T细胞(9.2±1.6、92.3±11.6、89.6±17.8、39.3±10.1)、B细胞(3.6±1.1、72.6±11.8、66.6±10.9、30.6±9.9)、巨噬细胞(7.5±1.2、78.5 ±21.7、72.5 ±19.8、34.5±18.7).血清IL-10浓度4组分别为(50.2±20.1)、(40.2±11.1)、(38.6±19.3)、(481.2 ±69.1)ng/L.AdHO-1组与空白对照组和载体对照组间差异有统计学意义(P<0.05).AdHO-1基因治疗增高了移植血管HO-1基因和蛋白的表达.结论 AdHO-1基因治疗减缓同种移植物血管病,移植物纤维化和内膜增生明显减轻.AdHO-1基因治疗下调了T细胞、B细胞和巨噬细胞在移植物中的浸润,增加了HO-1和IL-10的表达,IL-10-HO-1通路的活化可能是移植血管得到保护的重要原因.%Objective To observe the effect of adenovirus-mediated heme oxygenase-1 (AdHO-1) gene therapy on allograft transplant arteriosclerosis and to elucidate the underlying mechanisms.Methods Aorta transplants in BN-Lewis rats were used and divided into four groups:isograft group,control group,vector control group,and AdHO-1 group.The allograft fibrosis and neointimal proliferation were observed two months post transplant

  3. The effect of mucolytic agents on gene transfer across a CF sputum barrier in vitro.

    Stern, M; Caplen, N J; Browning, J E; Griesenbach, U; Sorgi, F; Huang, L; Gruenert, D C; Marriot, C; Crystal, R G; Geddes, D M; Alton, E W


    Trials of gene transfer for cystic fibrosis (CF) are currently underway. However, direct application to the airways may be impeded by the presence of airway secretions. We have therefore assessed the effect of CF sputum on the expression of the reporter gene beta-galactosidase complexed with the cationic liposome DC-Chol/DOPE in a number of cell lines in vitro. Transfection was markedly inhibited in the presence of sputum; the effect was concentration dependent and was only partially ameliorated by removal of sputum with phosphate-buffered saline (PBS) washing before gene transfer. However, treatment of the sputum-covered cells with recombinant human DNase (rhDNase, 50 micrograms/ml) but not with N-acetylcysteine, Nacystelyn, lysine (all 20 mM) or recombinant alginase (0.5 U/ml) significantly (P < 0.005) improved gene transfer. Adenovirus-mediated gene transfer efficiency in the presence of sputum was similarly inhibited, and again, treatment with rhDNase before transfection significantly improved gene transfer (P < 0.005). Transfection of Cos 7 cells in the presence of exogenous genomic DNA alone demonstrated similar inhibition to that observed with sputum and was also ameliorated by pre-treatment of DNA-covered cells with rhDNase. In a separate series of experiments performed in the absence of added sputum or genomic DNA, increasing concentrations of rhDNase resulted in a concentration-related decline in transfection efficiency. However, even at the highest concentration (500 micrograms/ml of rhDNase), transfection efficiency remained more than 50% of control. Thus, pre-treatment of CF airways with rhDNase may be appropriate before liposome or adenovirus-mediated gene therapy.

  4. 反义细胞外信号调节激酶-2基因治疗移植物动脉血管病内膜病变%The effect of adenovirus-mediated anti-extracellular signal regulated kinase 2 gene therapy on intimal change in transplant arteriosclerosis

    赵波; 宫念樵


    目的 观察移植物动脉血管病(TA)的内膜病变机制和反义细胞外信号调节激酶2基因腺病毒载体(Adanti-ERK2)基因治疗的效果.方法 建立Brown-Norway(BN)-Lewis移植物动脉血管病模型,分为同系组、Control组、LacZ组和Adanti-ERK2组(给予5×109 pfu Adanti-ERK2基因治疗),每组各6例.术后60 d检测各组内膜病变和血管腔内膜/(内膜+中膜)比,α-肌动蛋白(α-actin)和血小板源性生长因子-BB(PDGF-BB)染色检测移植动脉平滑肌细胞(VSMCs)增殖和分泌功能,评估移植动脉新生毛细血管情况并检测移植动脉中环氧化酶-2(COX-2)的表达.结果 术后60 d同系组内膜无异常,Control组和LacZ组典型内膜增殖改变,Adanti-ERK2组内膜病变较轻;内膜/(内膜+中膜)比各组分别为7.6%、81.4%、85.9%、15.9%;α-actin阳性细胞(内膜平滑肌细胞)每视野计数各组分别为0、71.3±9.2、76.4±11.3、34.8±5.3;PDGF-BB阳性细胞每视野计数各组分别为0.9±0.5、28.4±3.4、29.1±3.2、8.6±1.7;移植动脉中膜和内膜新生毛细血管检测各组分别无、丰富、丰富、少量;COX-2新生血管阳性细胞计数各组分别为0、36.3±8.3、40.9±9.2、10.4±3.9.Adanti-ERK2组与其他组别间比较,差异有统计学意义(P<0.05).结论 内膜增生,血管腔缩窄,PDGF-BB诱导内膜平滑肌细胞募集分化并激发血管新生是TA重要病理生理环节,AdantiERK2基因治疗可有效干预各发病环节,达到治疗效果.%Objective To explore the mechanisms of intimal injury underlying transplant arteriosclerosis (TA) and to clarify the treatment effect of adenovirus-mediated anti-extracellular signal regulated kinase 2 (Adanti-ERK2) gene therapy on TA. Methods The Brown-Norway (BN)-Lewis TA model was employed. According to different gene therapy, the recipients were divided into isograft group, control group, LacZ group, which were used as control, and Adanti-ERK2 group (5 × 109 pfu Adanti-ERK2 was transferred

  5. Adenovirus-mediated gene transfer of placental growth factor to perivascular tissue induces angiogenesis via upregulation of the expression of endogenous vascular endothelial growth factor-A

    Roy, H; Bhardwaj, S; Babu, M; Jauhiainen, S; Herzig, KH; Bellu, AR; Haisma, HJ; Carmeliet, P; Alitalo, K; Yla-Herttuala, S


    Placental growth factor (PIGF) is a member of the vascular endothelial growth factor (VEGF) family that binds specifically to VEGF receptor (VEGFR)-1. However, the mechanism of PIGF- and VEGFR-1-mediated angiogenesis has remained unclear and some in vitro studies suggest that VEGF-A/VEGFR-2

  6. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine


    Introduction Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor...



    Objective To observe the presence of synergistic efficacy between adenovirus mediated bcl-Xs (Adv-bcl-Xs) gene therapy and chemotherapy on ovarian cancer cell. Methods NuTu-19 cells were infected by different titers of Adv-bcl-Xs and were treated with topotecan at the same time. Cell proliferation was measured 3 days later by MTT. Graphical representations of the statistical analyses recorded their interaction in tumor cells. Results The statistical results and graphical representations of the statistical modeling showed that the synergistic antiproliferative activity was present (P<0.01). Conclusion There were synergistic efficacies between Adv-bcl-Xs gene therapy and Topotecan on ovarian cancer cell.%目的 用复制缺陷型腺病毒介导bcl-Xs(Adv-bcl-Xs)对卵巢癌细胞作基因转移,联合使用羟基喜树碱,观察它们对卵巢癌细胞产生的生长抑制协同效应。方法 用不同浓度的Adv-bcl-Xs感染卵巢癌细胞株NuTu-19,同时联合使用不同浓度的羟基喜树碱。3天后,用噻唑蓝法检测各实验组之存活细胞。统计学软件分析结果并作图。结果 Adv-bcl-Xs与羟基喜树碱联合使用同它们单独作用相加效应比较,对卵巢癌细胞生长抑制效果明显增强(P<0.01)。结论 Adv-bcl-Xs与羟基喜树碱联合使用,对卵巢癌细胞生长抑制存在协同效应。

  8. Adenovirus mediated fusion gene system driven by KDR promoter kills selectively pancreatic cancer cells%双自杀基因重组腺病毒对胰腺癌细胞特异性杀伤作用

    闫振宇; 陈旭; 孔恒; 黄宗海; 俞金龙; 厉周


    目的 研究腺病毒介导的KDR启动子驱动CD/TK融合基因系统(Ad-KDR-CDTK)对胰腺癌细胞Capan-2特异性的杀伤作用.方法 重组腺病毒体外感染表达KDR的Capaw2细胞株,用不表达KDR的肝癌细胞HepG2做对照.观察其感染效率并以RT-PCR方法 检测转基因细胞CDTK的表达,然后给予不同浓度的前药更昔洛韦(ganciclovir,GCV)和5-氟胞嘧啶(5-fluorocy-tosine,5-FC),MTT法观察该体系对Capan-2和HepG2细胞生长增殖的影响及其旁观者效应;电镜观察细胞的病变;流式细胞仪检测细胞周期的变化和DNA含量的变化.建立Capan-2裸鼠皮下移植瘤模型,瘤内注射Ad-KDR-CD/TK,腹腔注射前药GCV(50 mg·kg-1·d-1)和5-FC(500 mg·kg-1·d-1)14 d,观察肿瘤生长抑制效应.结果 腺病毒对两种细胞株的感染率相似,其感染率随腺病毒滴度的增高而递增.RT-PCR方法 检测发现转染Ad-KDR-CDTK的Capan-2细胞有目的 基因表达.MTT法检测显示前药呈剂量依赖性抑制Capan-2生长,而不表达KDR的肝癌细胞HepG2对前药不敏感,且观察到该体系对Capan-2明显的旁观者效应.电镜下可见Capan-2有凋亡改变.用流式细胞仪测定用药组出现典型的凋亡峰;细胞周期分析显示治疗后细胞G0-G1期比率增多,G2-M及S期细胞减少.在Capan-2裸鼠移植瘤模型中,该双自杀基因系统能够显著抑制肿瘤的生长.结论 KDR启动子可调控双自杀基因体系选择性杀伤胰腺癌细胞Capan-2,诱导胰腺癌细胞凋亡,并可显著抑制人胰腺癌裸鼠移植瘤的生长.%Objective To evaluate the selectively killing effect of adenovirus (Ad) mediated double suicide gene driven by KDR promoter on pancreatic cancer cell Capan-2. Methods KDR-ex-pressing Capan-2 and non-KDR-expressing HepG2 were infected by Ad-KDR-CDTK. The infection rate was observed and the expression of CDTK was detected by RT-PCR. Followed by treatment with 5-FC and GCV,the killing effects were evaluated and bystander effects

  9. 腺病毒介导荧光素酶报告基因感染间充质干细胞的研究%Infection with adenovirus-mediated luciferase reporter gene in mesenchymal stem cells and bioluminescence imaging

    王一帆; 夏睿; 郭玉林; 郜发宝


    目的 构建携带萤火虫荧光素酶(Luc)报告基因的腺病毒载体(Ad-Luc),研究其感染大鼠骨髓间充质干细胞(BMSC)后的体内外生物发光成像.方法 从psiCHECK-2质粒中用PCR扩增Luc基因,克隆入腺病毒穿梭载体pShuttle-CMV后行Nhe Ⅰ/Xba Ⅰ双酶切和测序鉴定.重组腺病毒穿梭载体与骨架载体pAdeno同源重组并包装纯化后,测定其病毒滴度.用重组Ad-Luc感染BMSC,行体外生物发光成像确定最佳感染复数(MOI),并采用曲线拟合回归分析生物发光强度与MOI的关系.以锥虫蓝染色法评价细胞活力变化,计算细胞存活率.将转染后BMSC(1×106个)植入SD大鼠前肢肌肉内,行体内生物发光成像.细胞存活率组间比较采用两因素重复测量资料方差分析.结果 经酶切和测序鉴定证明,Ad-Luc构建成功,病毒滴度为1×1010空斑形成单位(PFU)/ml.体外生物发光检测结果显示最佳MOI值为50,Ad-Luc可高效感染BMSC,使其表达Luc,且拟合曲线示细胞生物发光强度随MOI增加而增强(R2 =0.98).转染组和未转染组细胞培养1、3、5、7d时,细胞存活率分别为(92.5±2.3)%与(94.1±1.8)%、(91.4±0.9)%与(92.7±2.0)%、(92.1±1.6)%与(93.3±2.4)%、(91.9±1.5)%与(93.0±3.1)%,2组间细胞活力的差异无统计学意义(F=4.38,P>0.05).体内生物发光成像结果示BMSC移植1、3、7d后仍有存活,但随时间延长,生物发光信号逐渐减弱.结论 Luc报告基因通过腺病毒载体成功转入BMSC,实现了光学报告基因成像对移植干细胞的示踪.%Objective To construct adenovirus vector containing firefly luciferase reporter gene (AdLuc) and infect bone marrow mesenchymal stem cells (BMSC),then to take bioluminescence imaging in vitro and in vivo for identification.Methods The luciferase gene was amplified with PCR from psiCHECK-2 plasmid and cloned into the adenoviral shuttle vector (pShuttle-CMV).It was confirmed by Nhe Ⅰ/Xba Ⅰ digestion and sequencing

  10. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Marrero Luis


    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  11. Antitumor bioactivity of adenovirus-mediated p27mt in colorectal cancer cell line SW480

    Ze-Qun sun; Chang-Sheng Deng; Shao-Yong Xu; Yong Du


    AIM: To explore the antitumor bioactivity of adenovirus-mediated mutant type p27kip1 gene in a colorectal cancer cell line SW480.METHODS: We constructed recombinant adenovirus vector expressing a mutant type p27kip1 gene (ad-p27mt), with mutation of Thr-187/Pro-188 (ACGCCC) to Met-187/Ile-188 (ATGATC), and transduced into SW480 cells. Then we detected expression of p27, Bcl-2 and Bax protein in the transductants by Western blotting, cell cycle of transductants by a digital flow cytometric system, migrating potential with Boyden Chamber end SW480 tumor cell growth inhibition in vitro and in vivo.RESULTS: We found that a recombinant adenovirus vector of expressing ad-p27mt, with mutation of Thr-187/Pro-188 (ACGCCC) to Met-187/Ile-188 (ATGATC) has potent inhibition of SW480 tumor cell growth in vitro and in vivo. Furthermore, ed-p27mt induced cell apoptosis via regulating bax and bcl-2 expressions, and G1/S arrest in SW480 cells and inhibited celt migration.CONCLUSION: ad-p27mt has a strong anti-tumor bioactivity and has the potential to develop into new therapeutic agents for colorectal cancer.

  12. Adenovirus-mediated transfection with glucose transporter 3 suppresses PC12 cell apoptosis following ischemic injury

    Junliang Li; Xinke Xu; Shanyi Zhang; Meiguang Zheng; Zhonghua Wu; Yinlun Weng; Leping Ouyang; Jian Yu; Fangcheng Li


    In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.

  13. Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity

    Mahasreshti, P.J.; Kataram, M.; Wang, Miao; Stockard, C.R.; Grizzle, W.E.; Carey, D.; Siegal, G.P.; Haisma, H.J.; Alvarez, R.D.; Curiel, D.T.


    Purpose: Vascular endothelial growth factor (VEGF) is a potent angiogenic agent and plays a major role in tumor growth and metastases. We have previously reported the locoregional (i.p.) delivery of adenovirus-mediated antiangiogenic soluble FLT-1 (sFLT-1; a naturally encoded potent VEGF antagonist)

  14. Adenovirus-mediated human bone morphogenetic protein 2 gene transfects bone marrow mesenchymal stem cells%腺病毒介导的人骨形态发生蛋白2基因转染骨髓间充质干细胞*☆

    尹承慧; 邱俊钦; 曾昭勋; 陈宗雄


      背景:骨髓间充质干细胞作为骨、软骨创伤缺损及退变修复的种子细胞越来越受到关注。目的:分析人骨形态发生蛋白2基因转染对白色封闭群大鼠(SD 大鼠)骨髓间充质干细胞的影响。方法:分离纯化 SD 大鼠骨髓间充质干细胞并体外扩增,通过腺病毒载体介导人骨形态发生蛋白2基因转染骨髓间充质干细胞,分别通过荧光显微镜观察荧光表达情况及蛋白质水平来测定转染后人骨形态发生蛋白2的表达,碱性磷酸酶定量测定鉴定成骨活性及 MTT 法评估人骨形态发生蛋白2转染对骨髓间充质干细胞的影响。结果与结论:从 SD 大鼠骨髓提取物中分离培养的细胞形态为梭形,呈铺路石状、漩涡状生长,经流式细胞仪检测及多项分化能力鉴定符合骨髓间充质干细胞的特征;经转染人骨形态发生蛋白2基因后,骨髓间充质干细胞表达人骨形态发生蛋白2、碱性磷酸酶;MTT 法检测转染人骨形态发生蛋白2基因后,骨髓间充质干细胞增殖能力明显增强(P <0.05)。说明人骨形态发生蛋白2基因转染骨髓间充质干细胞后可以持续、高效表达人骨形态发生蛋白2和碱性磷酸酶,在体外明显促进骨髓间充质干细胞的增殖。%BACKGROUND: Bone marrow mesenchymal stem cel s as the seed cel s for repair of bone and cartilage trauma and degeneration have been paid increasing attention. OBJECTIVE: To investigative the effects of human bone morphogenetic protein 2 gene transfection on Sprague-Dawley rat bone marrow mesenchymal stem cel s. METHODS: Sprague-Dawley rat bone marrow mesenchyal stem cel s were in vitro isolated, purified and amplified. Adenovirus-mediated human bone morphogenetic protein 2 was transfected into bone marrow mesenchymal stem cel s. CD90 and CD45 expression levels were tested by flow cytometry. The successful y packaged virus was transfected into bone marrow mesenchymal

  15. Effects of adenovirus-mediated basic fibroblast growth factor and the related cytokines gene transfection on human osteoarthritis chondrocytes in vitro%碱性成纤维细胞生长因子及相关细胞因子转染对人骨关节炎软骨细胞的作用

    陈彪; 陈廖斌; 秦俊; Jaques Magdalou; 汪晖


    目的 探讨腺病毒介导的人碱性成纤维细胞生长因子(bFGF)单独及与白细胞介素-1受体拮抗蛋白(IL-1Ra)和(或)胰岛素样生长因子(IGF)-1共同转染人骨关节炎(OA)软骨细胞后对软骨细胞的影响.方法 采用单独编码人bFGF的重组腺病毒载体或多重组合的重组腺病毒载体转染单层培养的人OA软骨细胞.6 d后分别检测培养上清液中目的 基因表达和糖胺聚糖(GAG)含量.四甲基偶氮唑蓝(MTT)法及流式细胞术分析软骨细胞的增殖及凋亡.甲苯胺蓝染色及Ⅱ型胶原免疫组织化学染色观察软骨细胞基质的合成.免疫印迹法检测Ⅱ型胶原、基质金属蛋白酶(MMP)-3及其抑制剂-1(TIMP-1)的表达.采用单因素方差分析,并进行组间两两比较.结果 各基因转染后,细胞上清液日的基因表达与OA对照组相比明显增高(P<0.05 ). bFGF单独转染可促进软骨细胞增殖,增加Ⅱ型胶原和蛋白多糖的合成(P<0.05).与bFGF单独转染相比,联合IL-1Ra和(或)IGF-1共同转染后,可降低软骨细胞的凋亡率[分别为:(26.1±1.6)%、(19.4±1.0)%、(18.4±1.1)%、(13.9±1.8)%,P<0.05],进一步增加了软骨基质的生物合成(P<0.05).同时,抑制了MMP-3的表达,增加了TIMP-1的表达.结论 腺病毒介导的bFGF转染入OA软骨细胞可促进细胞增殖,增加基质的合成.与IL-1Ra和IGF-1共转染后可发挥协同作用,进一步增加基质合成;同时,抑制了基质的降解.%Objective To investigate the effect of recombinant adenovirus-mediated basic fibroblast growth factor (bFGF),interleukin-1 receptor antagonist protein (IL-Ra) and insulin-like growth factor(IGF)-1 gene transfection on human osteoarthritis chondrocytes.Methods Monolayer cultures of human osteoarthritis chondrocytes were transfected with recombinant adenovirus carrying genes encoding the following cytokines: human bFGF,IL-1Ra and IGF-1.Six days later,levels of gene expression and glycosaminoglycan (GAG) in culture

  16. 重组腺病毒气管途径反复转染大鼠肺组织人类eNOS基因的转导效果%Efficiency of transduction of recombinant adenovirus-mediated human endothelial nitric oxide synthase gene into lung tissue by repeated intratracheal transfection in rats

    周锦; 曹惠鹃; 张铁铮; 金强; 王俊科


    Objective To investigate the efficiency of transduction of recombinant adenovirus-mediated human endothelial nitric oxide synthase (eNOS) into lung tissue by repeated intratracheal transfection in rats.Methods Sixty 3-4 month old male Wistar rats weighing 220-280 g were randomly divided into 2 groups:control group (group C,n =10) and eNOS gene transduction group (group T,n =50).The animals were anesthetized with intraperitoneal 10% chloral hydrate 35 mg/kg,tracheally intubated and mechanically ventilated (VT 2.5 ml,RR 60 bpm,FiO2 1.0).Recombinant adenovirus carrying human eNOS gene was given as gift by Professor Gerard from Texas University,Southwest Medical Center.In group T 50 μl of the recombinant adenovirus in concentration of 5 × 109 PFU/ml was instilled into trachea every 5 minutes for 12 times,while in group C equal volume of vector conservation solution was instilled instead.Pulmonary arterial blood samples were obtained at 2,5,7,14 and 21 d after intratracheal transfection (n =10 at each time point) for determination of serum NO concentration.The animals were immediately sacrificed after blood sample collection for determination of expression of eNOS protein in the lung tissue and RNA.The eNOS expression in the trachea,bronchus,lung,liver,spleen and kidney was detected by immuno-histochemistry.Results The serum NO concentrations were significantly higher at all time points in group T than in group C.The eNOS expression was detected in the epithelial cells of trachea and bronchi,and endothelial cells of alveoli and pulmonary blood vessels in group T but not in group C.eNOS expression was not detected in liver,spleen and kidney at 7 d after intratracheal transfection in group T.Conclusion Human eNOS gene mediated by recombinant adenovirus was transducted into rat lung tissue with normal enzyme activity by repeated intratracheal administration without being detected in distant organs.%目的 重组腺病毒气管途径反复转染大鼠肺组织人类内

  17. Beta-Adrenergic gene therapy for cardiovascular disease

    Koch Walter J


    Full Text Available Abstract Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct, acting as a Gβγ-β-adrenergic receptor kinase (βARK1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.

  18. Lateral gene transfer, rearrangement, reconciliation

    Patterson, M.D.; Szollosi, G.; Daubin, V.; Tannier, E.


    Background. Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer,

  19. 腺病毒介导线粒体融合蛋白2基因转染对糖尿病大鼠七氟醚后处理心肌保护作用的影响%Effect of adenovirus-mediated mitofusin-2 gene transfection on sevoflurane postconditioning-induced cardioprotection in diabetic rats

    王祥; 王晓鹏; 韩冲芳; 方爱莉; 杨文曲; 贺建东; 师高翔; 段应磊


    Objective To investigate the effect of adenovirus-mediated mitofusin-2 (Adv-Mfn2) gene transfection on sevoflurane postconditioning-induced cardioprotection in diabetic rats.Methods Healthy adult male Sprague-Dawley rats,weighing 210-260 g,aged 3-4 months,in which diabetes mellitus was induced by intraperitoneal streptozotocin 60 mg/kg and confirmed by blood glucose level > 16.7 mmol/L,were used in this study.Fifty rats with diabetes mellitus were randomly divided into 5 groups (n =10 each) using a random number table:sham operation group (S group),ischemia-reperfusion (I/R) group,sevoflurane postconditioning group (SP group),Adv-Mfn2 plus I/R group (M+I/R group),and Adv-Mfn2 plus sevoflurane postconditioning group (M+SP group).Myocardial ischemia was induced by 30 min occlusion of the left anterior descending branch of the coronary artery followed by 120 min reperfusion.In SP and M+SP groups,sevoflurane was inhaled for 5 min with the end-tidal concentration of 2.5% starting from 1 min before reperfusion.Adv-Mfn2 2× 1010pfu/kg was injected via the sublingual vein at 1 min after streptozotocin injection in M+I/R group and M+SP group.The blood samples were collected from the abdominal artery at 120 min of reperfusion for determination of the creatine kinase-MB (CK-MB) activity and cardiac troponin Ⅰ (cTnI) concentration in serum.The rats were then sacrificed,and their hearts were removed.Myocardial specimens were obtained for determination of cell apoptosis,and the apoptosis index (AI) was calculated.Myocardial specimens were obtained from the apex for determination of Mfn2 expression (by Western blot) and for examination of the pathological changes which were scored.Results Compared with S group,the CK-MB activity and cTnI concentration in serum,AI and pathological scores were significantly increased,and Mfn2 expression was significantly down-regulated in I/R,SP,M+I/R and M+ SP groups (P<0.05).Compared with I/R group,the CK-MB activity and c

  20. Oncolytic adenovirus-mediated therapy for prostate cancer

    Sweeney K


    future systemic delivery of oncolytic adenoviruses. Keywords: replication selective, virotherapy, combination therapy, clinical trials, gene deletion, transgene

  1. Retrovirus-Mediated Gene Transfer in Immortalization of Progenitor Hair Cell Lines in Newborn Rat

    ZHANG Yuan; ZHAI Suo-qiang; SONG Wei; GUO Wei; ZHENG Gui-liang; HU Yin-yan


    Objective To present an experimental method that allows isolation of greater epithelial ridge (GER) and lesser epithelial ridge(LER) cells from postnatal rat cochleae using a combinatorial approach of enzymatic digestion and mechanical separation and to investigate a retrovirus-mediated gene transfer technique for its possibl utility in immortalization of the GER and LER cell lines, in an effort to establish an in vitro model system of hair cell differentiation. Methods GER and LER cells were dissected from postnatal rat cochleae and immortalized by transferring the SV40 large T antigen using a retrovirus. The established cell lines were confirmed through morphology observation, immunnocytochemical staining and RT-PCR analysis. The Hathl gene was transferred into the cell lines using adenovirus-mediated techniques to explore their potential to differentiate into hair cells. Results The established cell lines were stably maintained for more than 20 passages and displayed many features similar to primary GER and LER cells. They grew in patches and assumed a polygonal morphology. Immunostaining showed labeling by SV40 large T antigen and Islet1 (a specific marker for GER and LER). All passages of the cell lines expressed SV40 large T antigen on RT-PCR analysis. The cells also showed the capability to differenti-ate into hair cell-like cells when forced to express Hathl. Conclusion Retrovirus-mediated gene transfer can be used in establishing immortalized progenitor hair cell lines in newborn rat, which may provide an invaluable system for studying hair cell differentiation and regeneration for new treatment of sensory hearing loss caused by hair cell loss.

  2. Adenovirus-Mediated IL-10 Gene for the Treatment of Autoimmune Inner Ear Disease-an Experimental Study%腺病毒介导的白细胞介素-10治疗自身免疫性内耳病的实验研究

    蔡文君; 谭长强


    Objective To evaluate therapeutic effects of transferring recombinant replication -defective ade‐novirus vector of interleukin 10(IL -10) gene into inner ear of guinea pig for the treatment of autoimmune inner ear disease .Methods The conspecific crude inner ear antigens (CIEAgs) were prepared and used to immunize guinea pigs with Freund's adjuvant that resulted autoimmune inner ear diseases (AIED) in 20 animals .Then they were ran‐domly divided into three groups .Through the way of round window membrane micro -injection ,adenovirus vector containing IL -10(Ad -IL -10) gene were implanted in group A(ten animals) ,recombinant adenovirus with yellow fluorescent protein(Ad -EYFP) marked was implanted in group B(five animals) ,and artificial perilymph were implanted in group C( five animals) .Seven days later ,auditory brain-stem response (ABR) thresholds were determined ,the guinea pig inner ears were obtained ,and the immunohistochemistry staining were perform for detec‐ting adenovirus vector transfection with immunofluorescence and the gene product interleukin 10 expressions with enzyme immunohistochemistry .Results Immunohistochemistry staining showed that the adenovirus carrying IL -10 gene could transfer the psalterial cord ,spiral ligament ,Corti organ ,spiral ganglion ,cochlear axis vessels and co‐chlear bone paries .It could generate gene product (IL -10 ) in same sites .The mean ABR thresholds were increased in each group after modeling .The differences were statistically significant .After injection of the inner ear ,the mean ABR thresholds of group A were lower than those of group B and group C .The light microscopic revealed the im‐munological inflammatory response were lighter than in group B and group C .Conclusion The adenovirus could transfer IL -10 gene into inner ear of guinea pig and express its products in many parts of inner ear .The immunity regulating gene can reduce the immunity damage and hearing functional impairment .%目的:研

  3. Panspermia and horizontal gene transfer

    Klyce, Brig


    Evidence that extremophiles are hardy and ubiquitous is helping to make panspermia a respectable theory. But even if life on Earth originally came from space, biologists assume that the subsequent evolution of life is still governed by the darwinian paradigm. In this review we show how panspermia could amend darwinism and point to a cosmic source for, not only extremophiles but, all of life. This version of panspermia can be called "strong panspermia." To support this theory we will discuss recent evidence pertaining to horizontal gene transfer, viruses, genes apparently older than the Earthly evolution of the features they encode, and primate-specific genes without identifiable precursors.

  4. Construction of recombinant adenovirus vector containing AFP and generation of adenovirus-mediated AFP gene modified dendritic cells vaccine%含人AFP基因重组腺病毒载体的构建及其转染树突状细胞瘤苗的制备

    杨静悦; 曹大勇; 刘文超; 斯小明


    Objective:To construct recombinant adenovirus vectors containing human AFP genes,and infect dendritic cell. Methods: Full length AFP cDNAs were subcloned into pIND vector,followed by being cloned into shuttle2 vector.The AFP gene fragments resulted from the shuttle2-AFP digested with PI-Sce and I-Ceu were linked to the linear adeno-X virus DNA.After packaged with HEK293 cells,the adenovirus expression vector was obtained.The plasmid pAdeno-AFP was identified by endonuclease and PCR.After dendritic cells were infected pAdeno-AFP,the surface molecules of pAdeno-AFP/DC were analysed by flow cytometry.AFP levels in culture supernatant of pAdeno-AFP/DC were measured by ELISA. Results: AFP gene in the inserted DNA of adeno-AFP was confirmed by PCR,and predictive fragments proved by restriction enzyme digestion analysis were exhibited.All the above results indicated that human AFP gene had been connected with pAdeno-X vectors correctly.The recombinant adenovirus vector of human AFP gene packaged in HEK293 cells,it will be used to introduce the target gene into dendritic cell.pAdeno-AFP/DC were able to upregulate CD1a,CD11c,CD80,CD86 and HLA-DR.And pAdeno-AFP/DC could secrete high level of AFP in vitro. Conclusion: The recombinant adenovirus vector of human AFP gene have been constructed successfully.The established AFP -DC vaccine may be a tool of the hepatocellular carcinoma immunotherapy,and it will be the foundation of future clinical use of DC vaccine.%目的:构建含人AFP基因的腺病毒载体,体外转染树突状细胞,制备树突状细胞肝癌瘤苗.方法: 将AFP基因亚克隆到pIND 载体和Shuttle2载体中,构建穿梭载体Shuttle2-AFP.用PI-Sce Ⅰ和I-CeuⅠ双酶切后将所获AFP基因片段再与线性化的腺病毒载体pAdeno-X连接,构成pAdeno-AFP重组腺病毒载体.其后,用重组腺病毒载体转染HEK293细胞,包装腺病毒表达载体.通过酶切、PCR对腺病毒载体进行鉴定.包装好的重组病毒载体pAdeno-AFP体外

  5. Horizontal gene transfer in chromalveolates

    Bhattacharya Debashish


    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  6. Horizontal gene transfer in the phytosphere

    Elsas, van J.D.; Turner, S.; Bailey, M.J.


    Here, the ecological aspects of gene transfer processes between bacteria in the phytosphere are examined in the context of emerging evidence for the dominant role that horizontal gene transfer (HGT) has played in the evolutionary shaping of bacterial communities. Moreover, the impact of the putative

  7. Gene transfer therapy in vascular diseases.

    McKay, M J; Gaballa, M A


    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of


    Li Jian; Xia Yongjing; Jiang Lei; Li Hongxia; Hu Yajun; Yi Lin; Hu Shixue; Xu Hongji


    Objective: To study the growth suppression of lung adenocarcinoma cell by the introduction of wild-type P53gene and explore a gene therapy approach for lung adenocarcinoma. Methods: A replication-deficient adenovirus vector encoding a wild-type P53 was constructed and transfected into the cultured human lung adenocarcinoma cell line GLC-82. The efficiency of gene transfection and expression was detected by immunochemical staining and polymerase chain reaction. The cell growth rate and cell cycle were analysed by cell-counting and flow cytometry. Results: Wild-type P53 gene could be quickly and effectively transfected into the cells by adenovirus vector. Wild-type P53 expression could inhibit GLC-82 cell proliferation and induce apoptosis.Conclusion: The results indicated that recombinant adenovirus expressing wild-type P53 might be useful vector for gene therapy of human lung adenocarcinoma.

  9. Combined adenovirus-mediated artificial microRNAs targeting mfgl2, mFas, and mTNFR1 protect against fulminant hepatic failure in mice.

    Dong Xi

    Full Text Available Hepatitis B virus (HBV-related acute-on-chronic liver failure (ACLF has a poor prognosis with high in-hospital mortality. Hepatic and circulating inflammatory cytokines, such as fibrinogen like protein 2 (fgl2, FasL/Fas, and TNFα/TNFR1, play a significant role in the pathophysiology of ACLF. This study aimed to investigate the therapeutic effect of recombinant adenoviral vectors carrying constructed DNA code for non-native microRNA (miRNA targeting mouse fgl2 (mfgl2 or both mFas and mTNFR1 on murine hepatitis virus (MHV-3-induced fulminant hepatitis in BALB/cJ mice. Artificial miRNA eukaryotic expression plasmids against mfgl2, mFas, and mTNFR1 were constructed, and their inhibitory effects on the target genes were confirmed in vitro. pcDNA6.2-mFas-mTNFR1- miRNA,which expresses miRNA against both mFas and mTNFR1 simultaneously,was constructed. To construct a miRNA adenovirus expression vector against mfgl2, pcDNA6.2-mfgl2-miRNA was cloned using Gateway technology. Ad-mFas-mTNFR1- miRNA was also constructed by the same procedure. Adenovirus vectors were delivered by tail-vein injection into MHV-3-infected BALB/cJ mice to evaluate the therapeutic effect. 8 of 18 (44.4% mice recovered from fulminant viral hepatitis in the combined interference group treated with Ad-mfgl2-miRNA and Ad-mFas-mTNFR1-miRNA. But only 4 of 18 (22.2% mice receiving Ad-mfgl2-miRNA and 3 of 18 (16.7% mice receiving Ad-mFas-mTNFR1- miRNA survived. These adenovirus vectors significantly ameliorated inflammatory infiltration, fibrin deposition, hepatocyte necrosis and apoptosis, and prolonged survival time. Our data illustrated that combined interference using adenovirus-mediated artificial miRNAs targeting mfgl2, mFas, and mTNFR1 might have significant therapeutic potential for the treatment of fulminant hepatitis.

  10. Gene transfer to promote cardiac regeneration.

    Collesi, Chiara; Giacca, Mauro


    There is an impelling need to develop new therapeutic strategies for patients with myocardial infarction and heart failure. Leading from the large quantity of new information gathered over the last few years on the mechanisms controlling cardiomyocyte proliferation during embryonic and fetal life, it is now possible to devise innovative therapies based on cardiac gene transfer. Different protein-coding genes controlling cell cycle progression or cardiomyocyte specification and differentiation, along with microRNA mimics and inhibitors regulating pre-natal and early post-natal cell proliferation, are amenable to transformation in potential therapeutics for cardiac regeneration. These gene therapy approaches are conceptually revolutionary, since they are aimed at stimulating the intrinsic potential of differentiated cardiac cells to proliferate, rather than relying on the implantation of exogenously expanded cells to achieve tissue regeneration. For efficient and prolonged cardiac gene transfer, vectors based on the Adeno-Associated Virus stand as safe, efficient and reliable tools for cardiac gene therapy applications.

