WorldWideScience

Sample records for adenovirus expressing il-12

  1. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma

    Kim, Wonwoo; Seong, Jinsil; Oh, Hae-Jin; Koom, Woong-Sub; Choi, Kyung-Joo; Yun, Chae-Ok

    2011-01-01

    In this study, a novel combination treatment of armed oncolytic adenovirus expressing interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) with radiation was investigated for antitumor and antimetastatic effect in a murine hepatic cancer (HCa-I) model. Tumor bearing syngeneic mice were treated with radiation, armed oncolytic virus Ad-ΔE1Bmt7 (dB7) expressing both IL-12 and GM-CSF (armed dB7), or a combination of both. The adenovirus was administered by intratumoral injection 1 x 10 8 plaque forming units (PFU) per tumor in 50 μl of phosphate buffered saline (PBS) four times every other day. Tumor response to treatment was determined by a tumor growth delay assay. Metastatic potential was evaluated by a lung metastasis model. To understand the underlying mechanism, the level of apoptosis was examined as well as the change in microvessel density and expression of immunological markers: CD4+, CD8+ and Cd11c. The combination of armed dB7 and radiation resulted in significant growth delay of murine hepatic cancer, HCa-1, with an enhancement factor of 4.3. The combination treatment also resulted in significant suppression of lung metastasis. Increase of apoptosis level as well as decrease of microvessel density was shown in the combination treatment, suggesting an underlying mechanism for the enhancement of antitumor effect. Expression of immunological markers: CD4+, CD8+ and Cd11c also increased in the combination treatment. This study showed that a novel combination treatment of radiotherapy with armed oncolytic adenovirus expressing IL-12 and GM-CSF was effective in suppressing primary tumor growth. (author)

  2. Adenovirus-mediated IL-12 gene therapy in combination with radiotherapy for murine liver cancer

    Wei Daoyan; Dai Bingbing; Wang Zhonghe; Chen Shishu

    2001-01-01

    Objective: To investigate the synergistic antitumor effects of adenovirus-mediated IL-12 gene therapy in combination with radiotherapy in mice bearing liver cancer. Methods: Balb/c mice bearing liver cancer received the treatment at day 1 with tumor local irradiation (TLI) of 20 Gy or mask irradiation when tumor size reached 0.6-1.0 cm. Within 1 hour after irradiation, adenovirus containing IL-12 gene or PBS was intra-tumor injected once a week. Forty-eight hours after the second injection, IFN-γ levels in sera and the supernatant of cultured spleen cells were assayed by ELISA, CTL activity of spleen cells was measured by 3 H-TdR release assay, and phenotypes of tumor-infiltrating lymphocytes were analysed by immunohistochemical staining. Results: The growth of tumors in animals treated with a combination of IL-12 gene therapy and TLI was inhibited more significantly than those with either single treatment (P + and CD8 + lymphocyte infiltration and tumor-specific cytolytic activities, and the levels of IFN-γ in sera were higher in IL-12 gene therapy and IL-12 gene therapy combined with TLI groups. Conclusion: These results suggest that IL-12 gene therapy combined with radiotherapy is more effective than both single treatment modalities and can induce specific antitumor immuno-response greatly

  3. Rock bream (Oplegnathus fasciatus) IL-12p40: identification, expression, and effect on bacterial infection.

    Zhang, Lu; Zhang, Bao-Cun; Hu, Yong-Hua

    2014-08-01

    IL-12p40, also called IL-12β, is a subunit of the proinflammatory cytokines interleukin (IL)-12 and IL-23. In teleost, IL-12p40 homologues have been identified in several species, however, the biological function of fish IL-12p40 is essentially unknown. In this work, we reported the identification and analysis of an IL-12p40, OfIL-12p40, from rock bream (Oplegnathus fasciatus). OfIL-12p40 is composed of 361 amino acids and possesses a conserved IL-12p40 domain and a WSxWS signature motif characteristic of known IL-12p40. Constitutive expression of OfIL-12p40 occurred in multiple tissues and was highest in kidney. Experimental infection with bacterial pathogen upregulated the expression of OfIL-12p40 in kidney and spleen in a time-dependent manner. Purified recombinant OfIL-12p40 (rOfIL-12p40) stimulated the respiratory burst activity of peripheral blood leukocytes in a dose-dependent manner. rOfIL-12p40 also enhanced the resistance of rock bream against bacterial infection and upregulated the expression of innate immune genes in kidney. Taken together, these results indicate that OfIL-12p40 possesses cytokine-like property and plays a role in immune defense against bacterial infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The dichotomous pattern of IL-12r and IL-23R expression elucidates the role of IL-12 and IL-23 in inflammation.

    Gaëlle Chognard

    Full Text Available IL-12 and IL-23 cytokines respectively drive Th1 and Th17 type responses. Yet, little is known regarding the biology of these receptors. As the IL-12 and IL-23 receptors share a common subunit, it has been assumed that these receptors are co-expressed. Surprisingly, we find that the expression of each of these receptors is restricted to specific cell types, in both mouse and human. Indeed, although IL-12Rβ2 is expressed by NK cells and a subset of γδ T cells, the expression of IL-23R is restricted to specific T cell subsets, a small number of B cells and innate lymphoid cells. By exploiting an IL-12- and IL-23-dependent mouse model of innate inflammation, we demonstrate an intricate interplay between IL-12Rβ2 NK cells and IL-23R innate lymphoid cells with respectively dominant roles in the regulation of systemic versus local inflammatory responses. Together, these findings support an unforeseen lineage-specific dichotomy in the in vivo role of both the IL-12 and IL-23 pathways in pathological inflammatory states, which may allow more accurate dissection of the roles of these receptors in chronic inflammatory diseases in humans.

  5. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity

    Gray Kueberuwa

    2018-03-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents a significant advancement in cancer therapy. Larger studies have shown ∼90% complete remission rates against chemoresistant and/or refractory CD19+ leukemia or lymphoma. Effective CAR T cell therapy is highly dependent on lymphodepleting preconditioning, which is achieved through chemotherapy or radiotherapy that carries with it significant toxicities. These can exclude patients of low performance status. In order to overcome the need for preconditioning, we constructed fully mouse first and second generation anti-murine CD19 CARs with or without interleukin-12 (IL-12 secretion. To test these CARs, we established a mouse model to reflect the human situation without preconditioning. Murine second generation CAR T cells expressing IL-12 were capable of eradicating established B cell lymphoma with a long-term survival rate of ∼25%. We believe this to be the first study in a truly lymphoreplete model. We provide evidence that IL-12-expressing CAR T cells not only directly kill target CD19+ cells, but also recruit host immune cells to an anti-cancer immune response. This finding is critical because lymphodepletion regimens required for the success of current CAR T cell technology eliminate host immune cells whose anti-cancer activity could otherwise be harnessed by strategies such as IL-12-secreting CAR T cells. Keywords: CD19 CAR T cells, IL-12, immunotherapy, chimeric antigen receptor, adoptive cellular therapy, lymphoma, B cell malignancies, TRUCKs, pre-conditioning

  6. Evaluation of IL-12RB1, IL-12B, CXCR-3 and IL-17a expression in cases affected by a non-healing form of cutaneous leishmaniasis: an observational study design.

    Moafi, Mohammad; Rezvan, Hossein; Sherkat, Roya; Taleban, Roya; Asilian, Ali; Zarkesh Esfahani, Seyed Hamid; Nilforoushzadeh, Mohammad Ali; Jaffary, Fariba; Feizi, Awat

    2017-01-27

    Seldom cutaneous leishmaniasis (CL) may present as a lasting and active lesion(s), known as a non-healing form of CL (NHCL). Non-functional type 1 T helper (Th1) cells are assumed the most important factor in the outcome of the disease. The present study aims to assess some molecular defects that potentially contribute to Th1 impairment in NHCL. This prospective observational study will be implemented among five groups. The first and second groups comprise patients afflicted with non-healing and healing forms of CL, respectively. The third group consists of those recovered participants who have scars as a result of CL. Those participants who have never lived or travelled to endemic areas of leishmaniasis will comprise the fourth group. The fifth group comprises participants living in hyperendemic areas for leishmaniasis, although none of them have been afflicted by CL. The aim is to recruit 10 NHCL cases and 30 participants in each of the other groups. A leishmanin skin test (LST) will be performed to assess in vivo immunity against the Leishmania infection. The cytokine profile (interleukin (IL)-12p70, interferon (IFN)-γ, C-X-C motif chemokine ligand (CXCL)-11 and IL-17a) of the isolated peripheral blood mononuclear cells (PBMCs) will be evaluated through ELISA. Real-time PCR will determine the C-X-C motif chemokine receptor (CXCR)-3 and IL-17a gene expression and expression of IL-12Rβ1 will be assessed by flow cytometry. Furthermore, IL-12B and IL-12RB1 mutation analysis will be performed. It is anticipated that the outcome of the current study will identify IL-12B and IL-12RB1 mutations, which lead to persistent lesions of CL. Furthermore, our expected results will reveal an association between NHCL and pro-inflammatory cytokines (IL-12p70, IFN-γ IL-17a and CXCL-11), as well as CXCR-3 expression. This study has been approved by a local ethical committee. The final results will be disseminated through peer-reviewed journals and scientific conferences

  7. Immunization against Leishmania major infection using LACK- and IL-12-expressing Lactococcus lactis induces delay in footpad swelling.

    Felix Hugentobler

    Full Text Available BACKGROUND: Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. METHODOLOGY/PRINCIPAL FINDINGS: We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional T(H1 CD4(+ and CD8(+ T cells and a systemic LACK-specific T(H1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific T(H1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective T(H1 response. CONCLUSIONS/SIGNIFICANCE: This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania.

  8. Immunization against Leishmania major Infection Using LACK- and IL-12-Expressing Lactococcus lactis Induces Delay in Footpad Swelling

    Hugentobler, Felix; Yam, Karen K.; Gillard, Joshua; Mahbuba, Raya; Olivier, Martin; Cousineau, Benoit

    2012-01-01

    Background Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. Methodology/Principal findings We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional TH1 CD4+ and CD8+ T cells and a systemic LACK-specific TH1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific TH1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective TH1 response. Conclusions/Significance This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania. PMID:22348031

  9. Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice.

    Shanmin Zhao

    Full Text Available Tuberculosis (TB remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG, has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA and human interleukin 12 (hIL-12. Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2 in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.

  10. Construction, expression, and function of 6B11ScFv-mIL-12, a fusion protein that attacks human ovarian carcinoma.

    Cheng, Hongyan; Ye, Xue; Chang, Xiaohong; Ma, Ruiqiong; Cong, Xu; Niu, Yidong; Zhang, Menglei; Liu, Kai; Cui, Heng; Sang, Jianli

    2015-04-01

    We previously produced an anti-idiotypic monoclonal antibody, 6B11, which mimics ovarian cancer antigen CA166-9 and induces cellular and humoral immunity. Here, to enhance the immunogenicity of 6B11, we constructed the 6B11ScFv-mIL-12 fusion protein (FP), by fusing single-chain fragment of 6B11 variable region (6B11ScFv) with mouse interleukin-12 (mIL-12), which was expressed in eukaryotic 293EBNA cells transfected with pSBI vectors. A binding activity assay showed 6B11ScFv-mIL-12 to have activities of both 6B11 and mIL-12-it specifically bound both ovarian monoclonal antibody COC166-9 and rabbit anti-mouse IL-12 antibody. The immune activity assay showed 6B11ScFv-mIL-12 to promote proliferation of lymphocytes stimulated by phytohemagglutinin, increase the absolute numbers and percentages of CD3(-)/CD56(+) natural killer cells and CD3(+)/CD56(+) natural killer T cells among peripheral lymphocytes, and increase interferon-γ. The FP was specifically cytotoxic to the CA166-9(+) ovarian cancer cell lines HOC1A and SKOV3 and inhibited growth of ID8 subcutaneous tumors in C57BL/6J mice. This study provides an experimental basis for clinical use of 6B11ScFv-mIL-12 in ovarian cancer therapy. To our knowledge, this is the first report of a fusion protein from an anti-idiotypic antibody and IL-12.

  11. Gastric epithelial expression of IL-12 cytokine family in Helicobacter pylori infection in human: is it head or tail of the coin?

    Fadi Al-Sammak

    Full Text Available Recently, there has been a growing interest in an expanding group of cytokines known as "IL-12 family". The so far gained knowledge about these cytokines, as crucial playmakers in mucosal immunity, has not yet been sufficiently investigated in the context of Helicobacter pylori infection. All genes encoding the monomeric components of these cytokines and their corresponding receptors were examined in gastric epithelial cell lines (AGS and MKN-28 after being infected with 4 H. pylori strains: BCM-300, P1 wild-type, and P1-derived isogenic mutants lacking cytotoxin-associated gene A (cagA or virulence gene virB7 (multiplicity of infection=50. Both infected and uninfected samples were analyzed after 24h and 48h using real-time quantitative polymerase chain reaction (RT-qPCR. Gene expression analysis demonstrated a strong upregulation of IL23A (encodes p19 by infection, whereas IL23R, Epstein-Barr virus-induced gene 3 (EBI3, IL6ST, IL12A, and IL27RA were found to be expressed, but not regulated, or to a lesser extent. Transcripts of IL12RB2, IL12B, IL12RB1, and IL27A were not detected. Interestingly, P1 resulted in stronger alterations of expression than CagA mutant and BCM-300, particularly for IL23A (59.7-fold versus 32.4- and 6.7-fold, respectively in AGS after 48h, P<.05, whereas no changes were seen with VirB7 mutant. In a proof-of-principle experiment, we demonstrated epithelial-derived expression of IL-12, p19, and Ebi3 in gastric mucosa of gastritis patients using immunohistochemistry (IHC. Unlike IL-12 and Ebi3, increased immunostaining of p19 was observed in H. pylori gastritis. Herein, we highlight the potential role of gastric epithelial cells in mucosal immunity, not only because they are predominant cell type in mucosa and initial site of host-bacterial interaction, but also as a major contributor to molecules that are thought to be primarily expressed by immune cells so far. Of these molecules, p19 was the most relevant one to H

  12. Reduced expression of IL-12 p35 by SJL/J macrophages responding to Theiler's virus infection is associated with constitutive activation of IRF-3

    Dahlberg, Angela; Auble, Mark R.; Petro, Thomas M.

    2006-01-01

    Macrophages responding to viral infections may contribute to autoimmune demyelinating diseases (ADD). Macrophages from ADD-susceptible SJL/J mice responding to Theiler's Virus (TMEV) infection, the TLR7 agonist loxoribine, or the TLR4 agonist-LPS expressed less IL-12 p35 but more IL-12/23 p40 and IFN-β than macrophages from ADD-resistant B10.S mice. While expression of IRF-1 and -7 was similar between B10.S and SJL/J TMEV-infected macrophages, SJL/J but not B10.S macrophages exhibited constitutively active IRF-3. In contrast to overexpressed IRF-1, IRF-5, and IRF-7, which stimulated p35 promoter reporter activity, overexpressed IRF-3 repressed p35 promoter activity in response to TMEV infection, loxoribine, IFN-γ/LPS, but not IFN-γ alone. IRF-3 lessened but did not eliminate IRF-1-stimulated p35 promoter activity. Repression by IRF-3 required bp -172 to -122 of the p35 promoter. The data suggest that pre-activated IRF-3 is a major factor in the differences in IL-12 production between B10.S and SJL/J macrophages responding to TMEV

  13. The Ikaros transcription factor regulates responsiveness to IL-12 and expression of IL-2 receptor alpha in mature, activated CD8 T cells.

    Eric T Clambey

    Full Text Available The Ikaros family of transcription factors is critical for normal T cell development while limiting malignant transformation. Mature CD8 T cells express multiple Ikaros family members, yet little is known about their function in this context. To test the functions of this gene family, we used retroviral transduction to express a naturally occurring, dominant negative (DN isoform of Ikaros in activated CD8 T cells. Notably, expression of DN Ikaros profoundly enhanced the competitive advantage of activated CD8 T cells cultured in IL-12, such that by 6 days of culture, DN Ikaros-transduced cells were 100-fold more abundant than control cells. Expression of a DN isoform of Helios, a related Ikaros-family transcription factor, conferred a similar advantage to transduced cells in IL-12. While DN Ikaros-transduced cells had higher expression of the IL-2 receptor alpha chain, DN Ikaros-transduced cells achieved their competitive advantage through an IL-2 independent mechanism. Finally, the competitive advantage of DN Ikaros-transduced cells was manifested in vivo, following adoptive transfer of transduced cells. These data identify the Ikaros family of transcription factors as regulators of cytokine responsiveness in activated CD8 T cells, and suggest a role for this family in influencing effector and memory CD8 T cell differentiation.

  14. Expression of SCM-1alpha/lymphotactin and SCM-1beta in natural killer cells is upregulated by IL-2 and IL-12.

    Hennemann, B; Tam, Y K; Tonn, T; Klingemann, H G

    1999-07-01

    Recruitment of lymphocytes is an important feature of the host immune response against pathogens. However, the mechanisms by which lymphocytes are attracted are not yet fully understood. Recently, the cDNA of a lymphocyte-specific chemokine, lymphotactin (Lptn), was isolated from murine and human T cells and was also found to be expressed in murine NK cells and human NK cell clones. This study investigated the influence of interleukin (IL)-2 and IL-12 on the expression of Lptn, also known as SCM (single cysteine motif)-1alpha, and SCM-1beta, a 97% homolog of Lptn, in freshly isolated human NK cells and the human NK cell line NK-92. Northern blot analysis and RT-PCR confirmed that nonactivated human NK cells expressed both genes at low level. After activation with IL-2 or IL-12, the expression of both Lptn and SCM-1beta was upregulated within hours. NK-92 cells maintained in medium supplemented with IL-2 constitutively expressed SCM-1 mRNA. However, after 24 h of IL-2 starvation and subsequent culturing at various IL-2 concentrations, the expression of Lptn/SCM-1alpha was upregulated in a dose-dependent manner, whereas the expression of SCM-1beta remained consistently high. These observations indicate that NK cells, in addition to T lymphocytes, express Lptn/SCM-1alpha and SCM-1beta after cytokine activation. The upregulation of these chemokines in NK cells on activation likely acts to increase the number of effector cells reaching the site of an immune response such as inflammation.

  15. [Construction and expression of a recombinant adenovirus with LZP3].

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  16. Evidence for association of STAT4 and IL12RB2 variants with Myasthenia gravis susceptibility: What is the effect on gene expression in thymus?

    Zagoriti, Zoi; Lagoumintzis, George; Perroni, Gianluca; Papathanasiou, George; Papadakis, Andreas; Ambrogi, Vincenzo; Mineo, Tommaso Claudio; Tzartos, John S; Poulas, Konstantinos

    2018-06-15

    Myasthenia gravis (MG) is an autoimmune disease mediated by the presence of autoantibodies that bind mainly to the acetylcholine receptor (AChR) in the neuromuscular junction. In our case-control association study, we analyzed common variants located in genes of the IL12/STAT4 and IL10/STAT3 signaling pathways. A total of 175 sporadic MG patients of Greek descent, positively detected with anti-AChR autoantibodies and 84 ethnically-matched, healthy volunteers were enrolled in the study. Thymus samples were obtained from 16 non-MG individuals for relative gene expression analysis. The strongest signals of association were observed in the cases of rs6679356 between the late-onset MG patients and controls and rs7574865 between early-onset MG and controls. Our investigation of the correlation between the MG-associated variants and the expression levels of each gene in thymus did not result in significant differences. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  18. Prolonged peritoneal gene expression using a helper-dependent adenovirus.

    Liu, Limin; Shi, Chang-Xin; Ghayur, Ayesha; Zhang, Claire; Su, Je Yen; Hoff, Catherine M; Margetts, Peter J

    2009-01-01

    Encapsulating peritoneal sclerosis (EPS) is a rare complication of peritoneal dialysis. The causes of EPS are not well defined and are likely multifactorial. A suitable animal model would facilitate research into the pathophysiology and treatment of EPS. We developed a helper-dependent adenovirus that expresses both green fluorescent protein (GFP) and active transforming growth factor-beta (TGF-beta1; HDAdTGF-beta1). Mice were administered HDAdTGF-beta1 via intraperitoneal injection and the response was compared with mice administered either first-generation adenovirus expressing TGF-beta1 (AdTGF-beta1) or control adenovirus (AdGFP). HDAdTGF-beta1-treated mice continued to express the GFP reporter transgene to day 74, the end of the observation period. Transgene expression lasted less than 28 days in the animals treated with first-generation adenoviruses. Animals treated with first-generation AdTGF-beta1 demonstrated submesothelial thickening and angiogenesis at day 7, with almost complete resolution by day 28. The HDAdTGF-beta1-treated mice demonstrated progressive peritoneal fibrosis with adhesion formation and encapsulation of bowels. Weight gain was significantly reduced in animals treated with HDAdTGF-beta1 compared to both the control-treated animals and the AdTGF-beta1-treated animals. Inflammation was not a major component of the fibroproliferative response. Peritoneal administration of a first-generation AdTGF-beta1 leads to transient gene expression, resulting in a resolving fibrotic response and histology similar to that seen in simple peritoneal sclerosis. Prolonged TGF-beta1 expression induced by the helper-dependent HDAdTGF-beta1 led to changes in peritoneal morphology resembling EPS. This suggests that TGF-beta1 may be a contributing factor in both simple peritoneal sclerosis and EPS. This model will be useful for elucidation of the mechanism of EPS and evaluation of potential treatment.

  19. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  20. Psoriasis is not associated with IL-12p70/IL-12p40 production and IL12B promoter polymorphism

    Litjens, Nicolle H R; van der Plas, Mariena J A; Ravensbergen, Bep

    2004-01-01

    Psoriasis is a type-1 T cell-mediated, chronic inflammatory disease. Since interleukin (IL)-12p70 promotes the development of type-1 T cells, we investigated whether psoriasis is associated with an increased production of this cyctokine by blood cells. Results revealed that the production of IL-12p....... The frequencies of the various genotypes for the promoter region of the gene encoding IL-12p40 (IL12B) did not differ between psoriasis patients and controls. No association was observed between the various IL12B promoter genotypes and the LPS-stimulated production of IL-12p70 or IL-12p40 by blood cells. Together......, psoriasis is not associated with a promoter polymorphism in the IL12B gene nor with the production of IL-12p70 by LPS-stimulated blood cells....

  1. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  2. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  3. Construction of a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen and mouse 4-1BBL genes and its effect on dendritic cells

    Xiaodong Weng

    2011-03-01

    Full Text Available Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12 in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA. Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4% and CD86 (80.13 ± 2.81%] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL and IL-12 (249.57 ± 12.51 pg/mL production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05 than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018, indicating that this recombinant adenovirus can effectively enhance the activity of DCs.

  4. Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis.

    Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping

    2017-09-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.

  5. Co-administration of plasmid expressing IL-12 with 14-kDa Schistosoma mansoni fatty acid-binding protein cDNA alters immune response profiles and fails to enhance protection induced by Sm14 DNA vaccine alone.

    Fonseca, Cristina T; Pacífico, Lucila G G; Barsante, Michele M; Rassi, Tatiana; Cassali, Geovanni D; Oliveira, Sérgio C

    2006-08-01

    Schistosomiasis is an endemic disease that affects 200 million people worldwide. DNA-based vaccine is a promising strategy to induce protective immunity against schistosomiasis, since both humoral and cellular immune responses are involved in parasite elimination. In this study, we evaluated the ability of Sm14 cDNA alone or in association with a plasmid expressing murine interleukin (IL)-12 to induce protection against challenge infection. Mice were immunized with four doses of the DNA vaccine and the levels of protection were determined by worm burden recovery after challenge infection. Specific antibody production to rSm14 was determined by ELISA, and cytokine production was measured in splenocyte culture supernatants stimulated with rSm14 and in bronchoalveolar lavage of vaccinated mice after challenge infection. DNA immunization with pCI/Sm14 alone induced 40.5% of worm reduction. However, the use of pCI/IL-12 as adjuvant to pCI/Sm14 immunization failed to enhance protection against challenge infection. Protection induced by pCI/Sm14 immunization correlates with specific IgG antibody production against Sm14, Th1 type of immune response with high levels of interferon (IFN)-gamma and low levels of IL-4 in splenocyte culture supernatants and in bronchoalveolar lavage after challenge infection. IL-12 co-administration with pCI/Sm14 induced a significant production of nitric oxide in splenocyte culture supernatants and also lymphocyte suppression, with reduced percentage of T cells producing IFN-gamma and tumor necrosis factor-alpha.

  6. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12.

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.

  7. Activated recombinant adenovirus proteinases

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  8. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  9. Epstein Barr virus Latent Membrane Protein-1 enhances dendritic cell therapy lymph node migration, activation, and IL-12 secretion.

    James M Termini

    Full Text Available Dendritic cells (DC are a promising cell type for cancer vaccines due to their high immunostimulatory capacity. However, improper maturation of DC prior to treatment may account for the limited efficacy of DC vaccine clinical trials. Latent Membrane Protein-1 (LMP1 of Epstein-Barr virus was examined for its ability to mature and activate DC as a gene-based molecular adjuvant for DC vaccines. DC were transduced with an adenovirus 5 vector (Ad5 expressing LMP1 under the control of a Tet-inducible promoter. Ad5-LMP1 was found to mature and activate both human and mouse DC. LMP1 enhanced in vitro migration of DC toward CCL19, as well as in vivo migration of DC to the inguinal lymph nodes of mice following intradermal injection. LMP1-transduced DC increased T cell proliferation in a Pmel-1 adoptive transfer model and enhanced survival in B16-F10 melanoma models. LMP1-DC also enhanced protection in a vaccinia-Gag viral challenge assay. LMP1 induced high levels of IL-12p70 secretion in mouse DC when compared to standard maturation protocols. Importantly, LMP1-transduced human DC retained the capacity to secrete IL-12p70 and TNF in response to DC restimulation. In contrast, DC matured with Monocyte Conditioned Media-Mimic cocktail (Mimic were impaired in IL-12p70 secretion following restimulation. Overall, LMP1 matured and activated DC, induced migration to the lymph node, and generated high levels of IL-12p70 in a murine model. We propose LMP1 as a promising molecular adjuvant for DC vaccines.

  10. Role of the IL-12/IL-35 balance in patients with Sjögren syndrome.

    Fogel, Olivier; Rivière, Elodie; Seror, Raphaèle; Nocturne, Gaetane; Boudaoud, Saida; Ly, Bineta; Gottenberg, Jacques-Eric; Le Guern, Véronique; Dubost, Jean-Jacques; Nititham, Joanne; Taylor, Kimberly E; Chanson, Philippe; Dieudé, Philippe; Criswell, Lindsey A; Jagla, Bernd; Thai, Alice; Mingueneau, Michael; Mariette, Xavier; Miceli-Richard, Corinne

    2017-09-12

    An interferon signature is involved in the pathogenesis of primary Sjögren syndrome (pSS), but whether the signature is type 1 or type 2 remains controversial. Mouse models and genetic studies suggest the involvement of T H 1 and type 2 interferon pathways. Likewise, polymorphisms of the IL-12A gene (IL12A), which encodes for IL-12p35, have been associated with pSS. The IL-12p35 subunit is shared by 2 heterodimers: IL-12 and IL-35. We sought to confirm genetic association of the IL12A polymorphism and pSS and elucidate involvement of the IL-12/IL-35 balance in patients with pSS by using functional studies. The genetic study involved 673 patients with pSS from 2 French pSS cohorts and 585 healthy French control subjects. Functional studies were performed on sorted monocytes, irrespective of whether they were stimulated. IL12A mRNA expression and IL-12 and IL-35 protein levels were assessed by using quantitative RT-PCR and ELISA and a multiplex kit for IL-35 and IL-12, respectively. We confirmed association of the IL12A rs485497 polymorphism and pSS and found an increased serum protein level of IL-12p70 in patients with pSS carrying the risk allele (P = .016). Serum levels of IL-12p70 were greater in patients than control subjects (P = .0001), especially in patients with more active disease (P = .05); conversely, IL-35 levels were decreased in patients (P = .0001), especially in patients with more active disease (P = .05). In blood cellular subsets both IL12p35 and EBV-induced gene protein 3 (EBI3) mRNAs were detected only in B cells, with a trend toward a lower level among patients with pSS. Our findings emphasize involvement of the IL-12/IL-35 balance in the pathogenesis of pSS. Serum IL-35 levels were associated with low disease activity, in contrast with serum IL-12p70 levels, which were associated with more active disease. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Morphological and Functional Characterization of IL-12Rβ2 Chain on Intestinal Epithelial Cells: Implications for Local and Systemic Immunoregulation.

