WorldWideScience

Sample records for adenovirus-mediated gene therapy

  1. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    2016-04-12

    34--- I lr_ Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Recent Development in Gene Therapy , 2007: 77-94...ISBN: 81-7895-262-9 Editor: Jim Xiang Adenovirus-mediated gene therapy against viral biothreat agents Josh Q.H. Wu Chemical Biological Defence... therapy , which introduces therapeutic genes into mammalian cells to achieve therapeutic effective, hds a great potential for use as a defensive

  2. Adenovirus-mediated interteukin-13 gene therapy attenuates acute kidney allograft injury

    Sandovici, Maria; Deelmani, Leo E.; van Goor, Harry; Helfrich, Wijnand; de Zeeuw, Dick; Henning, Robert H.

    2007-01-01

    Background Kidney transplantation is possible by virtue of systemic immunosuppression, which is in turn accompanied by serious side effects. The search for novel therapeutic agents and strategies is ongoing. Here we investigate the effects of adenovirus-mediated gene therapy with interleukin (IL)-13

  3. Combination Adenovirus-Mediated HSV-tk/GCV and Antisense IGF-1 Gene Therapy for Rat Glioma

    2000-01-01

    Objective To investigate the effects of combination adenovirus-mediated HSV-tk/GCV system and antisense IGF-1 gene therapy for rat glioma and analyze the mechanism.Methods Using the recombinant adenovirus vector,GCV killing effeciency after combined gene transfer of HSV-tk and antisense IGF-1 was observed in vitro.Rat glioma was treated with HSV-tk/GCV and antisense IGF-1 and the survival rate of rats was observed.Results C6 cells transfected with tk and antisense IGF-1 gene were more sensitive to GCV than that transfected with tk gene alone.The survival of the combination gene therapy group was prolonged significantly and large amounts of CD+4,CD+8 lymphocytes were detected in the tumor tissues.Conclusion Antisense IGF-1 gene may enhance the tumor-killing effects of HSV-tk/GCV.

  4. Potential of mesenchymal stem cells by adenovirus-mediated erythropoietin gene therapy approaches for bone defect.

    Li, Chen; Ding, Jian; Jiang, Liming; Shi, Ce; Ni, Shilei; Jin, Han; Li, Daowei; Sun, Hongchen

    2014-11-01

    Regeneration of large bone defects is a common clinical problem. Recent studies have shown that mesenchymal stem cells (MSCs) have emerged as a promising alternative to traditional surgical techniques. However, it is still a key question how to enhance the osteogenic potential of MSCs for possible clinical trials. The aim of the present study was to investigate the effect of adenovirus-mediated erythropoietin (Ad-EPO) transfer on BMSCs, we performed extensive in vitro/in vivo assays in this study. Flow cytometry analysis and the result of MTT showed that EPO could promote BMSCs proliferation. QPCR data demonstrated that EPO increased expressions of Runx2, Sp7, and Col1 in osteoblast at various time points and also increased alkaline phosphatase activity and the calcium deposition. These results indicate that EPO can increase the differentiation of osteoblast. Importantly, in vivo assays clearly demonstrate that EPO can efficiently induce new bone formation in the bone defect model. Our results strongly suggest that EPO can affect osteoblast differentiation and play important roles in bone regeneration leading to an increase in bone formation.

  5. Promoting lumbar spinal fusion by adenovirus-mediated bone morphogenetic protein-4 gene therapy

    ZHAO Jian; ZHAO Dun-yan; SHEN Ai-guo; LIU Fan; ZHANG Feng; SUN Yu; WU Hong-fu; LU Chun-feng; SHI Hong-guang

    2007-01-01

    Objective: To determine whether an adenoviral construct containing bone morphogenetic protein-4 (BMP-4) gene can be used for lumbar spinal fusion. Methods: Twelve New Zealand white rabbits were randomly divided into two groups, 8 in the experimental group and 4 in the control group. Recombinant, replication-defective type 5 adenovirus with the cytomegalovirus (CMV) promoter and BMP-4 gene (Ad-BMP-4) was used. Another adenovirus constructed with the CMV promoter and β-galactosidase gene (Ad-β-gal) was used as control. Using collagen sponge as a carrier, Ad-BMP-4 (2.9×108 pfu/ml ) was directly implanted on the surface of L5-L6 lamina in the experimental group, while Ad-β-gal was implanted simultaneously in the control group. X-ray was obtained at 3, 6, and 12 weeks postoperatively to observe new bone formation. When new bone formation was identified, CT scans and three-dimensional reconstruction were obtained. After that, the animals were killed and underwent histological inspection.Results: In 12 weeks after operation, new bone formation and fusion were observed on CT scans in the experimental group, without the evidence of ectopic calcification in the canal. Negative results were found in the control group. Histological analysis demonstrated endochondral bone formation at the operative site and fusion at early stage was testified.Conclusions: In vivo gene therapy using Ad-BMP-4 for lumbar posterolateral spinal fusion is practicable and effective.

  6. Isolated limb perfusion for local gene delivery: efficient and targeted adenovirus-mediated gene transfer into soft tissue sarcomas

    W.K. de Roos; J.H.W. de Wilt (Johannes); M.E. van der Kaaden; E.R. Manusama (Eric); M.W. de Vries; A. Bout; T.L.M. ten Hagen (Timo); D. Valerio (Dinko); A.M.M. Eggermont (Alexander)

    2000-01-01

    textabstractOBJECTIVE: To evaluate the potential of isolated limb perfusion (ILP) for efficient and tumor-specific adenovirus-mediated gene transfer in sarcoma-bearing rats. SUMMARY BACKGROUND DATA: A major concern in adenovirus-mediated gene therapy in cancer is the transfer of ge

  7. Gene therapy for colorectal cancer by adenovirus-mediated siRNA targeting CD147 based on loss of the IGF2 imprinting system.

    Pan, Yuqin; He, Bangshun; Chen, Jie; Sun, Huiling; Deng, Qiwen; Wang, Feng; Ying, Houqun; Liu, Xian; Lin, Kang; Peng, Hongxin; Xie, Hongguang; Wang, Shukui

    2015-11-01

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) gene is an epigenetic abnormality phenomenon in CRC. Recently observed association of CRC with cluster of differentiation 147 (CD147) could provide a novel approach for gene therapy. In the present study, we investigated the feasibility of using adenovirus‑mediated siRNA targeting CD147 based on the IGF2 LOI system for targeted gene therapy of CRC. A novel adenovirus-mediated siRNA targeting CD147, rAd-H19-CD147mirsh, which was driven by the IGF2 imprinting system, was constructed. The results showed that the EGFP expression was detected only in the IGF2 LOI cell lines (HT-29 and HCT-8), but that no EGFP was produced in cell lines with maintenance of imprinting (MOI) (HCT116). Moreover, rAd-H19-CD147mirsh significantly inhibited the expression of CD147, decreased cell viability and invasive ability, and increased sensitivity to chemotherapeutic drugs only in the LOI cell lines in vitro. Furthermore, mice bearing HT-29 xenografted tumors, which received intratumoral administration of the rAd-H19-CD147mirsh, showed significantly reduced tumor growth and enhanced survival. We conclude that recombinant adenovirus-mediated siRNA targeting CD147 based on the IGF2 LOI system inhibited the growth of the LOI cells in vitro and in vivo, which would provide a novel approach for targeted CRC gene therapy.

  8. Adenovirus-mediated gene transfer to tumor cells.

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting.

  9. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    Freytag, Svend O., E-mail: sfreyta1@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Stricker, Hans [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Lu, Mei [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Peabody, James [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Oja-Tebbe, Nancy; Bourgeois, Renee [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Gupta, Nilesh; Lane, Zhaoli [Pathology, Henry Ford Health System, Detroit, Michigan (United States); Rodriguez, Ron [Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); DeWeese, Theodore [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2014-06-01

    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.

  10. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    Mu, Haixi [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Ren, Guosheng [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Xu, Yongzhu [Chongqing Health Service Center, Chongqing 400020 (China); Zhou, Xiangyang [The Wistar Institute, Philadelphia, PA (United States); Xiang, Tingxiu, E-mail: xiangtx1@gmail.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2015-03-15

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  11. Adenovirus-mediated HSV-TK Gene Therapy Using hTERT Promoter in CNE Cells in vitro

    ZHANG Yu; YU Xiang-hui; ZHA Xiao; KONG Wei

    2009-01-01

    Human telomerase reverse transcriptase(hTERT) activity was detected in human nasopharyngeal carci-noma ceII(CNE) but not in human normal lung fibroblas t(CCD-11Lu). Recombinant adenoviruses Ad-CMV-TK-enh and Ad-hTERT-TK-enh were constructed and infected into normal fibroblasts and nasopharyngeal carcinoma cells. Ad-CMV-TK-enh with 100 μmol/L of ganciclovir(GCV) caused 87% of CCD-11 Lu cells death and 91% of CNE cells death, Ad-hTERT-TK-enh with 100 μmol/L of GCV caused 24% of CCD-11Lu cells death and 79% of CNE cells death. These results indicate that the Ad-hTERT-TK-enh with GCV may be a useful method in suppressing tumor growth in targeted nasopharyngeal carcinoma gene therapy.

  12. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  13. SYNERGISTIC EFFICACY OF ADENOVIRUS-MEDIATED BCL-XS GENE TRANSFER AND TOPOTECAN IN OVARIAN CANCER CELL

    2001-01-01

    To observe the synergistic efficacy between Adenovirus-mediated bcl-Xs(Adv-bcl-Xs) gene transfer and chemotherapy on ovarian cancer cell growth. Methods: NuTu-19 cells were infected by different titers of Adv-bcl-Xs and treated with topotecan in the meantime. Cell proliferation was measured 3 days later by MTT. Graphical representations and statistical analyses for their interaction in tumor cells were done. Results: The statistical result and Graphical representations of the statistical modeling showed synergy effect on cell growth inhibition (P<0.01). Conclusion: There were synergistic efficacies between Adv-bcl-Xs gene therapy and Topotecan in ovarian cancer cell growth.

  14. Adenovirus-mediated nitric oxide synthase gene transfer.

    Raman, Kathleen G; Shapiro, Richard A; Tzeng, Edith; Kibbe, Melina R

    2004-01-01

    The varied biological effects of nitric oxide (NO) have led to intense research into its diverse physiologic and pathophysiologic roles in multiple disease processes. It has been implicated in the development of altered vasomotor tone, intimal hyperplasia, atherosclerosis, impotence, host defense, and wound healing. Using the modern technologies of recombinant DNA and gene transfer using adenoviral vectors, the effects of NO derived from various NO synthase (NOS) enzymes can be studied in a variety of tissues and the therapeutic applications of NOS is possible. Such uses of NOS gene transfer have been investigated extensively in the vasculature where NO is critical to regulating vascular homeostasis. NOS gene therapy has the theoretical advantage of allowing NO delivery to be localized, thereby limiting potential adverse effects of NO. The benefits of adenoviral vectors in gene transfer include relatively high transduction efficiencies, both replicating and nonreplicating cells may be infected, and the high titers of adenovirus that can be produced. The methods described in this chapter include the cloning of the iNOS cDNA into a recombinant adenoviral vector, large-scale production of that vector AdiNOS preparation, and the use of the vector to transduce tissue in vitro and in vivo.

  15. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  16. Angiogenesis effects of adenovirus-mediated gene transfer of VEGF-B on chronic ischemic myocardium

    DONG Shu-qiang; ZHANG Bao-ren; MEI Ju; XU Zhi-yun; ZOU Liang-jian; HUANG Sheng-dong

    2002-01-01

    Objective: To study the angiogenesis effects of adenovirus-mediated gene transfer of VEGF-B on chronic ischemic myocardium. Methods: Domestic pigs underwent thoracotomy and placement of an ameroid constrictor on the circumflex coronary artery. Four weeks later, Ad. VEGF-B, Ad. LacZ or PBS were administrated directly into the myocardium at 10 sites in the circumflex distribution (109 PFU or 100 μl) according to groups. Echocardiography and ex vivo coronary angiography were performed. The injection sites around myocardium were harvested and subjected to histological analysis and immunochemical staining. Results: Echocardiography assessment 4 weeks after vector administration demonstrated significant improvement of regional wall systolic function. Collateral vesseldevelopment assessed by angiography was also significantly greater in Ad. VEGF-B animals than that in control animals. Vascular density analysis revealed a mean of 43±5 neovessels per high-power field in Ad.VEGF-B group versus 19±4 and 17±6 in Ad.LacZ and PBS group. Conclusion:Direct intramyocardial administration of Ad.VEGF-B can induce focal angiogenesis and result in improvement in regional myocardial function, which may be useful in patients with ischemic heart disease who are not eligible for conventional therapies.

  17. Oncolytic adenovirus-mediated therapy for prostate cancer

    Sweeney, Katrina; Halldén, Gunnel

    2016-01-01

    Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses. PMID:27579296

  18. Down-regulation of collagen synthesis and matrix metalloproteinase expression in myofibroblasts from Dupuytren nodule using adenovirus-mediated relaxin gene therapy.

    Kang, Young-Mi; Choi, Yun-Rak; Yun, Chae-Ok; Park, Jin-Oh; Suk, Kyung-Soo; Kim, Hak-Sun; Park, Moon-Soo; Lee, Byung-Ho; Lee, Hwan-Mo; Moon, Seong-Hwan

    2014-04-01

    Dupuytren's disease is a fibroproliferative connective tissue disorder characterized by contracture of the palmer fascia of the hand. Relaxin (RLN) is a multifunctional factor which contributes to the remodeling of the pelvic ligament by inhibiting fibrosis and inflammatory activities. The aim of this study was to investigate the effect of the RLN gene on the inhibition of fibrosis in myofibroblastic cells. Myofibroblast cells with adenovirus LacZ (Ad-LacZ) as a marker gene or adenovirus relaxin (Ad-RLN) as therapeutic gene showed transgene expressions in beta-galactosidase assay and Western blot analysis. Myofibroblastic cells with Ad-RLN demonstrated a 22% and 48% reduction in collagen I and III mRNA expressions respectively, a 50% decrease in MMP-1, 70% decrease in MMP-2, 80% decrease in MMP-9, and a 15% reduction in MMP-13 protein expression compared with cultures with viral control and saline control. In addition, myofibroblastic cells with Ad-RLN showed a 40% decrease in TIMP 1 and a 15% increase in TIMP 3 protein expression at 48 h compared to cultures with viral control and saline control. Also, myofibroblastic cell with Ad-RLN demonstrated a 74% inhibition of fibronectin and a 52% decrease in total collagen synthesis at 48 h compared with cultures with viral control and saline control. In conclusion, the RLN gene render antifibrogenic effect on myofibroblastic cells from Dupuytren's nodule via direct inhibition of collagen synthesis not through collagenolytic pathway such as MMP-1, -13, TIMP 1, and 3. Therefore relaxin can be an alternative therapeutic strategy in initial stage of Dupuytren's disease by its antifibrogenic effect.

  19. Adenovirus-mediated Gene Transfer of MMP-2 into Cultured Porcine Trabecular Meshwork Cells

    2012-01-01

    This study aimed to use adenoviral gene transfer to express matrix metalloproteinase (MMP)-2 in cultured porcine trabecular meshwork cells and to evaluate the duration of adenovirus-mediated MMP-2 expression and its enzymatic activity. MMP-2 cDNA was synthesized by ligating three segments of MMP-2 cDNA obtained by reverse transcription-polymerase chain reaction (RT-PCR) with mRNA extracted from mouse lungs. MMP-2 cDNA was inserted into replication-deficient adenoviral vectors. Western blottin...

  20. Gene therapy for human nasopharyngeal carcinoma by adenovirus-mediated transfer of human p53, GM-CSF, and B7-1 genes in a mouse xenograft tumor model.

    Ren, Su-Ping; Wang, Lan; Wang, Hua; Wu, Bin; Han, Ying; Wang, Li-Sheng; Wu, Chu-Tse

    2008-10-01

    Incidence of nasopharyngeal carcinoma (NPC) remains high in endemic regions. Prevention of tumor recurrences and metastases is a crucial approach to improve therapeutic outcome in NPC patients. In this study, we investigated the effects of the cotransfer of the tumor suppressor gene, p53, in combination with the immunostimulatory genes, GM-CSF and B7-1, on tumor regression and subsequent tumor recurrence. We constructed a recombinant adenovirus carrying human wild-type p53, granulocyte-macrophage colony-stimulating factor (GM-CSF), and B7-1 genes (Ad-p53/GM-CSF/B7-1), which mediated high-level expression of these three genes in NPC CNE-1 cells. Ad-p53/GM-CSF/B7-1 infection inhibited the growth of CNE-1 cells and induced tumor-specific cytotoxic T-lymphocytes (CTLs) in vitro. In CNE-1 xenograft tumor models in huPBL-nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, an intratumoral injection of Ad-p53/GM-CSF/B7-1 resulted in a reduced tumor burden, compared to normal saline (NS) and Ad-p53 controls. Tumors in the Ad-p53/GM-CSF/B7-1 group displayed diffuse necrosis and infiltration of human T-cells. Further, the tumor occurrence of CNE-1 cell rechallenge largely decreased after the primary tumor was intratumorally injected with Ad-p53/GM-CSF/B7-1 in the HuPBL-NOD/SCID mice model. Only 2 of 8 (25%) animals in the Ad-p53/GM-CSF/B7-1 group had developed measurable tumors, which demonstrated extensive necrosis and much more human T-cell infiltration, compared to 5 of 7 (71%) in the NS and Ad-p53 groups. Therefore, the adenovirus-mediated introduction of p53, GM-CSF, and B7-1 genes could improve local control and prevent the recurrence or metastases of NPC tumors, which suggests a potential therapeutic value in NPC treatment.

  1. Adenovirus-mediated heme oxygenase -1 gene therapy ameliorates transplant arteriosclerosis and the underlying mechanisms%血红素氧合酶-1基因治疗减缓移植物血管病及机制

    赵波; 宫念樵

    2012-01-01

    目的 观察血红素氧合酶-1(HO-1)基因治疗减缓同种移植物血管病的效果,探讨其机制.方法 以BN-Lewis大鼠血管移植为对象,依据基因治疗方案分为4组:同系对照组、空白对照组、载体对照组、腺病毒介导的HO-1( AdHO-1)组.移植后2个月,观察各组移植物纤维化和内膜增生,检测T细胞(CD3+)、B细胞(CD45RA)和巨噬细胞(CD68+)浸润数量,逆转录-聚合酶链反应(RT-PCR)和Western blot检测移植物HO-1基因和蛋白的表达,酶联免疫吸附试验(ELISA)法检测受体血清白细胞介素(IL)-10的浓度.结果 同系对照组无移植物血管病表现,空白对照组和载体对照组大量纤维沉积,AdHO-1组纤维沉积轻微.血管内膜/(内膜+中膜)百分比4组分别为7.6%、81.4%、85.9%、15.9%.每400倍视野浸润细胞数4组分别为T细胞(9.2±1.6、92.3±11.6、89.6±17.8、39.3±10.1)、B细胞(3.6±1.1、72.6±11.8、66.6±10.9、30.6±9.9)、巨噬细胞(7.5±1.2、78.5 ±21.7、72.5 ±19.8、34.5±18.7).血清IL-10浓度4组分别为(50.2±20.1)、(40.2±11.1)、(38.6±19.3)、(481.2 ±69.1)ng/L.AdHO-1组与空白对照组和载体对照组间差异有统计学意义(P<0.05).AdHO-1基因治疗增高了移植血管HO-1基因和蛋白的表达.结论 AdHO-1基因治疗减缓同种移植物血管病,移植物纤维化和内膜增生明显减轻.AdHO-1基因治疗下调了T细胞、B细胞和巨噬细胞在移植物中的浸润,增加了HO-1和IL-10的表达,IL-10-HO-1通路的活化可能是移植血管得到保护的重要原因.%Objective To observe the effect of adenovirus-mediated heme oxygenase-1 (AdHO-1) gene therapy on allograft transplant arteriosclerosis and to elucidate the underlying mechanisms.Methods Aorta transplants in BN-Lewis rats were used and divided into four groups:isograft group,control group,vector control group,and AdHO-1 group.The allograft fibrosis and neointimal proliferation were observed two months post transplant

  2. IMPROVEMENT OF HUMAN ISLET FUNCTION BY ADENOVIRUS MEDIATED HO-1 GENE TRANSFER

    2007-01-01

    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  3. EFFECT OF ADENOVIRUS-MEDIATED p53 GENE TRANSFER ON APOPTOSIS AND RADIOSENSITIVITY OF HUMAN GASTRIC CARCINOMA CELL LINES

    张珊文; 肖绍文; 吕有勇

    2003-01-01

    Objective: To evaluate the effect of adenovirus- mediated p53 gene (Adp53) on apoptosis and radiosensitivity of human gastric carcinoma cell lines. Methods: Recombinant adenovirus expressing wild-type p53 gene was transferred into four human gastric carcinoma cell lines with different p53 genetic status. p53 protein expression was detected by immunohistochemistry assay and western blot assay. Cell survival was assessed using a clonogenic assay. TUNEL assay was used in determination of apoptosis. Four human gastric carcinoma cells infected with Adp53 were irradiated with 4Gy and cell cycle distribution and Sub-G1 peak were assayed by flow cytometry. Results: G2/M arrest, apoptosis and inhibition of tumor cell proliferation were induced by infection at Adp53 at 100 MOI which caused high transfer rate of wild-type p53 and strong expression of p53 protein in four human gastric carcinoma cells. The radio-enhancement ratio of Adp53 at 4Gy were 3.0 for W cell, 3.6 for M cell, 2.2 for neo cell and 2.5 for 823 cell in vitro. Conclusion: This study demonstrated that Adp53 transfer increased cellular apoptosis and radiosensitivity of human gastric carcinoma cell lines in vitro independently on cellular intrinsic p53 status thus supporting the combination of p53 gene therapy with radiotherapy in clinical trials.

  4. Suppression of gastric cancer growth by adenovirus-mediated transfer of the PTEN gene

    Ying Hang; Yong-Chen Zheng; Yan Cao; Qing-Shan Li; Yu-Jie Sui

    2005-01-01

    AIM: To investigate the tumor-suppressive effect of the phosphatase and tensin homologue deleted from chromosome (PTEN) in human gastric cancer cells th atwere wild type for PTEN.METHODS: Adenoviruses expressing PTEN or luciferase as a control were introduced into gastric cancer cells.The effect of exogenous PTEN gene on the growth and apoptosis of gastric cancer cells that are wtPTEN were examined in vitro and in vivo.RESULTS: Adenovirus-mediated transfer of PTEN (AdPTEN) suppressed cell growth and induced apoptosis significantly in gastric cancer cells (MGC-803, SGC-7901)carrying wtPTEN in comparison with that in normal gastric epithelial cells (GES-1) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase and mitogen-activated protein kinase and cell-cycle arrest at the G2/M phase but not at the G1 phase. Furthermore,treatment of human gastric tumor xenografts (MGC-803,SGC-7901) with Ad-PTEN resulted in a significant (P<0.01)suppression of tumor growth.CONCLUSION: These results indicate a significant tumorsuppressive effect of Ad-PTEN against human gastric cancer cells. Thus, Ad-PTEN may be used as a potential therapeutic strategy for treatment of gastric cancers.

  5. Effect of adenovirus-mediated gene transfection of vascular endothelial growth factor on survival of random flaps in rats

    崔磊; 李发成; 张群; 钱云良; 关文祥

    2003-01-01

    Objective: To evaluate the effect of local application of vascular endothelial growth factor (VEGF) via adenovirus-mediated gene transfer on survival of full thickness flaps selected randomly in rats.Methods: Thirty Sprague-Dawley rats weighing 480-520 g were used in this study. A dorsal flap (8 cm×2 cm) in full thickness with the pedicle located at the level of the iliac crest was designed. Then the rats received 1 012 pfu replication-deficient recombinant adenovirus carrying VEGF (AdCMV-VEGF group, n=10), 1 012 pfu recombinant β-galactosidase adenovirus (AdCMV-Gal group, n=10) and 1 ml saline (saline group, n=10), respectively, in the distal two thirds of the proposed flap by means of subdermal injection at 8 different locations. Three days after treatment, the flaps were elevated as originally designed and sutured back in situ. The survival rate of the flaps was evaluated on day 7 after operation. Results: The survival rate of the flaps in the AdCMV-VEGF group increased significantly as compared with those of the AdCMV-Gal group (P<0.01) and the saline group (P<0.01). Immunohistochemical staining showed that VEGF was expressed in the survival flaps injected with AdCMV-VEGF. Histological analysis showed that more granulation tissues and angiogenesis were observed in the AdCMV-VEGF group than those in the AdCMV-Gal and the saline groups.Conclusions: Local application of adenovirus-mediated VEGF165 cDNA 05- efficiently improve the survival of ischemic skin flaps.

  6. SYNERGISTIC EFFICACY OF ADENOVIRUS-MEDIATED bcl-Xs GENE THERAPY AND TOPOTECAN IN OVARIAN CANCER CELL%bcl-Xs基因转移与羟基喜树碱对卵巢癌细胞 生长抑制的协同效应

    2001-01-01

    Objective To observe the presence of synergistic efficacy between adenovirus mediated bcl-Xs (Adv-bcl-Xs) gene therapy and chemotherapy on ovarian cancer cell. Methods NuTu-19 cells were infected by different titers of Adv-bcl-Xs and were treated with topotecan at the same time. Cell proliferation was measured 3 days later by MTT. Graphical representations of the statistical analyses recorded their interaction in tumor cells. Results The statistical results and graphical representations of the statistical modeling showed that the synergistic antiproliferative activity was present (P<0.01). Conclusion There were synergistic efficacies between Adv-bcl-Xs gene therapy and Topotecan on ovarian cancer cell.%目的 用复制缺陷型腺病毒介导bcl-Xs(Adv-bcl-Xs)对卵巢癌细胞作基因转移,联合使用羟基喜树碱,观察它们对卵巢癌细胞产生的生长抑制协同效应。方法 用不同浓度的Adv-bcl-Xs感染卵巢癌细胞株NuTu-19,同时联合使用不同浓度的羟基喜树碱。3天后,用噻唑蓝法检测各实验组之存活细胞。统计学软件分析结果并作图。结果 Adv-bcl-Xs与羟基喜树碱联合使用同它们单独作用相加效应比较,对卵巢癌细胞生长抑制效果明显增强(P<0.01)。结论 Adv-bcl-Xs与羟基喜树碱联合使用,对卵巢癌细胞生长抑制存在协同效应。

  7. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  8. Adenovirus-mediated CTLA4-FasL gene transfer prevents autoimmune diabetes in mice induced by multiple low doses of streptozotocin

    JIN Yongzhu; WANG Guangming; LI Ailing; HAO Jie; GAO Xiang; XIE Shusheng

    2004-01-01

    Type 1 diabetes is the result of a selective destruction of insulin-producing β cells in pancreatic islets by autoreactive T cells. Depletion of autoreactive T cell through apoptosis may be a potential strategy for the prevention of autoimmune diabetes. Simultaneous stimulation of Fas-mediated pathway and blockade of costimulation by a CTLA4-FasL fusion protein has been reported to lead to substantial inhibition of mixed lymphocyte reaction and enhanced in vitro apoptosis of peripheral lymphocytes. To test the feasibility of CTLA4-FasL-based gene therapy to prevent autoimmune diabetes, we developed recombinant adenovirus containing human CTLA4-FasL gene (AdCTLA4-FasL). A single injection of 2 × 108 plaque forming units (PFU) of AdCTLA4-FasL via tail vein dramatically reduced the incidence of autoimmune diabetes in mice induced by multiple low doses of streptozotocin. AdCTLA4-FasL administration maintained islet insulin content, significantly increased apoptosis of pancreatic lymphocytes, quantitatively reduced IFN-γand Vβ8.2 TCR chain mRNA expression in pancreatic iymphocytes. These results indicate the therapeutic potential of simultaneous stimulation of Fas-mediated pathway and blockade of costimulation by adenovirus-mediated CTLA4-FasL gene transfer in the prevention of autoimmune diabetes.

  9. Inhibitory Effect of Pulmonary Carcinoma by Adenovirus-Mediated CD/UPRT Gene

    HUANG Qi; CHEN Dayu; FU Xiangning; ZU Yukun

    2006-01-01

    The cell killing effects and bystander effects of double suicide gene on pulmonary carcinoma cells were explored. Lung adenocarcinoma cells (A549) were transfected with different titers of adenovirus vector and followed with different concentrations of 5-FC after a recombinant adenovirus vector carrying CD/UPRT gene (Ad-CD/UPRT) was constructed. The cell viability was measured by MTT assay 4 days later. The cell viability was dropped to 30.57 %-8.62 % after 10 MOI of Ad-CD/UPRT transfected and 5-FC (10-1000 μg/mL) administration. Furthermore, Ad-CD/UPRT-infected A549 cells showed a profound neighbor cell killing effect in the same methods. These results suggested that Ad-CD/UPRT/5-FC system can effectively suppress growth of lung adenocarcinoma cells, which may provide a novel and powerful candidate for lung cancer gene therapy strategies.

  10. Adenovirus-mediated transfer of RA538 gene and its antitumor effect

    程金科; 林晨; 隗玥; 张雪艳; 邢嵘; 牟巨伟; 王秀琴; 吴旻

    1999-01-01

    The RA538 cDNA was transferred into human ovarian cancer cell line SK-OV-3 and human melanoma cell line WM-983A by its recombinant adenoviral vector constructed through homologous recombination. It was demonstrated that the recombinant adenovirus could transfer RA538 gene with high efficiency, and could obviously inhibit tumor growth, with the inhibiting rates of 85% and 73% respectively, at the same time greatly repress the colony forming ability of the cells. The therapeutic experiments on transplanted subcutaneous tumor model in nude mice demonstrated that RA538 could significantly inhibit tumor growth. Flow cytometry and DNA fragmentation analysis indicated that RA538 could induce the cell cycle G1 arrest/apoptosis of the tumor cells. The expression of cmyc gene was found pronouncedly reduced by Western blot analysis. These results suggest that the RA538 recombinant adenovirus could be a promising drug in cancer gene therapy.

  11. Treatment of chronical myocardial ischemia by adenovirus-mediated hypatocyte growth factor gene transfer in minipigs

    YUAN Biao; ZHANG YouRong; ZHAO Zhong; WU DanLi; YUAN LiZhen; WU Bin; WANG LiSheng; HUANG Jun

    2008-01-01

    Growth factor gene transfer-induced therapeutic angiogenesis has become a novel approach for the treatment of myocardial ischemia. In order to provide a basis for the clinical application of an adeno-virus with hepatocyte growth factor gene (Ad-HGF) in the treatment of myocardial ischemia, we estab-lished a minipig model of chronically ischemic myocardium in which an Ameroid constrictor was placed around the left circumflex branch of the coronary artery (LCX). A total of 18 minipigs were ran-domly divided into 3 groups: a surgery control group, a model group and an Ad-HGF treatment group implanted with Ameroid constrictor. Ad-HGF or the control agent was injected directly into the ischemic myocardium, and an improvement in heart function and blood supply were evaluated. The results showed that myocardial perfusion remarkably improved in the Ad-HGF group compared with that in both the control and model groups. Four weeks after the treatment, the density of newly formed blood vessels was higher and the number of collateral blood vessels was greater in the Ad-HGF group than in the model group. The area of myocardial ischemia reduced evidently and the left ventricular ejection fraction improved significantly in the Ad-HGF group. These results suggest that HGF gene therapy may become a novel approach in the treatment of chronically ischemic myocardium.

  12. Treatment of chronical myocardial ischemia by adenovirus-mediated hepatocyte growth factor gene transfer in minipigs

    2008-01-01

    Growth factor gene transfer-induced therapeutic angiogenesis has become a novel approach for the treatment of myocardial ischemia. In order to provide a basis for the clinical application of an adeno- virus with hepatocyte growth factor gene (Ad-HGF) in the treatment of myocardial ischemia, we estab- lished a minipig model of chronically ischemic myocardium in which an Ameroid constrictor was placed around the left circumflex branch of the coronary artery (LCX). A total of 18 minipigs were ran- domly divided into 3 groups: a surgery control group, a model group and an Ad-HGF treatment group implanted with Ameroid constrictor. Ad-HGF or the control agent was injected directly into the ischemic myocardium, and an improvement in heart function and blood supply were evaluated. The results showed that myocardial perfusion remarkably improved in the Ad-HGF group compared with that in both the control and model groups. Four weeks after the treatment, the density of newly formed blood vessels was higher and the number of collateral blood vessels was greater in the Ad-HGF group than in the model group. The area of myocardial ischemia reduced evidently and the left ventricular ejection fraction improved significantly in the Ad-HGF group. These results suggest that HGF gene therapy may become a novel approach in the treatment of chronically ischemic myocardium.

  13. Suppression of experimental osteoarthritis by adenovirus-mediated double gene transfer

    WANG Hai-jun; YU Chang-long; Kishi Hiroyuki; Motoki Kazumi; MAO Ze-bin; Muraguchi Atsushi

    2006-01-01

    Background Osteoarthritis (OA) is a chronic and incurable disease, lacking effective treatment. Gene therapy offers a radical different approach to the treatment of arthritis. Even though the etiology of OA remains unclear, there is now considerable evidence to suggest that interleukin-1 (IL-1) and tumor necrosis factor- α (TNF- α ) are the main mediators in the pathogenesis of OA. The goal of this study was to determine the efficacy of local expression of interleukin-1 receptor antagonist (IL-1Ra) and soluble tumor necrosis factor-α receptor type Ⅰ (sTNF-RI) by direct adenoviral-mediated intra-articular gene delivery in the rabbit model of osteoarthritis. Methods Adenoviral vectors containing IL-1Ra or sTNF-RI genes were constructed. OA was induced in both hind knees of 12 New Zealand white rabbits by the excision of the medial collateral ligment plus medial meniscectomy. Five days after surgery, approximately 1×108 plaque-forming units (pfu) of adenovirus were injected into the joint space of the knee through the patellar tendon. A total of 12 operated rabbits were divided into four groups. Three experimental rabbit groups received 1×108 pfu of adenovirus encoding either IL-1Ra (3 rabbits), sTNF-RI (3 rabbits) or IL-1Ra and sTNF-RI in combination (3 rabbits), into both knee joints respectively. An inflamed control group of 3 rabbits received approximately 1×108 pfu of Ad-GFP into both joints. Three days after injection of the adenovirus, both knees of each rabbit were lavaged with 1 ml of saline solution through the patellar tendon. At day 7, the rabbits were sacrificed, and the knees were lavaged, dissected and analyzed for effects of transgene expression. Levels of IL-1Ra and sTNF-RI expression in recovered lavage fluids were measured using a cytokine ELISA kit. Cartilage from the lesion areas of medial femoral condyle and synovium were fixed, embedded, sectioned and stained with hematoxylin and eosin (cartilage and synovium) and toluidine blue

  14. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  15. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  16. 反义细胞外信号调节激酶-2基因治疗移植物动脉血管病内膜病变%The effect of adenovirus-mediated anti-extracellular signal regulated kinase 2 gene therapy on intimal change in transplant arteriosclerosis

    赵波; 宫念樵

    2011-01-01

    目的 观察移植物动脉血管病(TA)的内膜病变机制和反义细胞外信号调节激酶2基因腺病毒载体(Adanti-ERK2)基因治疗的效果.方法 建立Brown-Norway(BN)-Lewis移植物动脉血管病模型,分为同系组、Control组、LacZ组和Adanti-ERK2组(给予5×109 pfu Adanti-ERK2基因治疗),每组各6例.术后60 d检测各组内膜病变和血管腔内膜/(内膜+中膜)比,α-肌动蛋白(α-actin)和血小板源性生长因子-BB(PDGF-BB)染色检测移植动脉平滑肌细胞(VSMCs)增殖和分泌功能,评估移植动脉新生毛细血管情况并检测移植动脉中环氧化酶-2(COX-2)的表达.结果 术后60 d同系组内膜无异常,Control组和LacZ组典型内膜增殖改变,Adanti-ERK2组内膜病变较轻;内膜/(内膜+中膜)比各组分别为7.6%、81.4%、85.9%、15.9%;α-actin阳性细胞(内膜平滑肌细胞)每视野计数各组分别为0、71.3±9.2、76.4±11.3、34.8±5.3;PDGF-BB阳性细胞每视野计数各组分别为0.9±0.5、28.4±3.4、29.1±3.2、8.6±1.7;移植动脉中膜和内膜新生毛细血管检测各组分别无、丰富、丰富、少量;COX-2新生血管阳性细胞计数各组分别为0、36.3±8.3、40.9±9.2、10.4±3.9.Adanti-ERK2组与其他组别间比较,差异有统计学意义(P<0.05).结论 内膜增生,血管腔缩窄,PDGF-BB诱导内膜平滑肌细胞募集分化并激发血管新生是TA重要病理生理环节,AdantiERK2基因治疗可有效干预各发病环节,达到治疗效果.%Objective To explore the mechanisms of intimal injury underlying transplant arteriosclerosis (TA) and to clarify the treatment effect of adenovirus-mediated anti-extracellular signal regulated kinase 2 (Adanti-ERK2) gene therapy on TA. Methods The Brown-Norway (BN)-Lewis TA model was employed. According to different gene therapy, the recipients were divided into isograft group, control group, LacZ group, which were used as control, and Adanti-ERK2 group (5 × 109 pfu Adanti-ERK2 was transferred

  17. Adenovirus-mediated human β-nerve growth factor gene transfer has a protective effect on cochlear spiral ganglion after blast exposure

    2007-01-01

    Objective: To study whether adenovirus-mediated human β-nerve growth factor (Ad-hNGFβ) gene has any protective effect on blast hearing impairment. Methods:Deafness was induced by blast exposure (172. 0 dB) in 30 healthy guinea pigs. On day 7 of blast exposure, Ad-hNGFβ was infused into the perilymphatic space of 20 animals as the study group (hNGFβ group), and artificial perilymph fluid (APF) was infused into the perilymphatic space of the other 10 animals as the control group. At weeks 1, 4 and 8 after blast exposure, the animals were sacrificed and the cochleae were removed for immunohis-tochemical and HE stainings. Results: Expression of Ad-hNGFβ protein was detected in each turn of the cochlea at the 1st week, with almost equal intensity in all turns. At the 4th week, the reactive intensity of the expression of Ad-hNGFβ protein decreased. At the 8th week, no expression was detectable. The results of HE staining showed that the amount of spiral ganglions in hNGFβ group was significantly greater than that of the control group at week 4 (F<0. 01). Conclusion: Ad-hNGFβ can be expressed at a high level and for a relatively long period in the blast impaired cochlea, suggesting that Ad-hNGFβ has a protective effect on cochlear spiral ganglion cells after blast exposure and the efficient gene transfer into cochlea had been achieved without toxicity.

  18. Recombinant adenovirus-mediated shRNA silencing of midkine gene in BxPC-3 cells

    Mingyue Xiong; Kunzheng Wang

    2009-01-01

    Objective:To investigate the silencing effects of recombinant adenovirus Ad-shRNA-MK on midkine(MK) gene in pancreatic cancer cells. Methods:Ad-shRNA-MK was used to infect pancreatic cancer BxPC-3 cells. Assays were conducted for knockdown of the MK gene on the day of infection and on the 1a, 3rd, 5th, 7th, and 9th days post-infection by using immunocytochemistry, real-time RT-PCR, and Western blot analysis. Results:The adenoviral Ad-shRNA-PTN was constructed successfully, and infection was confirmed by electron microscopic observation. By using real-time RT-PCR, the inhibition rates of MK mRNA expression in the BxPC-3 cells were 20%, 80%, 55%, and 23% on the 1st, 3rd, 5th, and 7th days post-infection. Immunocytochemistry and Western blot analysis confirmed this effect at the gene product level. Conclusion:Efficient and specific knockdown of MK in pancreatic cancer cells by adenoviral Ad-shRNA-PTN is a potentially powerful tool for the study of gene therapy of pancreatic cancer nerve infiltration.

  19. Inhibition of tumor growth in xenografted nude mice with adenovirus-mediated endostatin gene comparison with recombinant endostatin protein

    梁志慧; 吴沛宏; 李立; 薛刚; 曾益新; 黄文林

    2004-01-01

    Background Inhibition of tumor growth by endostatin has been shown to be an effective strategy in cancer therapy in mice. However, its widespread application has been hampered by difficulties in a large-scale production of the recombinant endostatin protein, rapid loss bioactivity of the protein, and the cumbersome daily administration. These limitations could be resolved by in vivo delivery and expression of the endostatin gene. In this study, we observed the effect and advantage of endostatin gene therapy mediated by a recombinant adenoviral vector (Ad/hEndo) on the growth of hepatocellular carcinoma BEL-7402 xenografted tumors, comparison with recombinant endostatin protein.Results After 4 courses of treatment, the tumor growth rates of high-dose treated group with 1×109 pfu of Ad/hEndo were inhibited by 42.26% compared with the Ad/LacZ control group (P=0.001) and by 46.26% compared with the NIH buffer control group (P=0.003), respectively. However, in this study, Ad/hEndo at low dose of 5×108 pfu failed to demonstrate significant inhibition of tumor growth, compared with control groups. After daily administration of recombinant human endostatin protein (rhEndo) for 9 days, the ratio of T/C (rhEndo group versus PBS group) was less than 47%. However, two days after rhEndo treatment ceased, the ratio of T/C was more than 50%. The peak of expression of endostatin mRNA in tumor tissue was at 2 or 3 days after administration intratumorally with Ad/hEndo of 1×109 pfu and gradually dropped undetectable by day 7. Dynamic analysis of endostatin concentration in tumor tissue showed that the highest level of mRNA is up at the third day after injection, and dropped to basal level three weeks later.Conclusions Endostatin gene therapy mediated by a recombinant adenoviral vector had significantly inhibited the growth of hepatocellular carcinoma BEL-7402 xenografted tumors at a high dose of 1×109 pfu compared with other groups. The analysis of dynamic expression of

  20. Construction and identification of recombinant adenovirus-mediated gene transfer system for rat vascular endothelial growth factor

    Hongyu Yang; Hong Qi; Junjie Zou; Xiwei Zhang

    2008-01-01

    Objective: To construct the recombinant adenovirus vector carrying rat vascular endothelial growth factor(VEGF), as preparation for genetic transfection that follows. Methods: Rat VEGF was obtained by using RT-PCR amplification and then cloned into the shutter plasmid pDC316. Subsequently, this newly constructed plasmid pDC316-VEGF, after identification by nuclease digestion analysis and sequencing analysis, was transfected into human embryonic kidney cells HEK293 by Lipofectamine 2000 mediation, together with adenovirus-packaging plasmid pBHGE3. Based on the homologous recombination of the two plasmids within HEK293 cells, the recombinant adenovirus vector carrying VEGF and VDC316-VEGF was created. VDC316-VEGF was subsequently identified using PCR, purified using repeated plaque passages, proliferated using freezing and melting within HEK293 cells, and titrated using 50% Tissue Culture Infective Dose(TCID50) assay. Results:The newly constructed recombinant adenovirus was confirmed to carry rat VEGF based on PCR results, and its titration value determined based on TCID50 assay was 3×109 pfu/ml. Conclusion:The recombinant adenovirus carrying rat VEGF was successfully constructed. The newly constructed adenovirus can produce a sufficiently high titration value within HEK293 cells, providing a reliable tool for genetic transfection in further gene therapy researches.