  11. 腺病毒介导多基因对大鼠脾淋巴细胞毒作用的影响%Effect of adenovirus-mediated multigenes on cytotoxicity of rat spleen lymphocyte in vitro

    王征旭; 何振平; 吴祖泽


    Objective To investigate the changes of the cytotoxicity of ratspleen lymphocyte and the level of IL-2 secreted by human T lymphocyte after the induction of adenovirus-mediated multigenes (Ad-multigenes, containing p53, GM-CSF, B7-1, IL-2 genes). Methods After human lymphocytes of peripheral blood and tumor cells were cultured together, the level of IL-2 secreted by T lymphocytes was determined after they were stimulated by liver cancer cells with pre-transfer of Ad-multigenes in vitro by ELISA. The change of the immunogenicity of rat carcinosarcoma cell Walker 256 transduced with multigenes was studied by cytotoxicity assay of rat spleen lymphocytes. Results The level of IL-2 secreted by peripheral blood T lymphocytes was increased in vitro after the T cells were co-cultivated with Ad-multigene-transducted liver cancer cells. Stimulated by Ad-multigene-transducted Walker 256 cells, the cytotoxicity activities of rat spleen lymphocyte were significantly elevated. Conclusion The immunogenicity of rat carcinosarcoma cell Walker 256 is enhanced, and the IL-2 production level which was secreted by T lymphocyte is increased after the mediation of Ad-multigenes.%目的 研究含多基因(p53、GM-CSF、B7-1、IL-2)的重组腺病毒载体Ad-multigenes,对大鼠脾脏淋巴细胞毒作用的影响及对淋巴细胞分泌IL-2的刺激作用。方法 应用人外周血淋巴细胞和肿瘤细胞混合培养,分析导入目的基因的肝癌细胞系体外刺激人T淋巴细胞分泌IL-2的作用;利用大鼠脾淋巴细胞杀伤活性试验,分析导入目的基因的大鼠癌肉瘤Walker256细胞,其免疫原性的变化。结果 导入Ad-multigenes的肝癌细胞系体外刺激人外周血T淋巴细胞分泌IL-2的水平增加;导入Ad-multigenes的大鼠Walker256细胞,能增强大鼠脾脏淋巴细胞的杀亲本瘤细胞活性。结论 腺病毒介导多基因Ad-multigenes,能增强大鼠癌肉瘤Walker256细胞的免疫原性,和T细胞分泌IL-2的水平增加。

  12. Adenovirus-mediated shRNA interference against HSV-1 replication in vitro.

    Song, Bo; Liu, Xinjing; Wang, Qingzhi; Zhang, Rui; Yang, Ting; Han, Zhiqiang; Xu, Yuming


    The UL29 and UL28 proteins encoded by herpes simplex virus type 1 (HSV-1) are critical for its replication and packaging, respectively. Research has demonstrated that synthesized siRNA molecules targeting the UL29 gene are able to suppress HSV-2 replication and the UL28-null HSV-1 gene cannot form infectious viruses in vitro. Silencing the UL28 and UL29 genes by RNAi might lead to the development of novel antiviral agents for the treatment of HSV-1 infections. Two kinds of short hairpin RNAs (shRNAs) targeting the UL29 and UL28 genes were chemically synthesized and then delivered into cells by a replication-defective human adenovirus type 5 (Adv5) vector. (-) shRNAs targeting none of the genome of HSV-1 were used as the control. Vero cells were inoculated with Ad-UL28shRNA or Ad-UL29shRNA at a multiplicity of infection (MOI) of 100 and challenged 24 h later with HSV-1 at an MOI of 0.01 to inhibit HSV-1 replication, as measured by the level of the corresponding RNA and proteins. In addition, the amount of progeny virus was assessed at daily intervals. The antiviral effects of Ad-shRNAs at ongoing HSV-1 infection were explored at 12 h after inoculation of the HSV-1. The results showed that the shRNAs delivered by Adv5 significantly suppressed HSV-1 replication in vitro, as determined by the levels of viral RNA transcription, viral protein synthesis, and viral production. The Ad-UL28shRNA and Ad-UL29shRNA suppressed the replication of HSV-1, respectively, compared with the control group (P HSV-1 infection (P HSV-1 infection.

  13. Adenovirus-mediated and tumor-specific transgene expression of the sodium-iodide symporter from the human telomerase reverse transcriptase promoter enhances killing of lung cancer cell line in vitro

    SHI Yi-zhen; ZHANG Jun; LIU Zeng-li; DU Shou-ying; SHEN Yong-mei


    Background The sodium-iodide symporter (NIS) protein can mediate the active radioiodine uptake.The human telomerase reverse transcriptase (hTERT) promoter is known to be selectively reactivated in majority of tumors and hence could be used for tumor targeting.We constructed a recombinant adenovirus containing the human sodium iodide symporter (hNIS) gene directed by the hTERT promoter, characterized the ability of infected cells in uptaking iodide, and explored the therapeutic efficacy of 131I in a lung cancer cell line in vitro.Methods The hTERT promoter was amplified by PCR from DNA isolated from log-phase HepG2 cells, subcloned into lineralized FL*-hNIS/pcDNA3, and then the hTERT-hNIS sequence was subcloned into the shuttle plasmid pAdTrack.The recombinant adenovirus Ad-hTERT-hNIS was constructed by AdEasy system.A positive control adenovirusAd-CMV-hNIS and a negative control adenovirus Ad-CMV were created similarly.A549 cells were transduced with recombinant adenoviruses.125I uptake studies and sodium perchlorate suppression studies were used to confirm hNIS expression and function.Toxic effects of 131I on tumor cells were studied by in vitro clonogenic assay.Results We first successfully constructed an adenovirus mediated transgene expression system of the hNIS under the control of hTERT promoter.When infected with recombinant adenovirus constructs expressing hNIS directed by hTERTand CMV-promoters (Ad-hTERT-hNIS and Ad-CMV-hNIS, respectively), the lung cancer cell line A549 had increased ability to uptake radioiodide up to 23- and 30- fold compared to the control parental cells, respectively.The radioiodide uptake ability of both the Ad-CMV-hNIS and Ad-hTERT-hNIS transduced cell lines were repressed 11-fold by sodium perchlorate (NaCIO4).The subsequent in vitro clonogenic assay of the infected A549 cell line was further repressed to 23% (Ad-CMV-hNIS) and 30% (Ad-hTERT-hNIS) of the control group after receiving radioiodide for 7 hours (P <0.001).Conclusion

  14. Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells.

    Wang, Haili; Kroeber, Markus; Hanke, Michael; Ries, Rainer; Schmid, Carsten; Poller, Wolfgang; Richter, Wiltrud


    To develop new therapeutic options for the treatment of disc degeneration we tested the possibility of overexpression of active growth and differentiation factor (GDF) 5 and of transforming growth factor (TGF) beta(1) by adenoviral gene transfer and characterized its effect on cell proliferation and matrix synthesis of cultured rabbit and human intervertebral disc cells. Recombinant adenovirus encoding for GDF-5 or TGF-beta(1) was developed and transgene expression characterized by RT-PCR, western blot and ELISA. Growth and matrix synthesis of transduced cells was measured by [(3)H]thymidine or [(35)S]sulfate incorporation. Disc cells expressed the receptors BMPR1A, BMPR1B, and BMPR2, which are relevant for GDF-5 action. Adenovirus efficiently transferred the GDF-5 gene or the TGF-beta(1) gene to rabbit and human intervertebral disc cells. About 50 ng GDF-5 protein/10(6 )cells per 24 h or 7 ng TGF-beta(1) protein/10(6 )cells per 24 h was produced. According to western blotting, two GDF-5 forms, with molecular weights consistent with the activated GDF-5 dimer and the proform, were secreted over the 3 weeks following gene transfer. Overexpressed GDF-5 and TGF-beta(1) were bioactive and promoted growth of rabbit disc cells in monolayer culture. Our results suggest that ex vivo gene delivery of GDF-5 and TGF-beta(1) is an attractive approach for the release of mature and pre-GDF-5 in surrounding tissue. This leads us to hope that it will prove possible to improve the treatment of degenerative disc disease by means of ex vivo gene transfer of single or multiple growth factors.

  15. Viral Vectors for in Vivo Gene Transfer

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  16. Lateral transfer of the lux gene cluster.

    Kasai, Sabu; Okada, Kazuhisa; Hoshino, Akinori; Iida, Tetsuya; Honda, Takeshi


    The lux operon is an uncommon gene cluster. To find the pathway through which the operon has been transferred, we sequenced the operon and both flanking regions in four typical luminous species. In Vibrio cholerae NCIMB 41, a five-gene cluster, most genes of which were highly similar to orthologues present in Gram-positive bacteria, along with the lux operon, is inserted between VC1560 and VC1563, on chromosome 1. Because this entire five-gene cluster is present in Photorhabdus luminescens TT01, about 1.5 Mbp upstream of the operon, we deduced that the operon and the gene cluster were transferred from V. cholerae to an ancestor of Pr. luminescens. Because in both V. fischeri and Shewanella hanedai, luxR and luxI were found just upstream of the operon, we concluded that the operon was transferred from either species to the other. Because most of the genes flanking the operon were highly similar to orthologues present on chromosome 2 of vibrios, we speculated that the operon of most species is located on this chromosome. The undigested genomic DNAs of five luminous species were analysed by pulsed-field gel electrophoresis and Southern hybridization. In all the species except V. cholerae, the operons are located on chromosome 2.

  17. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Zhao Yarui


    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  18. Horizontal gene transfer in silkworm, Bombyx mori

    Li Bin


    Full Text Available Abstract Background The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Results Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Conclusions Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes.

  19. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail:


    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  20. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU


    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  1. Adenovirus-mediated delivery of p27KIP1 to prevent wound healing after experimental glaucoma filtration surgery

    Jian-gang YANG; Nai-xue SUN; Li-jun CUI; Xiao-hua WANG; Zhao-hui FENG


    Aim: The aim of the study was to evaluate the outcome of adenovirus-mediated p27KIP1 (Ad-p27) expression on wound healing after filtration surgery and to investigate the inhibition of cell proliferation induced by Ad-p27. Methods: We constructed the adenovirus recombinant vector Ad-p27 and administered it to a rabbit model of glaucoma filtration surgery by subconjunctival injection; phosphate-buffered saline (PBS) and mitomycin C (MMC) were used as controis. Intraocular pressure (IOP), bleb scores, and anterior chamber depths were observed during a 28-d period. Histological examinations, fluorescence observations and Western blot analyses were evaluated.Results: Ad-p27 enhanced the surgical outcome and inhibited cell proliferation when compared with PBS. Bleb scores in the Ad-p27-treated eyes were higher than those in the PBS-treated eyes on d 7 (P<0.01), 14 (P<0.01) and 21 (P<0.05). Ond 28, IOP remained significantly decreased in the Ad-p27 group compared with the PBS group (P<0.05). However, no differences in bleb scores or IOPs were observed between the Ad-p27 and MMC groups. Histological analysis showed that total cell numbers were markedly reduced, and less scar tissue was observed at the surgical site in eyes treated with Ad-p27.The number of fibroblasts was decreased in Tenon's capsule in Ad-p27-treated eyes; however, a marked and diffuse signal from the green fluorescent protein (GFP) was observed in fibroblasts. Western blot analysis revealed a high level of p27KIP1 expression in conjunctival epithelium (P<0.01), relatively high expression in superficial scleral stroma (P<0.01), and low expression in corneal epithelium in the Ad-p27 group. Conclusions: Ad-p27 administration significantly improves the outcome of filtration surgery and inhibits postoperative proliferation in rabbit eyes. These findings suggest that p27KIP1 is a potential adjunctive agent for inhibition of wound heal-ing after filtration surgery.

  2. Viral vectors for gene transfer: current status of gene therapeutics.

    Heilbronn, Regine; Weger, Stefan


    Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.

  3. Horizontal gene transfer and bacterial diversity

    Chitra Dutta; Archana Pan


    Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.

  4. Adenovirus Mediated Gene Transfer of Tyrosinase Gene on HepG2 Cell by Magnetic Resonance Imaging%磁共振成像评价腺病毒介导的酪氨酸酶基因在HepG2细胞的表达

    元建鹏; 梁碧玲; 邓贺然; 刘壮盛; 白守民; 钟镜联


    目的 以酪氨酸酶基因腺病毒重组体转染HepG2细胞,以磁共振成像(MRI)观察酪氨酸酶基因腺病毒重组体转染体外细胞的效果.方法 以不同数量酪氨酸酶基因腺病毒重组体转染HepG2细胞,以MRI T1加权像(T1WI)、T2加权像(T2WI)及短时间间隔反转恢复序列( STIR)扫描转染细胞.应用Masson-Fontana染色检测黑色素的合成,实时定量 PCR验证酪氨酸酶基因的转染与表达.结果 酪氨酸酶基因腺病毒重组体转染HepG2细胞并在其中表达生成黑色素,经转染复数分别为50、150、300的重组腺病毒转染的1×106个细胞内生成的黑色素能够被MRI检测到并在MRI T1WI、T2WI、STIR检查呈高信号.Masson-Fontana染色检测到转染的HepG2细胞内的黑色素颗粒;实时定量PCR在转染细胞中检测到的酪氨酸酶基因的cDNA表达量较未转染细胞的表达量明显增高.结论 MRI能够检测到HepG2细胞由外源基因表达合成的黑色素,表明腺病毒作为运送载体可以有效地运送酪氨酸酶基因进入HepG2细胞.

  5. 体外骨髓基质干细胞中腺病毒介导的胶质细胞源性神经营养因子基因的表达及其生物学活性%Expression of adenovirus-mediated glial cell line-derived neurotrophic factor gene in bone marrow stromal cells in vitro and its biological activity

    彭松林; 方煌; 赵红卫; 蔡卫东; 黎逢峰; 胡宁; 陈安民


    背景:骨髓基质干细胞(bone marrow stromal cells,BMSCs)是外源性目的基因的良好靶细胞,在脊髓损伤的修复中具有良好的应用前景.目的:观察重组腺病毒介导的胶质细胞源性神经营养因子(glial cellline-derived neurotrophic factor,GDNF)基因在体外培养的骨髓基质干细胞中的表达,并探讨其生物学活性.设计:以细胞为研究对象,对照观察性研究.单位:一所大学医院骨科实验室.材料:实验于2004-03/06在华中科技大学同济医学院附属同济医院骨科实验室完成.SD大鼠24只,雌雄不限,体质量(180±20)g.干预:用重组腺病毒载体Adv-GDNF感染体外培养的BMSCs,并与脊髓背根神经节共培养.免疫荧光化学的方法检测BMSCs中的GDNF的表达,提取细胞总RNA进行RT-PCR扩增GDNF基因,应用ELISA方法检测其培养上清中的GDNF含量,并通过与脊髓背根神经节共培养观测GDNF的活性.主要观察指标:主要结局:①RT-PCR.②免疫荧光结果.③GDNF的体外活性.次要结局:①BMSCs的培养与鉴定.②ELISA检测蛋白表达与时间的关系.结果:免疫荧光显示Adv-GDNF感染BMSCs 48 h后即有GDNF的表达,体外培养的BMSCs经Adv-GDNF转染后有GDNF的转录,其培养上清应用ELISA方法分析,在感染24 h后即有GDNF的表达,并可持续5~7 d的高峰.Adv-GDNF感染的BMSCs的培养液上清可以促进脊髓背根神经节大量轴突的生长.结论:Adv-GDNF基因可以在BMSCs中稳定、高效表达,其表达的GDNF具有促进轴突生长的活性,为GDNF基因治疗脊髓损伤的研究奠定了基础.%BACKGROUND: Bone marrow stromal cells(BMSCs) are the ideal gene target cells and will have a bright future in the gene therapy of spinal cord injury.OBJECTIVE :To detect the expression of glial cell line - derived neurotrophic factor(GDNF) gene after BMSCs were infected by adenovirus-medialed GDNF (Adv-GDNF) in vitro and to explore its biological activity.DESIGN: A randomized controlled trial

  6. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    R. Thane Papke


    Full Text Available The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.

  7. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio


    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  8. Ultrasound and Microbubbles: Their Functions in Gene Transfer In Vitro

    CHEN Yunchao; HUANG Daozhong; LI Kaiyan; WANG Zhihui; HONG Kai; WANG Fen; ZANG Qingping


    To examine the role of ultrasound in gene delivery in vitro, three cells lines were exposed to the low-frequency ultrasound of varying intensities and for different durations to evaluate their effect on gene transfection and cell viability of the cells. Microbubble (MB), Optison (10%), was also used to observe the role of the microbubbles in gene transfection. The results demonstrated that as the ultrasound intensity and the exposure time increased, the gene transfer rate increased and the cell viability decreased, but at high energy intensities, the cell viability decreased dramatically, which caused the transfer rate to decrease. The most efficient ultrasound intensity for inducing gene transfer was 1 W/cm2 with duration being 20 s. At the same energy intensity, higher ultrasound intensity could achieve maximal gene transfer rate earlier. Microbubbles could increase ultrasound-induced cell gene transfer rate by about 2 to 3 times mainly at lower energy intensities. Moreover, microbubbles could raise the maximum gene transfer rate mediated by ultrasound. It is concluded that the low-frequency ultrasound can induce cell gene transfer and the cell gene transfer rate and viability are correlated with not only the ultrasound energy intensity but also the ultrasound intensity, the higher ultrasound intensity achieves its maximal transfer rate more quickly and the ultrasound intensity that can induce optimal gene transfer is 1 W/cm2 with duration being 20 s, and microbubbles can significantly increase the maximal gene transfer rate in vitro.

  9. Adenovirus-mediated NDRG2 inhibits the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro

    Sheng Qiang; Zhen-Fang Du; Min Huang


    Objective: To investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro. Methods: NDRG2 was harvested by RT-PCR, confirmed by DNA sequencing, and then cloned into the eukaryotic expression vector pIRES2-EGFP, which encodes green fluorescent protein (GFP), to construct pIRES2-EGFP-NDRG2 plasmid. OS-RC-2 cells with NDRG2 negative expression were transfected with pIRES2-EGFP-NDRG2 plasmid. The growth of transfected OS-RC-2 cells was observed under light and fluorescence microscopes. After colony-forming cell assays, cell proliferation detection and MTT assays, the growth curves of cells in each group were plotted to investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of OS-RC-2 cells. Cell cycle was determined by flow cytometry. Confocal laser scanning microscopy showed that NDRG2 protein was specifically located on subcellular organelle. Results: A eukaryotic expression vector pIRES2-EGFP-NDRG2 was successfully constructed. After NDRG2 transfection, the growth of OS-RC-2 cells was inhibited. Flow cytometry showed that cells were arrested in S phase but the peak of cell apoptosis was not present, and confocal laser scanning microscopy showed that NDRG2 protein was located in mitochondrion. Conclusions: NDRG2 can significantly inhibit the proliferation of OS-RC-2 cells in vitro and its protein is specifically expressed in the mitochondrion.

  10. Horizontal gene transfer from Agrobacterium to plants

    Tatiana V. Matveeva


    Full Text Available Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A.rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named cellular T-DNA (cT-DNA. It represents an imperfect inverted repeat and contains homologues of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14 and an opine synthesis gene (Ngmis. A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologues of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role.

  11. Aphids acquired symbiotic genes via lateral gene transfer

    Nakabachi Atsushi


    Full Text Available Abstract Background Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist Buchnera aphidicola (γ-Proteobacteria. Buchnera has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid Acyrthosiphon pisum, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR. Results Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes ldcA (product, LD-carboxypeptidase and rlpA (product, rare lipoprotein A, respectively. Buchnera lacks these genes, whereas many other bacteria, including Escherichia coli, a close relative of Buchnera, possess both ldcA and rlpA. Molecular phylogenetic analysis clearly demonstrated that the aphid ldcA was derived from a rickettsial bacterium closely related to the extant Wolbachia spp. (α-Proteobacteria, Rickettsiales, which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of rlpA was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that ldcA and rlpA are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan, which is a component of the bacterial cell wall. As Buchnera possesses a cell wall composed of murein but lacks ldcA, a high level of expression of the aphid ldcA in the

  12. 人白细胞介素10离体供肺基因转染对大鼠移植肺缺血再灌注损伤的保护作用%Protective effect of ex vivo adenovirus-mediated gene transfer of human interleukin-10 to lung isografts on subsequent ischemia-reperfusion injury: experiment with rats

    康明强; 林培裘; 林若柏; 黄雪珊; 林旭; 郑宇辉; 廖崇先; 陈道中


    目的 探讨离体经肺静脉灌注途径转染目的 基因的可行性,观察移植肺局部转染人白细胞介素(hIL)-10基因对移植肺缺血再灌注损伤(IRI)的影响.方法 采用改良的三袖套法建立大鼠左肺原位移植模型,移植前供肺离体经肺静脉逆行灌注5×109 PFU/ml hIL-10基因重组的腺病毒载体(转基因组),保存3 h后移入受鼠;另设空载体对照组、空白对照组和假手术对照组.再灌注后4 h,测定动脉血PaO2;检测移植肺湿-干重比率(W/D)、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、髓过氧化物酶(MPO)活性;观察组织学改变;采用RT-PCR法和免疫组化染色法检测移植肺hIL-10基因的表达情况,酶联免疫吸附法(ELISA)测定移植肺肿瘤坏死因子(TNF)-α、干扰素(IFN)-γ的表达水平.结果 空载体对照组和空白对照组出现明显的移植肺IRI,转基因组移植肺IRI明显减轻,PaO2提高、W/D比率降低、MDA含量和MPO活性下降(P<0.01)、SOD活性升高(P<0.05);转基因组移植肺TNF-α、IFN-γ的表达下调(P<0.01),肺泡间质水肿减轻,炎细胞浸润减少,并有外源性hIL-10基因的表达.结论 (1)离体供肺经肺静脉灌注途径转染外源性基因有效可行;(2)腺病毒介导hIL-10转基因能有效地减轻移植肺IRI,改善早期移植肺功能.

  13. Adenovirus mediated ANG gene transfer via intraventicular injection stimulate brain angiogenesis in rats%侧脑室注射重组血管生长素腺病毒对大鼠脑内血管生成的影响

    唐文雄; 郭淮莲; 唐春花; 张伟赫


    目的 观察侧脑室注射重组血管生长素腺病毒(Ad-ANG)后血管生长素(ANG)在正常大鼠脑内的表达情况及对大鼠脑组织血管生成的影响.方法 大鼠随机分为3组14个亚组,分别经侧脑室给予Ad-ANG、重组绿色荧光蛋白腺病毒(Ad-GFP)及生理盐水(NS组),观察大鼠体重、行为等一般情况,分别于注射后1d、3d、7d、14d、4w及8w取脑,切片荧光显微镜观察GFP表达,并进行ANG及vWF免疫组化染色、HE染色.结果 (1)体重:术后第1、3、7天Ad-ANG组及Ad-GFP组与NS组相比显著降低(P<0.001,P<0.05),Ad-ANG组大鼠体重显著低于Ad-GFP组(P<0.05).(2)重组腺病毒表达:Ad-ANG组及Ad-GFP组大鼠均于术后第1天始见侧脑室内绿色荧光蛋白表达,第3天达到高峰,后逐渐减少,14d荧光基本消失.(3)ANG阳性细胞数:术后第1、3、7、14天,Ad-ANG组大鼠脑内ANG阳性细胞数显著高于相应时间点Ad-GFP组及NS组(P<0.001),Ad-ANG组各时间点之间差异有显著性(P<0.001).(4)微血管计数:Ad-ANG组显著高于Ad-GFP组及NS组(P<0.001);Ad-GFP组显著高于NS组(P<0.05);Ad-ANG组脑内微血管计数4w内持续增加,各亚组间差异均有显著性(P≤0.001),4w以后无显著变化.(5)HE染色:术后第3天开始Ad-ANG组与Ad-GFP组侧脑室、蛛网膜下腔、软脑膜血管周围可见一过性少量单核细胞浸润.结论 侧脑室注射Ad-ANG能在大鼠脑内有效表达并促进大鼠脑内血管生成,能引起大鼠脑室内及蛛网膜下腔-过性炎性细胞浸润及大鼠-过性体重减低.%Objective To investigate the expression of angiogenin after intraventricular injection of recombined ANG-GFP-adenovirus vectors (Ad-ANG) and its effect on the angiogenesis in brain of normal rats.Methods 42 rats were randomized into 3 groups and 14 subgroups and injected with Ad-ANG,Ad-GFP and saline respectively.Their body weight and behavior were observed and brain slices were observed with fluorescence microscope, hematoxylin eosin (HE) staining,and immunohistocbemical staining for ANG on day 1,3,7,14 and vWF on day 1,3,7,14,4 week,8 week after injection.Results ( 1 ) Body weight: significant weight loss was observed in Ad-ANG and Ad-GFP group compared with NS group ( P <0.001 ) ;more weight loss was observed in Ad-ANG group than in Ad-GFP group (P < 0.05 ) on day1,3,7,14.(2)Expression of recombined adenovirus: GFP was observed from dayl and reach its climax on day 3 ,and totally disappear on day 14.( 3 ) ANG positive cell count: significant increase was observed in Ad-ANG group compared to Ad-GFP and NS group on each time point ( P < 0.001 ), and is of significant difference between subgroups of Ad-ANG group ( P < 0.001 ).(4) Microvascular count: persistent increase was observed in Ad-ANG group from day 3 till 4 week with significant difference compared to Ad-GFP and NS group (P < 0.001 ) or between subgroups; significant increase was also observed in Ad-GFP groups compared to NS groups (P <0.05).(5) HE staining: transient inflamaation with monocytes infiltration was observed in periventricular tissues,choroid plexus, subarachnoid space and perivascular tissue in leptomeninges but not in parenchymal.Conclusions Intraventricular injection of Ad-ANG can achieve effective expression, promote brain angiogenesis,and can cause transient inflammation in brain and decrease in body weight.

  14. mdr1启动子调控CD::UPP基因对紫杉醇耐药卵巢癌细胞的杀伤作用%Cell-killing effects of adenovirus-mediated transfer of CD :: UPP gene directed by mdr1 promoter on Taxol-resistant ovarian cancer cells

    卢实; 蔡俐琼; 王晓翊; 王泽华


    目的:探讨腺病毒介导的mdr1启动子调控胞嘧啶脱氨酶::尿嘧啶磷酸核糖转移酶(CD::UPP)融合基因联合5-氟胞嘧啶(5-FC)对紫杉醇耐药卵巢癌细胞的特异性杀伤作用.方法:扩增、纯化含有mdr1-CD::UPP基因的重组腺病毒,转染人卵巢癌紫杉醇耐药细胞株A2780/Taxol和亲本细胞株A2780,RT-PCR检测mdr1和CD::UPP基因的表达水平;之后加入5-FC,MTT法检测细胞抑制情况及旁观者效应,并观察腺病毒转染后裸鼠移植瘤的生长情况.结果:mdr1和CD::UPP基因在A2780/Taxol细胞中可稳定表达,转染后A2780/Taxol组的细胞生长明显低于A2780组;转基因的A2780/Taxol细胞联合5-FC后可通过旁观者效应杀伤周围未转基因的耐药细胞;耐药组移植瘤生长明显受到抑制,肿瘤体积为(569.10±187.93)mm3,对照组肿瘤体积为(2 111.98±230.82)mm3,差异有统计学意义(P<0.01).结论:mdr1启动子可调控CD::UPP基因特异性表达并特异性杀伤紫杉醇耐药卵巢癌细胞.

  15. Progress in gene transfer by germ cells in mammals


    Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT)or female germ cell mediated gene transfer(FGCMGT)technique.Sperm-mediated gene transfer (SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been extensively used for producing transgenic animals.The newly developed approach of FGCMGT,ovary-mediated gene transfer(OMGT) is also a novel and useful tool for efficient transgenesis.This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques,methods developed and mechanisms of nucleic acid uptake by germ cells.

  16. Plant genetics: gene transfer from parasitic to host plants.

    Mower, Jeffrey P; Stefanović, Sasa; Young, Gregory J; Palmer, Jeffrey D


    Plant mitochondrial genes are transmitted horizontally across mating barriers with surprising frequency, but the mechanism of transfer is unclear. Here we describe two new cases of horizontal gene transfer, from parasitic flowering plants to their host flowering plants, and present phylogenetic and biogeographic evidence that this occurred as a result of direct physical contact between the two. Our findings complement the discovery that genes can be transferred in the opposite direction, from host to parasite plant.

  17. Gene Transfer & Hybridization Studies in Hyperthermophilic Species

    Nelson, Karen E.


    A. ABSTRACT The importance of lateral gene transfer (LGT) in the evolution of microbial species has become increasingly evident with each completed microbial genome sequence. Most significantly, the genome of Thermotoga maritima MSB8, a hyperthermophilic bacterium isolated by Karl Stetter and workers from Vulcano Italy in 1986, and sequenced at The Institute for Genomic Research (TIGR) in Rockville Maryland in 1999, revealed extensive LGT between % . this bacterium and members of the archaeal domain (in particular Archaeoglobus fulgidus, and Pyracoccus frcriosus species). Based on whole genome comparisons, it was estimated that 24% of the genetic information in this organism was acquired by genetic exchange with archaeal species, Independent analyses including periodicity analysis of the T. maritimu genomic DNA sequence, phylogenetic reconstruction based on genes that appear archaeal-like, and codon and amino acid usage, have provided additional evidence for LGT between T. maritima and the archaea. More recently, DiRuggiero and workers have identified a very recent LGT event between two genera of hyperthermophilic archaea, where a nearly identical DNA fragment of 16 kb in length flanked by insertion sequence (IS) elements, exists. Undoubtedly, additional examples of LGT will be identified as more microbial genomes are completed. For the present moment however, the genome sequence of T. maritima and other hyperthermophiles including P. furiosus, Pyrococcus horikoshii, Pyrococcus abyssi, A. fulgidus, and Aquifex aeolicus, have significantly increased out awareness of evolution being a web of life rather than a tree of life, as suggested by single gene phylogenies. In this proposal, we will aim to determine the extent of LGT across the hyperthemophiles, employing iY maritima as the model organism. A variety of biochemical techniques and phylogenetic reconstructions will allow for a detailed and thorough characterization of the extent of LGT in this species. The

  18. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research


    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  19. Computational and phylogenetic validation of nematode horizontal gene transfer

    Bird David; Scholl Elizabeth H


    Abstract Sequencing of expressed genes has shown that nematodes, particularly the plant-parasitic nematodes, have genes purportedly acquired from other kingdoms by horizontal gene transfer. The prevailing orthodoxy is that such transfer has been a driving force in the evolution of niche specificity, and a recent paper in BMC Evolutionary Biology that presents a detailed phylogenetic analysis of cellulase genes in the free-living nematode Pristionchus pacificus at the species, genus and family...

  20. Simultaneous identification of duplications and lateral gene transfers.

    Tofigh, Ali; Hallett, Michael; Lagergren, Jens


    The incongruency between a gene tree and a corresponding species tree can be attributed to evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial model where so-called DTL-scenarios are used to explain the differences between a gene tree and a corresponding species tree taking into account gene duplications, gene losses, and lateral gene transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We show that finding most parsimonious acyclic DTL-scenarios is NP-hard. However, by dropping the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming algorithm as well as a fixed-parameter tractable algorithm for finding most parsimonious DTL-scenarios.

  1. Identification and Categorization of Horizontally Transferred Genes in Prokaryotic Genomes

    Shuo-Yong SHI; Xiao-Hui CAI; Da-fu DING


    Horizontal gene transfer (HGT), a process through which genomes acquire genetic materials from distantly related organisms, is believed to be one of the major forces in prokaryotic genome evolution.However, systematic investigation is still scarce to clarify two basic issues about HGT: (1) what types of genes are transferred; and (2) what influence HGT events over the organization and evolution of biological pathways. Genome-scale investigations of these two issues will advance the systematical understanding of HGT in the context of prokaryotic genome evolution. Having investigated 82 genomes, we constructed an HGT database across broad evolutionary timescales. We identified four function categories containing a high proportion of horizontally transferred genes: cell envelope, energy metabolism, regulatory functions, and transport/binding proteins. Such biased function distribution indicates that HGT is not completely random;instead, it is under high selective pressure, required by function restraints in organisms. Furthermore, we mapped the transferred genes onto the connectivity structure map of organism-specific pathways listed in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our results suggest that recruitment of transferred genes into pathways is also selectively constrained because of the tuned interaction between original pathway members. Pathway organization structures still conserve well through evolution even with the recruitment of horizontally transferred genes. Interestingly, in pathways whose organization were significantly affected by HGT events, the operon-like arrangement of transferred genes was found to be prevalent. Such results suggest that operon plays an essential and directional role in the integration of alien genes into pathways.

  2. Gene transfer for congestive heart failure: update 2013.

    Tang, Tong; Hammond, H Kirk


    Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. However, many pivotal regulators of cardiac function have been identified using cardiac-directed transgene expression and gene deletion in preclinical studies. Some of these increase function of the failing heart. Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.


    FU Jian-xin; CHEN Zi-xing; CEN Jian-nong; WANG Wei; RUAN Chang-geng


    Objective: To establish an efficient and safe gene transfer system mediated by retrovirus for gene marking and gene therapy of human leukemia. Method: The retroviral vector LXSN, containing the neomycin resistance (NeoR) gene, was transferred into amphotropic packaging cells GP+envAm12 by liposome transfection or by ecotropic retrovirus transduction. Amphotropic retrovirus in supernatants with higher titer was used to infect human leukemic cell lines NB4, U937, and THP-1.The efficiency of gene transfer was assayed on colonies formed by transduced K562 cells. Results: The titer of DOSPER directly transfected GP+envAm12 cells determined on NIH3T3 cells was 8.0×105 CFU/ml, while that of producer infected with retrovirus was 1.6×107CFU/ml. Integration of NeoR gene into all leukemia cells was confirmed by polymerase chain reaction (PCR).Absence of replication-competent virus was proved by both nested PCR for env gene and marker gene rescue assay. Gene transfer with the efficiency as high as 93.3 to 100% in K562 cells was verified by seminested PCR for integrated NeoR gene on colonies after 7 days' culture.Conclusion: The efficiency and safety of retrovirus mediated gene transfer system might provide an optimal system in gene therapy for leukemia or genetic diseases.

  4. Problems associated with gene transfer and opportunities for microgravity environments

    Tennessen, D.J. [Floriculture and Ornamental Horticulture Cornell University, Ithaca, New York14853 (United States)


    The method of crop improvement by gene transfer is becoming increasingly routine with transgenic foods and ornamental crops now being marketed to consumers. However, biological processes of plants, and the physical barriers of current protocols continue to limit the application of gene transfer in many commercial crops. The goal of this paper is to outline the current limitations of gene transfer and to hypothesize possible opportunities for use of microgravity to overcome such limitations. The limitations detailed in this paper include host-range specificity of {ital Agrobacterium} mediated transformation, probability of gene insertion, position effects of the inserted genes, gene copy number, stability of foreign gene expression in host plants, and regeneration of recalcitrant plant species. Microgravity offers an opportunity for gene transfer where cell growth kinetics, DNA synthesis, and genetic recombination rates can be altered. Such biological conditions may enhance the ability for recombination of reporter genes and other genes of interest to agriculture. Proposed studies would be useful for understanding instability of foreign gene expression and may lead to stable transformed plants. Other aspects of gene transfer in microgravity are discussed. {copyright} {ital 1997 American Institute of Physics.}

  5. Pollen irradiation and possible gene transfer in Nicotiana species

    Engvild, Kjeld Christensen


    Progeny from crosses of Nicotiana langsdorffii with gamma irradiated pollen of Nicotiana alata ‘Crimson Bedder’ showed skewed segregation in the F2 favoring the maternal parent. This is probably not gene transfer in a strict sense, rather just an extreme case of reduced transmission of irradiated...... chromosomes, leading to massive overrepresentation of maternal genes. Gene transfer or mutational loss may explain some anomalous F1 plants. Segregation in the F2 progeny showed the presence of several genes from the irradiated pollen. Crosses of Nicotiana sylvestris, N. plumbaginifolia N. paniculata......, and Petunia parodii with irradiated pollen from N. alata and Petunia hybrida showed no evidence of gene transfer, nor did experiments with irradiated mentor pollen. This indicates that gene transfer with irradiated pollen between non-crossing species or between species giving sterile hybrids is probably...

  6. Gene transfer approaches in cancer immunotherapy.

    Larin, S S; Georgiev, G P; Kiselev, S L


    The idea of enhancing or establishing effective immune response against endogenously developed tumor cells is not novel. More than a hundred years ago, bacterial components were used to develop antitumor immune response. Later, when a number of immune system-effecting cytokines had been discovered, they were used for systemic treatment of cancer patients. However, systemic treatment often resulted in even negative outcome. Recent developments of genetic approaches of cell modifications allowed developing of modern techniques of targeted tumor cell elimination. In the present paper, we review modern trends of the antitumor response enhancement based on immunoregulatory gene transfer into different cell types both in vivo and in vitro. Almost all these approaches are based on the activation of the adaptive arm of the immune system in response to tumor cells. However, recent studies indicate that the innate arm of the immune system, as well as adaptive arm, is involved in tumor suppression. The innate immune system uses nonrearranging germline receptors, which could trigger cellular effector responses that are conditional (or instructive) to the subsequent adaptive immune response. Last years' viewpoints on 'self' and 'non-self' recognition and primary induction of the immune response have changed. The key role of lymphocytes is pathogen recognition and, following immune response induction, switched on the central role of dendritic cells in 'non-self' recognition and induction of both innate and adaptive responses. Moreover, innate response is supposed to be an essential starting point in induction of successful and effective acquired response. Most cancer vaccines do not have 'non-self' marks presentation due to their endogenous origin, thus lacking their effectiveness in the induction of the specific long-lasting immune response. Taking this point into consideration, we can conclude that to make cancer vaccine more effective we have to present tumor antigens

  7. A better experimental method to detect the sensitivity of cancer cells to anticancer drugs after adenovirus-mediated introduction of two kinds of p53 in vivo.