    Regoli, Mari; Man, Angela; Gicheva, Nadhezda; Dumont, Antonio; Ivory, Kamal; Pacini, Alessandra; Morucci, Gabriele; Branca, Jacopo J V; Lucattelli, Monica; Santosuosso, Ugo; Narbad, Arjan; Gulisano, Massimo; Bertelli, Eugenio; Nicoletti, Claudio

    2018-01-01

    Interaction between intestinal epithelial cells (IECs) and the underlying immune systems is critical for maintaining intestinal immune homeostasis and mounting appropriate immune responses. We have previously showed that the T helper type 1 (T H 1) cytokine IL-12 plays a key role in the delicate immunological balance in the gut and the lack of appropriate levels of IL-12 had important consequences for health and disease, particularly with regard to food allergy. Here, we sought to understand the role of IL-12 in the regulation of lymphoepithelial cross talk and how this interaction affects immune responses locally and systemically. Using a combination of microscopy and flow cytometry techniques we observed that freshly isolated IECs expressed an incomplete, yet functional IL-12 receptor (IL-12R) formed solely by the IL-12Rβ2 chain that albeit the lack of the complementary IL-12β1 chain responded to ex vivo challenge with IL-12. Furthermore, the expression of IL-12Rβ2 on IECs is strategically located at the interface between epithelial and immune cells of the lamina propria and using in vitro coculture models and primary intestinal organoids we showed that immune-derived signals were required for the expression of IL-12Rβ2 on IECs. The biological relevance of the IEC-associated IL-12Rβ2 was assessed in vivo in a mouse model of food allergy characterized by allergy-associated diminished intestinal levels of IL-12 and in chimeric mice that lack the IL-12Rβ2 chain on IECs. These experimental models enabled us to show that the antiallergic properties of orally delivered recombinant Lactococcus lactis secreting bioactive IL-12 (rLc-IL12) were reduced in mice lacking the IL-12β2 chain on IECs. Finally, we observed that the oral delivery of IL-12 was accompanied by the downregulation of the production of the IEC-derived proallergic cytokine thymic stromal lymphopoietin (TSLP). However, further analysis of intestinal levels of TSLP in IL-12Rβ2 -/- mice suggested

  12. Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with Newcastle disease virus recombinant HN protein.

    Su, Bor Sheu; Yin, Hsien Sheng; Chiu, Hua Hsien; Hung, Li Hsiang; Huang, Ji Ping; Shien, Jui Hung; Lee, Long Huw

    2011-08-05

    Recombinant fowlpox virus (rFPV/HN) expressing Newcastle disease virus (NDV) HN gene and rFPV/HN/chIL-12 co-expressing chicken IL-12 (chIL-12) and HN (rHN/chIL-12) genes have been characterized. rHN/chIL-12 or rchIL-12, expressed by our previous construct rFPV/chIL-12, co-administered with rHN was assessed for adjuvant activities of chIL-12. Chickens were vaccinated with various amounts of rHN/chIL-12 mixed with mineral oil (MO), intramuscularly. Levels of hemagglutination-inhibition (HI) antibody production depended on the concentration of the injected rHN or rHN/chIL-12. The lower HI antibody titers were obtained in chicken groups rHN/chIL-12/7-rHN/chIL-12/9, receiving 60ng rHN/8ng chIL-12 with MO, 30ng rHN/4ng chIL-12 with MO or 15ng rHN/2ng chIL-12 with MO, respectively, compared to those in chicken groups rHN/7-rHN/9, receiving rHN with MO alone. However, chickens in group rHN/chIL-12/7 or rHN/chIL-12/8 and rHN with MO alone showed the same effective protection. Chicken group rHN/chIL-12/9 was even more protective than that in group rHN/9. When rchIL-12 was co-injected with 15ng rHN plus MO, chickens produced low levels of HI antibody titers; while higher levels of IFN-γ production and an effective protection rate (83%) were obtained. On the other hand, low levels of IFN-γ production and low protection response (50%) were obtained in chickens injected with rHN with MO alone. Taken together, when the concentration of rHN decreased to certain levels, rchIL-12 reduced HI antibody production. The increase in the induction of IFN-γ production might suggest the enhancement of the cell-mediated immunity which conferred the protection from the NDV challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. UVB induces IL-12 transcription in human keratinocytes in vivo and in vitro

    Enk, C.D.; Blauvet, A.; Katz, S.I.; Mahanty, S.

    1996-01-01

    Human epidermal cells produce a wide range of cytokines, including those characteristic of Th2-like responses such as interleukin (IL)-4 and IL-10. As well, keratinocytes have recently been shown to produce Th1-like cytokines such as IL-12. Exposure to UVB has profound effects on the skin and systemic immune system, which is in part mediated by secretion of tumor necrosis factor (TNF)-α by epidermal cells. Because IL-12 induces production of TNF-α by certain cells of the immune system, we sought to determine whether UVB is an inducer of IL-12 gene expression in epidermal cells. Human epidermal cells were exposed to UVB radiation in vivo, isolated by suction blister technique and trypsinization and transcription of the IL-12 p35 and p40 chains was examined by RT-PCR. (Author)

  14. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice.

    Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N

    2016-01-06

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  16. A recombinant E1-deleted porcine adenovirus-3 as an expression vector

    Zakhartchouk, Alexander; Zhou Yan; Tikoo, Suresh Kumar

    2003-01-01

    Replication-defective E1-deleted porcine adenoviruses (PAVs) are attractive vectors for vaccination. As a prerequisite for generating PAV-3 vectors containing complete deletion of E1, we transfected VIDO R1 cells (fetal porcine retina cells transformed with E1 region of human adenovirus 5) with a construct containing PAV-3 E1B large coding sequences under the control of HCMV promoter. A cell line named VR1BL could be isolated that expressed E1B large of PAV-3 and also complemented PAV214 (E1A+E1B small deleted). The VR1BL cells could be efficiently transfected with DNA and allowed the rescue and propagation of recombinant PAV507 containing a triple stop codon inserted in the E1B large coding sequence. In addition, recombinant PAV227 containing complete deletion of E1 (E1A+E1B small + E1B large ) could be successfully rescued using VR1BL cell line. Recombinant PAV227 replicated as efficiently as wild-type in VR1BL cells but not in VIDO R1 cells, suggesting that E1B large was essential for replication of PAV-3. Next, we constructed recombinant PAV219 by inserting green fluorescent (GFP) protein gene flanked by a promoter and a poly(A) in the E1 region of the PAV227 genome. We demonstrated that PAV219 was able to transduce and direct expression of GFP in some human cell lines

  17. Co-factor activated recombinant adenovirus proteinases

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  18. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  19. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging

    Lamfers, Martine L. M.; Fulci, Giulia; Gianni, Davide; Tang, Yi; Kurozumi, Kazuhiko; Kaur, Balveen; Moeniralm, Sharif; Saeki, Yoshinaga; Carette, Jan E.; Weissleder, Ralph; Vandertop, W. Peter; van Beusechem, Victor W.; Dirven, Clemens M. F.; Chiocca, E. Antonio

    2006-01-01

    Approaches to improve the oncolytic potency of replication-competent adenoviruses include the insertion of therapeutic transgenes into the viral genome. Little is known about the levels and duration of in vivo transgene expression by cells infected with such "armed" viruses. Using a tumor-selective

  20. Inhibition of corneal neovascularization by recombinant adenovirus-mediated sFlk-1 expression

    Yu Hui; Wu Jihong; Li Huiming; Wang Zhanli; Chen Xiafang; Tian Yuhua; Yi Miaoying; Ji Xunda; Ma Jialie; Huang Qian

    2007-01-01

    The interaction of vascular endothelial growth factor (VEGF) and its receptors (Flt-1, Flk-1/KDR) is correlated with neovascularization in the eyes. Therefore, blocking the binding of VEGF and the corresponding receptor has become critical for inhibiting corneal neovascularization. In this study, we have expressed the cDNA for sFlk-1 under the control of cytomegalovirus immediate-early promoter (CMV) from an E1/partial E3 deleted replication defective recombinant adenovirus, and Ad.sflk-1 expression was determined by Western blotting. We have shown that conditioned media from Ad.sflk-1-infected ARPE-19 cells significantly reduced VEGF-induced human umbilical vein endothelial cells (HUVEC) and murine endothelial cells (SVEC) proliferation in vitro compared with the control vector. In vivo, adenoviral vectors expressing green fluorescent protein alone (Ad.GFP) were utilized to monitor gene transfer to the cornea. Moreover, in the models of corneal neovascularization, the injection of Ad.sflk-1 (10 8 PFU) into the anterior chamber could significantly inhibit angiogenic changes compared with Ad.null-injected and vehicle-injected models. Immunohistochemical analysis showed that corneal endothelial cells and corneal stroma of cauterized rat eyes were efficiently transduced and expressed sFlk-1. These results not only support that adenoviral vectors are capable of high-level transgene expression but also demonstrate that Ad.sflk-1 gene therapy might be a feasible approach for inhibiting the development of corneal neovascularization

  1. Evaluating the role of CRM1-mediated export for adenovirus gene expression

    Carter, Christoph C.; Izadpanah, Reza; Bridge, Eileen

    2003-01-01

    A complex of the Adenovirus (Ad) early region 1b 55-kDa (E1b-55kDa) and early region 4 ORF6 34-kDa (E4-34kDa) proteins promotes viral late gene expression. E1b-55kDa and E4-34kDa have leucine-rich nuclear export signals (NESs) similar to that of HIV Rev. It was proposed that E1b-55kDa and/or E4-34kDa might promote the export of Ad late mRNA via their Rev-like NESs, and the transport receptor CRM1. We treated infected cells with the cytotoxin leptomycin B to inhibit CRM1-mediated export; treatment initially delays the onset of late gene expression, but this activity completely recovers as the late phase progresses. We find that the E1b-55kDa NES is not required to promote late gene expression. Previous results showed that E4-34kDa-mediated late gene expression does not require an intact NES (J. Virol. 74 (2000), 6684-6688). Our results indicate that these Ad regulatory proteins promote late gene expression without intact NESs or active CRM1

  2. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome

    Kahori Shimizu

    2014-01-01

    Full Text Available Leaky expression of adenovirus (Ad genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3′-untranslated region (UTR of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a–targeted sequences into the 3′-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a–mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses.

  3. Changes in IL12A methylation pattern in livers from mice fed DDC.

    Oliva, J; French, S W

    2012-04-01

    Mallory-Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. Proteins of the TLR pathway were shown to be involved in the formation of MDBs, in mice fed DDC. TLR genes are upregulated and SAMe supplementation prevents this up regulation and prevented the formation of MDBs. DNA of livers from control mice, from mice fed DDC 10weeks, refed 1week with DDC and with DDC+SAMe were extracted and used to study the methylation pattern of genes involves in the TLR pathway. A PCR array was used to analyze it. Using PCR arrays for the mouse TLR pathway,24 genes were found whose expression of IL12A was regulated by the methylation of its gene. DDC fed for 10weeks reduced the methylation of the IL12A gene expression. This expression was also reduced when DDC was refed. However, when SAMe was fed, the intermediate level methylation of IL12A was up regulated to the intermediate level and the methylation of the promoter decreased compared to DDC refeeding or DDC 10weeks. IL12A is known to induce the production of IFNg by NK and L(T). We showed in a previous publication that IFNg is one of the major cytokines involved in the induction of MDB formation. The low expression of IL12A associated with the intermediate methylation of its promoter could explain one step in the mechanism which leads to the formation of MDBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection

    Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se [The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala (Sweden); Chen, Maoshan [Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 (Australia); Lind, Sara Bergström [Department of Chemistry-BMC, Analytical Chemistry, Science for Life Laboratory, Uppsala University, Box 599, SE-751 24 Uppsala (Sweden); Pettersson, Ulf [The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala (Sweden)

    2016-05-15

    The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phase and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.

  5. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  6. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway.

    Yu, Nan; Wang, Sinian; Song, Xiujun; Gao, Ling; Li, Wei; Yu, Huijie; Zhou, Chuanchuan; Wang, Zhenxia; Li, Fengsheng; Jiang, Qisheng

    2018-04-01

    For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.

  7. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.; Nettelbeck, Dirk M.

    2010-01-01

    Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show t...

  8. Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12.

    Komai-Koma, Mousa; Wang, Eryi; Kurowska-Stolarska, Mariola; Li, Dong; McSharry, Charles; Xu, Damo

    2016-03-01

    The pro-Th2 cytokine IL-33 is now emerging as an important Th1 cytokine-IFN-γ inducer in murine CD4(+) T cells that is essential for protective cell-mediated immunity against viral infection in mice. However, whether IL-33 can promote human Th1 cell differentiation and how IL-33 polarizes Th1 cells is less understood. We assessed the ability of IL-33 to induce Th1 cell differentiation and IFN-γ production in vitro and in vivo. We report here that IL-33 alone had no ability in Th1 cell polarization. However it potentiated IL-12-mediated Th1 cell differentiation and IFN-γ production in TCR-stimulated murine and human CD4(+) T cells in vitro and in vivo. IL-33 promoted Th1 cell development via MyD88 and synergized with IL-12 to enhance St2 and IL-12R expression in CD4(+) T cells. These data therefore provide a novel mechanism for Th1 cell differentiation and optimal induction of a Type 1 response. Thus, IL-33 is capable of inducing IL-12-dependent Th1 cell differentiation in human and mouse CD4(+) T cells. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  10. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2013-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)) and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12 and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing anti-tumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted. PMID:22488274

  11. Inhibition of TC-1 tumor progression by cotransfection of Saxatilin and IL-12 genes mediated by lipofection or electroporation.

    Park, Y S; Kim, K S; Lee, Y K; Kim, J S; Baek, J Y; Huang, L

    2009-01-01

    Recently, a number of reports have demonstrated that coexpression of therapeutic genes having different anticancer mechanisms is a more effective strategy for anticancer gene therapy than single gene expression. Saxatilin, a novel disintegrin from snake venom, has recently been shown to have potent antiangiogenic functions, such as inhibition of platelet aggregation, bFGF-induced proliferation of HUVEC, and vitronectin-induced smooth muscle cell migration. IL-12 is a well-known immune modulator that promotes Thl-type antitumor immune responses and inhibits angiogenesis as well. The saxatilin and/or IL-12 genes were transfected intratumorally into C57BL/6 mice carrying TC-1 transformed mouse lung endothelial cells by either lipofection or electroporation. The plasmids encoding saxatilin and IL-12 were administered to tumor tissues via novel cationic liposomes consisting of dimyristyl-glutamyl-lysine (DMKE). On the other hand, expression of the genes was also induced by electroporation after naked pDNA injection to the tumor tissues. Lipofection of saxatilin and/or IL-12 genes appeared to be slightly more effective in inhibition of tumor growth than electroporation of the same genes. Cotransfection of saxatilin and IL-12 genes was clearly more effective than individual administration of either gene. This result implies that cotransfection of saxatilin and IL-12 genes represents an innovative modality for anticancer gene therapy.

  12. Immunogenicity and efficacy in mice of an adenovirus-based bicistronic rotavirus vaccine expressing NSP4 and VP7.

    Xie, Li; Yan, Min; Wang, Xiaonan; Ye, Jing; Mi, Kai; Yan, Shanshan; Niu, Xianglian; Li, Hongjun; Sun, Maosheng

    2015-12-02

    NSP4 and VP7 are important functional proteins of rotavirus. Proper combination of viral gene expression is favorable to improving the protection effect of subunit vaccine. In the present study, We evaluated the immunogenicity and efficacy of the bicistronic recombinant adenovirus (rAd-NSP4-VP7) and two single-gene expressing adenoviruses (rAd-NSP4, rAd-VP7). The three adenovirus vaccines were used to immunize mice by intramuscular or intranasal administration. The data showed significant increases in serum antibodies, T lymphocyte subpopulations proliferation, and cytokine secretions of splenocyte in all immunized groups. However, the serum IgA and neutralizing antibody levels of the rAd-NSP4-VP7 or rAd-VP7 groups were significantly higher than those of the rAd-NSP4, while the splenocyte numbers of IFN-γ secretion in the rAd-NSP4-VP7 or rAd-NSP4 groups was greater than that of the rAd-VP7. Furthermore, the efficacy evaluation in a suckling mice model indicated that only rAd-NSP4-VP7 conferred significant protection against rotavirus shedding challenge. These results suggest that the co-expression of NSP4 and VP7 in an adenovirus vector induce both humoral and cell-mediated immune responses efficiently, and provide potential efficacy for protection against rotavirus disease. It is possible to represent an efficacious subunits vaccine strategy for control of rotavirus infection and transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system].

    Lu, Yue; Liu, Dan; Zhang, Xiaoren; Liu, Xuerong; Shen, Wei; Zheng, Gang; Liu, Yunfan; Dong, Xiaoyan; Wu, Xiaobing; Gao, Jimin

    2011-08-01

    We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.

  14. Isolation of IL-12p70-competent human monocyte-derived dendritic cells

    Søndergaard, Jonas Nørskov; Pedersen, Susanne Brix

    2012-01-01

    that moDCs generated under standard conditions develop into two subsets based on CD1a-expression with the CD1a+ moDCs being the main IL-12p70 producers. This has however not been generally accepted, which we show here because the subset described as CD1a-negative does express CD1a, but at a lower level...... is not available to many laboratories and has incompatibility with clinical settings, a more widely useable technique is warranted. Therefore we tested if magnetic-activated cell sorting is useful for the purpose, and show that it is possible to isolate IL-12p70-competent CD1a-hi moDCs to a...

  15. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody.

    Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey; Greiner, John W

    2017-03-28

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.

  16. Conditionally replicating adenovirus expressing TIMP2 increases survival in a mouse model of disseminated ovarian cancer.

    Sherry W Yang

    Full Text Available Ovarian cancer remains difficult to treat mainly due to presentation of the disease at an advanced stage. Conditionally-replicating adenoviruses (CRAds are promising anti-cancer agents that selectively kill the tumor cells. The present study evaluated the efficacy of a novel CRAd (Ad5/3-CXCR4-TIMP2 containing the CXCR4 promoter for selective viral replication in cancer cells together with TIMP2 as a therapeutic transgene, targeting the matrix metalloproteases (MMPs in a murine orthotopic model of disseminated ovarian cancer. An orthotopic model of ovarian cancer was established in athymic nude mice by intraperitonal injection of the human ovarian cancer cell line, SKOV3-Luc, expressing luciferase. Upon confirmation of peritoneal dissemination of the cells by non-invasive imaging, mice were randomly divided into four treatment groups: PBS, Ad-ΔE1-TIMP2, Ad5/3-CXCR4, and Ad5/3-CXCR4-TIMP2. All mice were imaged weekly to monitor tumor growth and were sacrificed upon reaching any of the predefined endpoints, including high tumor burden and significant weight loss along with clinical evidence of pain and distress. Survival analysis was performed using the Log-rank test. The median survival for the PBS cohort was 33 days; for Ad-ΔE1-TIMP2, 39 days; for Ad5/3-CXCR4, 52.5 days; and for Ad5/3-CXCR4-TIMP2, 63 days. The TIMP2-armed CRAd delayed tumor growth and significantly increased survival when compared to the unarmed CRAd. This therapeutic effect was confirmed to be mediated through inhibition of MMP9. Results of the in vivo study support the translational potential of Ad5/3-CXCR4-TIMP2 for treatment of human patients with advanced ovarian cancer.

  17. Radiosensitization of head/neck sqaumous cell carcinoma by adenovirus-mediated expression of the Nbs1 protein

    Rhee, Juong G.; Li, Daqing; Suntharalingam, Mohan; Guo Chuanfa; O'Malley, Bert W.; Carney, James P.

    2007-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome, show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. Experimental Procedures: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1 into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line JHU011. These cells were evaluated for expression of the viral based constructs and assayed for clonogenic survival following radiation exposure. Results: Exposure of cells expressing Nbs1-300 to ionizing radiation resulted in a small reduction in survival relative to cells infected with control virus. Surprisingly, expression of full-length Nbs1 protein resulted in markedly enhanced sensitivity to ionizing radiation. Furthermore, the use of a fractionated radiation scheme following virus infection demonstrates that expression of full-length Nbs1 protein results in significant reduction in cell survival. Conclusions: These results provide a proof of principle that disruption of Nbs1 function may provide a means of enhancing the radiosensitivity of head and neck tumors. Additionally, this work highlights the Mre11 complex as an attractive target for development of radiation sensitizers

  18. Protective Immunity against Tularemia Provided by an Adenovirus-Vectored Vaccine Expressing Tul4 of Francisella tularensis

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T.; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-01-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane prote...

  19. Effect of adenovirus infection on transgene expression under the adenoviral MLP/TPL and the CMVie promoter/enhancer in CHO cells

    Mohamed A. El-Mogy

    2017-06-01

    Full Text Available The adenovirus major late promoter (MLP and its translational regulator – the tripartite leader (TPL sequence – can actively drive efficient gene expression during adenoviral infection. However, both elements have not been widely tested in transgene expression outside of the adenovirus genome context. In this study, we tested whether the combination of MLP and TPL would enhance transgene expression beyond that of the most widely used promoter in transgene expression in mammalian cells, the cytomegalovirus immediate early (CMVie promoter/enhancer. The activity of these two regulatory elements was compared in Chinese hamster ovary (CHO cells. Although transient expression was significantly higher under the control of the CMVie promoter/enhance compared to the MLP/TPL, this difference was greater at the level of transcription (30 folds than translation (11 folds. Even with adenovirus infection to provide additional elements (in trans, CMVie promoter/enhancer exhibited significantly higher activity relative to MLP/TPL. Interestingly, the CMVie promoter/enhancer was 1.9 folds more active in adenovirus-infected cells than in non-infected cells. Our study shows that the MLP-TPL drives lower transgene expression than the CMVie promoter/enhancer particularly at the transcription level. The data also highlight the utility of the TPL sequence at the translation level and/or possible overwhelming of the cellular translational machinery by the high transcription activity of the CMVie promoter/enhancer. In addition, here we present data that show stimulation of the CMVie promoter/enhancer by adenovirus infection, which may prove interesting in future work to test the combination of CMVie/TPL sequence, and additional adenovirus elements, for transgene expression.

  20. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70

    Bigalke Iris

    2007-04-01

    Full Text Available Abstract Background For optimal T cell activation it is desirable that dendritic cells (DCs display peptides within MHC molecules as signal 1, costimulatory molecules as signal 2 and, in addition, produce IL-12p70 as signal 3. IL-12p70 polarizes T cell responses towards CD4+ T helper 1 cells, which then support the development of CD8+ cytotoxic T lymphocytes. We therefore developed new maturation cocktails allowing DCs to produce biologically active IL-12p70 for large-scale cancer vaccine development. Methods After elutriation of leukapheresis products in a closed bag system, enriched monocytes were cultured with GM-CSF and IL-4 for six days to generate immature DCs that were then matured with cocktails, containing cytokines, interferon-gamma, prostaglandin E2, and a ligand for Toll-like receptor 8, with or without poly (I:C. Results Mature DCs expressed appropriate maturation markers and the lymph node homing chemokine receptor, CCR7. They retained full maturity after culture for two days without maturation cocktails and following cryopreservation. TLR ligand stimulation induced DCs capable of secreting IL-12p70 in primary cultures and after one day of coculture with CD40L-expressing fibroblasts, mimicking an encounter with T cells. DCs matured with our new cocktails containing TLR8 ligand, with or without poly (I:C, induced alloresponses and stimulated virus-specific T cells after peptide-pulsing. DCs matured in cocktails containing TLR8 ligand without poly (I:C could also be loaded with RNA as a source of antigen, whereas DCs matured in cocktails containing poly (I:C were unable to express proteins following RNA transfer by electroporation. Conclusion Our new maturation cocktails allowed easy DC harvesting, stable maturation and substantial recoveries of mature DCs after cryopreservation. Our procedure for generating DCs is easily adaptable for GMP-compliance and yields IL-12p70-secreting DCs suitable for development of cancer vaccines using

  1. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network.

    Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam; Scumpia, Philip O; Lu, Jing; Pang, Yan Ling Joy; Russell, Brandon S; Lim, Kok Seong; Shell, Scarlet; Prestwich, Erin; Su, Dan; Elashoff, David; Hershberg, Robert M; Bloom, Barry R; Belisle, John T; Fortune, Sarah; Dedon, Peter C; Pellegrini, Matteo; Modlin, Robert L

    2018-05-01

    Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70. Copyright © 2018 by The American Association of Immunologists, Inc.

  2. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  3. Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis.

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-03-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.

  4. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Xixing Zhao

    Full Text Available Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared.We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel.These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  5. Peripheral blood MDSCs, IL-10 and IL-12 in children with asthma and their importance in asthma development.

    Yan-Li Zhang

    Full Text Available OBJECTIVE: To investigate myeloid-derived suppressor cell (MDSC accumulation and interleukin 10 (IL-10 and interleukin 12 (IL-12 levels during the onset of asthma in both pediatric patients and mouse models, as well as their possible roles in the development of asthma. METHODS: Peripheral blood samples were gathered from children with asthma attacks (attack group and alleviated asthma (alleviated group, as well as two control groups, children with pneumonia and healthy children. The pathological characteristics of asthma in asthmatic mice, budesonide-treated asthmatic mice, and normal control mice were also evaluated by immunohistochemistry (IHC and hematoxylin and eosin (H&E staining. RESULTS: MDSC accumulation and serum IL-10 levels were significantly elevated in the children with asthma compared with the budesonide-treated alleviated group, normal healthy controls, and pneumonia controls (p0.05. The level of serum IL-12 in the asthmatic children was drastically reduced compared to the budesonide-treated alleviated group, healthy controls, and pneumonia controls (p<0.05, whereas the latter three groups showed no significant differences in their serum IL-12 levels. The percentage of MDSCs in children with asthma was positively correlated with the level of serum IL-10 and negatively correlated with the level of serum IL-12. The levels of MDSCs and IL-10 in asthmatic mice were significantly higher than those in the normal control mice (both p<0.05 and were reduced after budesonide treatment (both p<0.05. IL-12 expression in the asthmatic mice was significantly lower than the control and was increased upon budesonide treatment (both p<0.05. CONCLUSION: During the onset of asthma, the accumulation of MDSCs and the level of serum IL-10 increase, while the level of IL-12 decreases. These fluctuations may play an important role in the development of asthma.

  6. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  7. Enhancement of ceramide formation increases endocytosis of Lactobacillus acidophilus and leads to increased IFN-β and IL-12 production in dendritic cells

    Fuglsang, Eva; Boye, Louise; Frøkiær, Hanne

    2017-01-01

    , and induced macropinocytosis in the bmDCs. Addition of SMase increased the phagocytosis of L. acidophilus and L. acidophilus-induced IL-12/IFN-β but showed no effect on the uptake of E. coli nor on E.coli induced IL-12/IFN-β production. Also, SMase did not affect Pam3CSK4-induced macropinocytosis of FITC......-dextran. Inhibition of both acid SMase and ceramidase by CPZ increased constitutive macropinocytosis of dextran and slightly increased L.acidophilus induced Il12/Ifn-β expression and E.coli induced Ifnβ expression. Our results confirm a role for ceramide in the L.acidophilus induced IL-12/IFN-β production but also...