  1. [Adenovirus-mediated delivery of nm23-H1 gene inhibits growth of colorectal carcinoma cell line Lovo].

    Wang, Qi; He, Xueling; Liu, Yan; Yin, Hailin

    2010-12-01

    This experimental study sought to find out the inhibitory effects of Ad-GFP-nm23-H1 on proliferation and metastasis of human colorectal carcinoma cell line Lovo, and, further, to gain an insight into some theoretical and methodical basis for instituting nm23-H1 gene therapy of cancers. MTT assay and Transwell chamber were used to detect the rates of proliferation and invasion as well as the adhesion of Lovo cells in vitro. The results demonstrated that the proliferation inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 84.9% +/- 1.51%, 48.5% +/- 7.23% and 22.5% +/- 5.47%, that the adherence inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 70.3% +/- 2.40%, 60.1% +/- 5.68% and 18.5% +/- 3.61%, and that the invasiveness inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 83.2% +/- 5.71%, 52.2% +/- 6.94% and 28.1% +/- 8.21%. These data suggested that Ad-GFP-nm23-H1 exerted significant inhibitory effects on the proliferation and metastasis of human colorectal carcinoma cell line Lovo in a dose-dependent way.

  2. Adenovirus-mediated hypoxia-inducible factor-1 alpha gene transfer induces angiogenesis and neurogenesis following cerebral ischemia in rats

    Wanfu Wu; Xiu Chen; Zhen Yu; Changlin Hu; Wenqin Cai

    2008-01-01

    and VEGF (P<0.01). The numbers of factor VIII, BrdU, BrdU/NF200 and BrdU/GFAP positive cells were increased significantly (P<0.01) in the Ad-HIF-1α group compared to the Ad group. Levels of HIF-1α and VEGF mRNA in the Ad-HIF-1α group were enhanced compared with those in the Ad group. NSS scores of the Ad-HIF-1α group were superior to those of the Ad group at days 7, 14, 21, and 28 after MCAO (P < 0.05).CONCLUSION: HIF-1α gene therapy can increase angiogenesis and neurogenesis, and thus improve neurological function following cerebral ischemia in rats.

  3. Adenovirus-Mediated p202 Gene Transfer in Breast Cancer Gene Therapy

    2005-05-01

    Jares P, Cazorla M, Fernandez PL, Sanjuan X, Dawson MJ and Trapani JA. (1995). J. Cell. Biochem., 57, Hernandez L, Pinyol M, Aldea M, Mallofre C...C., K. Doctor, A. Rojas , J. M. Zapata, C. Stehlik, L. Fiorentino, J. Damiano, W. Roth, S. Matsuzawa, R. Newman, S. Takayama, H. Marusawa, F. Xu, G

  4. Synergistic antitumor effects of in vivo production of human endostatin and tissue inhibitor of metalloproteinase-1 in mice after subcutaneous implantation of primary fibroblasts transfected by adenovirus-mediated gene delivery

    SHEN Wei-gan; ZHU Jun; ZHANG Yu; SU Qing

    2010-01-01

    Background Tissue inhibitor of metalloproteinase (TIMP)-1 is a multifunctional protein. The aim of the study was to examine the feasibility of using a combination of adenovirus-mediated gene delivery of TIMP-1 plus endostatin and cell transplantation techniques to treat tumor growth and metastasis in mouse melanoma.Methods A enzyme-linked immunosorbent assay (ELISA) was used to detect the level of TIMP-1 and endostatin in vitro and in vivo. A tumor bearing mouse model and an experimental lung metastasis model in animal experiments were used to explore the therapeutic effect of in vivo production of human TIMP-1 and endostatin after the implantation of primary fibroblasts infected with the indicated adenovirus into tumor-bearing mice and a cytochemical method was used to observe histopathological changes of the tumor. An experimental lung metastasis model was established by injecting B16BL6 cells into the tail vein of mice and adenovirus-infected primary fibroblasts were subcutaneously implanted into the mice 24 hours later. Twenty-one days after tumor cell injection, mice were sacrificed to examine the effect on nodules visible as black forms on the surface of the lungs in B16BL6 cells.Results TIMP-1 and endostatin were secreted into the supernatants of cultures of Ad-TIMP-1 and Ad-End-infected mouse primary fibroblasts. We also observed that implantation of fibroblasts infected with Ad-TIMP-1 alone, Ad-End alone, or Ad-TIMP-1 plus Ad-End resulted in detectable blood levels which may clearly inhibit the tumor growth and metastasis in a murine melanoma model.Conclusion These results suggest the high capacity of transfection for the delivery of TIMP-1 or endostatin gene constructs into primary fibroblasts, and demonstrate that the implantation of TIMP-1 and endostatin producing fibroblasts at a site in vivo where direct secretion of TIMP-1 and endostatin into the blood is possible represented a promising approach for the development of cancer therapy.

  5. Gene therapy of cancer and development of therapeutic target gene

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  6. Adenovirus-mediated p53 and ING4 gene co-transfer elicits synergistic antitumor effects through enhancement of p53 acetylation in breast cancer.

    Wu, Jie; Zhu, Yanbo; Xu, Chun; Xu, Hong; Zhou, Xiumin; Yang, Jicheng; Xie, Yufeng; Tao, Min

    2016-01-01

    Multigene-based combination therapy may be an effective practice in cancer gene therapy. Substantial studies have demonstrated that tumor suppressor p53 acetylation is indispensable for p53 activation. Inhibitor of growth 4 (ING4), as a novel tumor suppressor, is capable of remarkably enhancing p53 acetylation and its transcriptional activity. Hence, we assumed that combined treatment of p53 and ING4 double tumor suppressors would exhibit enhanced antitumor effects. The combined therapeutic efficacy of p53 and ING4 for human cancers has not been previously reported. We thus generated multiple promoter expression cassette-based recombinant adenovirus-co-expressing ING4 and p53 double tumor suppressor genes (AdVING4/p53), evaluated the combined effects of AdVING4/p53 on breast cancer using the MDA-MB-231 (mutant p53) human breast cancer cell line, and also elucidated its underlying molecular mechanisms. We demonstrated that AdVING4/p53-mediated p53 and ING4 co-expression induced synergistic growth inhibition and apoptosis as well as enhanced effects on upregulation of acetylated p53, P21, Bax, PUMA, Noxa, cleaved caspase-9, cleaved caspase-3 and cleaved PARP, and downregulation of Bcl-2, CD31 and microvessel density (MVD) in MDA-MB-231 breast cancer in vitro and/or in vivo subcutaneous (s.c.) xenografted tumors. The synergistic antitumor activity elicited by AdVING4/p53 was closely associated with the enhanced activation of the intrinsic apoptotic pathway and synergistic inhibition of tumor angiogenesis, very possibly via ING4-mediated enhancement of p53 acetylation and activity. Thus, our results indicate that cancer gene therapy combining two or more tumor suppressors such as p53 and ING4 may constitute a novel and effective therapeutic modality for human breast cancer and other cancers.

  7. Beta-Adrenergic gene therapy for cardiovascular disease

    Koch Walter J

    2000-10-01

    Full Text Available Abstract Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct, acting as a Gβγ-β-adrenergic receptor kinase (βARK1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.

  8. THE BIOLOGICAL CHARACTERISTICS OF ADENOVIRUS-MEDIATED IL-18 GENE-MODIFIED MURINE COLORECTAL ADENOCARCINOMA CELL IN VIVO AND IN VITRO

    2001-01-01

    Objective: Interleukin 18 (IL-18) is a strong activator of NK cells and promotes the generation of IL-2, IFN-g, and GM-CSF. In the present study, we constructed adenovirus encoding IL-18 gene (AdIL-18), and observed the biological characteristics of IL-18 gene-modified murine colorectal adenocarcinoma cell (CT26) in vivo and in vitro. Methods: Gene modification was mediated by adenovirus. The proliferation of the cells was determined by MTT and IL-18 was assayed by ELISA. The cytotoxicity of NK and CTL was detected by four-hour 51Cr release assay. Results: IL-18 gene modification had no effect on the proliferation and morphology of CT-26 cells in vitro, but the growth of IL-18-modified CT26 cells was obviously inhibited in vivo. In addition, although IL-18-modified CT26 cells could form tumor nodules in vivo as well as LacZ-modified CT26 cells or wild-type CT26 cells, the mean survival time of the mice inoculated with IL-18-modified CT26 cells was significantly prolonged as compared with that of control groups. Thus, the anti-tumor immune responses were induced in the group of mice inoculated with IL-18-modified CT26 cells, which might be related to the activation of NK cells and CTL. However, all the three groups ultimately died of tumor.free facility for all experiments. CT26, Yac-1 and 293 cells were from the American Type Culture Collection (ATCC, Manassas, VA). All cell lines were cultured in RPMI1640 (GIBCO-BRL, Grandisland, NY) supple-mented with penicillin (100 units/ml), streptomycin (100 mg/ml), 2-mercaptoethanol (5′10-5 M), and 10% FCS (GIBCO-BRL) at 37℃ in a humidified atmosphere of 5% CO2 in air.

  9. Increase in muscarinic stimulation-induced Ca(2+) response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo.

    Morita, Takao; Nezu, Akihiro; Tojyo, Yosuke; Tanimura, Akihiko

    2013-10-01

    Adenoviruses have been used for gene transfer to salivary gland cells in vivo. Their use to study the function of salivary acinar cells was limited by a severe inflammatory response and by the destruction of fluid-secreting acinar cells. In the present study, low doses of adenovirus were administered to express Stim1-mKO1 by retrograde ductal injection to submandibular glands. The approach succeeded in increasing muscarinic stimulation-induced Ca(2+) responses in acinar cells without inflammation or decreased salivary secretions. This increased Ca(2+) response was notable upon weak muscarinic stimulation and was attributed to increased Ca(2+) release from internal stores and increased Ca(2+) entry. The basal Ca(2+) level was higher in Stim1-mKO1-expressing cells than in mKO1-expressing and non-expressing cells. Exposure of permeabilized submandibular acinar cells, where Ca(2+) concentration was fixed at 50 nM, to inositol 1,4,5-trisphosphate (IP3) produced similar effects on the release of Ca(2+) from stores in Stim1-mKO1-expressing and non-expressing cells. The low toxicity and relative specificity to acinar cells of the mild gene transfer method described herein are particularly useful for studying the molecular functions of salivary acinar cells in vivo, and may be applied to increase salivary secretions in experimental animals and human in future.

  10. Effects of adenovirus mediated vascular endothelial growth factor gene transfer on reconstitution of hematopoiesis in post-bone marrow transplantation mice

    ZHONG Zhao-dong; ZOU Ping; HU Xian-shi; YOU Yong; CHEN Zhi-chao; HUANG Shi-ang

    2005-01-01

    Background Bone marrow transplantation (BMT) conditioning procedure is considered as the cause of damage to bone marrow microvasculature and the delay of hematopoiesis recovery. However, hematopoiesis regulation post BMT by vascular endothelial growth factor (VEGF) has not yet been studied. In this study, adenovirus were used to investigate the effects of VEGF gene transfer on preventing damages to bone marrow microenvironment and its promotion of hematopoiesis in post-BMT mice.Methods Recombinant adenovirus (Ad)-enhanced green fluorescent protein (EGFP)/hVEGF165 was injected via tail vein into BALB/c mice undergoing syngeneic BMT. During the different phases post BMT, the distribution of adenovirus and the plasma levels of hVEGF were measured as well as the numbers of white blood cells (WBC), platelet (PLT) and red blood cells (RBC) in peripheral blood. At the same time, the mice were injected with Chinese ink via tail vein, following which the tibias were separated and were used for analysis of bone marrow microvasculature surface area and cellularity.Results Significant expression of EGFP and hVEGF was observed in multiple organs at different phases post BMT, and the plasma level of hVEGF was up to (866.67±97.13) pg/ml. The recovery of WBC, PLT and RBC of the group treated with recombinant adenovirus Ad-EGFP/hVEGF165 were significantly more rapid than those of other BMT groups (P0.05]. The restoration of hematopoiesis was retarded more than that of microvasculature. The cellularity of bone marrow in each group was still lower than that of normal control [(62.3±4.0)%, P<0.05] at the 30th day post BMT, but the percentage in group treated with VEGF at the 20th and 30th days post BMT [(46.5±5.0)% and (55.1±4.5)%] exceeded those of other BMT groups (P<0.05, respectively).Conclusion VEGF gene transfer mediated by adenovirus may protect the hematopoietic microenvironment to promote the restoration of hematopoiesis in post-BMT mice.

  11. THE BIOLOGICAL CHARACTERISTICS OF ADENOVIRUS-MEDIATED IL-18 GENE-MODIFIED MURINE COLORECTAL ADENOCARCINOMA CELL IN VIVO AND IN VITRO

    SONG; Wen-gang

    2001-01-01

    [1]Meyer Zum Buschenfelde C, Cramer S, Trumpfheller C, et al. Trypanosoma cruzi induces strong IL-12 and IL-18 gene expression in vivo: correlation with interferon-gamma (IFN-gamma) production [J]. Clin Exp Immunol 1997; 110:378.[2]Tominaga K, Yoshimoto T, Torigoe K, et al. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells [J]. Int Immunol 2000; 12:151.[3]Takeda K, Tsutsui H, Yoshimoto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice [J]. Immunity 1998; 8:383.[4]Tomura M, Zhou XY, Maruo S, et al. A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3- cells [J]. J Immunol 1998; 160:4738.[5]Okamura H, Kashiwamura S, Tsutsui H, et al. Regulation of interferon-gamma production by IL-12 and IL-18 [J]. Curr Opin Immunol 1998; 10:259.[6]Osaki T, Hashimoto W, Gambotto A, et al. Potent antitumor effects mediated by local expression of the mature form of the interferon-gamma inducing factor, interleukin-18 (IL-18) [J]. Gene Ther 1999; 6:808.[7]Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family [J]. J Allergy Clin Immunol 1999; 103:11.[8]Matsui K, Yoshimoto T, Tsutsui H, et al. Propionibacterium acnes treatment diminishes CD4+ NK1.1+ T cells but induces type I T cells in the liver by induction of IL-12 and IL-18 production from Kupffer cells [J]. J Immunol 1997; 159:97.[9]Akira S. The role of IL-18 in innate immunity [J]. Curr Opin Immunol 2000; 12:59.[10]Lauwerys BR, Garot N, Renauld JC, et al. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18 [J]. J Immunol 2000; 165:1847.[11]Micallef MJ, Yoshida K, Kawai S, et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites [J]. Cancer Immunol Immunother 1997; 43:361.[12]Micallef MJ, Tanimoto T

  12. EXPERIMENT OF TREATMENT OF BONE DEFECT WITH ADENOVIRUS-MEDIATED EXPRESSION OF LMP-1 GENE%腺病毒介导LMP-1基因治疗骨缺损的实验研究

    鲜成树; 王科学; 吴勇刚; 赖国维

    2011-01-01

    [目的]探讨以PLGA为支架,用含腺病毒介导的LNP-1修饰BMSCs修复胫骨缺损的可行性.[方法]分离兔骨髓间充质干细胞;应用AdEasy腺病毒载体系统构建人LMP-1基因的腺病毒重组体,并检测感染病毒的兔骨髓间充质干细胞.测定LNP-1阳性细胞的数量,测定各组细胞ALP、OC、COL1表达.建立胫骨近端骨缺损新西兰大白兔模型,以PLGA为支架材料,分为4组:Ad LMP-1转染组、AdLaeZ转染组、空白组和阳性对照组.术后2周、4周、8周每组处死动物,动态观察并比较缺损区新骨面积,分析其在骨缺损修复过程中的作用.[结果]成功分离兔MSC.同源重组成功构建AdLMP-1.体外实验MTT法分析表明AdLIVIP-1对MSC增殖无明显作用.AdLMP-1可促进OC和I型胶原蛋白的合成和分泌.第4、8周时阳性对照组和AdLMP-1转染组的成骨量明显增高(P0.05),第4、8周时尤为明显.说明AdLMP-1可促进成骨量增加.[结论]构建的Ad LNP-1能高效转染MSCs,且转染后的细胞能促进OC和I型胶原蛋白的合成和分泌.PLGA为支架携带腺病毒介导的LMP-1的BMSCs具有明确的骨缺损修复能力,为临床促进骨折愈合提供了一种有效的方法和材料.%[ Objective] To investigate the PLGA aa Scaffold, adenovirus mediated LMP-1 in BMSCs tibial defects.[Methods] Thc rabbit bone marrow mesenchymal stem cells; AdEasy adenovirus vector system was used to construct LMP-1 gene recombinant adenovirus. Detect the number of cells of LMP-1 positive cells, measured ALP, OC and COL1 expression. To establish proximal tibial bone defect model of New Zealand white rabbits, applying PLGA as a scaffold, divide all the animals into 4 groups : Ad LMP-1 transfection group, AdLacZ transfection group and blanle group and the positive control group. After 2 weeks, 4 weeks, 8 weeks of operation, animals were sacrificed in etcch group, and compare the dynamic observation of new bone defect area of bone defect in the process of role

  13. 制备源自HBsAg基因修饰树突状细胞的外切体%Generation of exosomes derived from adenovirus-mediated HBsAg gene-modified dendritic cells

    杨静悦; 高琳; 付蓉; 薛妍; 刘文超

    2012-01-01

    Objective: To obtain exosomes derived from adenovirus - mediated HBsAg gene - modified dendritic cells. Methods: Full length HBsAg cDNAs were cloned into shuttle2 vector. The HBsAg gene fragments resulted from the - S digested with PI - See and I - Ceu were linked to the linear adeno - X virus DNA. After packaged with HEK293 cells, the adenovirus expression vector was obtained. Then the recombinant adenovirus expression plasmid AdVHBsAg was transfected into human monocyte - derived dendritic cells. The exosomes were isolated from superna-tant of transfected DCs. Transmission electron microscopy was used to observe their structures. The expressions of several proteins were investigated by flow cytometry. Results: The shuttle2 - S showed that band with 630 bp by di-gested with PI - See and I - Ceu, HBsAg gene in the inserted DNA of AdVHBsAg was confirmed by PCR, and pre-dictive fragments proved by restriction enzyme digestion analysis were exhibited. CPE appear 10 after days HEK293 cells transfected AdVHBsAg. Application of the isolation procedure to transfected DCs revealed exosome vesicles by transmission electron microscopy. Protein analysis by Western blot was performed and revealed that the costimulatory molecule CD86,CD83 and HBsAg was detectable. Conclusion; The exosomes derived from HBsAg - DC may be a tool of the HBV related hepatocellular carcinoma immunotherapy.%目的:制备一种新型负载HBsAg基因的外切体(exosome)瘤苗,并探讨其生物学特性、免疫学功能.方法:运用分子克隆和病毒载体转染HBsAg基因构建AdVHBsAg-DC肝癌瘤苗,采用流式细胞术鉴定转染基因表达;提取exosome;以透射电镜观察、Western blot法鉴定exosome.结果:构建的重组AdVHBsAg腺病毒载体,经PCR和酶切鉴定,结果显示HBsAg基因片段已正确插入腺病毒载体中.包装的腺病毒载体具有良好的感染性,可以在293细胞中形成病毒颗粒.提取的exosome在透射电镜下可观察到直径为50-100nm

  14. Genes and Gene Therapy

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  15. Clinical adenoviral gene therapy for prostate cancer.

    Schenk, Ellen; Essand, Magnus; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Danielsson, Angelika; Dautzenberg, Iris J C; Dzojic, Helena; Erbacher, Patrick; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Hoeben, Rob; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Lindholm, Leif; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nilsson, Berith; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schooten, Erik; Seymour, Len; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; Veldhoven-Zweistra, Joke L M; de Vrij, Jeroen; van Weerden, Wytske; Wagner, Ernst; Willemsen, Ralph

    2010-07-01

    Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.

  16. Gene therapy

    2005-01-01

    2005147 CNHK200-hA-a gene-viral therapeutic system and its antitumor effect on lung cancer. WANG Wei-guo(王伟国),et al. Viral & Gene Ther Center, Eastern Hepatobilli Surg Instit 2nd Milit Univ, Shanghai 200438. Chin J Oncol,2005:27(2):69-72. Objective: To develop a novel vector system, which combines the advantages of the gene therapy,

  17. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up

    Yong-song GUAN; Yuan LIU; Qing ZOU; Qing HE; Zi LA; Lin YANG; Ying HU

    2009-01-01

    Objective: In the present study, we have examined the safety and efficacy of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) injection in patients with advanced non-small-cell lung cancer (NSCLC) in the combination with the therapy of bronchial arterial infusion (BAI). Methods: A total of 58 patients with advanced NSCLC were enrolled in a non-randomized, two-armed clinical trial. Of which, 19 received a combination treatment of BAI and rAd-p53 (the combo group), while the remaining 39 were treated with only BAI (the control group). Patients were followed up for 12 months, with safety and local response evaluated by the National Cancer Institute's Common Toxicity Criteria and response evaluation criteria in solid tumor (RECIST), respectively. Time to progression (TTP) and survival rates were also analyzed by Kaplan-Meier method. Results: In the combo group,19 patients received a total of 49 injections of rAd-p53 and 46 times of BAI, respectively, while 39 patients in the control group received a total of 113 times of BAI. The combination treatment was found to have less adverse events such as anorexia, nausea and emesis, pain, and leucopenia (P0.05). Patients in the combo group had a longer TTP than those in the control group (a median 7.75 vs 5.5 months, P=0.018). However, the combination treatment did not lead to better survival, with survival rates at 3, 6, and 12 months in the combo group being 94.74%, 89.47%, and 52.63%, respectively, com-pared with 92.31%, 69.23%, and 38.83% in the control group (P=0.224). Conclusion: Our results show that the combination of rAd-p53 and BAI was well tolerated in patients with NSCLC and may have improved the quality of life and delayed the disease progression. A further study to better determine the efficacy of this combination therapy is warranted.

  18. 神经生长因子基因转染联合强化铁营养防治豚鼠爆震性聋的实验研究%Protective effects of adenovirus-mediated human bta-nerve growth factor gene transfer combined with iron fortified nutrition on blast hearing damage in guinea pigs

    吴建; 武江; 范静平; 何金; 孙爱华

    2009-01-01

    目的 探讨人类神经生长因子β基因(human beta-nerve growth factor,hNGFβ)转染联合强化铁营养(fortified iron nutrition,FIN)防治豚鼠爆震性聋的可能性.方法 制作强脉冲噪声(172 dBSPL)致聋豚鼠模型35只,爆震后第7天,10只豚鼠经耳蜗底周鼓阶骨壁钻孔向外淋巴腔内导入腺病毒携带hNGFβ基因(adenovirus-mediated hNGFβ,Ad-hNGFβ)为基因组,10只豚鼠导入hNGFβ基因并进行强化铁营养为联合组,10只豚鼠经耳蜗底周鼓阶骨壁钻孔向外淋巴腔内导入人工外淋巴液(artificialperilymphatic fluid,APF)为APF组.5只豚鼠作正常对照组,不经暴露噪声,也不用药物治疗.测定爆震前及基因转染后豚鼠脑干听觉诱发电位(auditory brain stem response,ABR)阈值.取材时间:基因导入后第1周及第4周实验组各取5只动物进行耳蜗取材,并进行免疫组织化学染色和HE染色,检测Ad-hNGFβ蛋白表达并进行螺旋神经节细胞计数.结果 基因导入后第1周,可见Ad-hNGFβ在耳蜗内成功转染.耳蜗各回均有表达,强度基本相等;联合组豚鼠ABR反应阈恢复较基因组快,较APF组明显快;4周后,联合组豚鼠ABR反应阈完全恢复正常,基因组基本恢复正常,APF组未能恢复;联合组豚鼠螺旋神经节细胞数目多于基因组,两者均明显多于对照组,计数结果差异有统计学意义(P<0.01),且细胞形态与正常相近.结论 腺病毒介导的hNGFβ基因联合强化铁营养能协同作用防治豚鼠爆震性听力损伤.%Objective To study the protective effects of adenovirus-mediated human beta-nerve growth factor gene (hNGFβ) transfer combined with iron fortified nutrition on blast hearing damage in guinea pigs. Methods Deafness was induced by blast (172dB SPL) in 35 healthy guinea pigs. Seven days after noise exposure, 10 guinea pigs were inoculated with adenovirus-mediated hNGFβ (Ad-hNGFβ) into the perilymphatic space (the gene group), another 10 guinea pigs were given h

  19. Reversal of 5-flouroucial resistance by adenovirus-mediated transfer of wild-type p53 gene in multidrug-resiatant human colon carcinoma LoVo/5-FU cells

    Zhi-Wei Yu; Peng Zhao; Ming Liu; Xin-Shu Dong; Ji Tao; Xue-Qin Yao; Xin-Hua Yin; Yu Li; Song-Bin Fu

    2004-01-01

    AIM: To observe the reversal effects of wide-type p53 gene on multi-drug resistance to 5-FU (LOVO/5-FU).METHODS: After treatment with Ad-p53, LOVO/5-FU sensitivity to 5-Fu was investigated using tetrazolium dye assay. Multidrug resistance gene-1 (MDR1) gene expression was assayed by semi-quantitative reverse transcriptionpolymerase chain reaction and the expression of p53 protein was examined by Western blotting.RESULTS: The reversal activity after treatment with widetype p53 gene was increased up to 4.982 fold at 48 h. The expression of MDR1 gene decreased significantly after treatment with wide-type p53 gene, and the expression of p53 protein lasted for about 5 d, with a peak at 48 h, and began to decrease at 72 h.CONCLUSION: Wide-type p53 gene has a remarkable reversal activity for the high expression of MDR1 gene in colorectal cancers. The reversal effects seem to be in a time dependent manner. It might have good prospects in clinical application.

  20. p53基因转移至移植心脏的安全性%Security for adenovirus-mediated p53 gene transfer to the donor heart

    王丽平; 宋芳芳; 李祥禄; 刘越; 贾智博; 尹新华

    2011-01-01

    BACKGROUND: Wild-typep53 gene transfer to the donor heart can greatry inhibit graft co to nan/ artery intima hyperplasia andlumen narrowness.OBJECT P/E: To study the security of adenoviral-mediated wild-type p53 gene transfer to the donor heart after hearttransplantation.METHODS: Rat modee of heterotopic (abdomen) heart transplantation over e developed. Wetar rats served as donors and SOrats as recipients. After donor hearts were removed. 800 u Ladenoviral vector encoding the wild-type p53gene(Ajdp53group)adenoviral vector encoding the &-galactosidase gene (LacZ) (Ad-LacZ group) or saline (control group) were infused into thedonor heart respectively before transplantation. The donor heart was stored in the 4 ~C saline for 30 minutes before hearttransplantation. At5 days after operation. P53 protein expressions in coronary artery of donor hearts were tested by western blotanalyse. £123 days after transplantation, the serum specimen was collected for the biochemical indicators, and the major organsof the recipients were tested by the hetopathological analysis and the reverse transcription polymerase chain reaction of theadenoviral E1A sequences.RESULTS AND CONCLUSION: The expression of P53 protein was found in donor hearts inAd-p53 group at 5 days afteroperation, and no expression in Ad-LacZ group and control group. At28 days after operation, rat serum biochemistry values inthree groups was normal, the major organs of the recipients were not affected seriously, no virus spread to other organs in theexperimental protocol. The results confirmed that the ex vivo adenoviral-mediated gene transfer to the donor heart via thecoronary artery during the heart transplantation e safe.%背景:课题组前期实验表明野生型p53基因具有抑制移植心脏冠状动脉内膜增厚的作用.目的:研究腺病毒介导的野生型p53基因转移至移植心脏的安全性.方法:以Wistar大鼠为供体,SD大鼠为受体建立大鼠腹腔异位心脏移植模型,在取出

  1. Phase I Trial of Adenovirus-Mediated IL-12 Gene Transduction in Patients with Recurrent Locally Advanced Prostate Cancer Following Therapy

    2005-10-01

    prostate, the dose of virus will be divided into 10 aliquots, each in 500uls, to be diluted with phosphate buffered saline as needed. To ease the...ability of successful IVF and examination of resulting embryos failed to reveal any β-galactosidase. Therefore, it appears that retrograde spread...personnel involved in virus injection. The viral vector is suspended in a small volume of buffer and is contained in a septum vial. The syringe is loaded

  2. 腺病毒介导荧光素酶报告基因感染间充质干细胞的研究%Infection with adenovirus-mediated luciferase reporter gene in mesenchymal stem cells and bioluminescence imaging

    王一帆; 夏睿; 郭玉林; 郜发宝

    2013-01-01

    目的 构建携带萤火虫荧光素酶(Luc)报告基因的腺病毒载体(Ad-Luc),研究其感染大鼠骨髓间充质干细胞(BMSC)后的体内外生物发光成像.方法 从psiCHECK-2质粒中用PCR扩增Luc基因,克隆入腺病毒穿梭载体pShuttle-CMV后行Nhe Ⅰ/Xba Ⅰ双酶切和测序鉴定.重组腺病毒穿梭载体与骨架载体pAdeno同源重组并包装纯化后,测定其病毒滴度.用重组Ad-Luc感染BMSC,行体外生物发光成像确定最佳感染复数(MOI),并采用曲线拟合回归分析生物发光强度与MOI的关系.以锥虫蓝染色法评价细胞活力变化,计算细胞存活率.将转染后BMSC(1×106个)植入SD大鼠前肢肌肉内,行体内生物发光成像.细胞存活率组间比较采用两因素重复测量资料方差分析.结果 经酶切和测序鉴定证明,Ad-Luc构建成功,病毒滴度为1×1010空斑形成单位(PFU)/ml.体外生物发光检测结果显示最佳MOI值为50,Ad-Luc可高效感染BMSC,使其表达Luc,且拟合曲线示细胞生物发光强度随MOI增加而增强(R2 =0.98).转染组和未转染组细胞培养1、3、5、7d时,细胞存活率分别为(92.5±2.3)%与(94.1±1.8)%、(91.4±0.9)%与(92.7±2.0)%、(92.1±1.6)%与(93.3±2.4)%、(91.9±1.5)%与(93.0±3.1)%,2组间细胞活力的差异无统计学意义(F=4.38,P>0.05).体内生物发光成像结果示BMSC移植1、3、7d后仍有存活,但随时间延长,生物发光信号逐渐减弱.结论 Luc报告基因通过腺病毒载体成功转入BMSC,实现了光学报告基因成像对移植干细胞的示踪.%Objective To construct adenovirus vector containing firefly luciferase reporter gene (AdLuc) and infect bone marrow mesenchymal stem cells (BMSC),then to take bioluminescence imaging in vitro and in vivo for identification.Methods The luciferase gene was amplified with PCR from psiCHECK-2 plasmid and cloned into the adenoviral shuttle vector (pShuttle-CMV).It was confirmed by Nhe Ⅰ/Xba Ⅰ digestion and sequencing

  3. Adenovirus mediated fusion gene system driven by KDR promoter kills selectively pancreatic cancer cells%双自杀基因重组腺病毒对胰腺癌细胞特异性杀伤作用

    闫振宇; 陈旭; 孔恒; 黄宗海; 俞金龙; 厉周

    2008-01-01

    目的 研究腺病毒介导的KDR启动子驱动CD/TK融合基因系统(Ad-KDR-CDTK)对胰腺癌细胞Capan-2特异性的杀伤作用.方法 重组腺病毒体外感染表达KDR的Capaw2细胞株,用不表达KDR的肝癌细胞HepG2做对照.观察其感染效率并以RT-PCR方法 检测转基因细胞CDTK的表达,然后给予不同浓度的前药更昔洛韦(ganciclovir,GCV)和5-氟胞嘧啶(5-fluorocy-tosine,5-FC),MTT法观察该体系对Capan-2和HepG2细胞生长增殖的影响及其旁观者效应;电镜观察细胞的病变;流式细胞仪检测细胞周期的变化和DNA含量的变化.建立Capan-2裸鼠皮下移植瘤模型,瘤内注射Ad-KDR-CD/TK,腹腔注射前药GCV(50 mg·kg-1·d-1)和5-FC(500 mg·kg-1·d-1)14 d,观察肿瘤生长抑制效应.结果 腺病毒对两种细胞株的感染率相似,其感染率随腺病毒滴度的增高而递增.RT-PCR方法 检测发现转染Ad-KDR-CDTK的Capan-2细胞有目的 基因表达.MTT法检测显示前药呈剂量依赖性抑制Capan-2生长,而不表达KDR的肝癌细胞HepG2对前药不敏感,且观察到该体系对Capan-2明显的旁观者效应.电镜下可见Capan-2有凋亡改变.用流式细胞仪测定用药组出现典型的凋亡峰;细胞周期分析显示治疗后细胞G0-G1期比率增多,G2-M及S期细胞减少.在Capan-2裸鼠移植瘤模型中,该双自杀基因系统能够显著抑制肿瘤的生长.结论 KDR启动子可调控双自杀基因体系选择性杀伤胰腺癌细胞Capan-2,诱导胰腺癌细胞凋亡,并可显著抑制人胰腺癌裸鼠移植瘤的生长.%Objective To evaluate the selectively killing effect of adenovirus (Ad) mediated double suicide gene driven by KDR promoter on pancreatic cancer cell Capan-2. Methods KDR-ex-pressing Capan-2 and non-KDR-expressing HepG2 were infected by Ad-KDR-CDTK. The infection rate was observed and the expression of CDTK was detected by RT-PCR. Followed by treatment with 5-FC and GCV,the killing effects were evaluated and bystander effects

  4. Antitumor bioactivity of adenovirus-mediated p27mt in colorectal cancer cell line SW480

    Ze-Qun sun; Chang-Sheng Deng; Shao-Yong Xu; Yong Du

    2008-01-01

    AIM: To explore the antitumor bioactivity of adenovirus-mediated mutant type p27kip1 gene in a colorectal cancer cell line SW480.METHODS: We constructed recombinant adenovirus vector expressing a mutant type p27kip1 gene (ad-p27mt), with mutation of Thr-187/Pro-188 (ACGCCC) to Met-187/Ile-188 (ATGATC), and transduced into SW480 cells. Then we detected expression of p27, Bcl-2 and Bax protein in the transductants by Western blotting, cell cycle of transductants by a digital flow cytometric system, migrating potential with Boyden Chamber end SW480 tumor cell growth inhibition in vitro and in vivo.RESULTS: We found that a recombinant adenovirus vector of expressing ad-p27mt, with mutation of Thr-187/Pro-188 (ACGCCC) to Met-187/Ile-188 (ATGATC) has potent inhibition of SW480 tumor cell growth in vitro and in vivo. Furthermore, ed-p27mt induced cell apoptosis via regulating bax and bcl-2 expressions, and G1/S arrest in SW480 cells and inhibited celt migration.CONCLUSION: ad-p27mt has a strong anti-tumor bioactivity and has the potential to develop into new therapeutic agents for colorectal cancer.

  5. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    Xu, Yu, E-mail: xuyu1001@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liu, Zhengchun, E-mail: l135027@126.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Kong, Haiyan, E-mail: suppleant@163.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Sun, Wenjie, E-mail: wendy11240325@163.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liao, Zhengkai, E-mail: fastbeta@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Zhou, Fuxiang, E-mail: happyzhoufx@sina.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Xie, Conghua, E-mail: chxie_65@hotmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); and others

    2011-09-09

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  6. Adenovirus-mediated transfection with glucose transporter 3 suppresses PC12 cell apoptosis following ischemic injury

    Junliang Li; Xinke Xu; Shanyi Zhang; Meiguang Zheng; Zhonghua Wu; Yinlun Weng; Leping Ouyang; Jian Yu; Fangcheng Li

    2012-01-01

    In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.

  7. Effects of gene transfer of adenovirus-mediated brain-derived neurotrophic factor on apoptosis after traumatic brain injury%腺病毒介导脑源性神经营养因子基因转移对大鼠脑损伤后细胞凋亡的影响

    王国强; 廖维宏; 沈岳; 李芳

    2001-01-01

    Objective To investigate the effects of gene transfer of adenovirus-mediated brain-derived neurotrophic factor (BDNF) on apoptosis after traumatic brain injury. Methods  Adult Wistar rats experienced a weight-drop strike on the right cerebral cortex, and then 4 μl recombinant adenovirus vector (RAV) and 4 μl virus buffer were injected into the hippocampus in the expermental group and in the controls, respectively. Immunohistochemistry and/or in situ hybridization, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and flowcytometry were used to determine the expressions of BDNF and apoptosis-associated signals in the hippocampus and cerebral cortex areas at 3 hour, 1, 3, 7 and 14 days following injury.  Results  Compared with the controls at 3 and 7 days after injury, BDNF positive cells increased significantly, while the apoptotic cells decreased significantly in CA1 and CA3 areas in the RAV group (P<0.01). Meanwhile, the cells expressing BDNF showed less apoptotic signals.  Conclusions  RAV-mediated BDNF gene transfer protects hippocampal neurons through up-regulating BDNF expression and inhibiting programmed cell death.%目的研究腺病毒介导的脑源性神经营养因子(BDNF)基因转移对脑损伤后细胞凋亡的影响。方法将重组腺病毒载体4 μl注入承受单侧大脑皮质重锤打击伤的海马区,对照组注射病毒缓冲液。伤后3 h、1,3,7,14 d利用免疫组化单标和(或)双标染色、原位杂交-免疫组化双标染色、DNA末端原位标记以及流式细胞仪等方法,检测伤侧大脑皮质、海马区BDNF及凋亡相关信号表达的改变。结果与对照组相比,注射病毒载体组动物术后3,7 d海马CA1、CA3区BDNF神经元显著增多,而凋亡细胞显著减少(P<0.01);表达BDNF的神经元较少并同时表达凋亡相关信号。结论腺病毒介导的BDNF基因转移对海马神经元具有保护作用。

  8. Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity

    Mahasreshti, P.J.; Kataram, M.; Wang, Miao; Stockard, C.R.; Grizzle, W.E.; Carey, D.; Siegal, G.P.; Haisma, H.J.; Alvarez, R.D.; Curiel, D.T.

    2003-01-01

    Purpose: Vascular endothelial growth factor (VEGF) is a potent angiogenic agent and plays a major role in tumor growth and metastases. We have previously reported the locoregional (i.p.) delivery of adenovirus-mediated antiangiogenic soluble FLT-1 (sFLT-1; a naturally encoded potent VEGF antagonist)

  9. Principles of gene therapy

    Mammen Biju; Ramakrishnan T; Sudhakar Uma; Vijayalakshmi

    2007-01-01

    Genes are specific sequences of bases that encode instructions to make proteins. When genes are altered so that encoded proteins are unable to carry out their normal functions, genetic disorders can result. Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. This article reviews the fundamentals in gene therapy and its various modes of administration with an insight into the role of gene therapy in Periodontics an...

  10. Effects of adenovirus-mediated basic fibroblast growth factor and the related cytokines gene transfection on human osteoarthritis chondrocytes in vitro%碱性成纤维细胞生长因子及相关细胞因子转染对人骨关节炎软骨细胞的作用

    陈彪; 陈廖斌; 秦俊; Jaques Magdalou; 汪晖

    2010-01-01

    目的 探讨腺病毒介导的人碱性成纤维细胞生长因子(bFGF)单独及与白细胞介素-1受体拮抗蛋白(IL-1Ra)和(或)胰岛素样生长因子(IGF)-1共同转染人骨关节炎(OA)软骨细胞后对软骨细胞的影响.方法 采用单独编码人bFGF的重组腺病毒载体或多重组合的重组腺病毒载体转染单层培养的人OA软骨细胞.6 d后分别检测培养上清液中目的 基因表达和糖胺聚糖(GAG)含量.四甲基偶氮唑蓝(MTT)法及流式细胞术分析软骨细胞的增殖及凋亡.甲苯胺蓝染色及Ⅱ型胶原免疫组织化学染色观察软骨细胞基质的合成.免疫印迹法检测Ⅱ型胶原、基质金属蛋白酶(MMP)-3及其抑制剂-1(TIMP-1)的表达.采用单因素方差分析,并进行组间两两比较.结果 各基因转染后,细胞上清液日的基因表达与OA对照组相比明显增高(P<0.05 ). bFGF单独转染可促进软骨细胞增殖,增加Ⅱ型胶原和蛋白多糖的合成(P<0.05).与bFGF单独转染相比,联合IL-1Ra和(或)IGF-1共同转染后,可降低软骨细胞的凋亡率[分别为:(26.1±1.6)%、(19.4±1.0)%、(18.4±1.1)%、(13.9±1.8)%,P<0.05],进一步增加了软骨基质的生物合成(P<0.05).同时,抑制了MMP-3的表达,增加了TIMP-1的表达.结论 腺病毒介导的bFGF转染入OA软骨细胞可促进细胞增殖,增加基质的合成.与IL-1Ra和IGF-1共转染后可发挥协同作用,进一步增加基质合成;同时,抑制了基质的降解.%Objective To investigate the effect of recombinant adenovirus-mediated basic fibroblast growth factor (bFGF),interleukin-1 receptor antagonist protein (IL-Ra) and insulin-like growth factor(IGF)-1 gene transfection on human osteoarthritis chondrocytes.Methods Monolayer cultures of human osteoarthritis chondrocytes were transfected with recombinant adenovirus carrying genes encoding the following cytokines: human bFGF,IL-1Ra and IGF-1.Six days later,levels of gene expression and glycosaminoglycan (GAG) in culture

  11. Adenovirus-mediated human bone morphogenetic protein 2 gene transfects bone marrow mesenchymal stem cells%腺病毒介导的人骨形态发生蛋白2基因转染骨髓间充质干细胞*☆

    尹承慧; 邱俊钦; 曾昭勋; 陈宗雄

    2013-01-01

      背景:骨髓间充质干细胞作为骨、软骨创伤缺损及退变修复的种子细胞越来越受到关注。目的:分析人骨形态发生蛋白2基因转染对白色封闭群大鼠(SD 大鼠)骨髓间充质干细胞的影响。方法:分离纯化 SD 大鼠骨髓间充质干细胞并体外扩增,通过腺病毒载体介导人骨形态发生蛋白2基因转染骨髓间充质干细胞,分别通过荧光显微镜观察荧光表达情况及蛋白质水平来测定转染后人骨形态发生蛋白2的表达,碱性磷酸酶定量测定鉴定成骨活性及 MTT 法评估人骨形态发生蛋白2转染对骨髓间充质干细胞的影响。结果与结论:从 SD 大鼠骨髓提取物中分离培养的细胞形态为梭形,呈铺路石状、漩涡状生长,经流式细胞仪检测及多项分化能力鉴定符合骨髓间充质干细胞的特征;经转染人骨形态发生蛋白2基因后,骨髓间充质干细胞表达人骨形态发生蛋白2、碱性磷酸酶;MTT 法检测转染人骨形态发生蛋白2基因后,骨髓间充质干细胞增殖能力明显增强(P <0.05)。说明人骨形态发生蛋白2基因转染骨髓间充质干细胞后可以持续、高效表达人骨形态发生蛋白2和碱性磷酸酶,在体外明显促进骨髓间充质干细胞的增殖。%BACKGROUND: Bone marrow mesenchymal stem cel s as the seed cel s for repair of bone and cartilage trauma and degeneration have been paid increasing attention. OBJECTIVE: To investigative the effects of human bone morphogenetic protein 2 gene transfection on Sprague-Dawley rat bone marrow mesenchymal stem cel s. METHODS: Sprague-Dawley rat bone marrow mesenchyal stem cel s were in vitro isolated, purified and amplified. Adenovirus-mediated human bone morphogenetic protein 2 was transfected into bone marrow mesenchymal stem cel s. CD90 and CD45 expression levels were tested by flow cytometry. The successful y packaged virus was transfected into bone marrow mesenchymal

  12. Exogenous p16 gene therapy combined with X-ray irradiation suppresses the growth of human glioma cells

    Hongbing Ma; Zhengli Di; Minghua Bai; Hongtao Ren; Zongfang Li

    2011-01-01

    In this study, we infected human glioma U251 cells with a replication-defective recombinant adeno-virus carrying the p16 gene. This adenovirus constructed was able to transfect exogenous p16 into the human glioma cells efficiently, and direct a high level of p16 protein expression. Tumor-inhibition experiments demonstrated that treatment with the adenovirus-p16 significantly inhibited the growth of glioma cells in vitro as well as the in vivo development of tumors in nude mice bearing a brain glioma. The combination of adenovirus-p16 gene treatment and X-ray irradiation resulted in a greater inhibition of tumor growth. Adenovirus-mediated p16 gene therapy conferred a significant antitumor effect against human glioma cells both in vitro and in vivo, and that there was a synergistic effect when X-ray irradiation was also used.