    Wang, Hui; Li, WeiYing; Lai, BaiTang; Yang, XueHui; Zhang, ChunYan; Li, JinZhao; Zhu, YunZhong


    p53 plays an important role in drug responses by regulating cell cycle progression and inducing programmed cell death. The C-terminal of p53 self-regulates the protein negatively; however, whether it affects the sensitivity of cancer cells to anticancer drugs is unclear. In this study, two experimental methods were used to compare the sensitivity to anticancer drugs of human lung 801D cancer cells transfected with adenovirus bearing either full-length p53 or the deleted-C-terminal p53 in vivo. Adenovirus-mediated deliveries of full-length or deleted-C-terminal p53 were performed after development of tumors (the first method) or by infection into cells before xenotransplantation (the second method). The results showed that infection with the deleted-C-terminal p53 increased 801D cell sensitivity to anticancer drugs in the second, but not in the first method, as indicated by greater tumor-inhibition rates. In addition, compared with the first method, the second method resulted in viruses with more uniformly infected cells and the infection rates between groups were similar. This yielded smaller within-group variations and greater uniformity among transplanted tumors. The second method could circumvent the difficulties associated with intratumoral injection.

  8. Glucose-stimulated insulin secretion does not require activation of pyruvate dehydrogenase: impact of adenovirus-mediated overexpression of PDH kinase and PDH phosphate phosphatase in pancreatic islets.

    Nicholls, Linda I; Ainscow, Edward K; Rutter, Guy A


    Glucose-stimulated increases in mitochondrial metabolism are generally thought to be important for the activation of insulin secretion. Pyruvate dehydrogenase (PDH) is a key regulatory enzyme, believed to govern the rate of pyruvate entry into the citrate cycle. We show here that elevated glucose concentrations (16 or 30 vs 3 mM) cause an increase in PDH activity in both isolated rat islets, and in a clonal beta-cell line (MIN6). However, increases in PDH activity elicited with either dichloroacetate, or by adenoviral expression of the catalytic subunit of pyruvate dehydrogenase phosphatase, were without effect on glucose-induced increases in mitochondrial pyridine nucleotide levels, or cytosolic ATP concentration, in MIN6 cells, and insulin secretion from isolated rat islets. Similarly, the above parameters were unaffected by blockade of the glucose-induced increase in PDH activity by adenovirus-mediated over-expression of PDH kinase (PDK). Thus, activation of the PDH complex plays an unexpectedly minor role in stimulating glucose metabolism and in triggering insulin release.

  9. Nonviral gene transfer strategies to promote bone regeneration.

    Im, Gun-Il


    Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.

  10. Transfer of engineered genes from crop to wild plants

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.;


    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape...... is a new and rather unexpected phenomenon. However, transfer of engineered genes between plants is not at-all surprising, because it is mediated by exactly the same mechanisms as those responsible for transferring endogenous plant genes: it takes place by sexual crosses, with pollen as the carrier...

  11. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Im, Gun-Il


    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes.


    Howard Ochman


    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  13. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas


    , dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment......BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... for bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. CONCLUSIONS: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism...

  14. Modification of pGH cDNA using the first intron and adenovirus-mediated expression in CHO cells

    李秀锦; 仲飞; 齐顺章


    Objective This study was conducted to investigate the function of the first intron of porcine growth hormone (pGH) gene in the gene expression.Methods PCR method was used to amplify the first intron from pig genomic DNA. The intron was then inserted into pGH cDNA to construct pGH cDNA-intron (pGH cDNA-in). The recombinant adenoviruses containing pGH cDNA and pGH cDNA-in genes under control of CMV promoter were generated by homologous recombination method in HEK 293 cells respectively. The effect of the first intron on gene expression was evaluated by comparing the expression levels of pGH cDNA-in and pGH cDNA mediated by adenovirus vectors in CHO cells.Results The expression level of pGH cDNA containing the first intron increased by 117%, which was significantly higher than that of pGH cDNA without the intron (P<0.001). Conclusion The first intron of pGH gene has the function to improve pGH gene expression.

  15. In vivo particle-mediated gene transfer for cancer therapy.

    Rakhmilevich, A L; Yang, N S


    During the past several years, particle-mediated delivery techniques have been developed as a nonviral technology for gene transfer (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective for transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4), brain, mammary, and leukocyte primary cultures or tissue explants ex vivo (2,5-7), and a wide range of cell lines in vitro (3,6,7). In this chapter, we describe the general principles, mechanisms, protocols, and uses of the particle-mediated gene transfer technology for in vivo gene transfer, mainly into skin tissues. Specific applications of this technology to basic studies in molecular biology as well as to gene therapy and genetic immunization against cancer are addressed.

  16. Global Analysis of Horizontal Gene Transfer in Fusarium verticillioides

    The co-occurrence of microbes within plants and other specialized niches may facilitate horizontal gene transfer (HGT) affecting host-pathogen interactions. We recently identified fungal-to-fungal HGTs involving metabolic gene clusters. For a global analysis of HGTs in the maize pathogen Fusarium ve...


    WANG Zhao-Xia; LU Bin-Bin; WANG Teng; YIN Yong-Mei; DE Wei; SHU Yong-Qian


    Background Gene therapy by adenovirus-mediated wild-type p53 gene transfer has been shown to inhibit lung cancer growth in vitro, in animal models, and in human clinical trials. The antitumor effect of selective cyclooxygenase (COX)-2 inhibitors has been demonstrated in preclinical studies. However, no information is available on the effects of p53 gene therapy combined with selective COX-2 inhibitor on COX-2 gene expression and growth inhibition of human lung cancer cells. Methods We evaluated the effects of recombinant adenovirus-p53 (Ad-p53) gene therapy combined with selective COX-2 inhibitor on the proliferation, apoptosis, cell cycle arrest of human lung adenocarcinoma A549 cell line, and the effects of tumor suppressor exogenous wild type p53 on COX-2 gene expression. Results Ad-p53 gene therapy combined with selective COX-2 inhibitor celecoxib shows significant synergistic inhibition effects on the growth of human lung adenocarcinoma A549 cell line. Exogenous p53 gene can suppress COX-2 gene expression. Conclusions Significant synergistic inhibition effects of A549 cell line by the combined Ad-p53 and selective COX-2 inhibitor celecoxib may be achieved by enhancement of growth inhibition, apoptosis induction and suppression of COX-2 gene expression. This study provides first evidence that the administration of p53 gene therapy in combination with COX-2 inhibitors might be a new clinical strategy for the treatment or prevention of NSCLC.

  18. Regulation of mammalian horizontal gene transfer by apoptotic DNA fragmentation

    Yan, B; Wang, H; Li, F; Li, C-Y


    Previously it was shown that horizontal DNA transfer between mammalian cells can occur through the uptake of apoptotic bodies, where genes from the apoptotic cells were transferred to neighbouring cells phagocytosing the apoptotic bodies. The regulation of this process is poorly understood. It was shown that the ability of cells as recipient of horizontally transferred DNA was enhanced by deficiency of p53 or p21. However, little is known with regard to the regulation of DNA from donor apoptotic cells. Here we report that the DNA fragmentation factor/caspase-activated DNase (DFF/CAD), which is the endonuclease responsible for DNA fragmentation during apoptosis, plays a significant role in regulation of horizontal DNA transfer. Cells with inhibited DFF/CAD function are poor donors for horizontal gene transfer (HGT) while their ability of being recipients of HGT is not affected. PMID:17146478

  19. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Walker Thomas


    Full Text Available Abstract Background The evolutionary importance of horizontal gene transfer (HGT from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. Results We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis, suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. Conclusion The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.

  20. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer.

    Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R


    Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

  1. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes

    Yiwei Chen


    Full Text Available We developed a single vector recombinant adeno-associated viral (rAAV expression system for spatial and reversible control of polycistronic gene expression. Our approach (i integrates the advantages of the tetracycline (Tet-controlled transcriptional silencer tTSKid and the self-cleaving 2A peptide bridge, (ii combines essential regulatory components as an autoregulatory loop, (iii simplifies the gene delivery scheme, and (iv regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE, both the ubiquitous chicken β-actin promoter (CAG and the neuron-specific synapsin-1 promoter (Syn could regulate expression of tTSKid together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox. Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI visualized reversible “ON/OFF” gene switches over repeated “Doxy-Cycling” in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.

  2. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes.

    Chen, Yiwei; Cao, Liji; Luo, Chonglin; Ditzel, Désirée Aw; Peter, Jörg; Sprengel, Rolf


    We developed a single vector recombinant adeno-associated viral (rAAV) expression system for spatial and reversible control of polycistronic gene expression. Our approach (i) integrates the advantages of the tetracycline (Tet)-controlled transcriptional silencer tTS(Kid) and the self-cleaving 2A peptide bridge, (ii) combines essential regulatory components as an autoregulatory loop, (iii) simplifies the gene delivery scheme, and (iv) regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE), both the ubiquitous chicken β-actin promoter (CAG) and the neuron-specific synapsin-1 promoter (Syn) could regulate expression of tTS(Kid) together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox). Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI) visualized reversible "ON/OFF" gene switches over repeated "Doxy-Cycling" in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e85; doi:10.1038/mtna.2013.15; published online 9 April 2013.

  3. Agrobacterium-mediated gene transfer to Chrysanthemum.

    Wordragen, van M.F.


    Genetic manipulation of plants is a technique that enables us to add to the plant genome, in a precise and well controlled manner, one or a few new genes, coding for desirable traits. In contrast to this, the conventional method for the introduction of new properties in plants, by cross breeding, is

  4. Horizontal functional gene transfer from bacteria to fishes.

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W; He, Shun-Min; Huang, Da-Wei


    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution.

  5. In vivo comparison of transduction efficiency with recombinant adenovirus-mediated p53 in a human colon cancer mouse model by different delivery routes%rAd/p53不同给药途径治疗人类结肠癌荷瘤鼠模型p53导入效率的在体评价

    Qi Xie; Biling Liang; ling Zhang; Qihua Yang; Xiongfei Gu; Jing Xu; Mingwang Chen


    Objective: To evaluate transduction efficiency with recombinant adenovirus-mediated p53 (rAd/p53) therapy in a human colon cancer mouse model by intra-tumoral injection and intra-arterial delivery. Methods: The tumor pieces of human colon cancer SW480 were implanted in the livers of 45 nude mice. These mice were administrated with rAd/p53 by intratu-moral injection and intra-arterial delivery. After 24 h, 48 h and 72 h rAd/p53 administration, 5 mice each group were killed with over anesthesia and their livers were removed. P53 expression and apoptosis of tumor and liver were assessed. Results: P53 expression and apoptosis of intratumoral administration group was higher than tail vein group and control group. Apoptosis and p53 expression of livers in three groups had no significant difference. Conclusion: p53 gene transduction efficiency and anticancer effect of tAd/p53 is much better by intra-tumoral injection than intra-arterial delivery.

  6. Adenovirus-mediated Wnt5a expression inhibits the telogen-to-anagen transition of hair follicles in mice.

    Xing, Yi-Zhan; Wang, Rui-Min; Yang, Ke; Guo, Hai-Ying; Deng, Fang; Li, Yu-Hong; Ye, Ji-Xing; He, Long; Lian, Xiao-Hua; Yang, Tian


    The canonical Wnt/β-catenin pathway plays an important role in hair cycle induction. Wnt5a is a non-canonical Wnt family member that generally antagonizes canonical Wnt signaling in other systems. In hair follicles, Wnt5a and canonical Wnt are both expressed in cells in the telogen stage. Wnt5a has been shown to be critical for controlling hair cell fate. However, the role that Wnt5a plays in the transition from the telogen to anagen stage is unknown. In this study, using whole-mount in situ hybridization, we show that Wnt5a is produced by several other cell types, excluding dermal papilla cells, throughout the hair cycle. For example, Wnt5a is expressed in bulge and secondary hair germ cells in the telogen stage. Our studies focused on the depilated 8-week-old mouse as a synchronized model of hair growth. Interestingly, overexpression of adenovirus Wnt5a in the dorsal skin of mice led to the elongation of the telogen stage and inhibition of the initiation of the anagen stage. However, following an extended period of time, four pelage hair types grew from hairless skin that was induced by Wnt5a, and the structure of these new hair shafts was normal. Using microarray analysis and quantitative arrays, we showed that the expression of β-catenin and some target genes of canonical Wnt signaling decreased after Wnt5a treatment. These data demonstrate that Wnt5a may inhibit the telogen stage to maintain a quiescent state of the hair follicle.

  7. [Gene transfer as treatment for metabolic inherited liver diseases

    Godoy, J L


    OBJECTIVE: To study gene transfer looking for its future clinical application in the treatment of metabolic inherited liver diseases. METHODS: Bibliographic review about the subject. RESULTS AND CONCLUSIONS: Gene transfer into the liver would be an alternative to liver transplantation to treat some inherited metabolic diseases. Various vectors have been employed for gene transfer, including retrovirus vectors, whose integration into the chromosomal DNA would allow stable long term expression of the transgene. The integration of retrovirus vectors into the genoma of the target cell is only possible during mitosis. Therefore, these vectors must be delivered during hepatic regeneration induced by partial hepatectomy, for example. Another obstacle to be overcome is the extra hepatic dissemination of retrovirus, in particular to the germinals cells, due to the risk of changing the genetical heritage of the progeniture.

  8. Important aspects of placental-specific gene transfer.

    Kaufman, Melissa R; Albers, Renee E; Keoni, Chanel; Kulkarni-Datar, Kashmira; Natale, David R; Brown, Thomas L


    The placenta is a unique and highly complex organ that develops only during pregnancy and is essential for growth and survival of the developing fetus. The placenta provides the vital exchange of gases and wastes, the necessary nutrients for fetal development, acts as immune barrier that protects against maternal rejection, and produces numerous hormones and growth factors that promote fetal maturity to regulate pregnancy until parturition. Abnormal placental development is a major underlying cause of pregnancy-associated disorders that often result in preterm birth. Defects in placental stem cell propagation, growth, and differentiation are the major factors that affect embryonic and fetal well-being and dramatically increase the risk of pregnancy complications. Understanding the processes that regulate placentation is important in determining the underlying factors behind abnormal placental development. The ability to manipulate genes in a placenta-specific manner provides a unique tool to analyze development and eliminates potentially confounding results that can occur with traditional gene knockouts. Trophoblast stem cells and mouse embryos are not overly amenable to traditional gene transfer techniques. Most viral vectors, however, have a low infection rate and often lead to mosaic transgenesis. Although the traditional method of embryo transfer is intrauterine surgical implantation, the methodology reported here, combining lentiviral blastocyst infection and nonsurgical embryo transfer, leads to highly efficient and placental-specific gene transfer. Numerous advantages of our optimized procedures include increased investigator safety, a reduction in animal stress, rapid and noninvasive embryo transfer, and higher a rate of pregnancy and live birth.

  9. The interconnection between biofilm formation and horizontal gene transfer.

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes


    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states. Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids are independent replicons that enhance their own success by promoting inter-bacterial interactions. They typically also carry genes that heighten their hosts' direct fitness. Furthermore, current research shows that the so-called mafia traits encoded on mobile genetic elements can enforce bacteria to maintain stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic elements and social evolution of bacteria.

  10. A gene in the process of endosymbiotic transfer.

    Kateřina Jiroutová

    Full Text Available BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28 through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.

  11. Expression of a transferred nuclear gene in a mitochondrial genome

    Yichun Qiu


    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  12. Experiments on Gene Transferring to Primary Hematopoietic Cells by Liposome


    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by Xgal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33±2. 68) % in human and about (16. 28±2.95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3.47)%in human and (43. 45±4. 1) % in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.

  13. Gene transfer from a parasitic flowering plant to a fern

    Davis, Charles C.; Anderson, William R.; Wurdack, Kenneth J


    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps fro...

  14. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    Huddleston JR


    Full Text Available Jennifer R HuddlestonBiology Department, Abilene Christian University, Abilene, TX, USAAbstract: Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed.Keywords: gut microbiome, conjugation, natural transformation, transduction

  15. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment.

    Jacobs, William R


    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.

  16. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host.

    Naruo Nikoh


    Full Text Available Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria, which have highly reduced genomes (420-650 kb, raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD-carboxypeptidases (LdcA1, LdcA2,psiLdcA, five rare lipoprotein As (RlpA1-5, N-acetylmuramoyl-L-alanine amidase (AmiD, 1,4-beta-N-acetylmuramidase (bLys, DNA polymerase III alpha chain (psiDnaE, and ATP synthase delta chain (psiAtpH. Buchnera was the apparent source of two highly truncated pseudogenes (psiDnaE and psiAtpH. Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria. At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5 are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the

  17. Engineering T cell immunity by TCR gene transfer

    Linnemann, Carsten


    T cell responses against tumor-antigens are frequently observed for some human malignancies, in particular melanoma. However, the spontaneous development of T cell responses of a sufficient strength to eradicate human malignancies is rare. The transfer of T cell receptor (TCR) αβ genes into autologo

  18. Quasispecies theory for horizontal gene transfer and recombination

    Muñoz, Enrique; Park, Jeong-Man; Deem, Michael W.


    We introduce a generalization of the parallel, or Crow-Kimura, and Eigen models of molecular evolution to represent the exchange of genetic information between individuals in a population. We study the effect of different schemes of genetic recombination on the steady-state mean fitness and distribution of individuals in the population, through an analytic field theoretic mapping. We investigate both horizontal gene transfer from a population and recombination between pairs of individuals. Somewhat surprisingly, these nonlinear generalizations of quasispecies theory to modern biology are analytically solvable. For two-parent recombination, we find two selected phases, one of which is spectrally rigid. We present exact analytical formulas for the equilibrium mean fitness of the population, in terms of a maximum principle, which are generally applicable to any permutation invariant replication rate function. For smooth fitness landscapes, we show that when positive epistatic interactions are present, recombination or horizontal gene transfer introduces a mild load against selection. Conversely, if the fitness landscape exhibits negative epistasis, horizontal gene transfer or recombination introduces an advantage by enhancing selection towards the fittest genotypes. These results prove that the mutational deterministic hypothesis holds for quasispecies models. For the discontinuous single sharp peak fitness landscape, we show that horizontal gene transfer has no effect on the fitness, while recombination decreases the fitness, for both the parallel and the Eigen models. We present numerical and analytical results as well as phase diagrams for the different cases.

  19. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Orit Adato


    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  20. Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy

    Nico Lachmann


    Full Text Available Gene transfer of drug resistance (CTX-R genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O6-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C, gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.

  1. Horizontal gene transfer in the evolution of photosynthetic eukaryotes

    Jinling HUANG; Jipei YUE


    Horizontal gene transfer (HGT) may not only create genome mosaicism,but also introduce evolutionary novelties to recipient organisms.HGT in plastid genomes,though relatively rare,still exists.HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants.In particular,ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent.There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments.Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes,reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

  2. Kidney-specific transposon-mediated gene transfer in vivo

    Woodard, Lauren E.; Cheng, Jizhong; Welch, Richard C.; Williams, Felisha M.; Luo, Wentian; Gewin, Leslie S.; Wilson, Matthew H.


    Methods enabling kidney-specific gene transfer in adult mice are needed to develop new therapies for kidney disease. We attempted kidney-specific gene transfer following hydrodynamic tail vein injection using the kidney-specific podocin and gamma-glutamyl transferase promoters, but found expression primarily in the liver. In order to achieve kidney-specific transgene expression, we tested direct hydrodynamic injection of a DNA solution into the renal pelvis and found that luciferase expression was strong in the kidney and absent from extra-renal tissues. We observed heterogeneous, low-level transfection of the collecting duct, proximal tubule, distal tubule, interstitial cells, and rarely glomerular cells following injection. To assess renal injury, we performed the renal pelvis injections on uninephrectomised mice and found that their blood urea nitrogen was elevated at two days post-transfer but resolved within two weeks. Although luciferase expression quickly decreased following renal pelvis injection, the use of the piggyBac transposon system improved long-term expression. Immunosuppression with cyclophosphamide stabilised luciferase expression, suggesting immune clearance of the transfected cells occurs in immunocompetent animals. Injection of a transposon expressing erythropoietin raised the haematocrit, indicating that the developed injection technique can elicit a biologic effect in vivo. Hydrodynamic renal pelvis injection enables transposon mediated-kidney specific gene transfer in adult mice. PMID:28317878

  3. Gene therapy of cancer and development of therapeutic target gene

    Kim, Chang Min; Kwon, Hee Chung


    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  4. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes.

    Nikoh, Naruo; Tanaka, Kohjiro; Shibata, Fukashi; Kondo, Natsuko; Hizume, Masahiro; Shimada, Masakazu; Fukatsu, Takema


    Recent accumulation of microbial genome data has demonstrated that lateral gene transfers constitute an important and universal evolutionary process in prokaryotes, while those in multicellular eukaryotes are still regarded as unusual, except for endosymbiotic gene transfers from mitochondria and plastids. Here we thoroughly investigated the bacterial genes derived from a Wolbachia endosymbiont on the nuclear genome of the beetle Callosobruchus chinensis. Exhaustive PCR detection and Southern blot analysis suggested that approximately 30% of Wolbachia genes, in terms of the gene repertoire of wMel, are present on the insect nuclear genome. Fluorescent in situ hybridization located the transferred genes on the proximal region of the basal short arm of the X chromosome. Molecular evolutionary and other lines of evidence indicated that the transferred genes are probably derived from a single lateral transfer event. The transferred genes were, for the length examined, structurally disrupted, freed from functional constraints, and transcriptionally inactive. Hence, most, if not all, of the transferred genes have been pseudogenized. Notwithstanding this, the transferred genes were ubiquitously detected from Japanese and Taiwanese populations of C. chinensis, while the number of the transferred genes detected differed between the populations. The transferred genes were not detected from congenic beetle species, indicating that the transfer event occurred after speciation of C. chinensis, which was estimated to be one or several million years ago. These features of the laterally transferred endosymbiont genes are compared with the evolutionary patterns of mitochondrial and plastid genome fragments acquired by nuclear genomes through recent endosymbiotic gene transfers.

  5. Immunotherapy of Malignancy by in vivo Gene Transfer into Tumors

    Plautz, Gregory E.; Yang, Zhi-Yong; Wu, Bei-Yue; Gao, Xiang; Huang, Leaf; Nabel, Gary J.


    The immune system confers protection against a variety of pathogens and contributes to the surveillance and destruction of neoplastic cells. Several cell types participate in the recognition and lysis of tumors, and appropriate immune stimulation provides therapeutic effects in malignancy. Foreign major histocompatibility complex (MHC) proteins also serve as a potent stimulus to the immune system. In this report, a foreign MHC gene was introduced directly into malignant tumors in vivo in an effort to stimulate tumor rejection. In contrast to previous attempts to induce tumor immunity by cell-mediated gene transfer, the recombinant gene was introduced directly into tumors in vivo. Expression of the murine class I H-2K^s gene within the CT26 mouse colon adenocarcinoma (H-2K^d) or the MCA 106 fibrosarcoma (H-2K^b) induced a cytotoxic T-cell response to H-2K^s and, more importantly, to other antigens present on unmodified tumor cells. This immune response attenuated tumor growth and caused complete tumor regression in many cases. Direct gene transfer in vivo can therefore induce cell-mediated immunity against specific gene products, which provides an immunotherapeutic effect for malignancy, and potentially can be applied to the treatment of cancer and infectious diseases in man.

  6. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita.

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V; Pringle, Anne


    The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A. muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A. muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi.

  7. Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Andrea Amalfitano


    Full Text Available Adenovirus (Ad based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1 Ad-capsid-display of specific inhibitors or ligands; (2 covalent modifications of the entire Ad vector capsid moiety; (3 the use of tissue specific promoters and local administration routes; (4 the use of genome modified Ads; and (5 the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  8. Direct Gene Transfer into Rabbit Peripheral Nerve in vivo

    张世强; 张经歧; 张英泽; 刘玲


    Exogenous gene suture was used to achieve peripheral nerve anastomoses to probe into the feasibility that the sites of anastomoses of nerves directly transfer gene and thus enable gene to be expressed at the sites of anastomoses under the condition that perfect nerve anastomoses are ensured. PCMVβ plasmid containing cytomegalovirus promoter (CMV promoter) and Escherichia coli (E.coli) β-Galactosidase (β-Gal) structural gene (lacZ gene) was conducted. A soaked medical 8-0nylon suture was used to perform epineurial repair of rabbit sciatic nerve. In the control group a suture soaked in sucrose PBS was used, while in the experimental group a suture soaked in PCMVβ plasmid solution was applied. The sites of anastomoses of nerves by stages were taken out, and β-Gal histochemical staining was performed and β-Gal enzyme activity was assayed with 5-bromo-4-chloro-3-indolyl-β-D-galactoside. Results showed that the sites of anastomoses of nerves were taken out 2 days, 7 days, 14 days and 30 days respectively after the operation. The β-Gal histochemical stains at the sites of anastomoses showed no indigo positive cells at different stages in the control group, whereas displayed indigo positive cells in the experimental group. In the control group, no β-Gal enzyme activity was detected at different stages after operation, but in the experimental group, β-Gal enzyme activity could be detected from the 3rd day to the 30th day after operation. It was concluded that by using exogenous gene suture, exogenous gene could be transferred to the sites of peripheral nerve and expressed the exogenous gene expression products with bioactivity, which provided the feasibility of using gene therapy to accelerate the recovery of nerve function.

  9. Examining Ancient Inter-domain Horizontal Gene Transfer

    Francisca C. Almeida


    Full Text Available Details of the genomic changes that occurred in the ancestors of Eukarya, Archaea and Bacteria are elusive. Ancient interdomain horizontal gene transfer (IDHGT amongst the ancestors of these three domains has been difficult to detect and analyze because of the extreme degree of divergence of genes in these three domains and because most evidence for such events are poorly supported. In addition, many researchers have suggested that the prevalence of IDHGT events early in the evolution of life would most likely obscure the patterns of divergence of major groups of organisms let alone allow the tracking of horizontal transfer at this level. In order to approach this problem, we mined the E. coli genome for genes with distinct paralogs. Using the 1,268 E. coli K-12 genes with 40% or higher similarity level to a paralog elsewhere in the E. coli genome we detected 95 genes found exclusively in Bacteria and Archaea and 86 genes found in Bacteria and Eukarya. These genes form the basis for our analysis of IDHGT. We also applied a newly developed statistical test (the node height test, to examine the robustness of these inferences and to corroborate the phylogenetically identifi ed cases of ancient IDHGT. Our results suggest that ancient inter domain HGT is restricted to special cases, mostly involving symbiosis in eukaryotes and specific adaptations in prokaryotes. Only three genes in the Bacteria + Eukarya class (Deoxyxylulose-5-phosphate synthase (DXPS, fructose 1,6-phosphate aldolase class II protein and glucosamine-6-phosphate deaminase and three genes–in the Bacteria + Archaea class (ABC-type FE3+ -siderophore transport system, ferrous iron transport protein B, and dipeptide transport protein showed evidence of ancient IDHGT. However, we conclude that robust estimates of IDHGT will be very difficult to obtain due to the methodological limitations and the extreme sequence saturation of the genes suspected of being involved in IDHGT.

  10. Can Viruses be Modified to Achieve Sustained Gene Transfer?

    Hildegund CJ Ertl


    Full Text Available It is very easy to replace a faulty gene in an immunocompromised mouse. First, one takes a well-characterized virus, such as an adenovirus or an adeno-associated virus, and incorporates the correct version of the faulty gene together with some regulatory sequences into the genome. Then, one transduces the recombinant genome into helper cells, which will add the viral capsid. At last, one injects the resulting viral vector into the sick mouse, and the mouse is cured. It is not that easy in an immunocompetent mouse, let alone in a human, as over the eons the immune system evolved to eliminate viruses regardless if they penetrate as dangerous pathogens or are injected by a well-meaning gene therapist. Here we offer our perspective on the potential of how viral vectors achieve sustained gene transfer in the face of a hostile immune system.

  11. Electroporation-mediated gene transfer directly to the swine heart.

    Hargrave, B; Downey, H; Strange, R; Murray, L; Cinnamond, C; Lundberg, C; Israel, A; Chen, Y-J; Marshall, W; Heller, R


    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using three different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the electrocardiogram were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were killed 48 h after injection and electroporation and gene expression was determined. Results were compared with sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared with injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo.

  12. Characterization of an ancient lepidopteran lateral gene transfer.

    David Wheeler

    Full Text Available Bacteria to eukaryote lateral gene transfers (LGT are an important potential source of material for the evolution of novel genetic traits. The explosion in the number of newly sequenced genomes provides opportunities to identify and characterize examples of these lateral gene transfer events, and to assess their role in the evolution of new genes. In this paper, we describe an ancient lepidopteran LGT of a glycosyl hydrolase family 31 gene (GH31 from an Enterococcus bacteria. PCR amplification between the LGT and a flanking insect gene confirmed that the GH31 was integrated into the Bombyx mori genome and was not a result of an assembly error. Database searches in combination with degenerate PCR on a panel of 7 lepidopteran families confirmed that the GH31 LGT event occurred deep within the Order approximately 65-145 million years ago. The most basal species in which the LGT was found is Plutella xylostella (superfamily: Yponomeutoidea. Array data from Bombyx mori shows that GH31 is expressed, and low dN/dS ratios indicates the LGT coding sequence is under strong stabilizing selection. These findings provide further support for the proposition that bacterial LGTs are relatively common in insects and likely to be an underappreciated source of adaptive genetic material.

  13. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates.

    Burki, Fabien; Imanian, Behzad; Hehenberger, Elisabeth; Hirakawa, Yoshihisa; Maruyama, Shinichiro; Keeling, Patrick J


    Plastid establishment involves the transfer of endosymbiotic genes to the host nucleus, a process known as endosymbiotic gene transfer (EGT). Large amounts of EGT have been shown in several photosynthetic lineages but also in present-day plastid-lacking organisms, supporting the notion that endosymbiotic genes leave a substantial genetic footprint in the host nucleus. Yet the extent of this genetic relocation remains debated, largely because the long period that has passed since most plastids originated has erased many of the clues to how this process unfolded. Among the dinoflagellates, however, the ancestral peridinin-containing plastid has been replaced by tertiary plastids on several more recent occasions, giving us a less ancient window to examine plastid origins. In this study, we evaluated the endosymbiotic contribution to the host genome in two dinoflagellate lineages with tertiary plastids. We generated the first nuclear transcriptome data sets for the "dinotoms," which harbor diatom-derived plastids, and analyzed these data in combination with the available transcriptomes for kareniaceans, which harbor haptophyte-derived plastids. We found low level of detectable EGT in both dinoflagellate lineages, with only 9 genes and 90 genes of possible tertiary endosymbiotic origin in dinotoms and kareniaceans, respectively, suggesting that tertiary endosymbioses did not heavily impact the host dinoflagellate genomes.

  14. Methods for particle-mediated gene transfer into skin.

    Yang, N S; McCabe, D E; Swain, W F


    During the past 5 yr, particle-mediated delivery techniques have been developed as a physical means for gene transfer into various eukaryotic systems, including plants, insects, fish, and mammals (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective in transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4); brain, mammary, and leukocyte pnmary cultures or explants ex vivo (2,5-7); and a wide range of different mammalian cell lines in vitro (3,6,7).

  15. Gene transfer from a parasitic flowering plant to a fern.

    Davis, Charles C; Anderson, William R; Wurdack, Kenneth J


    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps from root-parasitic Loranthaceae. These transgenes are restricted to B. virginianum and occur across the range of the species. Molecular and life-history traits indicate that the transfer preceded the global expansion of B. virginianum, and that the latter may have happened very rapidly. This is the first report of HGT from an angiosperm to a fern, through either direct parasitism or the mediation of interconnecting fungal symbionts.

  16. A new system for regulated functional gene expression for gene therapy applications: nuclear delivery of a p16INK4A-estrogen receptor carboxy terminal fusion protein only in the presence of estrogen.

    Tamura, Tomohiro; Kanuma, Tatsuya; Nakazato, Tomoko; Faried, Leri S; Aoki, Hiroshi; Minegishi, Takashi


    The clinical use of gene therapy requires tight regulation of the gene of interest and functional expression only when it is needed. Thus, it is necessary to develop ways of regulating functional gene expression with exogenous stimuli. Many regulatable systems are currently under development. For example, the tetracycline-dependent transcriptional switch has been successfully employed for in vivo preclinical applications. However, there are no examples of regulatable systems that have been employed in human clinical trials. In the present study, we established an adenovirus-delivered functional gene expression system that is regulated by estrogen. This system uses p16INK4A fused at its C-terminus to the ligand-binding domain of the estrogen receptor (DeltaERalpha). We were able to establish cell lines expressing this gene wherein the functional expression of p16INK4A is estrogen-dependent and causes the arrest of several ovarian cancer cell lines. This inducible and adenovirus-mediated gene transfer system may allow gene therapy using nuclear functioning genes in postmenopausal or ovariectomized women.

  17. Selective Gene Transfer to the Retina Using Intravitreal Ultrasound Irradiation

    Shozo Sonoda


    Full Text Available This paper aims to evaluate the efficacy of intravitreal ultrasound (US irradiation for green fluorescent protein (GFP plasmid transfer into the rabbit retina using a miniature US transducer. Intravitreal US irradiation was performed by a slight modification of the transconjunctival sutureless vitrectomy system utilizing a small probe. After vitrectomy, the US probe was inserted through a scleral incision. A mixture of GFP plasmid (50 μL and bubble liposomes (BLs; 50 μL was injected into the vitreous cavity, and US was generated to the retina using a SonoPore 4000. The control group was not exposed to US. After 72 h, the gene-transfer efficiency was quantified by counting the number of GFP-positive cells. The retinas that received plasmid, BL, and US showed a significant increase in the number (average ± SEM of GFP-positive cells (32±4.9; n=7; P<0.01 . No GFP-positive cells were observed in the control eyes (n=7. Intravitreal retinal US irradiation can transfer the GFP plasmid into the retina without causing any apparent damage. This procedure could be used to transfer genes and drugs directly to the retina and therefore has potential therapeutic value.

  18. The interconnection between biofilm formation and horizontal gene transfer

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.


    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their beli......Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because...... of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states....... Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...

  19. Stable oncogenic transformation induced by microcell-mediated gene transfer

    吕有勇; Donald G.Blair


    Oncogenes have been identified using DNA-mediated transfection, but the size of the transferable and unrearranged DNA, gene rearrangement and amplification which occur during the transfection process limit the use of the techniques. We have evaluated microcell-mediated gene transfer techniques for the transfer and analysis of dominant oncogenes. MNNG-HOS, a transformed human cell line which contained the met oncogene mapping to human chromosome 7 was infected with retroviruses carrying drug resistance markers and used to optimize microcell preparation and transfer. Stable and drug-resistant hybrids containing single human chromosomes as well as the foci of the transformed cells containing the activated met oncogene and intact hitman chromosomes were obtained. Hybridization analysis with probes (i.e. collA2, pJ3.11) mapping up to 1 Mb away from met shows that the cells from the individual focr contain different amounts of apparently unrearranged human DNA associated with the oncogene, and the microcell-g

  20. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  1. Risks from GMOs due to horizontal gene transfer.

    Keese, Paul


    Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.

  2. A rice Stowaway MITE for gene transfer in yeast.

    Isam Fattash

    Full Text Available Miniature inverted repeat transposable elements (MITEs lack protein coding capacity and often share very limited sequence similarity with potential autonomous elements. Their capability of efficient transposition and dramatic amplification led to the proposition that MITEs are an untapped rich source of materials for transposable element (TE based genetic tools. To test the concept of using MITE sequence in gene transfer, a rice Stowaway MITE previously shown to excise efficiently in yeast was engineered to carry cargo genes (neo and gfp for delivery into the budding yeast genome. Efficient excision of the cargo gene cassettes was observed even though the excision frequency generally decreases with the increase of the cargo sizes. Excised elements insert into new genomic loci efficiently, with about 65% of the obtained insertion sites located in genes. Elements at the primary insertion sites can be remobilized, frequently resulting in copy number increase of the element. Surprisingly, the orientation of a cargo gene (neo on a construct bearing dual reporter genes (gfp and neo was found to have a dramatic effect on transposition frequency. These results demonstrated the concept that MITE sequences can be useful in engineering genetic tools to deliver cargo genes into eukaryotic genomes.

  3. Phylogeographic support for horizontal gene transfer involving sympatric bruchid species

    Grill Andrea


    Full Text Available Abstract Background We report on the probable horizontal transfer of a mitochondrial gene, cytb, between species of Neotropical bruchid beetles, in a zone where these species are sympatric. The bruchid beetles Acanthoscelides obtectus, A. obvelatus, A. argillaceus and Zabrotes subfasciatus develop on various bean species in Mexico. Whereas A. obtectus and A. obvelatus develop on Phaseolus vulgaris in the Mexican Altiplano, A. argillaceus feeds on P. lunatus in the Pacific coast. The generalist Z. subfasciatus feeds on both bean species, and is sympatric with A. obtectus and A. obvelatus in the Mexican Altiplano, and with A. argillaceus in the Pacific coast. In order to assess the phylogenetic position of these four species, we amplified and sequenced one nuclear (28S rRNA and two mitochondrial (cytb, COI genes. Results Whereas species were well segregated in topologies obtained for COI and 28S rRNA, an unexpected pattern was obtained in the cytb phylogenetic tree. In this tree, individuals from A. obtectus and A. obvelatus, as well as Z. subfasciatus individuals from the Mexican Altiplano, clustered together in a unique little variable monophyletic unit. In contrast, A. argillaceus and Z. subfasciatus individuals from the Pacific coast clustered in two separated clades, identically to the pattern obtained for COI and 28S rRNA. An additional analysis showed that Z. subfasciatus individuals from the Mexican Altiplano also possessed the cytb gene present in individuals of this species from the Pacific coast. Zabrotes subfasciatus individuals from the Mexican Altiplano thus demonstrated two cytb genes, an "original" one and an "infectious" one, showing 25% of nucleotide divergence. The "infectious" cytb gene seems to be under purifying selection and to be expressed in mitochondria. Conclusion The high degree of incongruence of the cytb tree with patterns for other genes is discussed in the light of three hypotheses: experimental contamination

  4. Dynamic monitoring of horizontal gene transfer in soil

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.