  8. Inherited IL-12Rβ1 Deficiency in a Child With BCG Adenitis and Oral Candidiasis: A Case Report.

    Hatipoglu, Nevin; Güvenç, B Haluk; Deswarte, Caroline; Koksalan, Kaya; Boisson-Dupuis, Stéphanie; Casanova, Jean-Laurent; Bustamante, Jacinta

    2017-11-01

    Tuberculosis is a major worldwide problem, and protection from it is achieved mainly by live attenuated bacille Calmette-Guérin vaccine, which is capable of causing disease in immunocompromised host. Oral thrush is abnormal in healthy children, which suggests an underlying immunodeficiency. Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by a selective predisposition to weakly virulent Mycobacteria and Salmonella and also predisposition to chronic mucocutaneous candidiasis. Interleukin 12 receptor β1 (IL-12Rβ1) deficiency is the most common disease of Mendelian susceptibility to mycobacterial disease, and to date only 50 IL-12Rβ1 deficient patients with clinical signs of chronic mucocutaneous candidiasis have been reported. We report a 2.5-year-old daughter of consanguineous parents with both regional bacille Calmette-Guérin lymphadenitis and recurrent oral candidiasis carrying biallelic R175W mutation in the IL12RB1 gene, resulting in complete loss of expression of IL-12Rβ1. To our knowledge, this is the first report of bacille Calmette-Guérin lymphadenitis with concurrent oral candidiasis displaying such a mutation. New mutations and wide clinical diversities are the indisputable fact of populations with a high rate of consanguineous marriages. Copyright © 2017 by the American Academy of Pediatrics.

  9. Fiber-chimeric adenoviruses expressing fibers from serotype 16 and 50 improve gene transfer to human pancreatic adenocarcinoma

    Kuhlmann, K.F.D.; Geer, M.A. van; Bakker, C.T.; Dekker, J.E.M.; Havenga, M.J.E.; Oude Elferink, R.P.J.; Gouma, D.J.; Bosma, P.J.; Wesseling, J.G.

    2009-01-01

    Survival of patients with pancreatic cancer is poor. Adenoviral (Ad) gene therapy employing the commonly used serotype 5 reveals limited transduction efficiency due to the low amount of coxsackie-adenovirus receptor on pancreatic cancer cells. To identify fiber-chimeric adenoviruses with improved

  10. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    Yang, Hyun Suk; Park, Seong-Wook; Lee, Heuiran; Kim, Sung Jin; Lee, Won Woo; Yang, You-Jung; Moon, Dae Hyuk

    2004-01-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by 99m TcO 4 - scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10 7 , 2 x 10 8 or 1 x 10 9 plaque forming units (pfu)] or β-galactosidase gene (Rad-CMV-LacZ 1 x 10 9 pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of 99m TcO 4 - (1.85 MBq). An additional two rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS underwent 99m TcO 4 - scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of 99m TcO 4 - and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by 99m TcO 4 - scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of 99m TcO 4 - was retained in the liver (p 9 pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS (p 9 pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that 99m TcO 4 - scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in skeletal muscle of rats, non-invasively and quantitatively. (orig.)

  11. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    Yang, Hyun Suk; Park, Seong-Wook [Department of Internal Medicine (Cardiology), Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, 138-736, Seoul (Korea); Lee, Heuiran; Kim, Sung Jin [Department of Microbiology, University of Ulsan College of Medicine, Seoul (Korea); Lee, Won Woo [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam (Korea); Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea); Yang, You-Jung; Moon, Dae Hyuk [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea)

    2004-09-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by {sup 99m}TcO{sub 4}{sup -} scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10{sup 7}, 2 x 10{sup 8} or 1 x 10{sup 9} plaque forming units (pfu)] or {beta}-galactosidase gene (Rad-CMV-LacZ 1 x 10{sup 9} pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of {sup 99m}TcO{sub 4}{sup -} (1.85 MBq). An additional two rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS underwent {sup 99m}TcO{sub 4}{sup -} scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of {sup 99m}TcO{sub 4}{sup -} and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by {sup 99m}TcO{sub 4}{sup -} scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of {sup 99m}TcO{sub 4}{sup -} was retained in the liver (p<0.001) and the right muscle (p<0.05), with the highest uptake in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS (p<0.05), with a positive correlation with the imaging counts (r=0.810, p<0.05) and the biodistribution (r=0.847, p<0.001). Hot spots in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that {sup 99m}TcO{sub 4}{sup -} scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in

  12. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparison of the protective efficacy between single and combination of recombinant adenoviruses expressing complete and truncated glycoprotein, and nucleoprotein of the pathogenic street rabies virus in mice.

    Kim, Ha-Hyun; Yang, Dong-Kun; Nah, Jin-Ju; Song, Jae-Young; Cho, In-Soo

    2017-06-24

    Rabies is an important viral zoonosis that causes acute encephalitis and death in mammals. To date, several recombinant vaccines have been developed based on G protein, which is considered to be the main antigen, and these vaccines are used for rabies control in many countries. Most recombinant viruses expressing RABV G protein retain the G gene from attenuated RABV. Not enough is currently known about the protective effect against RABV of a combination of recombinant adenoviruses expressing the G and N proteins of pathogenic street RABV. We constructed a recombinant adenovirus (Ad-0910Gsped) expressing the signal peptide and ectodomain (sped) of G protein of the Korean street strain, and evaluated the immunological protection conferred by a single and combination of three kinds of recombinant adenoviruses (Ad-0910Gsped and Ad-0910G with or without Ad-0910 N) in mice. A combination of Ad-0910G and Ad-0910 N conferred improved immunity against intracranial challenge compared to single administration of Ad-0910G. The Ad-0910G virus, expressing the complete G protein, was more immunogenic than Ad-0910Gsped, which expressed a truncated G protein with the transmembrane and cytoplasmic domains removed. Additionally, oral vaccination using a combination of viruses led to complete protection. Our results suggest that this combination of viruses is a viable new intramuscular and oral vaccine candidate.

  14. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors

    Catherine M. Crosby

    2017-02-01

    Full Text Available Most adenovirus (Ad vectors are E1 gene deleted replication defective (RD-Ad vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed “single cycle” Ad (SC-Ad vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In

  15. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  16. Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation.

    McMurphy, Travis B; Huang, Wei; Xiao, Run; Liu, Xianglan; Dhurandhar, Nikhil V; Cao, Lei

    2017-02-01

    Considering that impaired proximal insulin signaling is linked with diabetes, approaches that enhance glucose disposal independent of insulin signaling are attractive. In vitro data indicate that the E4ORF1 peptide derived from human adenovirus 36 (Ad36) interacts with cells from adipose tissue, skeletal muscle, and liver to enhance glucose disposal, independent of proximal insulin signaling. Adipocyte-specific expression of Ad36E4ORF1 improves hyperglycemia in mice. To determine the hepatic interaction of Ad36E4ORF1 in enhancing glycemic control, we expressed E4ORF1 of Ad36 or Ad5 or fluorescent tag alone by using recombinant adeno-associated viral vector in the liver of three mouse models. In db/db or diet-induced obesity (DIO) mice, hepatic expression of Ad36E4ORF1 but not Ad5E4ORF1 robustly improved glycemic control. In normoglycemic wild-type mice, hepatic expression of Ad36E4ORF1 lowered nonfasting blood glucose at a high dose of expression. Of note, Ad36E4ORF1 significantly reduced insulin levels in db/db and DIO mice. The improvement in glycemic control was observed without stimulation of the proximal insulin signaling pathway. Collectively, these data indicate that Ad36E4ORF1 is not a typical sensitizer, mimetic, or secretagogue of insulin. Instead, it may have insulin-sparing action, which seems to reduce the need for insulin and, hence, to reduce insulin levels. © 2017 by the American Diabetes Association.

  17. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

    Dhong Hyun Lee

    2017-05-01

    Full Text Available We have established two mouse models of central nervous system (CNS demyelination that differ from most other available models of multiple sclerosis (MS in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2 causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

  18. Protective MCMV immunity by vaccination of the salivary gland via Wharton's duct: replication-deficient recombinant adenovirus expressing individual MCMV genes elicits protection similar to that of MCMV.

    Liu, Guangliang; Zhang, Fangfang; Wang, Ruixue; London, Lucille; London, Steven D

    2014-04-01

    Salivary glands, a major component of the mucosal immune system, confer antigen-specific immunity to mucosally acquired pathogens. We investigated whether a physiological route of inoculation and a subunit vaccine approach elicited MCMV-specific and protective immunity. Mice were inoculated by retrograde perfusion of the submandibular salivary glands via Wharton's duct with tcMCMV or MCMV proteins focused to the salivary gland via replication-deficient adenovirus expressing individual MCMV genes (gB, gH, IE1; controls: saline and replication deficient adenovirus without MCMV inserts). Mice were evaluated for MCMV-specific antibodies, T-cell responses, germinal center formation, and protection against a lethal MCMV challenge. Retrograde perfusion with tcMCMV or adenovirus expressed MCMV proteins induced a 2- to 6-fold increase in systemic and mucosal MCMV-specific antibodies, a 3- to 6-fold increase in GC marker expression, and protection against a lethal systemic challenge, as evidenced by up to 80% increased survival, decreased splenic pathology, and decreased viral titers from 10(6) pfu to undetectable levels. Thus, a focused salivary gland immunization via a physiological route with a protein antigen induced systemic and mucosal protective immune responses. Therefore, salivary gland immunization can serve as an alternative mucosal route for administering vaccines, which is directly applicable for use in humans.

  19. IL-12 and IL-23 modulate plasticity of FoxP3+ regulatory T cells in human Leprosy.

    Tarique, Mohd; Saini, Chaman; Naqvi, Raza Ali; Khanna, Neena; Sharma, Alpana; Rao, D N

    2017-03-01

    Leprosy is a bacterial disease caused by M. leprae. Its clinical spectrum reflects the host's immune response to the M. leprae and provide an ideal model to investigate the host pathogen interaction and immunological dysregulation. Tregs are high in leprosy patients and responsible for immune suppression of the host by producing IL-10 and TGF-β cytokines. In leprosy, plasticity of Tregs remain unstudied. This is the first study describing the conversion of Tregs into Th1-like and Th17-like cells using in vitro cytokine therapy in leprosy patients. Peripheral blood mononuclear cells from leprosy patients were isolated and stimulated with M. leprae antigen (MLCwA), rIL-12 and rIL-23 for 48h. Expression of FoxP3 in CD4 + CD25 + Tregs, intracellular cytokines IFN-γ, TGF-β, IL-10 and IL-17 in Tregs cells were evaluated by flow cytometry (FACS) after stimulation. rIL-12 treatment increases the levels of pStat4 in Tregs and IFN-γ production. In the presence of rIL-23, pStat3 + and IL-17A + cells increase. rIL-12 and r-IL-23 treatment downregulated the FoxP3 expression, IL-10 and TGF-β production by Tregs and enhances the expression of co-stimulatory molecules (CD80, CD86). In conclusion rIL-12 converts Tregs into IFN-γ producing cells through STAT-4 signaling while rIL-23 converts Tregs into IL-17 producing cells through STAT-3 signaling in leprosy patients. This study may helpful to provide a new avenue to overcome the immunosuprression in leprosy patients using in vitro cytokine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cryopreservation of adenovirus-transfected dendritic cells (DCs) for clinical use.

    Gülen, D; Maas, S; Julius, H; Warkentin, P; Britton, H; Younos, I; Senesac, J; Pirruccello, Samuel M; Talmadge, J E

    2012-05-01

    In this study, we examined the effects of cryoprotectant, freezing and thawing, and adenovirus (Adv) transduction on the viability, transgene expression, phenotype, and function of human dendritic cells (DCs). DCs were differentiated from cultured peripheral blood (PB) monocytes following Elutra isolation using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 6 days and then transduced using an Adv vector with an IL-12 transgene. Fresh, cryopreserved, and thawed transduced immature DCs were examined for their: 1) cellular concentration and viability; 2) antigenicity using an allogeneic mixed lymphocyte reaction (MLR); 3) phenotype (HLA-DR and CD11c) and activation (CD83); and 4) transgene expression based on IL-12 secretion. Stability studies revealed that transduced DCs could be held in cryoprotectant for as long as 75 min at 2-8°C prior to freezing with little effect on their viability and cellularity. Further, cryopreservation, storage, and thawing reduced the viability of the transduced DCs by an average of 7.7%; and had no significant impact on DC phenotype and activation. In summary, cryopreservation, storage, and thawing had no significant effect on DC viability, function, and transgene expression by Adv-transduced DCs. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice

    Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Yun, Hwan-Jung; Kim, Samyong; Im, Dong-Soo

    2005-01-01

    Therapeutic gene transfer affords a clinically feasible and safe approach to cancer treatment but a more effective modality is needed to improve clinical outcomes. Combined transfer of therapeutic genes with different modes of actions may be a means to this end. Interleukin-12 (IL-12), a heterodimeric immunoregulatory cytokine composed of covalently linked p35 and p40 subunits, has antitumor activity in animal models. The enzyme/prodrug strategy using cytosine deaminase (CD) and 5-fluorocytosine (5-FC) has been used for cancer gene therapy. We have evaluated the antitumor effect of combining IL-12 with CD gene transfer in mice bearing renal cell carcinoma (Renca) tumors. Adenoviral vectors were constructed encoding one or both subunits of murine IL-12 (Ad.p35, Ad.p40 and Ad.IL-12) or cytosine deaminase (Ad.CD). The functionality of the IL-12 or CD gene products expressed from these vectors was validated by splenic interferon (IFN)-γ production or viability assays in cultured cells. Ad.p35 plus Ad.p40, or Ad.IL-12, with or without Ad.CD, were administered (single-dose) intratumorally to Renca tumor-bearing mice. The animals injected with Ad.CD also received 5-FC intraperitoneally. The antitumor effects were then evaluated by measuring tumor regression, mean animal survival time, splenic natural killer (NK) cell activity and IFN-γ production. The inhibition of tumor growth in mice treated with Ad.p35 plus Ad.p40 and Ad.CD, followed by injection of 5-FC, was significantly greater than that in mice treated with Ad.CD/5-FC, a mixture of Ad.p35 plus Ad.p40, or Ad.GFP (control). The combined gene transfer increased splenic NK cell activity and IFN-γ production by splenocytes. Ad.CD/5-FC treatment significantly increased the antitumor effect of Ad.IL-12 in terms of tumor growth inhibition and mean animal survival time. The results suggest that adenovirus-mediated IL-12 gene transfer combined with Ad.CD followed by 5-FC treatment may be useful for treating cancers

  2. Counterbalancing of TH2-driven allergic airway inflammation by IL-12 does not require IL-10.

    Tournoy, K G; Kips, J C; Pauwels, R A

    2001-03-01

    Asthma is characterized by allergen-induced airway inflammation orchestrated by TH2 cells. The TH1-promoting cytokine IL-12 is capable of inhibiting the TH2-driven allergen-induced airway changes in mice and is therefore regarded as an interesting strategy for treating asthma. The antiallergic effects of IL-12 are only partially dependent of IFN-gamma. Because IL-12 is a potent inducer of the anti-inflammatory cytokine IL-10, the aim of the present study was to investigate in vivo whether the antiallergic effects of IL-12 are mediated through IL-10. C57BL/6J-IL-10 knock-out (IL-10(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and subsequently exposed from day 14 to day 21 to aerosolized OVA (1%). IL-12 was administered intraperitoneally during sensitization, subsequent OVA exposure, or both. IL-12 inhibited the OVA-induced airway eosinophilia, despite the absence of IL-10. Moreover, a shift from a TH2 inflammatory pattern toward a TH1 reaction was observed, with concomitant pronounced mononuclear peribronchial inflammation after IL-12 treatment. Allergen-specific IgE synthesis was completely suppressed only when IL-12 was administered along with the allergen sensitization. Furthermore, treating the animals with IL-12 at the time of the secondary allergen challenge resulted not only in a significant suppression of the airway responsiveness but also in an important IFN-gamma-associated toxicity. These results indicate that IL-12 is able to inhibit allergen-induced airway changes, even in the absence of IL-10. In addition, our results raise concerns regarding the redirection of TH2 inflammation by TH1-inducing therapies because treatment with IL-12 resulted not only in a disappearance of the TH2 inflammation but also in a TH1-driven inflammatory pulmonary pathology.

  3. IL-12 and IL-18 induction and subsequent NKT activation effects of the Japanese botanical medicine Juzentaihoto.

    Fujiki, Kazuhiko; Nakamura, Masanori; Matsuda, Takako; Isogai, Mariko; Ikeda, Minako; Yamamoto, Yutaka; Kitamura, Mari; Sazaki, Naoko; Yakushiji, Fumiatsu; Suzuki, Shinji; Tomiyama, Junji; Uchida, Takashi; Taniguchi, Ken

    2008-06-01

    In this study, we first measured some cytokine concentrations in the serum of patients treated with Juzentaihoto (JTT). Of the cytokines measured interleukin (IL) -18 was the most prominently up-regulated cytokine in the serum of patients under long term JTT administration. We next evaluated the effects of JTT in mice, focusing especially on natural killer T (NKT) cell induction. Mice fed JTT were compared to control group ones. After sacrifice, the liver was fixed, embedded and stained. Transmission electron microscope (TEM) observations were performed. Although the mice receiving the herbal medicine had same appearance, their livers were infiltrated with massive mononuclear cells, some of which were aggregated to form clusters. Immunohistochemical staining revealed that there was abundant cytokine expression of IL-12 and IL-18 in the liver of JTT treated mice. To clarify what the key molecules that induce immunological restoration with JTT might be, we next examined in vitro lymphocyte cultures. Mononuclear cells isolated and prepared from healthy volunteers were cultured with and without JTT. Within 24 hours, JTT induced the IL-12 and IL-18 production and later (72 hours) induction of interferon (IFN)-gamma. Oral administration of JTT may induce the expression of IL-12 in the early stage, and IL-18 in the chronic stage, followed by NKT induction. Their activation, following immunological restoration could contribute to anti-tumor effects.

  4. IL-12 and IL-18 Induction and Subsequent NKT Activation Effects of the Japanese Botanical Medicine Juzentaihoto

    Ken Taniguchi

    2008-07-01

    Full Text Available In this study, we first measured some cytokine concentrations in the serum of patients treated with Juzentaihoto (JTT. Of the cytokines measured interleukin (IL -18 was the most prominently up-regulated cytokine in the serum of patients under long term JTT administration. We next evaluated the effects of JTT in mice, focusing especially on natural killer T (NKT cell induction. Mice fed JTT were compared to control group ones. After sacrifice, the liver was fixed, embedded and stained. Transmission electron microscope (TEM observations were performed. Although the mice receiving the herbal medicine had same appearance, their livers were infiltrated with massive mononuclear cells, some of which were aggregated to form clusters. Immunohistochemical staining revealed that there was abundant cytokine expression of IL-12 and IL-18 in the liver of JTT treated mice. To clarify what the key molecules that induce immunological restoration with JTT might be, we next examined in vitro lymphocyte cultures. Mononuclear cells isolated and prepared from healthy volunteers were cultured with and without JTT. Within 24 hours, JTT induced the IL-12 and IL-18 production and later (72 hours induction of interferon (IFN-gamma. Oral administration of JTT may induce the expression of IL-12 in the early stage, and IL-18 in the chronic stage, followed by NKT induction. Their activation, following immunological restoration could contribute to anti-tumor effects.

  5. Recombinant canine adenovirus type-2 expressing TgROP16 provides partial protection against acute Toxoplasma gondii infection in mice.

    Li, Xiu-Zhen; Lv, Lin; Zhang, Xu; Anchang, Kenneth Yongabi; Abdullahi, Auwalu Yusuf; Tu, Liqing; Wang, Xiaohu; Xia, Lijun; Zhang, Xiu-Xiang; Feng, Weili; Lu, Chunxia; Li, Shoujun; Yuan, Zi-Guo

    2016-11-01

    We previously demonstrated that the survival time of BALB/c mice challenged with Toxoplasma gondii RH strain was prolonged by immunising the mice with a eukaryotic vector expressing the protein ROP16 of T. gondii. Building upon previous findings, we are exploring improved vaccination strategies to enhance protection. In this work, a novel recombinant canine adenovirus type 2 expressing ROP16 (CAV-2-ROP16) of T. gondii was constructed and identified to express ROP16 in Madin-Darby canine kidney cells (MDCK) cells by western blot (WB) and indirect immunofluorescence (IFA) assays. Intramuscular immunisation of BALB/c mice with CAV-2-ROP16 was performed to evaluate the humoral and cellular immune responses. This vaccination triggered significant humoral and cellular responses, including ROP16-stimulated lymphoproliferation (P0.05), revealing that a predominant Th1-type response had developed. The cell-mediated cytotoxic activity with high levels of IFN-γ and TNF-α was significantly increased in both CD4 + and CD8 + T-cell compartments in the mice immunised with CAV-2-ROP16 (Pdays post infection compared with control mice that all died within seven days (Pvaccination until now. Our work presents the successful use of recombinant virus CAV-2-ROP16 in vaccination protocols to protect against intraperitoneal challenge with the virulent RH strain of T. gondii. This system was shown to be extremely efficient in eliciting humoral and cellular immune responses that led to a significant improvement in survival time in mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes.

    Iizuka, Shunsuke; Sakurai, Fuminori; Tachibana, Masashi; Ohashi, Kazuo; Mizuguchi, Hiroyuki

    2017-09-15

    Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.

  7. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    Parney, I.F.; Farr-Jones, M.A.; Kane, K.; Chang, L.-J.; Petruk, K.C.

    2002-01-01

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 ( 51 Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  8. Activation of liver X receptor suppresses the production of the IL-12 family of cytokines by blocking nuclear translocation of NF-κBp50.

    Canavan, Mary; McCarthy, Ciara; Larbi, Nadia Ben; Dowling, Jennifer K; Collins, Laura; O'Sullivan, Finbarr; Hurley, Grainne; Murphy, Carola; Quinlan, Aoife; Moloney, Gerry; Darby, Trevor; MacSharry, John; Kagechika, Hiroyuki; Moynagh, Paul; Melgar, Silvia; Loscher, Christine E

    2014-10-01

    There is now convincing evidence that liver X receptor (LXR) is an important modulator of the inflammatory response; however, its mechanism of action remains unclear. This study aimed to examine the effect of LXR on the IL-12 family of cytokines and examined the mechanism by which LXR exerted this effect. We first demonstrated that activation of murine-derived dendritic cells (DC) with a specific agonist to LXR enhanced expression of LXR following activation with LPS, suggesting a role in inflammation. Furthermore, we showed LXR expression to be increased in vivo in dextrane sulphate sodium-induced colitis. LXR activation also suppressed production of IL-12p40, IL-12p70, IL-27 and IL-23 in murine-derived DC following stimulation with LPS, and specifically targeted the p35, p40 and EBI3 subunits of the IL-12 cytokine family, which are under the control of the NF-κB subunit p50 (NF-κBp50). Finally, we demonstrated that LXR can associate with NF-κBp50 in DC and that LXR activation prevents translocation of the p50 subunit into the nucleus. In summary, our study indicates that LXR can specifically suppress the IL-12 family of cytokines though its association with NF-κBp50 and highlights its potential as a therapeutic target for chronic inflammatory diseases. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  10. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Jeff Alexander

    Full Text Available Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4 vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn. Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  11. Characterization of a transcriptional promoter of human papillomavirus 18 and modulation of its expression by simian virus 40 and adenovirus early antigens

    Thierry, F.; Heard, J.M.; Dartmann, K.; Yaniv, M.

    1987-01-01

    RNA present in cells derived from cervical carcinoma that contained human papillomavirus 18 genomes was initiated in the 1.053-kilobase BamHI fragment that covered the complete noncoding region of this virus. When cloned upstream of the chloramphenicol acetyltransferase gene, this viral fragment directed the expression of the bacterial enzyme only in the sense orientation. Initiation sites were mapped around the ATG of open reading frame E6. This promoter was active in some human and simian cell lines, and its expression was modulated positively by simian virus 40 large T antigen and negatively by adenovirus type 5 E1a antigen

  12. Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression

    Yang, Shan; Kawamura, Kiyoko; Okamoto, Shinya; Yamauchi, Suguru; Shingyoji, Masato; Sekine, Ikuo; Kobayashi, Hiroshi; Tada, Yuji; Tatsumi, Koichiro; Hiroshima, Kenzo; Shimada, Hideaki; Tagawa, Masatoshi

    2015-01-01

    Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized

  13. Radiosensitization of head/neck squamous cell carcinoma by adenovirus-mediated expression of dominant negative constructs of the Nbs1 protein

    Carney, J.P.; Rhee, J.G.; Li, D.; Chen, T.; Suntharalingam, M.; O'Malley, B.W.

    2001-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. In order to test this hypothesis we have devised recombinant adenoviruses expressing various portions of the Nbs1 protein and assessed the ability of these viruses to increase the radiation sensitivity of HNSCC cells. Materials and Methods: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1(Nbs1-300, aa453 to aa754) into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line 011. These cells were evaluated for expression of the viral based constructs and assayed for growth rate and clonogenic survival following radiation exposure. Results: A constitutively expressed GFP gene in the viral backbone confirmed efficient uptake of the virus into the 011 cell line and Western blot confirmed the presence of the virally expressed Nbs1 and Nbs1-300. Following exposure to ionizing radiation cells infected with the Nbs1-300 virus showed a significant reduction in growth rate relative to cells infected with control virus. Surprisingly, this effect was even stronger with the full-length wild-type Nbs1 protein. Examination of clonogenic survival also demonstrated statistically significant sensitization, however the effects of the two constructs were distinct as Nbs1-300 expression resulted in reduction of the shoulder while expression of the full-length Nbs1 showed a change in the slope of the survival curve

  14. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  15. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models.

    Xu, Chunxiao; Zhang, Yanping; Rolfe, P Alexander; Hernández, Vivian M; Guzman, Wilson; Kradjian, Giorgio; Marelli, Bo; Qin, Guozhong; Qi, Jin; Wang, Hong; Yu, Huakui; Tighe, Robert; Lo, Kin-Ming; English, Jessie M; Radvanyi, Laszlo; Lan, Yan

    2017-10-01

    Purpose: To determine whether combination therapy with NHS-muIL12 and the anti-programmed death ligand 1 (PD-L1) antibody avelumab can enhance antitumor efficacy in preclinical models relative to monotherapies. Experimental Design: BALB/c mice bearing orthotopic EMT-6 mammary tumors and μMt - mice bearing subcutaneous MC38 tumors were treated with NHS-muIL12, avelumab, or combination therapy; tumor growth and survival were assessed. Tumor recurrence following remission and rechallenge was evaluated in EMT-6 tumor-bearing mice. Immune cell populations within spleen and tumors were evaluated by FACS and IHC. Immune gene expression in tumor tissue was profiled by NanoString® assay and plasma cytokine levels were determined by multiplex cytokine assay. The frequency of tumor antigen-reactive IFNγ-producing CD8 + T cells was evaluated by ELISpot assay. Results: NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to either monotherapy in both tumor models. Most EMT-6 tumor-bearing mice treated with combination therapy had complete tumor regression. Combination therapy also induced the generation of tumor-specific immune memory, as demonstrated by protection against tumor rechallenge and induction of effector and memory T cells. Combination therapy enhanced cytotoxic NK and CD8 + T-cell proliferation and T-bet expression, whereas NHS-muIL12 monotherapy induced CD8 + T-cell infiltration into the tumor. Combination therapy also enhanced plasma cytokine levels and stimulated expression of a greater number of innate and adaptive immune genes compared with either monotherapy. Conclusions: These data indicate that combination therapy with NHS-muIL12 and avelumab increased antitumor efficacy in preclinical models, and suggest that combining NHS-IL12 and avelumab may be a promising approach to treating patients with solid tumors. Clin Cancer Res; 23(19); 5869-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Characterization and partial purification of Candida albicans Secretory IL-12 Inhibitory Factor

    Chandra Jyotsna

    2008-02-01

    Full Text Available Abstract Background We have previously shown that supernatant from Candida albicans (CA culture contains a Secretory Interleukin (IL-12 Inhibitory Factor (CA-SIIF, which inhibits IL-12 production by human monocytes. However, the effect of CA-SIIF on secretion of other cytokines by monocytes is unknown, and detailed characterization of this factor has not been performed. Results In this study, we demonstrate that the IL-12 inhibitory activity of CA-SIIF was serum-independent, based on the reduction of IL-12 levels in monocytes stimulated under serum-independent conditions. The minimal inhibitory dose of CA-SIIF was found to be 200 μg/ml. Investigation of CA-SIIF's effect on macrophages IL-12 production in vitro and in vivo also showed that CA-SIIF inhibited IL-12 production by murine macrophages both in vitro (from 571 ± 24 pg/ml to 387 ± 87 pg/ml; P = 0.05 and in vivo (from 262 ± 6 pg/ml to 144 ± 30 pg/ml; P P P P Conclusion CA-SIIF is a glycoprotein which exhibits serum-independent inhibition of IL-12 production from monocytes in vitro and in vivo, and also modulates differentiation of monocytes into dendritic cells. These results suggest important role for CA-SIIF in interactions of C. albicans with the host immune system.