  13. EFFECTS OF p53 GENE THERAPY COMBINED WITH CYCLOOXYGENASE-2 INHIBITOR ON CYCLOOXYGENASE-2 GENE EXPRESSION AND GROWTH INHIBITION OF HUMAN LUNG CANCER CELLS

    WANG Zhao-Xia; LU Bin-Bin; WANG Teng; YIN Yong-Mei; DE Wei; SHU Yong-Qian

    2007-01-01

    Background Gene therapy by adenovirus-mediated wild-type p53 gene transfer has been shown to inhibit lung cancer growth in vitro, in animal models, and in human clinical trials. The antitumor effect of selective cyclooxygenase (COX)-2 inhibitors has been demonstrated in preclinical studies. However, no information is available on the effects of p53 gene therapy combined with selective COX-2 inhibitor on COX-2 gene expression and growth inhibition of human lung cancer cells. Methods We evaluated the effects of recombinant adenovirus-p53 (Ad-p53) gene therapy combined with selective COX-2 inhibitor on the proliferation, apoptosis, cell cycle arrest of human lung adenocarcinoma A549 cell line, and the effects of tumor suppressor exogenous wild type p53 on COX-2 gene expression. Results Ad-p53 gene therapy combined with selective COX-2 inhibitor celecoxib shows significant synergistic inhibition effects on the growth of human lung adenocarcinoma A549 cell line. Exogenous p53 gene can suppress COX-2 gene expression. Conclusions Significant synergistic inhibition effects of A549 cell line by the combined Ad-p53 and selective COX-2 inhibitor celecoxib may be achieved by enhancement of growth inhibition, apoptosis induction and suppression of COX-2 gene expression. This study provides first evidence that the administration of p53 gene therapy in combination with COX-2 inhibitors might be a new clinical strategy for the treatment or prevention of NSCLC.

  14. 重组腺病毒气管途径反复转染大鼠肺组织人类eNOS基因的转导效果%Efficiency of transduction of recombinant adenovirus-mediated human endothelial nitric oxide synthase gene into lung tissue by repeated intratracheal transfection in rats

    周锦; 曹惠鹃; 张铁铮; 金强; 王俊科

    2012-01-01

    Objective To investigate the efficiency of transduction of recombinant adenovirus-mediated human endothelial nitric oxide synthase (eNOS) into lung tissue by repeated intratracheal transfection in rats.Methods Sixty 3-4 month old male Wistar rats weighing 220-280 g were randomly divided into 2 groups:control group (group C,n =10) and eNOS gene transduction group (group T,n =50).The animals were anesthetized with intraperitoneal 10% chloral hydrate 35 mg/kg,tracheally intubated and mechanically ventilated (VT 2.5 ml,RR 60 bpm,FiO2 1.0).Recombinant adenovirus carrying human eNOS gene was given as gift by Professor Gerard from Texas University,Southwest Medical Center.In group T 50 μl of the recombinant adenovirus in concentration of 5 × 109 PFU/ml was instilled into trachea every 5 minutes for 12 times,while in group C equal volume of vector conservation solution was instilled instead.Pulmonary arterial blood samples were obtained at 2,5,7,14 and 21 d after intratracheal transfection (n =10 at each time point) for determination of serum NO concentration.The animals were immediately sacrificed after blood sample collection for determination of expression of eNOS protein in the lung tissue and RNA.The eNOS expression in the trachea,bronchus,lung,liver,spleen and kidney was detected by immuno-histochemistry.Results The serum NO concentrations were significantly higher at all time points in group T than in group C.The eNOS expression was detected in the epithelial cells of trachea and bronchi,and endothelial cells of alveoli and pulmonary blood vessels in group T but not in group C.eNOS expression was not detected in liver,spleen and kidney at 7 d after intratracheal transfection in group T.Conclusion Human eNOS gene mediated by recombinant adenovirus was transducted into rat lung tissue with normal enzyme activity by repeated intratracheal administration without being detected in distant organs.%目的 重组腺病毒气管途径反复转染大鼠肺组织人类内

  15. Cochlear Gene Therapy

    2012-01-01

    The purpose of this review is to highlight recent advances in cochlear gene therapy over the past several years. Cochlear gene therapy has undergone tremendous advances over the past decade. Beginning with some groundbreaking work in 2005 documenting hair cell regeneration using virallymediated delivery of the mouse atonal 1 gene, gene therapy is now being explored as a possible treatment for a variety of causes of hearing loss.

  16. 腺病毒介导线粒体融合蛋白2基因转染对糖尿病大鼠七氟醚后处理心肌保护作用的影响%Effect of adenovirus-mediated mitofusin-2 gene transfection on sevoflurane postconditioning-induced cardioprotection in diabetic rats

    王祥; 王晓鹏; 韩冲芳; 方爱莉; 杨文曲; 贺建东; 师高翔; 段应磊

    2016-01-01

    Objective To investigate the effect of adenovirus-mediated mitofusin-2 (Adv-Mfn2) gene transfection on sevoflurane postconditioning-induced cardioprotection in diabetic rats.Methods Healthy adult male Sprague-Dawley rats,weighing 210-260 g,aged 3-4 months,in which diabetes mellitus was induced by intraperitoneal streptozotocin 60 mg/kg and confirmed by blood glucose level > 16.7 mmol/L,were used in this study.Fifty rats with diabetes mellitus were randomly divided into 5 groups (n =10 each) using a random number table:sham operation group (S group),ischemia-reperfusion (I/R) group,sevoflurane postconditioning group (SP group),Adv-Mfn2 plus I/R group (M+I/R group),and Adv-Mfn2 plus sevoflurane postconditioning group (M+SP group).Myocardial ischemia was induced by 30 min occlusion of the left anterior descending branch of the coronary artery followed by 120 min reperfusion.In SP and M+SP groups,sevoflurane was inhaled for 5 min with the end-tidal concentration of 2.5% starting from 1 min before reperfusion.Adv-Mfn2 2× 1010pfu/kg was injected via the sublingual vein at 1 min after streptozotocin injection in M+I/R group and M+SP group.The blood samples were collected from the abdominal artery at 120 min of reperfusion for determination of the creatine kinase-MB (CK-MB) activity and cardiac troponin Ⅰ (cTnI) concentration in serum.The rats were then sacrificed,and their hearts were removed.Myocardial specimens were obtained for determination of cell apoptosis,and the apoptosis index (AI) was calculated.Myocardial specimens were obtained from the apex for determination of Mfn2 expression (by Western blot) and for examination of the pathological changes which were scored.Results Compared with S group,the CK-MB activity and cTnI concentration in serum,AI and pathological scores were significantly increased,and Mfn2 expression was significantly down-regulated in I/R,SP,M+I/R and M+ SP groups (P<0.05).Compared with I/R group,the CK-MB activity and c

  17. History of gene therapy.

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality.

  18. Gene Therapy of Cancerous Diseases

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  19. Regulated Gene Therapy.

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  20. Gene therapy: An overview

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  1. Gene therapy for hemophilia.

    Chuah, M K; Evens, H; VandenDriessche, T

    2013-06-01

    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia.

  2. Gene therapy in periodontics.

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  3. Gene therapy for brain tumors.

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  4. Intra-arterial adenoviral mediated tumor transfection in a novel model of cancer gene therapy

    Siemionow Maria

    2006-08-01

    Full Text Available Abstract Background The aim of the present study was to develop and characterize a novel in vivo cancer gene therapy model in which intra-arterial adenoviral gene delivery can be characterized. In this model, the rat cremaster muscle serves as the site for tumor growth and provides convenient and isolated access to the tumor parenchyma with discrete control of arterial and venous access for delivery of agents. Results Utilizing adenovirus encoding the green fluorescent protein we demonstrated broad tumor transfection. We also observed a dose dependant increment in luciferase activity at the tumor site using an adenovirus encoding the luciferase reporter gene. Finally, we tested the intra-arterial adenovirus dwelling time required to achieve optimal tumor transfection and observed a minimum time of 30 minutes. Conclusion We conclude that adenovirus mediated tumor transfection grown in the cremaster muscle of athymic nude rats via an intra-arterial route could be achieved. This model allows definition of the variables that affect intra-arterial tumor transfection. This particular study suggests that allowing a defined intra-tumor dwelling time by controlling the blood flow of the affected organ during vector infusion can optimize intra-arterial adenoviral delivery.

  5. Delivery Systems in Gene Therapy

    Liu Hu; Anas El-Aneed; Cui Guohui

    2005-01-01

    1 Gene therapy Gene therapy includes the treatment of both genetically based and infectious diseases by introducing genetic materials which have therapeutic effects[1~3]. In its simplest terms, a wild type gene (which is non-functional in the cell leading to disease development) is introduced into the somatic cell lacking this gene to restore the normal gene function in this cell. Many gene therapy strategies, however, utilize genes to destroy specific cells.

  6. GENIS: gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo.

    Barton, Kenneth N; Tyson, Donald; Stricker, Hans; Lew, Young S; Heisey, Gregory; Koul, Sweaty; de la Zerda, Alberto; Yin, Fang-Fang; Yan, Hui; Nagaraja, Tavarekere N; Randall, Kelly Ann; Jin, Guk Kim; Fenstermacher, Joseph D; Jhiang, Sissy; Ho Kim, Jae; Freytag, Svend O; Brown, Stephen L

    2003-09-01

    With the goal of optimizing adenovirus-mediated suicide gene therapy for prostate cancer, we have developed a method based on the human sodium iodide symporter (hNIS) that allows for noninvasive monitoring of adenoviral vectors and quantification of gene expression magnitude and volume within the prostate. A replication-competent adenovirus (Ad5-yCD/mutTK(SR39)rep-hNIS) coexpressing a therapeutic yeast cytosine deaminase (yCD)/mutant herpes simplex virus thymidine kinase (mutTK(SR39)) fusion gene and the hNIS gene was developed. Ad5-yCD/mutTK(SR39)rep-hNIS and a replication-defective hNIS adenovirus (rAd-CMV-FLhNIS) were injected into contralateral lobes of the dog prostate and hNIS activity was monitored in live animals following administration of Na(99m)TcO(4) using gamma camera scintigraphy. Despite the close proximity of the urinary bladder, (99m)TcO(4)(-) uptake was readily detected in the prostate using viral dose levels (10(10) to 10(12) viral particles) that have been safely administered to humans. Due to its rapid clearance and short physical half-life (6 h), it was possible to obtain daily measurements of (99m)TcO(4)(-) uptake in vivo, allowing for dynamic monitoring of reporter gene expression within the prostate as well as biodistribution throughout the body. High-resolution autoradiography of prostate sections coupled with 3D reconstruction of gene expression demonstrated that the magnitude and volume of gene expression could be quantified with submillimeter resolution. Implementation of the GENIS (gene expression of Na/I symporter) technology in the clinic will facilitate optimization of future human gene therapy trials.

  7. Gene therapy for skin diseases.

    Gorell, Emily; Nguyen, Ngon; Lane, Alfred; Siprashvili, Zurab

    2014-04-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene therapy widely available clinically.

  8. Gene Therapy and Children (For Parents)

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy and ... by a "bad" gene. continue Two Types of Gene Therapy The two forms of gene therapy are: Somatic ...

  9. Gene Therapy for Skin Diseases

    2014-01-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene thera...

  10. Gene Therapy for Diseases and Genetic Disorders

    ... Therapy - Nucleic Acids Molecular Therapy - Oncolytics Home ASGCT Gene Therapy for Diseases Gene Therapy has made important medical ... Among the most notable advancements are the following: Gene Therapy for Genetic Disorders Severe Combined Immune Deficiency (ADA- ...

  11. Adenovirus-mediated p53 gene therapy in human nasopharyngeal cancer%重组人p53腺病毒基因药物对人鼻咽癌细胞的抑制实验

    敖敏; 何刚

    2010-01-01

    目的 探索p53基因在鼻咽癌基因治疗方面的可行性.方法 以人鼻咽癌CNE细胞株为实验对象,将重组人p53腺病毒药物(1010rAd/p53)转染人鼻咽癌CNE细胞,用MTT比色实验及流式细胞仪实验的方法进行体外实验,观察重组人p53腺病毒药物(rAd/p53)对人鼻咽癌CNE细胞体外生长的影响.结果 各浓度重组人p53腺病毒药物(1010rAd/p53、109rAd/p53、108rAd/p53、107rAd/p53)对人鼻咽癌CNE细胞生长有抑制.尤以1010rAd/p53明显.转染3天后,重组人p53腺病毒药物(rAd/p53)诱导人鼻咽癌CNE细胞明显凋亡.结论 重组人p53腺病毒药物(rAd/p53)对人鼻咽癌CNE细胞生长能有效抑制,为鼻咽癌的基因治疗提供了实验依据.

  12. 重组人p53腺病毒药物对人喉癌细胞的抑制实验%ADENOVIRUS-MEDIATED P53 GENE THERAPY OF HUMAN LARYNGEAL CANCER

    敖敏; 何刚; 梁传余

    2007-01-01

    [目的]探索p53基因在喉癌基因治疗方面的可行性.[方法]以人喉癌细胞系Hep-2为实验对象,将重组人p53腺病毒药物(rAd/p53)转染Hep-2细胞,体外实验观察重组人p53腺病毒药物(rAd/p53)对Hep-2细胞生长的影响.[结果]各浓度重组人p53 腺病毒药物(rAd/p53)(1010、109、108、107)对Hep-2生长均有抑制.尤以1010明显.转染3d后,重组人p53腺病毒药物(rAd/p53)诱导Hep-2细胞明显凋亡.[结论]重组人p53腺病毒药物(rAd/p53)对Hep-2细胞生长能有效抑制,能明显诱导其凋亡,为喉癌的治疗提供了临床前依据.

  13. Alphaviruses in Gene Therapy

    Kenneth Lundstrom

    2009-04-01

    Full Text Available Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV, Sindbis virus (SIN and Venezuelan Equine Encephalitis (VEE virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases.

  14. Gene therapy of liver cancer

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  15. A new system for regulated functional gene expression for gene therapy applications: nuclear delivery of a p16INK4A-estrogen receptor carboxy terminal fusion protein only in the presence of estrogen.

    Tamura, Tomohiro; Kanuma, Tatsuya; Nakazato, Tomoko; Faried, Leri S; Aoki, Hiroshi; Minegishi, Takashi

    2010-04-01

    The clinical use of gene therapy requires tight regulation of the gene of interest and functional expression only when it is needed. Thus, it is necessary to develop ways of regulating functional gene expression with exogenous stimuli. Many regulatable systems are currently under development. For example, the tetracycline-dependent transcriptional switch has been successfully employed for in vivo preclinical applications. However, there are no examples of regulatable systems that have been employed in human clinical trials. In the present study, we established an adenovirus-delivered functional gene expression system that is regulated by estrogen. This system uses p16INK4A fused at its C-terminus to the ligand-binding domain of the estrogen receptor (DeltaERalpha). We were able to establish cell lines expressing this gene wherein the functional expression of p16INK4A is estrogen-dependent and causes the arrest of several ovarian cancer cell lines. This inducible and adenovirus-mediated gene transfer system may allow gene therapy using nuclear functioning genes in postmenopausal or ovariectomized women.

  16. ADENOVIRUS-MEDIATED WILD-TYPE P53 EXPRESSION SUPPRESSES GROWTH OF LUNG ADENOCARCINOMA CELLS

    Li Jian; Xia Yongjing; Jiang Lei; Li Hongxia; Hu Yajun; Yi Lin; Hu Shixue; Xu Hongji

    1998-01-01

    Objective: To study the growth suppression of lung adenocarcinoma cell by the introduction of wild-type P53gene and explore a gene therapy approach for lung adenocarcinoma. Methods: A replication-deficient adenovirus vector encoding a wild-type P53 was constructed and transfected into the cultured human lung adenocarcinoma cell line GLC-82. The efficiency of gene transfection and expression was detected by immunochemical staining and polymerase chain reaction. The cell growth rate and cell cycle were analysed by cell-counting and flow cytometry. Results: Wild-type P53 gene could be quickly and effectively transfected into the cells by adenovirus vector. Wild-type P53 expression could inhibit GLC-82 cell proliferation and induce apoptosis.Conclusion: The results indicated that recombinant adenovirus expressing wild-type P53 might be useful vector for gene therapy of human lung adenocarcinoma.

  17. Human Gene Therapy: Genes without Frontiers?

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  18. Gene therapy in gastric cancer

    Xu Chang-tai; Guo Xue-gang; Pan Bo-rong

    2003-01-01

    @@ 1 Introduction We have reviewed the gene therapy in gastrointestinal diseases[1]. Gastric cancer is common in China[2~20] ,and its early diagnosis andtreatment are still difficult up to now[13~36]. The expression of anexogenous gene introduced by gene therapy into patients with gliomascan be monitored non- invasively by positron- emission tomography[4]. In recent years, gene study in cancer is a hotspot, and great progress hasbeen achieved[33~41].

  19. 腺病毒介导的hCTLA4-Ig和FasL基因转移诱导大鼠同种异体肾移植长期存活的作用%Adenovirus-mediated CTLA4-Ig and FasL gene transfer induces long-term survival of renal allografts in rats

    平季根; 温端改; 侯建全; 吕金星; 严春寅

    2009-01-01

    Objective To investigate the potential role of adenovirus-CTLA4-Ig and adenovirus-FasL recombinant in inducing transplantation tolerance using renal-graft model and its related mecha-nisms. Methods Allogeneic kidney transplants were performed between SD donors and Wistar recipients. The experimental rats were divided into 4 groups. In Ad-CTLA4-Ig group and Ad-CTLA4-Ig + Ad-FasL group, the donor kidney of the SD rats was locally transfected by Ad-CTLA4-Ig and Ad-CTLA4-Ig + Ad-FasL with the dose of 1 × 10~9-5 × 10~9 PFUml respectively and then transplanted to the recipient Wistar rats. In control group, the kidneys of the SD rats were directly transplanted to Wistar rats without any thera-py. The rats treated with Ad-EGFP served as empty vector group. After kidney transplantation, the survival time and the kidney function in each group were observed. Kidney allografts were evaluated by HE staining and immunohistochemical staining. The pathological features and ultrastructures of the grafts were ob-served. Results The survival time of allografts were prolonged significantly in recipients receiving Ad-CT-LA4-Ig + Ad-FasL with a mean survival time of (64.67 ± 6.41) days ,significantly longer than that in Ad-CTLA4-Ig treated group (31.33±6.77) days,control group (8.17 ± 1.17) days and empty vector group (8.00 ± 1.55) days (P < 0.01). After transplantation, the levels of creatinine in serum were significantly higher in control group and empety vector group than in Ad-CTLA4-Ig + Ad-FasL treated group and Ad-CTLA4-Ig treated group. Conclusion Adenoviral vectors can be successfully transduced into rat kidneys with the CTLA4-Ig and FasL cDNA. Ad-mediated transduction of the CTLA4-Ig and FasL gene can signifi-cantly prolong the survival of rat renal allograft. The induced tolerance is donor specific, and may result from regulatory T cells and the deletion of alloreactive T cells.%目的 探讨腺病毒介导hCTLA4-Ig和FasL基因转移延长异基因大鼠肾移植物

  20. Immunotherapy and gene therapy.

    Simpson, Elizabeth

    2004-02-01

    The Immunotherapy and Gene Therapy meeting of the Academy of Medical Sciences reviewed the state-of-the-art and translational prospects for therapeutic interventions aimed at killing tumor cells, correcting genetic defects and developing vaccines for chronic infections. Crucial basic science concepts and information about dendritic cells, the structure and function of T-cell receptors, and manipulation of the immune response by cytokine antagonists and peptides were presented. This information underpins vaccine design and delivery, as well as attempts to immunomodulate autoimmune disease. Results from studies using anticancer DNA vaccines, which include appropriate signals for both the innate and adaptive immune response, were presented in several talks. The vaccines incorporated helper epitopes and cancer target epitopes such as immunoglobulin idiotypes (for lymphomas and myelomas), melanoma-associated antigens (for melanoma and other solid tumors) and minor histocompatibility antigens (for leukemia). The results of using vaccines employing similar principles and designed to reduce viral load in HIV/AIDS patients were also presented. The introduction of suicide genes incorporating the bacterial enzyme nitroreductase gene (ntr) targeted at tumor cells prior to administration of the prodrug CB-1954, converted by ntr into a toxic alkylating agent, was discussed against the background of clinical trials and improved suicide gene design. The introduction into hematopoietic stem cells of missing genes for the common gamma-chain, deficiency of which causes severe combined immunodeficiency (SCID), used similar retroviral transduction. The outcome of treating six SCID patients in the UK, and ten in France was successful immune reconstitution in the majority of patients, but in two of the French cases a complication of lymphoproliferative disease due to insertional mutagenesis was observed. The adoptive transfer of T-cells specific for minor histocompatibility antigens (for

  1. In vivo comparison of transduction efficiency with recombinant adenovirus-mediated p53 in a human colon cancer mouse model by different delivery routes%rAd/p53不同给药途径治疗人类结肠癌荷瘤鼠模型p53导入效率的在体评价

    Qi Xie; Biling Liang; ling Zhang; Qihua Yang; Xiongfei Gu; Jing Xu; Mingwang Chen

    2008-01-01

    Objective: To evaluate transduction efficiency with recombinant adenovirus-mediated p53 (rAd/p53) therapy in a human colon cancer mouse model by intra-tumoral injection and intra-arterial delivery. Methods: The tumor pieces of human colon cancer SW480 were implanted in the livers of 45 nude mice. These mice were administrated with rAd/p53 by intratu-moral injection and intra-arterial delivery. After 24 h, 48 h and 72 h rAd/p53 administration, 5 mice each group were killed with over anesthesia and their livers were removed. P53 expression and apoptosis of tumor and liver were assessed. Results: P53 expression and apoptosis of intratumoral administration group was higher than tail vein group and control group. Apoptosis and p53 expression of livers in three groups had no significant difference. Conclusion: p53 gene transduction efficiency and anticancer effect of tAd/p53 is much better by intra-tumoral injection than intra-arterial delivery.

  2. Construction of recombinant adenovirus vector containing AFP and generation of adenovirus-mediated AFP gene modified dendritic cells vaccine%含人AFP基因重组腺病毒载体的构建及其转染树突状细胞瘤苗的制备

    杨静悦; 曹大勇; 刘文超; 斯小明

    2009-01-01

    Objective:To construct recombinant adenovirus vectors containing human AFP genes,and infect dendritic cell. Methods: Full length AFP cDNAs were subcloned into pIND vector,followed by being cloned into shuttle2 vector.The AFP gene fragments resulted from the shuttle2-AFP digested with PI-Sce and I-Ceu were linked to the linear adeno-X virus DNA.After packaged with HEK293 cells,the adenovirus expression vector was obtained.The plasmid pAdeno-AFP was identified by endonuclease and PCR.After dendritic cells were infected pAdeno-AFP,the surface molecules of pAdeno-AFP/DC were analysed by flow cytometry.AFP levels in culture supernatant of pAdeno-AFP/DC were measured by ELISA. Results: AFP gene in the inserted DNA of adeno-AFP was confirmed by PCR,and predictive fragments proved by restriction enzyme digestion analysis were exhibited.All the above results indicated that human AFP gene had been connected with pAdeno-X vectors correctly.The recombinant adenovirus vector of human AFP gene packaged in HEK293 cells,it will be used to introduce the target gene into dendritic cell.pAdeno-AFP/DC were able to upregulate CD1a,CD11c,CD80,CD86 and HLA-DR.And pAdeno-AFP/DC could secrete high level of AFP in vitro. Conclusion: The recombinant adenovirus vector of human AFP gene have been constructed successfully.The established AFP -DC vaccine may be a tool of the hepatocellular carcinoma immunotherapy,and it will be the foundation of future clinical use of DC vaccine.%目的:构建含人AFP基因的腺病毒载体,体外转染树突状细胞,制备树突状细胞肝癌瘤苗.方法: 将AFP基因亚克隆到pIND 载体和Shuttle2载体中,构建穿梭载体Shuttle2-AFP.用PI-Sce Ⅰ和I-CeuⅠ双酶切后将所获AFP基因片段再与线性化的腺病毒载体pAdeno-X连接,构成pAdeno-AFP重组腺病毒载体.其后,用重组腺病毒载体转染HEK293细胞,包装腺病毒表达载体.通过酶切、PCR对腺病毒载体进行鉴定.包装好的重组病毒载体pAdeno-AFP体外

  3. Adenovirus-Mediated IL-10 Gene for the Treatment of Autoimmune Inner Ear Disease-an Experimental Study%腺病毒介导的白细胞介素-10治疗自身免疫性内耳病的实验研究

    蔡文君; 谭长强

    2015-01-01

    Objective To evaluate therapeutic effects of transferring recombinant replication -defective ade‐novirus vector of interleukin 10(IL -10) gene into inner ear of guinea pig for the treatment of autoimmune inner ear disease .Methods The conspecific crude inner ear antigens (CIEAgs) were prepared and used to immunize guinea pigs with Freund's adjuvant that resulted autoimmune inner ear diseases (AIED) in 20 animals .Then they were ran‐domly divided into three groups .Through the way of round window membrane micro -injection ,adenovirus vector containing IL -10(Ad -IL -10) gene were implanted in group A(ten animals) ,recombinant adenovirus with yellow fluorescent protein(Ad -EYFP) marked was implanted in group B(five animals) ,and artificial perilymph were implanted in group C( five animals) .Seven days later ,auditory brain-stem response (ABR) thresholds were determined ,the guinea pig inner ears were obtained ,and the immunohistochemistry staining were perform for detec‐ting adenovirus vector transfection with immunofluorescence and the gene product interleukin 10 expressions with enzyme immunohistochemistry .Results Immunohistochemistry staining showed that the adenovirus carrying IL -10 gene could transfer the psalterial cord ,spiral ligament ,Corti organ ,spiral ganglion ,cochlear axis vessels and co‐chlear bone paries .It could generate gene product (IL -10 ) in same sites .The mean ABR thresholds were increased in each group after modeling .The differences were statistically significant .After injection of the inner ear ,the mean ABR thresholds of group A were lower than those of group B and group C .The light microscopic revealed the im‐munological inflammatory response were lighter than in group B and group C .Conclusion The adenovirus could transfer IL -10 gene into inner ear of guinea pig and express its products in many parts of inner ear .The immunity regulating gene can reduce the immunity damage and hearing functional impairment .%目的:研

  4. Gene therapy for gastric diseases.

    Fumoto, Shintaro; Nishi, Junya; Nakamura, Junzo; Nishida, Koyo

    2008-01-01

    Gene therapy for gastric cancer and gastric ulcer is a rationalized strategy since various genes correlate with these diseases. Since gene expressions in non-target tissues/cells cause side effects, a selective gene delivery system targeted to the stomach and/or cancer must be developed. The route of vector transfer (direct injection, systemic, intraperitoneal, gastric serosal surface and oral administration) is an important issue which can determine efficacy and safety. Strategies for cancer...

  5. Journey from Jumping Genes to Gene Therapy.

    Whartenby, Katharine A

    2015-01-01

    Gene therapy for cancer is a still evolving approach that resulted from a long history of studies into genetic modification of organisms. The fascination with manipulating gene products has spanned hundreds if not thousands of years, beginning with observations of the hereditary nature of traits in plants and culminating to date in the alteration of genetic makeup in humans via modern technology. From early discoveries noting the potential for natural mobility of genetic material to the culmination of clinical trials in a variety of disease, gene transfer has had an eventful and sometimes tumultuous course. Within the present review is a brief history of the biology of gene transfer, how it came to be applied to genetic diseases, and its early applications to cancer therapies. Some of the different types of methods used to modify cells, the theories behind the approaches, and some of the limitations encountered along the way are reviewed.

  6. Delivery systems for gene therapy

    Shrikant Mali

    2013-01-01

    Full Text Available The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.

  7. Downregulation of matrix metalloproteinase-2 (MMP-2) utilizing adenovirus-mediated transfer of small interfering RNA (siRNA) in a novel spinal metastatic melanoma model.

    Tsung, Andrew J; Kargiotis, Odysseas; Chetty, Chandramu; Lakka, Sajani S; Gujrati, Meena; Spomar, Daniel G; Dinh, Dzung H; Rao, Jasti S

    2008-03-01

    Matrix metalloproteinases (MMPs) comprise a class of secreted zinc-dependent endopeptidases implicated in the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix (ECM) and basement membrane. Matrix metalloproteinase-2 (MMP-2) has been detected in high levels and correlates with invasiveness in human melanoma. We have studied the effect of adenovirus-mediated transfer of small interfering RNA (siRNA) against MMP-2 in the human melanoma cell line A2058. The delivery of these double-stranded RNA molecules represents an efficient technology in silencing disease-causing genes with known sequences at the post-transcriptional level. siRNA against MMP-2 mRNA (Ad-MMP-2) was found to decrease MMP-2 protein expression and activity in melanoma cells as demonstrated by western blotting and gelatin zymography. Furthermore, infection of cells with Ad-MMP-2 inhibited cellular migration and invasion as indicated by spheroid and matrigel assays. We also observed dose-dependent suppression of vascular network formation in an angiogenesis assay. Finally, we developed a nude mouse spinal metastatic model to investigate the local effects of tumor metastasis. Intravenous tail vein injection with Ad-MMP-2 on days 5, 9 and 11 after tumor implantation resulted in complete retention of neurological function as compared to control and scrambled vector (Ad-SV)-treated groups that showed complete paraplegia by day 14+/-2 days. Hematoxylin and eosin staining revealed decreased tumor size in the Ad-MMP-2-treated animals. This novel experimental model revealed that adenoviral-mediated transfer of RNA interference against MMP-2 results in the retention of neurological function and significantly inhibited tumor growth.

  8. Gene therapy in ocular diseases

    Singh Vijay

    2002-01-01

    Full Text Available Gene therapy is a novel form of drug delivery that enlists the synthetic machinery of the patient′s cells to produce a therapeutic agent. Genes may be delivered into cells in vitro or in vivo utilising viral or non-viral vectors. Recent technical advances have led to the demonstration of the molecular basis of various ocular diseases. Ocular disorders with the greatest potential for benefit of gene therapy include hereditary diseases such as retinitis pigmentosa, tumours such as retinoblastoma or melanoma, and acquired proliferative and neovascular retinal disorders. Gene transfer into ocular tissues has been demonstrated with growing functional success and may develop into a new therapeutic tool for clinical ophthalmology in future.

  9. Adenovirus Mediated BIMS Transfer Induces Growth Supression and Apoptosis in Raji Lymphoma Cells

    ZHAO Ya Ning; LI Qiang

    2014-01-01

    Objective To transfer pro-apoptotic BIM directly into tumor cells bypass the complicated biological processes of BIM activation so as to reverse the chemoresistance of cancer cells. Methods BIMS was specifically amplified from HL-60 cells by RT-PCR, confirmed to be correct by sequencing and cloned into shuttle vector pAdTrack-CMV carrying a green fluorescence protein gene to generate a recombinant plasmid pAdTrack-CMV-BIMS. This plasmid and adenovirus backbone plasmid pAdEasy-1 were linearized and electroporated into E.coli BJ5183 host bacteria to mediate homologous recombination. The positive clone was identified by restrict endonuclease digestion. The recombinant pAdEasy-CMV-BIMS was transferred into HEK293 cells for packaging and amplification. The successful construction of recombinant human BIMS adenovirus (Ad-BIMS) was demonstrated by Western blot. To test whether Ad-BIMS has the capability of inducing apoptosis of tumor cells, Ad-BIMS was used to infect GC resistant Burkitt lymphoma Raji cells. Results After infected for 2-5 days, BIMS expression in Raji cells was detected by RT-PCR and Western blot. The significant growth retardation and apoptosis of Raji cells were also observed by MTT and flow cytometry. Conclusion These results indicated that BIMS might be a potential candidate of gene therapy for chemoresistant tumor cells.

  10. Gene therapy and respiratory neuroplasticity.

    Mantilla, Carlos B

    2017-01-01

    Breathing is a life-sustaining behavior that in mammals is accomplished by activation of dedicated muscles responsible for inspiratory and expiratory forces acting on the lung and chest wall. Motor control is exerted by specialized pools of motoneurons in the medulla and spinal cord innervated by projections from multiple centers primarily in the brainstem that act in concert to generate both the rhythm and pattern of ventilation. Perturbations that prevent the accomplishment of the full range of motor behaviors by respiratory muscles commonly result in significant morbidity and increased mortality. Recent developments in gene therapy and novel targeting strategies have contributed to deeper understanding of the organization of respiratory motor systems. Gene therapy has received widespread attention and substantial progress has been made in recent years with the advent of improved tools for vector design. Genes can be delivered via a variety of plasmids, synthetic or viral vectors and cell therapies. In recent years, adeno-associated viruses (AAV) have become one of the most commonly used vector systems, primarily because of the extensive characterization conducted to date and the versatility in targeting strategies. Recent studies highlight the power of using AAV to selectively and effectively transduce respiratory motoneurons and muscle fibers with promising therapeutic effects. This brief review summarizes current evidence for the use of gene therapy in respiratory disorders with a primary focus on interventions that address motor control and neuroplasticity, including regeneration, in the respiratory system.

  11. Ethics of Gene Therapy Debated.

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  12. Gene Therapy for Bone Engineering

    Elizabeth eRosado Balmayor

    2015-02-01

    Full Text Available Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures needs to be taken by physicians. It is important to combine cells, scaffolds and growth factors and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.

  13. Gene based therapies for kidney regeneration

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-01-01

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molec

  14. Gene therapy for gastric cancer: A review

    Chao Zhang; Zhan-Kui Liu

    2003-01-01

    Gastric cancer is common in China, and its early diagnosis and treatment are difficult. In recent years great progress has been achieved in gene therapy, and a wide array of gene therapy systems for gastric cancer has been investigated. The present article deals with the general principles of gene therapy and then focuses on how these principles may be applied to gastric cancer.

  15. Gene Therapy : myth or reality ?

    Fischer, Alain

    2016-01-01

    International audience; Gene therapy has become a reality, although still a fragile one. Clinical benefit has beenachieved over the last 17 years in a limited number of medical conditions for whichpathophysiological studies determined that they were favorable settings. They includeinherited disorders of the immune system, leukodystrophies, possibly hemoglobinopathies,hemophilia B, and retinal dystrophies. Advances in the treatment of B-cell leukemiasand lymphomas have also been achieved. Adva...

  16. Gene therapy on demand: site specific regulation of gene therapy.

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  17. Phoenix rising: gene therapy makes a comeback

    Maria P.Limberis

    2012-01-01

    Despite the first application of gene therapy in 1990,gene therapy has until recently failed to meet the huge expectations set forth by researchers,clinicians,and patients,thus dampening enthusiasm for an imminent cure for many life-threatening genetic diseases.Nonetheless,in recent years we have witnessed a strong comeback for gene therapy,with clinical successes in young and adult subjects suffering from inherited forms of blindness or from X-linked severe combined immunodeficiency disease.In this review,various gene therapy vectors progressing into clinical development and pivotal advances in gene therapy trials will be discussed.

  18. Advancement and prospects of tumor gene therapy

    Chao Zhang; Qing-Tao Wang; He Liu; Zhen-Zhu Zhang; Wen-Lin Huang

    2011-01-01

    Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucieotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.

  19. STATE-OF-THE-ART HUMAN GENE THERAPY: PART II. GENE THERAPY STRATEGIES AND APPLICATIONS

    2014-01-01

    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene...

  20. Gene therapy for prostate cancer.

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  1. 体外骨髓基质干细胞中腺病毒介导的胶质细胞源性神经营养因子基因的表达及其生物学活性%Expression of adenovirus-mediated glial cell line-derived neurotrophic factor gene in bone marrow stromal cells in vitro and its biological activity

    彭松林; 方煌; 赵红卫; 蔡卫东; 黎逢峰; 胡宁; 陈安民

    2005-01-01

    背景:骨髓基质干细胞(bone marrow stromal cells,BMSCs)是外源性目的基因的良好靶细胞,在脊髓损伤的修复中具有良好的应用前景.目的:观察重组腺病毒介导的胶质细胞源性神经营养因子(glial cellline-derived neurotrophic factor,GDNF)基因在体外培养的骨髓基质干细胞中的表达,并探讨其生物学活性.设计:以细胞为研究对象,对照观察性研究.单位:一所大学医院骨科实验室.材料:实验于2004-03/06在华中科技大学同济医学院附属同济医院骨科实验室完成.SD大鼠24只,雌雄不限,体质量(180±20)g.干预:用重组腺病毒载体Adv-GDNF感染体外培养的BMSCs,并与脊髓背根神经节共培养.免疫荧光化学的方法检测BMSCs中的GDNF的表达,提取细胞总RNA进行RT-PCR扩增GDNF基因,应用ELISA方法检测其培养上清中的GDNF含量,并通过与脊髓背根神经节共培养观测GDNF的活性.主要观察指标:主要结局:①RT-PCR.②免疫荧光结果.③GDNF的体外活性.次要结局:①BMSCs的培养与鉴定.②ELISA检测蛋白表达与时间的关系.结果:免疫荧光显示Adv-GDNF感染BMSCs 48 h后即有GDNF的表达,体外培养的BMSCs经Adv-GDNF转染后有GDNF的转录,其培养上清应用ELISA方法分析,在感染24 h后即有GDNF的表达,并可持续5~7 d的高峰.Adv-GDNF感染的BMSCs的培养液上清可以促进脊髓背根神经节大量轴突的生长.结论:Adv-GDNF基因可以在BMSCs中稳定、高效表达,其表达的GDNF具有促进轴突生长的活性,为GDNF基因治疗脊髓损伤的研究奠定了基础.%BACKGROUND: Bone marrow stromal cells(BMSCs) are the ideal gene target cells and will have a bright future in the gene therapy of spinal cord injury.OBJECTIVE :To detect the expression of glial cell line - derived neurotrophic factor(GDNF) gene after BMSCs were infected by adenovirus-medialed GDNF (Adv-GDNF) in vitro and to explore its biological activity.DESIGN: A randomized controlled trial

  2. Combined adenovirus-mediated artificial microRNAs targeting mfgl2, mFas, and mTNFR1 protect against fulminant hepatic failure in mice.

    Dong Xi

    Full Text Available Hepatitis B virus (HBV-related acute-on-chronic liver failure (ACLF has a poor prognosis with high in-hospital mortality. Hepatic and circulating inflammatory cytokines, such as fibrinogen like protein 2 (fgl2, FasL/Fas, and TNFα/TNFR1, play a significant role in the pathophysiology of ACLF. This study aimed to investigate the therapeutic effect of recombinant adenoviral vectors carrying constructed DNA code for non-native microRNA (miRNA targeting mouse fgl2 (mfgl2 or both mFas and mTNFR1 on murine hepatitis virus (MHV-3-induced fulminant hepatitis in BALB/cJ mice. Artificial miRNA eukaryotic expression plasmids against mfgl2, mFas, and mTNFR1 were constructed, and their inhibitory effects on the target genes were confirmed in vitro. pcDNA6.2-mFas-mTNFR1- miRNA,which expresses miRNA against both mFas and mTNFR1 simultaneously,was constructed. To construct a miRNA adenovirus expression vector against mfgl2, pcDNA6.2-mfgl2-miRNA was cloned using Gateway technology. Ad-mFas-mTNFR1- miRNA was also constructed by the same procedure. Adenovirus vectors were delivered by tail-vein injection into MHV-3-infected BALB/cJ mice to evaluate the therapeutic effect. 8 of 18 (44.4% mice recovered from fulminant viral hepatitis in the combined interference group treated with Ad-mfgl2-miRNA and Ad-mFas-mTNFR1-miRNA. But only 4 of 18 (22.2% mice receiving Ad-mfgl2-miRNA and 3 of 18 (16.7% mice receiving Ad-mFas-mTNFR1- miRNA survived. These adenovirus vectors significantly ameliorated inflammatory infiltration, fibrin deposition, hepatocyte necrosis and apoptosis, and prolonged survival time. Our data illustrated that combined interference using adenovirus-mediated artificial miRNAs targeting mfgl2, mFas, and mTNFR1 might have significant therapeutic potential for the treatment of fulminant hepatitis.

  3. Updates on current advances in gene therapy.

    Tani, Jowy; Faustine; Sufian, Jomiany Tani

    2011-03-01

    Gene therapy is the attempt to treat diseases by means of genetic manipulation. Numerous challenges remain to be overcome before it becomes available as a safe and effective treatment option. Retroviruses and adenoviruses are among the most commonly used viral vectors in trials. The retrovirus introduces the gene it carries into the target cell genome while the adenovirus introduces the gene into the target cell nucleus without incorporating it into the target cell genome. Other viral vectors such as adeno-associated viruses, pseudotyped viruses and herpes simplex viruses, are also gaining popularity. Proposed non-viral methods for gene transfer include physical methods and the employment of chemical vectors (lipoplexes, polyplexes and inorganic nanoparticles). Recent studies have investigated potential applications of gene therapy in correcting genetic diseases, treating malignant disorders and for treatment of other diseases. Trials on gene therapy for SCID and Leber's congenital amaurosis have achieved considerable success, but the widely publicized adverse reaction in X-linked SCID patient receiving gene therapy raised concerns for safety profile of gene therapy. For that, several methods of improving safety and efficacy of gene therapy have been proposed. At present, the three main gene therapy strategies for treatment of cancer are application to oncolytic viruses, suicide-gene therapy and gene-based immunotherapy. Gendicine, the first approved anticancer drugs based on the use of gene therapy principle, is based on the use of oncolytic viruses. More evidence for wider clinical applications of gene therapy are expected as more gene therapy studies progress from the preclinical phase to clinical trial.