    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  5. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates.

    Wisecaver, Jennifer H; Brosnahan, Michael L; Hackett, Jeremiah D


    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

  6. Protection of rat islet viability following heme oxygenase-1 gene transfection via adenoviral vector in vitro

    Xiaobo Chen; Yongxiang Li; Weiping Dong; Yang Jiao; Jianming Tan


    Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively.The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index (SI) was calculated. Glucose-stimulated insulin release was usedto assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index(SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets(P < 0.05).Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.

  7. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss.

    Zamani-Dahaj, Seyed Alireza; Okasha, Mohamed; Kosakowski, Jakub; Higgs, Paul G


    We analyze patterns of gene presence and absence in a maximum likelihood framework with rate parameters for gene gain and loss. Standard methods allow independent gains and losses in different parts of a tree. While losses of the same gene are likely to be frequent, multiple gains need to be considered carefully. A gene gain could occur by horizontal transfer or by origin of a gene within the lineage being studied. If a gene is gained more than once, then at least one of these gains must be a horizontal transfer. A key parameter is the ratio of gain to loss rates, a/v We consider the limiting case known as the infinitely many genes model, where a/v tends to zero and a gene cannot be gained more than once. The infinitely many genes model is used as a null model in comparison to models that allow multiple gains. Using genome data from cyanobacteria and archaea, it is found that the likelihood is significantly improved by allowing for multiple gains, but the average a/v is very small. The fraction of genes whose presence/absence pattern is best explained by multiple gains is only 15% in the cyanobacteria and 20% and 39% in two data sets of archaea. The distribution of rates of gene loss is very broad, which explains why many genes follow a treelike pattern of vertical inheritance, despite the presence of a significant minority of genes that undergo horizontal transfer. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail:

  8. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J


    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light......-driven proton translocation across the cell membrane. So far, proteorhodopsin genes have been well documented only in proteobacteria and a few other bacterial groups. Here we report the presence and distribution of proteorhodopsin genes in Archaea affiliated with the order Thermoplasmatales, in the ocean......'s upper water column. The genomic context and phylogenetic relationships of the archaeal and proteobacterial proteorhodopsins indicate its probable lateral transfer between planktonic Bacteria and Archaea. About 10% of the euryarchaeotes in the photic zone contained the proteorhodopsin gene adjacent...

  9. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces.

    McDonald, Bradon R; Currie, Cameron R


    Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.IMPORTANCE Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genus Streptomyces, with merely one gene acquired in Streptomyces lineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new

  10. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Stephen eTechtmann


    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  11. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers.

    Kellmann, Ralf; Mihali, Troco Kaan; Michali, Troco Kaan; Neilan, Brett Anthony; Neilan, Brett Adam


    The paralytic shellfish poisoning (PSP) toxins, saxitoxin, and its derivatives, are produced by a complex and unique biosynthetic pathway. It involves reactions that are rare in other metabolic pathways, however, distantly related organisms, such as dinoflagellates and cyanobacteria, produce these toxins by an identical pathway. Speculative explanations for the unusual phylogenetic distribution of this metabolic pathway have been proposed, including a polyphyletic origin, the involvement of symbiotic bacteria, and horizontal gene transfer. This study describes for the first time the identity of one gene, sxt1, that is involved in the biosynthesis of saxitoxin in cyanobacteria. It encoded an O-carbamoyltransferase (OCTASE) that was proposed to carbamoylate the hydroxymethyl side chain of saxitoxin precursor. Orthologues of sxt1 were exclusively present in PSP-toxic strains of cyanobacteria and had a high sequence similarity to each other. L. wollei had a naturally mutated sxt1 gene that encoded an inactive enzyme, and was incapable of producing carbamoylated PSP-toxin analogues, supporting the proposed function of Sxt1. Phylogenetic analysis revealed that OCATSE genes were present exclusively in prokaryotic organisms and were characterized by a high rate of horizontal gene transfer. OCTASE has most likely evolved from an ancestral O-sialoglycoprotein endopeptidase from proteobacteria, whereas the most likely phylogenetic origin of sxt1 was an ancestral alpha-proteobacterium. The phylogeny of sxt1 suggested that the entire set of genes required for saxitoxin biosynthesis may spread by horizontal gene transfer.

  12. Gene ontology based transfer learning for protein subcellular localization

    Zhou Shuigeng


    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  13. Targeted adenovirus mediated inhibition of NF-kappa B-dependent inflammatory gene expression in endothelial cells in vitro and in vivo

    Kuldo, J. M.; Asgeirsdottir, S. A.; Zwiers, P. J.; Bellu, A. R.; Rots, M. G.; Schalk, J. A. C.; Ogawara, K. I.; Trautwein, C.; Banas, B.; Haisma, H. J.; Molema, G.; Kamps, J. A. A. M.


    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor kappa B signal transduction could silence the proinflammatory activation status of en

  14. Phase I Trial of Adenovirus-Mediated IL-12 Gene Transduction in Patients with Recurrent Locally Advanced Prostate Cancer Following Therapy


    prostate, the dose of virus will be divided into 10 aliquots, each in 500uls, to be diluted with phosphate buffered saline as needed. To ease the...ability of successful IVF and examination of resulting embryos failed to reveal any β-galactosidase. Therefore, it appears that retrograde spread...personnel involved in virus injection. The viral vector is suspended in a small volume of buffer and is contained in a septum vial. The syringe is loaded

  15. Differences in lateral gene transfer in hypersaline versus thermal environments

    House Christopher H


    Full Text Available Abstract Background The role of lateral gene transfer (LGT in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei and a halophilic class of Archaea (Halobacteria. We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  16. Horizontal gene transfer in osmotrophs: playing with public goods.

    Richards, Thomas A; Talbot, Nicholas J


    Osmotrophic microorganisms, such as fungi and oomycetes, feed by secreting depolymerizing enzymes to process complex food sources in the extracellular environment, and taking up the resulting simple sugars, micronutrients and amino acids. As a consequence of this lifestyle, osmotrophs engage in the acquisition and protection of public goods. In this Opinion article, we propose that horizontal gene transfer (HGT) has played a key part in shaping both the repertoire of proteins required for osmotrophy and the nature of public goods interactions in which eukaryotic microorganisms engage.

  17. Gene transfer in Nocotiana rustica using irradiated pollen

    Jinks, J.L.; Caligari, P.D.S.; Ingram, N.R. (Birmingham Univ. (UK))


    The results of a selection study of major gene controlled characters, using 10 - 20 krad ..gamma.. irradiated pollen of Nicotiana rustica, are reported. By selecting within the progenies it has been shown that lines can be isolated with the characteristics of the pure-breeding maternal variety but with the exception of a specific characteristic transferred from the paternal variety. The advantages of the irradiation technique as against the conventional system requiring a combination of many generations of recurrent backcrossing and selection are stressed.

  18. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    Zhenxiang Xi

    Full Text Available Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT, especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae, whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria and a species interaction (i.e., parasitism where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  19. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    Xi, Zhenxiang; Wang, Yuguo; Bradley, Robert K; Sugumaran, M; Marx, Christopher J; Rest, Joshua S; Davis, Charles C


    Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  20. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects

    Shelomi, Matan; Danchin, Etienne G J; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick


    ...) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early...

  1. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita


    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  2. Interleukin-10 Gene Transfer in Rat Limbal Transplantation.

    Kaufmann, Claude; Mortimer, Lauren A; Brereton, Helen M; Irani, Yazad D; Parker, Douglas Ga; Anson, Donald S; Bachmann, Lucas M; Williams, Keryn A


    To evaluate the gene transfer of the interleukin (IL)-10 cytokine as a treatment modality for prolonging limbal allograft survival in a rat model. Adenoviral (AV) and lentiviral (LV) vectors were produced for ex vivo gene transfer into limbal graft tissue prior to orthotopic transplantation. Experimental groups comprised unmodified isografts, unmodified allografts, allografts transfected with a reporter gene, and allografts transfected with IL-10. The functional effects of the transgenes were determined by clinical assessment and by following donor cell survival in the recipient animal. Group comparisons were made using survival analysis and tested with the log-rank test. Differences in mean rejection times between groups were tested using the Wilcoxon rank-sum test. Isografts survived during the entire observation period of 56 days. Allografts underwent clinical rejection at a mean of 6.7 days (standard deviation 2.0) postoperatively, irrespective of the presence of transgenes (p < 0.001 for difference in rejection times). For both the AV and LV vector systems, Kaplan-Meier analysis showed a statistically significant difference with respect to time-to-graft failure when comparing allografts transfected with IL-10 with allografts transfected with reporter gene alone (p = 0.011 and p < 0.001, respectively). In the isografts, donor cells could be detected during the complete observation period. In all the allograft groups, however, donor cell detection declined after 1 week and was lost after 4 weeks. Under the conditions tested in the present model, both the AV and the LV vector systems were able to transfect limbal graft tissue ex vivo with biologically active IL-10, leading to delayed rejection compared to the controls.

  3. Adenovirus-mediated expression of pig α(1, 3) galactosyltransferase reconstructs Gal α(1, 3) Gal epitope on the surface of human tumor cells


    Gal α(1,3)Gal(gal epitope)is a carbohydrate epitope and synthesized in large amount by α(1,3)galactosyltransferase [α(1,3)GT] enzyme on the cells of lower mammalian animals such as pigs and mice.Human has no gal epitope due to the inactivation of α(1,3)GT gene but produces a large amount of antibodies(anti-Gal)which recognize Gal α(1,3)Gal structures specifically.In this study,a replicationdeficient recombinant adenoviral vector Ad5sGT containing pig α(1,3)GT cDNA was constructed and characterized.Adenoviral vector-mediated transfer of pig α(1,3)GT gene into human tumor cells such as malignant melanoma A375,stomach cancer SGC-7901,and lung cancer SPC-A-1 was reported for the first time.Results showed that Gal epitope did not increase the sensitivity of human tumor cells to human complement-mediated lysis,although human complement activation and the binding of human IgG and IgM natural antibodies to human tumor cells were enhanced significantly after Ad5sGT transduction.Appearance of gal epitope on the human tumor cells changed the expression of cell surface carbohydrates reacting with Ulex europaeus I(UEA I)lectins,Vicia villosa agglutinin(VVA),Arachis hypogaea agglutinin(PNA),and Glycine max agglutinin(SBA)to different degrees.In addition,no effect of gal epitope on the growth in vitro of human tumor cells was observed in MTT assay.

  4. Study on magnetic gene transfer using HTS bulk magnet

    Nakagawa, Kota, E-mail: [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Ohaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Osako, Mariana Kiomy; Nakagami, Hironori [Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan)


    Highlights: •DNA–magnetite complexes were prepared as ferromagnetic DNA carrier. •The condition of magnetic field to suppress the diffusion was found by calculation. •The result of model experiment showed the validity of the calculated value. •The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field. -- Abstract: This study aimed to realize local and high-efficient gene expression by suppressing the diffusion of ferromagnetic DNA carriers in a strong magnetic field generated by HTS bulk magnet. DNA–magnetite complexes were prepared as ferromagnetic DNA carrier and the magnetic gene transfer using the DNA carriers was examined. From the results of the simulation and the model experiment, it was shown that the particle diffusion was suppressed within 10 mm in diameter by the magnetic field at 20 mm above the HTS bulk magnet. The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field.

  5. NAC1, a POZ/BTB protein present in the adult mammalian brain, triggers apoptosis after adenovirus-mediated overexpression in PC-12 cells.

    Korutla, Laxminarayana; Neustadter, Jason H; Fournier, Keith M; Mackler, Scott A


    POZ/BTB proteins influence cellular development and in some examples act as oncoproteins. However, several POZ/BTB transcription factors have been found in terminally differentiated neurons, where their functions remain unknown. One example is NAC1, a constitutively-expressed protein that can regulate behaviors associated with cocaine use. The present study represents an initial attempt to understand the actions of NAC1 within neurons by using adenoviral-mediated gene transfer into differentiated PC-12 cells. Cell survival in PC-12 cells overexpressing NAC1 was greatly reduced compared with cells infected by a control Ad-GFP. The morphological appearance of the dying cells was consistent with programmed cell death. Fragmentation of genomic DNA occurred in PC-12 cells infected with adenoviruses encoding NAC1 but not control viruses. NAC1 over expression was followed by the down regulation of the anti-apoptotic proteins Bcl-2 and Bcl-2-xl. Concurrently, levels of the pro-apoptotic proteins Bax and p53 increased following NAC1 overexpression. These observations suggest that NAC1expression in PC-12 cells induces apoptosis by altering the expression of these upstream mediators of the execution phase of programmed cell death. These findings raise the possibility that aberrantly regulated NAC1 expression in the mammalian brain may contribute to programmed cell death.

  6. Genome-wide experimental determination of barriers to horizontal gene transfer

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.


    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  7. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages.

    Chen, John; Carpena, Nuria; Quiles-Puchalt, Nuria; Ram, Geeta; Novick, Richard P; Penadés, José R


    Bacteriophage-mediated horizontal gene transfer is one of the primary driving forces of bacterial evolution. The pac-type phages are generally thought to facilitate most of the phage-mediated gene transfer between closely related bacteria, including that of mobile genetic elements-encoded virulence genes. In this study, we report that staphylococcal cos-type phages transferred the Staphylococcus aureus pathogenicity island SaPIbov5 to non-aureus staphylococcal species and also to different genera. Our results describe the first intra- and intergeneric transfer of a pathogenicity island by a cos phage, and highlight a gene transfer mechanism that may have important implications for pathogen evolution.

  8. Foreign gene transfer into Chinese shrimps (Penaeus chinensis) with gene gun


    Plasmids pG DNA-RZ1 with a GFP (green fluorescent protein) reporter gene and a ribozyme gene incising penaeid white spot baculovirus (WSBV) were first introduced into the fertilized eggs of Chinese shrimps by gene gun. The treated and control samples of different development stages were observed with a fluorescent microscope. The transient expression of GFP gene was high in nauplius and zoea larvae. Results from RT-PCR and PCR for adults showed that the foreign genes had been transferred into the shrimps and had expressed the corresponding proteins. This work has established a transgenic method for penaeid shrimps, which will set base for the application of genetic engineering breeding into industry.


    Katyshev A.I.


    Full Text Available Earlier, we had showed that isolated mitochondria from different organisms can import DNA. Exploiting this mechanism, we assessed the possibility of genes transfer in tobacco mitochondria in vitro and in vivo. Whereas homologous recombination is a rare occasion in higher plant nuclei, recombination between the large direct repeats in plant mitochondrial genome generates its multipartite structure. Following transfection of isolated organelles with constructs composed of a partial gfp gene flanked by mitochondrial DNA fragments, we showed the homologous recombination of imported DNA with the resident DNA and the integration of the reporter gene. The recombination yielded an insertion of a continuous exogenous DNA fragment including the gfp sequence and at least the 0.5 kb of the flanking sequence on each side. Using of transfection constructs carrying multiple sequences homologous to mitochondrial DNA could be suitable for insertion of a target gene into any region of the mitochondrial genome, which turns this approach to be of a general and methodical importance. Usually mitochondrial reactive oxygen species (ROS level is under strict control of the antioxidant system including the Mn-containing superoxide dismutase (MnSOD. MnSOD is presented in multiple forms encoded by several genes in plants. Possibly, this enzyme, beside its catalytic function, fulfills as well some unknown biochemical functions. Thus, one of maize SOD enzymes (SOD3.4 could bind with mitochondrial DNA. Another SOD form (SOD3.1 is located in close proximity to mitochondrial respiratory complexes, where ROS are generated. To study possible physiological functions of this enzyme, we cloned the maize SOD3.1 gene. Compared to the SOD3.4, this enzyme didn't demonstrate DNA-binding activity. At the same time, SOD3.1 didn't show non-specific DNA-hydrolyzing activity as Cu/ZnSOD does. It means that this enzyme might have some DNA protective function. We made NtPcob-sod3.1-IGR

  10. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype.

    Burnight, E R; Wiley, L A; Drack, A V; Braun, T A; Anfinson, K R; Kaalberg, E E; Halder, J A; Affatigato, L M; Mullins, R F; Stone, E M; Tucker, B A


    Mutations in CEP290 are the most common cause of Leber congenital amaurosis (LCA), a severe inherited retinal degenerative disease for which there is currently no cure. Autosomal recessive CEP290-associated LCA is a good candidate for gene replacement therapy, and cells derived from affected individuals give researchers the ability to study human disease and therapeutic gene correction in vitro. Here we report the development of lentiviral vectors carrying full-length CEP290 for the purpose of correcting the CEP290 disease-specific phenotype in human cells. A lentiviral vector containing CMV-driven human full-length CEP290 was constructed. Following transduction of patient-specific, iPSC-derived, photoreceptor precursor cells, reverse transcriptase-PCR analysis and western blotting revealed vector-derived expression. As CEP290 is important in ciliogenesis, the ability of fibroblast cultures from CEP290-associated LCA patients to form cilia was investigated. In cultures derived from these patients, fewer cells formed cilia compared with unaffected controls. Cilia that were formed were shorter in patient-derived cells than in cells from unaffected individuals. Importantly, lentiviral delivery of CEP290 rescued the ciliogenesis defect. The successful construction and viral transfer of full-length CEP290 brings us closer to the goal of providing gene- and cell-based therapies for patients affected with this common form of LCA.

  11. Adenovirus gene transfer to amelogenesis imperfecta ameloblast-like cells.

    Anton V Borovjagin

    Full Text Available To explore gene therapy strategies for amelogenesis imperfecta (AI, a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5 vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3 fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(vβ3/α(vβ5 integrins and heparan sulfate proteoglycans (HSPGs highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.

  12. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L


    Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological


    管珩; 李拥军; 郑曰宏; 刘昌伟; 杨菁; 宋存先; 王彭延; 赵三妹; 王宗立; 佘铭鹏


    Objective. To evaluate the possibility and efficiency of nanoparticle as a new vector in specific gene transference.Methods. Nanoparticle-DNA complex was prepared with Poly- dl-lactic-co-glycolic acid (PLGA) beating antisense monocyte chemotactic protein-1 (A-MCP-1), a specific expression gene, and the package efficiency, release progress in vitro, and the size of the complex were determined. The possibility of the new vector was evaluated with genomic DNA PCR by transferring gene into cultured smooth muscle cells (SMC), cationic lipids as a control. For study in vivo, jugular vein-to-artery bypass grafting procedures were performed on 20 New Zealand white rabbits, of which 6 grafts were transferred with nanoparticle-A-MCP-1 (200 μg), 6 with A - MCP - 1(200 μ g) by cationic liposome, 4 with LNCX plasmid, and 4 as control. Fourteen days after the grafts were harvested, the expression of A-MCP-1 and its effect on MCP-1 in vein grafts were detected by dot blot, and the morphologic evaluation of grafts was performed.Results. The package efficiency of the nanoparticle-DNA complex was 0. 9%, release progress in vitro lasted 2 weeks, and the size ranged from 150 to 300nm. SMC genomic DNA PCR showed that A-MCP-1 gene could be successfully transfected into cells by nanoparticle. The study in vivo indicated that A-MCP-1 mRNA was expressed in both local gene delivery groups, nanoparticle and liposome, meanwhile, MCP-1 expression in vein grafts was significantly inhibited and neointimal hyperplasia was notably reduced.Conclusion. Nanoparticle can act as a vector to transfect specific gene.

  14. Detecting rare gene transfer events in bacterial populations

    Kaare Magne Nielsen


    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  15. Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene.

    Marco A Coelho


    Full Text Available Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1 with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed.

  16. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells.

    Holkers, Maarten; Maggio, Ignazio; Liu, Jin; Janssen, Josephine M; Miselli, Francesca; Mussolino, Claudio; Recchia, Alessandra; Cathomen, Toni; Gonçalves, Manuel A F V


    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 'safe harbor' locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.

  17. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells

    Holkers, M.; Maggio, I.; Liu, J.; Janssen, J.M.; Miselli, F; Mussolino, C.; Recchia, A; Cathomen, T.; Goncalves, M. A. F. V.


    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehi...

  18. Passive Immunization against HIV/AIDS by Antibody Gene Transfer

    Lili Yang


    Full Text Available Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP, which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  19. The recent transfer of a homing endonuclease gene

    Haugen, Peik; Wikmark, Odd-Gunnar; Vader, Anna; Coucheron, Dag H.; Sjøttem, Eva; Johansen, Steinar D.


    The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation. PMID:15891115

  20. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Daniell Henry


    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  1. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Yingmei Peng

    Full Text Available Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC while the other as bacteria-type pepcase (BTPC because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  2. Center for fetal monkey gene transfer for heart, lung, and blood diseases: an NHLBI resource for the gene therapy community.

    Tarantal, Alice F; Skarlatos, Sonia I


    The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; "proof-of-principle"; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field.

  3. Endostatin gene therapy for liver cancer by a recombinant adenovirus delivery

    Li Li; Jia-Ling Huang; Qi-Cai Liu; Pei-Hong Wu; Ran-Yi Liu; Yi-Xin Zeng; Wen-Lin Huang


    AIM: To investigate the expression of adenovirus-mediated human endostatin (Ad/hEndo) gene transfer and its effect on the growth of hepatocellular carcinoma (HCC) BEL-7402xenografted tumors.METHODS: Immunohistochemistry analysis with an anti endostatin antibody was preformed to detect endostatin protein expression in HCC BEL-7402 cells infected with Ad/hEndo. MTT assay was used to investigate the effects of Ad/hEndo on proliferation of human umbilical vein endothelial cells (HUVEC). Intra-tumoral injections of 1×109 pfu Ad/hEndo was given to treat BEL-7402 xenografted tumors in nude mice once weekly for 6 wk. Mice received injections of Ad/LacZ and DMEM were regarded as control groups. After intra-turmoral administration with Ad/hEndo, the endostatin mRNA expression in tumor tissue was analyzed by Northern blotting, and plasma endostatin levels were determined using enzyme-linked immunosorbent assay (ELTSA).RESULTS: High level expression of endostatin gene was detected in the infected HCC BEL-7402 cells. Ad/hEndo significantly inhibited HUVEC cell proliferation by 57.2% at a multiplicity of infection (MOI) of 20. After 6-week treatment with Ad/hEndo, the growth of treated tumors was inhibited by 46.50% compared to the Ad/ LacZ control group (t=2.729, P<0.05) and by 48.56% compared to the DMEM control group (t=2.485, P<0.05). The ratio of mean tumor volume in treated animals to mean tumor volume in the control animals (T:C ratio) was less than 50% after 24 d of treatment. Endostatin mRNA in tumor tissue was clearly demonstrated as a band of approximately 1.2 kb, which was the expected size of intact and functional endostatin.Plasma endostatin levels peaked at 87.52±8.34 ng/mL at d 3 after Ad/hEndo injection, which was significantly higher than the basal level (12.23±2.54 ng/mL). By d 7,plasma levels dropped to nearly half the peak level(40.34±4.80 ng/mL).CONCLUSION: Adenovirus-mediated human endostatin gene can successfully express endogenous

  4. Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events

    Zhaxybayeva, Olga; Gogarten, J. Peter; Charlebois, Robert L.; Doolittle, W Ford; Papke, R Thane


    Using 1128 protein-coding gene families from 11 completely sequenced cyanobacterial genomes, we attempt to quantify horizontal gene transfer events within cyanobacteria, as well as between cyanobacteria and other phyla. A novel method of detecting and enumerating potential horizontal gene transfer events within a group of organisms based on analyses of “embedded quartets” allows us to identify phylogenetic signal consistent with a plurality of gene families, as well as to delineate cases of c...

  5. Elements of style: consent form language and the therapeutic misconception in phase 1 gene transfer trials.

    Kimmelman, Jonathan; Levenstadt, Aaron


    The therapeutic misconception arises wherever human subjects misinterpret the primary purpose of a clinical trial as therapeutic. Such misconceptions are particularly prevalent in trials involving severely ill subjects or novel and well-publicized investigational agents. In order to identify possible sources of the therapeutic misconception in gene transfer trials, 286 phase 1 human gene transfer consent documents were analyzed for their description of purpose, alternatives, and their use of the term gene transfer. We report that 20% of trials fail to explain their purpose as safety and dosage, only 41% of oncology trials identify comfort care as an alternative to participation, and that the term gene therapy is used with twice the frequency of the term gene transfer. Trends and coherence in consent form language were analyzed as well. Our results indicate that consent forms used in gene transfer phase 1 trials often contain language that promotes, or does little to deter, therapeutic misconceptions.

  6. Transduction-like gene transfer in the methanogen Methanococcus voltae

    Bertani, G.


    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  7. The Use of Viral Vectors in Gene Transfer Therapy

    Dziaková, A.; Valenčáková, A.; Hatalová, E.; J. Kalinová


    Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including canc...

  8. Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer.

    Sinn, Patrick L; Burnight, Erin R; Hickey, Melissa A; Blissard, Gary W; McCray, Paul B


    Gene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 10(6) transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells. Baculovirus GP64 envelope glycoproteins share sequence identity with influenza D GP75 envelope glycoproteins. Pseudotyping FIV with GP64 from three species of baculovirus resulted in titers of 10(7) to 10(9) TU/ml. Of note, GP64 from Autographa californica multicapsid nucleopolyhedrovirus resulted in high-titer FIV preparations (approximately 10(9) TU/ml) and conferred apical entry into polarized primary cultures of human airway epithelia. Using a luciferase reporter gene and bioluminescence imaging, we observed persistent gene expression from in vivo gene transfer in the mouse nose with A. californica GP64-pseudotyped FIV (AcGP64-FIV). Longitudinal bioluminescence analysis documented persistent expression in nasal epithelia for approximately 1 year without significant decline. According to histological analysis using a LacZ reporter gene, olfactory and respiratory epithelial cells were transduced. In addition, methylcellulose-formulated AcGP64-FIV transduced mouse nasal epithelia with much greater efficiency than similarly formulated vesicular stomatitis virus glycoprotein-pseudotyped FIV. These data suggest that AcGP64-FIV efficiently transduces and persistently expresses a transgene in nasal epithelia in the absence of agents that disrupt the cellular tight junction integrity.

  9. An Efficient Low Cost Method for Gene Transfer to T Lymphocytes

    Leonardo Chicaybam; Andressa Laino Sodre; Bianca Azevedo Curzio; Martin Hernan Bonamino


    UNLABELLED: Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. AIMS: We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucle...

  10. Efficiency of adenoviral vector mediated CTLA4Ig gene delivery into mesenchymal stem cells

    邓宇斌; 郭小荑; 原清涛; 李树浓


    Objective To prevent Graft-versus-host disease (GVHD) in rat model, we evaluated the feasibility of mesenchymal stem cells (MSCs) as a gene transfer target and studied the efficiency of recombinant adenovirus mediated gene therapy. Methods We constructed the recombinant adenovirus containing CTLA4Ig gene. Rat MSCs of passages 3-5 were infected by the adenovirus, and the transfection efficiency was monitored by GFP markers. We performed flow cytometric analysis, immunohistochemical and Western blotting analysis to identify the CTLA4Ig expression. The gene transferred MSCs were tested for their ability to inhibit the allogeneic lymphocyte response in vitro and to prevent GVHD in a rat model. Results Recombinant adenovirus pAd-CTLA4Ig was correctly constructed and confirmed. After MSCs were infected by the adenovirus, the CTLA4Ig protein was detected not only in transgenic MSCs, but also in the culture medium. In a mixed lymphocytes response (MLR) test, the transgenic MSCs could significantly inhibit the allogeneic lymphocyte response compared with the control groups (P<0.05). A model of GVHD was developed by transplanting bone marrow cells and spleen lymphocytes of F344 rats to lethally irradiated SD rats. The onset of GVHD could be ameliorated or prevented by co-administration of transgenic MSCs. All the rats in the control groups suffered severe acute GVHD. CTLA4Ig expression was observed in the liver, intestine, kidney and spleen 30 days post- transplantation. Conclusions Our results indicate that adenoviral vectors could efficiently transfer CTLA4Ig gene into MSCs and sustain long-term stable expression in vitro and in vivo.

  11. Gene recruitment--a common mechanism in the evolution of transfer RNA gene families.

    Wang, Xiujuan; Lavrov, Dennis V


    The evolution of alloacceptor transfer RNAs (tRNAs) has been traditionally thought to occur vertically and reflect the evolution of the genetic code. Yet there have been several indications that a tRNA gene could evolve horizontally, from a copy of an alloacceptor tRNA gene in the same genome. Earlier, we provided the first unambiguous evidence for the occurrence of such "tRNA gene recruitment" in nature--in the mitochondrial (mt) genome of the demosponge Axinella corrugata. Yet the extent and the pattern of this process in the evolution of tRNA gene families remained unclear. Here we analyzed tRNA genes from 21 mt genomes of demosponges as well as nuclear genomes of rhesus macaque, chimpanzee and human. We found four new cases of alloacceptor tRNA gene recruitment in mt genomes and eleven cases in the nuclear genomes. In most of these cases we observed a single nucleotide substitution at the middle position of the anticodon, which resulted in the change of not only the tRNA's amino-acid identity but also the class of the amino-acyl tRNA synthetases (aaRSs) involved in amino-acylation. We hypothesize that the switch to a different class of aaRSs may have prevented the conflict between anticodon and amino-acid identities of recruited tRNAs. Overall our results suggest that gene recruitment is a common phenomenon in tRNA multigene family evolution and should be taken into consideration when tRNA evolutionary history is reconstructed.

  12. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes

    李崇辉; 温守明; 翟海峰; 孙曼霁


    Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycoprotein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The resuits showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfeetion efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatoeytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.

  13. Estimating the extent of horizontal gene transfer in metagenomic sequences

    Moya Andrés


    Full Text Available Abstract Background Although the extent of horizontal gene transfer (HGT in complete genomes has been widely studied, its influence in the evolution of natural communities of prokaryotes remains unknown. The availability of metagenomic sequences allows us to address the study of global patterns of prokaryotic evolution in samples from natural communities. However, the methods that have been commonly used for the study of HGT are not suitable for metagenomic samples. Therefore it is important to develop new methods or to adapt existing ones to be used with metagenomic sequences. Results We have created two different methods that are suitable for the study of HGT in metagenomic samples. The methods are based on phylogenetic and DNA compositional approaches, and have allowed us to assess the extent of possible HGT events in metagenomes for the first time. The methods are shown to be compatible and quite precise, although they probably underestimate the number of possible events. Our results show that the phylogenetic method detects HGT in between 0.8% and 1.5% of the sequences, while DNA compositional methods identify putative HGT in between 2% and 8% of the sequences. These ranges are very similar to these found in complete genomes by related approaches. Both methods act with a different sensitivity since they probably target HGT events of different ages: the compositional method mostly identifies recent transfers, while the phylogenetic is more suitable for the detections of older events. Nevertheless, the study of the number of HGT events in metagenomic sequences from different communities shows a consistent trend for both methods: the lower amount is found for the sequences of the Sargasso Sea metagenome, while the higher quantity is found in the whale fall metagenome from the bottom of the ocean. The significance of these observations is discussed. Conclusion The computational approaches that are used to find possible HGT events in complete

  14. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    Boothby, Thomas C; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Messina, David N.; Glasscock, Jarret; Goldstein, Bob


    Despite fascinating scientists for over 200 years, little at the molecular level is known about tardigrades, microscopic animals resistant to extreme stresses. We present the genome of a tardigrade. Approximately one-sixth of the genes in the tardigrade genome were found to have been acquired through horizontal transfer, a proportion nearly double the proportion of previous known cases of extreme horizontal gene transfer (HGT) in animals. Foreign genes have impacted the composition of the tar...

  15. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene.

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan


    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese's complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes.

  16. The Use of Viral Vectors in Gene Transfer Therapy

    A. Dziaková


    Full Text Available Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Various types of genetic material are used in gene therapy; double-stranded DNA (dsDNA, single-stranded DNA (ssDNA, plasmid DNA and antisense oligodeoxynucleotides (ASON. The success of gene therapy depends on assuring the entrance of the therapeutic gene to targeted cells without any form of biodegradation. Commonly used vectors in gene therapy are: adenoviruses (400 clinical studies; 23.8%, retroviruses (344 clinical studies; 20.5%, unenveloped/plasmid DNA (304 clinical studies, 17.7%, adeno-associated viruses (75 clinical studies; 4.5% and others. In this paper, we have reviewed the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors.

  17. Direct gene transfer into rat articular cartilage by in vivo electroporation.

    Grossin, Laurent; Cournil-Henrionnet, Christel; Mir, Lluis M; Liagre, Bertrand; Dumas, Dominique; Etienne, Stéphanie; Guingamp, Corinne; Netter, Patrick; Gillet, Pierre


    To establish a system for efficient direct in vivo gene targeting into rat joint, we have evaluated a strategy of gene transfer by means of the delivery of external electric pulses (EP) to the knee after intra-articular injection of a reporter gene (GFP). Rats were killed at various times after the electro gene-therapy to analyze GFP gene expression by immunohistochemistry. GFP staining was detected in the superficial, middle, and deep zones of the patellar cartilage at days 2 and 9, and thereafter only in the deep zone (months 1 and 2). The average percentage of GFP-positive cells was estimated at 30% both one and 2 months after the gene transfer. Moreover, no pathologic change caused by the EP was detected in the cartilage. The level and stability of the long-term GFP expression found in this study demonstrate the feasibility of a treatment of joint disorders (inflammatory or degenerative, focal or diffuse) using electric gene transfer.

  18. Gene Transfer to Dendritic Cells Induced a Protective Immunity against Melanoma

    Pat Metharom; Kay A.O. Ellem; Ming Q. Wei


    Lentiviral vectors have shown promises for efficient gene transfer to dividing as well as nondividing cells. In this study, we explored lentiviral vector-mediated, the entire mTRP-2 gene transfer and expression in dendritic cells (DCs). Adoptive transfer of DCs-expressing mTRP-2 (DC-HR'CmT2) into C57BL/6 mouse was also assessed.Dendritic cells were harvested from bone marrow and functional DCs were proved by allogeneic mixed lymphocyte reaction. Lentiviral vectors were produced by transient transfection of 293T cells. Transduction of DCs was proved by marker gene expression and PCR and RT-PCR amplification. Implantation of the transduced DCs, depletion of immune cells as well as the survival of the mice after tumour challenge were investigated. High efficiency of gene transfer into mature DCs was achieved. The high level expression of the functional antigen (TRP-2) and induction of protective immunity by adoptive transfer of TRP-2 gene modified DCs were demonstrated. In vivo study showed a complete protection of mice from further melanoma cell challenge. In comparison, only 83% of mice survived when mTRP-2 peptide-pulsed DCs were administered, suggesting the generation of specific protection. Together, these results demonstrated the usefulness of this gene transfer to DC approach for immunotherapy of cancer and indicated that using tumour associated antigens (TAAs) for gene transfer may be potentially beneficial for the therapy of melanoma.

  19. Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria.

    Leikoski, Niina; Fewer, David P; Sivonen, Kaarina


    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  20. Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria ▿ †

    Leikoski, Niina; Fewer, David P.; Sivonen, Kaarina


    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  1. Assessment and Improvement of Gene Transfer into Human Hematopoietic Stem Cells

    D.A. Breems (Dimitri)


    textabstractThe application of somatic gene transfer as a potential treatment in human disease has progressed from speculation to reality in a short time [4,20,21,84,85,87,105,117,174]. In May 1989 the first clinical marker gene protocol took place [145], followed by the first gene therapy protocol

  2. Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

    Lan LI; Wei SHEN; Lingjiang MIN; Qingyu PAN; Yujiang SUN; Jixian DENG; Qingjie PAN


    Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.

  3. Leu452His mutation in lipoprotein lipase gene transfer associated with hypertriglyceridemia in mice in vivo.

    Kaiyue Sun

    Full Text Available Mutated mouse lipoprotein lipase (LPL containing a leucine (L to histidine (H substitution at position 452 was transferred into mouse liver by hydrodynamics-based gene delivery (HD. Mutated-LPL (MLPL gene transfer significantly increased the concentrations of plasma MLPL and triglyceride (TG but significantly decreased the activity of plasma LPL. Moreover, the gene transfer caused adiposis hepatica and significantly increased TG content in mouse liver. To understand the effects of MLPL gene transfer on energy metabolism, we investigated the expression of key functional genes related to energy metabolism in the liver, epididymal fat, and leg muscles. The mRNA contents of hormone-sensitive lipase (HSL, adipose triglyceride lipase (ATGL, fatty acid-binding protein (FABP, and uncoupling protein (UCP were found to be significantly reduced. Furthermore, we investigated the mechanism by which MLPL gene transfer affected fat deposition in the liver, fat tissue, and muscle. The gene expression and protein levels of forkhead Box O3 (FOXO3, AMP-activated protein kinase (AMPK, and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α were found to be remarkably decreased in the liver, fat and muscle. These results suggest that the Leu452His mutation caused LPL dysfunction and gene transfer of MLPL in vivo produced resistance to the AMPK/PGC-1α signaling pathway in mice.