  17. Development of a replication defective adenovirus 5 vector expressing porcine interleukin-18 and a mutated analog

    Cell-mediated immune responses against swine pathogens are sometimes necessary to elicit durable protective immunity. Cell mediated or Th1 immunity is dependent on the coordinated expression of several cytokines, including interferon-gamma to assist in the production of antigen-specific cytotoxic T...

  18. THE CLINICAL PRESENTATION OF AUTOIMMUNE THYROID DISEASE IN MEN IS ASSOCIATED WITH IL12B GENOTYPE

    Walsh, John P; Berry, Jemma; Liu, Shu

    2011-01-01

    hypothesized that IL12B genotype may influence the clinical presentation of autoimmune thyroid disease. Objective.  We tested for differences in IL12B genotype between Graves' disease and Hashimoto's disease. Patients.  We studied a discovery cohort of 203 Australian women and 37 men with autoimmune thyroid......' disease (P=0.005) and Hashimoto's disease (P=0.029). Conclusion.  In men with autoimmune thyroid disease, a common variant located upstream of the IL12B coding region may influence whether patients present with Graves' disease or Hashimoto's disease....

  19. Expression of UV-irradiated adenovirus in normal and UV-sensitive Chinese hamster ovary cells

    Rainbow, A.J.

    1985-01-01

    The chinese hamster ovary (CHO) cell mutants UV-20, UV-24, and UV-41 are abnormally sensitive to UV and harbour various defects lin their ability to repair cellular DNA. This study has examined the expression of UV-irradiated AD2 in these cells. HCR of UV-irradiated Ad2, as measured by viral structural antigen (Vag) formation or progeny production, was found to be similar for the normal and the UV-sensitive CHO strains. UV-irradiation of Ad2 (1200 J/m/sup 2/) resulted in a delay of Vag expression of 18 hours in normal human fibroblasts, which is thought to reflect the time required for removal of UV-induced lesions from the DNA before viral DNA synthesis can proceed. However, a similar UV-irradiation of Ad2 did not result in a delay of Vag expression for infection of CHO cells, suggesting that UV-induced lesions in Ad2 DNA do not inhibit its replication in CHO cells. These results indicate a fundamental difference in the processing of UV-irradiated AD2-DNA in CHO as compared to human cells

  20. LIGHT Is critical for IL-12 production by dendritic cells, optimal CD4+ Th1 cell response, and resistance to Leishmania major.

    Xu, Guilian; Liu, Dong; Okwor, Ifeoma; Wang, Yang; Korner, Heinrich; Kung, Sam K P; Fu, Yang-Xin; Uzonna, Jude E

    2007-11-15

    Although studies indicate LIGHT (lymphotoxin (LT)-like, exhibits inducible expression and competes with HSV glycoprotein D for herpes virus entry mediator (HVEM), a receptor expressed by T lymphocytes) enhances inflammation and T cell-mediated immunity, the mechanisms involved in this process remain obscure. In this study, we assessed the role of LIGHT in IL-12 production and development of CD4(+) Th cells type one (Th1) in vivo. Bone marrow-derived dendritic cells from LIGHT(-/-) mice were severely impaired in IL-12p40 production following IFN-gamma and LPS stimulation in vitro. Furthermore, blockade of LIGHT in vitro and in vivo with HVEM-Ig and LT beta receptor (LTbetaR)-Ig leads to impaired IL-12 production and defective polyclonal and Ag-specific IFN-gamma production in vivo. In an infection model, injection of HVEM-Ig or LTbetaR-Ig into the usually resistant C57BL/6 mice results in defective IL-12 and IFN-gamma production and severe susceptibility to Leishmania major that was reversed by rIL-12 treatment. This striking susceptibility to L. major in mice injected with HVEM-Ig or LTbetaR-Ig was also reproduced in LIGHT(-/-) --> RAG1(-/-) chimeric mice. In contrast, L. major-infected LTbeta(-/-) mice do not develop acute disease, suggesting that the effect of LTbetaR-Ig is not due to blockade of membrane LT (LTalpha1beta2) signaling. Collectively, our data show that LIGHT plays a critical role for optimal IL-12 production by DC and the development of IFN-gamma-producing CD4(+) Th1 cells and its blockade results in severe susceptibility to Leishmania major.

  1. Analysis of IL12B gene variants in inflammatory bowel disease.

    Jürgen Glas

    Full Text Available BACKGROUND: IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD. However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed IL12B gene variants regarding association with Crohn's disease (CD and ulcerative colitis (UC. Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695. Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01-1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99-1.31], p = 0.066 and UC (OR 1.18 [0.97-1.43], p = 0.092. CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10(-5; OR = 2.84, 95% CI 1.66-4.84, while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14-0.92. In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694 in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05 but there was no epistasis between IL23R and IL12B variants. CONCLUSIONS/SIGNIFICANCE: The IL12B SNP rs6887695

  2. Analysis of IL12B Gene Variants in Inflammatory Bowel Disease

    Wagner, Johanna; Olszak, Torsten; Fries, Christoph; Tillack, Cornelia; Friedrich, Matthias; Beigel, Florian; Stallhofer, Johannes; Steib, Christian; Wetzke, Martin; Göke, Burkhard; Ochsenkühn, Thomas; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2012-01-01

    Background IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD). However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. Methodology/Principal Findings We analyzed IL12B gene variants regarding association with Crohn's disease (CD) and ulcerative colitis (UC). Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695). Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01–1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99–1.31], p = 0.066) and UC (OR 1.18 [0.97–1.43], p = 0.092). CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10−5; OR = 2.84, 95% CI 1.66–4.84), while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14–0.92). In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694) in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05) but there was no epistasis between IL23R and IL12B variants. Conclusions/Significance The IL12B SNP rs6887695 modulates

  3. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.

    Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming

    2017-03-01

    Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Adenovirus-mediated IL-24 expression enhances the chemosensitivity of multidrug-resistantgastric cancer cells to cisplatin.

    Mao, Zonglei; Bian, Guochun; Sheng, Weihua; He, Songbin; Yang, Jicheng; Dong, Xiaoqiang

    2013-11-01

    Chemotherapy is one of the commonly used strategies in gastric cancer, especially for unresectable patients, but it becomes insensitive to repeated administration of even the most effective chemotherapeutic agents, such as cisplatin. Given this, there is an urgent need for developing chemosensitizers to overcome acquired resistance to chemotherapeutic agents. Interleukin-24 (IL-24), a cytokine-tumor suppressor, shows broad-spectrum and tumor-specific antitumor properties, and studies have demonstrated that IL-24 could conspicuously restore the chemosensitivity of MDR cancer cells. Herein, we developed a human MDR gastric cancer cell subline, SGC7901/CDDP, by repeated selection of resistant clones of parental sensitive cells, and further investigated the chemosensitizing effects and the underlying mechanisms of adenovirus-mediated IL-24 (Ad-IL-24) gene therapy plus CDDP for the human MDR gastric cancer cells SGC7901/CDDP in vitro and in vivo. The results demonstrated that the expression of IL-24 mRNA and protein was profoundly downregulated in SGC7901/CDDP cells by RT-PCR and western blot analysis. In addition, the cell viability assay showed that the IC50 of SGC7901/CDDP cells to CDDP, 5-FU, ADM and MTX was significantly enhanced compared to parental sensitive SGC7901 cells. Ad-IL-24-induced IL-24 overexpression decreased the IC50 of the above agents (not MTX), induced G2/M cell cycle arrest, and Ad-IL-24 plus CDDP elicited significant apoptosis and tumor suppression of SGC7901/CDDP cells in vitro and SGC7901/CDDP cell xenograft tumors in vivo, respectively. Moreover, our results demonstrated that the mechanisms of Ad-IL-24-elicited chemosensitizing effects were closely associated with a substantial upregulation of Bax and downregulation of P-gp and Bcl-2 in SGC7901/CDDP cells in vitro and SGC7901/CDDP xenograft tissues in vivo. Thus, this study indicates that overexpression of IL-24 gene can significantly promote chemosensitivity in MDR phenotype SGC7901

  5. Hematopoiesis Stimulating Role of IL-12 Enabling Bone Marrow Transplantation in Irradiated Rats

    Ashry, O.M.; Abd el Sammad, H.; El Shahat, M.; Abou el Khier, I.

    2012-01-01

    Severe myelosuppression is a common side effect of radiotherapy or chemotherapy. As a mean to stimulate the full-lineage blood cell recovery from severe myelosuppression, sublethally irradiated animals were used to evaluate immunological effect of interleukin IL-12 in bone marrow transplanted animals. Isologous bone marrow (BM), from the same inbred strain, were given to male rats, 1 hour post whole body gamma irradiation at a single dose level of 5 Gy and subcutaneous injection of 100 ng/ml IL-12. Irradiation induced a significant drop in haematological values, blood glutathione(GSH) as well as bone marrow viability associated with a significant elevation of serum malondialdehyde (MDA). Related to immunological data, tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) also recorded a significant depression. Irradiated animals receiving BM and IL-12 showed significantly elevated body and spleen weights, erythrocytes count (RBCs), hemoglobin content (Hb) and hemotocrit value (Hct %) besides, white blood cells (WBCs)and its differential count, as well as GSH, while MDA was significantly depressed as compared to the irradiated group. Bone marrow viability was significantly increased while IL-6 and TNF-α were normalized. The curative action of IL-12 enforcing significant innate response could trigger and augment adaptive immune response by bone marrow transplantation, hence improving oxidative stress. IL-12 administration is proposed as a complementary strategy to treat radiation-induced path-physiology and trapping free radicals accumulations after irradiation.

  6. Exoenzyme T Plays a Pivotal Role in the IFN-γ Production after Pseudomonas Challenge in IL-12 Primed Natural Killer Cells

    Mickael Vourc’h

    2017-10-01

    Full Text Available Pseudomonas aeruginosa (PA expresses the type III secretion system (T3SS and effector exoenzymes that interfere with intracellular pathways. Natural killer (NK cells play a key role in antibacterial immunity and their activation is highly dependent on IL-12 produced by myeloid cells. We studied PA and NK cell interactions and the role of IL-12 using human peripheral blood mononuclear cells, sorted human NK cells, and a human NK cell line (NK92. We used a wild-type (WT strain of PA (PAO1 or isogenic PA-deleted strains to delineate the role of T3SS and exoenzymes. Our hypotheses were tested in vivo in a PA-pneumonia mouse model. Human NK cells or NK92 cell line produced low levels of IFN-γ in response to PA without IL-12 stimulation, whereas PA significantly increased IFN-γ after IL-12 priming. The modulation of IFN-γ production by PA required bacteria-to-cell contact. Among T3SS effectors, exoenzyme T (ExoT upregulates IFN-γ production and control ERK activation. In vivo, ExoT also increases IFN-γ levels and the percentage of IFN-γ+ NK cells in lungs during PA pneumonia, confirming in vitro data. In conclusion, our results suggest that T3SS could modulate the production of IFN-γ by NK cells after PA infection through ERK activation.

  7. Complete protection of cats against feline panleukopenia virus challenge by a recombinant canine adenovirus type 2 expressing VP2 from FPV.

    Yang, Songtao; Xia, Xianzhu; Qiao, Jun; Liu, Quan; Chang, Shuang; Xie, Zhijing; Ju, Huiyan; Zou, Xiaohuan; Gao, Yuwei

    2008-03-10

    Feline panleukopenia virus (FPV) is an important infectious pathogen of all members of the family Felidae. Here, we describe construction of a replication-competent recombinant canine adenovirus type 2 (CAV-2) expressing the VP2 protein of FPV (CAV-2-VP2) by transfection of MDCK cells with recombinant CAV-2 genome carrying a VP2 expression cassette. Ten 3-month-old cats were vaccinated with the recombinant virus with two boosters at 15-day intervals. All cats developed neutralizing antibodies of titers 1:16-1:32 by day 15 post-primary vaccination, increasing to 1:64-1:128 by day 45. Examination for clinical signs and viral presence, and total white blood cell counts in peripheral blood following FPV challenge, showed that all were completely protected. This recombinant virus appears to provide an effective alternative to attenuated and inactivated vaccines in immunizing cats against feline panleukopenia.

  8. Core labeling of adenovirus with EGFP

    Le, Long P.; Le, Helen N.; Nelson, Amy R.; Matthews, David A.; Yamamoto, Masato; Curiel, David T.

    2006-01-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology

  9. Adenovirus or HA-2 fusogenic peptide-assisted lipofection increases cytoplasmic levels of plasmid in nondividing endothelium with little enhancement of transgene expression.

    Subramanian, Ajit; Ma, Haiching; Dahl, Kris N; Zhu, Jingya; Diamond, Scott L

    2002-01-01

    Adenovirus-assisted lipofection has been reported to increase transfection efficiency through mechanisms potentially involving endosome escape and/or nuclear targeting activity. Similarly, transfection with the viral fusogenic peptide HA-2 of the influenza virus hemagglutinin can increase transfection efficiency. However, there are few studies examining the mechanism and intracellular trafficking of these viral and/or viral fusogenic peptide-assisted lipofections. Endosome escape was directly assayed with T7 RNA polymerase bound to plasmid (pTM beta gal) expressing beta-galactosidase under a T7 promoter to detect transcribable plasmid that escapes the endosomal compartment. Lipofection of pTM beta gal with replication-deficient adenovirus (Ad5-null) at a multiplicity of infection (MOI) of 100 and 1000 increased cytoplasmic levels of transcribable plasmid by 24- and 117-fold, respectively, over lipofection alone, without an effect on total plasmid uptake. However, lipofection of pCMV beta gal with Ad5-null at a MOI of 100 and 1000 increased transgene expression only seven- and eight-fold, respectively, over lipofection alone. Thus, a 24-fold increase in endosome escape saturated expression from pCMV beta gal and provided only a seven-fold benefit in nondividing cells, which was not significantly increased with further increases in endosome escape. A cationic form of HA-2 (HA-K(4)) also caused significant enhancements in endosome escape, as detected with the cytoplasmic transcription assay. However, HA-K(4) enhancement of endosome escape did not correlate with transgene expression from pCMV beta gal, consistent with the detection of HA-K(4)-mediated partitioning of plasmid to the insoluble fraction of the cell lysate. These results indicate that enhancement of endosome escape in nondividing cells does not fully alleviate rate limits related to nuclear import of the plasmid. Copyright 2001 John Wiley & Sons, Ltd.

  10. Role of IL-12 and IFN-γ in immune response to toxoplasma gondii infection

    Moawad, M.A.F.; ElGawish, M.A.M.

    2004-01-01

    Interlenkin 12 (IL-12) is a potent immunoregulatory molecule that is critically involved in a wide range of diseases. In several murine models of intracellular infection, endogenous IL-12 has been shown to be crucial for the generation of a protective Th1 response in a primary infection for a intracellular pathogens. Interferon-gamma (IFN-γ) is also an important mediator of cellular immunity against microbial pathogens and tumor cells due to its potent capacity to activate macrophages for enhanced cytotoxicity. The aim of the present study is to evaluate the immune response to toxoplasma gondii after primary inflection (infected groups and secondary infection (re-infected groups for over 19 weeks (the time of the experiment). the evaluation was assessed by measurements of levels of IL-12 and IFN-γ using ELISA technique in the sera of these infected rats. The results demonstrated that the primary immune response induced a fluctuation in the levels of IL-12 in the sera of infected rats, which reached maximum value of 122.6 ±1.4 pg/ml after 15 weeks of primary infection. While, in the challenged groups (secondary immune response, re-infected groups) the levels of IL-12 were generally lower than that of the primary immune response. On the other hand, IFN-γ levels increased significantly in the secondary immune response (re-infected groups) as compared to primary immune response 9 infected groups) In conclusion, the results suggest that IL-12 might have a role in the defense mechanism against intracellular infection with T-gondii especially in primary immune response than in the secondary immune response. This is in contrast to IFN-γ that takes the up-hand in secondary immune response to T-gondii infection

  11. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy

    2013-01-01

    to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance...... is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription...

  12. IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci

    Sørensen, Per Soelberg

    2010-01-01

    and the same direction of effect observed in the discovery phase. Three loci exceeded genome-wide significance in the joint analysis: RGS1 (P value=3.55 x 10(-9)), IL12A (P=3.08 x 10(-8)) and MPHOSPH9/CDK2AP1 (P=3.96 x 10(-8)). The RGS1 risk allele is shared with celiac disease (CD), and the IL12A risk allele......A recent meta-analysis identified seven single-nucleotide polymorphisms (SNPs) with suggestive evidence of association with multiple sclerosis (MS). We report an analysis of these polymorphisms in a replication study that includes 8,085 cases and 7,777 controls. A meta-analysis across...... the replication collections and a joint analysis with the discovery data set were performed. The possible functional consequences of the validated susceptibility loci were explored using RNA expression data. For all of the tested SNPs, the effect observed in the replication phase involved the same allele...

  13. Influence of TYK2 in systemic sclerosis susceptibility : a new locus in the IL-12 pathway

    López-Isac, Elena; Campillo-Davo, Diana; Bossini-Castillo, Lara; Guerra, Sandra G; Assassi, Shervin; Simeón, Carmen Pilar; Carreira, Patricia; Ortego-Centeno, Norberto; García de la Peña, Paloma; Beretta, Lorenzo; Santaniello, Alessandro; Bellocchi, Chiara; Lunardi, Claudio; Moroncini, Gianluca; Gabrielli, Armando; Riemekasten, Gabriela; Witte, Torsten; Hunzelmann, Nicolas; Kreuter, Alexander; Distler, Jörg Hw; Voskuyl, Alexandre E; de Vries-Bouwstra, Jeska; Herrick, Ariane; Worthington, Jane; Denton, Christopher P; Fonseca, Carmen; Radstake, Timothy Rdj; Mayes, Maureen D; Martín, Javier

    OBJECTIVES: TYK2 is a common genetic risk factor for several autoimmune diseases. This gene encodes a protein kinase involved in interleukin 12 (IL-12) pathway, which is a well-known player in the pathogenesis of systemic sclerosis (SSc). Therefore, we aimed to assess the possible role of this locus

  14. Prevalence, distribution and functional significance of the -237C to T polymorphism in the IL-12Rβ2 promoter in Indian tuberculosis patients.

    Vikas Kumar Verma

    Full Text Available Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence, the -237 polymorphic site in the 5' promoter region of the IL-12Rβ2 (SNP ID: rs11810249 gene associated with the AP-4 transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46 pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele predominated among patients, (93.4%, 43/46, and in all volunteers and contacts screened, but the T allele was exclusively limited to patients, (6.5%, 3/46. The functional impact of this polymorphism on transcriptional activity was assessed by Luciferase-reporter and electrophoretic mobility shift assays (EMSA. Luciferase-reporter assays showed a significant reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele construct (pGIL-12Rb2-T, in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C allele construct (pGIL-12Rb2-C. Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4 transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3 harboring the T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05. These observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA assays. The reduced expression of IL-12Rβ2 transcripts in 8 patients despite having the C allele was attributed to the predominant over expression of the suppressors (IL-4 and GATA-3 and reduced expression of enhancers (IFN-α of IL-12Rβ2 transcripts. The 17 high IL-12Rβ2 mRNA expressers had significantly elevated IFN-α mRNA levels compared to low expressers and volunteers. Notwithstanding the presence of high levels of IL-12R

  15. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    Xu, Yu, E-mail: xuyu1001@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liu, Zhengchun, E-mail: l135027@126.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Kong, Haiyan, E-mail: suppleant@163.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Sun, Wenjie, E-mail: wendy11240325@163.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liao, Zhengkai, E-mail: fastbeta@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Zhou, Fuxiang, E-mail: happyzhoufx@sina.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Xie, Conghua, E-mail: chxie_65@hotmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); and others

    2011-09-09

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  16. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    Xu, Yu; Liu, Zhengchun; Kong, Haiyan; Sun, Wenjie; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua

    2011-01-01

    Highlights: → A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. → The promoter was characterized with radiation-inducibility and tumor-specificity. → Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. → Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  17. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-01

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity

  18. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  19. Reversal of human allergen-specific CRTH2+ T(H)2 cells by IL-12 or the PS-DSP30 oligodeoxynucleotide.

    Annunziato, F; Cosmi, L; Manetti, R; Brugnolo, F; Parronchi, P; Maggi, E; Nagata, K; Romagnani, S

    2001-11-01

    The chemoattractant receptor homologous molecule expressed on T(H)2 cells (CRTH2) is a receptor for prostaglandin D(2), which among human T cells is selectively expressed by T(H)2 and type 2 cytotoxic effectors. Our purpose was to assess whether the cytokine production profile of T(H)2 effectors could be reversed by exploiting their selective expression of CRTH2. CRTH2(+) T cells were purified from the blood of allergic subjects, stimulated with the specific allergen in the absence or presence of IL-12, and assessed by flow cytometry at the single-cell level for their ability to produce IL-4 and/or IFN-gamma after antigen or polyclonal stimulation. Both IL-12 and the PS-DSP30 oligodeoxynucleotide enabled CRTH2(+) allergen-stimulated T(H)2 cells to produce IFN-gamma. This change in the profile of cytokine production by T(H)2 cells from allergic subjects was related to the upregulation of IL-12 receptor beta2 chain and was associated with the loss of CRTH2. These data demonstrate that the cytokine production pattern of fully differentiated T(H)2 effectors can be changed to a less polarized profile, thus providing the physiologic basis for new immunotherapeutic strategies in allergic disorders.

  20. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  1. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNγ signaling.

    Penafuerte, Claudia; Feldhammer, Matthew; Mills, John R; Vinette, Valerie; Pike, Kelly A; Hall, Anita; Migon, Eva; Karsenty, Gerard; Pelletier, Jerry; Zogopoulos, George; Tremblay, Michel L

    2017-01-01

    PTP1B and TC-PTP are highly related protein-tyrosine phosphatases (PTPs) that regulate the JAK/STAT signaling cascade essential for cytokine-receptor activation in immune cells. Here, we describe a novel immunotherapy approach whereby monocyte-derived dendritic cell (moDC) function is enhanced by modulating the enzymatic activities of PTP1B and TC-PTP. To downregulate or delete the activity/expression of these PTPs, we generated mice with PTP-specific deletions in the dendritic cell compartment or used PTP1B and TC-PTP specific inhibitor. While total ablation of PTP1B or TC-PTP expression leads to tolerogenic DCs via STAT3 hyperactivation, downregulation of either phosphatase remarkably shifts the balance toward an immunogenic DC phenotype due to hyperactivation of STAT4, STAT1 and Src kinase. The resulting increase in IL-12 and IFNγ production subsequently amplifies the IL-12/STAT4/IFNγ/STAT1/IL-12 positive autocrine loop and enhances the therapeutic potential of mature moDCs in tumor-bearing mice. Furthermore, pharmacological inhibition of both PTPs improves the maturation of defective moDCs derived from pancreatic cancer (PaC) patients. Our study provides a new advance in the use of DC-based cancer immunotherapy that is complementary to current cancer therapeutics.

  2. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    Li Jianwei; Faber, Milosz; Papaneri, Amy; Faber, Marie-Luise; McGettigan, James P.; Schnell, Matthias J.; Dietzschold, Bernhard

    2006-01-01

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  3. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes.

    Daniel Moreno

    Full Text Available It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/- γc(-/- mice using an adenovirus encoding herpes virus thymidine kinase (AdTk and two consecutive doses of ganciclovir (GCV. We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line.

  4. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  5. Clinical significance of the changes of serum IL-8 and IL-12 levels in pediatric patients with anaphylactoid purpura (AP)

    Liang Zhenming; Liu Xia

    2005-01-01

    Objective: To explore the role of IL-8 and IL-12 in the pathogenesis of anaphylactoid purpura (AP) and anaphylactoid purpura nephritis (APN). Methods: Serum IL-8 (with RIA) and IL-12 (with ELISA) levels were measured in 32 pediatric patients with anaphylactoid purpura (AP), 11 pediatric patients with anaphylactoid purpura nephritis (APN) and 15 controls. Results: During acute stage, serum IL-8 and IL-12 levels in both the AP and APN patients were significantly higher than those in controls and remained higher during convalescence. IL-8 and IL-12 levels were mutually positively correlated in acute stage. Conclusion: IL-8 and IL-12 participated in the pathogenesis of AP and APN. Theoretically, antagonist to those cytokines might be of clinical benefits. (authors)

  6. The changes of IL-8, IL-10, IL-12 and IgE in serum of patients with asthma

    Zhang Chao; Liu Deyi; Hou Guihua; Wang Haodan

    2002-01-01

    To evaluate the relationship and the clinical significance between the serum IL-8, IL-10, IL-12 and IgE in patients with asthma, the serum IL-8, IL-10 are measured by radioimmunoassay method and the serum IL-12, IgE by ELISA in 55 patients with asthma. The level of serum IL-8, IgE at stage of episode are significantly higher than that at stage of remission (P<0.01); the level of serum IL-10, IL-12 at stage of episode are significantly lower than that at stage of remission (P<0.01). Linear regression shows that the decrease of IL-12 relate to the increase of IgE. The results suggests that the change of the level of serum IL-8, IL-10, IL-12 and IgE could be a maker for the aggravation of asthma

  7. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  8. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Daniel M Appledorn

    2010-03-01

    Full Text Available Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  9. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases

    Sauter, Bernhard V.; Martinet, Olivier; Zhang, Wei-Jian; Mandeli, John; Woo, Savio L. C.

    2000-04-01

    Inhibition of angiogenesis has been shown to be an effective strategy in cancer therapy in mice. However, its widespread application has been hampered by difficulties in the large-scale production of the antiangiogenic proteins. This limitation may be resolved by in vivo delivery and expression of the antiangiogenic genes. We have constructed a recombinant adenovirus that expresses murine endostatin that is biologically active both in vitro, as determined in endothelial cell proliferation assays, and in vivo, by suppression of angiogenesis induced by vascular endothelial growth factor 165. Persistent high serum levels of endostatin (605-1740 ng/ml; mean, 936 ng/ml) were achieved after systemic administration of the vector to nude mice, which resulted in significant reduction of the growth rates and the volumes of JC breast carcinoma and Lewis lung carcinoma (P < 0.001 and P < 0.05, respectively). In addition, the endostatin vector treatment completely prevented the formation of pulmonary micrometastases in Lewis lung carcinoma (P = 0.0001). Immunohistochemical staining of the tumors demonstrated a decreased number of blood vessels in the treatment group versus the controls. In conclusion, the present study clearly demonstrates the potential of vector-mediated antiangiogenic gene therapy as a component in cancer therapy.

  10. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  11. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-02-26

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.