  4. Gene Therapy In Oral Cancer : An Overview

    2010-01-01

    The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  5. Gene transfer therapy in vascular diseases.

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  6. Targeting Herpetic Keratitis by Gene Therapy

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  7. Gene Therapy for Post-Traumatic Osteoarthritis

    2015-10-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0498 TITLE: Gene Therapy for Post-Traumatic Osteoarthritis PRINCIPAL INVESTIGATOR: Steven C...COVERED 30Sept 2014 - 29 Sept 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Gene Therapy for Posttraumatic Osteoarthritis 5b. GRANT NUMBER...Osteoarthritis (OA) Gene Therapy Equine Adeno-Associated Virus (AAV) Interleukin-1 Receptor Antagonist (IL-1Ra) Post-traumatic OA (PTOA) Self

  8. Adenovirus-mediated and tumor-specific transgene expression of the sodium-iodide symporter from the human telomerase reverse transcriptase promoter enhances killing of lung cancer cell line in vitro

    SHI Yi-zhen; ZHANG Jun; LIU Zeng-li; DU Shou-ying; SHEN Yong-mei

    2010-01-01

    Background The sodium-iodide symporter (NIS) protein can mediate the active radioiodine uptake.The human telomerase reverse transcriptase (hTERT) promoter is known to be selectively reactivated in majority of tumors and hence could be used for tumor targeting.We constructed a recombinant adenovirus containing the human sodium iodide symporter (hNIS) gene directed by the hTERT promoter, characterized the ability of infected cells in uptaking iodide, and explored the therapeutic efficacy of 131I in a lung cancer cell line in vitro.Methods The hTERT promoter was amplified by PCR from DNA isolated from log-phase HepG2 cells, subcloned into lineralized FL*-hNIS/pcDNA3, and then the hTERT-hNIS sequence was subcloned into the shuttle plasmid pAdTrack.The recombinant adenovirus Ad-hTERT-hNIS was constructed by AdEasy system.A positive control adenovirusAd-CMV-hNIS and a negative control adenovirus Ad-CMV were created similarly.A549 cells were transduced with recombinant adenoviruses.125I uptake studies and sodium perchlorate suppression studies were used to confirm hNIS expression and function.Toxic effects of 131I on tumor cells were studied by in vitro clonogenic assay.Results We first successfully constructed an adenovirus mediated transgene expression system of the hNIS under the control of hTERT promoter.When infected with recombinant adenovirus constructs expressing hNIS directed by hTERTand CMV-promoters (Ad-hTERT-hNIS and Ad-CMV-hNIS, respectively), the lung cancer cell line A549 had increased ability to uptake radioiodide up to 23- and 30- fold compared to the control parental cells, respectively.The radioiodide uptake ability of both the Ad-CMV-hNIS and Ad-hTERT-hNIS transduced cell lines were repressed 11-fold by sodium perchlorate (NaCIO4).The subsequent in vitro clonogenic assay of the infected A549 cell line was further repressed to 23% (Ad-CMV-hNIS) and 30% (Ad-hTERT-hNIS) of the control group after receiving radioiodide for 7 hours (P <0.001).Conclusion

  9. Adenovirus-mediated shRNA interference against HSV-1 replication in vitro.

    Song, Bo; Liu, Xinjing; Wang, Qingzhi; Zhang, Rui; Yang, Ting; Han, Zhiqiang; Xu, Yuming

    2016-12-01

    The UL29 and UL28 proteins encoded by herpes simplex virus type 1 (HSV-1) are critical for its replication and packaging, respectively. Research has demonstrated that synthesized siRNA molecules targeting the UL29 gene are able to suppress HSV-2 replication and the UL28-null HSV-1 gene cannot form infectious viruses in vitro. Silencing the UL28 and UL29 genes by RNAi might lead to the development of novel antiviral agents for the treatment of HSV-1 infections. Two kinds of short hairpin RNAs (shRNAs) targeting the UL29 and UL28 genes were chemically synthesized and then delivered into cells by a replication-defective human adenovirus type 5 (Adv5) vector. (-) shRNAs targeting none of the genome of HSV-1 were used as the control. Vero cells were inoculated with Ad-UL28shRNA or Ad-UL29shRNA at a multiplicity of infection (MOI) of 100 and challenged 24 h later with HSV-1 at an MOI of 0.01 to inhibit HSV-1 replication, as measured by the level of the corresponding RNA and proteins. In addition, the amount of progeny virus was assessed at daily intervals. The antiviral effects of Ad-shRNAs at ongoing HSV-1 infection were explored at 12 h after inoculation of the HSV-1. The results showed that the shRNAs delivered by Adv5 significantly suppressed HSV-1 replication in vitro, as determined by the levels of viral RNA transcription, viral protein synthesis, and viral production. The Ad-UL28shRNA and Ad-UL29shRNA suppressed the replication of HSV-1, respectively, compared with the control group (P HSV-1 infection (P HSV-1 infection.

  10. Gene based therapies for kidney regeneration.

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-11-05

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.

  11. Gene therapy oversight: lessons for nanobiotechnology.

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology.

  12. Gene Therapy Shows Promise for Aggressive Lymphoma

    ... page: https://medlineplus.gov/news/fullstory_163824.html Gene Therapy Shows Promise for Aggressive Lymphoma Over one-third ... TUESDAY, Feb. 28, 2017 (HealthDay News) -- An experimental gene therapy for aggressive non-Hodgkin lymphoma beat back more ...

  13. Reporter Gene Imaging in Therapy and Diagnosis

    Pritha Ray, Abhijit De

    2012-01-01

    Full Text Available Noninvasive molecular imaging using reporter genes is a relatively recent field in biomedical imaging that holds great promises for disease diagnosis and therapy. As modern medicine is moving towards personalized medicine, targeted biomolecule based therapies is gaining popularity that requires careful and systematic validation. Reporter genes have emerged as important generalizable tools to overcome the shortcomings of direct evaluation of individual biomolecules and are being applied in various fields such as cell therapy, stem cell therapy, immune therapy, viral gene delivery through optical, radionuclide, magnetic resonance imaging techniques. New approaches to image protein-protein interaction, protein phosphorylation, protein folding that are crucial parameters for theranostic study using reporter genes are being developed. All these new technologies and relevant preclinical and clinical researches will determine the success of early detection and personalized therapy in the future.

  14. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Zhao Yarui

    2011-01-01

    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  15. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  16. Gene therapy for stroke: 2006 overview.

    Chu, Yi; Miller, Jordan D; Heistad, Donald D

    2007-03-01

    Gene therapy is a promising approach for treatment of stroke and other cerebrovascular diseases, although it may take many years to realize. Gene therapy could occur prior to a stroke (eg, to stabilize atherosclerotic plaques) and/or following a stroke (eg, to prevent vasospasm after subarachnoid hemorrhage or reduce injury to neurons by ischemic insult). We have transferred the gene coding for vasoactive calcitonin gene-related peptide via cerebrospinal fluid, and demonstrated attenuation of vasospasm after SAH. Transfer of neuroprotective genes or small interfering RNA for neurotoxic genes has good potential for ischemic stroke. In this brief report, we review recent developments in experimental gene therapy for stroke. Fundamental advances, including development of safer, more specific gene transfer vectors, are discussed.

  17. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail: lora.ellenson@med.cornell.edu

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  18. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  19. Gene Therapy In Oral Cancer : An Overview

    Kanaram Choudhary

    2010-07-01

    Full Text Available The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  20. Adenoviral Vectors for Hemophilia Gene Therapy

    Brunetti-Pierri, N; Ng, Philip

    2013-01-01

    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review ...

  1. Adenovirus-mediated delivery of p27KIP1 to prevent wound healing after experimental glaucoma filtration surgery

    Jian-gang YANG; Nai-xue SUN; Li-jun CUI; Xiao-hua WANG; Zhao-hui FENG

    2009-01-01

    Aim: The aim of the study was to evaluate the outcome of adenovirus-mediated p27KIP1 (Ad-p27) expression on wound healing after filtration surgery and to investigate the inhibition of cell proliferation induced by Ad-p27. Methods: We constructed the adenovirus recombinant vector Ad-p27 and administered it to a rabbit model of glaucoma filtration surgery by subconjunctival injection; phosphate-buffered saline (PBS) and mitomycin C (MMC) were used as controis. Intraocular pressure (IOP), bleb scores, and anterior chamber depths were observed during a 28-d period. Histological examinations, fluorescence observations and Western blot analyses were evaluated.Results: Ad-p27 enhanced the surgical outcome and inhibited cell proliferation when compared with PBS. Bleb scores in the Ad-p27-treated eyes were higher than those in the PBS-treated eyes on d 7 (P<0.01), 14 (P<0.01) and 21 (P<0.05). Ond 28, IOP remained significantly decreased in the Ad-p27 group compared with the PBS group (P<0.05). However, no differences in bleb scores or IOPs were observed between the Ad-p27 and MMC groups. Histological analysis showed that total cell numbers were markedly reduced, and less scar tissue was observed at the surgical site in eyes treated with Ad-p27.The number of fibroblasts was decreased in Tenon's capsule in Ad-p27-treated eyes; however, a marked and diffuse signal from the green fluorescent protein (GFP) was observed in fibroblasts. Western blot analysis revealed a high level of p27KIP1 expression in conjunctival epithelium (P<0.01), relatively high expression in superficial scleral stroma (P<0.01), and low expression in corneal epithelium in the Ad-p27 group. Conclusions: Ad-p27 administration significantly improves the outcome of filtration surgery and inhibits postoperative proliferation in rabbit eyes. These findings suggest that p27KIP1 is a potential adjunctive agent for inhibition of wound heal-ing after filtration surgery.

  2. Recent advances in fetal gene therapy.

    Buckley, Suzanne M K; Rahim, Ahad A; Chan, Jerry K Y; David, Anna L; Peebles, Donald M; Coutelle, Charles; Waddingtont, Simon N

    2011-04-01

    Over the first decade of this new millennium gene therapy has demonstrated clear clinical benefits in several diseases for which conventional medicine offers no treatment. Clinical trials of gene therapy for single gene disorders have recruited predominantly young patients since older subjects may have suffered irrevocablepathological changes or may not be available because the disease is lethal relatively early in life. The concept of fetal gene therapy is an extension of this principle in that diseases in which irreversible changes occur at or beforebirth can be prevented by gene supplementation or repair in the fetus or associated maternal tissues. This article ccnsiders the enthusiasm and skepticism held for fetal gene therapy and its potential for clinical application. It coversa spectrum of candidate diseases for fetal gene therapy including Pompe disease, Gaucher disease, thalassemia, congenital protein C deficiency and cystic fibrosis. It outlines successful and not-so-successful examples of fetal gene therapy in animal models. Finally the application and potential of fetal gene transfer as a fundamental research tool for developmental biology and generation of somatic transgenic animals is surveyed.

  3. An overview of gene therapy in head and neck cancer

    2013-01-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  4. Gene therapy in India: A focus

    Sarvani Chodisetty; Everette Jacob Remington Nelson

    2014-06-01

    Gene therapy refers to the treatment of genetic diseases using normal copies of the defective genes. It has the potential to cure any genetic disease with long-lasting therapeutic benefits. It remained an enigma for a long period of time, which was followed by a series of setbacks in the late 1990s. Gene therapy has re-emerged as a therapeutic option with reports of success from recent clinical studies. The United States and Europe has been pioneers in this field for over two decades. Recently, reports of gene therapy have started coming in from Asian countries like China, Japan and Korea. This review focuses on the current status of gene therapy in India.

  5. Gene therapy in peripheral nerve reconstruction approaches.

    Haastert, Kirsten; Grothe, Claudia

    2007-06-01

    Gene transfer to a transected peripheral nerve or avulsed nerve root is discussed to be helpful where neurosurgical peripheral nerve reconstruction alone will not result in full recovery of function. Axonal regeneration is supposed to be facilitated by this new therapeutic approach via delivery of specific regeneration promoting molecules as well as survival proteins for the injured sensory and motor neurons. Therefore gene therapy aims in long-term and site-specific delivery of those neurotrophic factors. This paper reviews methods and perspectives for gene therapy to promote functional recovery of severely injured and thereafter reconstructed peripheral nerves. Experimental in vivo and ex vivo gene therapy approaches are reported by different groups. In vivo gene therapy generally uses direct injection of cDNA vectors to injured peripheral nerves. Ex vivo gene therapy is based on the isolation of autologous cells followed by genetic modification of these cells in vitro and re-transplantation of the modified cells to the patient as part of tissue engineered nerve transplants. Vectors of different origin are published to be suitable for peripheral nerve gene therapy and this review discusses the different strategies with regard to their efficiency in gene transfer, their risks and their potential relevance for clinical application.

  6. Nanocarriers in gene therapy: a review.

    Xu, Hongpan; Li, Zhiyang; Si, Jin

    2014-12-01

    With its rapid development in the past few decades, gene therapy has shown potential for use as a standard clinical intervention for the treatment of several conditions, including cancers, infectious diseases, cardiovascular disorders, inner ear disorders, dermatological, ophthalmologic, and neurological pathologies. Current gene therapy is not limited to the delivery of DNA only. Other therapeutic nucleic acid materials such as small interfering RNA, antisense oligonucleotides, or microRNA have also been included into the protocols of gene therapy. The correct choice of vector is a key factor in the success of gene therapy, where both viral and non-viral vectors are commonly used. Viral vectors are associated with some severe side effects (e.g., immunologenicity and carcinogenicity). They show poor target cell specificity, are unable to transfer large-sized genes, and are costly. Therefore, non-viral vectors, especially nanocarriers, have become a realistic alternative to viral vectors for achieving better efficacy in gene therapy. Different types of nanocarriers such as liposomes, metallic and polymeric nanoparticles, dendrimers, gelatins, and quantum dots/rods have been developed, and each shows distinct characteristics. Nevertheless, a variety of new challenges should be properly addressed for ensuring the success of nanocarriers in clinical applications. In this review article, we first discuss the advances and applications of nanocarriers in gene therapy, and then describe the drawbacks and existing challenges of the emerging gene delivery methods based on the use of nanomaterials.

  7. Immuno-gene therapy in hepatocarcinoma

    1999-01-01

    @@Hepatocarcinoma is a disease that threatens human health. To date,the known etiology of hepatocarcinomahas not been narrowed down to just one factor. It is possible that there are their own causes in different areas.Thus, there are no absolute, but relative therapy to cure all kinds of hepatocarcinoma. Presently,there exists other treatment for the hepatocarcinoma which cannot be operated by surgery, such as cryosurgery,photodynamic therapy,immunotherapy,interventional radiotherapy and targeting therapy. With the development of molecular biology ,gene therapy offers new possibilities in the treatment of genetic diseases,tumors,AIDS and other gene defect disease.

  8. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  9. Biodegradable nanoparticles for gene therapy technology

    Hosseinkhani, Hossein, E-mail: hosseinkhani@mail.ntust.edu.tw; He, Wen-Jie [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Chiang, Chiao-Hsi [School of Pharmacy, National Defense Medical Center (China); Hong, Po-Da [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [The Hebrew University of Jerusalem, Institute of Drug Research, School of Pharmacy, Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis (Israel); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Research Center for Biomedical Devices and Prototyping Production (China)

    2013-07-15

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  10. Advances in gene therapy for heart failure.

    Fish, Kenneth M; Ishikawa, Kiyotake

    2015-04-01

    Chronic heart failure is expected to increase its social and economic burden as a consequence of improved survival in patients with acute cardiac events. Cardiac gene therapy holds significant promise in heart failure treatment for patients with currently very limited or no treatment options. The introduction of adeno-associated virus (AAV) gene vector changed the paradigm of cardiac gene therapy, and now it is the primary vector of choice for chronic heart failure gene therapy in clinical and preclinical studies. Recently, there has been significant progress towards clinical translation in this field spearheaded by AAV-1 mediated sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) gene therapy targeting chronic advanced heart failure patients. Meanwhile, several independent laboratories are reporting successful gene therapy approaches in clinically relevant large animal models of heart failure and some of these approaches are expected to enter clinical trials in the near future. This review will focus on gene therapy approaches targeting heart failure that is in clinical trials and those close to its initial clinical trial application.

  11. American Society of Gene & Cell Therapy

    ... agencies, foundations, biotechnology and pharmaceutical companies. Mission: To advance knowledge, awareness, and education leading to the discovery and clinical application of gene and cell therapies to alleviate human disease. Vision: ASGCT will serve ...

  12. Gene Therapy and Children (For Parents)

    ... prone to serious infection), sickle cell anemia, thalassemia, hemophilia, and those with familial hypercholesterolemia (extremely high levels of serum cholesterol). Gene therapy does have risks and limitations. The viruses and ...

  13. Gene Therapy: Potential, Pros, Cons and Ethics

    Ananth Nanjunda Rao

    2002-07-01

    Full Text Available Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  14. Strategies in Gene Therapy for Glioblastoma

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strate...

  15. HCCS1-armed, quadruple-regulated oncolytic adenovirus specific for liver cancer as a cancer targeting gene-viro-therapy strategy

    Xu Hai-Neng

    2011-11-01

    Full Text Available Abstract Background In previously published studies, oncolytic adenovirus-mediated gene therapy has produced good results in targeting cancer cells. However, safety and efficacy, the two most important aspects in cancer therapy, remain serious challenges. The specific expression or deletion of replication related genes in an adenovirus has been frequently utilized to regulate the cancer cell specificity of a virus. Accordingly, in this study, we deleted 24 bp in E1A (bp924-bp947 and the entirety of E1B, including those genes encoding E1B 55kDa and E1B19kDa. We used the survivin promoter (SP to control E1A in order to construct a new adenovirus vector named Ad.SP.E1A(Δ24.ΔE1B (briefly Ad.SPDD. HCCS1 (hepatocellular carcinoma suppressor 1 is a novel tumor suppressor gene that is able to specifically induce apoptosis in cancer cells. The expression cassette AFP-HCCS1-WPRE-SV40 was inserted into Ad.SPDD to form Ad.SPDD-HCCS1, enabling us to improve the safety and efficacy of oncolytic-mediated gene therapy for liver cancer. Results Ad.SPDD showed a decreased viral yield and less toxicity in normal cells but enhanced toxicity in liver cancer cells, compared with the cancer-specific adenovirus ZD55 (E1B55K deletion. Ad.SPDD-HCCS1 exhibited a potent anti-liver-cancer ability and decreased toxicity in vitro. Ad.SPDD-HCCS1 also showed a measurable capacity to inhibit Huh-7 xenograft tumor growth on nude mice. The underlying mechanism of Ad.SPDD-HCCS1-induced liver cancer cell death was found to be via the mitochondrial apoptosis pathway. Conclusions These results demonstrate that Ad.SPDD-HCCS1 was able to elicit reduced toxicity and enhanced efficacy both in vitro and in vivo compared to a previously constructed oncolytic adenovirus. Ad.SPDD-HCCS1 could be a promising candidate for liver cancer therapy.

  16. Strategies in Gene Therapy for Glioblastoma

    Mariano S. Viapiano

    2013-10-01

    Full Text Available Glioblastoma (GBM is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  17. Strategies in Gene Therapy for Glioblastoma

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  18. Gene therapy for primary immunodeficiencies: Part 1.

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  19. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  20. Human gene therapy and imaging: cardiology

    Wu, Joseph C. [Stanford University School of Medicine, Department of Medicine, Stanford, CA (United States); Yla-Herttuala, Seppo [University of Kuopio, A.I.Virtanen Institute, Kuopio (Finland)

    2005-12-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  1. Current gene therapy for stomach carcinoma

    Chang-Tai Xu; Lian-Tian Huang; Bo-Rong Pan

    2001-01-01

    astric cancer is common in China [1-42],and its early diagnosis and treatment in advanced stage are difficult [31-50].In recent years ,gene study in cancer is a hotspot ,and great progress has been achieved [41-80] .Cancer gene therapy has shifted from the imagination into the laboratory and clinical trials.

  2. An overview of gene therapy in head and neck cancer.

    Bali, Amit; Bali, Deepika; Sharma, Ashutosh

    2013-07-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  3. Gene therapy for rheumatoid arthritis: recent advances.

    Woods, James M; Sitabkhan, Yasmin; Koch, Alisa E

    2008-02-01

    The treatment of rheumatoid arthritis (RA) in the last decade has made enormous advances with the use of biological therapies. However, these therapies have serious limitations such as the expense, side-effects, and the requirement for repeated injections, each of which can potentially be obviated by gene therapy. A gene therapy approach for the treatment of RA has the potential to stably deliver a gene product or multiple products in a target-specific, disease-inducible manner. There are many studies investigating gene therapy in RA, the majority of which have been designed to test proof-of-principle in an animal model. With an abundance of animal studies that have established much promise, the field is now at the early stage of moving towards human trials, where patient benefit needs to overshadow associated risks, especially since RA is publicly perceived as a non-life-threatening disease. Here, we provide an overview that focuses on advances in the application of gene therapy to RA over the last five years, including: novel targets and approaches; the viral and non-viral applications most likely to succeed in the clinic; advances in our understanding of the contralateral effect; the latest successes with anti-inflammatory cytokines; and a review of advancements towards clinical trials.

  4. Alphavirus vectors for cancer gene therapy (review).

    Yamanaka, Ryuya

    2004-04-01

    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.

  5. Gene therapy to treat cardiac arrhythmias.

    Bongianino, Rossana; Priori, Silvia G

    2015-09-01

    Gene therapy to treat electrical dysfunction of the heart is an appealing strategy because of the limited therapeutic options available to manage the most-severe cardiac arrhythmias, such as ventricular tachycardia, ventricular fibrillation, and asystole. However, cardiac genetic manipulation is challenging, given the complex mechanisms underlying arrhythmias. Nevertheless, the growing understanding of the molecular basis of these diseases, and the development of sophisticated vectors and delivery strategies, are providing researchers with adequate means to target specific genes and pathways involved in disorders of heart rhythm. Data from preclinical studies have demonstrated that gene therapy can be successfully used to modify the arrhythmogenic substrate and prevent life-threatening arrhythmias. Therefore, gene therapy might plausibly become a treatment option for patients with difficult-to-manage acquired arrhythmias and for those with inherited arrhythmias. In this Review, we summarize the preclinical studies into gene therapy for acquired and inherited arrhythmias of the atria or ventricles. We also provide an overview of the technical advances in the design of constructs and viral vectors to increase the efficiency and safety of gene therapy and to improve selective delivery to target organs.

  6. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  7. An overview on gene therapy programs.

    Romano, Gaetano

    2008-01-01

    The 11th Annual Meeting of the American Society of Gene Therapy focused on clinical trials for the treatment of various pathological conditions, preclinical studies, use of gene transfer technology for genetic immunization purposes and problems related to the improvement of vector design. In this respect, a major emphasis was placed on safety issues, such as insertional mutagenesis and host immune responses to gene delivery systems.

  8. Employment of Salmonella in Cancer Gene Therapy.

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  9. Current status of haemophilia gene therapy.

    High, K H; Nathwani, A; Spencer, T; Lillicrap, D

    2014-05-01

    After many reports of successful gene therapy studies in small and large animal models of haemophilia, we have, at last, seen the first signs of success in human patients. These very encouraging results have been achieved with the use of adeno-associated viral (AAV) vectors in patients with severe haemophilia B. Following on from these initial promising studies, there are now three ongoing trials of AAV-mediated gene transfer in haemophilia B all aiming to express the factor IX gene from the liver. Nevertheless, as discussed in the first section of this article, there are still a number of significant hurdles to overcome if haemophilia B gene therapy is to become more widely available. The second section of this article deals with the challenges relating to factor VIII gene transfer. While the recent results in haemophilia B are extremely encouraging, there is, as yet, no similar data for factor VIII gene therapy. It is widely accepted that this therapeutic target will be significantly more problematic for a variety of reasons including accommodating the larger factor VIII cDNA, achieving adequate levels of transgene expression and preventing the far more frequent complication of antifactor VIII immunity. In the final section of the article, the alternative approach of lentiviral vector-mediated gene transfer is discussed. While AAV-mediated approaches to transgene delivery have led the way in clinical haemophilia gene therapy, there are still a number of potential advantages of using an alternative delivery vehicle including the fact that ex vivo host cell transduction will avoid the likelihood of immune responses to the vector. Overall, these are exciting times for haemophilia gene therapy with the likelihood of further clinical successes in the near future.

  10. Adenovirus-mediated NDRG2 inhibits the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro

    Sheng Qiang; Zhen-Fang Du; Min Huang

    2014-01-01

    Objective: To investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro. Methods: NDRG2 was harvested by RT-PCR, confirmed by DNA sequencing, and then cloned into the eukaryotic expression vector pIRES2-EGFP, which encodes green fluorescent protein (GFP), to construct pIRES2-EGFP-NDRG2 plasmid. OS-RC-2 cells with NDRG2 negative expression were transfected with pIRES2-EGFP-NDRG2 plasmid. The growth of transfected OS-RC-2 cells was observed under light and fluorescence microscopes. After colony-forming cell assays, cell proliferation detection and MTT assays, the growth curves of cells in each group were plotted to investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of OS-RC-2 cells. Cell cycle was determined by flow cytometry. Confocal laser scanning microscopy showed that NDRG2 protein was specifically located on subcellular organelle. Results: A eukaryotic expression vector pIRES2-EGFP-NDRG2 was successfully constructed. After NDRG2 transfection, the growth of OS-RC-2 cells was inhibited. Flow cytometry showed that cells were arrested in S phase but the peak of cell apoptosis was not present, and confocal laser scanning microscopy showed that NDRG2 protein was located in mitochondrion. Conclusions: NDRG2 can significantly inhibit the proliferation of OS-RC-2 cells in vitro and its protein is specifically expressed in the mitochondrion.

  11. Vectors for gene therapy of skin diseases.

    Pfützner, Wolfgang

    2010-08-01

    The success of gene therapy mainly depends on the gene vector (GV) responsible for the efficient transport of genetic information. The qualities of a GV have a profound influence on the method of application, the efficiency of gene transfer in the target tissue, the amount and persistence of gene expression and the potential side effects and safety risks. Clinical gene therapy studies over the past 20 years have contributed to the development and testing of different GV systems, some of which also show great potential for the treatment of skin diseases. In this review the structures, methods of application, characteristics, clinical uses and possibilities for optimization of these GV will be discussed with regard to their cutaneous applications.

  12. The effect of mucolytic agents on gene transfer across a CF sputum barrier in vitro.

    Stern, M; Caplen, N J; Browning, J E; Griesenbach, U; Sorgi, F; Huang, L; Gruenert, D C; Marriot, C; Crystal, R G; Geddes, D M; Alton, E W

    1998-01-01

    Trials of gene transfer for cystic fibrosis (CF) are currently underway. However, direct application to the airways may be impeded by the presence of airway secretions. We have therefore assessed the effect of CF sputum on the expression of the reporter gene beta-galactosidase complexed with the cationic liposome DC-Chol/DOPE in a number of cell lines in vitro. Transfection was markedly inhibited in the presence of sputum; the effect was concentration dependent and was only partially ameliorated by removal of sputum with phosphate-buffered saline (PBS) washing before gene transfer. However, treatment of the sputum-covered cells with recombinant human DNase (rhDNase, 50 micrograms/ml) but not with N-acetylcysteine, Nacystelyn, lysine (all 20 mM) or recombinant alginase (0.5 U/ml) significantly (P < 0.005) improved gene transfer. Adenovirus-mediated gene transfer efficiency in the presence of sputum was similarly inhibited, and again, treatment with rhDNase before transfection significantly improved gene transfer (P < 0.005). Transfection of Cos 7 cells in the presence of exogenous genomic DNA alone demonstrated similar inhibition to that observed with sputum and was also ameliorated by pre-treatment of DNA-covered cells with rhDNase. In a separate series of experiments performed in the absence of added sputum or genomic DNA, increasing concentrations of rhDNase resulted in a concentration-related decline in transfection efficiency. However, even at the highest concentration (500 micrograms/ml of rhDNase), transfection efficiency remained more than 50% of control. Thus, pre-treatment of CF airways with rhDNase may be appropriate before liposome or adenovirus-mediated gene therapy.

  13. Gene Therapy and its applications in Dentistry

    Sharma Lakhanpal Manisha

    2006-01-01

    Full Text Available This era of advanced technology is marked by progress in identifying and understanding the molecular and cellular cause of a disease. With the conventional methods of treatment failing to render satisfactory results, gene therapy is not only being used for the cure of inherited diseases but also the acquired ones. The broad spectrum of gene therapy includes its application in the treatment of oral cancer and precancerous conditions and lesions, treatment of salivary gland diseases, bone repair, autoimmune diseases, DNA vaccination, etc. The aim of this article is to throw light on the history, methodology, applications and future of gene therapy as it would change the nature and face of dentistry in the coming years.

  14. Recent advances in gene therapy for thalassemia

    J V Raja

    2012-01-01

    Full Text Available Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS cells, gene targeting, splice-switching and stop codon readthrough.

  15. Recent advances in gene therapy for thalassemia.

    Raja, J V; Rachchh, M A; Gokani, R H

    2012-07-01

    Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

  16. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  17. [Gene therapy in the Czech Republic].

    Vonka, V

    2003-01-01

    Gene therapy represents one of the most promising applications of molecular biology and genetic engineering in medicine. At present its introduction meets series of problems which are of technical, methodological and ethical nature. Although the research in the field of gene therapy in the Czech Republic is on a good level, there is little hope that its achievements will be tested in clinical trials in the near future. In the Czech Republic a law enabling the use of preparations based on the newest biotechnologies in human medicine is missing. Similarly, a production unit capable of preparing the new gene-based drugs according to the Good Manufactory Praxis is not available and the State Institute for Control of Drugs has not any working group fully qualified for their control. The paper proposes actions aimed at solving the present unfavourable situation. The fact that the interest of clinicians in gene therapy is rapidly growing, and that there are signs of increasing interest of public in its achievements, gives good prospects for the introduction of gene therapy into medical praxis in this country in the not very distant future.

  18. The Use of Viral Vectors in Gene Transfer Therapy

    Dziaková, A.; Valenčáková, A.; Hatalová, E.; J. Kalinová

    2016-01-01

    Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including canc...

  19. Gene Therapy for Fracture Repair

    2007-05-01

    structures suggestive of angiogenesis are visible (arrows). (B) Omitting the anti-FGF-2 primary antibody eliminated the immunostaining. 28...Several major families of growth factors, signaling molecules and structural genes are represented, providing one of the most comprehensive surveys...receptor accessory protein NM_012968 IL1 inflammation 1.6 NS 45 IL3 regulated nuclear factor NM_053727 IL3 MHC, eosinphil, basophil stimulation

  20. Gene Therapy for Childhood Neurofibromatosis

    2014-05-01

    of cells heterozygous for the neurofibromin ( NF1 ) gene. Cells with two functional alleles of NF1 did not support tumor growth. The treatment...objective was therefore to increase the level of expression from the one active copy of NF1 to complement the haploinsufficiency in the cells of the tumor... NF1 ), artificial transcription factor, TALE DNA-binding protein, bacterial delivery vector 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  1. Newer Gene Editing Technologies toward HIV Gene Therapy

    2013-01-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realist...

  2. Endostatin gene therapy for liver cancer by a recombinant adenovirus delivery

    Li Li; Jia-Ling Huang; Qi-Cai Liu; Pei-Hong Wu; Ran-Yi Liu; Yi-Xin Zeng; Wen-Lin Huang

    2004-01-01

    AIM: To investigate the expression of adenovirus-mediated human endostatin (Ad/hEndo) gene transfer and its effect on the growth of hepatocellular carcinoma (HCC) BEL-7402xenografted tumors.METHODS: Immunohistochemistry analysis with an anti endostatin antibody was preformed to detect endostatin protein expression in HCC BEL-7402 cells infected with Ad/hEndo. MTT assay was used to investigate the effects of Ad/hEndo on proliferation of human umbilical vein endothelial cells (HUVEC). Intra-tumoral injections of 1×109 pfu Ad/hEndo was given to treat BEL-7402 xenografted tumors in nude mice once weekly for 6 wk. Mice received injections of Ad/LacZ and DMEM were regarded as control groups. After intra-turmoral administration with Ad/hEndo, the endostatin mRNA expression in tumor tissue was analyzed by Northern blotting, and plasma endostatin levels were determined using enzyme-linked immunosorbent assay (ELTSA).RESULTS: High level expression of endostatin gene was detected in the infected HCC BEL-7402 cells. Ad/hEndo significantly inhibited HUVEC cell proliferation by 57.2% at a multiplicity of infection (MOI) of 20. After 6-week treatment with Ad/hEndo, the growth of treated tumors was inhibited by 46.50% compared to the Ad/ LacZ control group (t=2.729, P<0.05) and by 48.56% compared to the DMEM control group (t=2.485, P<0.05). The ratio of mean tumor volume in treated animals to mean tumor volume in the control animals (T:C ratio) was less than 50% after 24 d of treatment. Endostatin mRNA in tumor tissue was clearly demonstrated as a band of approximately 1.2 kb, which was the expected size of intact and functional endostatin.Plasma endostatin levels peaked at 87.52±8.34 ng/mL at d 3 after Ad/hEndo injection, which was significantly higher than the basal level (12.23±2.54 ng/mL). By d 7,plasma levels dropped to nearly half the peak level(40.34±4.80 ng/mL).CONCLUSION: Adenovirus-mediated human endostatin gene can successfully express endogenous

  3. Genome editing for human gene therapy.

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  4. Ribozyme uses in retinal gene therapy.

    Hauswirth, W W; Lewin, A S

    2000-11-01

    In this chapter we discuss the design, delivery and preclinical testing of mutation-specific ribozymes for the treatment of dominantly inherited retinal disease. We focus particular attention on the initial screening of ribozymes in vitro, because the activity of RNA enzymes in cell-free systems can be used to predict their suitability for animal experiments. Current techniques for delivering genes of interest to cells of the retina using viral vectors are then briefly surveyed emphasizing vector properties that best match to the needs of a ribozyme-based therapy. Using these considerations, analysis of ribozyme gene therapy for an autosomal dominant RP-like disease in a rodent model is outlined emphasizing the desirability of combining biochemical, morphological and electrophysiological measures of therapy. Finally, we describe alternative, perhaps more general, ribozyme approaches that have yet to be tested in the context of retinal disease.

  5. Gene therapy in glaucoma-3: Therapeutic approaches.

    Mahdy, Mohamed Abdel-Monem Soliman

    2010-09-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible.Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucoma and their underlying causes are potentially susceptible to modulation by gene transfer. As genetic defects responsible for glaucoma are identified and the biochemical mechanisms underlying the disease are recognized, new methods of therapy can be developed. Genetic tests are indicated for treatment, diagnosis, prognosis, counseling, and research purposes; however, there is significant overlap among them. One of the important genetic tests for glaucoma is OcuGene. Therefore, it is of utmost importance for the glaucoma specialists to be familiar with and understand the basic molecular mechanisms, genes responsible for glaucoma, and the ways of genetic treatment.Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. METHOD OF LITERATURE SEARCH: The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  6. [Recent advances in gene therapy of uveitis].

    Tao, Xue-ying; Yang, Pei-zeng; Lei, Bo

    2013-03-01

    Uveitis is a group of common eye disease and is one of the major causes of blindness worldwide. Corticosteroids and immunosuppressive agents are commonly used for the treatment of uveitis. However, long-term application of these drugs frequently lead to numerous side effects. Recently, with the development of gene transfer techniques, viral vector mediated gene therapy has achieved remarkable success in experimental uveitis. Inhibition of ocular inflammation in animal models is obtained mainly by two ways: first, increase of the expression of different immune modulators including IL-10, IL-1Ra, IL-4 and IFN-alpha, or IL-27p28; secondly, induction of immune tolerance by transferring uveitis related antigens via viral vectors. Uveitis is characterized by long-lasting and recurrent, the unique properties of local administration, long-term effectiveness and minor side effects of gene therapy may provide a novel strategy for the treatment of the devastating uveitis.

  7. Treating Immunodeficiency through HSC Gene Therapy.

    Booth, Claire; Gaspar, H Bobby; Thrasher, Adrian J

    2016-04-01

    Haematopoietic stem cell (HSC) gene therapy has been successfully employed as a therapeutic option to treat specific inherited immune deficiencies, including severe combined immune deficiencies (SCID) over the past two decades. Initial clinical trials using first-generation gamma-retroviral vectors to transfer corrective DNA demonstrated clinical benefit for patients, but were associated with leukemogenesis in a number of cases. Safer vectors have since been developed, affording comparable efficacy with an improved biosafety profile. These vectors are now in Phase I/II clinical trials for a number of immune disorders with more preclinical studies underway. Targeted gene editing allowing precise DNA correction via platforms such as ZFNs, TALENs and CRISPR/Cas9 may now offer promising strategies to improve the safety and efficacy of gene therapy in the future.

  8. Gene therapy for ischemic heart disease.

    Malosky, S; Kolansky, D M

    1996-07-01

    Gene therapy techniques are being developed as potential treatments for dyslipidemias, coronary restenosis, and vein graft disease. Retroviral and now adenoviral gene delivery techniques are being studied. A human protocol for the treatment of familial hypercholesterolemia has recently been completed using ex vivo hepatic low-density lipoprotein receptor gene transfer via a retroviral vector. Work in most other areas is currently in the animal model stage. Significant progress has been made in the area of coronary restenosis, particularly in identifying target genes to reduce neointima formation, such as herpesvirus thymidine kinase and the retinoblastoma gene. Work also continues in developing strategies to decrease neointima formation in vein grafts used in coronary bypass surgery and in improving methods of myocardial protection during surgery.

  9. Gene therapy: implications for craniofacial regeneration.

    Scheller, Erica L; Villa-Diaz, Luis G; Krebsbach, Paul H

    2012-01-01

    Gene therapy in the craniofacial region provides a unique tool for delivery of DNA to coordinate protein production in both time and space. The drive to bring this technology to the clinic is derived from the fact that more than 85% of the global population may at one time require repair or replacement of a craniofacial structure. This need ranges from mild tooth decay and tooth loss to temporomandibular joint disorders and large-scale reconstructive surgery. Our ability to insert foreign DNA into a host cell has been developing since the early uses of gene therapy to alter bacterial properties for waste cleanup in the 1980s followed by successful human clinical trials in the 1990s to treat severe combined immunodeficiency. In the past 20 years, the emerging field of craniofacial tissue engineering has adopted these techniques to enhance regeneration of mineralized tissues, salivary gland, and periodontium and to reduce tumor burden of head and neck squamous cell carcinoma. Studies are currently pursuing research on both biomaterial-mediated gene delivery and more clinically efficacious, although potentially more hazardous, viral methods. Although hundreds of gene therapy clinical trials have taken place in the past 20 years, we must still work to ensure an ideal safety profile for each gene and delivery method combination. With adequate genotoxicity testing, we can expect gene therapy to augment protein delivery strategies and potentially allow for tissue-specific targeting, delivery of multiple signals, and increased spatial and temporal control with the goal of natural tissue replacement in the craniofacial complex.

  10. Gene therapy for hemoglobinopathies: progress and challenges.

    Dong, Alisa; Rivella, Stefano; Breda, Laura

    2013-04-01

    Hemoglobinopathies are genetic inherited conditions that originate from the lack or malfunction of the hemoglobin (Hb) protein. Sickle cell disease (SCD) and thalassemia are the most common forms of these conditions. The severe anemia combined with complications that arise in the most affected patients raises the necessity for a cure to restore hemoglobin function. The current routine therapies for these conditions, namely transfusion and iron chelation, have significantly improved the quality of life in patients over the years, but still fail to address the underlying cause of the diseases. A curative option, allogeneic bone marrow transplantation is available, but limited by the availability of suitable donors and graft-vs-host disease. Gene therapy offers an alternative approach to cure patients with hemoglobinopathies and aims at the direct recovery of the hemoglobin function via globin gene transfer. In the last 2 decades, gene transfer tools based on lentiviral vector development have been significantly improved and proven curative in several animal models for SCD and thalassemia. As a result, clinical trials are in progress and 1 patient has been successfully treated with this approach. However, there are still frontiers to explore that might improve this approach: the stoichiometry between the transgenic hemoglobin and endogenous hemoglobin with respect to the different globin genetic mutations; donor cell sourcing, such as the use of induced pluripotent stem cells (iPSCs); and the use of safer gene insertion methods to prevent oncogenesis. With this review we will provide insights about (1) the different lentiviral gene therapy approaches in mouse models and human cells; (2) current and planned clinical trials; (3) hurdles to overcome for clinical trials, such as myeloablation toxicity, insertional oncogenesis, and high vector expression; and (4) future perspectives for gene therapy, including safe harbors and iPSCs technology.

  11. Recent progress in gene therapy for hemophilia.

    Chuah, Marinee K; Nair, Nisha; VandenDriessche, Thierry

    2012-06-01

    Hemophilia A and B are X-linked monogenic disorders caused by deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX), respectively. Current treatment for hemophilia involves intravenous infusion of clotting factor concentrates. However, this does not constitute a cure, and the development of gene-based therapies for hemophilia to achieve prolonged high level expression of clotting factors to correct the bleeding diathesis are warranted. Different types of viral and nonviral gene delivery systems and a wide range of different target cells, including hepatocytes, skeletal muscle cells, hematopoietic stem cells (HSCs), and endothelial cells, have been explored for hemophilia gene therapy. Adeno-associated virus (AAV)-based and lentiviral vectors are among the most promising vectors for hemophilia gene therapy. Stable correction of the bleeding phenotypes in hemophilia A and B was achieved in murine and canine models, and these promising preclinical studies prompted clinical trials in patients suffering from severe hemophilia. These studies recently resulted in the first demonstration that long-term expression of therapeutic FIX levels could be achieved in patients undergoing gene therapy. Despite this progress, there are still a number of hurdles that need to be overcome. In particular, the FIX levels obtained were insufficient to prevent bleeding induced by trauma or injury. Moreover, the gene-modified cells in these patients can become potential targets for immune destruction by effector T cells, specific for the AAV vector antigens. Consequently, more efficacious approaches are needed to achieve full hemostatic correction and to ultimately establish a cure for hemophilia A and B.

  12. Newer Gene Editing Technologies toward HIV Gene Therapy

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  13. Newer gene editing technologies toward HIV gene therapy.

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-14

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  14. Gene Therapy: a Breakthrough for Sickle Cell Anemia?