  4. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.


    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  5. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Kordi, Misagh; Bansal, Mukul S


    Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.

  6. Conjugal gene transfer between bacteria in soil and rhizosphere.

    Smit, E.


    The extent of possible conjugal transfer of recombinant DNA present in genetically engineered microorganisms (GEMs) was studied. Occurrence of transfer of recombinant DNA is only one of the concerns regarding the use of GEMs (Chapter 2). Other potential hazards preventing the application of GEMs for

  7. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251

    Liu Hongsheng


    Full Text Available Abstract Background bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. Methods In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI, and infection with adenovirus expressing green fluorescent protein (Ad-GFP at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Results Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. Conclusion To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  8. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251.

    Zhang, Biao; Feng, Xuequan; Wang, Jinhuan; Xu, Xinnu; Liu, Hongsheng; Lin, Na


    bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA) and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI), and infection with adenovirus expressing green fluorescent protein (Ad-GFP) at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  9. A new computational method for the detection of horizontal gene transfer events.

    Tsirigos, Aristotelis; Rigoutsos, Isidore


    In recent years, the increase in the amounts of available genomic data has made it easier to appreciate the extent by which organisms increase their genetic diversity through horizontally transferred genetic material. Such transfers have the potential to give rise to extremely dynamic genomes where a significant proportion of their coding DNA has been contributed by external sources. Because of the impact of these horizontal transfers on the ecological and pathogenic character of the recipient organisms, methods are continuously sought that are able to computationally determine which of the genes of a given genome are products of transfer events. In this paper, we introduce and discuss a novel computational method for identifying horizontal transfers that relies on a gene's nucleotide composition and obviates the need for knowledge of codon boundaries. In addition to being applicable to individual genes, the method can be easily extended to the case of clusters of horizontally transferred genes. With the help of an extensive and carefully designed set of experiments on 123 archaeal and bacterial genomes, we demonstrate that the new method exhibits significant improvement in sensitivity when compared to previously published approaches. In fact, it achieves an average relative improvement across genomes of between 11 and 41% compared to the Codon Adaptation Index method in distinguishing native from foreign genes. Our method's horizontal gene transfer predictions for 123 microbial genomes are available online at

  10. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    Catherine E Dana

    Full Text Available Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  11. Genome-wide identification of horizontal gene transfer in Fusarium verticillioides

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different lineages, breaks species boundaries and generates new biological diversity. In eukaryotes, despite potential barriers, like the nuclear envelope and multicellularity, HGT may be facilitated by t...

  12. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes

    Wang, Guan H.; Sun, Bao F.; Xiong, Tuan L.; Wang, Yan K.; Murfin, Kristen E.; Xiao, Jin H.; Huang, Da W.


    Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria. PMID:27965627

  13. Intrapleural 'outside-in' gene therapy: therapeutics for organs of the chest via gene transfer to the pleura.

    Heguy, Adriana; Crystal, Ronald G


    The pleural space is an attractive site for using viral vectors to deliver gene products to the lung parenchyma, other thoracic structures and the systemic circulation. The advantages of intrapleural gene transfer using viral vectors include: (i) easy accessibility; (ii) large surface area; (iii) ability to provide high concentrations of secreted gene products to chest structures; (iv) low risk of detrimental effects of possible vector-induced inflammation compared with intravascular delivery; and (v) because it is local, lower vector doses can be used to deliver therapeutic genes to thoracic structures than less efficient systemic routes. Examples of pleural gene transfer include the use of adenovirus vectors to treat mesothelioma by transiently expressing genes that encode toxic proteins, immunomodulatory molecules or anti-angiogenesis factors. Intrapleural delivery of adeno-associated viral vectors represents an efficient strategy to treat alpha1-antitrypsin (alpha1AT) deficiency, achieving high lung and systemic therapeutic levels of alpha1AT. Intrapleural delivery of gene transfer vectors holds promise for the treatment of diseases requiring transient, localized gene expression, as well as sustained expression of genes to correct hereditary disorders requiring localized or systemic expression of the therapeutic protein.

  14. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Kordi, Misagh; Bansal, Mukul


    Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.

  15. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer

    Luis Boto


    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  16. DNA-mediated gene transfer in plant protoplasts

    U, Zang Kual; Riu, Key Zung; So, In Sup; Hong, Kyung Ae [Cheju National University, Cheju (Korea, Republic of)


    The neomycin phosphotransferase II gene(NPT-II) was introduced into geranium (Pelargonium zonale hybrids) protoplasts by using PEG or electroporation method. The presence of the introduced DNA in the protoplasts and the expressions of the gene in the transformed cells were examined. The presence of the NPT-II DNA in the protoplasts were detected by polymerase chain reaction. The expressions of NPT-II gene in the transformed cells were confirmed by the NPT-II assay. (author)

  17. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L


    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  18. In silico Analysis of the Potential Infection Mechanisms of Magnaporthe grisea from Horizontal Gene Transfer Hypothesis

    Chunyang Li; Ying Wang; Hao Peng; Hejiao Bian; Mingwei Min; Longfei Chen; Qian Liu; Jinku Bao


    Horizontal gene transfer(HGT)has long been considered as a principal force for an organism to gain novel genes in genome evolution. Homology search, phylogenetic analysis and nucleotide composition analysis are three major objective approaches to arguably determine the occurrence and directionality of HGT. Here, 21 genes that possess the potential to horizontal transfer were acquired from the whole genome of Magnaporthe grisea according to annotation, among which three can-didate genes(corresponding protein accession numbers are EAA55123, EAA47200 and EAA52136)were selected for further analysis. According to BLAST homology results, we subsequently conducted phylogenetic analysis of the three candidate HGT genes. Moreover, nucleotide composition analysis was conducted to further validate these HGTs. In addition, the functions of the three candidate genes were searched in COG database. Consequently, we conclude that the gene encoding protein EAA55123 is transferred from Clostridium perfringens. Another HGT event is between EAA52136 and a certain metazoan's corresponding gene, but the direction remains uncertain. Yet, EAA47200 is not a transferred gene.

  19. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.; Kaleko, M.; Gelinas, R.E.


    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitates an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.

  20. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria.

    Demanèche, Sandrine; Monier, Jean-Michel; Dugat-Bony, Eric; Simonet, Pascal


    The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.



    Objective: To develop an adenovirus system to deliver biologically active peptides or proteins such as angiogenesis inhibitors in vivo for the treatment of cancer. Methods: DNA recombination techniques were employed to construct adenovirus shuttle vector, in which angiogenesis inhibitor was put downstream of rat growth hormone signal peptide, and the C-terminal was the myc-epitope 10-amino-acid peptide for the following up of the protein. Adenovirus was made using the bacteria recombination method. We tested this system using an angiogenesis inhibitor chick MMP-2 C-terminal hemopexin-like fragment (PEX) in Sarcoma 180 (S-180) bearing Kunming mice. The anti-angiogenic effect was performed by chick chorioallantoic membrane assay. Results: PEX was readily secreted outside human stomach carcinoma BGC823 cells as demonstrated by immunofluorescent staining and western blot infected by adenovirus with rat growth hormone signal peptide (E-T-rGH-PEX). However, without signal peptide (E-T-PEX), PEX was expressed and localized in the cytoplasm of the infected cells, and formed large aggregates, which suggested that PEX was insoluble. The adenovirus E-T-rGH-PEX could inhibit angiogenesis, while E-T-rGH-PEX not. The adenoviruses of E-T-rGH-PEX inhibited the growth of S-180 tumor significantly compared with the empty virus control group E-T (P=0.026) and without signal peptide group E-T-PEX (P=0.006) respectively, while E-T-PEX had little effect. Conclusion: These results suggest that this adenoviral system is likely to be used in the gene therapy of cancer to deliver angiogenesis inhibitors.

  2. Adenovirus-mediated Foxp3 expression in lung epithelial cells reduces airway inflammation in ovalbumin and cockroach-induced asthma model

    Park, Soojin; Chung, Hwan-Suck; Shin, Dasom; Jung, Kyung-Hwa; Lee, Hyunil; Moon, Junghee; Bae, Hyunsu


    Foxp3 is a master regulator of CD4+CD25+ regulatory T-cell (Treg) function and is also a suppressor of SKP2 and HER2/ErbB2. There are an increasing number of reports describing the functions of Foxp3 in cell types other than Tregs. In this context, we evaluated the functions of Foxp3 in ovalbumin- and cockroach-induced asthma models. Foxp3-EGFP-expressing adenovirus or EGFP control adenovirus was administered intratracheally (i.t.), followed by challenge with ovalbumin (OVA) or cockroach extract to induce asthma. Th2 cytokine and immune cell profiles of bronchoalveolar lavage fluid (BALF), as well as serum IgE levels, were analyzed. Histological analyses were also conducted to demonstrate the effects of Foxp3 expression on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. Adenoviral Foxp3 was expressed only in lung epithelial cells, and not in CD4+ or CD8+ cells. BALF from Foxp3 gene-delivered mice showed significantly reduced numbers of total immune cells, eosinophils, neutrophils, macrophages and lymphocytes in response to cockroach allergen or OVA. In addition, Foxp3 expression in the lung reduced the levels of Th2 cytokines and IgE in BALF and serum, respectively. Moreover, histopathological analysis also showed that Foxp3 expression substantially inhibited eosinophil infiltration into the airways, goblet cell hyperplasia and smooth muscle cell hypertrophy. Furthermore, when Tregs were depleted by diphtheria toxin in Foxp3DTR mice, the anti-asthmatic functions of Foxp3 were not altered in OVA-challenged asthma models. In this study, our results suggest that Foxp3 expression in lung epithelial cells, and not in Tregs, inhibited OVA- and cockroach extract-induced asthma. PMID:27633092

  3. Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae.

    Urbanczyk, Henryk; Ast, Jennifer C; Kaeding, Allison J; Oliver, James D; Dunlap, Paul V


    Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2

  4. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440

    Lambertsen, L.M.; Molin, Søren; Kroer, N.;


    The conjugative IncP-9 plasmid pWW0 (TOL) carries transfer genes, many of whose functions can be predicted from sequence similarities to the well-studied IncW and IncP-1 plasmids, and that are clustered with the replication and maintenance genes of the plasmid core. In this study we show that the...

  5. Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes.

    Yabuki, Akinori; Toyofuku, Takashi; Takishita, Kiyotaka


    Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally.

  6. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro


    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.


    Ju Dianwen; Cao Xuetao; Yu Yizhi; Tao Qun; Wang Baomei; Wan Tao


    In the present report, antitumor effect of combined transfer of suicide gene and cytokine gene was studied.Adenovirus engineered to express E. Coli. Cytosine deaminase (AdCD) and/or adenovirus engineered toexpress murine granulocyte-macrophage colonystimulating factor (AdGMCSF) were used for the treatment of leukemia-bearing mice. The mice were inoculated s.c. With FBL-3 erythroleukemia cells and 3days later received intratumoral injection of AdCD in the presence or absence of AdGMCSF followed by intraperitoneal 5-fluorocytosine (5FC) treatment. The results demonstrated that mice received combined therapy of AdCD/5FC and AdGMCSF developed tumors most slowly and survived much longer when compared with mice treated with AdCD/5FC alone, AdGMCSF alone, AdlacZ/5FC or PBS. Combined transfer of CD gene and GM-CSF gene achieved higher specific CTL activity than control therapies. Pathological examination illustrated that the tumor mass showed obvious necrosis and inflammatory cell infiltration in mice after combined therapy. The results demonstrated that combined transfer of suicide gene and cytokine gene could synergistically inhibit the growth of leukemia in mice and induce antitumor immunity of the host. The combination therapy might be a potential approach for cancer gene therapy.

  8. Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer

    Nan Lu


    Full Text Available Improving saline resistance may be useful for reducing environmental susceptibility and improving yields in poplar plantations. However, the instability of genetically engineered traits and gene transfer reduce their usefulness and commercial value. To investigate whether the foreign gene is still present in the genome of receptor plants after seven years (i.e., long-term foreign gene stability and gene transfer, we randomly analyzed ten field-grown transgenic hybrid Populus ((Populus tomentosa × Populus bolleana × P. tomentosa carrying the DREB1 gene from Atriplex hortensis. The results of PCR and tissue culture experiments showed that AhDREB1 was present in the transgenic trees and was still expressed. However, the transcriptional expression level had decreased compared with that four years earlier. The PCR results also indicated no foreign gene in the genomic DNA of microorganisms in the soil near the transgenic poplars, indicating that no significant gene transfer had occurred from the transgenic poplars to the microorganisms at seven years after planting.

  9. [Advances in research on radioiodine therapy of carcinoma mediated by gene transfer technology].

    Mu, Da; Kuang, Anren


    Radioiodine therapy of carcinoma could be mediated by transferring the genes which participate in the process of iodine metabolism in thyroid. The correlative genes are sodium/iodine symporter gene, thyroid peroxidase gene and the specific thyroid transcription factors, and others. The objective gene can specifically express in carcinoma by inserting the tissue-specific promoter/enhancer upstream of them, so radioiodine could be used to treat varied carcinomas. The radioiodine uptake in carcinoma cells was obviously increased and the radioiodine therapy of carcinoma was effective after those genes had expressed in carcinoma cells. The main problem was that the effective half-time of radioiodine in cells was too short to produce the ideal effect of radioiodine therapy. Moreover, 211At and 188Re could be transferred by sodium/iodine symporter and they could be used to treat the carcinoma that is capable of radioiodine uptake.

  10. Overexpression of the promyelocytic leukemia gene suppresses growth of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis

    HE Dalin 贺大林; NAN Xunyi 南勋义; Chang Kun-Song; WANG Yafeng 王亚峰; Chung Leland W.K.


    Objectives To examine the anti-oncogenic effects of promyelocytic leukemia (PML) on bladder cancer and to explore its molecular mechanisms of growth suppression.Methods Wild-type PML was transfected into bladder cancer cells (5637 cell) and expressed in a replication-deficient adenovirus-mediated gene delivery system and introduced into human bladder cancer cells (5637 cell) in vitro and in vivo. The effect and mechanisms of the PML gene in cell growth, clonogenicity, and tumorigenicity of bladder cancer cells were studied using in vitro and in vivo growth assays, soft agar colony-forming assay, cell cycle analysis, apoptosis assay and in vivo tumorigenicity assay.Results Overexpression of PML in 5637 cells significantly reduced their growth rate and clonogenicity on soft agar. PML suppressed bladder cancer cell growth by inducing G1 cell cycle arrest and apoptosis. Adenovirus-mediated PML (Ad-PML) significantly suppressed the tumorigenicity and growth of bladder cancer cells. Intratumoral injection of Ad-PML into tumors induced by 5637 cells dramatically suppressed their growth. Conclusions The results indicated that overexpression of PML protein may promote efficient growth inhibition of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis, and adenovirus-mediated PML (Ad-PML) expression efficiently suppresses human bladder cancer growth.

  11. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Bradley L. Bearson


    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  12. Fundamental study on gene transfer utilizing magnetic force and jet injector

    Hasegawa, T.; Nakagami, H.; Akiyama, Y.; Nishjima, S. [Osaka University, Osaka (Japan)


    Recently, DNA vaccination is attracting attentions as a new therapeutic method for lifestyle diseases and autoimmune diseases. However, its clinical applications are limited because a safe and efficient gene transfer method has not been established yet. In this study, a new method of gene transfer was proposed which utilizes the jet injection and the magnetic transfection. The jet injection is a method to inject medical liquid by momentary high pressure without needle. The injected liquid diffuses in the bio tissue and the endocytosis is considered to be improved by the diffusion. The magnetic transfection is a method to deliver the conjugates of plasmid DNA and magnetic particles to the desired site by external magnetic field. It is expected that jet injection of the conjugates causes slight membrane disruptions and the traction of the conjugates by magnetic field induces the efficient gene transfer. In conclusion, the possibility of improvement of the gene expression by the combination of jet injection and magnetic transfection was confirmed.

  13. Cellular automata-based artificial life system of horizontal gene transfer

    Ji-xin Liu


    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  14. Evidence for Horizontal Gene Transfer as Origin of Putrescine Production in Oenococcus oeni RM83▿

    Marcobal, Ángela; de las Rivas, Blanca; Moreno-Arribas, M. Victoria; Muñoz, Rosario


    The nucleotide sequence of a 17.2-kb chromosomal DNA fragment containing the odc gene encoding ornithine decarboxylase has been determined in the putrescine producer Oenococcus oeni RM83. This DNA fragment contains 13 open reading frames, including genes coding for five transposases and two phage proteins. This description might represent the first evidence of a horizontal gene transfer event as the origin of a biogenic amine biosynthetic locus. PMID:17056681

  15. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Sophie Roxana Ullrich


    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  16. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.

    Cobbs, Cassidy; Heath, Jeremy; Stireman, John O; Abbot, Patrick


    Carotenoids are conjugated isoprenoid molecules with many important physiological functions in organisms, including roles in photosynthesis, oxidative stress reduction, vision, diapause, photoperiodism, and immunity. Until recently, it was believed that only plants, microorganisms, and fungi were capable of synthesizing carotenoids and that animals acquired them from their diet, but recent studies have demonstrated that two arthropods (pea aphid and spider mite) possess a pair of genes homologous to those required for the first step of carotenoid biosynthesis. Absent in all other known animal genomes, these genes appear to have been acquired by aphids and spider mites in one or several lateral gene transfer events from a fungal donor. We report the third case of fungal carotenoid biosynthesis gene homologs in an arthropod: flies from the family Cecidomyiidae, commonly known as gall midges. Using phylogenetic analyses we show that it is unlikely that lycopene cyclase/phytoene synthase and phytoene desaturase homologs were transferred singly to an ancient arthropod ancestor; instead we propose that genes were transferred independently from related fungal donors after divergence of the major arthropod lineages. We also examine variation in intron placement and copy number of the carotenoid genes that may underlie function in the midges. This trans-kingdom transfer of carotenoid genes may represent a key innovation, underlying the evolution of phytophagy and plant-galling in gall midges and facilitating their extensive diversification across plant lineages.

  17. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel


    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  18. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.


    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  19. Gene transfer during surgical procedures with molecular surgical suture

    Dan Huang


    Full Text Available Over the last decades, there has been an explosion of interest in plasmid DNA for gene therapy with reports of their efficacy in the fight against cancer, vascular diseases, and inherited diseases caused by specific gene defects (Srivastava, 2003. DNA plasmids present several advantages over the use of recombinant viruses concerning their production and safety issues. Plasmid DNA vectors can be constructed easily and economically, and they are free of size constraints imposed by viral packaging, obviating the need for an infectious vector and lessening the likelihood of toxicity and immunogenicity (Davis, 1993. Plasmids have a relative low cost, long shelf life and allow repetitive administration of the therapeutic gene without generating an immune response against the delivery vector (Donnelly, 2003. Finally, plasmids can be injected directly into tissues, such as heart (Sarkar, 2002, muscle (Neumeister, 2001, Dan, 2000 and tumors (De Marco, 2003, Sasaki, 2002.

  20. LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives


    Coronary artery diseases (CAD) inflict a heavy economical and social burden on most populations and contribute significantly to their morbidity and mortality rates. Low-density lipoprotein receptor (LDLR) associated familial hypercholesterolemia (FH) is the most frequent Mendelian disorder and is a major risk factor for the development of CAD. To date there is no cure for FH. The primary goal of clinical management is to control hypercholesterolaemia in order to decrease the risk of atherosclerosis and to prevent CAD. Permanent phenotypic correction with single administration of a gene therapeutic vector is a goal still needing to be achieved. The first ex vivo clinical trial of gene therapy in FH was conducted nearly 18 years ago. Patients who had inherited LDLR gene mutations were subjected to an aggressive surgical intervention involving partial hepatectomy to obtain the patient's own hepatocytes for ex vivo gene transfer with a replication deficient LDLR-retroviral vector. After successful re-infusion of transduced cells through a catheter placed in the inferior mesenteric vein at the time of liver resection, only low-level expression of the transferred LDLR gene was observed in the five patients enrolled in the trial. In contrast, full reversal of hypercholesterolaemia was later demonstrated in in vivo preclinical studies using LDLR-adenovirus mediated gene transfer. However, the high efficiency of cell division independent gene transfer by adenovirus vectors is limited by their short-term persistence due to episomal maintenance and the cytotoxicity of these highly immunogenic viruses. Novel long-term persisting vectors derived from adeno-associated viruses and lentiviruses, are now available and investigations are underway to determine their safety and efficiency in preparation for clinical application for a variety of diseases. Several novel non-viral based therapies have also been developed recently to lower LDL-C serum levels in FH patients. This article

  1. Transfer of tetracycline resistance genes with aggregation substance in food-borne Enterococcus faecalis.

    Choi, Jong-Mi; Woo, Gun-Jo


    Enterococcus faecalis has the ability to conjugate with the aid of aggregation substance (AS) and inducible sex pheromones to exchange genetic elements in food matrix. To evaluate the food safety condition and the transferable factor, 250 tetracycline-resistant food-borne E. faecalis were collected in Korea. Among the isolates, a majority of tetracycline-resistant isolates (49.6 %) harbored both the tet(M) and tet(L) genes together, followed by tet(M) (19.6 %), and tet(L) (6.8 %) alone. Also, we found the combination of tet(L)/tet(M)/tet(O) or tet(M)/tet(O). We identified two tet(S) genes including the isolate carrying tet(M) + tet(S) genes. Additionally, most E. faecalis were positive for cpd and ccf (both 96.8 %) followed by cob (57.2 %). Through mating experiments, we confirmed E. faecalis possessing the Int-Tn gene and/or any AS gene successfully transferred tet genes to JH2-2 E. faecalis, whereas neither E. faecalis carrying AS genes nor the Int-Tn gene showed the conjugation. Pulsed-field gel electrophoresis results supported a distinct pattern, implying transfer of genetic information. Our study revealed a high occurrence of tetracycline resistance genes in E. faecalis from various foods. The widespread dissemination of tetracycline resistance genes would be promoted to transfer tetracycline resistance genes by pheromone-mediated conjugation systems.

  2. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J


    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.

  3. Investigation of horizontal gene transfer in poplar/Amanita muscaria ectomycorrhizas.

    Zhang, Chi; Hampp, Rüdiger; Nehls, Uwe


    Fine roots of forest trees form together with certain soil fungi symbiotic structures (ectomycorrhizas), where fungal hyphae are in intimate contact with plant cells. Due to root cell degeneration, plant DNA is released and could be taken up by the fungus. The possibility that horizontal gene transfer might result in a risk for the environment should be evaluated before a massive release of genetically engineered trees into nature occurs, even though only a few convincing examples of horizontal gene transfer are known. Transgenic poplars containing a construct of the Streptomyces hygroscopicus bar gene under the control of the Cochliobolus heterostrophus GPD (glyceraldehyde-3-phosphate dehydrogenase) promoter were generated by Agrobacterium-mediated transformation. The functionality of this construct in the ectomycorrhizal model fungus Amanita muscaria was previously verified by protoplast-based fungal transformation. 35,000 ectomycorrhizas, formed between transgenic poplars and non-transgenic A. muscaria hyphae, were isolated and transferred to selective agar plates. Putative herbicide-resistant fungal colonies were obtained after the first round of selection. However, none of these colonies survived a transfer onto fresh selection medium, nor did they contain the bar gene, indicating that no horizontal gene transfer from poplar to A. muscaria occurred during symbiosis under axenic conditions. However, since ectomycorrhizas are associated under natural conditions with viruses, bacteria and other fungi, these additional associations should be evaluated in future.

  4. Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus.

    Carmen Unzu

    Full Text Available The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors.

  5. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer.

    Yin, Mingru; Jiang, Weihua; Fang, Zhenfu; Kong, Pengcheng; Xing, Fengying; Li, Yao; Chen, Xuejin; Li, Shangang


    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT. Gene trap strategies were employed to enhance the gene targeting rates. The male and female gene knockout fibroblast cell lines were derived by different strategies. When male HPRT knockout cells were used for SCNT, no live rabbits were obtained. However, when female HPRT(+/-) cells were used for SCNT, live, healthy rabbits were generated. The cloned HPRT(+/-) rabbits were fertile at maturity. We demonstrate a new technique to produce gene-targeted rabbits. This approach may also be used in the genetic manipulation of different genes or in other species.

  6. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer

    van Beusechem, VW; van Rijswijk, ALCT; van Es, HHG; Haisma, HJ; Pinedo, HM; Gerritsen, WR


    Adenoviral vector systems for gene therapy can be much improved by targeting vectors to specific cell types. This requires both the complete ablation of native adenovirus tropism and the introduction of a novel binding affinity in the viral capsid. We reasoned that these requirements could be fulfil

  7. Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes

    Graham Laurie A


    Full Text Available Abstract Background Type II antifreeze protein (AFP from the rainbow smelt, Osmerus mordax, is a calcium-dependent C-type lectin homolog, similar to the AFPs from herring and sea raven. While C-type lectins are ubiquitous, type II AFPs are only found in a few species in three widely separated branches of teleost fishes. Furthermore, several other non-homologous AFPs are found in intervening species. We have previously postulated that this sporadic distribution has resulted from lateral gene transfer. The alternative hypothesis, that the AFP evolved from a lectin present in a shared ancestor and that this gene was lost in most species, is not favored because both the exon and intron sequences are highly conserved. Results Here we have sequenced and annotated a 160 kb smelt BAC clone containing a centrally-located AFP gene along with 14 other genes. Quantitative PCR indicates that there is but a single copy of this gene within the smelt genome, which is atypical for fish AFP genes. The corresponding syntenic region has been identified and searched in a number of other species and found to be devoid of lectin or AFP sequences. Unlike the introns of the AFP gene, the intronic sequences of the flanking genes are not conserved between species. As well, the rate and pattern of mutation in the AFP gene are radically different from those seen in other smelt and herring genes. Conclusions These results provide stand-alone support for an example of lateral gene transfer between vertebrate species. They should further inform the debate about genetically modified organisms by showing that gene transfer between ‘higher’ eukaryotes can occur naturally. Analysis of the syntenic regions from several fishes strongly suggests that the smelt acquired the AFP gene from the herring.

  8. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium.

    Ferrari, S; Kitson, C; Farley, R; Steel, R; Marriott, C; Parkins, D A; Scarpa, M; Wainwright, B; Evans, M J; Colledge, W H; Geddes, D M; Alton, E W


    Nonviral vectors have been shown to be a safe and valid alternative to recombinant viruses for gene therapy of cystic fibrosis (CF). Nevertheless, gene transfer efficiency needs to be increased before clinical efficacy is likely in man. One barrier to increased efficacy is normal airway mucus. Using an ex vivo model of sheep tracheal epithelium, we show that this barrier can, in part, be overcome by treatment with the mucolytic agents, Nacystelyn or N-acetylcysteine using either a cationic lipid or a cationic polymer as the gene transfer agent. Further, in vivo application of either Nacystelyn or the anticholinergic glycopyrrolate, both clinically used agents, resulted in increased reporter gene expression in the mouse lung, but no significant correction of the bioelectric defect in CF null mice. These results, whilst unlikely to be sufficient in themselves to achieve clinically relevant gene therapy, may be a further useful step in the attainment of this goal.

  9. Selective effects of a fiber chimeric conditionally replicative adenovirus armed with hep27 gene on renal cancer cell.

    Fang, Lin; Cheng, Qian; Liu, Wenshun; Zhang, Jie; Ge, Yan; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian


    ASBTARCT Adenoviruses mediated cancer gene therapies are widely investigated and show a promising effect on cancer treatment. However, efficient gene transfer varies among different cancer cell lines based on the expression of coxsakie adenovirus receptor (CAR). Hep27, a member of dehydrogenase/reductase (SDR) family, can bind to Mdm2, resulting in the attenuation of Mdm2-mediated p53 degradation. Here we constructed a fiber chimeric adenovirus carrying hep27 gene (F5/35-ZD55-Hep27), in which the fiber protein of 5-serotype adenovirus (Ad5) was substituted by that of 35-serotype adenovirus (Ad35), aiming to facilitate the infection for renal cancer cells and develop the role of hep27 in cancer therapy. We evaluated the CAR and CD46 (a membrane cofactor protein for Ad35) expression in four kinds of renal cancer cells and assessed the relationship between receptors and infection efficiency. 5/35 fiber-modified adenovirus had a much promising infectivity compared with Ad5-based vector in renal cancer cells. F5/35-ZD55-Hep27 had enhanced antitumor activity against human renal cancer cells compared to the other groups. Further, hep27 mediated p53 and cleaved-PARP upregulation and mdm2 downregulation was involved and caused increased apoptosis. Moreover, F5/35-ZD55-Hep27 significantly suppressed tumor growth in subcutaneous renal cancer cell xenograft models. Our data demonstrated that 5/35 fiber-modified adenovirus F5/35-ZD55-Hep27 transferred into renal cancers efficiently and increased p53 to induce cancer cell apoptosis. Thus 5/35 fiber-modified adenoviral vector F5/35-ZD55-Hep27 might a promising vector and antitumor reagent for renal cancer gene therapy.

  10. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids

    Grill, J; Van Beusechem, VW; Van de Valk, P; Dirven, CMF; Leonhart, A; Pherai, DS; Haisma, HJ; Pinedo, HM; Curiel, DT; Gerritsen, WR

    Adenoviral-mediated gene transfer is suboptimal in human glioma and limits in vivo gene therapy approaches. There is a need for targeted vectors able to enhance gene transfer into the tumor as well as to lower the viral load in the surrounding normal tissues. We evaluated primary human tumor samples

  11. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    Marton, L.


    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  12. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene.

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko


    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1alpha (EF-1alpha), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of "EFL-containing" lineages within "EF-1alpha-containing" lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1alpha and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1alpha gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor-recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1alpha.

  13. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  14. Clinical and ethical implications of mitochondrial gene transfer.

    Mitalipov, Shoukhrat; Wolf, Don P


    Inherited diseases caused by mitochondrial gene (mtDNA) mutations affect at least 1 in 5000-10,000 children and are associated with severe clinical symptoms. Novel reproductive techniques designed to replace mutated mtDNA in oocytes or early embryos have been proposed to prevent transmission of disease from parents to their children. Here we review the efficacy and safety of these approaches and their associated ethical and regulatory issues.

  15. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells.

    Palella, T D; Silverman, L J; Schroll, C T; Homa, F L; Levine, M; Kelley, W N


    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  16. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.


    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  17. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Hanieh Jalali


    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  18. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka


    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.

  19. Gene transfer for inherited metabolic disorders of the liver: immunological challenges.

    Gordts, Stephanie C; Van Craeyveld, Eline; Jacobs, Frank; De Geest, Bart


    Hepatocytes are a key target for gene transfer directed at correction of inborn errors of metabolism. The theoretical potential of hepatocyte-directed gene transfer contrasts with the hurdles for clinical translation of this technology. Innate immune responses following gene transfer are initiated by recognition of pathogen-associated molecular patterns by pattern recognition receptors like Toll-like receptors. Adaptive immune responses may constitute the most significant hurdle for efficient gene transfer. Besides the challenge imposed by adaptive immune responses against the vector and the potential problem of pre-existing immunity, immune responses against the transgene product may also constitute an obstacle. The liver is a tolerogenic organ. Naive T cells encounter liver antigens initially in the liver, rather than in lymphoid tissue. Lymph nodes and the spleen are anatomical compartments that provide a particular microarchitecture and microenvironment for the induction of immunity. In contrast, antigen presentation in the liver takes place in a completely different microarchitecture and microenvironment. This is a key aspect of the hepatic adaptive immune tolerance induction. Consistent with the tolerogenic nature of the liver microenvironment, the risk of antibody formation against the transgene product may be limited in the setting of hepatocyte-directed gene transfer and specifically by restricting transgene expression to hepatocytes by use of hepatocyte-specific expression cassettes. However, it is unclear to which extent animal experimental data following gene transfer predict immune responses in humans. Extrapolations from animals to humans are required but should be performed with sufficient insight into the dramatic species differences of the immune system.

  20. An Efficient Low Cost Method for Gene Transfer to T Lymphocytes

    Chicaybam, Leonardo; Sodre, Andressa Laino; Curzio, Bianca Azevedo; Bonamino, Martin Hernan


    Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. Aims We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucleofector II device to promote efficient gene transfer to T lymphocytes. Results This approach renders high transgene expression levels in primary human T lymphocytes (mean 45%, 41–59%), the hard to transfect murine T cells (mean 38%, 36–42% for C57/BL6 strain) and human Jurkat T cell line. Cell viability levels after electroporation allowed further manipulations such as in vitro expansion and Chimeric Antigen Receptor (CAR) mediated gain of function for target cell lysis. Conclusions We describe here an efficient general protocol for electroporation based modification of T lymphocytes. By opening access to this protocol, we expect that efficient gene transfer to T lymphocytes, for transient or stable expression, may be achieved by an increased number of laboratories at lower and affordable costs. PMID:23555950

  1. An efficient low cost method for gene transfer to T lymphocytes.

    Leonardo Chicaybam

    Full Text Available UNLABELLED: Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. AIMS: We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucleofector II device to promote efficient gene transfer to T lymphocytes. RESULTS: This approach renders high transgene expression levels in primary human T lymphocytes (mean 45%, 41-59%, the hard to transfect murine T cells (mean 38%, 36-42% for C57/BL6 strain and human Jurkat T cell line. Cell viability levels after electroporation allowed further manipulations such as in vitro expansion and Chimeric Antigen Receptor (CAR mediated gain of function for target cell lysis. CONCLUSIONS: We describe here an efficient general protocol for electroporation based modification of T lymphocytes. By opening access to this protocol, we expect that efficient gene transfer to T lymphocytes, for transient or stable expression, may be achieved by an increased number of laboratories at lower and affordable costs.



    Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%~ 72.5%) than in supernatant system (33.1%~ 46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.

  3. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences.

    Wagner, Andreas; de la Chaux, Nicole


    Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence data.

  4. Transferring Gus gene into intact rice cells by low energy ion beam

    Zengliang, Yu; Jianbo, Yang; Yuejin, Wu; Beijiu, Cheng; Jianjun, He; Yuping, Huo


    A new technique of transferring genes by low energy ion beam has been reported in this paper. The Gus and CAT (chloramphenicol acetyltransferase) genes, as "foreign" genetic materials, were introduced into the suspension cells and ripe embryos or rice by implantation of 20-30 keV Ar + at doses ranging from 1 × 10 15 to 4 × 10 15 ions/cm 2. The activities of CAT and Gus were detected in the cells and embryos after several weeks. The results indicate that the transfer was a success.

  5. Hyperactive piggyBac Gene Transfer in Human Cells and In Vivo

    Doherty, Joseph E.; Huye, Leslie E; Yusa, Kosuke; Zhou, Liqin; Craig, Nancy L; Wilson, Matthew H.


    We characterized a recently developed hyperactive piggyBac (pB) transposase enzyme [containing seven mutations (7pB)] for gene transfer in human cells in vitro and to somatic cells in mice in vivo. Despite a protein level expression similar to that of native pB, 7pB significantly increased the gene transfer efficiency of a neomycin resistance cassette transposon in both HEK293 and HeLa cultured human cells. Native pB and SB100X, the most active transposase of the Sleeping Beauty transposon sy...

  6. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Xie Jiatao


    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  7. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

    Amanda Donnelly


    Full Text Available The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i provides enhanced phage-mediated gene transfer; (ii is applicable for laboratory transfection processes and (iii shows promise within industry for large-scale gene transfer applications.

  8. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun


    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE(Ac)) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE(Ac)-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  9. Use of HIV as a gene transfer vector.

    Pluta, Krzysztof; Kacprzak, Magdalena Marta


    Despite the extensive research efforts over the past 25 years that have focused on HIV, there is still no cure for AIDS. However, tremendous progress in the understanding of the structure and biology of the HIV virus led to the development of safe and potent HIV-based transgene delivery vectors. These genetic vehicles are referred to as lentiviral vectors. They appear to be better suited for particular applications, such as transgene delivery into stem cells, compared to other viral- and non-viral vectors. This is because Lentivirus-based vectors can efficiently infect nondividing and slowly dividing cells. In the present review article, the current state of understanding of HIV-1 is discussed and the main characteristics that had an impact on vector design are outlined. A historical view on the vector concept is presented to facilitate discussion of recent results in vector engineering in a broader context. Subsequently, a state of the art overview concerning vector construction and vector production is given. This review also touches upon the subject of lentiviral vector safety and related topics that can be helpful in addressing this issue are discussed. Finally, examples of Lentivirus-based gene delivery systems and their applications are presented, with emphasis on animal transgenesis and human gene therapy.