  12. HDAd5/35++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in Human Hematopoietic Stem Cells

    Chang Li

    2018-06-01

    Full Text Available We generated helper-dependent HDAd5/35++ adenovirus vectors expressing CRISPR/Cas9 for potential hematopoietic stem cells (HSCs gene therapy of β-thalassemia and sickle cell disease through re-activation of fetal γ-globin expression (HDAd-globin-CRISPR. The process of CRISPR/Cas9 gene transfer using these vectors was not associated with death of human CD34+ cells and did not affect their in vitro expansion and erythroid differentiation. However, functional assays for primitive HSCs, e.g., multi-lineage progenitor colony formation and engraftment in irradiated NOD/Shi-scid/interleukin-2 receptor γ (IL-2Rγ null (NSG mice, revealed toxicity of HDAd-globin-CRISPR vectors related to the prolonged expression and activity of CRISPR/Cas9. To control the duration of CRISPR/Cas9 activity, we generated an HDAd5/35++ vector that expressed two anti-CRISPR (Acr peptides (AcrII4 and AcrII2 capable of binding to the CRISPR/Cas9 complex (HDAd-Acr. CD34+ cells that were sequentially infected with HDAd-CRISPR and HDAd-Acr engrafted at a significantly higher rate. Target site disruption frequencies in engrafted human cells were similar to those in pre-transplantation CD34+ cells, indicating that genome-edited primitive HSCs survived. In vitro differentiated HSCs isolated from transplanted mice demonstrated increased γ-globin expression as a result of genome editing. Our data indicate that the HDAd-Acr vector can be used as a tool to reduce HSC cytotoxicity of the CRISPR/Cas9 complex.

  13. DNA damage and biological expression of adenovirus: A comparison of liquid versus frozen conditions of exposure to gamma rays

    Bennett, C.B.; Rainbow, A.J.

    1989-01-01

    Human adenovirus type 2 (Ad 2) was irradiated with 137Cs gamma rays in the liquid state at 0 degree C. DNA breaks were correlated with the inactivation of several viral functions and compared to results obtained previously for irradiation of Ad 2 under frozen conditions at -75 degrees C. Irradiation at 0 degree C induced 170 +/- 20 single-strand breaks and 2.6 +/- 0.4 double-strand breaks/Gy/10(12) Da in the viral DNA. Viral adsorption to human KB cells was inactivated with a D0 of 9.72 +/- 1.18 kGy, whereas the inactivation of Ad 2 plaque formation had a D0 of 0.99 +/- 0.14 or 1.1 +/- 0.29 kGy when corrected for the effect of radiation on virus adsorption. For the adsorbed virus, an average of 4.3 +/- 1.7 single-strand and 0.065 +/- 0.02 double-strand breaks were induced in the viral DNA per lethal hit. In contrast, irradiation of Ad 2 at -75 degrees C results in 2.6- to 3.4-fold less DNA breakage per Gy and a 5.6-fold increase in D0 for plaque formation of the adsorbed virus. Furthermore, although host cell reactivation (HCR) of Ad 2 viral structural antigen production for irradiated virus was substantially reduced in the xeroderma pigmentosum fibroblast strain (XP25RO) compared to normal strains for irradiation at -75 degrees C (57% HCR), it was only slightly reduced compared to normal for irradiation at 0 degree C (88% HCR). These results indicate that the spectrum of DNA damage is both quantitatively and qualitatively different for the two conditions of irradiation

  14. Adenovirus Vector E4 Gene Regulates Connexin 40 and 43 Expression in Endothelial Cells via PKA and PI3K Signal Pathways

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K.; Vincent, Loïc; Hackett, Neil R.; Wang, Shiyang; Young, Lauren M.; Hempstead, Barbara; Crystal, Ronald G.; Rafii, Shahin

    2010-01-01

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4−, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intratracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways. PMID:15831817

  15. C5a regulates IL-12+ DC migration to induce pathogenic Th1 and Th17 cells in sepsis.

    Ning Ma

    Full Text Available OBJECTIVE: It is well known that complement system C5a is excessively activated during the onset of sepsis. However, it is unclear whether C5a can regulate dentritic cells (DCs to stimulate adaptive immune cells such as Th1 and Th17 in sepsis. METHODS: Sepsis was induced by cecal ligation and puncture (CLP. CLP-induced sepsis was treated with anti-C5a or IL-12. IL-12(+DC, IFNγ(+Th1, and IL-17(+Th17 cells were analyzed by flow cytometry. IL-12 was measured by ELISA. RESULTS: Our studies here showed that C5a induced IL-12(+DC cell migration from the peritoneal cavity to peripheral blood and lymph nodes. Furthermore, IL-12(+DC cells induced the expansion of pathogenic IFNγ(+Th1 and IL-17(+Th17 cells in peripheral blood and lymph nodes. Moreover, IL-12, secreted by DC cells in the peritoneal cavity, is an important factor that prevents the development of sepsis. CONCLUSION: Our data suggests that C5a regulates IL-12(+DC cell migration to induce pathogenic Th1 and Th17 cells in sepsis.

  16. Recombinant murine IL-12 promotes a protective Th1/cellular response in Mongolian gerbils infected with Sporothrix schenckii.

    Flores-García, Aurelio; Velarde-Félix, Jesús Salvador; Garibaldi-Becerra, Vicente; Rangel-Villalobos, Héctor; Torres-Bugarín, Olivia; Zepeda-Carrillo, Eloy Alfonso; Ruíz-Bernés, Salvador; Ochoa-Ramírez, Luis Antonio

    2015-02-01

    Sporotrichosis is a cutaneous fungal infection caused by Sporothrix schenckii. It is known to be mainly contained by Th1 responses. As IL-12 is crucial for Th1 response, we investigated if treatment with recombinant murine IL-12 (rmIL-12) promoted Th1 immunity and/or clinical improvement in an experimental sporotrichosis gerbil model. Gerbils were inoculated with S. schenckii in the footpad and treated with rmIL-12. Seven days post infection there was a significant increase in macrophage phagocytosis and oxidative burst, and in delayed-type hypersensitivity (DTH) reaction in rmIL-12 treated gerbils, as well as a ∼10-fold increase of serum IFN-gamma and a decrease of IL-4 and IL-10. Moreover, rmIL-12 substantially decreased (∼70%) S. schenckii burden in liver and spleen and improved the clinical outcome preventing footpad ulcer and tail nodules observed in untreated gerbils. Our study demonstrates that rmIL-12 promotes Th1 immune response against S. schenckii favouring its clearance and preventing clinical symptoms.

  17. DMPD: Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15546391 Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Watf...ord WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ. Immunol Rev. 2004 Dec;202:139-56. (.png) (.svg) (....html) (.csml) Show Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. PubmedID 15546391 T...itle Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Author...s Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ. Publication Immunol Rev. 2004 Dec;202:139-56

  18. Interferon induction by adenoviruses

    Beladi, I; Bakay, M; Pusztai, R; Mucsi, I; Tarodi, B [University Medical School, Szeged (Hungary). Inst. of Microbiology

    1979-02-01

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression.

  19. Imaging of adenovirus-mediated expression of human sodium iodide symporter (hNIS) by 99mTcO4 scan in mice

    Lee, Won Woo; Moon, D. H.; Park, S. Y.; Jin, J.; Kim, S. J.; Lee, H.

    2002-01-01

    We have evaluated the feasibility of human sodium iodide symporter (hNIS) as a reporter gene by 99m TcO 4 scan in vivo. Recombinant adenovirus encoding hNIS (Rad-hNIS) gene was introduced to FRO cell. hNIS expression was assessed by western blot and 99m TcO 4 uptake in vitro. 99m TcO 4 scan were obtained in BALB/c mice 48 hrs post injection of Tris buffer, Rad-hNIS (1x10 9 or 2x10 8 pfu), or Rad-LacZ (1x10 9 pfu) via the tail vein (n=5-7 for each group). Biodistribution study and RT-PCR were performed. A series of 99m TcO 4 scans were obtained in 2 mice until 21 days post Rad-hNIS injection. FRO readily expressed hNIS protein and incorporated significantly higher level of 99m TcO 4 in vitro. With 99m TcO 4 scan, prominent hepatic uptake was observed only in the mice with 1x10 9 pfu of Rad-hNIS. Liver/lung ratio was increased in this group from 15 (5.7±2.5) till 60 min(6.7±3.6) (p 99m TcO 4 uptake (22.7±11.2 %ID/g) and hNIS mRNA expression were exclusively noticed in livers of this group. The persistent hepatic uptake was observed for up one week. NaClO 4 inhibited the hepatic uptake of 99m TcO 4 . hNIS holds a promising potential as an effective reporter gene for noninvasive/repeated imaging in combination with 99m TcO 4

  20. IL-12 and GM-CSF in DNA/MVA immunizations against HIV-1 CRF12_BF Nef induced T-cell responses with an enhanced magnitude, breadth and quality.

    Ana María Rodríguez

    Full Text Available In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF and heterologous (B Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide.This study indicates that the incorporation of DNA expressing IL-12 in DNA/MVA schemes produced the best results in terms of improvements of T-cell-response key properties such as breadth, cross-reactivity and quality (avidity and pattern of cytokines secreted. These relevant results contribute to the design of strategies aimed to induce T-cell responses against HIV antigens with

  1. Reprogrammed chondrocytes engineered to produce IL-12 provide novel ex vivo immune-gene therapy for cancer.

    Tada, Hiroyuki; Kishida, Tsunao; Fujiwara, Hitoshi; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Ichikawa, Daisuke; Okamoto, Kazuma; Otsuji, Eigo; Mazda, Osam

    2017-03-01

    The somatic cell reprogramming technology was applied to a novel and promising ex vivo immune-gene therapy strategy for cancer. To establish a novel ex vivo cytokine gene therapy of cancer using the somatic cell reprogramming procedures. Mouse fibroblasts were converted into chondrocytes and subsequently transduced with IL-12 gene. The resultant IL-12 induced chondrogenic cells were irradiated with x-ray and inoculated into mice bearing CT26 colon cancer. The irradiation at 20 Gy or higher totally eliminated the proliferative potential of the cells, while less significantly influencing the IL-12 production from the cells. An inoculation of the irradiated IL-12 induced chondrogenic cells significantly suppressed tumor by inducing tumor-specific cytotoxic T lymphocytes, enhancing natural killer tumoricidal activity and inhibiting tumor neoangiogenesis in the mice. The somatic cell reprogramming procedures may provide a novel and effective means to treat malignancies.

  2. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  3. Protection against California 2002 NDV strain afforded by adenovirus vectored vaccine expressing Fusion or Hemagglutination-neuraminidase genes

    Vectored vaccines expressing the combination of the hemagglutinin-neuraminidase (HN) and fusion (F) genes generally have better clinical protection against Newcastle disease virus (NDV) than when either the F and HN genes are expressed alone. Interestingly, the protection induced by F is usually bet...

  4. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. IL-12-mediated STAT4 signaling and TCR signal strength cooperate in the induction of CD40L in human and mouse CD8+ T cells.

    Stark, Regina; Hartung, Anett; Zehn, Dietmar; Frentsch, Marco; Thiel, Andreas

    2013-06-01

    CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  7. An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma.

    Zhang, Yan; Fang, Lin; Zhang, Quan'an; Zheng, Qin; Tong, Jinlong; Fu, Xiaohui; Jiang, Xiaoqing; Su, Changqing; Zheng, Junnian

    2013-06-01

    Gene therapy and antibody approaches are crucial auxiliary strategies for hepatocellular carcinoma (HCC) treatment. Previously, we established a survivin promoter-regulated oncolytic adenovirus that has inhibitory effect on HCC growth. The human sulfatase-1 (hSulf-1) gene can suppress the growth factor signaling pathways, then inhibit the proliferation of cancer cells and enhance cellular sensitivity to radiotherapy and chemotherapy. I(131)-metuximab (I(131)-mab) is a monoclonal anti-HCC antibody that conjugated to I(131) and specifically recognizes the HAb18G/CD147 antigen on HCC cells. To integrate the oncolytic adenovirus-based gene therapy and the I(131)-mab-based radioimmunotherapy, this study combined the CArG element of early growth response-l (Egr-l) gene with the survivin promoter to construct a radiation-inducible enhanced promoter, which was used to recombine a radiation-inducible oncolytic adenovirus as hSulf-1 gene vector. When I(131)-mab was incorporated into the treatment regimen, not only could the antibody produce radioimmunotherapeutic effect, but the I(131) radiation was able to further boost adenoviral proliferation. We demonstrated that the CArG-enhanced survivin promoter markedly improved the proliferative activity of the oncolytic adenovirus in HCC cells, thereby augmenting hSulf-1 expression and inducing cancer cell apoptosis. This novel strategy that involved multiple, synergistic mechanisms, including oncolytic therapy, gene therapy and radioimmunotherapy, was demonstrated to exert an excellent anti-cancer outcome, which will be a promising approach in HCC treatment. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice

    Qu Jianguo

    2011-01-01

    Full Text Available Abstract Background Rotavirus (RV is the main cause of severe gastroenteritis in children. An effective vaccination regime against RV can substantially reduce morbidity and mortality. Previous studies have demonstrated the efficacy of virus-like particles formed by RV VP2 and VP6 (VLP2/6, as well as that of recombinant adenovirus expressing RV VP6 (rAd, in eliciting protective immunities against RV. However, the efficacy of such prime-boost strategy, which incorporates VLP and rAd in inducing protective immunities against RV, has not been addressed. We assessed the immune effects of different regimens in mice, including rAd prime-VLP2/6 boost (rAd+VLP, VLP2/6 prime-rAd boost (VLP+rAd, rAd alone, and VLP alone. Results Mice immunized with the VLP+rAd regimen elicit stronger humoral, mucosal, and cellular immune responses than those immunized with other regimens. RV challenging experiments showed that the highest reduction (92.9% in viral shedding was achieved in the VLP+rAd group when compared with rAd+VLP (25%, VLP alone (75%, or rAd alone (40% treatment groups. The reduction in RV shedding in mice correlated with fecal IgG (r = 0.95773, P = 0.04227 and IgA (r = 0.96137, P = 0.038663. Conclusions A VLP2/6 prime-rAd boost regimen is effective in conferring immunoprotection against RV challenge in mice. This finding may lay the groundwork for an alternative strategy in novel RV vaccine development.

  9. Baseline serum CXCL10 and IL-12 levels may predict severe asthmatics' responsiveness to omalizumab.

    Suzukawa, Maho; Matsumoto, Hisako; Ohshima, Nobuharu; Tashimo, Hiroyuki; Asari, Isao; Tajiri, Tomoko; Niimi, Akio; Nagase, Hiroyuki; Matsui, Hirotoshi; Kobayashi, Nobuyuki; Shoji, Shunsuke; Ohta, Ken

    2018-01-01

    Omalizumab, a humanized anti-IgE monoclonal antibody, is the first molecularly targeted drug for severe asthmatics. However, responses to omalizumab vary widely among patients. This study aimed to assess the potential of baseline serum cytokine levels as predictors of responsiveness to omalizumab. Thirty-one patients with severe, persistent asthma were enrolled in this study and administered omalizumab for at least 1 year. Response to omalizumab was assessed based on the physician's global evaluation of treatment effectiveness (GETE) at 48 weeks of treatment. Blood samples were collected at baseline and 16 and 32 weeks after starting omalizumab and measured for 30 cytokines by Luminex 200 and ELISA. Exhaled nitric oxide (FeNO) levels, peripheral blood eosinophil counts, pre-bronchodilator pulmonary functions and Asthma Quality of Life Questionnaire scores were determined at baseline and 16, 32 and 48 weeks after starting omalizumab. The numbers of clinically significant asthma exacerbations in the previous year and during 48 weeks of treatment with omalizumab were assessed. GETE assessment showed 19 responders (61.3%) and 12 non-responders (38.7%). Responders showed significantly higher levels of CXCL10 and IL-12 at baseline compared to non-responders (CXCL10: responders, 1530.0 ± 315.2 pg/ml vs. non-responders, 1066.0 ± 396.8 pg/ml, P = 0.001; IL-12: responders, 60.2 ± 39.2 pg/ml vs. non-responders, 32.2 ± 26.3 pg/ml, P = 0.04). ROC curves to distinguish responders from non-responders using the baseline serum CXCL10 level showed a good AUC of 0.83. At 32 weeks of omalizumab therapy, serum CXCL10 tended to be increased (1350 ± 412.3 pg/ml at baseline vs. 1529 ± 637.6 pg/ml at 32 weeks, P = 0.16) and serum IL-12 tended to be decreased (49.4 ± 37.0 pg/ml at baseline vs. 43.9 ± 30.9 pg/ml at 32 weeks, P = 0.05). On the other hand, serum IL-5 and PDGF were significantly decreased (IL-5: 54.2 ± 13.8 pg/ml at baseline vs. 49

  10. Affinity Maturation of an Anti-V Antigen IgG Expressed In Situ Via Adenovirus Gene Delivery Confers Enhanced Protection Against Yersinia pestis Challenge

    Van Blarcom, Thomas J.; Sofer-Podesta, Carolina; Ang, John; Boyer, Julie L.; Crystal, Ronald G.; Georgiou, George

    2013-01-01

    Genetic transfer of neutralizing antibodies has been shown to confer strong and persistent protection against bacterial and viral infectious agents. While it is well established that for many exogenous neutralizing antibodies increased antigen affinity correlates with protection, the effect of antigen affinity on antibodies produced in situ following adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal antibody 2C12.4 recognizes the Yersinia pestis Type III secretion apparatus protein LcrV (V antigen) and confers protection in mice when administered as an IgG intraperitoneally or, following genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad) 1. 2C12.4 was expressed as a scFv fragment in E. coli and was shown to display a KD=3.5 nM by surface plasmon resonance (SPR) analysis. The 2C12.4 scFv was subjected to random mutagenesis and variants with increased affinity were isolated by flow cytometry using the Anchored Periplasmic Expression (APEx) bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower KD values (H8, KD=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdαV giving rise to AdαV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen antibodies 3 days post-immunization with 109, 1010 or 1011 particle units. Following intranasal challenge with 363 LD50Y. pestis CO92, 54% of the mice immunized with 1010 pu of AdαV.H8 survived at the 14 day end point compared to only 15% survivors for the group immunized with AdαV expressing the lower affinity 2C12.4 (Pgenetic transfer may confer increased protection not only for Y. pestis challenge but possibly for other pathogens. PMID:20393511

  11. Imaging of adenovirus-mediated expression of human sodium iodide symporter (hNIS) by {sup 99m}TcO{sub 4} scan in mice

    Lee, Won Woo; Moon, D. H.; Park, S. Y.; Jin, J.; Kim, S. J.; Lee, H. [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We have evaluated the feasibility of human sodium iodide symporter (hNIS) as a reporter gene by {sup 99m}TcO{sub 4} scan in vivo. Recombinant adenovirus encoding hNIS (Rad-hNIS) gene was introduced to FRO cell. hNIS expression was assessed by western blot and {sup 99m}TcO{sub 4} uptake in vitro. {sup 99m}TcO{sub 4} scan were obtained in BALB/c mice 48 hrs post injection of Tris buffer, Rad-hNIS (1x10{sup 9} or 2x10{sup 8} pfu), or Rad-LacZ (1x10{sup 9} pfu) via the tail vein (n=5-7 for each group). Biodistribution study and RT-PCR were performed. A series of {sup 99m}TcO{sub 4} scans were obtained in 2 mice until 21 days post Rad-hNIS injection. FRO readily expressed hNIS protein and incorporated significantly higher level of {sup 99m}TcO{sub 4} in vitro. With {sup 99m}TcO{sub 4} scan, prominent hepatic uptake was observed only in the mice with 1x10{sup 9} pfu of Rad-hNIS. Liver/lung ratio was increased in this group from 15 (5.7{+-}2.5) till 60 min(6.7{+-}3.6) (p<0.01). Significantly increased {sup 99m}TcO{sub 4} uptake (22.7{+-}11.2 %ID/g) and hNIS mRNA expression were exclusively noticed in livers of this group. The persistent hepatic uptake was observed for up one week. NaClO{sub 4} inhibited the hepatic uptake of {sup 99m}TcO{sub 4}. hNIS holds a promising potential as an effective reporter gene for noninvasive/repeated imaging in combination with {sup 99m}TcO{sub 4}.

  12. Impaired CD40L signaling is a cause of defective IL-12 and TNF-alpha production in Sézary syndrome: circumvention by hexameric soluble CD40L.

    French, Lars E; Huard, Bertrand; Wysocka, Maria; Shane, Ryan; Contassot, Emmanuel; Arrighi, Jean-François; Piguet, Vincent; Calderara, Silvio; Rook, Alain H

    2005-01-01

    Sézary syndrome (SzS) is an advanced form of cutaneous T-cell lymphoma characterized by peripheral blood involvement, impaired cell-mediated immunity, and T-helper 1 (TH1) cytokine production. To understand the mechanism of these defects, we studied the expression and function of CD40L in peripheral blood mononuclear cells (PBMCs) of patients with SzS. We found that PBMCs of patients with SzS have a defect in interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) production upon anti-CD3 stimulation and that tumor CD4+ T lymphocytes have a specific defect in CD40L induction after anti-CD3 ligation in vitro. This defect may explain the poor IL-12 production, because IL-12 production by anti-CD3-stimulated PBMCs was dependent on CD40L in healthy donors. The observed defect in tumor cell CD40L expression appears to be due to inappropriate T-cell signaling upon CD3 ligation, because expression of other T-cell activation antigens such as CD25, and to a lesser extent CD69, are also impaired on tumor cells. Importantly however, the inability of SzS PBMCs to appropriately produce IL-12 and TNF-alpha could be restored by recombinant hexameric CD40L. Taken together, our results demonstrate that impaired IL-12 and TNF-alpha production in SzS is associated with defective CD4+ T lymphocyte CD40L induction and indicate that CD40L may have therapeutic potential in SzS.

  13. Potentiation of electrochemotherapy by intramuscular IL-12 gene electrotransfer in murine sarcoma and carcinoma with different immunogenicity

    Sedlar, Ales; Dolinsek, Tanja; Markelc, Bostjan; Prosen, Lara; Kranjc, Simona; Bosnjak, Masa; Blagus, Tanja; Cemazar, Maja; Sersa, Gregor

    2012-01-01

    Electrochemotherapy provides good local tumor control but requires adjuvant treatment for increased local response and action on distant metastasis. In relation to this, intramuscular interleukin-12 (IL-12) gene electro-transfer, which provides systemic shedding of IL-12, was combined with local electrochemotherapy with cisplatin. Furthermore, the dependence on tumor immunogenicity and immunocompetence of the host on combined treatment response was evaluated. Sensitivity of SA-1 sarcoma and TS/A carcinoma cells to electrochemotherapy with cisplatin was tested in vitro. In vivo, intratumoral electrochemotherapy with cisplatin (day 1) was combined with a single (day 0) or multiple (days 0, 2, 4) intramuscular murine IL-12 (mIL-12) gene electrotransfer. The antitumor effectiveness of combined treatment was evaluated on immunogenic murine SA-1 sarcoma in A/J mice and moderately immunogenic murine TS/A carcinoma, in immunocompetent BALB/c and immunodeficient SCID mice. Electrochemotherapy in vitro resulted in a similar IC 50 values for both sarcoma and carcinoma cell lines. However, in vivo electrochemotherapy was more effective in the treatment of sarcoma, the more immunogenic of the tumors, resulting in a higher log cell kill, longer specific tumor growth delay, and also 17% tumor cures compared to carcinoma where no tumor cures were observed. Adjuvant intramuscular mIL-12 gene electrotransfer increased the log cell kill in both tumor models, potentiating the specific tumor growth delay by a factor of 1.8-2 and increasing tumor cure rate by approximately 20%. In sarcoma tumors, the potentiation of the response by intramuscular mIL-12 gene electrotransfer was dose-dependent and also resulted in a faster onset of tumor cures. Comparison of the carcinoma response to the combined treatment modality in immunocompetent and immunodeficient mice demonstrated that the immune system is needed both for increased cell kill and for attaining tumor cures. Based on the comparison of

  14. Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling.

    Elisandra Grangeiro de Carvalho

    Full Text Available The protective immunity of natural killer (NK cells against malarial infections is thought to be due to early production of type II interferon (IFN and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes. A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites particularly modulated genes involved in IFN-α/β signaling as well as molecules involved in the activation of interferon regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-γ- and TREM-1-related genes were over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on the transcriptome of human primary NK cells. IFN-α-related genes are the prominent molecules induced by parasites on NK cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.

  15. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects

    Shimozato, Osamu; Ugai, Shin-ichi; Chiyo, Masako; Takenobu, Hisanori; Nagakawa, Hiroyasu; Wada, Akihiko; Kawamura, Kiyoko; Yamamoto, Hiroshi; Tagawa, Masatoshi

    2006-01-01

    Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-γ or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-γ production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions. PMID:16423037

  16. Adrenal gland infection by serotype 5 adenovirus requires coagulation factors.

    Lucile Tran

    Full Text Available Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT imaging of gene expression to determine whether local virus administration (direct injection in the kidney could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.

  17. Meta-Analysis on Associations of RGS1 and IL12A Polymorphisms with Celiac Disease Risk

    Cong-Cong Guo

    2016-03-01

    Full Text Available The pathogenesis of celiac disease (CD has been related to polymorphisms in the regulator of G-protein signaling 1 (RGS1 and interleukin-12 A (IL12A genes, but the existing findings are inconsistent. Our aim is to investigate the associations of two single-nucleotide polymorphisms (SNPs (rs2816316 in RGS1 and rs17810546 in IL12A with CD risk using meta-analysis. We searched PubMed and Web of Science on RGS1 rs2816316 and IL12A rs17810546 with CD risk. Odds ratio (OR and 95% confidence interval (CI of each SNP were estimated. All statistical analyses were performed on Stata 12.0. A total of seven studies were retrieved and analyzed. The available data indicated the minor allele C of rs2816316 was negatively associated with CD (C vs. A: OR = 0.77, 95% CI = 0.74–0.80, and a positive association was found for the minor allele G of rs17810546 (G vs. A: OR = 1.37, 95% CI = 1.31–1.43. The co-dominant model of genotype effect confirmed the significant associations between RGS1 rs2816316/IL12A rs17810546 and CD. No evidence of publication bias was observed. Our meta-analysis supports the associations of RGS1 and IL12A with CD and strongly calls for further studies to better understand the roles of RGS1 and IL12A in the pathogenesis of CD.

  18. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  19. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo

    Rivera, Angel A.; Wang Minghui; Suzuki, Kaori; Uil, Taco G.; Krasnykh, Victor; Curiel, David T.; Nettelbeck, Dirk M.

    2004-01-01

    The expression of therapeutic genes by oncolytic viruses is a promising strategy to improve viral oncolysis, to augment gene transfer compared with a nonreplicating adenoviral vector, or to combine virotherapy and gene therapy. Both the mode of transgene expression and the locale of transgene insertion into the virus genome critically determine the efficacy of this approach. We report here on the properties of oncolytic adenoviruses which contain the luciferase cDNA fused via an optimized internal ribosome entry site (IRES) to the immediate early adenoviral gene E1A (AdΔE1AIL), the early gene E2B (AdΔE2BIL), or the late fiber gene (AdΔfiberIL). These viruses showed distinct kinetics of transgene expression and luciferase activity. Early after infection, luciferase activities were lower for these viruses, especially for AdΔE2BIL, compared with nonreplicating AdTL, which contained the luciferase gene expressed from the strong CMV promoter. However, 6 days after infection, luciferase activities were approximately four (AdΔE1AIL) to six (AdΔfiberIL) orders of magnitude higher than for AdTL, reflecting virus replication and efficient transgene expression. Similar results were obtained in vivo after intratumoral injection of AdΔE2BIL, AdΔfiberIL, and AdTL. AdΔfiberIL and the parental virus, Ad5-Δ24, resulted in similar cytotoxicity, but AdΔE2BIL and AdΔE1AIL were slightly attenuated. Disruption of the expression of neighboring viral genes by insertion of the transgene was minimal for AdΔE2BIL and AdΔfiberIL, but substantial for AdΔE1AIL. Our observations suggest that insertion of IRES-transgene cassettes into viral transcription units is an attractive strategy for the development of armed oncolytic adenoviruses with defined kinetics and strength of transgene expression

  20. Adenovirus (For Parents)

    ... by sharing contaminated objects (such as towels or toys), or by touch. Once a child is exposed to adenovirus, symptoms usually develop from ... washing, keep shared surfaces (such as countertops and toys) clean, and remove kids ... a week your child has breathing problems your child is under 3 ...