    ... fullstory_163849.html Gene Therapy: A Breakthrough for Sickle Cell Anemia? But treatment has only been given to ... gene therapy to treat, or even potentially cure, sickle cell anemia. The findings come from just one patient, ...

  15. Gene Therapy Helps 2 Babies Fight Type of Leukemia

    ... page: https://medlineplus.gov/news/fullstory_163244.html Gene Therapy Helps 2 Babies Fight Type of Leukemia Tweaking ... time," said Qasim, a professor of cell and gene therapy at University College London. Small trials are under ...

  16. AAV-Based Targeting Gene Therapy

    Wenfang Shi

    2008-01-01

    Full Text Available Since the first parvovirus serotype AAV2 was isolated from human and used as a vector for gene therapy application, there have been significant progresses in AAV vector development. AAV vectors have been extensively investigated in gene therapy for a broad application. AAV vectors have been considered as the first choice of vector due to efficient infectivity, stable expression and non-pathogenicity. However, the untoward events in AAV mediated in vivo gene therapy studies proposed the new challenges for their further applications. Deep understanding of the viral life cycle, viral structure and replication, infection mechanism and efficiency of AAV DNA integration, in terms of contributing viral, host-cell factors and circumstances would promote to evaluate the advantages and disadvantages and provide more insightful information for the possible clinical applications. In this review, main effort will be focused on the recent progresses in gene delivery to the target cells via receptor-ligand interaction and DNA specific integration regulation. Furthermore AAV receptor and virus particle intracellular trafficking are also discussed.

  17. Current advances in retroviral gene therapy.

    Yi, Youngsuk; Noh, Moon Jong; Lee, Kwan Hee

    2011-06-01

    There have been major changes since the incidents of leukemia development in X-SCID patients after the treatments using retroviral gene therapy. Due to the risk of oncogenesis caused by retroviral insertional activation of host genes, most of the efforts focused on the lentiviral therapies. However, a relative clonal dominance was detected in a patient with β-thalassemia Major, two years after the subject received genetically modified hematopoietic stem cells using lentiviral vectors. This disappointing result of the recent clinical trial using lentiviral vector tells us that the current and most advanced vector systems does not have enough safety. In this review, various safety features that have been tried for the retroviral gene therapy are introduced and the possible new ways of improvements are discussed. Additional feature of chromatin insulators, co-transduction of a suicidal gene under the control of an inducible promoter, conditional expression of the transgene only in appropriate target cells, targeted transduction, cell type-specific expression, targeted local administration, splitting of the viral genome, and site specific insertion of retroviral vector are discussed here.

  18. Federal Regulation of Gene Therapy: Who Will Save our Germline?

    2003-01-01

    This paper will attempt to address some of these more complex issues involving human gene therapy and the encompassing regulations. The first section will deal with the science of gene therapy and will briefly touch upon the scientific hurdles that remain for scientists in this field, as this is important to understanding many of the ethical issues. This section will be divided into a basic genetic overview, a description of somatic gene therapy, and a summary of germline gene therapy. The se...

  19. Imaging reporter gene for monitoring gene therapy; Imagerie par gene rapporteur: un atout pour la therapie genique

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L. [Centre Hospitalier Universitaire Avicenne, Service Central de Medecine Nucleaire et Biophysique, UPRES 2360, 93 - Bobigny (France); Tamgac, G. [Univetsite d' Uludag, Service de Medecine Nucleaire, Bursa (Turkey)

    2002-06-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  20. New gene therapy strategies for hepatic fibrosis.

    Salazar-Montes, Adriana M; Hernández-Ortega, Luis D; Lucano-Landeros, Martha S; Armendariz-Borunda, Juan

    2015-04-07

    The liver is the largest internal organ of the body, which may suffer acute or chronic injury induced by many factors, leading to cirrhosis and hepatocarcinoma. Cirrhosis is the irreversible end result of fibrous scarring and hepatocellular regeneration, characterized by diffuse disorganization of the normal hepatic structure, regenerative nodules and fibrotic tissue. Cirrhosis is associated with a high co-morbidity and mortality without effective treatment, and much research has been aimed at developing new therapeutic strategies to guarantee recovery. Liver-based gene therapy has been used to downregulate specific genes, to block the expression of deleterious genes, to delivery therapeutic genes, to prevent allograft rejection and to augment liver regeneration. Viral and non-viral vectors have been used, with viral vectors proving to be more efficient. This review provides an overview of the main strategies used in liver-gene therapy represented by non-viral vectors, viral vectors, novel administration methods like hydrodynamic injection, hybrids of two viral vectors and blocking molecules, with the hope of translating findings from the laboratory to the patient's bed-side.

  1. Gene therapy: X-SCID transgene leukaemogenicity.

    Thrasher, Adrian J; Gaspar, H Bobby; Baum, Christopher; Modlich, Ute; Schambach, Axel; Candotti, Fabio; Otsu, Makoto; Sorrentino, Brian; Scobie, Linda; Cameron, Ewan; Blyth, Karen; Neil, Jim; Abina, Salima Hacein-Bey; Cavazzana-Calvo, Marina; Fischer, Alain

    2006-09-21

    Gene therapy has been remarkably effective for the immunological reconstitution of patients with severe combined immune deficiency, but the occurrence of leukaemia in a few patients has stimulated debate about the safety of the procedure and the mechanisms of leukaemogenesis. Woods et al. forced high expression of the corrective therapeutic gene IL2RG, which encodes the gamma-chain of the interleukin-2 receptor, in a mouse model of the disease and found that tumours appeared in a proportion of cases. Here we show that transgenic IL2RG does not necessarily have potent intrinsic oncogenic properties, and argue that the interpretation of this observation with respect to human trials is overstated.

  2. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  3. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  4. Recent advances in gene therapy of endometriosis.

    Shubina, Anastasia N; Egorova, Anna A; Baranov, Vladislav S; Kiselev, Anton V

    2013-12-01

    Endometriosis is a gynecological disease that affects up to 10%-15% of all reproductive-age women worldwide. It is characterized by the presence of endometrial tissues outside the uterine cavity. Endometriosis is a complex disease; its pathogenesis includes altered steroid metabolism and immune system abnormalities such as inflammation, increased angiogenic activity in the peritoneal fluid and impaired recognition of ectopic endometrial cells. The development of endometriosis also depends on genetic, anatomical and environmental factors. Numerous surgical and medical approaches to treat endometriosis have been developed to date. However, complete resolution of the problem has not been achieved so far. Gene therapy holds exciting promise for the treatment of numerous disorders and current studies have indicated it can also be applied to endometriosis. The focus of this review is to summarize the pathogenetic background of the disease and to highlight current gene therapy approaches for this common gynecological disorder.

  5. Advances of gene therapy for primary immunodeficiencies.

    Candotti, Fabio

    2016-01-01

    In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases.

  6. Targeting tumor suppressor genes for cancer therapy.

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  7. Gene therapy in glaucoma-3: Therapeutic approaches

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. Method of Literature Search The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  8. Gene therapy in glaucoma-3: Therapeutic approaches

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible. Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucom...

  9. Gene therapy approaches for spinal cord injury

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  10. GENE THERAPY IN THALASSEMIA AND HEMOGLOBINOPATHIES

    Laura Breda

    2009-11-01

    Full Text Available Sickle cell disease (SCD and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS cells, gene targeting, splice-switching and stop codon readthrough.

  11. Gene therapy in thalassemia and hemoglobinopathies.

    Breda, Laura; Gambari, Roberto; Rivella, Stefano

    2009-11-13

    Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

  12. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  13. Current Aspect and Future Prospect of Human Gene Therapy in Childhood (Gene Therapy : Advances in Research and Treatment)

    1996-01-01

    Almost four years have passed since the first human gene therapy for adenosine deaminase (ADA) deficiency had been performed. Gene therapy protocols for cystic fibrosis, familial hypercholesterolaemia and hemophilia B were also started during this period. In this review, we reported and discussed the current aspect and the future prospect of gene therapy for inherited disease in childhood.

  14. Glucose-stimulated insulin secretion does not require activation of pyruvate dehydrogenase: impact of adenovirus-mediated overexpression of PDH kinase and PDH phosphate phosphatase in pancreatic islets.

    Nicholls, Linda I; Ainscow, Edward K; Rutter, Guy A

    2002-03-01

    Glucose-stimulated increases in mitochondrial metabolism are generally thought to be important for the activation of insulin secretion. Pyruvate dehydrogenase (PDH) is a key regulatory enzyme, believed to govern the rate of pyruvate entry into the citrate cycle. We show here that elevated glucose concentrations (16 or 30 vs 3 mM) cause an increase in PDH activity in both isolated rat islets, and in a clonal beta-cell line (MIN6). However, increases in PDH activity elicited with either dichloroacetate, or by adenoviral expression of the catalytic subunit of pyruvate dehydrogenase phosphatase, were without effect on glucose-induced increases in mitochondrial pyridine nucleotide levels, or cytosolic ATP concentration, in MIN6 cells, and insulin secretion from isolated rat islets. Similarly, the above parameters were unaffected by blockade of the glucose-induced increase in PDH activity by adenovirus-mediated over-expression of PDH kinase (PDK). Thus, activation of the PDH complex plays an unexpectedly minor role in stimulating glucose metabolism and in triggering insulin release.

  15. An overview of gene therapy in head and neck cancer

    Amit Bali

    2013-01-01

    Full Text Available Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  16. Challenges and future expectations of reversed gene therapy.

    He, Nongyue; Zeng, Xin; Wang, Weida; Deng, Kunlong; Pan, Yunzhi; Xiao, Li; Zhang, Jia; Li, Kai

    2011-10-01

    Gene therapy is a genetic intervention used for the prevention or treatment of diseases by targeting selected genes with specific nucleotides. The most common form of gene therapy involves the establishment of a function by transfer of functional genes or correction of mutated genes. In other situations, suppression or abolishment of a function is required in order to balance a complicated regulatory system or to deplete cellular molecules crucial for pathogen infection. The latter in fact employs an opposite strategy compared to those used in classical gene therapy, and can be defined as reversed gene therapy. This paper takes CCR5-based stem cell gene therapy as an example to discuss the challenges and future expectations of reversed gene therapy.

  17. [Gene therapy of SCID-X1].

    Baum, C; Schambach, A; Modlich, U; Thrasher, A

    2007-12-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited disease caused by inactivating mutations in the gene encoding the interleukin 2 receptor common gamma chain (IL2RG), which is located on the X-chromosome. Affected boys fail to develop two major effector cell types of the immune system (T cells and NK cells) and suffer from a functional B cell defect. Although drugs such as antibiotics can offer partial protection, the boys normally die in the first year of life in the absence of a curative therapy. For a third of the children, bone marrow transplantation from a fully matched donor is available and can cure the disease without major side effects. Mismatched bone marrow transplantation, however, is complicated by severe and potentially lethal side effects. Over the past decade, scientists worldwide have developed new treatments by introducing a correct copy of the IL2RG-cDNA. Gene therapy was highly effective when applied in young children. However, in a few patients the IL2RG-gene vector has unfortunately caused leukaemia. Activation of cellular proto-oncogenes by accidental integration of the gene vector has been identified as the underlying mechanism. In future clinical trials, improved vector technology in combination with other protocol modifications may reduce the risk of this side effect.

  18. The Use of Viral Vectors in Gene Transfer Therapy

    A. Dziaková

    2016-05-01

    Full Text Available Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Various types of genetic material are used in gene therapy; double-stranded DNA (dsDNA, single-stranded DNA (ssDNA, plasmid DNA and antisense oligodeoxynucleotides (ASON. The success of gene therapy depends on assuring the entrance of the therapeutic gene to targeted cells without any form of biodegradation. Commonly used vectors in gene therapy are: adenoviruses (400 clinical studies; 23.8%, retroviruses (344 clinical studies; 20.5%, unenveloped/plasmid DNA (304 clinical studies, 17.7%, adeno-associated viruses (75 clinical studies; 4.5% and others. In this paper, we have reviewed the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors.

  19. Curing genetic disease with gene therapy.

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  20. Gene expression-targeted isoflavone therapy.

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  1. Gene-modified bone marrow cell therapy for prostate cancer.

    Wang, H; Thompson, T C

    2008-05-01

    There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.

  2. Potential of gene therapy as a treatment for heart failure

    2013-01-01

    Advances in understanding the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, make gene-based therapy a promising treatment option for heart conditions. Cardiovascular gene therapy has benefitted from recent advancements in vector technology, design, and delivery modalities. There is a critical need to explore new therapeutic approaches in heart failure, and gene therapy has emerged as a viable alternative. Advances in...

  3. Gene therapy for primary adaptive immune deficiencies.

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2011-06-01

    Gene therapy has become an option for the treatment of 2 forms of severe combined immunodeficiency (SCID): X-linked SCID and adenosine deaminase deficiency. The results of clinical trials initiated more than 10 years ago testify to sustained and reproducible correction of the underlying T-cell immunodeficiency. Successful treatment is based on the selective advantage conferred on T-cell precursors through their expression of the therapeutic transgene. However, "first-generation" retroviral vectors also caused leukemia in some patients with X-linked SCID because of the constructs' tendency to insert into active genes (eg, proto-oncogenes) in progenitor cells and transactivate an oncogene through a viral element in the long terminal repeat. These elements have been deleted from the vectors now in use. Together with the use of lentiviral vectors (which are more potent for transducing stem cells), these advances should provide a basis for the safe and effective extension of gene therapy's indications in the field of primary immunodeficiencies. Nevertheless, this extension will have to be proved by examining the results of the ongoing clinical trials.

  4. p53 gene therapy using RNA interference.

    Berindan-Neagoe, I; Balacescu, O; Burz, C; Braicu, C; Balacescu, L; Tudoran, O; Cristea, V; Irimie, A

    2009-09-01

    p53 gene, discovered almost 35 years ago, keeps the main role in cell cycle control, apoptosis pathways and transcription. p53 gene is found mutated in more than 50% of all human cancers in different locations. Many structures from viral to non viral were designed to incorporate and deliver in appropriate conditions forms of p53 gene or its transcripts, systemically to target tumor cells and to eliminate them through apoptosis or to restore the normal tumor suppressor gene role. Each delivery system presents advantages and low performance in relation to immune system recognition and acceptance. One of the major discoveries in the last years, silencing of RNA, represents a powerful tool for inhibiting post transcriptional control of gene expression. According to several studies, the RNA silencing technology for p53 transcripts together with other carriers or transporters at nano level can be used for creating new therapeutic models. RNA interference for p53 uses different double-stranded (ds) molecules like short interfering (si) RNA and, despite the difficulty of introducing them into mammalian cells due to immune system response, it can be exploited in cancer therapy.

  5. Modification of pGH cDNA using the first intron and adenovirus-mediated expression in CHO cells

    李秀锦; 仲飞; 齐顺章

    2003-01-01

    Objective This study was conducted to investigate the function of the first intron of porcine growth hormone (pGH) gene in the gene expression.Methods PCR method was used to amplify the first intron from pig genomic DNA. The intron was then inserted into pGH cDNA to construct pGH cDNA-intron (pGH cDNA-in). The recombinant adenoviruses containing pGH cDNA and pGH cDNA-in genes under control of CMV promoter were generated by homologous recombination method in HEK 293 cells respectively. The effect of the first intron on gene expression was evaluated by comparing the expression levels of pGH cDNA-in and pGH cDNA mediated by adenovirus vectors in CHO cells.Results The expression level of pGH cDNA containing the first intron increased by 117%, which was significantly higher than that of pGH cDNA without the intron (P<0.001). Conclusion The first intron of pGH gene has the function to improve pGH gene expression.

  6. State-of-the-art human gene therapy: part I. Gene delivery technologies.

    Wang, Dan; Gao, Guangping

    2014-01-01

    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  7. [Genetic basis of head and neck cancers and gene therapy].

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  8. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    ChengQian; JesusPrieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies, induction of anti-tumor immunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have been demonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment. Cellular & Molecular Immunology. 2004;1(2):105-111.

  9. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Cheng Qian; Jesus Prieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies,induction of anti-tumorimmunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have beendemonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment.

  10. Gene therapy of primary T cell immunodeficiencies.

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2013-08-10

    Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.

  11. Stem Cell-Based Gene Therapy.

    Bagnis; Mannoni

    1997-01-01

    Many researchers and clinicians wonder if gene therapy remains a way to treat genetic or acquired life-threatening diseases. For the last few years, many experimental, pre-clinical, and clinical data have been published showing that it is possible to transfer with relatively high efficiency new genetic information (transgene) in many cells or tissues including both hematopoietic progenitor cells and differentiated cells. Based on experimental works, addition of the normal gene to cells with deletions, mutations, or alterations of the corresponding endogenous one has been shown to reverse the phenotype and to restore (in some case) the functional defect. In spite of very attractive preliminary results, however, suggesting the feasibility and safety of this process, therapeutically efficient gene transfer and expression in targeted cells or tissues must be proven. In this review, we will focus primarily on the attempts to use gene transfer in hematopoietic stem cells as a model for more general genetic manipulations of stem cells. Hematopoietic stem cells are included in a subset of bone marrow, cord blood, or peripheral blood cells identified by the expression of the CD34 antigen on their membrane.

  12. Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy

    Haisma, Hidde J.; Bellu, Anna Rita

    2011-01-01

    Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction effici

  13. Glucagon-Like Peptide-1 Gene Therapy

    Anne M. Rowzee

    2011-01-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.

  14. Immunotherapy and gene therapy of thyroid cancer.

    Schott, M; Scherbaum, W A

    2004-12-01

    Most forms of thyroid cancer have a good prognosis. Some tumours, however, dedifferentiate and may finally develop into highly malignant anaplastic thyroid carcinomas with a low survival time. Due to their dedifferentiation these tumours are inaccessible to classical therapeutic options as radioiodide treatment or thyrotropin-suppression. Radical surgical revision of the tumour masses is the therapy of choice of patients with limited disease stages including patients with medullary thyroid carcinomas. Despite progress in radiation and chemotherapy regimes, many metastatic forms remain, however, incurable by conventional therapies. During the past few years new developments in immunology have revealed increasing information about the molecular basis of tumour-host interactions. The multitude of information resulting from basic science in cellular immunology, together with the availability of biologic reagents in pharmacological amounts, has opened new venues for the development of immunotherapy approaches for patients with different kind of cancers including thyroid malignancies. This review describes some most important developments in cellular immunotherapies e.g. dendritic cells-based protocols and gene therapy. It also provides a brief overview on the role of cytokines and antibodies in the treatment of advanced thyroid malignancies.

  15. Perspectives on best practices for gene therapy programs.

    Cheever, Thomas R; Berkley, Dale; Braun, Serge; Brown, Robert H; Byrne, Barry J; Chamberlain, Jeffrey S; Cwik, Valerie; Duan, Dongsheng; Federoff, Howard J; High, Katherine A; Kaspar, Brian K; Klinger, Katherine W; Larkindale, Jane; Lincecum, John; Mavilio, Fulvio; McDonald, Cheryl L; McLaughlin, James; Weiss McLeod, Bonnie; Mendell, Jerry R; Nuckolls, Glen; Stedman, Hansell H; Tagle, Danilo A; Vandenberghe, Luk H; Wang, Hao; Wernett, Pamela J; Wilson, James M; Porter, John D; Gubitz, Amelie K

    2015-03-01

    With recent successes in gene therapy trials for hemophilia and retinal diseases, the promise and prospects for gene therapy are once again garnering significant attention. To build on this momentum, the National Institute of Neurological Disorders and Stroke and the Muscular Dystrophy Association jointly hosted a workshop in April 2014 on "Best Practices for Gene Therapy Programs," with a focus on neuromuscular disorders. Workshop participants included researchers from academia and industry as well as representatives from the regulatory, legal, and patient advocacy sectors to cover the gamut from preclinical optimization to intellectual property concerns and regulatory approval. The workshop focused on three key issues in the field: (1) establishing adequate scientific premise for clinical trials in gene therapy, (2) addressing regulatory process issues, and (3) intellectual property and commercialization issues as they relate to gene therapy. The outcomes from the discussions at this workshop are intended to provide guidance for researchers and funders in the gene therapy field.

  16. Indole-3-carbinol (I3C) increases apoptosis, represses growth of cancer cells, and enhances adenovirus-mediated oncolysis.

    Chen, Lan; Cheng, Pei-Hsin; Rao, Xiao-Mei; McMasters, Kelly M; Zhou, Heshan Sam

    2014-09-01

    Epidemiological studies suggest that high intake of cruciferous vegetables is associated with a lower risk of cancer. Experiments have shown that indole-3-carbinol (I3C), a naturally occurring compound derived from cruciferous vegetables, exhibits potent anticarcinogenic properties in a wide range of cancers. In this study, we showed that higher doses of I3C (≥400 μM) induced apoptotic cancer cell death and lower doses of I3C (≤200 μM) repressed cancer cell growth concurrently with suppressed expression of cyclin E and its partner CDK2. Notably, we found that pretreatment with low doses of I3C enhanced Ad-mediated oncolysis and cytotoxicity of human carcinoma cells by synergistic upregulation of apoptosis. Thus, the vegetable compound I3C as a dietary supplement may benefit cancer prevention and improve Ad oncolytic therapies.

  17. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    2013-11-25

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... entitled ``Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy,...

  18. Gene therapy for gastric cancer: Is it promising?

    Andreas P Sutter; Henry Fechner

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer,including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological techniques and a better understanding of gastric carcinogenesis have allowed us to validate a variety of genes as molecular targets for gene therapy.This review provides an update of the new developments in cancer gene therapy, new principles, techniques,strategies and vector systems, and shows how they may be applied in the treatment of gastric cancer.

  19. Customized biomaterials to augment chondrocyte gene therapy.

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-02-07

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins.

  20. Non-Viral Ocular Gene Therapy: Assessment and Future Directions

    2008-01-01

    The purpose of this review is to give the general reader a brief overview of the current state of the field of non-viral ocular gene therapy. For multiple reasons the eye is an excellent organ for gene therapy application and while non-viral gene therapy modalities have been around for quite some time; they have only been applied to the eye in the last few years. This review will cover the exciting current trends in non-viral gene therapy and their application to the eye in addition to a brie...

  1. Gene therapy for the treatment of cystic fibrosis

    2012-01-01

    Tabinda J Burney1,2, Jane C Davies1,2,31Department of Gene therapy, Imperial College London, 2UK CF Gene Therapy Consortium London, 3Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UKAbstract: Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy invol...

  2. Improved animal models for testing gene therapy for atherosclerosis.

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  3. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment.

  4. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  5. Genetically engineering adenoviral vectors for gene therapy.

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  6. New approaches to gene and cell therapy for hemophilia.

    Ohmori, T; Mizukami, H; Ozawa, K; Sakata, Y; Nishimura, S

    2015-06-01

    Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques.

  7. Gene Therapy for HIV Infections: Intracellular Immunization

    Alain Piché

    1999-01-01

    Full Text Available Despite significant advances in the treatment of human immunodeficiency virus (HIV infection in the past 10 years, it remains an incurable disease. The inability of traditional drug-based therapies to inhibit HIV replication effectively for extended periods of time has stimulated intense research to develop novel approaches for this disease. Current understanding of HIV molecular biology and pathogenesis has opened the way for the development of gene therapy strategies for HIV infections. In this context, a number of intracellular immunization-based strategies have been evaluated, and some of them have reached the stage of phase I/II human clinical trials. These strategies include the use of single-chain antibodies, capsid-targeted viral inactivation, transdominant negative mutants, ribozymes, antisense oligonucleotides and RNA decoys. While a number of issues remain to be studied before intracellular immunization can be applied to the treatment of HIV infections, the significant progress already made in this field is likely to lead to clinical applications.

  8. Gene Therapy and Gene Editing for the Corneal Dystrophies.

    Williams, Keryn A; Irani, Yazad D

    2016-01-01

    Despite ever-increasing understanding of the genetic underpinnings of many corneal dystrophies, gene therapy designed to ameliorate disease has not yet been reported in any human patient. In this review, we explore the likely reasons for this apparent failure of translation. We identify the requirements for success: the genetic defect involved must have been identified and mapped, vision in the affected patient must be significantly impaired or likely to be impaired, no better or equivalently effective treatment must be available, the treatment must be capable of modulating corneal pathology, and delivery of the construct to the appropriate cell must be practicable. We consider which of the corneal dystrophies might be amenable to treatment by genetic manipulations, summarize existing therapeutic options for treatment, and explore gene editing using clustered regularly interspaced short palindromic repeat/Cas and other similar transformative technologies as the way of the future. We then summarize recent laboratory-based advances in gene delivery and the development of in vitro and in vivo models of the corneal dystrophies. Finally, we review recent experimental work that has increased our knowledge of the pathobiology of these conditions.

  9. Adenoviral gene therapy in gastric cancer: A review

    Nima Khalighinejad; Hesammodin Hariri; Omid Behnamfar; Arash Yousefi; Amir Momeni

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors.Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.

  10. Gene therapy and peripheral nerve repair : a perspective

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, J.

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral

  11. Regulatory considerations for translating gene therapy: a European Union perspective.

    Galli, Maria Cristina

    2009-11-11

    A preclinical study on a gene therapy approach for treatment of the severe muscle weakness associated with a variety of neuromuscular disorders provides a forum to discuss the translational challenges of gene therapy from a regulatory point of view. In this Perspective, the findings are considered from the view of European regulatory requirements for first clinical use.

  12. Prospects for Gene Therapy in the Fragile X Syndrome

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  13. Progress in Chimeric Vector and Chimeric Gene Based Cardiovascular Gene Therapy

    HU Chun-Song; YOON Young-sup; ISNER Jeffrey M.; LOSORDO Douglas W.

    2003-01-01

    Gene therapy for cardiovascular diseases has developed from preliminary animal experiments to clinical trials. However, vectors and target genes used currently in gene therapy are mainly focused on viral, nonviral vector and single target gene or monogene. Each vector system has a series of advantages and limitations. Chimeric vectors which combine the advantages of viral and nonviral vector,chimeric target genes which combine two or more target genes and novel gene delivery modes are being developed. In this article, we summarized the progress in chimeric vectors and chimeric genes based cardiovascular gene therapy, which including proliferative or occlusive vascular diseases such as atheroslerosis and restenosis, hypertonic vascular disease such as hypertension and cardiac diseases such as myocardium ischemia, dilated cardiomyopathy and heart failure, even heart transplantation. The development of chimeric vector, chimeric gene and their cardiovascular gene therapy is promising.

  14. Cardiac gene therapy: Recent advances and future directions.

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.

  15. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  16. Development of gene and stem cell therapy for ocular neurodegeneration

    Jing-Xue; Zhang; Ning-Li; Wang; Qing-Jun; Lu

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.

  17. Advances in Gene Therapy for Diseases of the Eye

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-01-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future. PMID:27178388

  18. Advances in Gene Therapy for Diseases of the Eye.

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-08-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.

  19. Taking stock of gene therapy for cystic fibrosis

    Alton Eric WFW

    2000-09-01

    Full Text Available Abstract The identification of the cystic fibrosis (CF gene opened the way for gene therapy. In the ten years since then, proof of principle in vitro and then in animal models in vivo has been followed by numerous clinical studies using both viral and non-viral vectors to transfer normal copies of the gene to the lungs and noses of CF patients. A wealth of data have emerged from these studies, reflecting enormous progress and also helping to focus and define key difficulties that remain unresolved. Gene therapy for CF remains the most promising possibility for curative rather than symptomatic therapy.

  20. Antagonism between gene therapy and epigenetic therapy on human laryngeal carcinoma tumor-bearing mice

    LIAN Meng; WANG Qi; FANG Ju-gao; WANG Hong; FAN Er-zhong

    2013-01-01

    Background Gene therapy and epigenetic therapy have gained more attention in cancer treatment.However,the effect of a combined treatment of gene therapy and epigenetic therapy on head and neck squamous cell carcinoma have not been studied yet.To study the mechanism and clinical application,human laryngeal carcinoma cell (Hep-2) tumor-bearing mice were used.Methods A xenograft tumor model was established by the subcutaneous inoculation of Hep-2 cells in the right armpit of BALB/c nu/nu mice.The mice with well-formed tumor were randomly divided into six groups.Multisite injections of rAd-p53 and/or 5-aza-dC were used to treat tumor.Tumor growth was monitored by measuring tumor volume and growth rate.p53 and E-cadherin protein levels in tumor tissues were detected by immunohistochemical staining.The mRNA levels were monitored with FQ-PCR.Results Gene therapy was much more effective than single epigenetic therapy and combined therapy.The gene therapy group has the lowest tumor growth rate and the highest expression levels of p53 and E-cadherin.Conclusions The combined treatment of gene and epigenetic therapy is not suggested for treating head and neck carcinoma,because gene therapy shows an antagonistic effect to epigenetic therapy.However,the mechanisms of action are still unclear.

  1. Human gene therapy: a brief overview of the genetic revolution.

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  2. Advances in gene therapy technologies to treat retinitis pigmentosa

    2013-01-01

    Hilda Petrs-Silva, Rafael LindenInstitute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, BrazilAbstract: Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant a...

  3. Nanoparticle-mediated p53 gene therapy for tumor inhibition

    Sharma, Blanka; Ma, Wenxue; Adjei, Isaac Morris; Panyam, Jayanth; Dimitrijevic, Sanja; Labhasetwar, Vinod

    2011-01-01

    The p53 tumor suppressor gene is mutated in 50% of human cancers, resulting in more aggressive disease with greater resistance to chemotherapy and radiation therapy. Advances in gene therapy technologies offer a promising approach to restoring p53 function. We have developed polymeric nanoparticles (NPs), based on poly (lactic-co-glycolic acid), that provide sustained intracellular delivery of plasmid DNA, resulting in sustained gene expression without vector-associated toxicity. Our previous...

  4. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    Yadollah Omidi

    2012-09-01

    Full Text Available Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results: Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion: Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno­medicines into clinical applications, it is essential 1 to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s; 2 to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3 to perform an initial clinical investigation; and 4 to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno­medicine development and clinical applications.

  5. Myostatin: genetic variants, therapy and gene doping

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  6. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2010-10-26

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Tumor Vaccines and Biotechnology Branch, Office of Cellular, Tissue and Gene Therapies, Center...

  7. The roles of traditional Chinese medicine in gene therapy.

    Ling, Chang-quan; Wang, Li-na; Wang, Yuan; Zhang, Yuan-hui; Yin, Zi-fei; Wang, Meng; Ling, Chen

    2014-03-01

    The field of gene therapy has been increasingly studied in the last four decades, and its clinical application has become a reality in the last 15 years. Traditional Chinese medicine (TCM), an important component of complementary and alternative medicine, has evolved over thousands of years with its own unique system of theories, diagnostics and therapies. TCM is well-known for its various roles in preventing and treating infectious and chronic diseases, and its usage in other modern clinical practice. However, whether TCM can be applied alongside gene therapy is a topic that has not been systematically examined. Here we provide an overview of TCM theories in relation to gene therapy. We believe that TCM theories are congruent with some principles of gene therapy. TCM-derived drugs may also act as gene therapy vehicles, therapeutic genes, synergistic therapeutic treatments, and as co-administrated drugs to reduce side effects. We also discuss in this review some possible approaches to combine TCM and gene therapy.

  8. 腺病毒介导多基因对大鼠脾淋巴细胞毒作用的影响%Effect of adenovirus-mediated multigenes on cytotoxicity of rat spleen lymphocyte in vitro

    王征旭; 何振平; 吴祖泽

    2001-01-01

    Objective To investigate the changes of the cytotoxicity of ratspleen lymphocyte and the level of IL-2 secreted by human T lymphocyte after the induction of adenovirus-mediated multigenes (Ad-multigenes, containing p53, GM-CSF, B7-1, IL-2 genes). Methods After human lymphocytes of peripheral blood and tumor cells were cultured together, the level of IL-2 secreted by T lymphocytes was determined after they were stimulated by liver cancer cells with pre-transfer of Ad-multigenes in vitro by ELISA. The change of the immunogenicity of rat carcinosarcoma cell Walker 256 transduced with multigenes was studied by cytotoxicity assay of rat spleen lymphocytes. Results The level of IL-2 secreted by peripheral blood T lymphocytes was increased in vitro after the T cells were co-cultivated with Ad-multigene-transducted liver cancer cells. Stimulated by Ad-multigene-transducted Walker 256 cells, the cytotoxicity activities of rat spleen lymphocyte were significantly elevated. Conclusion The immunogenicity of rat carcinosarcoma cell Walker 256 is enhanced, and the IL-2 production level which was secreted by T lymphocyte is increased after the mediation of Ad-multigenes.%目的 研究含多基因(p53、GM-CSF、B7-1、IL-2)的重组腺病毒载体Ad-multigenes,对大鼠脾脏淋巴细胞毒作用的影响及对淋巴细胞分泌IL-2的刺激作用。方法 应用人外周血淋巴细胞和肿瘤细胞混合培养,分析导入目的基因的肝癌细胞系体外刺激人T淋巴细胞分泌IL-2的作用;利用大鼠脾淋巴细胞杀伤活性试验,分析导入目的基因的大鼠癌肉瘤Walker256细胞,其免疫原性的变化。结果 导入Ad-multigenes的肝癌细胞系体外刺激人外周血T淋巴细胞分泌IL-2的水平增加;导入Ad-multigenes的大鼠Walker256细胞,能增强大鼠脾脏淋巴细胞的杀亲本瘤细胞活性。结论 腺病毒介导多基因Ad-multigenes,能增强大鼠癌肉瘤Walker256细胞的免疫原性,和T细胞分泌IL-2的水平增加。

  9. Bacteria as vectors for gene therapy of cancer.

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  10. Vector-mediated cancer gene therapy: an overview.

    Seth, Prem

    2005-05-01

    In recent years there has been a dramatic increase in developing gene therapy approaches for the treatment of cancer. The two events that have permitted the formulation of concept of cancer gene therapy are the new understanding of the molecular mechanisms underlying oncogenesis, and the development of the DNA-delivery vehicles or vectors. Many approaches to cancer gene therapy have been proposed, and several viral and non-viral vectors have been utilized. The purpose of this review article is to describe the various strategies of cancer gene therapy (transfer of tumor suppressor genes, suicide genes-enzyme/pro-drug approach, inhibition of dominant oncogenes, immunomodulation approaches, expression of molecules that affect angiogenesis, tumor invasion and metastasis, chemosensitization and radiosensitization approaches, and chemoprotection of stem cells). The chapter also reviews the commonly used vectors (retroviral vectors, adenoviral vectors, adeno-associated viral vectors, pox viruses, herpes simplex viruses, HIV- vectors, non-viral vectors and targetable vectors) for cancer gene therapy. Some of the important issues in cancer gene therapy, and the potential future directions are also being discussed.

  11. Germ-line gene therapy and the medical imperative.

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.

  12. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  13. Gene Therapy Applications in Gastroenterology and Hepatology

    Catherine H Wu

    2000-01-01

    Full Text Available Advantages and disadvantages of viral vectors and nonviral vectors for gene delivery to digestive organs are reviewed. Advances in systems for the introduction of new gene expression are described, including self-deleting retroviral transfer vectors, chimeric viruses and chimeric oligonucleotides. Systems for inhibition of gene expression are discussed, including antisense oligonucleotides, ribozymes and dominant-negative genes.

  14. Synergistic nanomedicine by combined gene and photothermal therapy.

    Kim, Jinhwan; Kim, Jihoon; Jeong, Cherlhyun; Kim, Won Jong

    2016-03-01

    To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.

  15. Novel AIDS therapies based on gene editing.

    Khalili, Kamel; White, Martyn K; Jacobson, Jeffrey M

    2017-02-16

    HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.

  16. Recent advances in gene therapy for lysosomal storage disorders

    Rastall DP

    2015-06-01

    Full Text Available David PW Rastall,1 Andrea Amalfitano1,2 1Department of Microbiology and Molecular Genetics, 2Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA Abstract: Lysosomal storage disorders (LSDs are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. Keywords: human trials, clinical trials, gene therapy, lysosomal storage disease, blood-brain barrier, adeno-associated virus, lentivirus, adenovirus 

  17. Bone Marrow Gene Therapy for HIV/AIDS.

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-07-17

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  18. Genetic correction using engineered nucleases for gene therapy applications.

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy.

  19. Alphavirus vectors as tools in neuroscience and gene therapy.

    Lundstrom, Kenneth

    2016-05-02

    Alphavirus-based vectors have been engineered for in vitro and in vivo expression of heterelogous genes. The rapid and easy generation of replication-deficient recombinant particles and the broad range of host cell infection have made alphaviruses attractive vehicles for applications in neuroscience and gene therapy. Efficient delivery to primary neurons and hippocampal slices has allowed localization studies of gene expression and electrophysiological recordings of ion channels. Alphavirus vectors have also been applied for in vivo delivery to rodent brain. Due to the strong local transient expression provided by alphavirus vectors a number of immunization and gene therapy approaches have demonstrated both therapeutic and prophylactic efficacy in various animal models.

  20. Cancer gene therapy targeting angiogenesis: An updated review

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  1. Gene therapy for oral squamous cell carcinoma: an overview.

    Saraswathi, T R; Kavitha, B; Vijayashree Priyadharsini, J

    2007-01-01

    A potential approach to the treatment of genetic disorders is gene therapy. The goal of gene therapy is to introduce therapeutic genetic material into the target cell to exert the intended therapeutic effect. Gene therapy has already shown promising results for the treatment of monogenic disorders such as severe combined immunodeficiency and haemophilia. Now the procedure has been extended to the level of treating malignant conditions such as cancer of the lungs, breast, colon etc. The prevalence of tumours of the larynx and oral cavity has increased in both developed and developing countries. This increase underscores the need for a novel therapeutic modality that would decrease or completely terminate the proliferation of malignant cells. This review highlights various types of gene therapy procedures with respect to oral squamous cell carcinoma.

  2. [Gene therapy for hereditary ophthalmological diseases: Advances and future perspectives].

    Chacón-Camacho, Óscar Francisco; Astorga-Carballo, Aline; Zenteno, Juan Carlos

    2015-01-01

    Gene therapy is a promising new therapeutic strategy that could provide a novel and more effective way of targeting hereditary ophthalmological diseases. The eye is easily accessible, highly compartmentalized, and an immune-privileged organ that gives advantages as an ideal gene therapy target. Recently, important advances in the availability of various intraocular vector delivery routes and viral vectors that are able to efficiently transduce specific ocular cell types have been described. Gene therapy has advanced in some retinal inherited dystrophies; in this way, preliminary success is now being reported for the treatment of Leber congenital amaurosis (LCA). This review will provide an update in the field of gene therapy for the treatment of ocular inherited diseases.

  3. Advances in Gene/Cell Therapy in Epidermolysis Bullosa.

    Murauer, Eva M; Koller, Ulrich; Pellegrini, Graziella; De Luca, Michele; Bauer, Johann W

    2015-01-01

    In the past few years, substantial preclinical and experimental advances have been made in the treatment of the severe monogenic skin blistering disease epidermolysis bullosa (EB). Promising approaches have been developed in the fields of protein and cell therapies, including allogeneic stem cell transplantation; in addition, the application of gene therapy approaches has become reality. The first ex vivo gene therapy for a junctional EB (JEB) patient was performed in Italy more than 8 years ago and was shown to be effective. We have now continued this approach for an Austrian JEB patient. Further, clinical trials for a gene therapy treatment of recessive dystrophic EB are currently under way in the United States and in Europe. In this review, we aim to point out that sustainable correction of autologous keratinocytes by stable genomic integration of a therapeutic gene represents a realistic option for patients with EB.

  4. Gene Therapy Offers Hope to Some Hemophilia Patients

    ... page: https://medlineplus.gov/news/fullstory_162389.html Gene Therapy Offers Hope to Some Hemophilia Patients Small, preliminary trial suggests it may free hemophilia B patients from transfusions To use the sharing features on this page, please enable ...

  5. Gene therapy for oral squamous cell carcinoma: An overview

    Saraswathi T

    2007-01-01

    Full Text Available A potential approach to the treatment of genetic disorders is gene therapy. The goal of gene therapy is to introduce therapeutic genetic material into the target cell to exert the intended therapeutic effect. Gene therapy has already shown promising results for the treatment of monogenic disorders such as severe combined immunodeficiency and haemophilia. Now the procedure has been extended to the level of treating malignant conditions such as cancer of the lungs, breast, colon etc. The prevalence of tumours of the larynx and oral cavity has increased in both developed and developing countries. This increase underscores the need for a novel therapeutic modality that would decrease or completely terminate the proliferation of malignant cells. This review highlights various types of gene therapy procedures with respect to oral squamous cell carcinoma.

  6. Cystic Fibrosis Gene Therapy in the UK and Elsewhere.

    Griesenbach, Uta; Pytel, Kamila M; Alton, Eric W F W

    2015-05-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here.

  7. The use of genes for performance enhancement: doping or therapy?

    R.S. Oliveira

    2011-12-01

    Full Text Available Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO, vascular endothelial growth factor (VEGF, insulin-like growth factor type 1 (IGF-1, myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  8. Gene Therapy – Potential, Pros, Cons and Ethics

    Ananth Nanjunda Rao

    2002-01-01

    Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  9. Clinical Applications of Gene Therapy for Primary Immunodeficiencies

    2015-01-01

    Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott–Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in mor...

  10. Gene therapy and peripheral nerve repair: a perspective

    Stefan A. Hoyng

    2015-07-01

    Full Text Available Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan’s, Parkinson’s and Alzheimer’s disease, retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study.

  11. Gene therapy for the fetus: is there a future?

    David, Anna L; Peebles, Donald

    2008-02-01

    Gene therapy uses the intracellular delivery of genetic material for the treatment of disease. A wide range of diseases - including cancer, vascular and neurodegenerative disorders and inherited genetic diseases - are being considered as targets for this therapy in adults. There are particular reasons why fetal application might prove better than application in the adult for treatment, or even prevention of early-onset genetic disorders such as cystic fibrosis and Duchenne muscular dystrophy. Research shows that gene transfer to the developing fetus targets rapidly expanding populations of stem cells, which are inaccessible after birth, and indicates that the use of integrating vector systems results in permanent gene transfer. In animal models of congenital disease such as haemophilia, studies show that the functionally immature fetal immune system does not respond to the product of the introduced gene, and therefore immune tolerance can be induced. This means that treatment could be repeated after birth, if that was necessary to continue to correct the disease. For clinicians and parents, fetal gene therapy would give a third choice following prenatal diagnosis of inherited disease, where termination of pregnancy or acceptance of an affected child are currently the only options. Application of this therapy in the fetus must be safe, reliable and cost-effective. Recent developments in the understanding of genetic disease, vector design, and minimally invasive delivery techniques have brought fetal gene therapy closer to clinical practice. However more research needs to be done in before it can be introduced as a therapy.

  12. Xenogeneic homologous genes, molecular evolution and cancer therapy

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  13. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  14. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy.

  15. Gene therapy: Regulations, ethics and its practicalities in liver disease

    Xi Jin; Yi-Da Yang; You-Ming Li

    2008-01-01

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases.By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity,inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.