  10. Safety and efficacy of gene transfer for Leber's congenital amaurosis.

    Maguire, Albert M; Simonelli, Francesca; Pierce, Eric A; Pugh, Edward N; Mingozzi, Federico; Bennicelli, Jeannette; Banfi, Sandro; Marshall, Kathleen A; Testa, Francesco; Surace, Enrico M; Rossi, Settimio; Lyubarsky, Arkady; Arruda, Valder R; Konkle, Barbara; Stone, Edwin; Sun, Junwei; Jacobs, Jonathan; Dell'Osso, Lou; Hertle, Richard; Ma, Jian-xing; Redmond, T Michael; Zhu, Xiaosong; Hauck, Bernd; Zelenaia, Olga; Shindler, Kenneth S; Maguire, Maureen G; Wright, J Fraser; Volpe, Nicholas J; McDonnell, Jennifer Wellman; Auricchio, Alberto; High, Katherine A; Bennett, Jean


    Leber's congenital amaurosis (LCA) is a group of inherited blinding diseases with onset during childhood. One form of the disease, LCA2, is caused by mutations in the retinal pigment epithelium-specific 65-kDa protein gene (RPE65). We investigated the safety of subretinal delivery of a recombinant adeno-associated virus (AAV) carrying RPE65 complementary DNA (cDNA) ( number, NCT00516477 []). Three patients with LCA2 had an acceptable local and systemic adverse-event profile after delivery of AAV2.hRPE65v2. Each patient had a modest improvement in measures of retinal function on subjective tests of visual acuity. In one patient, an asymptomatic macular hole developed, and although the occurrence was considered to be an adverse event, the patient had some return of retinal function. Although the follow-up was very short and normal vision was not achieved, this study provides the basis for further gene therapy studies in patients with LCA. Copyright 2008 Massachusetts Medical Society.

  11. Antitumor effects of interleukin-18 gene-modified hepatocyte cell line on implanted liver carcinoma

    冷建杭; 张立煌; 姚航平; 曹雪涛


    Objective To investigate the antitumor effects of intrasplenically transplanted interleukin-18 (IL-18) gene-modified hepatocytes on murine implanted liver carcinoma.Methods Embryonic murine hepatocyte cell line (BNL-CL2) was transfected with a recombinant adenovirus encoding IL-18 and used as delivery cells for IL-18 gene transfer. Two cell lines, BNL-LacZ and BNL-CL2, were used as controls. One week after intrasplenic injection of C26 cells (colon carcinoma line), tumor-bearing syngeneic mice underwent the intrasplenic transplantation of IL-18 gene-modified hepatocyte cell line and were divided into treatment group (BNL IL-18) and control groups (BNL-LacZ and BNL-CL2 ). Two weeks later, the serum levels of IL-18, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in the implanted liver carcinoma-bearing mice were assayed, the cytotoxicity of murine splenic cytotoxic T-lymphocytes (CTLs) was measured, and the morphology of the hepatic tumors was studied to evaluate the antitumor effects of the approach. Results In the treatment group, the serum levels of IL-18, IFN-γ, TNF-α and NO increased significantly. The splenic CTL activity increased markedly (P<0.01) , accompanied by a substantial decrease in tumor volume and the percentage of tumor area and prolonged survival of liver carcinomo-being mice.Conclusions In vivo IL-18 expression by ex vivo manipulated cells with IL-18 recombinant adenovirus is able to exert potent antitumor effects by inducing a predominantly T-cell-helper type 1 (Th1) immune response. Intrasplenic transplantation of adenovirus-mediated IL-18 gene-modified hepatocytes could be used as a targeting treatment for implanted liver carcinoma.

  12. Extensive inter-domain lateral gene transfer in the evolution of the human commensal Methanosphaera stadtmanae

    Mor Nadia Lurie-Weinberger


    Full Text Available Methanosphaera stadtmanae is a commensal methanogenic archaeon found in the human gut. As most of its niche-neighbors are bacteria, it is expected that lateral gene transfer (LGT from bacteria might have contributed to the evolutionary history of this organism. We performed a phylogenomic survey of putative lateral gene transfer events in M. stadtmanae, using a phylogenetic pipeline. Our analysis indicates that a substantial fraction of the proteins of M. stadtmanae are inferred to have been involved in inter-domain LGT. Laterally acquired genes have had a large contribution to surface functions, by providing novel glycosyltransferase functions. In addition, several ABC transporters seem to be of bacterial origin, including the molybdate transporter. Thus, bacterial genes contributed to the adaptation of M. stadtmanae to a host dependent lifestyle by allowing a larger variation in surface structures and increasing transport efficiency in the gut niche which is diverse and competitive

  13. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  14. Adenoviral transfer of human interleukin-10 gene in lethal pancreatitis

    Zi-Qian Chen; Yao-Qing Tang; Yi Zhang; Zhi-Hong Jiang; En-Qiang Mao; Wei-Guo Zou; Ruo-Qing Lei; Tian-Quan Han; Sheng-Dao Zhang


    AIM: To evaluate the therapeutic effect of adenoviral-vectordelivered human interleukin-10 (hIL-10) gene on severe acute pancreatitis (SAP) rats.METHODS: Healthy Sprague-Dawley (SD) rats were intraperitoneally injected with adenoviral IL-10 gene (AdvhIL-10), empty vector (Adv0) or PBS solution. Blood,liver, pancreas and lung were harvested on the second day to examine hIL-10 level by ELISA and serum amylase by enzymatic assay. A SAP model was induced by retrograde injection of sodium taurocholate through pancreatic duct.SAP rats were then administered with AdvhIL-10, Adv0 and PBS solution by a single intraperitoneal injection 20 min after SAP induction. In addition to serum amylase assay,levels of hIL-10 and tumor necrosis factor-α (TNF-α) were detected by RT-PCR, ELISA and histological study. The mortality rate was studied and analyzed by Kaplan-Meier and log rank analysis.RESULTS: The levels of hIL-10 in the pancreas, liver and lung of healthy rats increased significantly after AdvhIL-10injection (1.42 ng/g in liver, 0.91 ng/g in pancreas); while there was no significant change of hIL-10 in the other two control groups. The concentration of hIL-10 was increased significantly in the SAP rats after AdvhIL-10 injection (1.68 ng/g in liver, 1.12 ng/g in pancreas) compared to the other two SAP groups with blank vector or PBS treatment (P<0.05). The serum amylase levels remained normal in the AdvhIL-10 transfected healthy rats. However,the serum amylase level was significantly elevated in the other two control SAP rats. In contrast, serum amylase was down-regulated in the AdvhIL-10 treated SAP groups.The TNF-α expression in the AdvhIL-10 treated SAP rats was significantly lower compared to the other two control SAP groups. The pathohistological changes in the AdvhIL-10 treated group were better than those in the other two control groups. Furthermore, the mortality of the AdvhIL-10 treated group was significantly reduced compared to the other two control groups (P

  15. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract

    Maguin Emmanuelle


    Full Text Available Abstract Background While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii and yogurt (Lactobacillus delbrueckii ssp. bulgaricus, is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. Results Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. Conclusion This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive

  16. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event.

    Yang, Zefeng; Liu, Li; Fang, Huimin; Li, Pengcheng; Xu, Shuhui; Cao, Wei; Xu, Chenwu; Huang, Jinling; Zhou, Yong


    The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.

  17. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R.; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A.; Blaxter, Mark


    Tardigrades, also known as moss piglets or water bears, are renowned for their ability to withstand extreme environmental challenges. A recently published analysis of the genome of the tardigrade Hypsibius dujardini by Boothby et al. concluded that horizontal acquisition of genes from bacterial and other sources might be key to cryptobiosis in tardigrades. We independently sequenced the genome of H. dujardini and detected a low level of horizontal gene transfer. We show that the extensive hor...

  18. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Weber Andreas PM


    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  19. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Keeling Patrick J


    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  20. Development of gene transfer for induction of antigen-specific tolerance

    Brandon K Sack


    Full Text Available Gene replacement therapies, like organ and cell transplantation, are likely to introduce neoantigens that elicit rejection via humoral and/or effector T-cell immune responses. Nonetheless, thanks to an ever-growing body of preclinical studies; it is now well accepted that gene transfer protocols can be specifically designed and optimized for induction of antigen-specific immune tolerance. One approach is to specifically express a gene in a tissue with a tolerogenic microenvironment such as the liver or thymus. Another strategy is to transfer a particular gene into hematopoietic stem cells or immunological precursor cells thus educating the immune system to recognize the therapeutic protein as “self.” In addition, expression of the therapeutic protein in protolerogenic antigen-presenting cells such as immature dendritic cells and B cells has proven to be promising. All three approaches have successfully prevented unwanted immune responses in preclinical studies aimed at the treatment of inherited protein deficiencies, e.g., lysosomal storage disorders and hemophilia, and of type 1 diabetes and multiple sclerosis. In this review, we focus on current gene transfer protocols that induce tolerance, including gene delivery vehicles and target tissues, and discuss successes and obstacles in different disease models.

  1. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study.

    Jason C Slot

    Full Text Available High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(PH-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts. We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota, which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.

  2. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J


    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.

  3. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.

    Bearson, Bradley L; Brunelle, Brian W


    Fluoroquinolones are broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity, which can cause DNA damage and result in bacterial cell death. In response to DNA damage, bacteria induce an SOS response to stimulate DNA repair. However, the SOS response may also induce prophage with production of infectious virions. Salmonella strains typically contain multiple prophages, and certain strains including phage types DT120 and DT104 contain prophage that upon induction are capable of generalised transduction. In this study, strains of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium DT120 and DT104 were exposed to fluoroquinolones important for use in human and veterinary disease therapy to determine whether prophage(s) are induced that could facilitate phage-mediated gene transfer. Cultures of MDR S. Typhimurium DT120 and DT104 containing a kanamycin resistance plasmid were lysed after exposure to fluoroquinolones (ciprofloxacin, enrofloxacin and danofloxacin). Bacterial cell lysates were able to transfer the plasmid to a recipient kanamycin-susceptible Salmonella strain by generalised transduction. In addition, exposure of DT120 to ciprofloxacin induced the recA gene of the bacterial SOS response and genes encoded in a P22-like generalised transducing prophage. This research indicates that fluoroquinolone exposure of MDR Salmonella can facilitate horizontal gene transfer, suggesting that fluoroquinolone usage in human and veterinary medicine may have unintended consequences, including the induction of phage-mediated gene transfer from MDR Salmonella. Stimulation of gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, and clinical decisions regarding antibiotic selection for infectious disease therapy should include this potential risk. Published by Elsevier B.V.

  4. Detection of horizontal transfer of individual genes by anomalous oligomer frequencies

    Elhai Jeff


    Full Text Available Abstract Background Understanding the history of life requires that we understand the transfer of genetic material across phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many have used easily computed compositional features as an alternative procedure. However, different compositional methods produce different predictions, and the effectiveness of any method is not well established. Results The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria. Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC content of the contaminating genes were important considerations. A method comprising best practices from these tests was devised, the Core Gene Similarity (CGS method, and it performed better than simple octamer frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to horizontal transfer events that have occurred recently in evolutionary time. Conclusions The CGS method may be an improvement over existing surrogate methods to detect genes of foreign origin.

  5. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    Ogata Hiroyuki


    Full Text Available Abstract Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their

  6. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer.

    Provasi, Elena; Genovese, Pietro; Lombardo, Angelo; Magnani, Zulma; Liu, Pei-Qi; Reik, Andreas; Chu, Victoria; Paschon, David E; Zhang, Lei; Kuball, Jurgen; Camisa, Barbara; Bondanza, Attilio; Casorati, Giulia; Ponzoni, Maurilio; Ciceri, Fabio; Bordignon, Claudio; Greenberg, Philip D; Holmes, Michael C; Gregory, Philip D; Naldini, Luigi; Bonini, Chiara


    The transfer of high-avidity T cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted antigen specificities of the resultant TCRs. We designed zinc-finger nucleases (ZFNs) that promoted the disruption of endogenous TCR β- and α-chain genes. Lymphocytes treated with ZFNs lacked surface expression of CD3-TCR and expanded with the addition of interleukin-7 (IL-7) and IL-15. After lentiviral transfer of a TCR specific for the Wilms tumor 1 (WT1) antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near purity and were superior at specific antigen recognition compared to donor-matched, unedited TCR-transferred cells. In contrast to unedited TCR-transferred cells, the TCR-edited lymphocytes did not mediate off-target reactivity while maintaining their anti-tumor activity in vivo, thus showing that complete editing of T cell specificity generates tumor-specific lymphocytes with improved biosafety profiles.

  7. Editing T cell specificity towards leukemia by zinc-finger nucleases and lentiviral gene transfer

    Lombardo, Angelo; Magnani, Zulma; Liu, Pei-Qi; Reik, Andreas; Chu, Victoria; Paschon, David E.; Zhang, Lei; Kuball, Jurgen; Camisa, Barbara; Bondanza, Attilio; Casorati, Giulia; Ponzoni, Maurilio; Ciceri, Fabio; Bordignon, Claudio; Greenberg, Philip D.; Holmes, Michael C.; Gregory, Philip D.; Naldini, Luigi; Bonini, Chiara


    The transfer of high-avidity T-cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted specificities. We designed zinc-finger nucleases (ZFNs) promoting the disruption of endogenous TCR β and α chain genes. ZFN-treated lymphocytes lacked CD3/TCR surface expression and expanded with IL-7 and IL-15. Upon lentiviral transfer of a TCR for the WT1 tumor antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near-purity, and proved superior in specific antigen recognition to matched TCR-transferred cells. In contrast to TCR-transferred cells, TCR edited lymphocytes did not mediate off-target reactivity while maintaining anti-tumor activity in vivo, thus demonstrating that complete editing of T-cell specificity generate tumor-specific lymphocytes with improved biosafety profile. PMID:22466705

  8. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.


    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  9. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    Coccoris, Miriam


    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  10. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    Coccoris, Miriam


    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  11. Role of Vibrio cholerae exochitinase ChiA2 in horizontal gene transfer.

    Mondal, Moumita; Chatterjee, Nabendu Sekhar


    Vibrio cholerae exochitinase ChiA2 plays a key role in acquisition of nutrients by chitin hydrolysis in the natural environment as well as in pathogenesis in the intestinal milieu. In this study we demonstrate the importance of ChiA2 in horizontal gene transfer in the natural environment. We found that the expression of ChiA2 and TfoX, the central regulator of V. cholerae horizontal gene transfer, varied with changes in environmental conditions. The activity of ChiA2 was also dependent on these conditions. In 3 different environmental conditions tested here, we observed that the supporting environmental condition for maximum expression and activity of ChiA2 was 20 °C, pH 5.5, and 100 mmol/L salinity in the presence of chitin. The same condition also induced TfoX expression and was favorable for horizontal gene transfer in V. cholerae. High-performance liquid chromatography analysis showed that ChiA2 released a significant amount of (GlcNAc)2 from chitin hydrolysis under the favorable condition. We hypothesized that under the favorable environmental condition, ChiA2 was upregulated and maximally active to produce a significant amount of (GlcNAc)2 from chitin. The same environmental condition also induced tfoX expression, followed by its translational activation by the (GlcNAc)2 produced, leading to efficient horizontal gene transfer.

  12. Modifier Genes for Mouse Phosphatidylinositol Transfer Protein alpha (vibrator) That Bypass Juvenile Lethality

    Concepcion, Dorothy; Johannes, Frank; Lo, Yuan Hung; Yao, Jay; Fong, Jerry; Hamilton, Bruce A.


    Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITP alpha in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and prematu

  13. Direct transfer of A20 gene into pancreas protected mice from streptozotocin-induced diabetes

    Lu-yang YU; Bo LIN; Zhen-lin ZHANG; Li-he GUO


    AIM: To investigate the efficiency of transfer of A20 gene into pancreas against STZ-induced diabetes. METHODS:PVP-plasmid mixture was directly transferred into the pancreatic parenchyma 2 d before STZ injection. The uptake of plasmid pcDNA3-LacZ or pcDNA3-A20 was detected by PCR and the expression of LacZ was confirmed by histological analysis with X-gal. A20 expression in the pancreas of pcDNA3-A20 transgenic mice was measured by RT-PCR and Westem blots. Urine amylase, NO generation, and histological examination were examined. RESULTS:Injection of PVP-plasmid mixture directly into the pancreatic parenchyma increased urine amylase concentration 16 h after operation and reversed it to nearly normal 36 h later. On d 33 LacZ expression could be found in spleen,duodenum, and islets. The development of diabetes was prevented by direct A20 gene transferring into the pancreas and A20-mediated protection was correlated with suppression of NO production. The insulitis was ameliorated in A20-treated mice. CONCLUSION: Injection of PVP-plasmid mixture directly into the pancreatic parenchyma led to target gene expression in islets. Direct transfer of A20 gene into the pancreas protected mice from STZ-induced diabetes.

  14. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.

    Gojgini, Shiva; Tokatlian, Talar; Segura, Tatiana


    The effective delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration, where diseased tissue is to be repaired in situ. One promising approach is to use hydrogel scaffolds to encapsulate and deliver plasmid DNA in the form of nanoparticles to the diseased tissue, so that cells infiltrating the scaffold are transfected to induce regeneration. This study focuses on the design of a DNA nanoparticle-loaded hydrogel scaffold. In particular, this study focuses on understanding how cell-matrix interactions affect gene transfer to adult stem cells cultured inside matrix metalloproteinase (MMP) degradable hyaluronic acid (HA) hydrogel scaffolds. HA was cross-linked to form a hydrogel material using a MMP degradable peptide and Michael addition chemistry. Gene transfer inside these hydrogel materials was assessed as a function of polyplex nitrogen to phosphate ratio (N/P = 5 to 12), matrix stiffness (100-1700 Pa), RGD (Arg-Gly-Asp) concentration (10-400 μM), and RGD presentation (0.2-4.7 RGDs per HA molecule). All variables were found to affect gene transfer to mouse mensenchymal stem cells culture inside the DNA loaded hydrogels. As expected, higher N/P ratios lead to higher gene transfer efficiency but also higher toxicity; softer hydrogels resulted in higher transgene expression than stiffer hydrogels, and an intermediate RGD concentration and RGD clustering resulted in higher transgene expression. We believe that the knowledge gained through this in vitro model can be utilized to design better scaffold-mediated gene delivery for local gene therapy.

  15. Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms

    Tauch Andreas


    Full Text Available Abstract Background Transcriptional regulation of gene activity is essential for any living organism. Transcription factors therefore recognize specific binding sites within the DNA to regulate the expression of particular target genes. The genome-scale reconstruction of the emerging regulatory networks is important for biotechnology and human medicine but cost-intensive, time-consuming, and impossible to perform for any species separately. By using bioinformatics methods one can partially transfer networks from well-studied model organisms to closely related species. However, the prediction quality is limited by the low level of evolutionary conservation of the transcription factor binding sites, even within organisms of the same genus. Results Here we present an integrated bioinformatics workflow that assures the reliability of transferred gene regulatory networks. Our approach combines three methods that can be applied on a large-scale: re-assessment of annotated binding sites, subsequent binding site prediction, and homology detection. A gene regulatory interaction is considered to be conserved if (1 the transcription factor, (2 the adjusted binding site, and (3 the target gene are conserved. The power of the approach is demonstrated by transferring gene regulations from the model organism Corynebacterium glutamicum to the human pathogens C. diphtheriae, C. jeikeium, and the biotechnologically relevant C. efficiens. For these three organisms we identified reliable transcriptional regulations for ~40% of the common transcription factors, compared to ~5% for which knowledge was available before. Conclusion Our results suggest that trustworthy genome-scale transfer of gene regulatory networks between organisms is feasible in general but still limited by the level of evolutionary conservation.

  16. Optimization of the uidA Gene Transfer of Rosa hybrida via Agrobacterium tumefaciens:an Assessment of Factors Influencing the Efficiency of Gene Transfer

    Gao Liping; Bao Manzhu


    To develop a transformation protocol of Rosa hybrida 'Samantha' via Agrobacterium tumefaciens, the authors examined the effect of different factors on T-DNA transfer by measuring transient expression levels of an intron-containing β-glucuronidase gene. The results indicate that explant, light condition, salt concentration and acetosyringone (AS) concentration in co-culture medium are the most important factors, and factors like co-culture temperature, co-culture period and bacteria density have a strong effect on the growth of bacteria and then T-DNA transfer. Optimized co-cultivation was performed by inoculation of embryogenic callus with bacteria at a density of OD600= 0.5-0.8 for 20 min and co-culture in darkness under 23 °C on medium with 1/2 MS salts and 300 μmol·L-1 AS for 3 d.

  17. The impact of gene duplication, insertion, deletion, lateral gene transfer and sequencing error on orthology inference: a simulation study.

    Dalquen, Daniel A; Altenhoff, Adrian M; Gonnet, Gaston H; Dessimoz, Christophe


    The identification of orthologous genes, a prerequisite for numerous analyses in comparative and functional genomics, is commonly performed computationally from protein sequences. Several previous studies have compared the accuracy of orthology inference methods, but simulated data has not typically been considered in cross-method assessment studies. Yet, while dependent on model assumptions, simulation-based benchmarking offers unique advantages: contrary to empirical data, all aspects of simulated data are known with certainty. Furthermore, the flexibility of simulation makes it possible to investigate performance factors in isolation of one another.Here, we use simulated data to dissect the performance of six methods for orthology inference available as standalone software packages (Inparanoid, OMA, OrthoInspector, OrthoMCL, QuartetS, SPIMAP) as well as two generic approaches (bidirectional best hit and reciprocal smallest distance). We investigate the impact of various evolutionary forces (gene duplication, insertion, deletion, and lateral gene transfer) and technological artefacts (ambiguous sequences) on orthology inference. We show that while gene duplication/loss and insertion/deletion are well handled by most methods (albeit for different trade-offs of precision and recall), lateral gene transfer disrupts all methods. As for ambiguous sequences, which might result from poor sequencing, assembly, or genome annotation, we show that they affect alignment score-based orthology methods more strongly than their distance-based counterparts.

  18. The impact of gene duplication, insertion, deletion, lateral gene transfer and sequencing error on orthology inference: a simulation study.

    Daniel A Dalquen

    Full Text Available The identification of orthologous genes, a prerequisite for numerous analyses in comparative and functional genomics, is commonly performed computationally from protein sequences. Several previous studies have compared the accuracy of orthology inference methods, but simulated data has not typically been considered in cross-method assessment studies. Yet, while dependent on model assumptions, simulation-based benchmarking offers unique advantages: contrary to empirical data, all aspects of simulated data are known with certainty. Furthermore, the flexibility of simulation makes it possible to investigate performance factors in isolation of one another.Here, we use simulated data to dissect the performance of six methods for orthology inference available as standalone software packages (Inparanoid, OMA, OrthoInspector, OrthoMCL, QuartetS, SPIMAP as well as two generic approaches (bidirectional best hit and reciprocal smallest distance. We investigate the impact of various evolutionary forces (gene duplication, insertion, deletion, and lateral gene transfer and technological artefacts (ambiguous sequences on orthology inference. We show that while gene duplication/loss and insertion/deletion are well handled by most methods (albeit for different trade-offs of precision and recall, lateral gene transfer disrupts all methods. As for ambiguous sequences, which might result from poor sequencing, assembly, or genome annotation, we show that they affect alignment score-based orthology methods more strongly than their distance-based counterparts.

  19. Targeting a newly established spontaneous feline fibrosarcoma cell line by gene transfer.

    Rounak Nande

    Full Text Available Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced of feline fibrosarcomas.

  20. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer

    Mingru Yin; Weihua Jiang; Zhenfu Fang; Pengcheng Kong; Fengying Xing; Yao Li; Xuejin Chen; Shangang Li


    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT....

  1. Chromosomal nif Genes Transfer by Conjugation in Nitrogen Fixing Azotobacter chroococcum to Lactobacillus plantarium

    Adel Kamal Khider


    Full Text Available To determine the possibility of transferring chromosomal nitrogen fixation genes (nif genes from Azotobacter chroococcum to Lactobacillus planetarium, a total of 72 Azotobacter chroococcum isolated from Erbil governorate, Iraq were culturally, morphologically and biochemically characterized. Genes for atmospheric nitrogen fixation, located on the chromosome of Azotobacter chroococcum isolates were transferred by conjugation process to a recipient Lactobacillus plantarium isolated from Erbil city soils. The chromosomal genes transferred were verified by analysis of the genomes of donor, recipient and putative transconjugants, by polymorphism of DNA bands obtained through amplification of nifH1, nifH2, nifH3, nifU and nifV genes by PCR technique. The transconjugant cells promote an efficient fixation of nitrogen in liquid cultures fixed 0.2% nitrogen, and in the soil as inoculums of wheat plants, fixed 0.31% nitrogen and solublized 11.71 ppm phosphorus, beside all advantages of Lactic acid bacteria, and probably to be used as inoculums for both nitrogen fixation and solublizing insoluble phosphorus components, and used as biofertilizers

  2. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins.

    Wickham, T J; Tzeng, E; Shears, L L; Roelvink, P W; Li, Y; Lee, G M; Brough, D E; Lizonova, A; Kovesdi, I


    Alteration of the natural tropism of adenovirus (Ad) will permit gene transfer into specific cell types and thereby greatly broaden the scope of target diseases that can be treated by using Ad. We have constructed two Ad vectors which contain modifications to the Ad fiber coat protein that redirect virus binding to either alpha(v) integrin [AdZ.F(RGD)] or heparan sulfate [AdZ.F(pK7)] cellular receptors. These vectors were constructed by a novel method involving E4 rescue of an E4-deficient Ad with a transfer vector containing both the E4 region and the modified fiber gene. AdZ.F(RGD) increased gene delivery to endothelial and smooth muscle cells expressing alpha(v) integrins. Likewise, AdZ.F(pK7) increased transduction 5- to 500-fold in multiple cell types lacking high levels of Ad fiber receptor, including macrophage, endothelial, smooth muscle, fibroblast, and T cells. In addition, AdZ.F(pK7) significantly increased gene transfer in vivo to vascular smooth muscle cells of the porcine iliac artery following balloon angioplasty. These vectors may therefore be useful in gene therapy for vascular restenosis or for targeting endothelial cells in tumors. Although binding to the fiber receptor still occurs with these vectors, they demonstrate the feasibility of tissue-specific receptor targeting in cells which express low levels of Ad fiber receptor.

  3. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    Madry, Henning; Cucchiarini, Magali


    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  4. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes.

    Richards, Thomas A; Soanes, Darren M; Jones, Meredith D M; Vasieva, Olga; Leonard, Guy; Paszkiewicz, Konrad; Foster, Peter G; Hall, Neil; Talbot, Nicholas J


    Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that these transfers largely converge within the radiation of oomycetes that colonize plant tissues. The repertoire of HGTs includes a large number of putatively secreted proteins; for example, 7.6% of the secreted proteome of the sudden oak death parasite Phytophthora ramorum has been acquired from fungi by HGT. Transfers include gene products with the capacity to break down plant cell walls and acquire sugars, nucleic acids, nitrogen, and phosphate sources from the environment. Predicted HGTs also include proteins implicated in resisting plant defense mechanisms and effector proteins for attacking plant cells. These data are consistent with the hypothesis that some oomycetes became successful plant parasites by multiple acquisitions of genes from fungi.

  5. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements.

    Erik Kristiansson

    Full Text Available The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.

  6. Phylogenetic evidence for lateral gene transfer in the intestine of marine iguanas.

    David M Nelson

    Full Text Available BACKGROUND: Lateral gene transfer (LGT appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. CONCLUSION: Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas.

  7. The influence of gene transfer on the lactic acid bacteria evolution

    Višnja Bačun-Družina


    Full Text Available In the case of preparing various dairy products, the exploitation of lactic acid bacteria has been essential in the course of past millennia in all known nations. Numerous comparative analyses of gene and genome sequences reveal that the exchange of genetic material within and between bacterial species is far more general and frequent than has previously been thought. Consequently, the horizontal gene transfer between distant species or within the same species is an important factor in the Lactobacillales evolution. Knowledge about the exchange of lactobacillus genetic information through horizontal gene transfer, mobile genetic elements, and its evolution is very important due to characterizations and stability maintenance of autochthonous as well as industrial lactic acid bacteria strains in dairy products that benefit human health.

  8. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    Alejandra Moreno-Letelier


    Full Text Available The high affinity phosphate transport system (pst is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events.

  9. Networks of lexical borrowing and lateral gene transfer in language and genome evolution.

    List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William


    Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution.

  10. Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer.

    Michael J Bryan

    Full Text Available BACKGROUND: S-PM2 is a phage capable of infecting strains of unicellular cyanobacteria belonging to the genus Synechococcus. S-PM2, like other myoviruses infecting marine cyanobacteria, encodes a number of bacterial-like genes. Amongst these genes is one encoding a MazG homologue that is hypothesized to be involved in the adaption of the infected host for production of progeny phage. METHODOLOGY/PRINCIPAL FINDINGS: This study focuses on establishing the occurrence of mazG homologues in other cyanophages isolated from different oceanic locations. Degenerate PCR primers were designed using the mazG gene of S-PM2. The mazG gene was found to be widely distributed and highly conserved among Synechococcus myoviruses and podoviruses from diverse oceanic provinces. CONCLUSIONS/SIGNIFICANCE: This study provides evidence of a globally connected cyanophage gene pool, the cyanophage mazG gene having a small effective population size indicative of rapid lateral gene transfer despite being present in a substantial fraction of cyanophage. The Prochlorococcus and Synechococcus phage mazG genes do not cluster with the host mazG gene, suggesting that their primary hosts are not the source of the mazG gene.

  11. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells.

    Qizhi Liu

    Full Text Available Retrovirus (RV is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.

  12. SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure.

    Tilemann, Lisa; Lee, Ahyoung; Ishikawa, Kiyotake; Aguero, Jaume; Rapti, Kleopatra; Santos-Gallego, Carlos; Kohlbrenner, Erik; Fish, Kenneth M; Kho, Changwon; Hajjar, Roger J


    Recently, the impact of small ubiquitin-related modifier 1 (SUMO-1) on the regulation and preservation of sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2a) function was discovered. The amount of myocardial SUMO-1 is decreased in failing hearts, and its knockdown results in severe heart failure (HF) in mice. In a previous study, we showed that SUMO-1 gene transfer substantially improved cardiac function in a murine model of pressure overload-induced HF. Toward clinical translation, we evaluated in this study the effects of SUMO-1 gene transfer in a swine model of ischemic HF. One month after balloon occlusion of the proximal left anterior descending artery followed by reperfusion, the animals were randomized to receive either SUMO-1 at two doses, SERCA2a, or both by adeno-associated vector type 1 (AAV1) gene transfer via antegrade coronary infusion. Control animals received saline infusions. After gene delivery, there was a significant increase in the maximum rate of pressure rise [dP/dt(max)] that was most pronounced in the group that received both SUMO-1 and SERCA2a. The left ventricular ejection fraction (LVEF) improved after high-dose SUMO-1 with or without SERCA2a gene delivery, whereas there was a decline in LVEF in the animals receiving saline. Furthermore, the dilatation of LV volumes was prevented in the treatment groups. SUMO-1 gene transfer therefore improved cardiac function and stabilized LV volumes in a large-animal model of HF. These results support the critical role of SUMO-1 in SERCA2a function and underline the therapeutic potential of SUMO-1 for HF patients.

  13. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  14. Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses

    Ambrose, Karen V.; Koppenhöfer, Albrecht M.; Belanger, Faith C.


    Horizontal gene transfer is recognized as an important factor in genome evolution, particularly when the newly acquired gene confers a new capability to the recipient species. We identified a gene similar to the makes caterpillars floppy (mcf1 and mcf2) insect toxin genes in Photorhabdus, bacterial symbionts of nematodes, in the genomes of the Epichloë fungi, which are intercellular symbionts of grasses. Infection by Epichloë spp. often confers insect resistance to the grass hosts, largely due to the production of fungal alkaloids. A mcf-like gene is present in all of the Epichloë genome sequences currently available but in no other fungal genomes. This suggests the Epichloë genes were derived from a single lineage-specific HGT event. Molecular dating was used to estimate the time of the HGT event at between 7.2 and 58.8 million years ago. The mcf-like coding sequence from Epichloë typhina subsp. poae was cloned and expressed in Escherichia coli. E. coli cells expressing the Mcf protein were toxic to black cutworms (Agrotis ipsilon), whereas E. coli cells containing the vector only were non-toxic. These results suggest that the Epichloë mcf-like genes may be a component, in addition to the fungal alkaloids, of the insect resistance observed in Epichloë-infected grasses. PMID:24990771

  15. Molecular evidence of lateral gene transfer in rpoB gene of Mycobacterium yongonense strains via multilocus sequence analysis.

    Byoung-Jun Kim

    Full Text Available Recently, a novel species, Mycobacterium yongonense (DSM 45126(T, was introduced and while it is phylogenetically related to Mycobacterium intracellulare, it has a distinct RNA polymerase β-subunit gene (rpoB sequence that is identical to that of Mycobacterium parascrofulaceum, which is a distantly related scotochromogen, which suggests the acquisition of the rpoB gene via a potential lateral gene transfer (LGT event. The aims of this study are to prove the presence of the LGT event in the rpoB gene of the M. yongonense strains via multilocus sequence analysis (MLSA. In order to determine the potential of an LGT event in the rpoB gene of the M. yongonense, the MLSA based on full rpoB sequences (3447 or 3450 bp and on partial sequences of five other targets [16S rRNA (1383 or 1395 bp, hsp65 (603 bp, dnaJ (192 bp, recA (1053 bp, and sodA (501 bp] were conducted. Incongruences between the phylogenetic analysis of the full rpoB and the five other genes in a total of three M. yongonense strains [two clinical strains (MOTT-12 and MOTT-27 and one type strain (DSM 45126(T] were observed, suggesting that rpoB gene of three M. yongonense strains may have been acquired very recently via an LGT event from M. parascrofulaceum, which is a distantly related scotochromogen.

  16. Lateral Transfer of the Denitrification Pathway Genes among Thermus thermophilus Strains▿

    Alvarez, Laura; Bricio, Carlos; José Gómez, Manuel; Berenguer, José


    Nitrate respiration is a common and strain-specific property in Thermus thermophilus encoded by the nitrate respiration conjugative element (NCE) that can be laterally transferred by conjugation. In contrast, nitrite respiration and further denitrification steps are restricted to a few isolates of this species. These later steps of the denitrification pathway are under the regulatory control of an NCE-encoded transcription factor, but nothing is known about their coding sequences or its putative genetic linkage to the NCE. In this study we examine the genetic linkage between nitrate and nitrite respiration through lateral gene transfer (LGT) assays and describe a cluster of genes encoding the nitrite-nitric oxide respiration in T. thermophilus PRQ25. We show that the whole denitrification pathway can be transferred from the denitrificant strain PRQ25 to an aerobic strain, HB27, and that the genes coding for nitrite and nitric oxide respiration are encoded near the NCE. Sequence data from the draft genome of PRQ25 confirmed these results and allowed us to describe the most compact nor-nir cluster known thus far and to demonstrate the expression and activities of the encoded enzymes in the HB27 denitrificant derivatives obtained by LGT. We conclude that this NCE nor-nir supercluster constitutes a whole denitrification island that can be spread by lateral transfer among Thermus thermophilus strains. PMID:21169443

  17. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    Sinkovics, Joseph G


    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  18. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer.

    Julius W Kim

    Full Text Available BACKGROUND: Vectors based on human adenovirus serotype 5 (HAdV-5 continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting. METHODOLOGY/PRINCIPAL FINDINGS: As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4. This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells. CONCLUSIONS/SIGNIFICANCE: These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.

  19. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade.

    Boothby, Thomas C; Tenlen, Jennifer R; Smith, Frank W; Wang, Jeremy R; Patanella, Kiera A; Nishimura, Erin Osborne; Tintori, Sophia C; Li, Qing; Jones, Corbin D; Yandell, Mark; Messina, David N; Glasscock, Jarret; Goldstein, Bob


    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.

  20. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)


    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  1. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    Boothby, Thomas C.; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R.; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Glasscock, Jarret; Goldstein, Bob


    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  2. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model


    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  3. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Perez, C.F.


    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  4. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms.

    Saliou Fall

    Full Text Available Horizontal gene transfer (HGT is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3% of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment

  5. [Advances in molecular mechanisms of bacterial resistance caused by stress-induced transfer of resistance genes--a review].

    Sun, Dongchang; Wang, Bing; Zhu, Lihong


    The transfer of resistance gene is one of the most important causes of bacterial resistance. Recent studies reveal that stresses induce the transfer of antibiotic resistance gene through multiple mechanisms. DNA damage stresses trigger bacterial SOS response and induce the transfer of resistance gene mediated by conjugative DNA. Antibiotic stresses induce natural bacterial competence for transformation in some bacteria which lack the SOS system. In addition, our latest studies show that the general stress response regulator RpoS regulates a novel type of resistance gene transfer which is mediated by double-stranded plasmid DNA and occurs exclusively on the solid surface. In this review, we summarized recent advances in SOS dependent and independent stress-induced DNA transfer which is mediated by conjugation and transformation respectively, and the transfer of double-stranded plasmid DNA on the solid surface which is regulated by RpoS. We propose that future work should address how stresses activate the key regulators and how these regulators control the expression of gene transfer related genes. Answers to the above questions would pave the way for searching for candidate targets for controlling bacterial resistance resulted from the transfer of antibiotic genes.

  6. Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models.