  1. Peripheral blood MDSCs, IL-10 and IL-12 in children with asthma and their importance in asthma development.

    Zhang, Yan-Li; Luan, Bin; Wang, Xiu-Fang; Qiao, Jun-Ying; Song, Li; Lei, Rui-Rui; Gao, Wei-Xia; Liu, Ying

    2013-01-01

    To investigate myeloid-derived suppressor cell (MDSC) accumulation and interleukin 10 (IL-10) and interleukin 12 (IL-12) levels during the onset of asthma in both pediatric patients and mouse models, as well as their possible roles in the development of asthma. Peripheral blood samples were gathered from children with asthma attacks (attack group) and alleviated asthma (alleviated group), as well as two control groups, children with pneumonia and healthy children. The pathological characteristics of asthma in asthmatic mice, budesonide-treated asthmatic mice, and normal control mice were also evaluated by immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining. MDSC accumulation and serum IL-10 levels were significantly elevated in the children with asthma compared with the budesonide-treated alleviated group, normal healthy controls, and pneumonia controls (p0.05). The level of serum IL-12 in the asthmatic children was drastically reduced compared to the budesonide-treated alleviated group, healthy controls, and pneumonia controls (pasthma was positively correlated with the level of serum IL-10 and negatively correlated with the level of serum IL-12. The levels of MDSCs and IL-10 in asthmatic mice were significantly higher than those in the normal control mice (both pasthma, the accumulation of MDSCs and the level of serum IL-10 increase, while the level of IL-12 decreases. These fluctuations may play an important role in the development of asthma.

  2. IL12RB2 gene is associated with the age of type 1 diabetes onset in Croatian family Trios.

    Marina Pehlić

    Full Text Available BACKGROUND: Common complex diseases are influenced by both genetic and environmental factors. Many genetic factors overlap between various autoimmune diseases. The aim of the present study is to determine whether four genetic variants known to be risk variants for several autoimmune diseases could be associated with an increased susceptibility to type 1 diabetes mellitus. METHODS AND FINDINGS: We genotyped four genetic variants (rs2358817, rs1049550, rs6679356, rs9865818 within VTCN1, ANXA11, IL12RB2 and LPP genes respectively, in 265 T1DM family trios in Croatian population. We did not detect association of these polymorphisms with T1DM. However, quantitative transmission disequilibrium test (QTDT, orthogonal model revealed a significant association between the age of onset of T1DM and IL12RB2 rs6679356 variant. An earlier onset of T1DM was associated with the rs6679356 minor dominant allele C (p = 0.005. The association remained significant even after the Bonferroni correction for multiple testing and permutation. CONCLUSIONS: Variants originally associated with juvenile idiopathic arthritis (VTCN1 gene, sarcoidosis (ANXA11 gene, primary biliary cirrhosis (IL12RB2 gene and celiac disease (LPP gene were not associated with type 1 diabetes in our dataset. Nevertheless, association of IL12RB2 rs6679356 polymorphism with the age of T1DM onset suggests that this gene plays a role in defining the time of disease onset.

  3. Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines

    Šímová, Jana; Sapega, Olena; Imrichová, Terezie; Štěpánek, Ivan; Kyjacová, Lenka; Mikyšková, Romana; Indrová, Marie; Bieblová, Jana; Bubeník, Jan; Bartek, Jiří; Hodný, Zdeněk; Reiniš, Milan

    2016-01-01

    Roč. 7, č. 34 (2016), s. 54952-54964 ISSN 1949-2553 R&D Projects: GA MZd NT14461 Institutional support: RVO:68378050 Keywords : cellular senescence * cancer chemotherapy * docetaxel * IL-12 * cell therapy Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.168, year: 2016

  4. A novel technology to target adenovirus vectors : application in cells involved in atherosclerosis

    Gras, Jan Cornelis Emile

    2007-01-01

    In this thesis a novel technology is described to target adenovirus vectors. Adenovirus vectors are powerful tools to modulate gene expression. The use of these vectors however, is hampered by the fact that many for gene therapy interesting cell types do not, or only at low levels express the CAR

  5. Trypanosoma Infection Favors Brucella Elimination via IL-12/IFNγ-Dependent Pathways

    Arnaud Machelart

    2017-07-01

    Full Text Available This study develops an original co-infection model in mice using Brucella melitensis, the most frequent cause of human brucellosis, and Trypanosoma brucei, the agent of African trypanosomiasis. Although the immunosuppressive effects of T. brucei in natural hosts and mice models are well established, we observed that the injection of T. brucei in mice chronically infected with B. melitensis induces a drastic reduction in the number of B. melitensis in the spleen, the main reservoir of the infection. Similar results are obtained with Brucella abortus- and Brucella suis-infected mice and B. melitensis-infected mice co-infected with Trypanosoma cruzi, demonstrating that this phenomenon is not due to antigenic cross-reactivity. Comparison of co-infected wild-type and genetically deficient mice showed that Brucella elimination required functional IL-12p35/IFNγ signaling pathways and the presence of CD4+ T cells. However, the impact of wild type and an attenuated mutant of T. brucei on B. melitensis were similar, suggesting that a chronic intense inflammatory reaction is not required to eliminate B. melitensis. Finally, we also tested the impact of T. brucei infection on the course of Mycobacterium tuberculosis infection. Although T. brucei strongly increases the frequency of IFNγ+CD4+ T cells, it does not ameliorate the control of M. tuberculosis infection, suggesting that it is not controlled by the same effector mechanisms as Brucella. Thus, whereas T. brucei infections are commonly viewed as immunosuppressive and pathogenic, our data suggest that these parasites can specifically affect the immune control of Brucella infection, with benefits for the host.

  6. Intratumoral IL-12 and TNF-alpha-loaded microspheres lead to regression of breast cancer and systemic antitumor immunity.

    Sabel, Michael S; Skitzki, Joseph; Stoolman, Lloyd; Egilmez, Nejat K; Mathiowitz, Edith; Bailey, Nicola; Chang, Wen-Jian; Chang, Alfred E

    2004-02-01

    Local, sustained delivery of cytokines at a tumor can enhance induction of antitumor immunity and may be a feasible neoadjuvant immunotherapy for breast cancer. We evaluated the ability of intratumoral poly-lactic-acid-encapsulated microspheres (PLAM) containing interleukin 12 (IL-12), tumor necrosis factor alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) in a murine model of breast cancer to generate a specific antitumor response. BALB/c mice with established MT-901 tumors underwent resection or treatment with a single intratumoral injection of PLAM containing IL-12, TNF-alpha, or GM-CSF, alone or in combination. Two weeks later, lymph nodes and spleens were harvested, activated with anti-CD3 monoclonal antibodies (mAb) and rhIL-2, and assessed for antitumor reactivity by an interferon gamma (IFNgamma) release assay. Tumor-infiltrating lymphocyte (TIL) analysis was performed on days 2 and 5 after treatment by mechanically processing the tumors to create a single cell suspension, followed by three-color fluorescence-activated cell sorter (FACS) analysis. Intratumoral injection of cytokine-loaded PLAM significantly suppressed tumor growth, with the combination of IL-12 and TNF-alpha leading to increased infiltration by polymorphonuclear cells and CD8+ T-cells in comparison with controls. The induction of tumor-specific reactive T-cells in the nodes and spleens, as measured by IFN-gamma production, was highest with IL-12 and TNF-alpha. This treatment resulted in resistance to tumor rechallenge. A single intratumoral injection of IL-12 and TNF-alpha-loaded PLAM into a breast tumor leads to infiltration by polymorphonuclear cells and CD8+ T-cells with subsequent tumor regression. In addition, this local therapy induces specific antitumor T-cells in the lymph nodes and spleens, resulting in memory immune response.

  7. IL-6/IL-12 Cytokine Receptor Shuffling of Extra- and Intracellular Domains Reveals Canonical STAT Activation via Synthetic IL-35 and IL-39 Signaling.

    Floss, D M; Schönberg, M; Franke, M; Horstmeier, F C; Engelowski, E; Schneider, A; Rosenfeldt, E M; Scheller, J

    2017-11-09

    IL-35 and IL-39 are recently discovered shared members of the IL-6- and IL-12-type cytokine family with immune-suppressive capacity. IL-35 has been reported to induce the formation of four different receptor complexes: gp130:IL-12β2, gp130:gp130, IL-12β2:IL-12β2, and IL-12β2:WSX-1. IL-39 was proposed to form a gp130:IL-23R receptor complex. IL-35, but not IL-39, has been reported to activate non-conventional STAT signaling, depending on the receptor complex and target cell. Analyses of IL-35 and IL-39 are, however, hampered by the lack of biologically active recombinant IL-35 and IL-39 proteins. Therefore, we engineered chimeric cytokine receptors to accomplish synthetic IL-35 and IL- 39 signaling by shuffling the extra- and intracellular domains of IL-6/IL-12-type cytokine receptors, resulting in biological activity for all previously described IL-35 receptor complexes. Moreover, we found that the proposed IL-39 receptor complex is biologically active and discovered two additional biologically active synthetic receptor combinations, gp130/IL-12Rβ1 and IL-23R/IL-12Rβ2. Surprisingly, synthetic IL-35 activation led to more canonical STAT signaling of all receptor complexes. In summary, our receptor shuffling approach highlights an interchangeable, modular domain structure among IL-6- and IL-12-type cytokine receptors and enabled synthetic IL-35 and IL-39 signaling.

  8. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  9. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  10. The Attenuated Brucella abortus Strain 19 Invades, Persists in, and Activates Human Dendritic Cells, and Induces the Secretion of IL-12p70 but Not IL-23

    Weinhold, Mario; Eisenblätter, Martin; Jasny, Edith; Fehlings, Michael; Finke, Antje; Gayum, Hermine; Rüschendorf, Ursula; Renner Viveros, Pablo; Moos, Verena; Allers, Kristina; Schneider, Thomas; Schaible, Ulrich E.; Schumann, Ralf R.; Mielke, Martin E.; Ignatius, Ralf

    2013-01-01

    Background Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4+ and CD8+ T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs), which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S) 19, which has previously been employed successfully to vaccinate cattle. Methodology/Principal findings We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR)2. Conclusions/Significance Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2) human DCs to produce Th1-promoting cytokines. PMID:23805193

  11. The Attenuated Brucella abortus Strain 19 Invades, Persists in, and Activates Human Dendritic Cells, and Induces the Secretion of IL-12p70 but Not IL-23.

    Mario Weinhold

    Full Text Available Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4(+ and CD8(+ T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs, which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S 19, which has previously been employed successfully to vaccinate cattle.We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR2.Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2 human DCs to produce Th1-promoting cytokines.

  12. Sepse por Salmonella associada à deficiência do receptor da Interleucina-12 (IL-12Rb1

    Carvalho Beatriz Tavares Costa

    2003-01-01

    Full Text Available OBJETIVO: descrever caso clínico de uma criança que desenvolveu septicemia por Salmonella enteritidis, sendo diagnosticada imunodeficiência primária. DESCRIÇÃO: paciente masculino, de um ano e 9 meses, com febre e lesões de pele há 50 dias, internado com lesão perilabial ulcerada com secreção purulenta, lesão ulcerada friável em língua, lesões ulcerocrostosas em membros, pneumonia bilateral com derrame pleural e choque séptico, sendo diagnosticado Salmonella enteritidis como agente etiológico. A identificação desta bactéria direcionou a investigação para a síndrome MIM. O diagnóstico de deficiência do receptor da interleucina-12 (IL-12Rbeta1 foi confirmado através da dosagem de IL-12 e do interferon (IFN-gama produzido pelas células do paciente em meio de cultura. O resultado demonstrou ausência de produção de IL-12 e do IFN-gama mesmo após estímulo adequado. COMENTÁRIOS: a identificação da Salmonella enteritidis como agente etiológico de septicemia sugere uma disfunção do sistema imunológico. Foi realizada avaliação laboratorial das imunidades humoral, celular e inata. Após avaliação laboratorial direcionada para síndrome MIM, foi confirmada a deficiência do receptor da Interleucina-12 (IL-12Rbeta1. O uso do IFN-gama é recomendado nos casos graves, assim como o tratamento de suporte e o aconselhamento genético.

  13. Serum IL-12 Is Increased in Mexican Obese Subjects and Associated with Low-Grade Inflammation and Obesity-Related Parameters

    K. Suárez-Álvarez

    2013-01-01

    Full Text Available Interleukin-(IL- 12 has been recently suggested to participate during development of insulin resistance in obese mice. Nevertheless, serum IL-12 levels have not been accurately determined in overweight and obese humans. We thus studied serum concentrations of IL-12 in Mexican adult individuals, examining their relationship with low-grade inflammation and obesity-related parameters. A total of 147 healthy individuals, 43 normal weight, 61 overweight, and 43 obese subjects participated in the study. Circulating levels of IL-12, tumor necrosis factor-alpha (TNF-α, leptin, insulin, glucose, total cholesterol, and triglyceride were measured after overnight fasting in all of the study subjects. Waist circumference and body fat percentage were recorded for all the participants. Serum IL-12 was significantly higher in overweight and obese individuals than in normal weight controls. Besides being strongly related with body mass index (r=0.5154, serum IL-12 exhibited a significant relationship with abdominal obesity (r=0.4481, body fat percentage (r=0.5625, serum glucose (r=0.3158, triglyceride (r=0.3714, and TNF-α (r=0.4717. Thus, serum levels of IL-12 are increased in overweight and obese individuals and show a strong relationship with markers of low-grade inflammation and obesity in the Mexican adult population. Further research is needed to understand the role of IL-12 in developing obesity-associated alterations in humans.

  14. Downregulation of IL-12 and a novel negative feedback system mediated by CD25+CD4+ T cells

    Sato, Kojiro; Tateishi, Shoko; Kubo, Kanae; Mimura, Toshihide; Yamamoto, Kazuhiko; Kanda, Hiroko

    2005-01-01

    CD25 + CD4 + regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25 - CD4 + T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25 - CD4 + T cells. We further found that CD25 + CD4 + T cells, despite their well-documented 'anergic' nature, proliferate significantly in vitro only when CD25 - CD4 + T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25 + CD4 + T cells suppress CD25 - CD4 + T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25 - CD4 + T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25 + CD4 + and CD25 - CD4 + T cells, and APCs that may contribute to the termination of immune responses

  15. Transformation and oncogenicity by Adenoviruses

    Bernards, R.A.; Eb, A.J. van der

    1984-01-01

    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor

  16. LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN-γ Production by Repressing β-Catenin Activation in Dendritic Cells

    Orr, Selinda J.; Burg, Ashley R.; Chan, Tim; Quigley, Laura; Jones, Gareth W.; Ford, Jill W.; Hodge, Deborah; Razzook, Catherine; Sarhan, Joseph; Jones, Yava L.; Whittaker, Gillian C.; Boelte, Kimberly C.; Lyakh, Lyudmila; Cardone, Marco; O'Connor, Geraldine M.; Tan, Cuiyan; Li, Hongchuan; Anderson, Stephen K.; Jones, Simon A.; Zhang, Weiguo; Taylor, Philip R.; Trinchieri, Giorgio; McVicar, Daniel W.

    2013-01-01

    Fungal pathogens elicit cytokine responses downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled or hemiITAM-containing receptors and TLRs. The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL) encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses. Here we demonstrate that LAB is involved in anti-fungal immunity. We show that Lat2 −/− mice are more susceptible to C. albicans infection than wild type (WT) mice. Dendritic cells (DCs) express LAB and we show that it is basally phosphorylated by the growth factor M-CSF or following engagement of Dectin-2, but not Dectin-1. Our data revealed a unique mechanism whereby LAB controls basal and fungal/pathogen-associated molecular patterns (PAMP)-induced nuclear β-catenin levels. This in turn is important for controlling fungal/PAMP-induced cytokine production in DCs. C. albicans- and LPS-induced IL-12 and IL-23 production was blunted in Lat2−/− DCs. Accordingly, Lat2−/− DCs directed reduced Th1 polarization in vitro and Lat2 −/− mice displayed reduced Natural Killer (NK) and T cell-mediated IFN-γ production in vivo/ex vivo. Thus our data define a novel link between LAB and β-catenin nuclear accumulation in DCs that facilitates IFN-γ responses during anti-fungal immunity. In addition, these findings are likely to be relevant to other infectious diseases that require IL-12 family cytokines and an IFN-γ response for pathogen clearance. PMID:23675302

  17. Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation.

    Bibiana Bielekova

    Full Text Available Diagnosis and management of the neuroinflammatory diseases of the central nervous system (CNS are hindered by the lack of reliable biomarkers of active intrathecal inflammation. We hypothesized that measuring several putative inflammatory biomarkers simultaneously will augment specificity and sensitivity of the biomarker to the clinically useful range. Based on our pilot experiment in which we measured 18 inflammatory biomarkers in 10-fold concentrated cerebrospinal fluid (CSF derived from 16 untreated patients with highly active multiple sclerosis (MS we selected a combination of three CSF biomarkers, IL-12p40, CXCL13 and IL-8, for further validation.Concentrations of IL-12p40, CXCL13 and IL-8 were determined in a blinded fashion in CSF samples from an initial cohort (n = 72 and a confirmatory cohort (n = 167 of prospectively collected, untreated subjects presenting for a diagnostic work-up of possible neuroimmunological disorder. Diagnostic conclusion was based on a thorough clinical workup, which included laboratory assessment of the blood and CSF, neuroimaging and longitudinal follow-up. Receiver operating characteristic (ROC curve analysis in conjunction with principal component analysis (PCA, which was used to combine information from all three biomarkers, assessed the diagnostic value of measured biomarkers.Each of the three biomarkers was significantly increased in MS and other inflammatory neurological disease (OIND in comparison to non-inflammatory neurological disorder patients (NIND at least in one cohort. However, considering all three biomarkers together improved accuracy of predicting the presence of intrathecal inflammation to the consistently good to excellent range (area under the ROC curve = 0.868-0.924.Future clinical studies will determine if a combinatorial biomarker consisting of CSF IL-12p40, CXCL13 and IL-8 provides utility in determining the presence of active intrathecal inflammation in diagnostically

  18. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs

    Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-01-01

    ABSTRACT Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against

  19. CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells.

    Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang

    2017-08-01

    Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice.

  20. Construction and immunogenicity of replication-competent adenovirus 5 host range mutant recombinants expressing HIV-1 gp160 of SF162 and TV1 strains.

    Hidajat, Rachmat; Kuate, Seraphin; Venzon, David; Kalyanaraman, Vaniambadi; Kalisz, Irene; Treece, James; Lian, Ying; Barnett, Susan W; Robert-Guroff, Marjorie

    2010-05-21

    An HIV Env immunogen capable of eliciting broad immunity is critical for a successful vaccine. We constructed and characterized adenovirus 5 host range mutant (Ad5hr) recombinants encoding HIV(SF162) gp160 (subtype B) and HIV(TV1) gp160 (subtype C). Immunization of mice with one or both induced cellular immunity to subtype B and C peptides by ELISpot, and antibody responses with high binding titers to HIV Env of subtypes A, B, C, and E. Notably, Ad5hr-HIV(TV1) gp160 induced better cellular immunity than Ad5hr-HIV(SF162) gp160, either alone or following co-administration. Thus, the TV1 Env recombinant alone may be sufficient for eliciting immune responses against both subtype B and C envelopes. Further studies of Ad5hr-HIV(TV1) gp160 in rhesus macaques will evaluate the suitability of this insert for a future phase I clinical trial using a replication-competent Ad4 vector. Published by Elsevier Ltd.

  1. Effects of electrochemotherapy with cisplatin and peritumoral IL-12 gene electrotransfer on canine mast cell tumors: a histopathologic and immunohistochemical study

    Salvadori Claudia

    2017-09-01

    Full Text Available The study was aimed to characterize tumor response after combined treatment employing electrochemotherapy with IL-12 gene electrotransfer in dogs with spontaneous mast cell tumors (MCT.

  2. Analysis of IL-12 p40 subunit gene and IFN-γ G5644A polymorphisms in Idiopathic Pulmonary Fibrosis

    Welsh Kenneth I

    2003-06-01

    Full Text Available Abstract Background Genes encoding cytokine mediators are prime candidates for genetic analysis in conditions with T-helper (Th cell disease driven imbalance. Idiopathic Pulmonary Fibrosis (IPF is a predominantly Th2 mediated disease associated with a paucity of interferon-gamma (IFN-γ. The paucity of IFN-γ may favor the development of progressive fibrosis in IPF. Interleukin-12 (IL-12 plays a key role in inducing IFN-γ production. The aim of the current study was to assess whether the 1188 (A/C 3'UTR single nucleotide polymorphism (SNP in the IL-12 p40 subunit gene which was recently found to be functional and the 5644 (G/A 3' UTR SNP of the IFN-γ gene were associated with susceptibility to IPF. Methods We investigated the allelic distribution in these loci in UK white Caucasoid subjects comprising 73 patients with IPF and 157 healthy controls. The SNPs were determined using the polymerase chain reaction in association with sequence-specific primers incorporating mismatches at the 3'-end. Results Our results showed that these polymorphisms were distributed similarly in the IPF and control groups Conclusion We conclude that these two potentially important candidate gene single nucleotide polymorphisms are not associated with susceptibility to IPF.

  3. Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate

    Chiang Cheryl L-L

    2011-11-01

    Full Text Available Abstract Background Dendritic cells (DCs are the most potent antigen-presenting cell population for activating tumor-specific T cells. Due to the wide range of methods for generating DCs, there is no common protocol or defined set of criteria to validate the immunogenicity and function of DC vaccines. Methods Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced by hypochlorous acid oxidation of tumor cells. Different culture parameters for clinical-scale DC preparation were investigated, including: 1 culture media; 2 culture surface; 3 duration of activating DCs with lipopolysaccharide (LPS and interferon (IFN-gamma; 4 method of DC harvest; and 5 cryomedia and final DC product formulation. Results DCs cultured in CellGenix DC media containing 2% human AB serum expressed higher levels of maturation markers following lysate-loading and maturation compared to culturing with serum-free CellGenix DC media or AIM-V media, or 2% AB serum supplemented AIM-V media. Nunclon™Δ surface, but not Corning® tissue-culture treated surface and Corning® ultra-low attachment surface, were suitable for generating an optimal DC phenotype. Recombinant trypsin resulted in reduced major histocompatibility complex (MHC Class I and II expression on mature lysate-loaded DCs, however presentation of MHC Class I peptides by DCs was not impaired and cell viability was higher compared to cell scraping. Preservation of DCs with an infusible cryomedia containing Plasma-Lyte A, dextrose, sodium chloride injection, human serum albumin, and DMSO yielded higher cell viability compared to using human AB serum containing 10% DMSO. Finally, activating DCs for 16 hours with LPS and IFN-γ stimulated robust mixed leukocyte reactions (MLRs, and high IL-12p70 production in vitro that continued for 24 hours after the cryopreserved DCs were thawed and

  4. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  5. Monitoring of Biodistribution and Persistence of Conditionally Replicative Adenovirus in a Murine Model of Ovarian Cancer Using Capsid-Incorporated mCherry and Expression of Human Somatostatin Receptor Subtype 2 Gene

    Igor P. Dmitriev

    2014-10-01

    Full Text Available A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.

  6. CD38 gene-modified dendritic cells inhibit murine asthma development by increasing IL-12 production and promoting Th1 cell differentiation.

    Wang, Jiaoli; Zhu, Weiguo; Chen, Yinghu; Lin, Zhendong; Ma, Shenglin

    2016-11-01

    Predominant T helper (Th)2 and impaired Th1 cell polarization has a crucial role in the development of asthma. Cluster of differentiation (CD)38 is associated with the increased release of interleukin (IL)‑12 from dendritic cells (DCs) and DC‑induced Th1 cell polarization. However, whether CD38 expression affects DC function in asthma development remains unknown. In the current study, adenoviruses were constructed containing the murine CD38 gene. Overexpression of CD38 protein level in DCs induced from bone‑marrow derived DCs (BMDCs) by recombinant mouse granulocyte macrophage colony‑stimulating factor and IL‑4 was achieved through 24 h adenovirus infection. The results demonstrated that BMDCs with CD38 overexpression exhibited no phenotypic change; however, following stimulation with lipopolysaccharide (LPS), maturation and IL‑12 secretion were increased. In addition, CD38‑overexpressing BMDCs stimulated with LPS exhibited more effective Th1 cell differentiation. Mice that were administered CD38‑overexpressing BMDCs exhibited milder symptoms of asthma. Furthermore, decreased IL‑4, IL‑5 and IL‑13 levels were detected in bronchoalveolar lavage fluid (BALF), reduced immunoglobulin E levels were measured in the sera, and increased interferon‑γ was detected in BALF from the recipients of CD38‑overexpressing BMDCs. Increased phosphorylated‑p38 expression was also detected in LPS-stimulated CD38-overexpressing BMDCs, whereas pretreatment with a p38‑specific inhibitor was able to abolish the effects of LPS stimulation and CD38 overexpression on IL‑12 release and Th1 cell differentiation in BMDCs. These results suggested that CD38 may be involved in the DC function of alleviating asthma via restoration of the Th1/Th2 balance, thus providing a novel strategy for asthma therapy.

  7. Immunizing Patients With Metastatic Melanoma Using Recombinant Adenoviruses Encoding MART-1 or gp100 Melanoma Antigens

    Rosenberg, Steven A.; Zhai, Yifan; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Seipp, Claudia A.; Einhorn, Jan H.; Roberts, Bruce; White, Donald E.

    2008-01-01

    Background: The characterization of the genes encoding melanoma-associated antigens MART-1 or gp100, recognized by T cells, has opened new possibilities for the development of immunization strategies for patients with metastatic melanoma. With the use of recombinant adenoviruses expressing either MART-1 or gp100 to immunize patients with metastatic melanoma, we evaluated the safety, immunologic, and potential therapeutic aspects of these immunizations. Methods: In phase I studies, 54 patients received escalating doses (between 107 and 1011 plaque-forming units) of recombinant adenovirus encoding either MART-1 or gp100 melanoma antigen administered either alone or followed by the administration of interleukin 2 (IL-2). The immunologic impact of these immunizations on the development of cellular and antibody reactivity was assayed. Results: Recombinant adenoviruses expressing MART-1 or gp100 were safely administered. One of 16 patients with metastatic melanoma receiving the recombinant adenovirus MART-1 alone experienced a complete response. Other patients achieved objective responses, but they had received IL-2 along with an adenovirus, and their responses could be attributed to the cytokine. Immunologic assays showed no consistent immunization to the MART-1 or gp100 transgenes expressed by the recombinant adenoviruses. High levels of neutralizing antibody were found in the pretreatment sera of the patients. Conclusions: High doses of recombinant adenoviruses could be safely administered to cancer patients. High levels of neutralizing antibody present in patients' sera prior to treatment may have impaired the ability of these viruses to immunize patients against melanoma antigens. PMID:9862627

  8. Biologic meshes and synthetic meshes in cancer patients: a double-edged sword: differences in production of IL-6 and IL-12 caused by acellular dermal matrices in human immune cells.

    Karsten, Maria Margarete; Enders, Sabine; Knabl, Julia; Kirn, Verena; Düwell, Peter; Rack, Brigitte; Blohmer, Jens-Uwe; Mayr, Doris; Dian, Darius

    2018-05-01

    In 2005, Breuing et al. first described the use of acellular dermal matrices (ADMs) in breast cancer patients. ADMs are assumed to be safe to use in an oncologic setting, but data from controlled studies are still needed. Here, we investigate the effects of ADMs on the production of interleukin (IL)-6 and IL-12, key regulators of immune suppression and activation. Strattice (ST), CollaMend (CM), and Biodesign (BD) biologic meshes and TiLoop, a synthetic mesh (TL), were used in this study. We isolated myeloid dendritic cells (MDCs), untouched plasmacytoid dendritic cells (pDCs), naïve B cells, and CD8+ T cells and co-cultured these cells with either the biologic meshes or TL. As positive controls, we used CpG ODN 2216 or lipopolysaccharide (LPS). The cytokine concentrations of IL-12p70 and IL-6 were determined after 7 days using sandwich ELISA sets. There were highly significant differences between the ADMs and TL in terms of their ability to stimulate immunologic responses. IL-6 expression was significantly increased in B cells (p = 0.0006131) and T cells (p = 0.00418) when comparing TL and ADMs. We also identified significant differences in IL-12 production by B cells (p = 0.0166) and T cells (p = 0.003636) when comparing TL and ADMs. Despite the assumed lack of an immunological response to ADMs, in our experimental study, human immune cells reacted with significantly different cytokine profiles. These findings may have implications for the potential activation or suppression of effector cells in cancer patients and could explain some of the post clinical post surgical signs of ADMS like skin rush and seroma.