  16. Current status of gene therapy for motor neuron disease

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  17. The use of gene therapy tools in reproductive immunology research.

    Zenclussen, Ana Claudia; Zenclussen, Maria L; Ritter, Thomas; Volk, Hans D

    2005-10-01

    Mammalian pregnancy is a complex phenomenon allowing the maternal immune system to support its allogeneic fetus, while still being effective against pathogens. Gene therapy approaches have the potential to treat devastating inherited diseases for which there is a little hope of finding a conventional cure. In reproductive medicine, experimental trials have been made so far only for correcting gene defects in utero. The use of gene therapy for improving pregnancy-rate success or avoiding pregnancy-related diseases i.e. miscarriage or pre-eclampsia, remains a very distant goal with unresolved moral and ethical aspects. However, gene therapy may help determining the role of several genes in supporting fetal growth and/or avoiding its rejection experimentally and might further help to identify new targets of intervention. Gene therapy strategies to avoid fetal rejection may include the transfer and expression of cyto-protective molecules locally at the fetal-placental interface. In addition, the ex-vivo genetic modification of immune cells for tolerance induction is a novel and tempting approach. In this regard, we have confirmed the role of the cyto-protective and immunomodulatory molecule Heme Oxygenase-1 (HO-1), by treating animals undergoing abortion with an adenovirus coding for HO-1. Since the sole application of a control vector did not provoke deleterious effects in pregnancy outcome, we propose the use of experimental gene therapy for unveiling molecular and cellular pathways leading to pregnancy success.

  18. [Advances in superenzyme gene therapy in penile rehabilitation].

    Qin, Feng; Run, Wang; Yuan, Jiu-Hong

    2013-04-01

    Erectile dysfunction (ED) is an almost unavoidable complication of radical prostatectomy. At present, though the concept of penile rehabilitation (PR) is accepted by most clinicians, the outcomes of erectile function recovery vary widely. Prostacyclin (PGI2) is a prostanoid and a main vasoprotectant which induces smooth muscle relaxation, but not used for replacement therapy because of its high unstability. SuperEnzyme is capable of continuous, specific and targeted promotion of PGI2 synthesis, and helps PR in ED patients after radical prostatectomy. SuperEnzyme gene therapy has a promising prospect for PR and the management of ED. This review updates SuperEnzyme gene therapy in PR.

  19. Adeno-Associated Virus Gene Therapy for Liver Disease

    Kattenhorn, Lisa M.; Tipper, Christopher H.; Stoica, Lorelei; Geraghty, Deborah S.; Wright, Teresa L.; Clark, K. Reed; Wadsworth, Samuel C.

    2016-01-01

    The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments. PMID:27897038

  20. Clinical infection control in gene therapy : A multidisciplinary conference

    Evans, ME; Jordan, CT; Chang, SMW; Conrad, C; Gerberding, JL; Kaufman, HL; Mayhall, CG; Nolta, JA; Pilaro, AM; Sullivan, S; Weber, DJ; Wivel, NA

    2000-01-01

    Gene therapy is being studied for the treatment of a variety of acquired and inherited disorders. Retroviruses, adenoviruses, poxviruses, adeno-associated viruses, herpesviruses, and others are being engineered to transfer genes into humans. Treatment protocols using recombinant viruses are being in

  1. Current advances in gene therapy for the treatment of genodermatoses.

    Long, Heather A; McMillan, James R; Qiao, Hongjiang; Akiyama, Masashi; Shimizu, Hiroshi

    2009-12-01

    Gene therapy provides the possibility of long term treatment for the severest of congenital disorders. In this review we will examine the recent advances in gene therapy for genodermatoses. Congenital diseases of the skin exhibit a wide range of severity and underlying causes and there are many possible therapeutic avenues. Gene therapy approaches can follow three paths-in vivo, ex vivo and fetal gene therapy, though the later is currently theoretical only it can provide potential results for even the most severe congenital diseases. All approaches utilize the many different vector systems available, including viral and the emerging use of non- viral integrating vectors. In addition, the use of RNAi based techniques to prevent dominant mutant protein expression has been explored as a therapy for specific dominant disorders such as keratin mutation disorders. Progress has been rapid in the past few years with some initial successful clinical trials reported. However, there are still some issues surrounding long term expression, transgene sustainability and safety issues that need to be addressed to further shift from experimental to clinically therapeutic applications. With the continuing development, merger and refinement of existing techniques there is an ever increasing likelihood of gene therapies becoming available for the more severe genodermatoses within the next decade or shortly thereafter.

  2. Future aspects of immunotherapy and gene therapy in neuroblastoma.

    Aktas, S

    2009-09-01

    Immunotherapy against cancer aims at stimulating the immune system or building an immune response against targeted tumor-associated antigens (TAAs). It was proposed theoretically as a potential therapy for cancer over a century ago but it became popular in the past two decades. Gene therapy represents a promising approach for reversing the neoplastic phenotype or driving tumor cells to self-destruction. Although survival rates of neuroblastoma (NB) with biologically favorable disease are greater than 90%, outcomes of patients with high risk disease are less than 40%. Stage 4 metastatic NB cases over 18 months of age are often incurable with multimodality chemotherapy regimens. In this article, translation of immuno-gene therapy strategies into clinical trials for NB are reviewed. Future aspects of immuno-gene therapy are discussed.

  3. Gene therapy for the treatment of cystic fibrosis

    Burney TJ

    2012-05-01

    Full Text Available Tabinda J Burney1,2, Jane C Davies1,2,31Department of Gene therapy, Imperial College London, 2UK CF Gene Therapy Consortium London, 3Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UKAbstract: Gene therapy is being developed as a novel treatment for cystic fibrosis (CF, a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational

  4. Gene Therapy In Squamous Cell Carcinoma – A Short Review

    Soma Susan Varghese

    2011-07-01

    Full Text Available Oral cancer remains one of the leading causes of death world wide. Various means to destroy tumor cells preferentially have been developed; gene therapy is one among them with less treatment morbidity. Gene therapy involves the transfer of therapeutic or working copy of genes into a specific cell of an individual in order to repair a faulty copy of gene. The alteration can be accomplished by repairing or replacing the damaged DNA by various strategies and vectors. To date genetically altered viruses are commonly used as gene delivery vehicle (vector which has an advantage of evolutionary selection of host-virus relation. Non viral vectors which include the physical transfection of genes can be accomplished by electrophoration, microinjection, or use of ballistic particles and chemical transfection by forming liposomes.

  5. The hair follicle as a target for gene therapy.

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  6. Clinical applications of gene therapy for primary immunodeficiencies.

    Cicalese, Maria Pia; Aiuti, Alessandro

    2015-04-01

    Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant.

  7. Recent advances in gene therapy for lysosomal storage disorders.

    Rastall, David Pw; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood-brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.

  8. Gene therapy for cancer: regulatory considerations for approval.

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-12-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA.

  9. Gene therapy for hemophilia: past, present and future.

    George, Lindsey A; Fogarty, Patrick F

    2016-01-01

    After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia.

  10. Safety of gene therapy: new insights to a puzzling case.

    Rothe, Michael; Schambach, Axel; Biasco, Luca

    2014-01-01

    Over the last few years, the transfer of therapeutic genes via gammaretro- or lentiviral vector systems has proven its virtue as an alternative treatment for a series of genetic disorders. The number of approved phase I/II clinical trials, especially for rare diseases, is steadily increasing, but the overall hurdles to become a broadly acceptable therapy remain numerous. The efforts by clinicians and basic scientists have tremendously improved the knowledge available about feasibility and biosafety of gene therapy. Nonetheless, despite the generation of a plethora of clinical and preclinical safety data, we still lack sufficiently powerful assays to predictively assess the exact levels of toxicity that might be observed in any given clinical gene therapy. Insertional mutagenesis is one of the major concerns when using integrating vectors for permanent cell modification, and the occurrence of adverse events related to genotoxicity, in early gene therapy trials, has refrained the field of gene therapy from emerging further. In this review, we provided a comprehensive overview on the basic principles and potential co-factors concurring in the generation of adverse events reported in gene therapy clinical trials using integrating vectors. Additionally, we summarized the available systems to assess genotoxicity at the preclinical level and we shed light on the issues affecting the predictive value of these assays when translating their results into the clinical arena. In the last section of the review we briefly touched on the future trends and how they could increase the safety of gene therapy employing integrating vector technology to take it to the next level.

  11. Gene therapy of inherited skin adhesion disorders: a critical overview.

    De Luca, M; Pellegrini, G; Mavilio, F

    2009-07-01

    Gene therapy has the potential to treat devastating inherited diseases for which there is little hope of finding a conventional cure. These include lethal diseases, like immunodeficiencies or several metabolic disorders, or conditions associated with a relatively long life expectancy but poor quality of life and expensive and life-long symptomatic treatments, such as muscular dystrophy, cystic fibrosis and thalassaemia. Skin adhesion defects belong to both groups. For the nonlethal forms, gene therapy, or transplantation of cultured skin derived from genetically corrected epidermal stem cells, represents a very attractive therapeutic option, and potentially a definitive treatment. Recent advances in gene transfer and stem cell culture technology are making this option closer than ever. This paper critically reviews the progress and prospects of gene therapy for epidermolysis bullosa, and the technical and nontechnical factors currently limiting its development.

  12. Advances in gene therapy technologies to treat retinitis pigmentosa.

    Petrs-Silva, Hilda; Linden, Rafael

    2014-01-01

    Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant adenoassociated viral vectors, which show a positive safety record and have so far been successful in several clinical trials for congenital retinal disease. Gene therapy for RP is under development in a variety of animal models, and the results raise expectations of future clinical application. Nonetheless, the translation of such strategies to the bedside requires further understanding of the mutations and mechanisms that cause visual defects, as well as thorough examination of potential adverse effects.

  13. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  14. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders.

    Gessler, Dominic J; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.

  15. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  16. Recent trends in the gene therapy of β-thalassemia.

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.

  17. Advances in gene therapy for muscular dystrophies.

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  18. Gene therapy for the treatment of cystic fibrosis.

    Burney, Tabinda J; Davies, Jane C

    2012-01-01

    Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR) DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion) outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford) is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational research in CF gene therapy.

  19. Sjogren Syndrome-Gene Therapy and its Prospective

    R Rahpeyma

    2003-02-01

    Full Text Available Sjogren syndrome is one of the autoimmune diseases which is characterized by lymphocytic infiltration to exocrine glands and causes keratoconjunctivitis sicca and xerostomia. Today, a large population, with a majority of women over 40, suffer from this disease and have several complications regarding oral health and reduced life quality such as severe dental caries, painful eyes, olfactory and gustatory deficiency, speech, mastication and swallowing discomforts. Unfortunately, these patients do not respond to the conventional therapies. Nowadays in medical world, which its target is basic therapy and not symptomatic one, several gene therapy approaches, have gained importance in treatment of this apparently incurable diseases. Due to the facts that this disease is the second prevelant autoimmune disease, after rheumatoid arthritis, and the conventional therapies of the disease are all relative and symptomatic, researchers have insisted on the basic and causative therapy through gene transfer more than before. In the Present article, through reviewing 58 references containing recent scientific and investigatory findings it has been tried, to consider the pathogenesis and conventional therapies of this syndrome. Another purpose of this study was to investigate several and potentially very effective gene transfer systems and different theraputic genes (mainly membrane water channels, ione transporter molecules, transcription factors, antifungal proteins and free radical scavengers.

  20. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene.

    Pandit, Aridaman; de Boer, Rob J

    2015-12-17

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART is gene therapy that targets the CCR5 co-receptor and creates a population of genetically modified host cells that are less susceptible to viral infection. With generic mathematical models we show that gene therapy that only targets the CCR5 co-receptor fails to suppress HIV-1 (which is in agreement with current data). We predict that the same gene therapy can be markedly improved if it is combined with a suicide gene that is only expressed upon HIV-1 infection.

  1. Gene engineering biological therapy for juvenile arthritis

    Kh Mikhel's

    2011-01-01

    However, GEBA therapy cannot completely cure the disease as before despite the progress achieved. GEBAs have potentially a number of serious side effects, among which there are severe infections and there is a risk of developing malignancies and autoimmune processes. Their administration requires careful monitoring to reveal the early development of serious adverse reactions, thus preventing a poor outcome.

  2. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine

    2015-01-01

    Introduction Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor...

  3. Targeted adenovirus mediated inhibition of NF-kappa B-dependent inflammatory gene expression in endothelial cells in vitro and in vivo

    Kuldo, J. M.; Asgeirsdottir, S. A.; Zwiers, P. J.; Bellu, A. R.; Rots, M. G.; Schalk, J. A. C.; Ogawara, K. I.; Trautwein, C.; Banas, B.; Haisma, H. J.; Molema, G.; Kamps, J. A. A. M.

    2013-01-01

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor kappa B signal transduction could silence the proinflammatory activation status of en

  4. Microneedles as a Delivery System for Gene Therapy

    Wei eChen

    2016-05-01

    Full Text Available Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs, which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy.

  5. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  6. Gene therapy clinical trials worldwide to 2012 - an update.

    Ginn, Samantha L; Alexander, Ian E; Edelstein, Michael L; Abedi, Mohammad R; Wixon, Jo

    2013-02-01

    To date, over 1800 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical trials from official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our June 2012 update, we have entries on 1843 trials undertaken in 31 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and which genes have been transferred. Details of the analyses presented, and our searchable database are available on The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in clinical trials of gene therapy approaches around the world and discuss the prospects for the future.

  7. Advances in imaging gene-directed enzyme prodrug therapy.

    Bhaumik, Srabani

    2011-04-01

    Gene-directed enzyme prodrug therapy (GDEPT) is one of the promising alternatives to conventional chemotherapy. Suicide gene therapy based anticancer strategy involves selective introduction of a foreign gene into tumor cells to produce a foreign enzyme that can activate an inert prodrug to its cytotoxic form and cause tumor cell death. In this review, we present three most promising suicide gene/prodrug combinations (1) herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), (2) cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC) and (3) bacterial nitroreductase (NTR) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954) and discuss how molecular imaging may improve therapy strategies. Current advances in noninvasive imaging technologies can measure vector dose, tumor selectivity, transgene expression and biodistribution of therapeutic gene with the aid of reporter genes and imageable probes from live animal. In this review we will discuss various imaging modalities - Optical, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), and highlight some of the approaches that can advance prodrug cancer therapy from bench to clinic.

  8. Development of Viral Vectors for Gene Therapy for Chronic Pain

    Yu Huang

    2011-01-01

    Full Text Available Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.

  9. Heart failure gene therapy: the path to clinical practice.

    Pleger, Sven T; Brinks, Henriette; Ritterhoff, Julia; Raake, Philip; Koch, Walter J; Katus, Hugo A; Most, Patrick

    2013-08-30

    Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.

  10. Mesenchymal stem cell-based gene therapy for erectile dysfunction.

    Kim, J H; Lee, H J; Song, Y S

    2016-05-01

    Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies.

  11. Gene Therapy to Cure HIV: Where to from Here?

    Johnston, Rowena

    2016-12-01

    A variety of approaches are being tested to cure HIV, but with the exception of the Berlin patient case, none has been successful. The Berlin patient, positive for both HIV and acute myeloid leukemia (AML), received two stem cell transplants from a donor homozygous for the CCR5delta32 mutation. In the 8 years since his second transplant, he has remained free of both HIV and AML. This case provides strong proof-of-principle that a cure for HIV is possible and might be achieved through gene therapy. Several technological barriers must be resolved and are discussed here, including the safe delivery of the intervention throughout the body of the infected person, increased efficiency of gene editing, and avoidance of resistance to the therapy. Delivery of a gene therapy intervention to HIV-infected people around the world will also be a considerable challenge.

  12. Gene therapy: a pharmacokinetic/pharmacodynamic modelling overview.

    Parra-Guillén, Zinnia P; González-Aseguinolaza, Gloria; Berraondo, Pedro; Trocóniz, Iñaki F

    2010-08-01

    Since gene therapy started over 20 years ago, more than one-thousand clinical trials have been carried out. Nonviral vectors present interesting properties for their clinical application, but their efficiency in vivo is relatively low, and further improvements in these vectors are needed. Elucidating how nonviral vectors behave at the intracellular level is enlightening for vector improvement and optimization. Model-based approach is a powerful tool to understand and describe the different processes that gene transfer systems should overcome inside the body. Model-based approach allows for proposing and predicting the effect of parameter changes on the overall gene therapy response, as well as the known application of the pharmacokinetic/pharmacodynamic modelling in conventional therapies. The objective of this paper is to critically review the works in which the time-course of naked or formulated DNA have been quantitatively studied or modelled.

  13. Gene therapy for cardiovascular disease: the potential of VEGF.

    Tiong, Alice; Freedman, Saul Benedict

    2004-04-01

    The quest for new therapeutic options and the recent exponential explosion in our knowledge of genetics have led to active interest and research into gene therapy. One area of gene therapy that has generated much debate and controversy is the use of vascular endothelial growth factor (VEGF) for therapeutic angiogenesis for palliative intent, and for the prevention of restenosis following percutaneous revascularization in coronary and peripheral arterial disease. This review highlights the development in VEGF gene therapy in the last 12 to 18 months, particularly the results from randomized, double-blind, placebo-controlled phase I and II studies that have evolved from encouraging results from animal models and early pilot studies in humans.

  14. Factoring nonviral gene therapy into a cure for hemophilia A.

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  15. Specifically targeted gene therapy for small-cell lung cancer

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  16. Retroviral integration profiles: their determinants and implications for gene therapy

    Kwang-il Lim

    2012-04-01

    Full Text Available Retroviruses have often been used for gene therapy because oftheir capacity for the long-term expression of transgenes via stableintegration into the host genome. However, retroviral integrationcan also result in the transformation of normal cells into cancercells, as demonstrated by the incidence of leukemia in a recentretroviral gene therapy trial in Europe. This unfortunate outcomehas led to the rapid initiation of studies examining variousbiological and pathological aspects of retroviral integration. Thisreview summarizes recent findings from these studies, includingthe global integration patterns of various types of retroviruses,viral and cellular determinants of integration, implications ofintegration for gene therapy and retrovirus-mediated infectiousdiseases, and strategies to shift integration to safe host genomicloci. A more comprehensive and mechanistic understanding ofretroviral integration processes will eventually make it possible togenerate safer retroviral vector platforms in the near future. [BMBreports 2012; 45(4: 207-212

  17. Adeno-associated virus for cystic fibrosis gene therapy

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  18. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  19. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  20. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

    E. R. Nemtsova

    2016-01-01

    Full Text Available This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin and oncolytic (tumor specific conditionally replicating viruses (Oncorine™, ONYX-015, Imlygic®.By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

  1. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  2. Gene therapy in endocrine tumors: a comprehensive overview.

    Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie

    2014-01-01

    Effective treatment strategies that help tackle the complex problems associated with managing endocrine cancers are in great demand. Because of the shortcomings in current treatments and the problems associated with the treatment strategies used in the cure and/or management of endocrine cancers, considerable effort must be devoted to developing new and effective therapeutic strategies. Gene therapy represents an area of both basic and clinical research that can potentially be considered a therapeutic option in treating endocrine cancers. Therefore, we consider it timely to summarize the studies related to gene-therapy interventions that are available for treating endocrine cancers and to highlight the major limitations of and the recent progress made in these therapies. After systematically reviewing the literature, we provide a comprehensive overview of distinct studies conducted to evaluate gene-therapy approaches in various endocrine cancers. Some of these successful studies have been extended toward translational investigations. The emerging view is that an integrative approach is required to combat the pitfalls associated with gene-therapy studies, especially in endocrine cancers.

  3. Stem Cell Based Gene Therapy in Prostate Cancer

    Jae Heon Kim

    2014-01-01

    Full Text Available Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.

  4. Gene therapy in disorders of lipoprotein metabolism

    Vaessen, Stefan F C; Twisk, Jaap; Kastelein, John J P; Kuivenhoven, Jan Albert

    2007-01-01

    Current pharmacologic interventions in lipid metabolism are insufficient in a subset of patients at increased risk of cardiovascular disease. In particular, several monogenetic disorders of lipid metabolism with diverse clinical complications are beyond treatment to date. Somatic gene transfer is a

  5. Non-viral gene therapy for bone tissue engineering.

    Wegman, Fiona; Oner, F Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2013-01-01

    The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.

  6. Gene therapy outpaces haplo for SCID-X1.

    Kohn, Donald B

    2015-06-04

    In this issue of Blood, Touzot et al report that autologous gene therapy/hematopoietic stem cell transplantation (HSCT) for infants with X-linked severe combined immune deficiency (SCID-X1) lacking a matched sibling donor may have better outcomes than haploidentical (haplo) HSCT. Because gene therapy represents an autologous transplant, it obviates immune suppression before and after transplant, eliminates risks of graft versus host disease (GVHD), and, as the authors report, led to faster immunological reconstitution after transplant than did haplo transplant.

  7. Ex vivo gene therapy for HIV-1 treatment.

    Scherer, Lisa J; Rossi, John J

    2011-04-15

    Until recently, progress in ex vivo gene therapy (GT) for human immunodeficiency virus-1 (HIV-1) treatment has been incremental. Long-term HIV-1 remission in a patient who received a heterologous stem cell transplant for acquired immunodeficiency syndrome-related lymphoma from a CCR5(-/-) donor, even after discontinuation of conventional therapy, has energized the field. We review the status of current approaches as well as future directions in the areas of therapeutic targets, combinatorial strategies, vector design, introduction of therapeutics into stem cells and enrichment/expansion of gene-modified cells. Finally, we discuss recent advances towards clinical application of HIV-1 GT.

  8. Gene Therapy For Oral Cancer - Journey To A New Horizon

    Arpita Kabiraj

    2012-01-01

    Full Text Available The past two decades have been golden years for the genetics of cancer. It has become clear through the work of countless laboratory groups that both inherited and sporadic cancers arise through defects or misregulations of their genomes. Despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with oral squamous cell carcinoma have not significantly improved over the past several decades. Thus, an entirely new approach to its treatment utilizing genetic aids has evolved. The majority of the head and neck cancers comprise of Oral squamous cell carcinoma (OSCC. The traditional therapies for the management of cancer and their various modifications including surgery, radiotherapy and chemotherapy have not refined the survival rates yet. Gene therapy represents a fundamentally new mode for the effective treatment of a disease. It essentially consists of the introduction of the genetic material into the target cells of an individual without producing toxic effects on surrounding tissues. The essence of gene therapy is attributed to the replacement of the defective gene with a normal gene, thus restoring the lost function in the patient’s body. The aim of this review is to analyze the different modalities of gene therapy currently used to manage precancerous and cancerous lesions of the oral cavity.

  9. Biosafety challenges for use of lentiviral vectors in gene therapy.

    Rothe, Michael; Modlich, Ute; Schambach, Axel

    2013-12-01

    Lentiviral vectors are promising tools for the genetic modification of cells in biomedical research and gene therapy. Their use in recent clinical trials for the treatment of adrenoleukodystrophy, β-thalassemia, Wiskott-Aldrich- Syndrome and metachromatic leukodystrophy underlined their efficacy for therapies especially in case of hereditary diseases. In comparison to gammaretroviral LTR-driven vectors, which were employed in the first clinical trials, lentiviral vectors present with some favorable features like the ability to transduce also non-dividing cells and a potentially safer insertion profile. However, genetic modification with viral vectors in general and stable integration of the therapeutic gene into the host cell genome bear concerns with respect to different levels of personal or environmental safety. Among them, insertional mutagenesis by enhancer mediated dysregulation of neighboring genes or aberrant splicing is still the biggest concern. However, also risks like immunogenicity of vector particles, the phenotoxicity of the transgene and potential vertical or horizontal transmission by replication competent retroviruses need to be taken into account. This review will give an overview on biosafety aspects that are relevant to the use of lentiviral vectors for genetic modification and gene therapy. Furthermore, assay systems aiming at evaluating biosafety in preclinical settings and recent promising clinical trials including efforts of monitoring of patients after gene therapy will be discussed.

  10. State of the art: gene therapy of haemophilia.

    Spencer, H T; Riley, B E; Doering, C B

    2016-07-01

    Clinical gene therapy has been practiced for more than a quarter century and the first products are finally gaining regulatory/marketing approval. As of 2016, there have been 11 haemophilia gene therapy clinical trials of which six are currently open. Each of the ongoing phase 1/2 trials is testing a variation of a liver-directed adeno-associated viral (AAV) vector encoding either factor VIII (FVIII) or factor IX (FIX) . As summarized herein, the clinical results to date have been mixed with some perceived success and a clear recognition of the immune response to AAV as an obstacle to therapeutic success. We also attempt to highlight promising late-stage preclinical activities for AAV-FVIII where, due to inherent challenges with manufacture, delivery and transgene product biosynthesis, more technological development has been necessary to achieve results comparable to what has been observed previously for AAV-FIX. Finally, we describe the development of a stem cell-based lentiviral vector gene therapy product that has the potential to provide lifelong production of FVIII and provide a functional 'cure' for haemophilia A. Integral to this program has been the incorporation of a blood cell-specific gene expression element driving the production of a bioengineered FVIII designed for optimal efficiency. As clearly outlined herein, haemophilia remains at the forefront of the rapidly advancing clinical gene therapy field where there exists a shared expectation that transformational advances are on the horizon.

  11. Inhibitory effect of adenovirus-mediated short hairpin RNA targeting P85 and Akt1 on growth of human gastric adenocarcinoma cell%腺病毒介导的靶向P85和Akt1短发夹RNA对人胃腺癌细胞生长抑制作用的研究

    张靖; 付彦超; 康春生; 张庆瑜; 王涛; 张洁

    2009-01-01

    expression was identified with real-time PCR and Western blot. The proliferative activity of tumor cells was evaluated with MTr assay and flow cytometry in vitro, rAd5-HK and rAd5-P + A mediated by adenovirus were injected into the established subcutancous SGC-7901 gastric adenocarcinoma in nude mice. During the observation period of 21 days, tumor volume was measured every 3 days to further testify the anti-tumor effect of rAd5-P + A on the SGC-7901 gastric adenocarcinoma cells and cell in situ apoptosis was detected with TUNEL assay. Results The adenovirus vector rAd5-P + A was successfully constructed and it dramatically downregulated P85 and Akt1 mRNA expression in SGC-7901 gastric adenocarcinoma cells. Compared with a control group of SGC-7901 cells and cells transfected with general adenovirus rAd5-HK as control, P85 and Akt1 protein expression 48 h and 72 h after rAd5-P + A transfection was decreased by 57.5% and 63. 7%, 67. 8% and 75.6% with statistical significance(P = 0. 005, P = 0. 003). Cell proliferative activity in rAd5-P + A transfected cells was suppressed from the second day (P <0. 001) and the decreased P85 and Akt1 expression was accompanied by 5.9% -7. 1% decrease of S phase fraction and 12. 1% - 13.7% increase of G0/G1 phase. The tumor volume of rAd5-P + A treated group was smaller than that of the control and rAd.5-HK group with statistical significance (F = 9. 871, P = 0. 025) . Moreover, rAd5-P + A could induce cell in situ apoptosis. Conclusions Adenovirus-mediated targeting P85 and Akt1 shRNA can inhibit the growth of SGC-7901 human gastric adenocarcinoma cells and this may provide a new strategy of combination gene therapy in gastric adenocarcinoma.

  12. Gene therapy and angiogenesis in patients with coronary artery disease

    Kastrup, Jens

    2010-01-01

    -blind placebo-controlled trials could not confirm the initial high efficacy of either the growth factor protein or the gene therapy approaches observed in earlier small trials. The clinical studies so far have all been without any gene-related serious adverse events. Future trials will focus on whether...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...

  13. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    2012-11-29

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... for Biologics Research and Evaluation (CBER), Office of Cellular, Tissue, and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy, gene therapy, therapeutic...

  14. Gene therapy for primary immunodeficiencies: current status and future prospects.

    Qasim, Waseem; Gennery, Andrew R

    2014-06-01

    Gene therapy using autologous haematopoietic stem cells offers a valuable treatment option for patients with primary immunodeficiencies who do not have access to an HLA-matched donor, although such treatments have not been without their problems. This review details gene therapy trials for X-linked and adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). X-linked SCID was chosen for gene therapy because of previous 'natural' genetic correction through a reversion event in a single lymphoid precursor, demonstrating limited thymopoiesis and restricted T-lymphocyte receptor repertoire, showing selective advantage of progenitors possessing the wild-type gene. In early studies, patients were treated with long terminal repeats-intact gamma-retroviral vectors, without additional chemotherapy. Early results demonstrated gene-transduced cells, sustained thymopoiesis, and a diverse T-lymphocyte repertoire with normal function. Serious adverse effects were subsequently reported in 5 of 20 patients, with T-lymphocyte leukaemia developing, secondary to the viral vector integrating adjacent to a known oncogene. New trials using self-inactivating gamma-retroviral vectors are progressing. Trials for ADA-SCID using gamma-retroviral vectors have been successful, with no similar serious adverse effects reported; trials using lentiviral vectors are in progress. Patients with WAS and CGD treated with early gamma-retroviral vectors have developed similar lymphoproliferative adverse effects to those seen in X-SCID--current trials are using new-generation vectors. Targeted gene insertion using homologous recombination of corrected gene sequences by cellular DNA repair pathways following targeted DNA breakage will improve efficacy and safety of gene therapy. A number of new techniques are discussed.

  15. Glaucoma: genes, phenotypes, and new directions for therapy.

    Fan, Bao Jian; Wiggs, Janey L

    2010-09-01

    Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic nerve damage, usually associated with intraocular pressure. Although the clinical progression of the disease is well defined, the molecular events responsible for glaucoma are currently poorly understood and current therapeutic strategies are not curative. This review summarizes the human genetics and genomic approaches that have shed light on the complex inheritance of glaucoma genes and the potential for gene-based and cellular therapies that this research makes possible.

  16. Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells

    ZHOU Yi; L(U) Bing-jie; XU Ping; SONG Chun-fang

    2005-01-01

    Background The treatment of hypoparathyroidism (HPT) is still a difficult clinical problem, which necessitates a new therapy. Gene therapy of HPT has been valuable, but how to improve the gene transfer efficiency and expression stability is a problem. This study was designed to optimize the gene therapy of HPT with hematopoietic stem cells (HSCs) recombined with the parathyroid hormone (PTH) gene. Methods The human PTH gene was amplified by polymerase chain reaction (PCR) from pcDNA3.1-PTH vectors and inserted into murine stem cell virus (MSCV) vectors with double enzyme digestion (EcoRI and XhoI). The recombinant vectors were transfected into PA317 packaging cell lines by the lipofectin method and screened by G418 selective medium. The condensed recombinant retroviruses were extracted and used to infect HSCs, which were injected into mice suffering from HPT. The change of symptoms and serum levels of PTH and calcium in each group of mice were investigated. Results The human PTH gene was inserted into MSCV vectors successfully and the titres were up to 2×107 colony forming unit (CFU)/ml in condensed retroviral solution. The secretion of PTH reached 15 ng·10-6·cell-1 per 48 hours. The wild type viruses were not detected via PCR amplification, so they were safe for use. The mice suffering from HPT recovered quickly and the serum levels of calcium and PTH remained normal for about three months after the HSCs recombined with PTH were injected into them. The therapeutic effect of this method was better than simple recombinant retroviruses injection.Conclusions The recombinant retroviral vectors MSCV-PTH and the high-titre condensed retroviral solution recombined with the PTH gene are obtained. The recombinant retroviral solution could infect HSCs at a high rate of efficiency. The infected HSCs could cure HPT in mice. This method has provided theoretical evidence for the clinical gene therapy of HPT.

  17. Gene transfer strategies for augmenting cardiac function.

    Peppel, K; Koch, W J; Lefkowitz, R J

    1997-07-01

    Recent transgenic as well as gene-targeted animal models have greatly increased our understanding of the molecular mechanisms of normal and compromised heart function. These studies have raised the possibility of using somatic gene transfer as a means for improving cardiac function. DNA transfer to a significant portion of the myocardium has thus far been difficult to accomplish. This review describes current efforts to achieve myocardial gene transfer in several model systems, with particular emphasis placed on adenovirus-mediated gene delivery, its possibilities, and current limitations. (Trend Cardiovasc Med 1997;7:145-150). © 1997, Elsevier Science Inc.

  18. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.

  19. A preclinical approach for gene therapy of β-thalassemia

    Breda, Laura; Kleinert, Dorothy A.; Casu, Carla; Casula, Laura; Cartegni, Luca; Fibach, Eitan; Mancini, Irene; Giardina, Patricia J.; Gambari, Roberto; Rivella, Stefano

    2011-01-01

    Lentiviral-mediated β-globin gene transfer successfully treated β-thalassemic mice. Based on this result, clinical trials were initiated. To date, however, no study has investigated the efficacy of gene therapy in relation to the nature of the different β-globin mutations found in patients. Most mutations can be classified as β0 or β+, based on the amount of β-globin protein produced. Therefore, we propose that a screening in vitro is necessary to verify the efficacy of gene transfer prior to treatment of individual patients. We used a two-phase liquid culture system to expand and differentiate erythroid progenitor cells (ErPCs) transduced with lentiviral vectors. We propose the use of this system to test the efficiency of lentiviral vectors carrying the human β-globin gene, to correct the phenotype of ErPCs from patients preparing for gene therapy. This new approach might have profound implications for designing gene therapy and for understanding the genotype/phenotype variability observed in Cooley’s anemia patients. PMID:20712784

  20. A preclinical approach for gene therapy of beta-thalassemia.

    Breda, Laura; Kleinert, Dorothy A; Casu, Carla; Casula, Laura; Cartegni, Luca; Fibach, Eitan; Mancini, Irene; Giardina, Patricia J; Gambari, Roberto; Rivella, Stefano

    2010-08-01

    Lentiviral-mediated beta-globin gene transfer successfully treated beta-thalassemic mice. Based on this result, clinical trials were initiated. To date, however, no study has investigated the efficacy of gene therapy in relation to the nature of the different beta-globin mutations found in patients. Most mutations can be classified as beta(0) or beta(+), based on the amount of beta-globin protein produced. Therefore, we propose that a screening in vitro is necessary to verify the efficacy of gene transfer prior to treatment of individual patients. We used a two-phase liquid culture system to expand and differentiate erythroid progenitor cells (ErPCs) transduced with lentiviral vectors. We propose the use of this system to test the efficiency of lentiviral vectors carrying the human beta-globin gene, to correct the phenotype of ErPCs from patients preparing for gene therapy. This new approach might have profound implications for designing gene therapy and for understanding the genotype/phenotype variability observed in Cooley's anemia patients.

  1. Genome-editing Technologies for Gene and Cell Therapy.

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  2. Genome-editing Technologies for Gene and Cell Therapy

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  3. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease.

    Xiong, N; Zhang, Z; Huang, J; Chen, C; Zhang, Z; Jia, M; Xiong, J; Liu, X; Wang, F; Cao, X; Liang, Z; Sun, S; Lin, Z; Wang, T

    2011-04-01

    The umbilical cord provides a rich source of primitive mesenchymal stem cells (human umbilical cord mesenchymal stem cells (HUMSCs)), which have the potential for transplantation-based treatments of Parkinson's Disease (PD). Our pervious study indicated that adenovirus-associated virus-mediated intrastriatal delivery of human vascular endothelial growth factor 165 (VEGF 165) conferred molecular protection to the dopaminergic system. As both VEGF and HUMSCs displayed limited neuroprotection, in this study we investigated whether HUMSCs combined with VEGF expression could offer enhanced neuroprotection. HUMSCs were modified by adenovirus-mediated VEGF gene transfer, and subsequently transplanted into rotenone-lesioned striatum of hemiparkinsonian rats. As a result, HUMSCs differentiated into dopaminergic neuron-like cells on the basis of neuron-specific enolase (NSE) (neuronal marker), glial fibrillary acidic protein (GFAP) (astrocyte marker), nestin (neural stem cell marker) and tyrosine hydroxylase (TH) (dopaminergic marker) expression. Further, VEGF expression significantly enhanced the dopaminergic differentiation of HUMSCs in vivo. HUMSC transplantation ameliorated apomorphine-evoked rotations and reduced the loss of dopaminergic neurons in the lesioned substantia nigra (SNc), which was enhanced significantly by VEGF expression in HUMSCs. These findings present the suitability of HUMSC as a vector for gene therapy and suggest that stem cell engineering with VEGF may improve the transplantation strategy for the treatment of PD.

  4. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  5. Recent trends in the gene therapy of β-thalassemia

    Finotti A

    2015-02-01

    Full Text Available Alessia Finotti,1–3 Laura Breda,4 Carsten W Lederer,6,7 Nicoletta Bianchi,1–3 Cristina Zuccato,1–3 Marina Kleanthous,6,7 Stefano Rivella,4,5 Roberto Gambari1–3 1Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy; 2Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy; 3Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy; 4Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA; 5Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA; 6Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; 7Cyprus School of Molecular Medicine, Nicosia, Cyprus Abstract: The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most

  6. Viroreplicative Gene Therapy Targeted to Prostate Cancer

    2010-08-01

    drug 5- fluorouracil ( 5FU ), as RCR vectors using this suicide gene have moved forward to Phase I clinical trials for the treatment of patients...mutations (T5.0002). The specific enzyme activity was measured by a calibrated HPLC assay to detect 5FU , the conversion product of the 5FC prodrug...in protein extracts from infected cells harvested 5 days post-infection at MOI = 0.1, and is expressed as nmol 5FU produced per min per mg protein

  7. Modeling of gene therapy for regenerative cells using intelligent agents.

    Adly, Aya Sedky; Aboutabl, Amal Elsayed; Ibrahim, M Shaarawy

    2011-01-01

    Gene therapy is an exciting field that has attracted much interest since the first submission of clinical trials. Preliminary results were very encouraging and prompted many investigators and researchers. However, the ability of stem cells to differentiate into specific cell types holds immense potential for therapeutic use in gene therapy. Realization of this potential depends on efficient and optimized protocols for genetic manipulation of stem cells. It is widely recognized that gain/loss of function approaches using gene therapy are essential for understanding specific genes functions, and such approaches would be particularly valuable in studies involving stem cells. A significant complexity is that the development stage of vectors and their variety are still not sufficient to be efficiently applied in stem cell therapy. The development of scalable computer systems constitutes one step toward understanding dynamics of its potential. Therefore, the primary goal of this work is to develop a computer model that will support investigations of virus' behavior and organization on regenerative tissues including genetically modified stem cells. Different simulation scenarios were implemented, and their results were encouraging compared to ex vivo experiments, where the error rate lies in the range of acceptable values in this domain of application.

  8. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    2004-10-01

    Therapy 9:991-999. 2. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial...8463-71. fibers. J Virol 1998;72(5):4212-23. 178. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz 192. Clark KR. Recent advances in recombinant

  9. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders

    G. Wagemaker (Gerard)

    2014-01-01

    textabstractAfter more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme

  10. Approaches and methods in gene therapy for kidney disease

    van der Wouden, Els A; Sandovici, Maria; Henning, Robert H; de Zeeuw, Dick; Deelman, Leo E

    2004-01-01

    Renal gene therapy may offer new strategies to treat diseases of native and transplanted kidneys. Several experimental techniques have been developed and employed using nonviral, viral, and cellular vectors. The most efficient vector for in vivo transfection appears to be adenovirus. Glomeruli, bloo

  11. The interplay of post-translational modification and gene therapy

    Osamor VC

    2016-02-01

    Full Text Available Victor Chukwudi Osamor,1–3 Shalom N Chinedu,3,4 Dominic E Azuh,3,5 Emeka Joshua Iweala,3,4 Olubanke Olujoke Ogunlana3,4 1Covenant University Bioinformatics Research (CUBRe Unit, Department of Computer and Information Sciences, College of Science and Technology (CST, Covenant University, Ota, Ogun State, Nigeria; 2Institute of Informatics (Computational biology and Bioinformatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw (Uniwersytet Warszawski, Warszawa, Poland; 3Covenant University Public Health and Well-being Research Group (CUPHWERG, Covenant University, 4Biochemistry and Molecular Biology Unit, Department of Biological Sciences, College of Science and Technology, Covenant University, Canaan Land, 5Department of Economics and Development Studies, Covenant University, Ota, Ogun State, Nigeria Abstract: Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. Keywords: post-translational modification, gene therapy, epigenetics, histone, methylation

  12. Adenovirus-derived vectors for prostate cancer gene therapy.

    de Vrij, Jeroen; Willemsen, Ralph A; Lindholm, Leif; Hoeben, Rob C; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Dautzenberg, Iris J C; de Ridder, Corrina; Dzojic, Helena; Erbacher, Patrick; Essand, Magnus; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Jennings, Ian; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nugent, Regina; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schenk-Braat, Ellen; Schooten, Erik; Seymour, Len; Slade, Michael; Szyjanowicz, Pio; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; van der Weel, Laura; van Weerden, Wytske; Wagner, Ernst; Zuber, Guy

    2010-07-01

    Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.

  13. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed.

  14. ADENOVIRUS-MEDIATED EXPRESSION OF PEX, A NONCATALYTIC FRAGMENT OF MATRIX METALLOPROTEINASE-2, AND IT'S INHIBITION ON ANGIOGENESIS AND TUMOR GROWTH

    2006-01-01

    Objective: To develop an adenovirus system to deliver biologically active peptides or proteins such as angiogenesis inhibitors in vivo for the treatment of cancer. Methods: DNA recombination techniques were employed to construct adenovirus shuttle vector, in which angiogenesis inhibitor was put downstream of rat growth hormone signal peptide, and the C-terminal was the myc-epitope 10-amino-acid peptide for the following up of the protein. Adenovirus was made using the bacteria recombination method. We tested this system using an angiogenesis inhibitor chick MMP-2 C-terminal hemopexin-like fragment (PEX) in Sarcoma 180 (S-180) bearing Kunming mice. The anti-angiogenic effect was performed by chick chorioallantoic membrane assay. Results: PEX was readily secreted outside human stomach carcinoma BGC823 cells as demonstrated by immunofluorescent staining and western blot infected by adenovirus with rat growth hormone signal peptide (E-T-rGH-PEX). However, without signal peptide (E-T-PEX), PEX was expressed and localized in the cytoplasm of the infected cells, and formed large aggregates, which suggested that PEX was insoluble. The adenovirus E-T-rGH-PEX could inhibit angiogenesis, while E-T-rGH-PEX not. The adenoviruses of E-T-rGH-PEX inhibited the growth of S-180 tumor significantly compared with the empty virus control group E-T (P=0.026) and without signal peptide group E-T-PEX (P=0.006) respectively, while E-T-PEX had little effect. Conclusion: These results suggest that this adenoviral system is likely to be used in the gene therapy of cancer to deliver angiogenesis inhibitors.