    Markusic, David M; Nichols, Timothy C; Merricks, Elizabeth P; Palaschak, Brett; Zolotukhin, Irene; Marsic, Damien; Zolotukhin, Sergei; Srivastava, Arun; Herzog, Roland W


    Adeno-associated virus (AAV) gene therapy vectors have shown the best outcomes in human clinical studies for the treatment of genetic diseases such as hemophilia. However, these pivotal investigations have also identified several challenges. For example, high vector doses are often used for hepatic gene transfer, and cytotoxic T lymphocyte responses against viral capsid may occur. Therefore, achieving therapy at reduced vector doses and other strategies to reduce capsid antigen presentation are desirable. We tested several engineered AAV capsids for factor IX (FIX) expression for the treatment of hemophilia B by hepatic gene transfer. These capsids lack potential phosphorylation or ubiquitination sites, or had been generated through molecular evolution. AAV2 capsids lacking either a single lysine residue or 3 tyrosine residues directed substantially higher coagulation FIX expression in mice compared to wild-type sequence or other mutations. In hemophilia B dogs, however, expression from the tyrosine-mutant vector was merely comparable to historical data on AAV2. Evolved AAV2-LiC capsid was highly efficient in hemophilia B mice but lacked efficacy in a hemophilia B dog. Several alternative strategies for capsid modification improve the in vivo performance of AAV vectors in hepatic gene transfer for correction of hemophilia. However, capsid optimization solely in mouse liver may not predict efficacy in other species and thus is of limited translational utility.

  7. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer ability

    Satoko eNonaka


    Full Text Available Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium.

  8. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis

    Butler Geraldine


    Full Text Available Abstract Background To date very few incidences of interdomain gene transfer into fungi have been identified. Here, we used the emerging genome sequences of Candida albicans WO-1, Candida tropicalis, Candida parapsilosis, Clavispora lusitaniae, Pichia guilliermondii, and Lodderomyces elongisporus to identify recent interdomain HGT events. We refer to these as CTG species because they translate the CTG codon as serine rather than leucine, and share a recent common ancestor. Results Phylogenetic and syntenic information infer that two C. parapsilosis genes originate from bacterial sources. One encodes a putative proline racemase (PR. Phylogenetic analysis also infers that there were independent transfers of bacterial PR enzymes into members of the Pezizomycotina, and protists. The second HGT gene in C. parapsilosis belongs to the phenazine F (PhzF superfamily. Most CTG species also contain a fungal PhzF homolog. Our phylogeny suggests that the CTG homolog originated from an ancient HGT event, from a member of the proteobacteria. An analysis of synteny suggests that C. parapsilosis has lost the endogenous fungal form of PhzF, and subsequently reacquired it from a proteobacterial source. There is evidence that Schizosaccharomyces pombe and Basidiomycotina also obtained a PhzF homolog through HGT. Conclusion Our search revealed two instances of well-supported HGT from bacteria into the CTG clade, both specific to C. parapsilosis. Therefore, while recent interkingdom gene transfer has taken place in the CTG lineage, its occurrence is rare. However, our analysis will not detect ancient gene transfers, and we may have underestimated the global extent of HGT into CTG species.

  9. Multiple phenotypic changes associated with large-scale horizontal gene transfer.

    Kevin Dougherty

    Full Text Available Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.

  10. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid.

    Qing Wang

    Full Text Available The spread and propagation of antibiotic resistance genes (ARGs is a worldwide public health concern. Ionic liquids (ILs, considered as "environmentally friendly" replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6] (0.001-5.0 g/L was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups by the IL [BMIm][PF6] (1.0 g/L. Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM. This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs.

  11. Multiple phenotypic changes associated with large-scale horizontal gene transfer.

    Dougherty, Kevin; Smith, Brian A; Moore, Autumn F; Maitland, Shannon; Fanger, Chris; Murillo, Rachel; Baltrus, David A


    Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.

  12. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Kaul Rajinder


    Full Text Available Abstract Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia

  13. DNA-water interactions distinguish messenger RNA genes from transfer RNA genes.

    Khandelwal, Garima; Jayaram, B


    Physicochemical properties of DNA sequences as a guide to developing insights into genome organization has received little attention. Here, we utilize the energetics of DNA to further advance the knowledge on its language at a molecular level. Specifically, we ask the question whether physicochemical properties of different functional units on genomes differ. We extract intramolecular and solvation energies of different DNA base pair steps from a comprehensive set of molecular dynamics simulations. We then investigate the solvation behavior of DNA sequences coding for mRNAs and tRNAs. Distinguishing mRNA genes from tRNA genes is a tricky problem in genome annotation without assumptions on length of DNA and secondary structure of the product of transcription. We find that solvation energetics of DNA behaves as an extremely efficient property in discriminating 2,063,537 genes coding for mRNAs from 56,251 genes coding for tRNAs in all (~1500) completely sequenced prokaryotic genomes.

  14. Improvement of Hydrodynamics-Based Gene Transfer of Nonviral DNA Targeted to Murine Hepatocytes

    Shingo Nakamura


    Full Text Available The liver is an important organ for supporting the life of an individual. Gene transfer toward this organ has been attempted in many laboratories to date; however, there have been few reports on improved liver-targeted gene delivery by using a nonviral vector. In this study, we examined the effect of various types of gene delivery carriers on enhancing the uptake and gene expression of exogenous DNA in murine hepatocytes when a hydrodynamics-based gene delivery (HGD is performed via tail-vein injection. Mice were singly injected with a large amount of phosphate-buffered saline containing reporter plasmid DNA and/or with a gene delivery carrier. One day after the gene delivery, the animals' livers were dissected and subjected to biochemical, histochemical, and molecular biological analyses. The strongest signal from the reporter plasmid DNA was observed when the DNA was mixed with a polyethylenimine- (PEI- based reagent. Coinjection with pCRTEIL (a loxP-floxed reporter construct and pTR/NCre (a liver-specific Cre expression vector resulted in the liver-specific recombination of pCRTEIL. The combination of PEI with HGD would thus be a valuable tool for liver-specific manipulation to examine the function of a gene of interest in the liver and for creating liver disease models.

  15. A Preliminary List of Horizontally Transferred Genes in Prokaryotes Determined by Tree Reconstruction and Reconciliation

    Hyeonsoo Jeong


    Full Text Available Genome-wide global detection of genes involved in horizontal gene transfer (HGT remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA “reference” trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.

  16. An adeno-associated virus vector-mediated multiple gene transfer for dopamine synthetic enzymes

    樊东升; 沈扬


    Objective: To explore a multiple gene transfer approach with separate adeno-associated virus vectors. Methods: The genes of dopamine synthetic enzymes, tyrosine hydroxylasc (TH), GTP cyclohydrolase I (GCH, an enzyme critical for tetrahydrobioptcrin synthesis), and aromatic L-amino acid decarboxylase (AADC), were cotransduced into 293 cells with separate AAV vectors. Expressions of TH, GCH, and AADC were detected by Western blot analysis. L-dopa and dopamine levels in the ceils were assayed by HPLC. Results: TH, GCH, and AADC proteins were effectively cocxpressed in the transduced cells with three separate AAV vectors, AAV-TH, AAV-GCH, and AAV-AADC. Furthermore, the coexpression of these three proteins resulted in an effectively spontaneous dopainc production in the cotransduced cells. Conclusion: The triple transduction of TH, GCH, and AADC genes with separate AAV vectors is effective, which might be important to gene therapy for Parkinson's disease.

  17. Selective gene transfer to endometrial cancer cells by a polymer against matrix metalloproteinase 2 (MMP-2).

    Han, Joo Youn; Choi, Dong Soon; Kim, Changhoon; Joo, Hyun; Min, Churl K


    A novel cancer-cell-specific gene delivery vector with high transfection efficiency was designed and tested with an in vitro coculture consisting of the human endometrial adenocarcinoma cell line, HEC-1A cells, and normal endometrial stromal cells. For the cancer-cell targeting, polyethylenimine (PEI), a cationic polymer that can be easily combined with anionic DNA to form a particulate complex, polyplex, being capable of transferring a gene into a variety of cells, was covalently conjugated with antibodies against matrix metalloproteinase 2 (MMP-2), a typical surface-marker protein on cancer cells known for its close correlation with angiogenesis and invasion in many types of cancer, using the heterofunctional cross-linker, n-succinimidyl 3-(2-pyridyldithio)-propionamide. Biophysical properties and transfection efficiencies of anti-MMP-2-conjugated PEI were analyzed by means of dynamic light scattering, laser Doppler anemometry, and flow cytometry. Our results reveal that (1) the PEI-anti-MMP-2 antibody conjugate maintains physical parameters, including sizes and surface charges, which appear to be favorable for gene transfer and (2) when the pEGFP-N3 plasmid complexes of the PEI-anti-MMP-2 antibody conjugate are applied to the coculture consisting of HEC-1A cells and human stromal cells, a high level of green fluorescent protein expression occurs in HEC-1A cells over stromal cells, suggesting a specific gene transfer targeting cancer cells. Therefore, targeting invading cancer cells with the PEI-anti-MMP-2 antibody conjugate could be promising in endometrial cancer treatment, and this gene delivery system deserves further optimization in the context of targeted therapeutic gene delivery.

  18. Correction of Fanconi Anemia Group C Hematopoietic Stem Cells Following Intrafemoral Gene Transfer

    Ouassila Habi


    Full Text Available The main cause of morbidity and mortality in Fanconi anemia patients is the development of bone marrow (BM failure; thus correction of hematopoietic stem cells (HSCs through gene transfer approaches would benefit FA patients. However, gene therapy trials for FA patients using ex vivo transduction protocols have failed to provide long-term correction. In addition, ex vivo cultures have been found to be hazardous for FA cells. To circumvent negative effects of ex vivo culture in FA stem cells, we tested the corrective ability of direct injection of recombinant lentiviral particles encoding FancC-EGFP into femurs of FancC−/− mice. Using this approach, we show that FancC−/− HSCs were efficiently corrected. Intrafemoral gene transfer of the FancC gene prevented the mitomycin C-induced BM failure. Moreover, we show that intrafemoral gene delivery into aplastic marrow restored the bone marrow cellularity and corrected the remaining HSCs. These results provide evidence that targeting FA-deficient HSCs directly in their environment enables efficient and long-term correction of BM defects in FA.

  19. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells

    Hyland, Kendra A.; Olson, Erik R.; McIvor, R. Scott


    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34+ HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon–chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  20. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases.

    Candotti, Fabio


    Gene transfer into the hematopoietic stem cell has shown curative potential for a variety of hematological disorders. Primary immunodeficiency diseases have led to the way in this field of gene therapy as an example and a model. Clinical results from the past 15 years have shown that significant improvement and even cure can be achieved for diseases such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease and Wiskott-Aldrich syndrome. Unfortunately, with the initial clear clinical benefits, the first serious complications of gene therapy have also occurred. In a significant number of patients treated using vectors based on murine gamma-retroviruses and carrying powerful viral enhancer elements, insertional oncogenesis events have resulted in acute leukemias that, in some cases, have had fatal outcomes. These serious adverse events have sparked a revision of the assessment of risks and benefits of integrating gene transfer for hematological diseases and prompted the development and application of new generations of viral vectors with recognized superior safety characteristics. This review summarizes the clinical experience of gene therapy for primary immunodeficiencies and discusses the likely avenues of progress in the future development of this expanding field of clinical investigations.

  1. Site-specific integration and tailoring of cassette design for sustainable gene transfer.

    Lombardo, Angelo; Cesana, Daniela; Genovese, Pietro; Di Stefano, Bruno; Provasi, Elena; Colombo, Daniele F; Neri, Margherita; Magnani, Zulma; Cantore, Alessio; Lo Riso, Pietro; Damo, Martina; Pello, Oscar M; Holmes, Michael C; Gregory, Philip D; Gritti, Angela; Broccoli, Vania; Bonini, Chiara; Naldini, Luigi


    Integrative gene transfer methods are limited by variable transgene expression and by the consequences of random insertional mutagenesis that confound interpretation in gene-function studies and may cause adverse events in gene therapy. Site-specific integration may overcome these hurdles. Toward this goal, we studied the transcriptional and epigenetic impact of different transgene expression cassettes, targeted by engineered zinc-finger nucleases to the CCR5 and AAVS1 genomic loci of human cells. Analyses performed before and after integration defined features of the locus and cassette design that together allow robust transgene expression without detectable transcriptional perturbation of the targeted locus and its flanking genes in many cell types, including primary human lymphocytes. We thus provide a framework for sustainable gene transfer in AAVS1 that can be used for dependable genetic manipulation, neutral marking of the cell and improved safety of therapeutic applications, and demonstrate its feasibility by rapidly generating human lymphocytes and stem cells carrying targeted and benign transgene insertions.

  2. Evidence for Interspecies Gene Transfer in the Evolution of 2,4-Dichlorophenoxyacetic Acid Degraders

    McGowan, Catherine; Fulthorpe, Roberta; Wright, Alice; Tiedje, J. M.


    Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the α-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient. PMID:9758850

  3. Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer

    Sergio López-Madrigal


    Full Text Available Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations.

  4. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H;


    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  5. Baculovirus vector-mediated transfer of NIS gene into colon tumor cells for radionuclide therapy


    AIM:To investigate the feasibility of radionuclide therapy of colon tumor cells by baculovirus vector-mediated transfer of the sodium/iodide symporter(NIS) gene.METHODS:A recombinant baculovirus plasmid carrying the NIS gene was constructed,and the viruses(BacNIS) were prepared using the Bac-to-Bac system.The infection efficiency in the colon cancer cell line SW1116 of a green fluorescent protein(GFP) expressing baculovirus(Bac-GFP) at different multiplicities of infection(MOI) with various concentrations o...

  6. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  7. Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima

    Worning, Peder; Jensen, Lars Juhl; Nelson, K. E.


    The recently published complete DNA sequence of the bacterium Thermotoga maritima provides evidence, based on protein sequence conservation, for lateral gene transfer between Archaea and Bacteria. We introduce a new method of periodicity analysis of DNA sequences, based on structural parameters......, which brings independent evidence for the lateral gene transfer in the genome of T.maritima, The structural analysis relates the Archaea-like DNA sequences to the genome of Pyrococcus horikoshii. Analysis of 24 complete genomic DNA sequences shows different periodicity patterns for organisms...... of different origin, The typical genomic periodicity for Bacteria is 11 bp whilst it is 10 bp for Archaea, Eukaryotes have more complex spectra but the dominant period in the yeast Saccharomyces cerevisiae is 10.2 bp. These periodicities are most likely reflective of differences in chromatin structure....

  8. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Yael Garbian


    Full Text Available The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  9. Inhibitory effect of Ca2+ on in vivo gene transfer by electroporation

    Yong-gang ZHAO; Hui-li LU; Jin-liang PENG; Yu-hong XU


    Aim:To investigate the specific effects of Ca2+ on transgene expression during electroporation-mediated gene transfer in mice.Methods:Skeletal muscle and skin were subjected to in vivo electroporation with a luciferase reporter plasmid,with or Without Ca2+ and various other ions.Resuits:For in vivo electroporation,the presence of just 10 mmol/L Ca2+ in the DNA solution drastically reduced the resulting transgene expression,to less than 5% of control values.Only Ca2+,not other ions,caused inhibition,and the effect was not tissue specific.More surprisingly.even when Ca2+ ions were delivered by electroporation before or after DNA administration,similar effects were still observed.Conelusion:The inhibitory effect of Ca2+ on in vivo gene transfer by electroporation is specific,ie,the inhibitory effect may be related to the cell membrane properties after electroporation and the subsequent resealing event.

  10. Light-controlled inhibition of malignant glioma by opsin gene transfer

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P


    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  11. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Garbian, Yael; Maori, Eyal; Kalev, Haim; Shafir, Sharoni; Sela, Ilan


    The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  12. Transfer of antibiotic-resistance genes via phage-related mobile elements.

    Brown-Jaque, Maryury; Calero-Cáceres, William; Muniesa, Maite


    Antibiotic resistance is a major concern for society because it threatens the effective prevention of infectious diseases. While some bacterial strains display intrinsic resistance, others achieve antibiotic resistance by mutation, by the recombination of foreign DNA into the chromosome or by horizontal gene acquisition. In many cases, these three mechanisms operate together. Several mobile genetic elements (MGEs) have been reported to mobilize different types of resistance genes and despite sharing common features, they are often considered and studied separately. Bacteriophages and phage-related particles have recently been highlighted as MGEs that transfer antibiotic resistance. This review focuses on phages, phage-related elements and on composite MGEs (phages-MGEs) involved in antibiotic resistance mobility. We review common features of these elements, rather than differences, and provide a broad overview of the antibiotic resistance transfer mechanisms observed in nature, which is a necessary first step to controlling them.

  13. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom


    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  14. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike


    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.

  15. SREBP-1c Gene Silencing can Decrease Lipid Deposits in Bovine Hepatocytes Cultured in Vitro

    Qinghua Deng


    Full Text Available Background: Fatty liver is a major metabolic disorder that occurs during early lactation in high-producing dairy cows. Sterol regulatory element-binding protein-1c (SREBP-1c is an important transcription factor that regulates lipid synthesis by regulating the expression of lipid metabolism genes. Methods: In this study, we reduced the expression of SREBP-1c by adenovirus-mediated SREBP-1c with a low expression vector (AD-GFP-SREBP-1c to study the effects of SREBP-1c on lipid deposits in bovine hepatocytes. The expression levels and enzyme activities of SERBP-1c and its target genes were determined by real-time PCR, western blot, and ELISA. Results: These results showed that Ad-GFP-SREBP-1c could inhibit SREBP-1c expression. The expression of the lipid synthesis enzyme acetyl-CoA carboxylase (ACC was down-regulated. The expression levels of the lipid oxidation enzymes long-chain fatty acyl-COA synthetase (ACSL-1, carnitine palmitoyltransferase І (CPT-І, carnitine palmitoyltransferase II (CPT- II, and β-hydroxyacyl-CoA-DH (HADH were significantly elevated. Furthermore, the expression levels of factors involved in the assembly and transport of very low-density lipoproteins (VLDLs, such as apolipoprotein B100 (ApoB, apolipoprotein E (ApoE, and microsomal triglyceride transfer protein (MTTP were decreased comparison with the negative control and the blank control groups, but the low-density lipoprotein receptor (LDLR was elevated. The concentrations of TG (triglyceride and VLDL were also reduced. Conclusion: These data suggest that low SREBP-1c expression can decrease lipid synthesis, increase lipid oxidation, and decrease the TG and VLDL content in bovine hepatocytes.

  16. The Histidine Decarboxylase Gene Cluster of Lactobacillus parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile within the Species

    Wüthrich, Daniel; Berthoud, Hélène; Wechsler, Daniel; Eugster, Elisabeth; Irmler, Stefan; Bruggmann, Rémy


    Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were histamine negative. We determined the complete genome of the histamine positive strain FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains using the Illumina technology. We developed the synteny aware ortholog finding algorithm SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) gene cluster is located in a genomic island. It is very likely that the HDC gene cluster was transferred from other lactobacilli, as it is highly conserved within several lactobacilli species. Furthermore, we have evidence that the HDC gene cluster was transferred within the L. parabuchneri species. PMID:28261177

  17. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    Wolf Yuri I


    Full Text Available Abstract Background Collections of Clusters of Orthologous Genes (COGs provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs. Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection

  18. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Page Grier P


    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  19. Genetic analysis of transgenome structure and size of chromosome—mediated gene transfer lines



    The TK-selected chromosome-mediate gene transfer lines were analysed using DNA dot blot method G-11 banding and in situ hybridization.The results showed that CMGT can provide a wide variety of intermediate size of the transgenome from greater than 80,000kb to less than 2,000kb,Some of transfectants are intergrated into mouse chromosome which can be detected by G-11 banding and in situ hybridization.

  20. Targeted gene transfer of hepatocyte growth factor to alveolar type II epithelial cells reduces lung fibrosis in rats.

    Gazdhar, Amiq; Temuri, Almas; Knudsen, Lars; Gugger, Mathias; Schmid, Ralph A; Ochs, Matthias; Geiser, Thomas


    Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

  1. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    Anthony W Kingston

    Full Text Available In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12 CFU/recipient per hour.

  2. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers.

    Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco


    Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome 'flux'. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.


    M. Malik


    Full Text Available The paper justified essence of genetic engineering as the object of insurance services. Defines the concept of risk gene transferring. The character features of this specific risk. The influence and consequences for agricultural producers. The description of the possible creation of the concept of insurance services that cover risk of gene transferring. The study reveals of the use of GMOs in agriculture, due to issues of economic security of a particular region or country as a whole. To determined the impact of risks and control for developing and developed countries that are important aspects of farming. Changes in weather, climate, productivity, price values, public policy, the situation on global markets can cause large fluctuations in agricultural production, and consequently affecting the income of agricultural producers. Risk management includes a range of strategies that reduce the social and financial implications of possible changes affecting the production and income of farmers. There is a need for an in-depth study of the theoretical and practical aspects of the impact of the risk of gene transferring in the context of insurance protection.

  4. Hepatocyte gene transfer mediated by stable polyplexes based on MPP-containing DNA complexes

    Bao-Feng Yu; Wan-I Li; Xiao-Nian Hu; Yue-Hong Zhang; Bo Niu; Jun Xie


    BACKGROUND: In the field of gene therapy, viral vectors as delivery tools have a number of disadvantages for medical application. This study aimed to explore a novel nonviral vector as a vehicle for gene therapy. METHODS: Transvector-rpE-MPP and EGFP (enhanced green fluorescent protein) were used as the gene transfer carrier and the reporter gene, respectively. Polyplexes which integrate transvector-rpE-MPP, the object gene, and EGFP were formed. The optimal charge ratio, stability, and transduction capacity of the polyplexes in mouse hepatocytes in vitro and in mouse liver in vivo were investigated. The polyplexes of transvector-rpE-MPP and pcDNA3-EGFP, with charge ratios of 0, 0.25, 0.5, 0.75, 1 and 1.5 were compared to determine the optimal charge ratio. RESULTS:  Polyplexes with charge ratios of 1∶1 were most stable; pcDNA3-EGFP in these complexes resisted digestion by DNase Ⅰ and blood plasma. On the other hand, pcDNA3-EGFP alone was digested. Fluorescence analysis indicated that transvector-rpE-MPP successfully delivered the reporter gene EGFP into hepatocytes and that EGFP expression was detected in hepatocyte cultures and in liver tissue. CONCLUSION: These results have laid a foundation for further study of a novel nonviral gene delivery system.

  5. Efficient Gene Transfer Mediated by HIV-1-based Defective Lentivector and Inhibition of HIV-1 Replication


    Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5-1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols.

  6. Investigating rate-limiting barriers to nanoscale nonviral gene transfer with nanobiophotonics

    Chen, Hunter H.

    Nucleic acids are a novel class of therapeutics poised to address many unmet clinical needs. Safe and efficient delivery remains a significant challenge that has delayed the realization of the full therapeutic potential of nucleic acids. Nanoscale nonviral vectors offer an attractive alternative to viral vectors as natural and synthetic polymers or polypeptides may be rationally designed to meet the unique demands of individual applications. A mechanistic understanding of cellular barriers is necessary to develop guidelines for designing custom gene carriers which are expected to greatly impact this delivery challenge. The work herein focused on the relationships among nanocomplex stability, intracellular trafficking and unpacking kinetics, and DNA degradation. Ultrasensitive nanosensors based on QD-FRET were developed to characterize the biophysical properties of nanocomplexes and study these rate-limiting steps. Quantitative image analysis enabled the distributions of the subpopulation of condensed or released DNA to be determined within the major cellular compartments encountered during gene transfer. The steady state stability and unpacking kinetics within these compartments were found to impact transgene expression, elucidating multiple design strategies to achieve efficient gene transfer. To address enzymatic barriers, a novel two-step QD-FRET nanosensor was developed to analyze unpacking and DNA degradation simultaneously, which has not been accomplished previously. Bioresponsive strategies such as disulfide crosslinking and thermosensitivity were evaluated by QD-FRET and quantitative compartmental analysis as case studies to determine appropriate design specifications for thiolated polymers and thermoresponsive polypeptides. Relevant nanobiophotonic tools were developed as a platform to study major rate-limiting barriers to nanomedicine and demonstrated the feasibility of using mechanistic information gained from these tools to guide the rational design of

  7. In vivo gene transfer strategies to achieve partial correction of von Willebrand disease.

    Wang, Lan; Rosenberg, Jonathan B; De, Bishnu P; Ferris, Barbara; Wang, Rui; Rivella, Stefano; Kaminsky, Stephen M; Crystal, Ronald G


    von Willebrand disease (VWD), the most common hereditary coagulation disorder, results from mutations in the 52-exon gene for von Willebrand factor (VWF), which encodes an 8.4-kB cDNA. Studies with VWF cDNA plasmids have demonstrated that in vivo gene transfer to the liver will correct the coagulation dysfunction in VWF(-/-) mice, but the correction is transient. To develop gene therapy for VWF that would mediate long-term expression of the VWF cDNA in liver, we first evaluated segmental pre-mRNA trans-splicing (SPTS) with two adeno-associated virus (AAV) serotype 8 vectors, each delivering one-half of the VWF cDNA. However, although the two vectors functioned well to generate VWF multimers after infection of cells in vitro, the efficiency of SPTS was insufficient to correct the VWF(-/-) mouse in vivo. As an alternative, we assessed the ability of a lentiviral vector to transfer the intact murine VWF cDNA in vivo directly to the neonatal liver of VWF(-/-) mice, using generation of VWF multimers, bleeding time, and bleeding volume as efficacy parameters. The VWF lentivirus generated VWF multimers and partially or completely corrected the coagulation defect on a persistent basis in 33% of the treated VWF-deficient mice. On the basis of the concept that partial persistent correction with gene transfer could be beneficial in VWD patients, these observations suggest that lentiviral delivery of VWF cDNA should be explored as a candidate for gene therapy in patients with a severe form of VWD.

  8. Involvement of plastid, mitochondrial and nuclear genomes in plant-to-plant horizontal gene transfer

    Maria Virginia Sanchez-Puerta


    Full Text Available This review focuses on plant-to-plant horizontal gene transfer (HGT involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.

  9. Bayesian analysis of congruence of core genes in Prochlorococcus and Synechococcus and implications on horizontal gene transfer.

    Nicholas J Matzke

    Full Text Available It is often suggested that horizontal gene transfer is so ubiquitous in microbes that the concept of a phylogenetic tree representing the pattern of vertical inheritance is oversimplified or even positively misleading. "Universal proteins" have been used to infer the organismal phylogeny, but have been criticized as being only the "tree of one percent." Currently, few options exist for those wishing to rigorously assess how well a universal protein phylogeny, based on a relative handful of well-conserved genes, represents the phylogenetic histories of hundreds of genes. Here, we address this problem by proposing a visualization method and a statistical test within a Bayesian framework. We use the genomes of marine cyanobacteria, a group thought to exhibit substantial amounts of HGT, as a test case. We take 379 orthologous gene families from 28 cyanobacteria genomes and estimate the Bayesian posterior distributions of trees - a "treecloud" - for each, as well as for a concatenated dataset based on putative "universal proteins." We then calculate the average distance between trees within and between all treeclouds on various metrics and visualize this high-dimensional space with non-metric multidimensional scaling (NMMDS. We show that the tree space is strongly clustered and that the universal protein treecloud is statistically significantly closer to the center of this tree space than any individual gene treecloud. We apply several commonly-used tests for incongruence/HGT and show that they agree HGT is rare in this dataset, but make different choices about which genes were subject to HGT. Our results show that the question of the representativeness of the "tree of one percent" is a quantitative empirical question, and that the phylogenetic central tendency is a meaningful observation even if many individual genes disagree due to the various sources of incongruence.


    “Chemistry Department, Kenyatta University, P. 0. Box 43844 ... harvester (X) [L 2] in a manner consistent with the following Forster equation for long range energy transfer [3-7]. .... sensitive foods, chemical reactors and essences. Recently we ...

  11. Ocular gene transfer in the spotlight: implications of newspaper content for clinical communications.

    Benjaminy, Shelly; Bubela, Tania


    Ocular gene transfer clinical trials are raising hopes for blindness treatments and attracting media attention. News media provide an accessible health information source for patients and the public, but are often criticized for overemphasizing benefits and underplaying risks of novel biomedical interventions. Overly optimistic portrayals of unproven interventions may influence public and patient expectations; the latter may cause patients to downplay risks and over-emphasize benefits, with implications for informed consent for clinical trials. We analyze the news media communications landscape about ocular gene transfer and make recommendations for improving communications between clinicians and potential trial participants in light of media coverage. We analyzed leading newspaper articles about ocular gene transfer (1990-2012) from United States (n = 55), Canada (n = 26), and United Kingdom (n = 77) from Factiva and Canadian Newsstand databases using pre-defined coding categories. We evaluated the content of newspaper articles about ocular gene transfer for hereditary retinopathies, exploring representations of framing techniques, research design, risks/benefits, and translational timelines. The dominant frame in 61% of stories was a celebration of progress, followed by human-interest in 30% of stories. Missing from the positive frames were explanations of research design; articles conflated clinical research with treatment. Conflicts-of-interest and funding sources were similarly omitted. Attention was directed to the benefits of gene transfer, while risks were only reported in 43% of articles. A range of visual outcomes was described from slowing vision loss to cure, but the latter was the most frequently represented even though it is clinically infeasible. Despite the prominence of visual benefit portrayals, 87% of the articles failed to provide timelines for the commencement of clinical trials or for clinical implementation. Our analysis confirms

  12. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii

    Gabriela Jorge Da Silva


    Full Text Available Horizontal gene transfer (HGT is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.

  13. Investigation of possible horizontal gene transfer from transgenic rice to soil microorganisms in paddy rice field.

    Kim, Sung Eun; Moon, Jae Sun; Kim, Jung Kyu; Choi, Won Sik; Lee, Sang Han; Kim, Sung Uk


    In order to monitor the possibility of horizontal gene transfer between transgenic rice and microorganisms in paddy rice field, the gene flow from bifunctional fusion (TPSP) rice containing trehalose-6-phosphate synthase and phosphatase to microorganisms in soils was investigated. The soil samples collected every month from the paddy rice field during June, 2004 to March, 2006 were investigated by multiplex PCR, Southern hybridization, and amplified fragment length polymorphism (AFLP). The TPSP gene from soil genomics DNAs was not detected by PCR. Soil genomic DNAs were not shown its homologies on the Southern blotting data, indicating that gene-transfer did not occur during the last two years in paddy rice field. In addition, the AFLP band patterns produced by both soil genomic DNAs extracted from transgenic and non-transgenic rice field appeared similar to each other when analyzed by NTSYSpc program. Thus, these data suggest that transgenic rice does not give a significant impact on the communities of soil microorganisms although long-term observation may be needed.

  14. Retroviral endostatin gene transfer inhibits human colon cancer cell growth in vivo

    陈卫昌; 傅建新; 刘强; 阮长耿; 萧树东


    Objective To investigate the therapeutic effect of retroviral endostatin gene transfer on the human colon cancer cell line, LoVo.Methods A retroviral vector pLESSN expressing secretable endostatin was constructed and packaged with a titer of 8.2×105 CFU/ml. A LoVo cell line was subjected to retrovirus-mediated endostatin gene transfer. The proviral integration of endostatin was analyzed with PCR. The function of endostatin was tested by MTT assay in vitro and a mouse xenograft model in vivo.Results After transfection and superinfection, amphotropic retrovirus was collected, and transduction with amphotropic retroviruses resulted in endostatin proviral integration. The endostatin secreted by transduced LoVo cells markedly inhibited endothelial cell growth up to 67% (P<0.001), compared with the control cells. The gene expression of endostatin in LoVo colon tumor cells significantly inhibited tumor growth in vivo. There was an 86% reduction in tumor size in the endostatin-transduced group, accompanied by a reduction in vessels, compared with the control group (P<0.01). Conclusion Retroviruses can allow functional expression of the endostatin gene in human colon tumors, showing promise for an antitumor strategy using antiangiogenesis.

  15. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens.

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze


    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses.

  16. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia

    Narcisi, T.M.E.; Shoulders, C.C.; Chester, S.A. [Hammersmith Hospital, London (United Kingdom)] [and others


    Elevated plasma levels of apolipoprotein B (apoB)-containing lipoproteins constitute a major risk factor for the development of coronary heart disease. In the rare recessively inherited disorder abetalipoproteinemia (ABL) the production of apoB-containing lipoproteins is abolished, despite no abnormality of the apoB gene. In the current study we have characterized the gene encoding a microsomal triglyceride-transfer protein (MTP), localized to chromosome 4q22-24, and have identified a mutation of the MTP gene in both alleles of all individuals in a cohort of eight patients with classical ABL. Each mutant allele is predicted to encode a truncated form of MTP with a variable number of aberrant amino acids at its C-terminal end. Expression of genetically engineered forms of MTP in Cos-1 cells indicates that the C-terminal portion of MTP is necessary for triglyceride-transfer activity. Deletion of 20 amino acids from the carboxyl terminus of the 894-amino-acid protein and a missense mutation of cysteine 878 to serine both abolished activity. These results establish that defects of the MTP gene are the predominant, if not sole, cause of hereditary ABL and that an intact carboxyl terminus is necessary for activity. 49 refs., 4 figs., 5 tabs.

  17. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer.

    Wang, Gary P; Garrigue, Alexandrine; Ciuffi, Angela; Ronen, Keshet; Leipzig, Jeremy; Berry, Charles; Lagresle-Peyrou, Chantal; Benjelloun, Fatine; Hacein-Bey-Abina, Salima; Fischer, Alain; Cavazzana-Calvo, Marina; Bushman, Frederic D


    Gene transfer has been used to correct inherited immunodeficiencies, but in several patients integration of therapeutic retroviral vectors activated proto-oncogenes and caused leukemia. Here, we describe improved methods for characterizing integration site populations from gene transfer studies using DNA bar coding and pyrosequencing. We characterized 160,232 integration site sequences in 28 tissue samples from eight mice, where Rag1 or Artemis deficiencies were corrected by introducing the missing gene with gamma-retroviral or lentiviral vectors. The integration sites were characterized for their genomic distributions, including proximity to proto-oncogenes. Several mice harbored abnormal lymphoproliferations following therapy--in these cases, comparison of the location and frequency of isolation of integration sites across multiple tissues helped clarify the contribution of specific proviruses to the adverse events. We also took advantage of the large number of pyrosequencing reads to show that recovery of integration sites can be highly biased by the use of restriction enzyme cleavage of genomic DNA, which is a limitation in all widely used methods, but describe improved approaches that take advantage of the power of pyrosequencing to overcome this problem. The methods described here should allow integration site populations from human gene therapy to be deeply characterized with spatial and temporal resolution.

  18. The give-and-take of DNA: horizontal gene transfer in plants.

    Bock, Ralph


    Horizontal gene transfer (HGT) is increasingly being recognized as a significant force in the evolution of eukaryotic genomes. Plants have been both donors and recipients of horizontally mobilized genes and their genetic barter partners include prokaryotes and eukaryotes from all kingdoms. By expanding the gene pool beyond species boundaries, HGT events can drive genomic and phenotypic changes that increase fitness substantially. Accumulating evidence suggests that HGT is particularly prevalent between organisms that are either intimately associated or establish at least occasionally cell-cell contacts (e.g. in mutualistic or parasitic relationships). Here, I summarize current knowledge about HGT in plants, discuss possible molecular mechanisms and adaptive values of HGT events and highlight recent progress made in reconstructing HGT processes in laboratory experiments.

  19. Detecting horizontally transferred and essential genes based on dinucleotide relative abundance.

    Baran, Robert H; Ko, Hanseok


    Various methods have been developed to detect horizontal gene transfer in bacteria, based on anomalous nucleotide composition, assuming that compositional features undergo amelioration in the host genome. Evolutionary theory predicts the inevitability of false positives when essential sequences are strongly conserved. Foreign genes could become more detectable on the basis of their higher order compositions if such features ameliorate more rapidly and uniformly than lower order features. This possibility is tested by comparing the heterogeneities of bacterial genomes with respect to strand-independent first- and second-order features, (i) G + C content and (ii) dinucleotide relative abundance, in 1 kb segments. Although statistical analysis confirms that (ii) is less inhomogeneous than (i) in all 12 species examined, extreme anomalies with respect to (ii) in the Escherichia coli K12 genome are typically co-located with essential genes.

  20. Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements†


    Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These ...

  1. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer



    Aim: To identify the metastasis suppressor genes for prostate cancer. Methods: A copy of human chromosomes was introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediated chromosome transfer. Relationships between the size of human chromosomes introduced into microcell hybrid clones and the number of lung metastases produced by the clones were analyzed to determine which part of human chromosomes contained the metastasis suppressor gene (s) for prostate cancer. To determine portions of human chromosomes introduced, G-banding chromosomal analysis, fluorescence in situ hybridization analysis, and polymerase chain reaction analysis were performed. Results: Each of microcell hybrid clones containing human chromosomes 7, 8, 10, 11, 12, or 17 showed decreased ability to metastasize to the lung without any loss of ttmaorigenicity. This demonstrates that these human chromosomes contain metastasis suppressor genes for prostate cancer. Spontaneous deletion of portions of human chromosomes was observed in the human chromosome 7, 10, 11, 12, and 17 studies. In the human chromosome 8 study, irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal ann deletions of human chromosome 8. Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasis suppressor genes on human chromosomes were located on 7q21-22, 7q31.2-32, 8p21-12, 10q11-22, 11p13-11.2, 12p11-q13, 12q24-ter, and 17pter-q23. KAI1 and MKK4/SEKI were identified as metastasis suppressor genes from 11p11.2 and 17p12, respectively. Conclusion: This assay system is useful to identify metastasis suppressor gene (s) for prostate cancer.