  9. The bacterial preparation OK432 induces IL-12p70 secretion in human dendritic cells in a TLR3 dependent manner.

    Hovden, Arnt-Ove; Karlsen, Marie; Jonsson, Roland; Appel, Silke

    2012-01-01

    Dendritic cells (DC) used in therapeutic cancer immunotherapy have to be able to stimulate T cells resulting in an immune response that can efficiently target the cancer cells. One of the critical hurdles has been the lack of IL-12p70 production when maturating the DC, which is rectified by using the bacterial preparation OK432 (trade name Picibanil) to mature the cells. In order to identify the mechanism behind OK432 stimulation of DC, we investigated the contribution of different TLR to examine their involvement in IL-12p70 production. By combining different inhibitors of TLR signaling, we demonstrate here that TLR3 is responsible for the IL-12p70 production of DC induced by OK432. Moreover, our data suggest that the ligand triggering IL-12p70 secretion upon TLR3 stimulation is sensitive to proteinase and partly also RNAse treatment. The fact that a bacterial compound like OK432 can activate the TLR3 pathway in human DC is a novel finding. OK432 demonstrates a critical ability to induce IL-12p70 production, which is of great relevance in DC based cancer immunotherapy.

  10. The bacterial preparation OK432 induces IL-12p70 secretion in human dendritic cells in a TLR3 dependent manner.

    Arnt-Ove Hovden

    Full Text Available Dendritic cells (DC used in therapeutic cancer immunotherapy have to be able to stimulate T cells resulting in an immune response that can efficiently target the cancer cells. One of the critical hurdles has been the lack of IL-12p70 production when maturating the DC, which is rectified by using the bacterial preparation OK432 (trade name Picibanil to mature the cells. In order to identify the mechanism behind OK432 stimulation of DC, we investigated the contribution of different TLR to examine their involvement in IL-12p70 production. By combining different inhibitors of TLR signaling, we demonstrate here that TLR3 is responsible for the IL-12p70 production of DC induced by OK432. Moreover, our data suggest that the ligand triggering IL-12p70 secretion upon TLR3 stimulation is sensitive to proteinase and partly also RNAse treatment. The fact that a bacterial compound like OK432 can activate the TLR3 pathway in human DC is a novel finding. OK432 demonstrates a critical ability to induce IL-12p70 production, which is of great relevance in DC based cancer immunotherapy.

  11. Oncolytic Adenoviruses in Cancer Treatment

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  12. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA.

    Gupta, A; Jha, S; Engel, D A; Ornelles, D A; Dutta, A

    2013-10-17

    Adenoviruses are linear double-stranded DNA viruses that infect human and rodent cell lines, occasionally transform them and cause tumors in animal models. The host cell challenges the virus in multifaceted ways to restrain viral gene expression and DNA replication, and sometimes even eliminates the infected cells by programmed cell death. To combat these challenges, adenoviruses abrogate the cellular DNA damage response pathway. Tip60 is a lysine acetyltransferase that acetylates histones and other proteins to regulate gene expression, DNA damage response, apoptosis and cell cycle regulation. Tip60 is a bona fide tumor suppressor as mice that are haploid for Tip60 are predisposed to tumors. We have discovered that Tip60 is degraded by adenovirus oncoproteins EIB55K and E4orf6 by a proteasome-mediated pathway. Tip60 binds to the immediate early adenovirus promoter and suppresses adenovirus EIA gene expression, which is a master regulator of adenovirus transcription, at least partly through retention of the virally encoded repressor pVII on this promoter. Thus, degradation of Tip60 by the adenoviral early proteins is important for efficient viral early gene transcription and for changes in expression of cellular genes.

  13. Immunomodulatory activities of some new synthesized compounds on serum IL-12 level and the production of IFN-gamma in irradiated female rats

    Noaman, E.; Elgawish, M.A.M.

    2002-01-01

    The immune responds to ionizing radiation with distinct characteristics depending on the dose and dose rate. The prominent suppressive effect of lethal and sublethal doses of ionizing radiation on immunity and hemopoiesis constitutes the basis of the chief clinical manifestations of acute radiation syndrome. The present of research was conducted to evaluate the effects of new compounds synthesized by adding histidine, glutathione or methionine to germanium element on the levels of interferon-gamma (IFN-γ)and interleukin-12 (IL-12) in serum of female rats exposure. The results revealed that exposure to γ-irradiation decreased significantly the levels of IL-12 and I FN-γ 1 and 3 days post-treatment. On the other hand, histidine-germanate could stimulate the production of IL-12 three days post-irradiation while glutathione-germanate and methionine-germanate may be considered as IFN-γ inducer during the investigated periods

  14. Targeted adenovirus mediated inhibition of NF-kappa B-dependent inflammatory gene expression in endothelial cells in vitro and in vivo

    Kuldo, J. M.; Asgeirsdottir, S. A.; Zwiers, P. J.; Bellu, A. R.; Rots, M. G.; Schalk, J. A. C.; Ogawara, K. I.; Trautwein, C.; Banas, B.; Haisma, H. J.; Molema, G.; Kamps, J. A. A. M.

    2013-01-01

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor kappa B signal transduction could silence the proinflammatory activation status of

  15. Dynamic Changes and Clinical Significance of Serum IL-12, IFN-γ, IL-4 in Patients with Hemorrhagic Fever with Renal Syndrome

    Wang Yuhua; Ma Zhijun; Zhao Hong; Zhi Fenyong; Sun Zhijian

    2010-01-01

    To investigate the changes and pathogenic significance of serum interleukin-12p70(IL-12), interferon γ(IFN γ) and IL-4 in patients with hemorrhagic fever with renal syndrome (HFRS), 44 patients were divided into moderate group (20 cases) and severe group (24 cases) according to the severity of illness. The serum levels of IL-12 and IFN γ were detected by enzyme-linked immunosorbent assay, serum IL-4 was tested by radioimmunoassay, blood urea nitrogen (BUN) and platelet were measured by automatic biochemical analyzer and blood analyze. The results showed that the serum levels of IL-12 significantly increased during the first stages of HFRS compared with control group (0.56±0.10μg/L), with a peak value(1.42±1.10μg/L) in moderate group and a peak value (2.11±2.13μg/L) in severe group. The changes of serum IFN γ were same as that of IL-12, and its peak values (15.95±18.05μg/L in moderate group and 5.93±8.24μg/L in severe group) were much higher than that of control group (0.27±0.15μg/L, P<0 01). The serum IL-4 was in normal range with no changes. The changes curve of IL-12 was similar to that of BUN but was contrary to blood platelet count. The elevated serum levels of IL-12 and IFN γ with the imbalance of Th1/Th2 might be the main cause of systemic inflammatory response and involved in the pathogenesis of HFRS. The combination of reasonably symptomatic therapy with immunoregulator should be considered to accelerate recovery of immune function and homeostasis and to improve the prognosis of disease. (authors)

  16. Activation and cytokine profile of monocyte derived dendritic cells in leprosy: in vitro stimulation by sonicated Mycobacterium leprae induces decreased level of IL-12p70 in lepromatous leprosy

    André Flores Braga

    2015-08-01

    Full Text Available Dendritic cells (DCs play a pivotal role in the connection of innate and adaptive immunity of hosts to mycobacterial infection. Studies on the interaction of monocyte-derived DCs (MO-DCs using Mycobacterium leprae in leprosy patients are rare. The present study demonstrated that the differentiation of MOs to DCs was similar in all forms of leprosy compared to normal healthy individuals. In vitro stimulation of immature MO-DCs with sonicated M. leprae induced variable degrees of DC maturation as determined by the increased expression of HLA-DR, CD40, CD80 and CD86, but not CD83, in all studied groups. The production of different cytokines by the MO-DCs appeared similar in all of the studied groups under similar conditions. However, the production of interleukin (IL-12p70 by MO-DCs from lepromatous (LL leprosy patients after in vitro stimulation with M. lepraewas lower than tuberculoid leprosy patients and healthy individuals, even after CD40 ligation with CD40 ligand-transfected cells. The present cumulative findings suggest that the MO-DCs of LL patients are generally a weak producer of IL-12p70 despite the moderate activating properties ofM. leprae. These results may explain the poor M. leprae-specific cell-mediated immunity in the LL type of leprosy.

  17. Activation and cytokine profile of monocyte derived dendritic cells in leprosy: in vitro stimulation by sonicated Mycobacterium leprae induces decreased level of IL-12p70 in lepromatous leprosy.

    Braga, André Flores; Moretto, Daniela Ferraz; Gigliotti, Patrícia; Peruchi, Mariela; Vilani-Moreno, Fátima Regina; Campanelli, Ana Paula; Latini, Ana Carla Pereira; Iyer, Anand; Das, Pranab Kumar; Souza, Vânia Nieto Brito de

    2015-08-01

    Dendritic cells (DCs) play a pivotal role in the connection of innate and adaptive immunity of hosts to mycobacterial infection. Studies on the interaction of monocyte-derived DCs (MO-DCs) using Mycobacterium leprae in leprosy patients are rare. The present study demonstrated that the differentiation of MOs to DCs was similar in all forms of leprosy compared to normal healthy individuals. In vitro stimulation of immature MO-DCs with sonicated M. leprae induced variable degrees of DC maturation as determined by the increased expression of HLA-DR, CD40, CD80 and CD86, but not CD83, in all studied groups. The production of different cytokines by the MO-DCs appeared similar in all of the studied groups under similar conditions. However, the production of interleukin (IL)-12p70 by MO-DCs from lepromatous (LL) leprosy patients after in vitro stimulation with M. leprae was lower than tuberculoid leprosy patients and healthy individuals, even after CD40 ligation with CD40 ligand-transfected cells. The present cumulative findings suggest that the MO-DCs of LL patients are generally a weak producer of IL-12p70 despite the moderate activating properties ofM. leprae. These results may explain the poor M. leprae-specific cell-mediated immunity in the LL type of leprosy.

  18. Evaluation of IL-12RB1, IL-12B, CXCR-3 and IL-17a expression in cases affected by a non-healing form of cutaneous leishmaniasis: an observational study design

    Moafi, Mohammad; Rezvan, Hossein; Sherkat, Roya; Taleban, Roya; Asilian, Ali; Zarkesh Esfahani, Seyed Hamid; Nilforoushzadeh, Mohammad Ali; Jaffary, Fariba; Feizi, Awat

    2017-01-01

    Introduction Seldom cutaneous leishmaniasis (CL) may present as a lasting and active lesion(s), known as a non-healing form of CL (NHCL). Non-functional type 1 T helper (Th1) cells are assumed the most important factor in the outcome of the disease. The present study aims to assess some molecular defects that potentially contribute to Th1 impairment in NHCL. Methods and analysis This prospective observational study will be implemented among five groups. The first and second groups comprise pa...

  19. Development of an immunotherapeutic adenovirus targeting hormone-independent prostate cancer

    Kim JS

    2013-11-01

    Full Text Available Jae Sik Kim,1 Sang Don Lee,2 Sang Jin Lee,3 Moon Kee Chung21Department of Urology, The Catholic University of Korea Incheon St Mary's Hospital, Incheon, 2Pusan National University Yangsan Hospital and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, 3Genitourinary Cancer Branch, National Cancer Center, Goyang, KoreaBackground: To develop a targeting therapy for hormone-independent prostate cancer, we constructed and characterized conditionally replicating oncolytic adenovirus (Ad equipped with mRFP(monomeric red fluorescence protein/ttk (modified herpes simplex virus thymidine kinase This construct was then further modified to express both mRFP/ttk and a soluble form of cytokine FLT3L (fms-related tyrosine kinase 3 ligand simultaneously.Methods: To construct the recombinant oncolytic adenovirus, E1a and E4 genes, which are necessary for adenovirus replication, were controlled by the prostate-specific enhancer sequence (PSES targeting prostate cancer cells expressing prostate-specific antigen (PSA and prostate-specific membrane antigen (PSMA. Simultaneously, it expressed the mRFP/ttk fusion protein in order to be able to elicit the cytotoxic effect.Results: The Ad5/35PSES.mRFP/ttk chimeric recombinant adenovirus was generated successfully. When replication of Ad5/35PSES.mRFP/ttk was evaluated in prostate cancer cell lines under fluorescence microscopy, red fluorescence intensity increased more in LNCaP cells, suggesting that the mRFP/ttk fusion protein was folded functionally. In addition, the replication assay including wild-type adenovirus as a positive control showed that PSES-positive cells (LNCaP and CWR22rv permitted virus replication but not PSES-negative cells (DU145 and PC3. Next, we evaluated the killing activity of this recombinant adenovirus. The Ad5/35PSES.mRFP/ttk killed LNCaP and CWR22rv more effectively. Unlike PSES-positive cells, DU145 and PC3 were resistant to killing by this recombinant

  20. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  1. Infection rate and tissue localization of murine IL-12p40-producing monocyte-derived CD103(+) lung dendritic cells during pulmonary tuberculosis.

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.

  2. The Relationship Between Serum Levels of Total IgE, IL-18, IL-12, IFN- γ and Disease Severity in Children With Atopic Dermatitis

    2006-01-01

    Full Text Available Studies about the role of cytokines on the immunopathogenesis of atopic dermatitis (AD are generally based on in vitro observations and this role has not been completely clarified yet. Serum levels of total IgE, IL-18, IL-12, IFN- γ and the relationship between these parameters and disease severity, determined using the SCORAD index, in a group of atopic patients were investigated in this study. Serum levels of total IgE were measured by the nephelometric method and serum levels of IL-18, IL-12/p40 and IFN- γ were measured by ELISA method. Serum levels of total IgE and IL-18 were found significantly higher in study group than in controls ( p<.001 . There was no statistically significant difference between patients and controls in respect of serum levels of IL-12/p40 ( p=.227 . A statistically significant relationship between SCORAD values and serum levels of total IgE ( p<.001 , IL-18 ( p<.001 , and IL-12/p40 ( p<.001 was determined. These results show that serum levels of IL-18 can be a sensitive parameter that importantly correlates with clinical severity of AD, can play a role in the immunopathogenesis of AD, and furthermore may be used in the diagnosis and follow-up of the disease in addition to other parameters.

  3. Selective recruitment of Th I cells induced by re-infection of succeptible and resistant mice with Pseudomonas aerugionosa in the lungs indicates protective role of IL-12

    Moser, C; Jensen, P O; Kobayashi, O

    2002-01-01

    , resistance to re-infection was paralleled by a shift towards a Th1-dominated response and increased IL-12 production. No significant increase in serum IgG was observed in the re-infected mice. In conclusion, these results indicate a protective role for a Th1-dominated response, independent of antibody...

  4. Experimental study of changes of skin blister fluid NPY, IL-12, sICAM-1 and GM-CSF levels in patients with vitiligo in progressive stage

    Bi Mingye; Huang Haifen

    2011-01-01

    Objective: To explore the significance of changes of skin blister fluid NPY, IL-12, sICAM-1 and GM-CSF levels in patients with vitiligo in progressive stage. Methods: 80 patients with vitiligo in progressive stage were divided into two groups (vulgaris vitiligo groups : n=54, segmental vitiligo groups : n=26) Their blister fluid levels of NPY and GM-CSF were determined by radioimmunoassay(RIA), and IL-12 and sICAM-1 were determined by enzyme immunoassay. Results: The levels of skin blister fluid NPY were definitely higher in vitiliginous skin than those in non-vitiliginous patches in segmental vitiligo groups (P 0.05). The levels of skin blister fluid IL-12, sICAM-1 and GM-CSF were all obviously higher in vitiliginous skin than that in non-vitiliginous patches in vulgaris vitiligo groups (P 0.05). Conclusion: The changes of skin blister fluid NPY, IL-12, sICAM-1 and GM-CSF levels in vitiliginous skin may be closely related to development of difference type vitiligo patients with vitiligo, determination of 4 indexes might be helpful for studying the pathogenesis and clinical diagnosis of vitiligo. (authors)

  5. Interleukin 12B (IL12B) Genetic Variation and Pulmonary Tuberculosis: A Study of Cohorts from The Gambia, Guinea-Bissau, United States and Argentina

    Morris, Gerard A J; Edwards, Digna R Velez; Hill, Philip C

    2011-01-01

    We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one...

  6. Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines.

    Khan, Tila; Heffron, Connie L; High, Kevin P; Roberts, Paul C

    2014-05-03

    Potent and safe adjuvants are needed to improve the efficacy of parenteral and mucosal vaccines. Cytokines, chemokines and growth factors have all proven to be effective immunomodulatory adjuvants when administered with a variety of antigens. We have previously evaluated the efficacy of membrane-anchored interleukins (IL) such as IL-2 and IL-4 co-presented as Cytokine-bearing Influenza Vaccines (CYT-IVACs) using a mouse model of influenza challenge. Here, we describe studies evaluating the parenteral and mucosal adjuvanticity of membrane-bound IL-12 and IL-23 CYT-IVACs in young adult mice. Mucosal immunization using IL-12 and IL-23 bearing whole influenza virus vaccine (WIV) was more effective at eliciting virus-specific nasal IgA and reducing viral lung burden following challenge compared to control WIV vaccinated animals. Both IL-12 and IL-23 bearing WIV elicited the highest anti-viral IgA levels in serum and nasal washes. This study highlights for the first time the mucosal adjuvant potential of IL-12 and IL-23 CYT-IVAC formulations in eliciting mucosal immune responses and reducing viral lung burden. The co-presentation of immunomodulators in direct context with viral antigen in whole inactivated viral vaccines may provide a means to significantly lower the dose of vaccine required for protection.

  7. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE.

    Hagberg, Niklas; Joelsson, Martin; Leonard, Dag; Reid, Sarah; Eloranta, Maija-Leena; Mo, John; Nilsson, Magnus K; Syvänen, Ann-Christine; Bryceson, Yenan T; Rönnblom, Lars

    2018-02-23

    Genetic variants in the transcription factor STAT4 are associated with increased susceptibility to systemic lupus erythematosus (SLE) and a more severe disease phenotype. This study aimed to clarify how the SLE-associated intronic STAT4 risk allele rs7574865[T] affects the function of immune cells in SLE. Peripheral blood mononuclear cells (PBMCs) were isolated from 52 genotyped patients with SLE. Phosphorylation of STAT4 (pSTAT4) and STAT1 (pSTAT1) in response to interferon (IFN)-α, IFN-γ or interleukin (IL)-12, total levels of STAT4, STAT1 and T-bet, and frequency of IFN-γ + cells on IL-12 stimulation were determined by flow cytometry in subsets of immune cells before and after preactivation of cells with phytohaemagglutinin (PHA) and IL-2. Cellular responses and phenotypes were correlated to STAT4 risk allele carriership. Janus kinase inhibitors (JAKi) selective for TYK2 (TYK2i) or JAK2 (JAK2i) were evaluated for inhibition of IL-12 or IFN-γ-induced activation of SLE PBMCs. In resting PBMCs, the STAT4 risk allele was neither associated with total levels of STAT4 or STAT1, nor cytokine-induced pSTAT4 or pSTAT1. Following PHA/IL-2 activation, CD8 + T cells from STAT4 risk allele carriers displayed increased levels of STAT4 resulting in increased pSTAT4 in response to IL-12 and IFN-α, and an augmented IL-12-induced IFN-γ production in CD8 + and CD4 + T cells. The TYK2i and the JAK2i efficiently blocked IL-12 and IFN-γ-induced activation of PBMCs from STAT4 risk patients, respectively. T cells from patients with SLE carrying the STAT4 risk allele rs7574865[T] display an augmented response to IL-12 and IFN-α. This subset of patients may benefit from JAKi treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Adenovirus sequences required for replication in vivo.

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  9. Replication-competent human adenovirus 11p vectors can propagate in Vero cells

    Gokumakulapalle, Madhuri; Mei, Ya-Fang

    2016-01-01

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.

  10. Replication-competent human adenovirus 11p vectors can propagate in Vero cells

    Gokumakulapalle, Madhuri; Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se

    2016-08-15

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.

  11. Functional inhibition of NF-kappa B signal transduction in alpha v alpha beta 3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant I kappa B gene

    Ogawara, K; Kuldo, JM; Oosterhuis, K; Kroesen, BJ; Rots, MG; Trautwein, C; Kimura, T; Haisma, HJ; Molema, G

    2006-01-01

    In order to selectively block nuclear factor kappa B (NF-kappa B)-dependent signal transduction in angiogenic endothelial cells, we constructed an alpha v beta 3 integrin specific adenovirus encoding dominant negative I kappa B (dnI kappa B) as a therapeutic gene. By virtue of RGD modification of

  12. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  13. A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations

    Bossini-Castillo, Lara; Martin, Jose-Ezequiel; Broen, Jasper; Gorlova, Olga; Simeón, Carmen P.; Beretta, Lorenzo; Vonk, Madelon C.; Luis Callejas, Jose; Castellví, Ivan; Carreira, Patricia; José García-Hernández, Francisco; Fernández Castro, Mónica; Coenen, Marieke J.H.; Riemekasten, Gabriela; Witte, Torsten; Hunzelmann, Nicolas; Kreuter, Alexander; Distler, Jörg H.W.; Koeleman, Bobby P.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Palm, Øyvind; Hesselstrand, Roger; Nordin, Annika; Airó, Paolo; Lunardi, Claudio; Scorza, Raffaella; Shiels, Paul; van Laar, Jacob M.; Herrick, Ariane; Worthington, Jane; Denton, Christopher; Tan, Filemon K.; Arnett, Frank C.; Agarwal, Sandeep K.; Assassi, Shervin; Fonseca, Carmen; Mayes, Maureen D.; Radstake, Timothy R.D.J.; Martin, Javier

    2012-01-01

    A single-nucleotide polymorphism (SNP) at the IL12RB2 locus showed a suggestive association signal in a previously published genome-wide association study (GWAS) in systemic sclerosis (SSc). Aiming to reveal the possible implication of the IL12RB2 gene in SSc, we conducted a follow-up study of this locus in different Caucasian cohorts. We analyzed 10 GWAS-genotyped SNPs in the IL12RB2 region (2309 SSc patients and 5161 controls). We then selected three SNPs (rs3790567, rs3790566 and rs924080) based on their significance level in the GWAS, for follow-up in an independent European cohort comprising 3344 SSc and 3848 controls. The most-associated SNP (rs3790567) was further tested in an independent cohort comprising 597 SSc patients and 1139 controls from the USA. After conditional logistic regression analysis of the GWAS data, we selected rs3790567 [PMH= 1.92 × 10−5 odds ratio (OR) = 1.19] as the genetic variant with the firmest independent association observed in the analyzed GWAS peak of association. After the first follow-up phase, only the association of rs3790567 was consistent (PMH= 4.84 × 10−3 OR = 1.12). The second follow-up phase confirmed this finding (Pχ2 = 2.82 × 10−4 OR = 1.34). After performing overall pooled-analysis of all the cohorts included in the present study, the association found for the rs3790567 SNP in the IL12RB2 gene region reached GWAS-level significant association (PMH= 2.82 × 10−9 OR = 1.17). Our data clearly support the IL12RB2 genetic association with SSc, and suggest a relevant role of the interleukin 12 signaling pathway in SSc pathogenesis. PMID:22076442

  14. 21 CFR 866.3020 - Adenovirus serological reagents.

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus... identify adenoviruses directly from clinical specimens. The identification aids in the diagnosis of disease...

  15. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-AD-IU-1

    Gardner, Thomas A

    2006-01-01

    ... independent prostate cancers. The goal of this research is to develop a novel therapeutic agent, Ad-IU-1, using PSES to control the replication of adenovirus and the expression of a therapeutic gene, herpes simplex thymidine kinase (TK...

  16. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-AD-IU-1

    Gardner, Thomas

    2004-01-01

    ... independent prostate cancers. The goal of this research is to develop a novel therapeutic agent, Ad-lu-1, using PSES to control the replication of adenovirus and the expression of a therapeutic gene, herpes simplex thymidine kinase...

  17. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-Ad-IU-1

    Gardner, Thomas A

    2005-01-01

    .... The goal of this research is to develop a novel therapeutic agent, Ad-IU-1, using PSES to control the replication of adenovirus and the expression of a therapeutic gene, herpes simplex thymidine kinase (TK...

  18. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  19. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  20. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Shigeo Koido

    Full Text Available The therapeutic efficacy of fusion cell (FC-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT on the cell surface and released immunostimulatory factors such as heat shock protein (HSP90α and high-mobility group box 1 (HMGB1. A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  1. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts

    Jing Li Huang

    2016-09-01

    Full Text Available Oncolytic adenoviruses (OAds are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor, interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  2. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts.

    Huang, Jing Li; LaRocca, Christopher J; Yamamoto, Masato

    2016-09-19

    Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor), interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  3. An Update on Canine Adenovirus Type 2 and Its Vectors

    Bru, Thierry; Salinas, Sara; Kremer, Eric J.

    2010-01-01

    Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors. PMID:21994722

  4. Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors.

    Mirjam E Belderbos

    Full Text Available Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP or soluble CD14 (sCD14. The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection.

  5. Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    Belderbos, Mirjam E.; Levy, Ofer; Stalpers, Femke; Kimpen, Jan L.; Meyaard, Linde; Bont, Louis

    2012-01-01

    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection. PMID:22442690

  6. TCR-independent functions of Th17 cells mediated by the synergistic actions of cytokines of the IL-12 and IL-1 families.

    Yun Kyung Lee

    Full Text Available The development of Th17 cells is accompanied by the acquisition of responsiveness to both IL-12 and IL-23, cytokines with established roles in the development and/or function of Th1 and Th17 cells, respectively. IL-12 signaling promotes antigen-dependent Th1 differentiation but, in combination with IL-18, allows the antigen-independent perpetuation of Th1 responses. On the other hand, while IL-23 is dispensable for initial commitment to the Th17 lineage, it promotes the pathogenic function of the Th17 cells. In this study, we have examined the overlap between Th1 and Th17 cells in their responsiveness to common pro-inflammatory cytokines and how this affects the antigen-independent cytokine responses of Th17 cells. We found that in addition to the IL-1 receptor, developing Th17 cells also up-regulate the IL-18 receptor. Consequently, in the presence of IL-1β or IL-18, and in the absence of TCR activation, Th17 cells produce Th17 lineage cytokines in a STAT3-dependent manner when stimulated with IL-23, and IFN© via a STAT4-dependent mechanism when stimulated with IL-12. Thus, building on previous findings of antigen-induced plasticity of Th17 cells, our results indicate that this potential of Th17 cells extends to their cytokine-dependent antigen-independent responses. Collectively, our data suggest a model whereby signaling via either IL-1β or IL-18 allows for bystander responses of Th17 cells to pathogens or pathogen products that differentially activate innate cell production of IL-12 or IL-23.