  15. Silica nanoparticle is a possible safe carrier for gene therapy

    XUE Zhigang; DAI Heping; TANG Baisha; XIA Kun; XIA Jiahui; LIANG Desheng; LI Yumei; LONG Zhigao; PAN Qian; LIU Xionghao; WU Lingqian; ZHU Shaihong; CAI Fang

    2005-01-01

    In order to develop a safe and effective gene therapy carrier, some toxicological and biodynamical experiments were carried out on silica nanoparticles (SiNPs). First we prepared SiNPs with appropriate portions of cyclohexane, deionized water and ethyl silicate, and then transfected the modified SiNPs and GFP plasmid DNA complex into the HT1080 cells to test the effectiveness of transfection for gene therapy. At the same time, we injected the SiNPs into a number of mice through tail vein. Then we made the mice crossed to evaluate the acute, long-term and reproductive toxicity. In vivo distribution analysis and pathological examination were made on both adult mice and their offspring. SiNPs were uniform and had an average diameter of 40 nm, and the modified SiNPs carried exogenous DNA molecules into target cells and the transferred GFP fusion gene was effectively expressed in the cells. The SiNPs injected via tail vein were widely distributed in almost all of tissues, and the injected mice had the ability to reproduce normally. The in vivo and in vitro results of this study clearly show that SiNPs can be used as a safe and effective carrier for gene transfection and gene therapy.

  16. Skin gene therapy for acquired and inherited disorders.

    Carretero, M; Escámez, M J; Prada, F; Mirones, I; García, M; Holguín, A; Duarte, B; Podhajcer, O; Jorcano, J L; Larcher, F; Del Río, M

    2006-11-01

    The rapid advances associated with the Human Genome Project combined with the development of proteomics technology set the bases to face the challenge of human gene therapy. Different strategies must be evaluated based on the genetic defect to be corrected. Therefore, the re-expression of the normal counterpart should be sufficient to reverse phenotype in single-gene inherited disorders. A growing number of candidate diseases are being evaluated since the ADA deficiency was selected for the first approved human gene therapy trial (Blaese et al., 1995). To cite some of them: sickle cell anemia, hemophilia, inherited immune deficiencies, hyper-cholesterolemia and cystic fibrosis. The approach does not seem to be so straightforward when a polygenic disorder is going to be treated. Many human traits like diabetes, hypertension, inflammatory diseases and cancer, appear to be due to the combined action of several genes and environment. For instance, several wizard gene therapy strategies have recently been proposed for cancer treatment, including the stimulation of the immune system of the patient (Xue et al., 2005), the targeting of particular signalling pathways to selectively kill cancer cells (Westphal and Melchner, 2002) and the modulation of the interactions with the stroma and the vasculature (Liotta, 2001; Liotta and Kohn, 2001).

  17. Neurotrophin gene therapy for sustained neural preservation after deafness.

    Patrick J Atkinson

    Full Text Available The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to both hold and reverse this degeneration by providing a sustained and localised source of neurotrophins to the deafened cochlea. Adenoviral vectors containing green fluorescent protein, with or without neurotrophin-3 and brain derived neurotrophic factor, were injected into the lower basal turn of scala media of guinea pigs ototoxically deafened one week prior to intervention. This single injection resulted in localised and sustained gene expression, principally in the supporting cells within the organ of Corti. Guinea pigs treated with adenoviral neurotrophin-gene therapy had greater neuronal survival compared to contralateral non-treated cochleae when examined at 7 and 11 weeks post injection. Moreover; there was evidence of directed peripheral fibre regrowth towards cells expressing neurotrophin genes after both treatment periods. These data suggest that neurotrophin-gene therapy can provide sustained protection of spiral ganglion neurons and peripheral fibres after hearing loss.

  18. [The hair follicle as a target for gene therapy].

    Cotsarelis, G

    2002-05-01

    The hair follicle possesses progenitor cells required for continuous hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be the target of topical gene delivery in the skin of the mouse. Using a combination of liposomes and DNA, we demonstrate the feasibility of targeting hair follicle cells in human scalp xenografts. We consider liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection is possible only during the early anagen phase. Factors and obstacles for the use of gene therapy in treating alopecia and skin diseases are discussed. A theoretical framework for future treatment of cutaneous and systemic disorders using gene therapy is presented.

  19. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.

  20. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer

    Lindsay J. Stanbridge

    2003-01-01

    Full Text Available Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.

  1. In vivo particle-mediated gene transfer for cancer therapy.

    Rakhmilevich, A L; Yang, N S

    2000-01-01

    During the past several years, particle-mediated delivery techniques have been developed as a nonviral technology for gene transfer (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective for transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4), brain, mammary, and leukocyte primary cultures or tissue explants ex vivo (2,5-7), and a wide range of cell lines in vitro (3,6,7). In this chapter, we describe the general principles, mechanisms, protocols, and uses of the particle-mediated gene transfer technology for in vivo gene transfer, mainly into skin tissues. Specific applications of this technology to basic studies in molecular biology as well as to gene therapy and genetic immunization against cancer are addressed.

  2. IL-12 based gene therapy in veterinary medicine.

    Pavlin, Darja; Cemazar, Maja; Sersa, Gregor; Tozon, Natasa

    2012-11-21

    The use of large animals as an experimental model for novel treatment techniques has many advantages over the use of laboratory animals, so veterinary medicine is becoming an increasingly important translational bridge between preclinical studies and human medicine. The results of preclinical studies show that gene therapy with therapeutic gene encoding interleukin-12 (IL-12) displays pronounced antitumor effects in various tumor models. A number of different studies employing this therapeutic plasmid, delivered by either viral or non-viral methods, have also been undertaken in veterinary oncology. In cats, adenoviral delivery into soft tissue sarcomas has been employed. In horses, naked plasmid DNA has been delivered by direct intratumoral injection into nodules of metastatic melanoma. In dogs, various types of tumors have been treated with either local or systemic IL-12 electrogene therapy. The results of these studies show that IL-12 based gene therapy elicits a good antitumor effect on spontaneously occurring tumors in large animals, while being safe and well tolerated by the animals. Hopefully, such results will lead to further investigation of this therapy in veterinary medicine and successful translation into human clinical trials.

  3. IL-12 based gene therapy in veterinary medicine

    Pavlin Darja

    2012-11-01

    Full Text Available Abstract The use of large animals as an experimental model for novel treatment techniques has many advantages over the use of laboratory animals, so veterinary medicine is becoming an increasingly important translational bridge between preclinical studies and human medicine. The results of preclinical studies show that gene therapy with therapeutic gene encoding interleukin-12 (IL-12 displays pronounced antitumor effects in various tumor models. A number of different studies employing this therapeutic plasmid, delivered by either viral or non-viral methods, have also been undertaken in veterinary oncology. In cats, adenoviral delivery into soft tissue sarcomas has been employed. In horses, naked plasmid DNA has been delivered by direct intratumoral injection into nodules of metastatic melanoma. In dogs, various types of tumors have been treated with either local or systemic IL-12 electrogene therapy. The results of these studies show that IL-12 based gene therapy elicits a good antitumor effect on spontaneously occurring tumors in large animals, while being safe and well tolerated by the animals. Hopefully, such results will lead to further investigation of this therapy in veterinary medicine and successful translation into human clinical trials.

  4. Terapia gênica para osteoporose Gene therapy for osteoporosis

    Rafael Pacheco da Costa

    2011-01-01

    Full Text Available A osteoporose é considerada um dos problemas de saúde mais comuns e sérios da população idosa mundial. É uma doença crônica e progressiva, caracterizada pela diminuição da massa óssea e deterioração da microarquitetura do tecido ósseo. A terapia gênica representa uma nova abordagem para o tratamento da osteoporose e tem como princípio devolver a função comprometida pelo metabolismo. Esta revisão visa focar os trabalhos relevantes desenvolvidos nos últimos anos, disponibilizados nas bases de dados médicas, e que utilizaram a terapia gênica para o tratamento da osteoporose em modelos animais, bem como, as perspectivas futuras desta terapia. A maioria dos estudos utiliza os genes BMPs, PTH e OPG na tentativa de restabelecer a massa óssea. Apesar da carência de novas moléculas, todos os genes empregados nos estudos se mostraram eficientes no tratamento da doença. Os benefícios que a terapia gênica proporcionará aos pacientes no futuro devem contribuir substancialmente para o aumento na qualidade de vida dos idosos. Em breve, protocolos clínicos envolvendo humanos irão beneficiar os indivíduos com osteoporose.Osteoporosis is considered one of the most common and serious problems affecting the elderly population worldwide. It is a chronic and progressive disease, characterized by decreased bone mass and degeneration of the microarchitecture of the bone tissue. Gene therapy represents a new approach in osteoporosis treatment, and its main function is to restore the compromised function in the metabolism. This review aims to elucidate the main studies on gene therapy in recent years, in the medical databases, that use gene therapy for the treatment of osteoporosis in animal models, as well as the future prospects of this therapy. The majority of the studies use the BMP, PTH and OPG genes, in an attempt to reestablish bone mass. Despite the lack of new molecules, all genes employed in these studies have proven to be

  5. Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents

    Shashank R. Sirsi, Mark A. Borden

    2012-01-01

    Full Text Available Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provided evidence of specific mechanisms that enhance in vivo gene delivery utilizing microbubble contrast agents, namely their ability to 1 improving cell membrane permeability, 2 modulate vascular permeability, and 3 enhance endocytotic uptake in cells. Additionally, we review novel microbubble vectors that are being developed in order to exploit these mechanisms and deliver higher gene payloads with greater target specificity. Finally, we discuss some future considerations that should be addressed in the development of next-generation microbubbles in order to improve in vivo microbubble gene delivery. Overall, microbubbles are rapidly gaining popularity as efficient gene carriers, and combined with their functionality as imaging contrast agents, they represent powerful theranostic tools for image guided gene therapy applications.

  6. Advances in Overcoming Immune Responses following Hemophilia Gene Therapy.

    Miao, Carol H

    2011-12-23

    Both Clinical trials and pre-clinical experiments for hemophilia gene therapy showed that it is important to overcome potential immune responses against gene transfer vectors and/or transgene products to ensure the success of gene therapy. Recently various approaches have been investigated to prevent or modulate such responses. Gene transfer vectors have been specifically engineered and immunosuppressive regimens have been administered to avoid or manipulate the immune responses against the vectors. In order to prevent cytotoxic lymphocyte or antibody formation induced by transgene expression, novel approaches have been developed, including methods to manipulate antigen presentation, development of variant genes encoding less immunogenic proteins or gene transfer protocols to evade immune responses, as well as immunosuppressive strategies to target either T and/or B cell responses. Most of these successful protocols involve the induction of activated regulatory T cells to create a regulatory immune environment during tolerance induction. Recent development of these strategies to evade vector-specific immune responses and induce long-term immune tolerance specific to the transgene product will be discussed.

  7. Advances in ultrasound mediated gene therapy using microbubble contrast agents.

    Sirsi, Shashank R; Borden, Mark A

    2012-01-01

    Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provided evidence of specific mechanisms that enhance in vivo gene delivery utilizing microbubble contrast agents, namely their ability to 1) improving cell membrane permeability, 2) modulate vascular permeability, and 3) enhance endocytotic uptake in cells. Additionally, we review novel microbubble vectors that are being developed in order to exploit these mechanisms and deliver higher gene payloads with greater target specificity. Finally, we discuss some future considerations that should be addressed in the development of next-generation microbubbles in order to improve in vivo microbubble gene delivery. Overall, microbubbles are rapidly gaining popularity as efficient gene carriers, and combined with their functionality as imaging contrast agents, they represent powerful theranostic tools for image guided gene therapy applications.

  8. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2012-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice...

  9. Gene therapy for PIDs: progress, pitfalls and prospects.

    Mukherjee, Sayandip; Thrasher, Adrian J

    2013-08-10

    Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.

  10. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  11. Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases.

    Loperfido, Mariana; Steele-Stallard, Heather B; Tedesco, Francesco Saverio; VandenDriessche, Thierry

    2015-01-01

    Human pluripotent stem cells represent a unique source for cell-based therapies and regenerative medicine. The intrinsic features of these cells such as their easy accessibility and their capacity to be expanded indefinitely overcome some limitations of conventional adult stem cells. Furthermore, the possibility to derive patient-specific induced pluripotent stem (iPS) cells in combination with the current development of gene modification methods could be used for autologous cell therapies of some genetic diseases. In particular, muscular dystrophies are considered to be a good candidate due to the lack of efficacious therapeutic treatments for patients to date, and in view of the encouraging results arising from recent preclinical studies. Some hurdles, including possible genetic instability and their efficient differentiation into muscle progenitors through vector/transgene-free methods have still to be overcome or need further optimization. Additionally, engraftment and functional contribution to muscle regeneration in pre-clinical models need to be carefully assessed before clinical translation. This review offers a summary of the advanced methods recently developed to derive muscle progenitors from pluripotent stem cells, as well as gene therapy by gene addition and gene editing methods using ZFNs, TALENs or CRISPR/Cas9. We have also discussed the main issues that need to be addressed for successful clinical translation of genetically corrected patient-specific pluripotent stem cells in autologous transplantation trials for skeletal muscle disorders.

  12. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  13. MR Imaging and Gene Therapy of Breast Cancer

    2000-07-01

    can be used in differential 0730-725X/00/$ - see front matter 0 2000 Elsevier Science Inc . All rights reserved. P11: S0730-725X(00)001 19-3 312 M-Y Su... Science Inc . All rights reserved. Keywords: Gene therapy; Cancer therapy; Vascularity 1. Introduction very practical. It would be extremely useful to...optimization of treatment regiments. The vascularity changes measured by dynamic MRI may provide a means to serve for this purpose. © 2000 Elsevier

  14. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs.

    Borrás, Teresa

    2017-01-01

    Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration.

  15. Experimental Studies on PNP Suicide Gene Therapy of Hepatoma

    2005-01-01

    To investigate the killing effect of PNP/MeP-dR suicide gene system on hepatoma cells,pcDNA3. 0/PNP, an eukaryotic expression vector harboring E. coli PNP gene, was transfected into human hepatoma HepG2 cells by liposome-mediated method. A HepG2 cell line with stable PNP gene expression, HepG2/PNP, was established with presence of G418 selection. The cell growth curves were determined with trypan blue staining. The sensitivity of HepG2/PNP to MePdR and bystander effects were assayed by MTT and FCM methods. The enzymatic activity of the product of PNP gene was determined by HPLC method. The cytotoxic effects of MeP-dR on HepG2/PNP cells were obvious (IC50 =4.5μmol/L) and all HepG2/PNP cells were killed 4 days after the treatment with 100μmol/L MeP~dR. In mixed cultures containing increasing percentages of HepG2/PNP cells, total population killing was demonstrated when HepG2/PNP cells accounted for as few as 5% of all HepG2 cells 8 days after the treatment with 100μmol MeP-dR. Highpressure liquid chromatography (HPLC) demonstrated that the PNP enzyme could convert MePdR into 6-MP. PNP/MeP-dR suicide gene system had an advantage over traditional suicide gene systems for hepatoma gene therapy. Our e results suggest that high-level bystander effects of this system result in significant anti-tumor responses to hepatoma gene therapy, especially in vivo.

  16. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2010-10-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... Lentiviral Vector Based Gene Therapy Products. FDA intends to make background material available to...

  17. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    2011-02-16

    ... Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene therapy (CGT) products with recommendations for developing... document entitled ``Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products''...

  18. 77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2012-10-17

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee..., Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and..., Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, and...

  19. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    2013-12-31

    ... No. FDA-2013-N-0001] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting... the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General..., Tissue, and Gene Therapies, Center for Biologics Evaluation and Research (CBER), FDA. On February...

  20. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2011-04-21

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... gene therapy products for the treatment of retinal disorders. Topics to be considered include...

  1. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2013-07-23

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... on guidance documents issued from the Office of Cellular, Tissue and Gene Therapies, Center...

  2. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    2012-10-30

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... Register of October 17, 2012, FDA announced that a meeting of the Cellular, Tissue and Gene Therapies..., Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, FDA. On...

  3. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee..., Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Gene Therapies, Center for Biologics Evaluation and Research, FDA. FDA intends to make...

  4. Gene mutation-based and specific therapies in precision medicine.

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses.

  5. Engineering adeno-associated viruses for clinical gene therapy.

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  6. Gene and stem cell therapy of the hair follicle.

    Hoffman, Robert M

    2005-01-01

    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is discussed. Hair follicle delivery systems are described such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency.

  7. Advances in Non-Viral DNA Vectors for Gene Therapy

    Hardee, Cinnamon L.; Arévalo-Soliz, Lirio Milenka; Hornstein, Benjamin D.; Zechiedrich, Lynn

    2017-01-01

    Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic. PMID:28208635

  8. Prevention of peritoneal adhesions: A promising role for gene therapy

    Hussein M Atta

    2011-01-01

    Adhesions are the most frequent complication of abdominopelvic surgery, yet the extent of the problem, and its serious consequences, has not been adequately recognized. Adhesions evolved as a life-saving mechanism to limit the spread of intraperitoneal inflammatory conditions. Three different pathophysiological mechanisms can independently trigger adhesion formation. Mesothelial cell injury and loss during operations, tissue hypoxia and inflammation each promotes adhesion formation separately, and potentiate the effect of each other. Studies have repeatedly demonstrated that interruption of a single pathway does not completely prevent adhesion formation. This review summarizes the pathogenesis of adhesion formation and the results of single gene therapy interventions. It explores the promising role of combinatorial gene therapy and vector modifications for the prevention of adhesion formation in order to stimulate new ideas and encourage rapid advancements in this field.

  9. [Successful gene therapy of mice with congenital erythropoietic porphyria].

    de Verneuil, Hubert; Robert-Richard, Elodie; Ged, Cécile; Mazurier, Frédéric; Richard, Emmanuel; Moreau-Gaudry, François

    2008-01-01

    Porphyrias are a group of disorders due to a genetic deficiency in one of the heme biosynthetic pathway enzymes. Congenital erythropoietic porphyria (CEP) is the most severe type characterized by a deficiency in uroporphyrinogen III synthase (UROS) activity. Bone marrow transplantation represents a curative treatment for patients, as long as human leucocyte antigen-compatible donor is available. We used a recently obtained murine model to check the feasibility of gene therapy in this disease. Lentivirus-mediated transfer of the human UROS cDNA into hematopoietic stem cells (HSCs) from Uros(mut 248) mice resulted in a complete and long-term enzymatic, metabolic and phenotypic correction of the disease, favored by a survival advantage of corrected red blood cells. These results demonstrate for the first time that the cure of this mouse model of CEP at moderate transduction level supports the proof of concept of a gene therapy in this disease by transplantation of genetically modified HSCs.

  10. Advances in Non-Viral DNA Vectors for Gene Therapy

    Cinnamon L. Hardee

    2017-02-01

    Full Text Available Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic

  11. Gene Therapy Strategies for Alzheimer's Disease: An Overview.

    Alves, Sandro; Fol, Romain; Cartier, Nathalie

    2016-02-01

    Key neuropathological hallmarks of Alzheimer's disease (AD) are extracellular amyloid plaques and intracellular accumulation of hyperphosphorylated Tau protein. The mechanisms underlying these neuropathological changes remain unclear. So far, research on AD therapy has had limited success in terms of symptomatic treatments although it has also had several failures for disease-modifying drugs. Gene transfer strategies to the brain have contributed to evaluate in animal models many interesting tracks, some of which should deserve clinical applications in AD patients in the future.

  12. Baculovirus vectors in experimental gene- and vaccine therapy

    Strokovskaya L. I.

    2011-04-01

    Full Text Available The article provides a brief overview of the literature on target design, exploration properties and effectiveness of the application of recombinant baculoviruses in model systems in vivo. The results of experiments with wild and recombinant baculoviruses are analysed in regard to the priority areas of biomedicine such as tissue regeneration, gene therapy of cancer, development of vaccines against infectious diseases and malignancies

  13. Mobile genetic elements and cancer. From mutations to gene therapy.

    Kozeretska, I A; Demydov, S V; Ostapchenko, L I

    2011-12-01

    In the present review, an association between cancer and the activity of the non-LTR retroelements L1, Alu, and SVA, as well as endogenous retroviruses, in the human genome, is analyzed. Data suggesting that transposons have been involved in embryogenesis and malignization processes, are presented. Events that lead to the activation of mobile elements in mammalian somatic cells, as well as the use of mobile elements in genetic screening and cancer gene therapy, are reviewed.

  14. Cytokine and Immuno-Gene Therapy for Solid Tumors

    Chuan-Yuan Li; Qian Huang; Hsiang-Fu Kung

    2005-01-01

    Despite recent progress in our understanding of cancer biology and in many areas of cancer treatment, the success rate for cancer therapy remains dismal. Immunotherapy for cancer has long been an exciting field for many cancer researchers due to the possibility to mobilize the body's own immune system to eradicate cancer not only locally but also systemically. Since its initial discovery, cytokine-based immunotherapy has been vigorously and extensively investigated for cancer treatment due to the perception of it as a relatively easily purifiable, injectable form of cancer treatment agent. However, so far most cytokine-based therapy trials have fallen short of expectations. One of main obstacles is the difficulty to achieve therapeutically relevant dosage in patients without generating excessive normal tissue toxicity. The emergence of novel gene therapy approach to deliver therapeutic cytokine to tumors locally generated great excitement since it has the potential of generating sustained high local concentration of immunostimulatory cytokine without raising the systemic levels of the cytokines, which is responsible for most of the observed toxicity. In this review, we will attempt to provide an overview of the field and discuss some of the problems associated with cytokine-based immuno-gene therapy and potential solutions.Cellular & Molecular Immunology. 2005;2(2):81-91.

  15. Cytokine and Immuno-Gene Therapy for Solid Tumors

    Chuan-YuanLi; QianHuang; Hsiang-FuKung

    2005-01-01

    Despite recent progress in our understanding of cancer biology and in many areas of cancer treatment, the success rate for cancer therapy remains dismal. Immunotherapy for cancer has long been an exciting field for many cancer researchers due to the possibility to mobilize the body's own immune system to eradicate cancer not only locally but also systemically. Since its initial discovery, cytokine-based immunotherapy has been vigorously and extensively investigated for cancer treatment due to the perception of it as a relatively easily purifiable, injectable form of cancer treatment agent. However, so far most cytokine-based therapy trials have fallen short ofexpectations. One of main obstacles is the difficulty to achieve therapeutically relevant dosage in patients without generating excessive normal tissue toxicity. The emergence of novel gene therapy approach to deliver therapeutic cytokine to tumors locally generated great excitement since it has the potential of generating sustained high local concentration of immunostimulatory cytokine without raising the systemic levels of the cytokines, which is responsible for most of the observed toxicity. In this review, we will attempt to provide an overview of the field and discuss some of the problems associated with cytokine-based immuno-gene therapy and potential solutions. Cellular & Molecular Immunology. 2005;2(2):81-91.

  16. Serotype Chimeric Human Adenoviruses for Cancer GeneTherapy

    Akseli Hemminki

    2010-09-01

    Full Text Available Cancer gene therapy consists of numerous approaches where the common denominator is utilization of vectors for achieving therapeutic effect. A particularly potent embodiment of the approach is virotherapy, in which the replication potential of an oncolytic virus is directed towards tumor cells to cause lysis, while normal cells are spared. Importantly, the therapeutic effect of the initial viral load is amplified through viral replication cycles and production of progeny virions. All cancer gene therapy approaches rely on a sufficient level of delivery of the anticancer agent into target cells. Thus,enhancement of delivery to target cells, and reduction of delivery to non-target cells, in an approach called transductional targeting, is attractive. Both genetic and non-genetic retargeting strategies have been utilized. However, in the context of oncolytic viruses, it is beneficial to have the specific modification included in progeny virions and hence genetic modification may be preferable. Serotype chimerism utilizes serotype specific differences in receptor usage, liver tropism and seroprevalence in order to gain enhanced infection of target tissue. This review will focus on serotype chimeric adenoviruses for cancer gene therapy applications.

  17. FGF-4 gene therapy GENERX--Collateral Therapeutics.

    2002-01-01

    Collateral Therapeutics and Schering AG in Germany are developing a gene therapy product, GENERX for coronary artery disease. Based on the terms of the agreement, Schering or its affliates will be responsible for conducting and financing phase II/III clinical trials which are currently underway in the US and Europe. In particular, Berlex Labs (the US subsidiary of Schering AG), is involved in developing the gene therapy in the US. GENERX is an angiogenic gene therapy which triggers the production of a protein that stimulates new blood vessel growth providing an alternative route for blood to bypass clogged and blocked arteries in the heart. GENERX involves a one-time, non-surgical delivery of an adenovirus vector containing the human fibroblast growth factor-4 (FGF-4) into coronary arteries via a standard catheter. The FGF-4 gene was licensed from New York University. Collateral Therapeutics has been granted a US patent for "gene transfer-mediated angiogenesis therapy" for the nonsurgical administration of angiogenic genes for coronary and peripheral vascular disease. The patented technology has been licensed from the University of California. Collateral and Berlex have initiated pivotal phase IIb/III trials with GENERX in the US and Europe. The US-based study will evaluate the safety and efficacy of GENERX in patients with stable exertional angina due to coronary artery disease. The European-based study will evaluate patients with advanced coronary artery disease who are not considered candidates for interventions such as angioplasty and bypass surgery and/or patients who are unlikely to have positive outcomes from such interventions. Both studies, of a multicentre, randomised, double-blind and placebo-controlled design, will evaluate 2 dose levels of GENERX which will be non-surgically administered to the heart via intracoronary infusion through a standard cardiac catheter. Collateral also plans to develop a non-surgical gene therapy product using the FGF-4 gene

  18. DNA repair and gene therapy: implications for translational uses.

    Limp-Foster, M; Kelley, M R

    2000-01-01

    Gene therapy has been proposed to have implications in the treatment of cancer. By genetically manipulating the hematopoietic stem cell compartment with genes that confer resistance to chemotherapeutic agents, the dose escalation that is necessary to effectively treat the cancers could potentially be achieved. DNA repair genes are some of the potential candidates to confer increased resistance to chemotherapeutic agents. Although initial focus in this area has been on the direct reversal protein (MGMT), its protective ability is limited to those agents that produce O(6)-methylGuanine cross-links-agents that are not extensively used clinically (e.g., nitrosoureas). Furthermore, most alkylating agents attack more sites in DNA other than O(6)-methylGuanine, such that the protections afforded by MGMT may prevent the initial cytotoxicity, but at a price of increased mutational burden and potential secondary leukemias. Therefore, some of the genes that are being tested as candidates for gene transfer are base excision repair (BER) genes. We and others have found that overexpression of selective BER genes confers resistance to chemotherapeutic agents such as thiotepa, ionizing radiation, bleomycin, and other agents. As these "proof of concept" analyses mature, many more clinically relevant chemotherapeutic agents can be tested for BER protective ability.

  19. C peptides as entry inhibitors for gene therapy.

    Egerer, Lisa; Kiem, Hans-Peter; von Laer, Dorothee

    2015-01-01

    Peptides derived from the C-terminal heptad repeat 2 region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very potent HIV-1 fusion inhibitors. Antiviral genes encoding either membrane-anchored (ma) or secreted (iSAVE) C peptides have been engineered and allow direct in vivo production of the therapeutic peptides by genetically modified host cells. Membrane-anchored C peptides expressed in the HIV-1 target cells by T-cell or hematopoietic stem cell gene therapy efficiently prevent virus entry into the modified cells. Such gene-protection confers a selective survival advantage and allows accumulation of the genetically modified cells. Membrane-anchored C peptides have been successfully tested in a nonhuman primate model of AIDS and were found to be safe in a phase I clinical trial in AIDS patients transplanted with autologous gene-modified T-cells. Secreted C peptides have the crucial advantage of not only protecting genetically modified cells from HIV-1 infection, but also neighboring cells, thus suppressing virus replication even if only a small fraction of cells is genetically modified. Accordingly, various cell types can be considered as potential in vivo producer cells for iSAVE-based gene therapeutics, which could even be modified by direct in vivo gene delivery in future. In conclusion, C peptide gene therapeutics may provide a strong benefit to AIDS patients and could present an effective alternative to current antiretroviral drug regimens.

  20. New frontiers in the therapy of primary immunodeficiency: From gene addition to gene editing.

    Kohn, Donald B; Kuo, Caroline Y

    2017-03-01

    The most severe primary immune deficiency diseases (PIDs) have been successfully treated with allogeneic hematopoietic stem cell transplantation for more than 4 decades. However, such transplantations have the best outcomes when there is a well-matched donor available because immune complications, such as graft-versus-host disease, are greater without a matched sibling donor. Gene therapy has been developed as a method to perform autologous transplantations of a patient's own stem cells that are genetically corrected. Through an iterative bench-to-bedside-and-back process, methods to efficiently add new copies of the relevant gene to hematopoietic stem cells have led to safe and effective treatments for several PIDs, including forms of severe combined immune deficiency, Wiskott-Aldrich syndrome, and chronic granulomatous disease. New methods for gene editing might allow additional PIDs to be treated by gene therapy because they will allow the endogenous gene to be repaired and expressed under its native regulatory elements, which are essential for genes involved in cell processes of signaling, activation, and proliferation. Gene therapy is providing exciting new treatment options for patients with PIDs, and advances are sure to continue.

  1. Human gene therapy and imaging in neurological diseases

    Jacobs, Andreas H.; Winkler, Alexandra [Max Planck-Institute for Neurological Research, Center of Molecular Medicine (CMMC) and Department of Neurology, Cologne (Germany); MPI for Neurological Research, Laboratory for Gene Therapy and Molecular Imaging, Cologne (Germany); Castro, Maria G.; Lowenstein, Pedro [University of California Los Angeles (United States). Department of Medicine

    2005-12-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and ''phenotyping'' of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being

  2. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications.

    Yaghoubi, Shahriar S; Campbell, Dean O; Radu, Caius G; Czernin, Johannes

    2012-01-01

    Positron emission tomography (PET) imaging reporter genes (IRGs) and PET reporter probes (PRPs) are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.

  3. Positron Emission Tomography Reporter Genes and Reporter Probes: Gene and Cell Therapy Applications

    Shahriar S. Yaghoubi, Dean O. Campbell, Caius G. Radu, Johannes Czernin

    2012-01-01

    Full Text Available Positron emission tomography (PET imaging reporter genes (IRGs and PET reporter probes (PRPs are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.

  4. Pleiotrophin gene therapy for peripheral ischemia: evaluation of full-length and truncated gene variants.

    Qizhi Fang

    Full Text Available Pleiotrophin (PTN is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN, along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1 delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2 the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3 PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.

  5. 胰腺癌:基因治疗的前景%Pancreatic cancer-Outlook:gene therapy

    J.-Matthias L(o)hr

    2007-01-01

    Gene therapy offers an elegant alternative to toxic chemotherapy regimens, mostly without severe side effects.Cancer gene therapy was among the first applications. Following the enthusiasm in the early nineties, a more rationale view is the recent way to look at it. This tutorial review looks upon the tools of gene therapy and the principle elements (vector, promoter, targeting, therapeutic gene). The principles of gene therapy such as gene directed enzyme prodrug therapy (GDEPT)and gene directed tumor vaccination are explained. Further, published protocols and clinical studies for pancreatic carcinoma gene therapy are reviewed. Finally, an outlook is given on the latest developments, some of them beyond conventional gene therapy.

  6. Recent advances in the rational design of silica-based nanoparticles for gene therapy.

    Niut, Yuting; Popatt, Amirali; Yu, Meihua; Karmakar, Surajit; Gu, Wenyi; Yu, Chengzhong

    2012-10-01

    Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.

  7. Progress in studies of gene therapy for Huntington's disease

    JIN Fan-ying

    2012-06-01

    Full Text Available Huntington's disease (HD is a kind of inherited neurodegenerative disorder characterized by movement problems, cognitive decline and psychiatry disturbance. HD is caused by mutation in gene IT -15 involving the expansion of a trinucleotide (CAG repeat encoding glutamine, which leads to abnormal conformation of huntingtin (Htt protein and finally emerge cytotoxic functions. Currently, HD remains a fatal untreatable disease. Gene therapy for HD discussed in this review is under preclinical studies. Silencing of mutant IT-15 via RNA interference (RNAi or antisense oligonucleotide (ASO has shown some effectiveness in mouse model studies. Increasing the clearance of mutant Htt protein could be achieved by viral-mediated delivery of anti-Htt intrabodies (iAbs or induction of autophagy, and beneficial results have been observed. Ectopic expression of neurotrophic factors, such as nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF, mediated either by viral vectors or transplantation of genetically modified cells, has also been proved to be effective. Other gene-modifying methods aiming at correction of transcriptional dysregulation by histone modification, activation of endogenous neural stem cells, and normalization of calcium signaling and mitochondrial function, are also under intensive research. Gene therapy for Huntington's disease is promising, yet a long way remains from preclinical studies to clinical trials.

  8. Liver-targeted gene therapy: Approaches and challenges.

    Aravalli, Rajagopal N; Belcher, John D; Steer, Clifford J

    2015-06-01

    The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.

  9. Apoptosis as a target for gene therapy in rheumatoid arthritis

    Gabriel Adrián Rabinovich

    2000-01-01

    Full Text Available Rheumatoid arthritis (RA is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.

  10. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  11. Treating hearing disorders with cell and gene therapy

    Gillespie, Lisa N.; Richardson, Rachael T.; Nayagam, Bryony A.; Wise, Andrew K.

    2014-12-01

    Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.

  12. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  13. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy.

    Jafarlou, M; Baradaran, B; Saedi, T A; Jafarlou, V; Shanehbandi, D; Maralani, M; Othman, F

    2016-01-01

    Gene therapy has become a significant issue in science-related news. The principal concept of gene therapy is an experimental technique that uses genes to treat or prevent disease. Although gene therapy was originally conceived as a way to treat life-threatening disorders (inborn defects, cancers) refractory to conventional treatment, it is now considered for many non–life-threatening conditions, such as those adversely impacting a patient’s quality of life. An extensive range of efficacious vectors, delivery techniques, and approaches for developing gene-based interventions for diseases have evolved in the last decade. The lack of suitable treatment has become a rational basis for extending the scope of gene therapy. The aim of this review is to investigate the general methods by which genes are transferred and to give an overview to clinical applications. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. Gene therapy has made substantial progress albeit much slower than was initially predicted. This review also describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various surface disorders and diseases. The conclusion is that, with increased pathobiological understanding and biotechnological improvements, gene therapy will become a standard part of clinical practice.

  14. Progress and Prospects of Anti-HBV Gene Therapy Development

    Mohube B. Maepa

    2015-07-01

    Full Text Available Despite the availability of an effective vaccine against hepatitis B virus (HBV, chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA. For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV.

  15. Animal models for prenatal gene therapy: choosing the right model.

    Mehta, Vedanta; Peebles, Donald; David, Anna L

    2012-01-01

    Testing in animal models is an essential requirement during development of prenatal gene therapy for -clinical application. Some information can be derived from cell lines or cultured fetal cells, such as the efficiency of gene transfer and the vector dose that might be required. Fetal tissues can also be maintained in culture for short periods of time and transduced ex vivo. Ultimately, however, the use of animals is unavoidable since in vivo experiments allow the length and level of transgene expression to be measured, and provide an assessment of the effect of the delivery procedure and the gene therapy on fetal and neonatal development. The choice of animal model is determined by the nature of the disease and characteristics of the animal, such as its size, lifespan, and immunology, the number of fetuses and their development, parturition, and the length of gestation and the placentation. The availability of a disease model is also critical. In this chapter, we discuss the various animal models that can be used and consider how their characteristics can affect the results obtained. The projection to human application and the regulatory hurdles are also presented.

  16. Toward a stem cell gene therapy for breast cancer.

    Li, ZongYi; Liu, Ying; Tuve, Sebastian; Xun, Ye; Fan, Xiaolong; Min, Liang; Feng, Qinghua; Kiviat, Nancy; Kiem, Hans-Peter; Disis, Mary Leonora; Lieber, André

    2009-05-28

    Current approaches for treatment of late-stage breast cancer rarely result in a long-term cure. In part this is due to tumor stroma that prevents access of systemically or intratumorally applied therapeutics. We propose a stem cell gene therapy approach for controlled tumor stroma degradation that uses the pathophysiologic process of recruitment of inflammatory cells into the tumor. This approach involves genetic modification of hematopoietic stem cells (HSCs) and their subsequent transplantation into tumor-bearing mice. We show that inducible, intratumoral expression of relaxin (Rlx) either by transplanting tumor cells that contained the Rlx gene or by transplantation of mouse HSCs transduced with an Rlx-expressing lentivirus vector delays tumor growth in a mouse model of breast cancer. The antitumor effect of Rlx was mediated through degradation of tumor stroma, which provided increased access of infiltrating antitumor immune cells to their target tumor cells. Furthermore, we have shown in a human/mouse chimeric model that genetically modified HSCs expressing a transgene can access the tumor site. Our findings are relevant for cancer gene therapy and immunotherapy.

  17. [Ribozyme riboswitch based gene expression regulation systems for gene therapy applications: progress and challenges].

    Feng, Jing-Xian; Wang, Jia-wen; Lin, Jun-sheng; Diao, Yong

    2014-11-01

    Robust and efficient control of therapeutic gene expression is needed for timing and dosing of gene therapy drugs in clinical applications. Ribozyme riboswitch provides a promising building block for ligand-controlled gene-regulatory system, based on its property that exhibits tunable gene regulation, design modularity, and target specificity. Ribozyme riboswitch can be used in various gene delivery vectors. In recent years, there have been breakthroughs in extending ribozyme riboswitch's application from gene-expression control to cellular function and fate control. High throughput screening platforms were established, that allow not only rapid optimization of ribozyme riboswitch in a microbial host, but also straightforward transfer of selected devices exhibiting desired activities to mammalian cell lines in a predictable manner. Mathematical models were employed successfully to explore the performance of ribozyme riboswitch quantitively and its rational design predictably. However, to progress toward gene therapy relevant applications, both precision rational design of regulatory circuits and the biocompatibility of regulatory ligand are still of crucial importance.

  18. Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the HSV-tk gene.

    Chien-Fu Hung

    Full Text Available Ovarian cancer is the leading cause of death from all gynecological cancers and conventional therapies such as surgery, chemotherapy, and radiotherapy usually fail to control advanced stages of the disease. Thus, there is an urgent need for alternative and innovative therapeutic options. We reason that cancer gene therapy using a vector capable of specifically delivering an enzyme-encoding gene to ovarian cancer cells will allow the cancer cell to metabolize a harmless prodrug into a potent cytotoxin, which will lead to therapeutic effects. In the current study, we explore the use of a human papillomavirus (HPV pseudovirion to deliver a herpes simplex virus thymidine kinase (HSV-tk gene to ovarian tumor cells. We found that the HPV-16 pseudovirion was able to preferentially infect murine and human ovarian tumor cells when administered intraperitoneally. Furthermore, intraperitoneal injection of HPV-16 pseudovirions carrying the HSV-tk gene followed by treatment with ganciclovir led to significant therapeutic anti-tumor effects in murine ovarian cancer-bearing mice. Our data suggest that HPV pseudovirion may serve as a potential delivery vehicle for ovarian cancer gene therapy.

  19. Gene therapy clinical trials worldwide 1989-2004-an overview.

    Edelstein, Michael L; Abedi, Mohammad R; Wixon, Jo; Edelstein, Richard M

    2004-06-01

    In 1989, Rosenberg et al. performed the first human gene therapy trial when they used a retrovirus to introduce the gene coding for resistance to neomycin into human tumor-infiltrating lymphocytes before infusing them into five patients with advanced melanoma. This study demonstrated the feasibility of using retroviral gene transduction in humans and set the stage for further studies. Since then, over 900 clinical trials have been completed, are ongoing or have been approved worldwide. These trials have been designed to establish feasibility and safety, to demonstrate the reality of expression of therapeutic protein(s) in vivo by the genes transferred and, in some cases, to show therapeutic benefit. There is no single source of information that presents an overview of all the clinical trials undertaken worldwide. In 1997 we set up a database to bring all the information on clinical trials together as comprehensively and as globally as possible. The data were compiled and are regularly updated from official agency sources, the published literature, presentations at conferences and from information kindly provided by investigators or trial sponsors themselves. As of January 31, 2004, we have identified 918 trials in 24 countries. The USA accounts for two-thirds of these trials. Cancer is by far the most common disease indication, followed by inherited monogenic diseases, and cardiovascular diseases. Viral vectors have been the most frequently used vehicles for transferring genes into human cells, with retroviruses and adenoviruses representing the vast majority. Plasmid (naked) DNA and other non-viral vectors have been used in one-quarter of the trials. Over 100 distinct genes have been transferred. This article aims to provide a descriptive overview of the clinical trials that, to the best of our knowledge, have been or are being performed worldwide. Details of the data presented, including an interactive, searchable database that currently holds information on 918

  20. 78 FR 26794 - Prospective Grant of Start-Up Exclusive Evaluation Option License Agreement: Gene Therapy and...

    2013-05-08

    ... License Agreement: Gene Therapy and Cell-Based Therapy for Cardiac Arrhythmias AGENCY: National Institutes... limited to ``Gene therapy and cell-based therapy for cardiac arrhythmias in humans.'' Upon the expiration... pacemakers include viral vectors suitable for gene therapy that incorporate Ca\\2+\\-activated adenylyl...

  1. Long-term follow-up of cancer patients treated with gene therapy medicinal products.

    Galli, Maria Cristina

    2012-06-01

    European Union requirements are discussed for the long-term follow-up of advanced therapy medicinal products, as well as how they can be applied to cancer patients treated with gene therapy medicinal products in the context of clinical trials, as described in a specific guideline issued by Gene Therapy Working Party at the European Medicine Agency.

  2. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Cell and Gene Therapy Clinical Trials in Pediatric... public workshop entitled ``Cell and Gene Therapy Clinical Trials in Pediatric Populations.'' The purpose... therapy clinical researchers, and other stakeholders regarding best practices related to cell and...

  3. Research progress of gene target therapy for refractory epilepsy

    Xing-hua TANG

    2014-12-01

    Full Text Available Nowadays, the strategies of gene therapy for the treatment of refractory epilepsy (RE mainly include modulating neurotransmitter systems, neuropeptide Y (NPY and neurotrophic factors. Among them, the hot target spots include γ-aminobutyric acid (GABA and its receptor, N-methyl-D-aspartate (NMDA and its receptor, galanin, NPY and neurotrophic factors. This paper reviews the chief research results, and advantages and disadvantages of studies, and provides evidence for the treatment of refractory epilepsy. doi: 10.3969/j.issn.1672-6731.2014.12.004

  4. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  5. Gene Therapy Approaches For The Treatment Of Retinal Disorders

    Petit, Lolita; Punzo, Claudio

    2016-01-01

    There is an impelling need to develop effective therapeutic strategies for patients with retinal disorders. Gleaning from the large quantity of information gathered over the past two decades on the mechanisms governing degeneration of the retina, it is now possible to devise innovative therapies based on retinal gene transfer. Different gene-based approaches are under active investigation. They include strategies to correct the specific genetic defect in inherited retinal diseases, strategies to delay the onset of blindness independently of the disease-causing mutations and strategies to reactivate residual cells at late stages of the diseases. In this review, we discuss the status of application of these technologies, outlining the future therapeutic potential for many forms of retinal blinding diseases. PMID:27875674

  6. Gene therapy and angiogenesis in patients with coronary artery disease

    Kastrup, Jens

    2010-01-01

    Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect...... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....