  2. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species

    Higgs Paul G


    Full Text Available Abstract Background Horizontal Gene Transfer (HGT is beneficial to a cell if the acquired gene confers a useful function, but is detrimental if the gene has no function, if it is incompatible with existing genes, or if it is a selfishly replicating mobile element. If the balance of these effects is beneficial on average, we would expect cells to evolve high rates of acceptance of horizontally transferred genes, whereas if it is detrimental, cells should reduce the rate of HGT as far as possible. It has been proposed that the rate of HGT was very high in the early stages of prokaryotic evolution, and hence there were no separate lineages of organisms. Only when the HGT rate began to fall, would lineages begin to emerge with their own distinct sets of genes. Evolution would then become more tree-like. This phenomenon has been called the Darwinian Threshold. Results We study a model for genome evolution that incorporates both beneficial and detrimental effects of HGT. We show that if rate of gene loss during genome replication is high, as was probably the case in the earliest genomes before the time of the last universal common ancestor, then a high rate of HGT is favourable. HGT leads to the rapid spread of new genes and allows the build-up of larger, fitter genomes than could be achieved by purely vertical inheritance. In contrast, if the gene loss rate is lower, as in modern prokaryotes, then HGT is, on average, unfavourable. Conclusions Modern cells should therefore evolve to reduce HGT if they can, although the prevalence of independently replicating mobile elements and viruses may mean that cells cannot avoid HGT in practice. In the model, natural selection leads to gradual improvement of the replication accuracy and gradual decrease in the optimal rate of HGT. By clustering genomes based on gene content, we show that there are no separate lineages of organisms when the rate of HGT is high; however, as the rate of HGT decreases, a tree

  3. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?

    Tormo, M Angeles; Knecht, Erwin; Götz, Friedrich; Lasa, Iñigo; Penadés, José R


    The biofilm-associated protein (Bap) is a surface protein implicated in biofilm formation by Staphylococcus aureus isolated from chronic mastitis infections. The bap gene is carried in a putative composite transposon inserted in SaPIbov2, a mobile staphylococcal pathogenicity island. In this study, bap orthologue genes from several staphylococcal species, including Staphylococcus epidermidis, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus simulans and Staphylococcus hyicus, were identified, cloned and sequenced. Sequence analysis comparison of the bap gene from these species revealed a very high sequence similarity, suggesting the horizontal gene transfer of SaPIbov2 amongst them. However, sequence analyses of the flanking region revealed that the bap gene of these species was not contained in the SaPIbov2 pathogenicity island. Although they did not contain the icaADBC operon, all the coagulase-negative staphylococcal isolates harbouring bap were strong biofilm producers. Disruption of the bap gene in S. epidermidis abolished its capacity to form a biofilm, whereas heterologous complementation of a biofilm-negative strain of S. aureus with the Bap protein from S. epidermidis bestowed the capacity to form a biofilm on a polystyrene surface. Altogether, these results demonstrate that Bap orthologues from coagulase-negative staphylococci induce an alternative mechanism of biofilm formation that is independent of the PIA/PNAG exopolysaccharide.

  4. Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma

    Haberkorn, Uwe; Altmann, Annette [University of Heidelberg, INF 400, Department of Nuclear Medicine, Heidelberg (Germany); DKFZ and University of Heidelberg, INF 280, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Hoffend, Johannes [University of Heidelberg, INF 400, Department of Nuclear Medicine, Heidelberg (Germany); Schmidt, Kerstin [University of Heidelberg, INF 400, Department of Nuclear Medicine, Heidelberg (Germany); DKFZ and University of Heidelberg, INF 280, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); University of Heidelberg, Anatomy and Developmental Biology, Medical Faculty Mannheim, Mannheim (Germany); Bonaterra, Gabriel A.; Kinscherf, Ralf [University of Heidelberg, Anatomy and Developmental Biology, Medical Faculty Mannheim, Mannheim (Germany); Dimitrakopoulou-Strauss, Antonia; Strauss, Ludwig G. [DKFZ and University of Heidelberg, INF 280, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Eisenhut, Michael [DKFZ, INF 280, Department of Radiopharmaceutical Chemistry, Heidelberg (Germany)


    Human troponin I (TROP), the soluble receptor for vascular endothelial growth factor (sFLT) and angiostatin (ASTAT) are potent inhibitors of endothelial cell proliferation, angiogenesis and tumour growth in vivo. Transfer of these genes into tumours may induce changes not only in perfusion, but also more general ones such as changes in metabolism. The aim of this study was to assess these reactions using FDG-PET and high-throughput methods such as gene profiling. We established Morris hepatoma (MH3924A) cell lines expressing TROP, sFLT or ASTAT and quantified {sup 18}F-fluorodeoxyglucose ({sup 18}FDG) uptake by dynamic positron emission tomography (PET) after tumour inoculation in ACI rats. Furthermore, expression of glucose transporter-1 and -3 (GLUT-1 and GLUT-3) as well as hexokinase-1 and -2 were investigated by RT-PCR and immunohistomorphometry. In addition, gene array analyses were performed. {sup 18}FDG uptake, vascular fraction and distribution volume were significantly higher in all genetically modified tumours. Immunohistomorphometry showed an increased percentage of hexokinase-1 and -2 as well as GLUT-1 and -3 immunoreactive (ir) cells. Using gene arrays and comparing all three groups of genetically modified tumours, we found upregulated expression of 36 genes related to apoptosis, signal transduction, stress or metabolism. TROP-, sFLT- or ASTAT-expressing MH3924A tumours show enhanced influx of {sup 18}FDG, which seems to be caused by several factors: enhanced exchange of nutrients between blood and tumour, increased amounts of glucose transporters and hexokinases, and increased expression of genes related to apoptosis, matrix and stress, which induce an increased demand for glucose. (orig.)

  5. Inter-genomic displacement via lateral gene transfer of bacterial trp operons in an overall context of vertical genealogy

    Keyhani Nemat O; Song Jian; Bonner Carol A; Xie Gary; Jensen Roy A


    Abstract Background The growing conviction that lateral gene transfer plays a significant role in prokaryote genealogy opens up a need for comprehensive evaluations of gene-enzyme systems on a case-by-case basis. Genes of tryptophan biosynthesis are frequently organized as whole-pathway operons, an attribute that is expected to facilitate multi-gene transfer in a single step. We have asked whether events of lateral gene transfer are sufficient to have obscured our ability to track the vertica...

  6. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall.

    Ye, Y W; Landau, C; Willard, J E; Rajasubramanian, G; Moskowitz, A; Aziz, S; Meidell, R S; Eberhart, R C


    The use of intravascular stents as an adjunct for percutaneous transluminal revascularization is limited by two principal factors, acute thrombosis and neointimal proliferation, resulting in restenosis. To overcome these limitations, we have investigated the potential of microporous bioresorbable polymer stents formed from poly(L-lactic acid) (PLLA)/poly(epsilon-caprolactone) (PCL) blends to function both to provide mechanical support and as reservoirs for local delivery of therapeutic molecules and particles to the vessel wall. Tubular PLLA/PCL stents were fabricated by the flotation-precipitation method, and helical stents were produced by a casting/winding technique. Hybrid structures in which a tubular sheath is deposited on a helical skeleton were also generated. Using a two-stage solvent swelling technique, polyethylene oxide has been incorporated into these stents to improve hydrophilicity and water uptake, and to facilitate the ability of these devices to function as drug carriers. Stents modified in this manner retain axial and radial mechanical strength sufficient to stabilize the vessel wall against elastic recoil caused by vasoconstrictive and mechanical forces. Because of the potential of direct gene transfer into the vessel wall to ameliorate thrombosis and neointimal proliferation, we have investigated the capacity of these polymer stents to function in the delivery of recombinant adenovirus vectors to the vessel wall. In vitro, virus stock was observed to readily absorb into, and elute from these devices in an infectious form, with suitable kinetics. Successful gene transfer and expression has been demonstrated following implantation of polymer stents impregnated with a recombinant adenovirus carrying a nuclear-localizing betaGal reporter gene into rabbit carotid arteries. These studies suggest that surface-modified polymer stents may ultimately be useful adjunctive devices for both mechanical support and gene transfer during percutaneous

  7. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Baofa Sun


    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  8. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei


    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  9. Adenovirus-mediated p53 gene therapy in human nasopharyngeal cancer%重组人p53腺病毒基因药物对人鼻咽癌细胞的抑制实验

    敖敏; 何刚


    目的 探索p53基因在鼻咽癌基因治疗方面的可行性.方法 以人鼻咽癌CNE细胞株为实验对象,将重组人p53腺病毒药物(1010rAd/p53)转染人鼻咽癌CNE细胞,用MTT比色实验及流式细胞仪实验的方法进行体外实验,观察重组人p53腺病毒药物(rAd/p53)对人鼻咽癌CNE细胞体外生长的影响.结果 各浓度重组人p53腺病毒药物(1010rAd/p53、109rAd/p53、108rAd/p53、107rAd/p53)对人鼻咽癌CNE细胞生长有抑制.尤以1010rAd/p53明显.转染3天后,重组人p53腺病毒药物(rAd/p53)诱导人鼻咽癌CNE细胞明显凋亡.结论 重组人p53腺病毒药物(rAd/p53)对人鼻咽癌CNE细胞生长能有效抑制,为鼻咽癌的基因治疗提供了实验依据.


    敖敏; 何刚; 梁传余


    [目的]探索p53基因在喉癌基因治疗方面的可行性.[方法]以人喉癌细胞系Hep-2为实验对象,将重组人p53腺病毒药物(rAd/p53)转染Hep-2细胞,体外实验观察重组人p53腺病毒药物(rAd/p53)对Hep-2细胞生长的影响.[结果]各浓度重组人p53 腺病毒药物(rAd/p53)(1010、109、108、107)对Hep-2生长均有抑制.尤以1010明显.转染3d后,重组人p53腺病毒药物(rAd/p53)诱导Hep-2细胞明显凋亡.[结论]重组人p53腺病毒药物(rAd/p53)对Hep-2细胞生长能有效抑制,能明显诱导其凋亡,为喉癌的治疗提供了临床前依据.

  11. 腺病毒介导的AFP基因修饰树突状细胞的体外生物学特性%Biological Characteristics of Adenovirus-Mediated AFP Gene-Modified Dendritic Cells in vitro

    宋文刚; 曲迅; 陈宪锐; 李雅林; 吴聪; 秦庆亮


    目的:探讨腺病毒介导AFP基因修饰树突状细胞瘤苗体外生物学活性.方法:将携带小鼠AFP全长cDNA的重组腺病毒表达载体Ad-AFP转染BMDC,构建AFP-DC肝癌瘤苗,采用电化学发光免疫测定法确证AFP-DC转染的有效性,FACS检测表面分子和内吞功能,3H-TdR掺入法检测T细胞增殖反应的能力,51Cr释放法检测CTL活性.结果:AFP基因转染12 h后DC及其培养上清中可检到AFP的表达,表明腺病毒介导的AFP基因转染的有效性.AFP-DC与BMDC比较B7分子明显上调,MHC分子也有轻度升高,内吞功能降低(P<0.05).AFP-DC激发同基因型小鼠T细胞增殖功能均明显高于DC对照组和LacZ-DC组(P<0.05).AFP-DC体外诱导CTL对Hepa1-6肿瘤细胞的杀伤作用具有特异性.结论:肝癌相关基因AFP可作为抗肝癌基因治疗的切入点,该研究为肝癌树突状细胞体内免疫治疗提供了实验依据.

  12. Heavy chain transfer by tumor necrosis factor-stimulated gene 6 to the bikunin proteoglycan.

    Lamkin, Elliott; Cheng, Georgiana; Calabro, Anthony; Hascall, Vincent C; Joo, Eun Ji; Li, Lingyun; Linhardt, Robert J; Lauer, Mark E


    We present data that hyaluronan (HA) polysaccharides, about 14-86 monosaccharides in length, are capable of accepting only a single heavy chain (HC) from inter-α-inhibitor via transfer by tumor necrosis factor-stimulated gene 6 (TSG-6) and that this transfer is irreversible. We propose that either the sulfate groups (or the sulfation pattern) at the reducing end of the chondroitin sulfate (CS) chain of bikunin, or the core protein itself, enables the bikunin proteoglycan (PG) to accept more than a single HC and permits TSG-6 to transfer these HCs from its relatively small CS chain to HA. To test these hypotheses, we investigated HC transfer to the intact CS chain of the bikunin PG, and to the free chain of bikunin. We observed that both the free CS chain and the intact bikunin PG were only able to accept a single HC from inter-α-inhibitor via transfer by TSG-6 and that HCs could be swapped from the bikunin PG and its free CS chain to HA. Furthermore, a significant portion of the bikunin PG was unable to accept a single heavy chain. We discuss explanations for these observations, including the intracellular assembly of inter-α-inhibitor. In summary, these data demonstrate that the sulfation of the CS chain of bikunin and/or its core protein promote HC transfer by TSG-6 to its relatively short CS chain, although they are insufficient to enable the CS chain of bikunin to accept more than one HC in the absence of other cofactors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes

    Marzo F


    Full Text Available Abstract The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL and malate synthase (MS, could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 ± 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabetes.

  14. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Shih Ping Yao


    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  15. Broad-Host Range Vector-Particle: Gene Transfer Particles From Thermal Vents

    Chiura, H. X.; Nakamura, K.; Fukazawa, Y.; Nakata, D.; Tomaru, A.; Okita, N.; Hoaki, T.


    Viruses or virus-like particles (VLPs) are common in aquatic ecosystems, however, VLP-host interactions and its commitments to gene transfer in the environment is yet unclear. We have proposed that at least some of the widely distributed VLPs could be general gene transfer agents among a wide range of microbial host cells, and might function as a universal vector (1-4). To elucidate such a broad host range gene transfer mediated by "VLP", the sampling site was extended to the hyper hydrothermal vent, and boring cores. VLP (v) and cell (b) abundances per ml water samples from drilling holes of Suiyo seamount were: APSK04 (28°34.303'N, 140°38.618'E, 1385 m deep, 21°C, b = 8.26 *E^{6}, v = 6.03 x 10^{6}); APSK07 (28°34.299'N, 140°38.690'E, 1386 m deep, 250.5°C, b = 5.33 \\times 104, v = 2.52 \\times 104); a natural vent near APSK05 (28°34.322'N, 140°38.594'E, 1382 m deep, 304.7°C, b = 3.23 x 10^{4}, v = 1.85 x 10^{4}). A boring core sample was obtained from APSK06 (28°34.313'N, 140°38.617', 1386 m deep), from which a hyper thermophilic Archaean, Thermococcus kodakaraensis was successfully cultivated in sulphur supplemented medium between 70 and 90°C. VLP production was observed from T. kodakaraensis, whose VLP (v) and cell (b) abundances per ml at 480 h culture at 70°C were: b = 3.61 *E^{9}, v = 3.46 *E^{9}. Transduction experiment at multiplicity of infection of ca 0.2 using particles from APSK07 and T. kodakaraensis showed a plate efficiency on recipient Escherichia coli AB1157 by ca 72 % and ca 89 % regardless of UV treatment of the particle. Gene transfer frequency of APSK07 particle was (x 10^{-5} cfu/particle) between 2.4 and 0.92, and that of T. kodakaraensis particle was between x 10^{-4} and x 10^{-5}$ cfu/particle. These findings suggest the non-specific gene transfer by such particles may be a ubiquitous event in the natural environment. Such gene transfer particles may have mediated gene flux among phylogenetically diverse microbial

  16. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community.

    Hemme, Christopher L; Green, Stefan J; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Jordan, I King; Hazen, Terry C; Arkin, Adam P; Kostka, Joel E; Zhou, Jizhong


    Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe(2+)/Pb(2+) permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co(2+)/Zn(2+)/Cd(2+) efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. Lateral gene transfer (LGT), along with positive selection and gene duplication, are the three main

  17. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.

    Zhou, Xiaoqing; Xin, Jige; Fan, Nana; Zou, Qingjian; Huang, Jiao; Ouyang, Zhen; Zhao, Yu; Zhao, Bentian; Liu, Zhaoming; Lai, Sisi; Yi, Xiaoling; Guo, Lin; Esteban, Miguel A; Zeng, Yangzhi; Yang, Huaqiang; Lai, Liangxue


    The domestic pig has been widely used as an important large animal model. Precise and efficient genetic modification in pig provides a great promise in biomedical research. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been successfully used to produce many gene-targeted animals. However, these animals have been generated by co-injection of Cas9 mRNA and single-guide RNA (sgRNA) into one-cell stage embryos, which mostly resulted in mosaicism of the modification. One or two rounds of further breeding should be performed to obtain homozygotes with identical genotype and phenotype. To address this issue, gene-targeted somatic cells can be used as donor for somatic cell nuclear transfer (SCNT) to produce gene-targeted animals with single and identical mutations. In this study, we applied Cas9/sgRNAs to effectively direct gene editing in porcine fetal fibroblasts and then mutant cell colonies were used as donor to generate homozygous gene-targeted pigs through single round of SCNT. As a result, we successfully obtained 15 tyrosinase (TYR) biallelic mutant pigs and 20 PARK2 and PINK1 double-gene knockout (KO) pigs. They were all homozygous and no off-target mutagenesis was detected by comprehensive analysis. TYR (-/-) pigs showed typical albinism and the expression of parkin and PINK1 were depleted in PARK2 (-/-)/PINK1 (-/-) pigs. The results demonstrated that single- or double-gene targeted pigs can be effectively achieved by using the CRISPR/Cas9 system combined with SCNT without mosaic mutation and detectable off-target effects. This gene-editing system provides an efficient, rapid, and less costly manner to generate genetically modified pigs or other large animals.

  18. [Post-translational ligation and function of dual-vector transferred split CFTR gene].

    Zhu, Fu-Xiang; Liu, Ze-Long; Qu, Hui-Ge; Chi, Xiao-Yan


    The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein-mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-transfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors, encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.

  19. Globin gene transfer for treatment of the beta-thalassemias and sickle cell disease.

    Sadelain, Michel; Rivella, Stefano; Lisowski, Leszek; Samakoglu, Selda; Rivière, Isabelle


    The beta-thalassemias and sickle cell disease are severe congenital anemias that are caused by mutations that alter the production of the beta chain of hemoglobin. Allogeneic hematopoietic stem cell (HSC) transplantation is curative, but this therapeutic option is not available to the majority of patients. The transfer of a functional globin gene in autologous HCSs thus represents a highly attractive alternative treatment. This strategy, simple in principle, raises major challenges in terms of controlling the expression of the globin transgene, which ideally should be erythroid specific, differentiation-stage restricted, elevated, position independent, and sustained over time. Using lentiviral vectors, we have demonstrated that an optimised combination of proximal and distal transcriptional control elements permits lineage-specific, elevated expression of the beta-globin gene, resulting in therapeutic hemoglobin production and correction of anemia in beta-thalassemic mice. Several groups have now confirmed and extended these findings in various mouse models of severe hemoglobinopathies, thus generating enthusiasm for a genetic treatment based on globin gene transfer. Furthermore, globin vectors represent a general paradigm for the regulation of transgene function and the improvement of vector safety by restricting transgene expression to the differentiated progeny within a single lineage, thereby reducing the risk of activating oncogenes in hematopoietic progenitors. Here we review the principles underlying the genesis of regulated vectors for stem cell therapy.

  20. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Arkhipova, Oksana V; Meer, Margarita V; Mikoulinskaia, Galina V; Zakharova, Marina V; Galushko, Alexander S; Akimenko, Vasilii K; Kondrashov, Fyodor A


    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  1. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Oksana V Arkhipova

    Full Text Available The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd and tetraheme cytochrome с (Mcc in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  2. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo: Polyethylenimine

    Boussif, Otmane; Lezoualc'h, Frank; Zanta, Maria Antonietta; Djavaheri Mergny, Mojgan; Scherman, Daniel; Demeneix, Barbara; Behr, Jean-Paul


    Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se-i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its genedelivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

  3. Insulin mediated hemodynamic responses in spontaneous hypertensive rats (SHRs): effect of chromosome 4 gene transfer.

    Rao, Sumangala P; McRae, Crystal; Lapanowski, Karen; Churchill, Monique; Kurtz, Theodore W; Dunbar, Joseph C


    The spontaneous hypertensive rat (SHR) is a widely studied model of essential hypertension and has been reported to exhibit alterations in carbohydrate and lipid metabolism. Genetic linkage studies implicated that SHR carries deletion variant of Cd36 gene of chromosome 4, the gene that encodes fatty acid transporter. Thus it could be possible that primary genetic defect in SHR is compromised tissue utilization of fatty acid that would form the basis for the pathogenesis of hyperinsulinemia, insulin resistance and insulin-mediated responses. We measured both the hemodynamic and metabolic responses to insulin in SHR in comparison with the chromosome congenic spontaneous hypertensive rats (cSHRs) (rats in which piece of chromosome 4 containing wild type Cd36 was integrated into the SHR genome). A bolus infusion of insulin increased iliac conductance and decreased blood pressure in Wistar Kyoto (WKY) rats. However, in SHR insulin did not reduce blood pressure as in WKY but after about 15 min it significantly enhanced blood pressure and reduced iliac conductance. Whereas in cSHR insulin did not reduce blood pressure as in WKY rats. However, pressor responses to insulin were eliminated by chromosome 4 gene transfer. Glucose clearance was significantly slower in both SHR and cSHR. Glucose tolerance test revealed that SHR are hyperinsulinemic and insulin resistant. These findings indicate that transfer of segment of chromosome 4 from Brown Norway rats onto spontaneous hypertensive background eliminates hyperinsulinemia and pressor effects of insulin.

  4. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol.

    Horn, Peter A; Keyser, Kirsten A; Peterson, Laura J; Neff, Tobias; Thomasson, Bobbie M; Thompson, Jesse; Kiem, Hans-Peter


    The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34(+) hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)- and granulocyte-colony stimulating factor (G-CSF)-primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.

  5. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Luthey-Schulten Zaida


    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  6. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes

    Huan eQiu


    Full Text Available Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin to secondary or tertiary (eukaryote engulfs eukaryote endosymbiosis. The hypothesis of Plantae monophyly has only recently been substantiated, however the extent and role of endosymbiotic and horizontal gene transfer (EGT and HGT in algal genome evolution still remain to be fully understood. What is becoming clear from analysis of complete genome data is that algal gene complements can no longer be considered essentially eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial genes derived from EGT and a similar number derived from the mitochondrial ancestor. For example, we now know that foreign cells such as Chlamydiae and other prokaryotes have made significant contributions to plastid functions in Plantae. Perhaps more surprising is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the unicellular red alga Porphyridium purpureum that does not relate to plastid functions. These non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but also were propagated via secondary endosymbiosis to a multitude of other phytoplankton. Here we discuss the idea that Plantae (in particular red algae are one of the major players in eukaryote genome evolution by virtue of their ability to act as sinks and sources of foreign genes through HGT and endosymbiosis, respectively. This hypothesis recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty among photosynthetic eukaryotes.

  7. Horizontal Gene Transfer of the Secretome Drives the Evolution of Bacterial Cooperation and Virulence

    Nogueira, Teresa; Rankin, Daniel J.; Touchon, Marie; Taddei, François; Brown, Sam P.; Rocha, Eduardo P.C.


    Summary Background Microbes engage in a remarkable array of cooperative behaviors, secreting shared proteins that are essential for foraging, shelter, microbial warfare, and virulence. These proteins are costly, rendering populations of cooperators vulnerable to exploitation by nonproducing cheaters arising by gene loss or migration. In such conditions, how can cooperation persist? Results Our model predicts that differential gene mobility drives intragenomic variation in investment in cooperative traits. More mobile loci generate stronger among-individual genetic correlations at these loci (higher relatedness) and thereby allow the maintenance of more cooperative traits via kin selection. By analyzing 21 Escherichia genomes, we confirm that genes coding for secreted proteins—the secretome—are very frequently lost and gained and are associated with mobile elements. We show that homologs of the secretome are overrepresented among human gut metagenomics samples, consistent with increased relatedness at secretome loci across multiple species. The biosynthetic cost of secreted proteins is shown to be under intense selective pressure, even more than for highly expressed proteins, consistent with a cost of cooperation driving social dilemmas. Finally, we demonstrate that mobile elements are in conflict with their chromosomal hosts over the chimeric ensemble's social strategy, with mobile elements enforcing cooperation on their otherwise selfish hosts via the cotransfer of secretome genes with “mafia strategy” addictive systems (toxin-antitoxin and restriction-modification). Conclusion Our analysis matches the predictions of our model suggesting that horizontal transfer promotes cooperation, as transmission increases local genetic relatedness at mobile loci and enforces cooperation on the resident genes. As a consequence, horizontal transfer promoted by agents such as plasmids, phages, or integrons drives microbial cooperation. PMID:19800234

  8. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome.

    Adam Paul Roberts


    Full Text Available The oral microbiome is composed of a multitude of different species of bacteria, each capable of occupying one or more of the many different niches found within the human oral cavity. This community exhibits many types of complex interactions which enable it to colonise and rapidly respond to changes in the environment in which they live. One of these interactions is the transfer, or acquisition, of DNA within this environment, either from co-resident bacterial species or from exogenous sources. Horizontal gene transfer in the oral cavity gives some of the resident bacteria the opportunity to sample a truly enormous metagenome affording them considerable adaptive potential which may be key to survival in such a varying environment. In this review the underlying mechanisms of HGT are discussed in relation to the oral microbiome with numerous examples described where the direct acquisition of exogenous DNA has contributed to the fitness of the bacterial host within the human oral cavity.

  9. The onset of foreign gene transcription in nuclear-transferred embryos of fish


    The transcriptional onset of hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blas-tula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  10. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    孙永华; 陈尚萍; 汪亚平; 朱作言


    The transcriptional onset ot hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blastula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  11. Inhibitory effect of adenovirus-mediated short hairpin RNA targeting P85 and Akt1 on growth of human gastric adenocarcinoma cell%腺病毒介导的靶向P85和Akt1短发夹RNA对人胃腺癌细胞生长抑制作用的研究

    张靖; 付彦超; 康春生; 张庆瑜; 王涛; 张洁


    expression was identified with real-time PCR and Western blot. The proliferative activity of tumor cells was evaluated with MTr assay and flow cytometry in vitro, rAd5-HK and rAd5-P + A mediated by adenovirus were injected into the established subcutancous SGC-7901 gastric adenocarcinoma in nude mice. During the observation period of 21 days, tumor volume was measured every 3 days to further testify the anti-tumor effect of rAd5-P + A on the SGC-7901 gastric adenocarcinoma cells and cell in situ apoptosis was detected with TUNEL assay. Results The adenovirus vector rAd5-P + A was successfully constructed and it dramatically downregulated P85 and Akt1 mRNA expression in SGC-7901 gastric adenocarcinoma cells. Compared with a control group of SGC-7901 cells and cells transfected with general adenovirus rAd5-HK as control, P85 and Akt1 protein expression 48 h and 72 h after rAd5-P + A transfection was decreased by 57.5% and 63. 7%, 67. 8% and 75.6% with statistical significance(P = 0. 005, P = 0. 003). Cell proliferative activity in rAd5-P + A transfected cells was suppressed from the second day (P <0. 001) and the decreased P85 and Akt1 expression was accompanied by 5.9% -7. 1% decrease of S phase fraction and 12. 1% - 13.7% increase of G0/G1 phase. The tumor volume of rAd5-P + A treated group was smaller than that of the control and rAd.5-HK group with statistical significance (F = 9. 871, P = 0. 025) . Moreover, rAd5-P + A could induce cell in situ apoptosis. Conclusions Adenovirus-mediated targeting P85 and Akt1 shRNA can inhibit the growth of SGC-7901 human gastric adenocarcinoma cells and this may provide a new strategy of combination gene therapy in gastric adenocarcinoma.

  12. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer.

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup


    Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome).

    Tomanin, R; Friso, A; Alba, S; Piller Puicher, E; Mennuni, C; La Monica, N; Hortelano, G; Zacchello, F; Scarpa, M


    Hunter syndrome is a rare X-linked lysosomal storage disorder caused by the deficiency of the housekeeping enzyme iduronate-2-sulphatase (IDS). Deficiency of IDS causes accumulation of undegraded dermatan and heparan-sulphate in various tissues and organs. Approaches have been proposed for the symptomatic therapy of the disease, including bone marrow transplantation and, very recently, enzyme replacement. To date, gene therapy strategies have considered mainly retroviral and adenoviral transduction of the correct cDNA. In this paper, two non-viral somatic gene therapy approaches are proposed: encapsulated heterologous cells and muscle electro-gene transfer (EGT). Hunter primary fibroblasts were co-cultured with either cell clones over-expressing the lacking enzyme or with the same incorporated in alginate microcapsules. For EGT, plasmid vector was injected into mouse quadriceps muscle, which was then immediately electro-stimulated. Co-culturing Hunter primary fibroblasts with cells over-expressing IDS resulted in a three- to fourfold increase in fibroblast enzyme activity with respect to control cells. Fibroblast IDS activity was also increased after co-culture with encapsulated cells. EGT was able to transduce genes in mouse muscle, resulting in at least a tenfold increase in IDS activity 1-5 weeks after treatment. Although preliminary, results from encapsulated heterologous cell clones and muscle EGT encourage further evaluations for possible application to gene therapy for Hunter syndrome.

  14. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy

    Wörheide Gert


    Full Text Available Abstract Background The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. Results We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica, we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. Conclusions Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy.

  15. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A; Blaxter, Mark


    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.

  16. Transfer of Lysozyme Gene into indica Parents of Hybrid Rice by Backcrossing

    YI Zi-li; WANG Zi-xuan; QIN Jing-ping; JIANG Jian-xiong; TAN Yan-ning; ZHOU Qing-ming


    Alysozyme gene resistant to rice blast was transferred from the donor transgenic japonica rice Zhonghua 9 (D2-1-2) into a sterile line Pei'ai 64S(PA 64S) and restorer line 9311 of the two-line hybrid rice Liangyoupeijiu, and the restorer line Minghui 63 (MH63) of three-line hybrid rice Shanyou 63 by successive backcrossing. The PCR analysis confirmed that foreign lysozyme gene was B2F2 9311, B2F2 MH63 and B1F2 PA64S, indicating that the foreign gene was stably inherited over successive generations as a dominant single copy gene. The resistance against rice blast in backcross or selfed generations and corresponding testcross combinations were investigated in 2003 and 2004. The results showed that the resistance of the transgenic rice to blast had a greater improvement than that of the corresponding recurrent parents or the corresponding check hybrid combinations. The resistance of the advanced backcross and selfed generations to rice blast is much stronger than that of the early generations. The study confirmed thattransferring the lysozyme gene into hybrid parents by backcrossing was a simple and effective approach to develop new hybrid rice resistant to rice blast.

  17. [Differentiation of functional cells from iPS cells by efficient gene transfer].

    Kawabata, Kenji; Tashiro, Katsuhisa; Mizuguchi, Hiroyuki


    Induced pluripotent stem (iPS) cells, which are generated from somatic cells by transducing four genes, are expected to have broad application to regenerative medicine. Although establishment of an efficient gene transfer system for iPS cells is considered to be essential for differentiating them into functional cells, the detailed transduction characteristics of iPS cells have not been examined. By using an adenovirus (Ad) vector containing the cytomegalovirus enhancer/beta-actin (CA) promoters, we have developed an efficient transduction system for mouse mesenchymal stem cells and embryonic stem (ES) cells. Also, we applied our transduction system to mouse iPS cells and investigated whether efficient differentiation could be achieved by Ad vector-mediated transduction of a functional gene. As in the case of ES cells, the Ad vector could efficiently transduce transgenes into mouse iPS cells. We found that the CA promoter had potent transduction ability in iPS cells. Moreover, exogenous expression of a PPARγ gene or a Runx2 gene into mouse iPS cells by an optimized Ad vector enhanced adipocyte or osteoblast differentiation, respectively. These results suggest that Ad vector-mediated transient transduction is sufficient to promote cellular differentiation and that our transduction methods would be useful for therapeutic applications based on iPS cells.

  18. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles.

    Bowman, Katherine; Sarkar, Rita; Raut, Sanj; Leong, Kam W


    Effective oral delivery of a non-viral gene carrier would represent a novel and attractive strategy for therapeutic gene transfer. To evaluate the potential of this approach, we studied the oral gene delivery efficacy of DNA polyplexes composed of chitosan and Factor VIII DNA. Transgene DNA was detected in both local and systemic tissues following oral administration of the chitosan nanoparticles to hemophilia A mice. Functional factor VIII protein was detected in plasma by chromogenic and thrombin generation assays, reaching a peak level of 2-4% FVIII at day 22 after delivery. In addition, a bleeding challenge one month after DNA administration resulted in phenotypic correction in 13/20 mice given 250-600 microg of FVIII DNA in chitosan nanoparticles, compared to 1/13 mice given naked FVIII DNA and 0/6 untreated mice. While further optimization would be required to render this type of delivery system practical for hemophilia A gene therapy, the findings suggest the feasibility of oral, non-viral delivery for gene medicine applications.

  19. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Syahril Abdullah


    Full Text Available A novel cationic polymer, dextran-spermine (D-SPM, has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.

  20. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria.

    Jung, C M; Crocker, F H; Eberly, J O; Indest, K J


    Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a cyclic nitramine explosive that is a major component in many high-explosive formulations and has been found as a contaminant of soil and groundwater. The RDX-degrading gene locus xplAB, located on pGKT2 in Gordonia sp. KTR9, is highly conserved among isolates from disparate geographical locations suggesting a horizontal gene transfer (HGT) event. It was our goal to determine whether Gordonia sp. KTR9 is capable of transferring pGKT2 and the associated RDX degradation ability to other bacteria. We demonstrate the successful conjugal transfer of pGKT2 from Gordonia sp. KTR9 to Gordonia polyisoprenivorans, Rhodococcus jostii RHA1 and Nocardia sp. TW2. Through growth and RDX degradation studies, it was demonstrated that pGKT2 conferred to transconjugants the ability to degrade and utilize RDX as a nitrogen source. The inhibitory effect of exogenous inorganic nitrogen sources on RDX degradation in transconjugant strains was found to be strain specific. Plasmid pGKT2 can be transferred by conjugation, along with the ability to degrade RDX, to related bacteria, providing evidence of at least one mechanism for the dissemination and persistence of xplAB in the environment. These results provide evidence of one mechanism for the environmental dissemination of xplAB and provide a framework for future field relevant bioremediation practices. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  1. Ultrasound-mediated gene transfer (sonoporation) in fibrin-based matrices: potential for use in tissue regeneration.

    Nomikou, Nikolitsa; Feichtinger, Georg A; Redl, Heinz; McHale, Anthony P


    It has been suggested that gene transfer into donor cells is an efficient and practical means of locally supplying requisite growth factors for applications in tissue regeneration. Here we describe, for the first time, an ultrasound-mediated system that can non-invasively facilitate gene transfer into cells entrapped within fibrin-based matrices. Since ultrasound-mediated gene transfer is enhanced using microbubbles, we compared the efficacy of neutral and cationic forms of these reagents on the ultrasound-stimulated gene transfer process in gel matrices. In doing so we demonstrated the beneficial effects associated with the use of cationic microbubble preparations that interact directly with cells and nucleic acid within matrices. In some cases, gene expression was increased two-fold in gel matrices when cationic microbubbles were compared with neutral microbubbles. In addition, incorporating collagen into fibrin gels yielded a 25-fold increase in gene expression after application of ultrasound to microbubble-containing matrices. We suggest that this novel system may facilitate non-invasive temporal and spatial control of gene transfer in gel-based matrices for the purposes of tissue regeneration.

  2. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer.

    Philippe Remigi


    Full Text Available Horizontal gene transfer (HGT is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.

  3. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan


    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Pcatalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  4. Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii.

    Eva C Berglund


    Full Text Available The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella.

  5. Direct gene transfer in the Gottingen minipig CNS using stereotaxic lentiviral microinjections

    GLUD, AN; Hedegaard, Claus; nielsen, MS;


    We aim to induce direct viral mediated gene transfer in the substantia nigra (SN) of the Gottingen minipig using MRI guided stereotaxic injections of lentiviral vectors encoding enhanced green fluorescent protein (EGFP). Nine female Gottingen minipigs were injected unilaterally into the SN with 6...... per 2.5 microliters lentivirus capable of transducing cells and mediating expression of recombinant EGFP. The animals were euthanized after four (n=3) or twenty weeks (n=6). Fresh brain tissue from three animals was used for PCR. The remaining six brains were cryo- or paraffin...

  6. Resolution and reconciliation of non-binary gene trees with transfers, duplications and losses.

    Jacox, Edwin; Weller, Mathias; Tannier, Eric; Scornavacca, Celine


    Gene trees reconstructed from sequence alignments contain poorly supported branches when the phylogenetic signal in the sequences is insufficient to determine them all. When a species tree is available, the signal of gains and losses of genes can be used to correctly resolve the unsupported parts of the gene history. However finding a most parsimonious binary resolution of a non-bi