  7. Study of thrombopoietin for gene therapy of thrombocytopenia

    崇松; 卢大儒; 李昌本; 邱信芳; 薛京伦

    1999-01-01

    Thrombopoietin (TPO) is likely to be a potent, specific and reliable medication in the treatment of thrombocytopenia. A TPO-highly-expressed plasmid pcDNA3-TPO was constructed and a primary study was made on the expression of TPO cDNA in vitro and gene transfer study for thrombocytopenia in vivo. rhTPO showed complete and stable bioactivity by a series of indicators. High expression of TPO was detected in plasma from healthy mice or thrombocytopenia mice model receiving direct intramuscular injection of pcDNA3-TPO. And the platelet level of healthy mice peaked to 1.9-fold of baseline. Mice with CTX-induced thrombocytopenia achieved profound nadirs, acceleration of recovery, even 1.8—2.0-fold supranormal levels of peripheral platelet counts. The results offered experimental support for clinical application of gene therapy for thrombocytopenia via direct intramuscular injection of TPO cDNA.

  8. Gene therapy during cardiac surgery: role of surgical technique to minimize collateral organ gene expression.

    Katz, Michael G; Swain, JaBaris D; Fargnoli, Anthony S; Bridges, Charles R

    2010-12-01

    Effective gene therapy for heart failure has not yet been achieved clinically. The aim of this study is to quantitatively assess the cardiac isolation efficiency of the molecular cardiac surgery with recirculating delivery (MCARD™) and to evaluate its efficacy as a means to limit collateral organ gene expression. 10(14) genome copies (GC) of recombinant adeno-associated viral vector 6 encoding green fluorescent protein under control of the cytomegalovirus promoter was delivered to the nine arrested sheep hearts. Blood samples were assessed using real-time quantitative polymerase chain reaction (RT QPCR). Collateral organ gene expression was assessed at four-weeks using immunohistochemical staining. The blood vector GC concentration in the cardiac circuit during complete isolation trended from 9.59±0.73 to 9.05±0.65 (log GC/cm(3)), and no GC were detectable in the systemic circuit (P800-fold (P99% isolation efficiency. Conversely, incomplete isolation resulted in equalization of vector GC concentration in the circuits, leading to robust collateral organ gene expression. MCARD™ is an efficient, clinically translatable myocardial delivery platform for cardiac specific gene therapy. The cardiac surgical techniques utilized are critically important to limit collateral organ gene expression.

  9. Adenovirus as a gene therapy vector for hematopoietic cells.

    Marini, F C; Yu, Q; Wickham, T; Kovesdi, I; Andreeff, M

    2000-06-01

    Adenovirus (Adv)-mediated gene transfer has recently gained new attention as a means to deliver genes for hematopoietic stem cell (HSC) or progenitor cell gene therapy. In the past, HSCs have been regarded as poor Adv targets, mainly because they lack the specific Adv receptors required for efficient and productive Adv infection. In addition, the nonintegrating nature of Adv has prevented its application to HSC and bone marrow transduction protocols where long-term expression is required. There is even controversy as to whether Adv can infect hematopoietic cells at all. In fact, the ability of Adv to infect epithelium-based targets and its inability to effectively transfect HSCs have been used in the development of eradication schemes that use Adv to preferentially infect and "purge" tumor cell-contaminating HSC grafts. However, there are data supporting the existence of productive Adv infections into HSCs. Such protocols involve the application of cytokine mixtures, high multiplicities of infection, long incubation periods, and more recently, immunological and genetic modifications to Adv itself to enable it to efficiently transfer genes into HSCs. This is a rapidly growing field, both in terms of techniques and applications. This review examines the two sides of the Adv/CD34 controversy as well as the current developments in this field.

  10. Towards gene therapy based on femtosecond optical transfection

    Antkowiak, M.; Torres-Mapa, M. L.; McGinty, J.; Chahine, M.; Bugeon, L.; Rose, A.; Finn, A.; Moleirinho, S.; Okuse, K.; Dallman, M.; French, P.; Harding, S. E.; Reynolds, P.; Gunn-Moore, F.; Dholakia, K.

    2012-06-01

    Gene therapy poses a great promise in treatment and prevention of a variety of diseases. However, crucial to studying and the development of this therapeutic approach is a reliable and efficient technique of gene and drug delivery into primary cell types. These cells, freshly derived from an organ or tissue, mimic more closely the in vivo state and present more physiologically relevant information compared to cultured cell lines. However, primary cells are known to be difficult to transfect and are typically transfected using viral methods, which are not only questionable in the context of an in vivo application but rely on time consuming vector construction and may also result in cell de-differentiation and loss of functionality. At the same time, well established non-viral methods do not guarantee satisfactory efficiency and viability. Recently, optical laser mediated poration of cell membrane has received interest as a viable gene and drug delivery technique. It has been shown to deliver a variety of biomolecules and genes into cultured mammalian cells; however, its applicability to primary cells remains to be proven. We demonstrate how optical transfection can be an enabling technique in research areas, such as neuropathic pain, neurodegenerative diseases, heart failure and immune or inflammatory-related diseases. Several primary cell types are used in this study, namely cardiomyocytes, dendritic cells, and neurons. We present our recent progress in optimizing this technique's efficiency and post-treatment cell viability for these types of cells and discuss future directions towards in vivo applications.

  11. Targeted gene repair: the ups and downs of a promising gene therapy approach.

    de Semir, David; Aran, Josep M

    2006-08-01

    As a novel form of molecular medicine based on direct actions over the genes, targeted gene repair has raised consideration recently above classical gene therapy strategies based on genetic augmentation or complementation. Targeted gene repair relies on the local induction of the cell's endogenous DNA repair mechanisms to attain a therapeutic gene conversion event within the genome of the diseased cell. Successful repair has been achieved both in vitro and in vivo with a variety of corrective molecules ranging from oligonucleotides (chimeraplasts, modified single-stranded oligonucleotides, triplex-forming oligonucleotides), to small DNA fragments (small fragment homologous replacement (SFHR)), and even viral vectors (AAV-based). However, controversy on the consistency and lack of reproducibility of early experiments regarding frequencies and persistence of targeted gene repair, particularly for chimeraplasty, has flecked the field. Nevertheless, several hurdles such as inefficient nuclear uptake of the corrective molecules, and misleading assessment of targeted repair frequencies have been identified and are being addressed. One of the key bottlenecks for exploiting the overall potential of the different targeted gene repair modalities is the lack of a detailed knowledge of their mechanisms of action at the molecular level. Several studies are now focusing on the assessment of the specific repair pathway(s) involved (homologous recombination, mismatch repair, etc.), devising additional strategies to increase their activity (using chemotherapeutic drugs, chimeric nucleases, etc.), and assessing the influence of the cell cycle in the regulation of the repair process. Until therapeutic correction frequencies for single gene disorders are reached both in cellular and animal models, precision and undesired side effects of this promising gene therapy approach will not be thoroughly evaluated.

  12. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    Mei Lin

    2015-01-01

    Full Text Available Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression’s controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy.

  13. Combination therapy of murine liver cancer with IL-12 gene and HSV-TK gene

    2000-01-01

    Objective: To investigate the synergistic anti-tumor effects of murine IL-12 gene and HSV-TK gene therapy in mice bearing liver cancer. Methods: Mouse liver cancer MM45T. Li (H-2d) cells were transfected with retroviral vector containing IL-12 gene or HSV-TK gene insert. Gene-modified liver cancer cells, MM45T. Li/IL-12 and MM45T. Li/TK, with stable expression of IL-12 and TK were obtained. Balb/c mice were inoculated subcutaneously with 2′ 105 MM45T. Li cells. When the tumor reached a size of 0.5-1.0 cm, a mixture of MM45T.Li/TK cells and 60Co-irradiated MM45T. Li/IL-12 cell were injected intratumoraly. Ganciclovir (GCV) was injected ip (40 mg.kg-1.d-1) for 10 days. Intratumoral injection of 60Co-irradiated MM45T. Li/IL-12 cells was repeated twice in one week apart. Mice with distant tumors were treated according to the same protocol. CTL activity of spleen cells was measured by 51Cr-release assay and phenotype of tumor infiltrating lymphocytes by immunohistochemical staining. Results: In mice treated with MM45T. Li/IL-12 or MM45T. Li/TK+GCV individually led to moderate reduction in tumor growth, but neither could eradicate the tumor completely, while in 60% of mice treated with a mixture of MM45T. Li/IL-12 and MM45T. Li/TK cells plus GCV, complete tumor regression was observed, with no tumor recurrence for two months. The growth of distant tumor was also inhibited significantly in mice similarly treated. Most of the mice received combined gene therapy plus GCV had abundant CD4+, CD8+T lymphocyte infiltration. Their CTL activity was significantly higher than in mice received single gene therapy. Conclusion Combination therapy with IL-12 gene and HSV-TK gene plus GCV is effective for mouse liver cancer.

  14. Application of Herpesvirus Saimiri as an Alternative Gene Therapy Vector

    Tuna Toptan

    2016-03-01

    Full Text Available Herpesvirus saimiri is the prototype rhadinovirus and is closely related to human Kaposi's sarcoma-associated herpesvirus. Herpesvirus saimiri strains of subgroup C transduce a broad spectrum of cancer cells and primary cells including human T lymphocytes very efficiently and enable stable transgene expression. Herpesvirus saimiri as a gene therapy vector is favorable because of its large packaging capacity, extensive cell tropism, and long-termed persistence as non-integrating episomes and thus exhibits numerous advantages over commonly used viral vectors. In order to use Herpesvirus saimiri as a secure and versatile gene therapy vehicle, it should be easily manipulated and modified. The recent advances in molecular cloning of large genomic fragments such as virus genomes as bacterial artificial chromosomes facilitated the functional studies and manipulation of herpesviruses using the recombination system of bacteria. Among these, red-recombination based and ldquo;en passant and rdquo; mutagenesis method enables seamless genome modification such as deletion, insertion and point mutation very easily and efficiently. [Archives Medical Review Journal 2016; 25(1.000: 41-51

  15. Experimental gene therapy using p21Waf1 gene for esophageal squamous cell carcinoma by gene gun technology.

    Tanaka, Yuichi; Fujii, Teruhiko; Yamana, Hideaki; Kato, Seiya; Morimatsu, Minoru; Shirouzu, Kazuo

    2004-10-01

    In our previous study, the proliferation rate of esophageal squamous cell carcinoma cell lines, which poorly expressed p21Waf1, was found to be regulated by p21Waf1 gene transfection using adenovirus vector. In the present study, in order to examine the effect of p21Waf1 gene therapy in esophageal cancer, we used gene gun technology, which proved to be a powerful method to introduce the p21Waf1 gene into esophageal cancer cells. p21Waf1 transfection to KE3 and YES2 cells (weakly expressed p21Waf1 protein cells) showed a high expression of p21Waf1 protein after applying this gene gun technique. In KE3 and YES2 cells, statistical significant growth inhibition was observed after p21Waf1 transfection compared with LacZ transfection (KE3, p=0.0009; YES2, pgun technique significantly inhibited the low basal p21Waf1 expressed esophageal cancer cell growth in vitro and in vivo. Furthermore, p21Waf1 transfection strongly enhanced the effect of 5Fu suggesting that p21Waf1 may prove beneficial in chemotherapy combined with gene therapy using gene gun technology in patients with esophageal cancer who have a low level of p21Waf1 expressed tumor.

  16. Clinical development of gene therapy needs a tailored approach: a regulatory perspective from the European Union.

    Narayanan, Gopalan; Cossu, Giulio; Galli, Maria Cristina; Flory, Egbert; Ovelgonne, Hans; Salmikangas, Paula; Schneider, Christian K; Trouvin, Jean-Hugues

    2014-03-01

    Gene therapy is a rapidly evolving field that needs an integrated approach, as acknowledged in the concept article on the revision of the guideline on gene transfer medicinal products. The first gene therapy application for marketing authorization was approved in the International Conference on Harmonisation (ICH) region in 2012, the product being Alipogene tiparvovec. The regulatory process for this product has been commented on extensively, highlighting the challenges posed by such a novel technology. Here, as current or previous members of the Committee for Advanced Therapies, we share our perspectives and views on gene therapy as a treatment modality based on current common understanding and regulatory experience of gene therapy products in the European Union to date. It is our view that a tailored approach is needed for a given gene therapy product in order to achieve successful marketing authorization.

  17. Combined anti-tumor necrosis factor-α therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    Carl K Edwards

    2012-12-01

    Full Text Available Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs or anti-TNF-α therapy. We used quantitative real-time PCR to compare peripheral blood gene expression profiles in active ("unstable" RA patients on DMARDs, stable RA patients on DMARDs, and stable RA patients treated with a combination of a DMARD and an anti-TNF-α agent (infliximab or etanercept to healthy human controls. The expression of 48 inflammatory genes were compared between healthy controls (N=122, unstable DMARD patients (N=18, stable DMARD patients (N=26, and stable patients on combination therapy (N=20. Expression of 13 genes was very low or undetectable in all study groups. Compared to healthy controls, patients with unstable RA on DMARDs exhibited increased expression of 25 genes, stable DMARD patients exhibited increased expression of 14 genes and decreased expression of five genes, and combined therapy patients exhibited increased expression of six genes and decreased expression of 10 genes. These findings demonstrate that active RA is associated with increased expression of circulating inflammatory markers whereas increases in inflammatory gene expression are diminished in patients with stable disease on either DMARD or anti-TNF-α therapy. Furthermore, combination DMARD and anti-TNF-α therapy is associated with greater reductions in circulating inflammatory gene expression compared to DMARD therapy alone. These results suggest that assessment of peripheral blood gene expression may prove useful to monitor disease progression and response to therapy.

  18. Gene therapy trials for the treatment of high-grade gliomas

    2007-01-01

    High-grade gliomas remain relatively resistant to current therapy. Local recurrence is a common feature and the majority of patients progress despite conventional therapy. One modality-gene therapy-has shown a lot of promise in early preclinical and clinical studies aimed at advancing the treatment of this disease. In this review, we provide a comprehensive overview of clinical trials involving gene therapy in the field of neuro-oncology. The use of different delivery vehicles, including lipo...

  19. Adenovirus-mediated expression of pig α(1, 3) galactosyltransferase reconstructs Gal α(1, 3) Gal epitope on the surface of human tumor cells

    2001-01-01

    Gal α(1,3)Gal(gal epitope)is a carbohydrate epitope and synthesized in large amount by α(1,3)galactosyltransferase [α(1,3)GT] enzyme on the cells of lower mammalian animals such as pigs and mice.Human has no gal epitope due to the inactivation of α(1,3)GT gene but produces a large amount of antibodies(anti-Gal)which recognize Gal α(1,3)Gal structures specifically.In this study,a replicationdeficient recombinant adenoviral vector Ad5sGT containing pig α(1,3)GT cDNA was constructed and characterized.Adenoviral vector-mediated transfer of pig α(1,3)GT gene into human tumor cells such as malignant melanoma A375,stomach cancer SGC-7901,and lung cancer SPC-A-1 was reported for the first time.Results showed that Gal epitope did not increase the sensitivity of human tumor cells to human complement-mediated lysis,although human complement activation and the binding of human IgG and IgM natural antibodies to human tumor cells were enhanced significantly after Ad5sGT transduction.Appearance of gal epitope on the human tumor cells changed the expression of cell surface carbohydrates reacting with Ulex europaeus I(UEA I)lectins,Vicia villosa agglutinin(VVA),Arachis hypogaea agglutinin(PNA),and Glycine max agglutinin(SBA)to different degrees.In addition,no effect of gal epitope on the growth in vitro of human tumor cells was observed in MTT assay.

  20. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    2005-11-01

    therapy vectors. .. OE +04 I.OE+02 ri . OE +03t 0E+0)1 .0E+02 Discussion I) 100 100) I I 100 xp/cell %,p/ccll A major obstacle to be overcome in Ad5-based can...4,11,20]. Thus, Ad gene ther- 1. OE +03 i.E+04, apy vectors with CAR-independent and/or expanded I 01-+2 I.OE+03 tropism may prove valuable for maximal...Tsurutaa, Seiji Yamamotoa, Yosuke Kawakami’, Joanne T. Douglas" b, Kenzaburo Tanid , David T. Curiel,’b and Joel N. Glasgowa* a Division of Human Gene

  1. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    2015-10-01

    Award Number: W81XWH-10-1-0582 TITLE: ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer PRINCIPAL...ETS gene fusion status associated with clinical outcomes following radiation therapy , by analyzing both the collected biomarker and clinical data...denotes absence of an ERG fusion). ETS gene fusions status did not predict outcomes following radiation therapy , as demonstrated by Kaplan Meier

  2. Selective effects of a fiber chimeric conditionally replicative adenovirus armed with hep27 gene on renal cancer cell.

    Fang, Lin; Cheng, Qian; Liu, Wenshun; Zhang, Jie; Ge, Yan; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian

    2016-06-02

    ASBTARCT Adenoviruses mediated cancer gene therapies are widely investigated and show a promising effect on cancer treatment. However, efficient gene transfer varies among different cancer cell lines based on the expression of coxsakie adenovirus receptor (CAR). Hep27, a member of dehydrogenase/reductase (SDR) family, can bind to Mdm2, resulting in the attenuation of Mdm2-mediated p53 degradation. Here we constructed a fiber chimeric adenovirus carrying hep27 gene (F5/35-ZD55-Hep27), in which the fiber protein of 5-serotype adenovirus (Ad5) was substituted by that of 35-serotype adenovirus (Ad35), aiming to facilitate the infection for renal cancer cells and develop the role of hep27 in cancer therapy. We evaluated the CAR and CD46 (a membrane cofactor protein for Ad35) expression in four kinds of renal cancer cells and assessed the relationship between receptors and infection efficiency. 5/35 fiber-modified adenovirus had a much promising infectivity compared with Ad5-based vector in renal cancer cells. F5/35-ZD55-Hep27 had enhanced antitumor activity against human renal cancer cells compared to the other groups. Further, hep27 mediated p53 and cleaved-PARP upregulation and mdm2 downregulation was involved and caused increased apoptosis. Moreover, F5/35-ZD55-Hep27 significantly suppressed tumor growth in subcutaneous renal cancer cell xenograft models. Our data demonstrated that 5/35 fiber-modified adenovirus F5/35-ZD55-Hep27 transferred into renal cancers efficiently and increased p53 to induce cancer cell apoptosis. Thus 5/35 fiber-modified adenoviral vector F5/35-ZD55-Hep27 might a promising vector and antitumor reagent for renal cancer gene therapy.

  3. Hepatocyte growth factor gene therapy reduces ventricular arrhythmia in animal models of myocardial ischemia.

    Yumoto,Akihisa

    2005-06-01

    Full Text Available

    It was recently reported that gene therapy using hepatocyte growth factor (HGF has the potential to preserve cardiac function after myocardial ischemia. We speculated that this HGF gene therapy could also prevent ventricular arrhythmia. To investigate this possibility, we examined the antiarrhythmic effect of HGF gene therapy in rat acute and old myocardial infarction models. Myocardial ischemia was induced by ligation of the left descending coronary artery. Hemagglutinating virus of Japan (HVJ-coated liposome containing HGF genes were injected directly into the myocardium fourteen days before programmed pacing. Ventricular fibrillation (VFwas induced by programmed pacing. The VF duration was reduced and the VF threshold increased after HGF gene therapy ( p< 0.01. Histological analyses revealed that the number of vessels in the ischemic border zone was greatly increased after HGF gene injection. These findings revealed that HGF gene therapy has an anti-arrhythmic effect after myocardial ischemia.

  4. RETROVIRAL-MEDIATED SUICIDE GENE THERAPY OF EXPERIMENTAL GLIOMA

    Xu Lingfei; Ge Kai; Zheng Zhongcheng; Sun Lanying; Liu Xinyuan

    1998-01-01

    Objective: To establish a retroviral-mediated suicide gene therapy system for experimental glioma and test its efficacy. Methods: C6 rat glioma cells were infected with recombinant retrovirus containing HSV-tk gene. The C6/tk cell line which stably expressed tk was selected and cloned. The sensitivities of C6/tk cells to several nucleoside analogues, such as GCV, BVdU, ACV were compared by the growth inhibition studies. Antitumor effects were also observed after GCV treatment in nude mice bearing tumors derived from C6/tk cells. Results:The growth inhibition studies showed that GCV was the most efficient prodrug in this system. C6/tk cells were highly sensitive to GCV, with an IC50<0.2 μmol/L, being 500-fold less than that in tk-negative C6 cells. In vivo studies showed significant tumor inhibition in the treatment group. Conclusion: Glioma cells can be eradicated by using retroviral-mediated suicide gene system in vitro as well as in vivo.

  5. Large Animal Models for Foamy Virus Vector Gene Therapy

    Peter A. Horn

    2012-12-01

    Full Text Available Foamy virus (FV vectors have shown great promise for hematopoietic stem cell (HSC gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.

  6. [Collaborative study on regulatory science for facilitating clinical development of gene therapy products for genetic diseases].

    Uchida, Eriko; Igarashi, Yuka; Sato, Yoji

    2014-01-01

    Gene therapy products are expected as innovative medicinal products for intractable diseases such as life-threatening genetic diseases and cancer. Recently, clinical developments by pharmaceutical companies are accelerated in Europe and the United States, and the first gene therapy product in advanced countries was approved for marketing authorization by the European Commission in 2012. On the other hand, more than 40 clinical studies for gene therapy have been completed or ongoing in Japan, most of them are conducted as clinical researches by academic institutes, and few clinical trials have been conducted for approval of gene therapy products. In order to promote the development of gene therapy products, revision of the current guideline and/or preparation of concept paper to address the evaluation of the quality and safety of gene therapy products are necessary and desired to clearly show what data should be submitted before First-in-Human clinical trials of novel gene therapy products. We started collaborative study with academia and regulatory agency to promote regulatory science toward clinical development of gene therapy products for genetic diseases based on lentivirus and adeno-associated virus vectors; National Center for Child Health and Development (NCCHD), Nippon Medical School and PMDA have been joined in the task force. At first, we are preparing pre-draft of the revision of the current gene therapy guidelines in this project.

  7. The latest advances of experimental research on targeted gene therapy for prostate cancer

    Dongliang Pan; Lianchao Jin; Xianghua Zhang

    2013-01-01

    The absence of ef ective therapies for castration-resistant prostate cancer (CRPC) establishes the need to de-velop novel therapeutic modality, such as targeted gene therapy, which is ideal for the treatment of CRPC. But its application has been limited due to lack of favorable gene vector and the reduction of“bystander ef ect”. Consequently, scientists al over the world focus their main experimental research on the fol owing four aspects:targeted gene, vector, transfer means and comprehensive therapy. In this paper, we reviewed the latest advances of experimental research on targeted gene therapy for prostate cancer .

  8. NAC1, a POZ/BTB protein present in the adult mammalian brain, triggers apoptosis after adenovirus-mediated overexpression in PC-12 cells.

    Korutla, Laxminarayana; Neustadter, Jason H; Fournier, Keith M; Mackler, Scott A

    2003-05-01

    POZ/BTB proteins influence cellular development and in some examples act as oncoproteins. However, several POZ/BTB transcription factors have been found in terminally differentiated neurons, where their functions remain unknown. One example is NAC1, a constitutively-expressed protein that can regulate behaviors associated with cocaine use. The present study represents an initial attempt to understand the actions of NAC1 within neurons by using adenoviral-mediated gene transfer into differentiated PC-12 cells. Cell survival in PC-12 cells overexpressing NAC1 was greatly reduced compared with cells infected by a control Ad-GFP. The morphological appearance of the dying cells was consistent with programmed cell death. Fragmentation of genomic DNA occurred in PC-12 cells infected with adenoviruses encoding NAC1 but not control viruses. NAC1 over expression was followed by the down regulation of the anti-apoptotic proteins Bcl-2 and Bcl-2-xl. Concurrently, levels of the pro-apoptotic proteins Bax and p53 increased following NAC1 overexpression. These observations suggest that NAC1expression in PC-12 cells induces apoptosis by altering the expression of these upstream mediators of the execution phase of programmed cell death. These findings raise the possibility that aberrantly regulated NAC1 expression in the mammalian brain may contribute to programmed cell death.

  9. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  10. Adenovirus-mediated Foxp3 expression in lung epithelial cells reduces airway inflammation in ovalbumin and cockroach-induced asthma model

    Park, Soojin; Chung, Hwan-Suck; Shin, Dasom; Jung, Kyung-Hwa; Lee, Hyunil; Moon, Junghee; Bae, Hyunsu

    2016-01-01

    Foxp3 is a master regulator of CD4+CD25+ regulatory T-cell (Treg) function and is also a suppressor of SKP2 and HER2/ErbB2. There are an increasing number of reports describing the functions of Foxp3 in cell types other than Tregs. In this context, we evaluated the functions of Foxp3 in ovalbumin- and cockroach-induced asthma models. Foxp3-EGFP-expressing adenovirus or EGFP control adenovirus was administered intratracheally (i.t.), followed by challenge with ovalbumin (OVA) or cockroach extract to induce asthma. Th2 cytokine and immune cell profiles of bronchoalveolar lavage fluid (BALF), as well as serum IgE levels, were analyzed. Histological analyses were also conducted to demonstrate the effects of Foxp3 expression on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. Adenoviral Foxp3 was expressed only in lung epithelial cells, and not in CD4+ or CD8+ cells. BALF from Foxp3 gene-delivered mice showed significantly reduced numbers of total immune cells, eosinophils, neutrophils, macrophages and lymphocytes in response to cockroach allergen or OVA. In addition, Foxp3 expression in the lung reduced the levels of Th2 cytokines and IgE in BALF and serum, respectively. Moreover, histopathological analysis also showed that Foxp3 expression substantially inhibited eosinophil infiltration into the airways, goblet cell hyperplasia and smooth muscle cell hypertrophy. Furthermore, when Tregs were depleted by diphtheria toxin in Foxp3DTR mice, the anti-asthmatic functions of Foxp3 were not altered in OVA-challenged asthma models. In this study, our results suggest that Foxp3 expression in lung epithelial cells, and not in Tregs, inhibited OVA- and cockroach extract-induced asthma. PMID:27633092

  11. A preliminary step of a novel strategy in suicide gene therapy with lentiviral vector

    Jahan Afrooz Ghanbari

    2014-01-01

    Conclusion: In this step of our strategy, we demonstrated that modification of orientation and location of promoter may overcome some issues in lentiviral suicide gene therapy, especially when toxin or apoptosis-inducing genes are used.

  12. Overexpression of the promyelocytic leukemia gene suppresses growth of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis

    HE Dalin 贺大林; NAN Xunyi 南勋义; Chang Kun-Song; WANG Yafeng 王亚峰; Chung Leland W.K.

    2003-01-01

    Objectives To examine the anti-oncogenic effects of promyelocytic leukemia (PML) on bladder cancer and to explore its molecular mechanisms of growth suppression.Methods Wild-type PML was transfected into bladder cancer cells (5637 cell) and expressed in a replication-deficient adenovirus-mediated gene delivery system and introduced into human bladder cancer cells (5637 cell) in vitro and in vivo. The effect and mechanisms of the PML gene in cell growth, clonogenicity, and tumorigenicity of bladder cancer cells were studied using in vitro and in vivo growth assays, soft agar colony-forming assay, cell cycle analysis, apoptosis assay and in vivo tumorigenicity assay.Results Overexpression of PML in 5637 cells significantly reduced their growth rate and clonogenicity on soft agar. PML suppressed bladder cancer cell growth by inducing G1 cell cycle arrest and apoptosis. Adenovirus-mediated PML (Ad-PML) significantly suppressed the tumorigenicity and growth of bladder cancer cells. Intratumoral injection of Ad-PML into tumors induced by 5637 cells dramatically suppressed their growth. Conclusions The results indicated that overexpression of PML protein may promote efficient growth inhibition of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis, and adenovirus-mediated PML (Ad-PML) expression efficiently suppresses human bladder cancer growth.

  13. Simian virus 40 vectors for pulmonary gene therapy

    Oppenheim Ariella

    2007-10-01

    Full Text Available Abstract Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS. Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40 vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP. SV40 vectors carrying the luciferase reporter gene (SV/luc were administered intratracheally immediately after sepsis induction. Sham operated (SO as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C. Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

  14. Gene therapy in glaucoma-part 2: Genetic etiology and gene mapping.

    Mahdy, Mohamed Abdel-Monem Soliman

    2010-05-01

    Glaucoma diagnosis, identification of people at risk, initiation of treatment and timing of surgical intervention remains a problem. Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible.Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucoma and their underlying causes are potentially susceptible to modulation by gene transfer.The discovery of genes responsible for glaucoma has led to the development of new methods of Deoxyribonucleic acid (DNA)-based diagnosis and treatment. As genetic defects responsible for glaucoma are identified and the biochemical mechanisms underlying the disease are recognized, new methods of therapy can be developed. It is of utmost importance for the ophthalmologists and glaucoma specialists to be familiar with and understand the basic molecular mechanisms, genes responsible for glaucoma and the ways of genetic treatment. METHOD OF LITERATURE SEARCH: The literature was searched on the Medline database, using the PubMed interface.

  15. [Advances in the application of gene therapy for Parkinson's disease with adeno-associated virus].

    Chen, Yang; Lü, Ying-Hui; Li, Zhao-Fa

    2014-05-01

    Vectors used to carry foreign genes play an important role in gene therapy, among which, the adeno-associated virus (AAV) has many advantages, such as nonpathogenicity, low immunogenicity, stable and long-term expression and multiple-tissue-type infection, etc. These advantages have made AAV one of the most potential vectors in gene therapy, and widely used in many clinical researches, for example, Parkinson's disease. This paper introduces the biological characteristics of AAV and the latest research progress of AAV carrying neurotrophic factor, dopamine synthesis related enzymes and glutamic acid decarboxylase gene in the gene therapy of Parkinson's disease.

  16. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials.

    Clark, Jason R; March, John B

    2006-05-01

    In recent years it has been recognized that bacteriophages have several potential applications in the modern biotechnology industry: they have been proposed as delivery vehicles for protein and DNA vaccines; as gene therapy delivery vehicles; as alternatives to antibiotics; for the detection of pathogenic bacteria; and as tools for screening libraries of proteins, peptides or antibodies. This diversity, and the ease of their manipulation and production, means that they have potential uses in research, therapeutics and manufacturing in both the biotechnology and medical fields. It is hoped that the wide range of scientists, clinicians and biotechnologists currently researching or putting phages to practical use are able to pool their knowledge and expertise and thereby accelerate progress towards further development in this exciting field of biotechnology.

  17. Alphavirus vectors for vaccine production and gene therapy.

    Lundstrom, Kenneth

    2003-06-01

    Alphavirus vectors demonstrate high expression of heterologous proteins in a broad range of host cells. Replication-deficient as well as replication-competent variants exist. Systemic delivery of many viral antigens has elicited strong antibody responses in immunized mice and primates, and protection against challenges with lethal viruses was obtained. Similarly, prophylactic vaccination was established against tumor challenges. Attention has been paid to the engineering of improved targeting to immunologically active cells, such as dendritic cells. In the area of gene therapy, intratumoral injections of alphavirus vectors have resulted in potentially promising tumor rejection. Moreover, encapsulation of alphavirus particles into liposomes demonstrated efficient tumor targeting in mice with severe combined immunodeficiency, which permitted the initiation of clinical trials for patients with advanced kidney carcinoma and melanoma.

  18. A novel strategy for cancer gene therapy: RNAi

    PAN Qiuwei; CAI Rong; LIU Xinyuan; QIAN Cheng

    2006-01-01

    RNA interference (RNAi) induces genesilencing at a level of posttranscription mediated bydouble stranded RNA. There are numerous methods for delivery of small double-stranded interference RNA (siRNA) to the target cells, including nonviral and viral vectors. Among these methods, viral vectors are the more efficient vehicles. The expression of short hairpin RNA (shRNA) by viral vectors in target cells can be cut by Dicer enzyme to become ~21 bp siRNA, which could guide degradation of cognate mRNA. RNAi technology can be directed against cancer using a variety of strategies, including the inhibition of overexpressed oncogenes, promoting apoptosis, regulating cell cycle, antiangiogenesis and enhancing the efficacy of chemotherapy and radiotherapy. Since RNAi technology has become an excellent strategy for cancer gene therapy, this review outlines the latest developments and applications of such a novel technology.

  19. Isolated growth hormone deficiency type 2: from gene to therapy.

    Miletta, Maria Consolata; Lochmatter, Didier; Pektovic, Vibor; Mullis, Primus-E

    2012-01-01

    Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.

  20. Nanoexplosive gene therapy using triplex-forming oligonucleotides

    Oh, Eun Jung; Min, Hye Jung; Choe, Jae Gol; Park, Gil Hong; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Triplex forming oligonucleotides (TFO) labeled with Auger emitter could be ideal vehicles for delivering radiation energy to specific DNA sequences, and followed by double-stranded DNA breaks and subsequent inactivation of targeted genes. We designed TFOs targeting the selected DNA fragments (i.e., estrogen receptors and N-myc promoter) and labeled with {sup 125}I and {sup 111}In. Various Cancer cells, e.g., MCF-7 (breast adenocarcinoma), MCF-10A (immortalized breast cells), Jurkat (T-cell leukemia), ARO (thyroid cancer), SNU-449 (Colon Caner), and HL-60 (polymyelocytic leukemia), were prepared and treated with radiolabeled TFO for 24 h. After the incubation, subcellular fractions (i.e., cell nucleus, cytoplasm and cultured medium) were collected and measured radioactivity by a gamma scintillation counter, respectively. The mean value of % injected dose for each fraction was ranged as follows: nucleus, 4.4-20%; cytoplasm, 8.2-29%; and medium, 64-87%. Therefore, we speculated that TFO labeled with Auger emitter could be a next-generation therapeutic tool in nanoexplosive gene therapy.

  1. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.

  2. Thoracoscopic monitoring for pericardial application of local drug or gene therapy

    Tio, RA; Grandjean, JG; Suurmeijer, AJH; van Gilst, WH; van Veldhuisen, DJ; van Boven, AJ

    2002-01-01

    Cardiovascular gene therapy is a promising new approach for a variety of diseases. As far as gene therapy aimed at the myocardium is concerned a new transcutaneous delivery method may be into the pericardial sac. Objective: To evaluate the safety and applicability of the percutaneous pericardial del

  3. Evaluation of β-globin gene therapy constructs in single-copy transgenic mice.

    J. Ellis (James); K.C. Tan-Un; P. Pasceri; A. Harper; X. Wu; P.J. Fraser (Peter); F.G. Grosveld (Frank)

    1997-01-01

    textabstractEffective gene therapy constructs based on retrovirus or adeno-associated virus vectors will require regulatory elements that direct expression of genes transduced at single copy. Most beta-globin constructs designed for therapy of beta-thalassemias are regulated by the 5'HS2 component o

  4. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2013-03-12

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  5. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy

    Bach, Lars Arve; Bentzen, Søren; Alsner, Jan

    2001-01-01

    interpretations of gene therapy. Two prototypical strategies for gene therapy are suggested, both of them leading to extinction of the malignant phenotype: one approach would be to reduce the relative proportion of the cooperating malignant cell type below a certain critical value. Another approach would...

  6. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    2011-04-05

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  7. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    2011-10-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory...

  8. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy

    Audouy, SAL; de Leij, LFMH; Hoekstra, D; Molema, G

    2002-01-01

    After a decade of clinical trials, gene therapy seems to have found its place between excessive ambitions and feasible aims, with encouraging results obtained in recent years. Intracellular delivery of genetic material is the key step in gene therapy. Optimization of delivery vectors is of major imp

  9. Efficiency of adenoviral vector mediated CTLA4Ig gene delivery into mesenchymal stem cells

    邓宇斌; 郭小荑; 原清涛; 李树浓

    2003-01-01

    Objective To prevent Graft-versus-host disease (GVHD) in rat model, we evaluated the feasibility of mesenchymal stem cells (MSCs) as a gene transfer target and studied the efficiency of recombinant adenovirus mediated gene therapy. Methods We constructed the recombinant adenovirus containing CTLA4Ig gene. Rat MSCs of passages 3-5 were infected by the adenovirus, and the transfection efficiency was monitored by GFP markers. We performed flow cytometric analysis, immunohistochemical and Western blotting analysis to identify the CTLA4Ig expression. The gene transferred MSCs were tested for their ability to inhibit the allogeneic lymphocyte response in vitro and to prevent GVHD in a rat model. Results Recombinant adenovirus pAd-CTLA4Ig was correctly constructed and confirmed. After MSCs were infected by the adenovirus, the CTLA4Ig protein was detected not only in transgenic MSCs, but also in the culture medium. In a mixed lymphocytes response (MLR) test, the transgenic MSCs could significantly inhibit the allogeneic lymphocyte response compared with the control groups (P<0.05). A model of GVHD was developed by transplanting bone marrow cells and spleen lymphocytes of F344 rats to lethally irradiated SD rats. The onset of GVHD could be ameliorated or prevented by co-administration of transgenic MSCs. All the rats in the control groups suffered severe acute GVHD. CTLA4Ig expression was observed in the liver, intestine, kidney and spleen 30 days post- transplantation. Conclusions Our results indicate that adenoviral vectors could efficiently transfer CTLA4Ig gene into MSCs and sustain long-term stable expression in vitro and in vivo.

  10. Combined anti-tumor necrosis factor-alpha therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    Edwards, C.K., 3rd; Green, J.S.; Volk, H.D.; Schiff, M.; Kotzin, B.L.; Mitsuya, H.; Kawaguchi, T.; Sakata, K.M.; Cheronis, J.; Trollinger, D.; Bankaitis-Davis, D.; Dinarello, C.A.; Norris, D.A.; Bevilacqua, M.P.; Fujita, M.; Burmester, G.R.

    2012-01-01

    Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA) may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs) or anti-TNF-alpha therapy

  11. Multifunctional Virus-Nanoshell Assembly for Targeted Hyperthermia and Viral Gene Therapy for Breast Cancer

    2012-06-01

    cancer cells in synergy with gene therapy. We proposed to develop virus- nanoshell assemblies by attaching adeno-associated virus (AAV) to gold... nanoshells (Au NS) through chemical bonds. We have successfully completed majority of tasks 1 and 2 of our Statement of Work. Specifically, we have...therapy, virus, Au nanoshell Multifunctional Virus- Nanoshell Assembly for Targeted Hyperthermia and Viral Gene Therapy for Breast Cancer Dr. Fang Wei

  12. Advances of Driver Gene and Targeted Therapy of Non-small Cell Lung Cancer

    Dan ZHANG

    2014-10-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC. Society of Clinical Oncology (ASCO has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  13. [Advances of driver gene and targeted therapy of non-small cell lung cancer].

    Zhang, Dan; Huang, Yan; Wang, Hongyang

    2014-10-20

    Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC). Society of Clinical Oncology (ASCO) has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  14. Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy.

    Harch, Paul G

    2015-01-01

    Hyperbaric oxygen therapy is a treatment for wounds in any location and of any duration that has been misunderstood for 353 years. Since 2008 it has been applied to the persistent post-concussion syndrome of mild traumatic brain injury by civilian and later military researchers with apparent conflicting results. The civilian studies are positive and the military-funded studies are a mixture of misinterpreted positive data, indeterminate data, and negative data. This has confused the medical, academic, and lay communities. The source of the confusion is a fundamental misunderstanding of the definition, principles, and mechanisms of action of hyperbaric oxygen therapy. This article argues that the traditional definition of hyperbaric oxygen therapy is arbitrary. The article establishes a scientific definition of hyperbaric oxygen therapy as a wound-healing therapy of combined increased atmospheric pressure and pressure of oxygen over ambient atmospheric pressure and pressure of oxygen whose main mechanisms of action are gene-mediated. Hyperbaric oxygen therapy exerts its wound-healing effects by expression and suppression of thousands of genes. The dominant gene actions are upregulation of trophic and anti-inflammatory genes and down-regulation of pro-inflammatory and apoptotic genes. The combination of genes affected depends on the different combinations of total pressure and pressure of oxygen. Understanding that hyperbaric oxygen therapy is a pressure and oxygen dose-dependent gene therapy allows for reconciliation of the conflicting TBI study results as outcomes of different doses of pressure and oxygen.

  15. Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia.

    Breda, Laura; Rivella, Stefano; Zuccato, Cristina; Gambari, Roberto

    2013-06-01

    β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to a low or absent production of adult hemoglobin (HbA). Two major therapeutic approaches have recently been proposed: gene therapy and induction of fetal hemoglobin (HbF) with the objective of achieving clinically relevant levels of Hbs. The objective of this article is to describe the development of therapeutic strategies based on a combination of gene therapy and induction of HbFs. An increase of β-globin gene expression in β-thalassemia cells can be achieved by gene therapy, although de novo production of clinically relevant levels of adult Hb may be difficult to obtain. On the other hand, an increased production of HbF is beneficial in β-thalassemia. The combination of gene therapy and HbF induction appears to be a pertinent strategy to achieve clinically relevant results.

  16. Gene Therapy of Ovarian Cancer%卵巢癌的基因治疗

    杨宏英; 卢玉波

    2001-01-01

    卵巢癌的发生是多基因参与的过程,随着对癌基因、抑癌基因的深入研究,提出基因治疗是癌症治疗的最新策略.卵巢癌基因治疗的方法包括突变补偿、分子化疗、基因免疫治疗等措施,基因治疗将为临床治疗卵巢癌提供新的途径.%Ovarian cancer correlates with a serials of genes. Since oncogene and tumor suppressor gene have been studied thoroughly, it is tho ught that gene therapy is the newest strategy of cancer treatment. There are many types of gene therapy: Gene complement, moleculchemotherapy, immune-based gene therapy etc. Gene therapy will provide a novel way of ovarian cancer treatment.

  17. Overview of gene therapy clinical progress including cancer treatment with gene-modified T cells.

    Brenner, Malcolm K; Okur, Fatma V

    2009-01-01

    It is now twenty years since the first legal gene transfer studies were approved, and there has been considerable disappointment in the slow rate of progress that followed the initial studies. Gradually, however, as the limitations of available vectors are acknowledged and overcome, and with advances in our understanding of the molecular and cell biology of genetic diseases and of cancer, unequivocal successes are now being reported. In this paper we describe the remaining major roadblocks to successful gene therapy and outline approaches to overcome them. We also illustrate how genetically modified immune system cells are already being used for the effective treatment of hematological and other malignancies, and how these approaches are being modified so that they can be effective in treating a broader range of malignancies.

  18. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  19. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency.

    Montiel-Equihua, C. A.; Thrasher, A. J.; Gaspar, H B

    2009-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. P...

  20. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    Curtin, James; King, Gwendalyn; Candolfi, Marianela; Greeno, Remy; Kroeger, Kurt; Lowenstein, Pedro; Castro,Maria

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implem...