  7. Association analysis of IL10, TNF-α and IL23R-IL12RB2 SNPs with Behçet's disease risk in Western Algeria

    Ouahiba eKhaib Dit Naib

    2013-10-01

    Full Text Available Objective: We have conducted the first study of the association of interleukin (IL-10, tumor necrosis factor alpha (TNF-α and IL23R-IL12RB2 regionSNPswith Behçet's disease (BD in Western Algeria. Methods: A total of 51 BD patients and 96 unrelated controls from West region of Algeria were genotyped by direct sequencing for 11 SNPs including 2 SNPsfrom the IL10 promoter [c.-819T>C (rs1800871, c.-592A>C (rs1800872], 6 SNPs from the TNF-α promoter [c.-1211T>C (rs1799964, c.-1043C>A (rs1800630, c.-1037C>T (rs1799724, c.-556G>A (rs1800750, c.-488G>A (rs1800629 and c.-418G>A (rs361525], and 3 SNPs from the IL23R-IL12RB2 region [g.67747415A>C (rs12119179, g.67740092G>A (rs11209032 and g.67760140T>C (rs924080]. Results: The minor alleles c.-819T and c.-592A were significantly associated with BD (OR= 2.18; 95% CI 1.28-3.73, p = 0.003; whereas, there was weaker association between TNF-αpromoter SNPs or IL23R-IL12RB2 region and disease risk.Conclusion: Unlike the TNF-αand the IL23R-IL12RB2 region SNPs, the two IL10 SNPs were strongly associated with BD. The -819T, and -592A alleles and the -819TT, -819CT, and -592AA and -592CA genotypes seem to be highly involved in the risk of developing of BD in the population of Western Algeria.

  8. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  9. NLRP10 Enhances CD4+ T-Cell-Mediated IFNγ Response via Regulation of Dendritic Cell-Derived IL-12 Release

    Maurizio Vacca

    2017-11-01

    Full Text Available NLRP10 is a nucleotide-binding oligomerization domain-like receptor that functions as an intracellular pattern recognition receptor for microbial products. Here, we generated a Nlrp10−/− mouse to delineate the role of NLRP10 in the host immune response and found that Nlrp10−/− dendritic cells (DCs elicited sub-optimal IFNγ production by antigen-specific CD4+ T cells compared to wild-type (WT DCs. In response to T-cell encounter, CD40 ligation or Toll-like receptor 9 stimulation, Nlrp10−/− DCs produced low levels of IL-12, due to a substantial decrease in NF-κB activation. Defective IL-12 production was also evident in vivo and affected IFNγ production by CD4+ T cells. Upon Mycobacterium tuberculosis (Mtb infection, Nlrp10−/− mice displayed diminished T helper 1-cell responses and increased bacterial growth compared to WT mice. These data indicate that NLRP10-mediated IL-12 production by DCs is critical for IFNγ induction in T cells and contributes to promote the host defense against Mtb.

  10. Changes of IL-12 and IL-18 concentration after 131I therapy in patients with hyperthyroidism from Graves' disease or hashimoto thyroiditis

    Guo Xiaonan; Song Changyi; Zheng Xianghong

    2006-01-01

    Objective: To study the influence of 131 I therapy on the autoimmune status in patients with hyperthyroidism from Graves' disease or Hashimoto thyroiditis. Methods: Thyroid-related hormones and antibodies levels were measured with RIA and IL -2, IL-18 levels were measured with ELISA in 48 hyperthyroid patients (including 41 Graves' disease and 7 Hashimoto thyroiditis) both before and 3-6 months after 131 I treatment as well as in 35 controls. Results: After 131 I therapy, at 3-6 months, 16 of the 48 patients were cured, 17 of the 48 were partially relieved and 15 were rendered hypothyroid. Changes of serum IL-12 and IL-18 were as the follows: (1) Before treatment the serum IL-12 and IL-18 levels were significantly higher in the patients than those in controls (P 0.05). (3) Serum IL-18 levels in all patients after treatment were not significantly different (including those cured, partially relieved or rendered hypothyroid, P>0.05). (4) TGA, TMA percentages in all the patients at anytime were significantly higher than those in controls, but there were no significantly differences among the levels in all the patients. (5) Ser- um IL-12 levels were significantly positively correlated with those of IL-18 and TGA, TMA percentages. Conclusion: 131 I therapy is an effective and safe method to control the hyperthyroid symptoms and it carl also ameliorate the immunological derangement. (authors)

  11. Unbalanced plasma TNF-α and IL-12/IL-10 profile in women with migraine is associated with psychological and physiological outcomes.

    Oliveira, Arão Belitardo; Bachi, André Luis Lacerda; Ribeiro, Reinaldo Teixeira; Mello, Marco Tulio; Tufik, Sergio; Peres, Mario Fernando Prieto

    2017-12-15

    Increased plasma pro-inflammatory and decreased anti-inflammatory cytokines have been implicated in physiological and behavioural aspects of mood- and pain-related disorders, including migraine. In this case-control study, we assessed mood scores, cardiorespiratory fitness (VO 2Peak ), and plasma concentrations of TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12p70 interictally in women with episodic migraine with/without aura (ICHD-II), taking no preventive medicine, and in healthy women recruited from São Paulo Hospital and local community, respectively. Thirty-seven participants (mean±SD age=34±10 and BMI=26.5±4.9) were assessed. Groups (Control, n=17; Migraine, n=20) showed no differences in age, BMI, and VO 2Peak . Migraine patients showed higher tension (p=0.019) and anxiety scores (p=0.046), TNF-α (pmigraine was positively associated with TNF-α and IL-12p70, and negatively associated with IL-6, IL-8, and IL-10. Anxiety scores were positively associated with IL-12p70, and VO 2Peak was negatively associated with TNF-α. In conclusion, an exaggeratedly skewed cytokine profile, in particular the TNF-α and 12p70/IL-10 balance may be related to migraine pathomechanisms, and its psychiatric comorbidities and functional capacity. Additional studies are needed to confirm these results. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Myxoma Virus Expressing Human Interleukin-12 Does Not Induce Myxomatosis in European Rabbits▿

    Stanford, Marianne M.; Barrett, John W.; Gilbert, Philippe-Alexandre; Bankert, Richard; McFadden, Grant

    2007-01-01

    Myxoma virus (MV) is a candidate for oncolytic virotherapy due to its ability to selectively infect and kill tumor cells, yet MV is a species-specific pathogen that causes disease only in European rabbits. To assess the ability of MV to deliver cytokines to tumors, we created an MV (vMyxIL-12) that expresses human interleukin-12 (IL-12). vMyxIL-12 replicates similarly to wild-type MV, and virus-infected cells secrete bioactive IL-12. Yet, vMyxIL-12 does not cause myxomatosis, despite expressing the complete repertoire of MV proteins. Thus, vMyxIL-12 exhibits promise as an oncolytic candidate and is safe in all known vertebrate hosts, including lagomorphs. PMID:17728229

  13. Myxoma virus expressing human interleukin-12 does not induce myxomatosis in European rabbits.

    Stanford, Marianne M; Barrett, John W; Gilbert, Philippe-Alexandre; Bankert, Richard; McFadden, Grant

    2007-11-01

    Myxoma virus (MV) is a candidate for oncolytic virotherapy due to its ability to selectively infect and kill tumor cells, yet MV is a species-specific pathogen that causes disease only in European rabbits. To assess the ability of MV to deliver cytokines to tumors, we created an MV (vMyxIL-12) that expresses human interleukin-12 (IL-12). vMyxIL-12 replicates similarly to wild-type MV, and virus-infected cells secrete bioactive IL-12. Yet, vMyxIL-12 does not cause myxomatosis, despite expressing the complete repertoire of MV proteins. Thus, vMyxIL-12 exhibits promise as an oncolytic candidate and is safe in all known vertebrate hosts, including lagomorphs.

  14. An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1α, IL-1β, IL-12b, and CCL4 from differentiated HL-60 cells.

    Naegelen, Isabelle; Plançon, Sébastien; Nicot, Nathalie; Kaoma, Tony; Muller, Arnaud; Vallar, Laurent; Tschirhart, Eric J; Bréchard, Sabrina

    2015-03-01

    Besides their roles in the killing of pathogens, neutrophils have the capacity to package a variety of cytokines into cytoplasmic granules for subsequent release upon inflammatory conditions. Because the rapid secretion of cytokines orchestrates the action of other immune cells at the infection site and thus, can contribute to the development and chronicity of inflammatory diseases, we aimed to determine the intracellular SNARE machinery responsible for the regulation of cytokine secretion and degranulation. From a constructed gene-expression network, we first selected relevant cytokines for functional validation by the CBA approach. We established a cytokine-secretion profile for human neutrophils and dHL-60 cells, underlining their similar ability to secrete a broad variety of cytokines within proinflammatory conditions mimicked by LPS stimulation. Secondly, after screening of SNARE genes by microarray experiments, we selected STX3 for further functional studies. With the use of a siRNA strategy, we show that STX3 is clearly required for the maximal release of IL-1α, IL-1β, IL-12b, and CCL4 without alteration of other cytokine secretion in dHL-60 cells. In addition, we demonstrate that STX3 is involved in MMP-9 exocytosis from gelatinase granules, where STX3 is partly localized. Our results suggest that the secretion of IL-1α, IL-1β, IL-12b, and CCL4 occurs during gelatinase degranulation, a process controlled by STX3. In summary, these findings provide first evidence that STX3 has an essential role in trafficking pathways of cytokines in neutrophil granulocytes. © Society for Leukocyte Biology.

  15. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  16. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  17. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A; Marchevsky, Renato S; Rocha, Maria Gabrielle L; Dutra, Miriam S; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T

    2014-06-01

    Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. The remarkable clinical protection induced by A2 in an animal model that is

  18. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Gabriel Grimaldi

    2014-06-01

    Full Text Available BACKGROUND: Visceral leishmaniasis (VL is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2 protein that protects against experimental L. infantum infections in mice and dogs. METHODOLOGY/PRINCIPAL FINDINGS: Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12 adsorbed in alum (rA2/rhIL-12/alum; two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2 followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum; and plasmid DNA encoding A2 gene (DNA-A2 boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2. Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. CONCLUSIONS

  19. Immunization with a Novel Human type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models.

    Guo, Qiang; Chan, Jasper Fuk-Woo; Poon, Vincent Kwok-Man; Wu, Shipo; Chan, Chris Chung-Sing; Hou, Lihua; Yip, Cyril Chik-Yan; Ren, Changpeng; Cai, Jian-Piao; Zhao, Mengsu; Zhang, Anna Jinxia; Song, Xiaohong; Chan, Kwok-Hung; Wang, Busen; Kok, Kin-Hang; Wen, Yanbo; Yuen, Kwok-Yung; Chen, Wei

    2018-03-29

    Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne and non-vector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic as they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of two previously reported adenovirus-vectored ZIKV vaccines were performed using non-lethal animal models and/or non-epidemic ZIKV strain. We constructed and evaluated two human adenovirus-5-vectored vaccines containing the ZIKV premembrane-envelope(Ad5-Sig-prM-Env) and envelope(Ad5-Env) proteins, respectively, in multiple non-lethal and lethal animal models using epidemic ZIKV strains. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and significantly lower blood/tissue viral loads than controls(Panimal models, Ad5-Sig-prM-Env-vaccinated mice had significantly(P<0.05) higher titers of anti-ZIKV-specific neutralizing antibody titers and lower(undetectable) viral loads than Ad5-Env-vaccinated mice. The close correlation between the neutralizing antibody titer and viral load helped to explain the better protective effect of Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.

  20. Cancer gene therapy with targeted adenoviruses.

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  1. Deaths from Adenovirus in the US Military

    Dr. Joel Gaydos, science advisor for the Armed Forces Health Surveillance Center, and Dr. Robert Potter, a research associate for the Armed Forces Medical Examiner System, discuss deaths from adenovirus in the US military.

  2. Association study of IL10 and IL23R-IL12RB2 in Iranian patients with Behçet's disease.

    Xavier, Joana M; Shahram, Farhad; Davatchi, Fereydoun; Rosa, Alexandra; Crespo, Jorge; Abdollahi, Bahar Sadeghi; Nadji, Abdolhadi; Jesus, Gorete; Barcelos, Filipe; Patto, José Vaz; Shafiee, Niloofar Mojarad; Ghaderibarim, Fahmida; Oliveira, Sofia A

    2012-08-01

    Independent replication of the findings from genome-wide association studies (GWAS) remains the gold standard for results validation. Our aim was to test the association of Behçet's disease (BD) with the interleukin-10 gene (IL10) and the IL-23 receptor-IL-12 receptor β2 (IL23R-IL12RB2) locus, each of which has been previously identified as a risk factor for BD in 2 different GWAS. Six haplotype-tagging single-nucleotide polymorphisms (SNPs) in IL10 and 42 in IL23R-IL12RB2 were genotyped in 973 Iranian patients with BD and 637 non-BD controls. Population stratification was assessed using a panel of 86 ancestry-informative markers. Subtle evidence of population stratification was found in our data set. In IL10, rs1518111 was nominally associated with BD before and after adjustment for population stratification (odds ratio [OR] for T allele 1.20, 95% confidence interval [95% CI] 1.02-1.40, unadjusted P [P(unadj) ] = 2.53 × 10(-2) ; adjusted P [P(adj) ] = 1.43 × 10(-2) ), and rs1554286 demonstrated a trend toward association (P(unadj) = 6.14 × 10(-2) ; P(adj) = 3.21 × 10(-2) ). Six SNPs in IL23R-IL12RB2 were found to be associated with BD after Bonferroni correction for multiple testing, the most significant of which were rs17375018 (OR for G allele 1.51, 95% CI 1.27-1.78, P(unadj) = 1.93 × 10(-6) ), rs7517847 (OR for T allele 1.48, 95% CI 1.26-1.74, P(unadj) = 1.23 × 10(-6) ), and rs924080 (OR for T allele 1.29, 95% CI 1.20-1.39, P = 1.78 × 10(-5) ). SNPs rs10489629, rs1343151, and rs1495965 were also significantly associated with BD in all tests performed. Results of meta-analyses of our data combined with data from other populations further confirmed the role of rs1518111, rs17375018, rs7517847, and rs924080 in the risk of BD, but no epistatic interactions between IL10 and IL23R-IL12RB2 were detected. Results of imputation analysis highlighted the importance of IL23R regulatory regions in the susceptibility to BD. These findings independently confirm

  3. Adenovirus-vectored Ebola vaccines.

    Gilbert, Sarah C

    2015-01-01

    The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.

  4. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence.

    Freimuth, P; Anderson, C W

    1993-03-01

    The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.

  5. Increased production of IL-4 and IL-12p40 from bronchoalveolar lavage cells are biomarkers of Mycobacterium tuberculosis in the sputum.

    Anna Nolan

    Full Text Available Tuberculosis (TB causes 1.45 million deaths annually world wide, the majority of which occur in the developing world. Active TB disease represents immune failure to control latent infection from airborne spread. Acid-fast bacillus (AFB seen on sputum smear is a biomarker for contagiousness.We enrolled 73 tuberculosis patients with extensive infiltrates into a research study using bronchoalveolar lavage (BAL to sample lung immune cells and assay BAL cell cytokine production. All patients had sputum culture demonstrating Mycobacterium tuberculosis and 59/73 (81% had AFB identified by microscopy of the sputum. Compared with smear negative patients, smear positive patients at presentation had a higher proportion with smoking history, a higher proportion with temperature >38.5(0 C, higher BAL cells/ml, lower percent lymphocytes in BAL, higher IL-4 and IL-12p40 in BAL cell supernatants. There was no correlation between AFB smear and other BAL or serum cytokines. Increasing IL-4 was associated with BAL PMN and negatively associated with BAL lymphocytes. Each 10-fold increase in BAL IL-4 and IL-12p40 increased the odds of AFB smear positivity by 7.4 and 2.2-fold, respectively, in a multi-variable logistic model.Increasing IL-4 and IL-12p40 production by BAL cells are biomarkers for AFB in sputum of patients who present with radiographically advanced TB. They likely reflect less effective immune control of pathways for controlling TB, leading to patients with increased infectiousness.

  6. Default assembly of early adenovirus chromatin

    Spector, David J.

    2007-01-01

    In adenovirus particles, the viral nucleoprotein is organized into a highly compacted core structure. Upon delivery to the nucleus, the viral nucleoprotein is very likely to be remodeled to a form accessible to the transcription and replication machinery. Viral protein VII binds to intra-nuclear viral DNA, as do at least two cellular proteins, SET/TAF-Iβ and pp32, components of a chromatin assembly complex that is implicated in template remodeling. We showed previously that viral DNA-protein complexes released from infecting particles were sensitive to shearing after cross-linking with formaldehyde, presumably after transport of the genome into the nucleus. We report here the application of equilibrium-density gradient centrifugation to the analysis of the fate of these complexes. Most of the incoming protein VII was recovered in a form that was not cross-linked to viral DNA. This release of protein VII, as well as the binding of SET/TAF-Iβ and cellular transcription factors to the viral chromatin, did not require de novo viral gene expression. The distinct density profiles of viral DNA complexes containing protein VII, compared to those containing SET/TAF-Iβ or transcription factors, were consistent with the notion that the assembly of early viral chromatin requires both the association of SET/TAF-1β and the release of protein VII

  7. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Future prospects for the development of cost-effective Adenovirus vaccines

    Fougeroux, Cyrielle; Holst, Peter J

    2017-01-01

    -vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient...... as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes...

  9. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  10. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  11. Enfermedad neurologica por adenovirus Neurologic disease due to adenovirus infection

    Cristina L. Lema

    2005-06-01

    Full Text Available El objetivo de este trabajo fue determinar la prevalencia de adenovirus (ADV en las infecciones del sistema nervioso central (SNC. Se analizaron 108 muestras de líquido cefalorraquídeo (LCR provenientes de 79 casos de encefalitis, 7 meningitis y 22 de otras patologías neurológicas, recibidas en el período 2000-2002. Cuarenta y nueve (47.35% se obtuvieron de pacientes inmunocomprometidos. La presencia de ADV se investigó mediante reacción en cadena de la polimerasa en formato anidado (Nested-PCR. La identificación del genogrupo se realizó mediante análisis filogenético de la secuencia nucleotídica parcial de la región que codifica para la proteína del hexón. Se detectó la presencia de ADV en 6 de 108 (5.5% muestras de LCR analizadas. Todos los casos positivos pertenecieron a pacientes con encefalitis que fueron 79, (6/79, 7.6%. No se observó diferencia estadísticamente significativa entre los casos de infección por ADV en pacientes inmunocomprometidos e inmunocompetentes (p>0.05. Las cepas de ADV detectadas se agruparon en los genogrupos B1 y C. En conclusión, nuestros resultados describen el rol de los ADV en las infecciones neurológicas en Argentina. La información presentada contribuye al conocimiento de su epidemiología, en particular en casos de encefalitis.The aim of this study was to assess the prevalence of adenovirusm (ADV infections in neurological disorders. A total of 108 cerebrospinal fluid (CSF samples from 79 encephalitis cases, 7 meningitis and 22 other neurological diseases analysed in our laboratory between 2000 and 2002 were studied. Forty nine (47.4% belonged to immunocompromised patients. Viral genome was detected using nested polymerase chain reaction (Nested-PCR and ADV genotypes were identified using partial gene sequence analysis of hexon gene. Adenovirus were detected in 6 of 108 (5.5% CSF samples tested. All of these were from encephalitis cases, 6/79, representing 7.6% of them. No statistically

  12. Epidermal growth factor receptor targeting of replication competent adenovirus enhances cytotoxicity in bladder cancer

    van der Poel, HG; Molenaar, B; van Beusechem, VW; Haisma, HJ; Rodriguez, R; Curiel, DT; Gerritsen, WR

    Purpose: We evaluated the delivery and oncolytic potential of targeted replication competent adenoviruses in bladder cancer lines. Materials and Methods: Seven established human bladder cancer tumor lines (5637, SW800, TCCsup, J82, Scaber, T24 and 253J) were studied for the expression of integrins

  13. Transcriptional activation by the E1A regions of adenovirus types 40 and 41

    Loon, A.E. van; Gilardi, P.; Perricaudet, M.; Rozijn, Th. H.; Sussenbach, J.S.

    In order to establish whether the poor growth of the two fastidious adenoviruses types 40 and 41 (Ad40 and Ad41) in HeLa cells is due to a reduced trans-activation by the early region to (E1A), we have determined the trans-activating effect of this region on the expression of the chloramphenicol

  14. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  16. Components of Adenovirus Genome Packaging

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  17. Effects of low dose X-ray irradiation on antigen presentation and IL-12 secretion in human dendritic cells in vitro

    Yan Peng; Jiang Qisheng; Li Fengsheng; He Rui; Wang Cuilan; Li Xiao

    2012-01-01

    Objective: To explore the effects of low dose X-ray irradiation on the ability of antigen presentation and IL-12 secretion in human dendritic cells that had been cultured for different time in vitro. Methods: The human peripheral blood mononuclear cells (PBMC) were collected and differentiated to dendritic cells (DCs) by rhGM-CSF and rhIL-4 treatment in vitro. The DCs were divided into 3 groups, group A: DCs were cultured for 2 d and then irradiated with 0.05, 0.1, 0.2 and 0.5 Gy X-rays; group B: DCs were cultured for 6 d and then irradiated as above; group C:DCs were cultured without irradiation.At 8 d of cell culture, the DCs were applied to activate T cells and CCK-8 was used to detect MLR (mixed lymphocyte reaction), and the antigen presentation ability of DCs was evaluated. MTT assay was also used to test the cell-killing effect of the activated T-cells on A549 cells. IL-12 in the culture medium of DCs was detected by ELISA. Results: After irradiation with 0.2 and 0.5 Gy X-rays, the antigen presentation ability of DCs was decreased in group A (t=2.79 and 3.71, P<0.05), but significantly increased in group B (t=3.60 and 3.11, P<0.05). The ability of the T cell activation was detected and the proliferation of A549 cells was slightly inhibited by the DCs in group A (t=2.89 and 2.91, P<0.05), but was obviously inhibited by the DCs in group B (t=2.91 and 2.82, P<0.05). Meanwhile,the level of IL-12 was dramatically decreased in group A (t=4.44 and 6.93, P<0.05), but was increased in group B (t=3.51 and 4.12, P<0.05). Conclusions: The abilities of antigen presentation and proliferation inhibition of DCs could be down-regulated by low dose (<0.5 Gy) of X-ray irradiation at the early stage of DCs, but was up-regulated at the late stage of DCs culture. (authors)

  18. Adenovirus gene transfer to amelogenesis imperfecta ameloblast-like cells.

    Anton V Borovjagin

    Full Text Available To explore gene therapy strategies for amelogenesis imperfecta (AI, a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5 vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3 fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(vβ3/α(vβ5 integrins and heparan sulfate proteoglycans (HSPGs highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.

  19. Skewed Helper T-Cell Responses to IL-12 Family Cytokines Produced by Antigen-Presenting Cells and the Genetic Background in Behcet’s Disease

    Jun Shimizu

    2013-01-01

    Full Text Available Behcet’s disease (BD is a multisystemic inflammatory disease and is characterized by recurrent attacks on eyes, brain, skin, and gut. There is evidence that skewed T-cell responses contributed to its pathophysiology in patients with BD. Recently, we found that Th17 cells, a new helper T (Th cell subset, were increased in patients with BD, and both Th type 1 (Th1 and Th17 cell differentiation signaling pathways were overactivated. Several researches revealed that genetic polymorphisms in Th1/Th17 cell differentiation signaling pathways were associated with the onset of BD. Here, we summarize current findings on the Th cell subsets, their contribution to the pathogenesis of BD and the genetic backgrounds, especially in view of IL-12 family cytokine production and pattern recognition receptors of macrophages/monocytes.

  20. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-12-03

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.

  1. Influence of genetic polymorphisms of IL23R, STAT3, IL12B, and STAT4 on the risk of aplastic anemia and the effect of immunosuppressive therapy.

    Zhao, Li; Zhu, Huanling; Han, Bing; Wang, Lixin; Sun, Yuming; Lu, Xiaojun; Huang, Chunyan; Tan, Bin; Chen, Chunxia; Qin, Li

    2018-04-01

    Studies have suggested that IL-23/STAT3 and IL-12/STAT4 signaling pathways associate with aplastic anemia (AA) occurrence. Polymorphisms in pathway-related genes may contribute to AA risk. In the current study, we investigated the association between polymorphisms in genes of IL23R, STAT3, IL12B, and STAT4 and occurrence, severity, and immunosuppressive outcome of AA in the Han population in southwest China. In the current 164 AA cases and 211 controls study, we found T allele and TT genotype of rs7574865 were more frequent in the cases than that in the controls. In the additive model, individual carrying rs7574865 T allele demonstrated a 37% (OR (95% CI) = 1.37 (1.02-1.85), Pper = 0.036) increased AA risk. In the recessive model, carrier with rs7574865 TT genotype showed a 2.08-fold increased AA risk (OR (95% CI) = 2.08 (1.14-3.70), Pper = 0.017). Additionally, we showed that G allele and GG genotype of rs11209032 were more frequent in the 88 non-severe AA cases than that in the 76 severe AA ones. Our study also found G allele and GG genotype of rs11209032, and GG-genotype of rs744166 associated with the immunosuppressive therapy outcome in AA patients. Current study results support that functional STAT4 (rs7574865), IL23R (rs11209032), and STAT3 (rs744166) variants may associate with occurrence, severity, and immunosuppressive outcome of AA in the Han population in southwest China.

  2. IFNγ and IL-12 Restrict Th2 Responses during Helminth/Plasmodium Co-Infection and Promote IFNγ from Th2 Cells.

    Stephanie M Coomes

    2015-07-01

    Full Text Available Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635, we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1-/- mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells.

  3. Pregnancy, but not the allergic status, influences spontaneous and induced interleukin-1beta (IL-1beta), IL-6, IL-10 and IL-12 responses.

    Amoudruz, Petra; Minang, Jacob Taku; Sundström, Yvonne; Nilsson, Caroline; Lilja, Gunnar; Troye-Blomberg, Marita; Sverremark-Ekström, Eva

    2006-09-01

    In this study, we investigated how pregnancy influences cytokine production in response to stimulation of the innate and the adaptive immune system, respectively. Peripheral blood mononuclear cells (PBMCs) from allergic (n = 44) and non-allergic (n = 36) women were collected at three time-points: during the third trimester, at delivery and at a non-pregnant state 2 years after delivery. The production of interleukin-1beta (IL-1beta), IL-6, IL-10 and IL-12 was measured by enzyme-linked immunosorbent assay (ELISA) or enzyme-linked immunospot assay (ELISPOT). The spontaneous cytokine production, and the response following stimulation with agents that primarily activate the adaptive part of the immune system [phytohaemagglutinin (PHA), allergen extracts from cat and birch], or lipopolysaccharide (LPS) that activate innate immunity was measured in vitro. There was a significantly higher spontaneous in vitro production of IL-1beta, IL-6 and IL-10 by PBMCs during pregnancy than 2 years after pregnancy, and this was not affected by the allergic status of the women. Conversely, in PHA-stimulated cell cultures there was a lower production of IL-10 and IL-12 during pregnancy than 2 years after pregnancy. LPS-induced IL-6 levels were significantly lower in PBMCs obtained during pregnancy than at 2 years after pregnancy. In addition, we made the interesting observation that in allergic women total immunoglobulin E (IgE) levels were significantly lower 2 years after pregnancy compared to the levels during pregnancy. Taken together, our results indicate that while atopic allergy in women does not have a substantial effect on cytokine production, pregnancy has an obvious effect on the immune system in terms of cytokine production as well as on the total IgE levels.

  4. IL-27 Receptor Signalling Restricts the Formation of Pathogenic, Terminally Differentiated Th1 Cells during Malaria Infection by Repressing IL-12 Dependent Signals

    Villegas-Mendez, Ana; de Souza, J. Brian; Lavelle, Seen-Wai; Gwyer Findlay, Emily; Shaw, Tovah N.; van Rooijen, Nico; Saris, Christiaan J.; Hunter, Christopher A.; Riley, Eleanor M.; Couper, Kevin N.

    2013-01-01

    The IL-27R, WSX-1, is required to limit IFN-γ production by effector CD4+ T cells in a number of different inflammatory conditions but the molecular basis of WSX-1-mediated regulation of Th1 responses in vivo during infection has not been investigated in detail. In this study we demonstrate that WSX-1 signalling suppresses the development of pathogenic, terminally differentiated (KLRG-1+) Th1 cells during malaria infection and establishes a restrictive threshold to constrain the emergent Th1 response. Importantly, we show that WSX-1 regulates cell-intrinsic responsiveness to IL-12 and IL-2, but the fate of the effector CD4+ T cell pool during malaria infection is controlled primarily through IL-12 dependent signals. Finally, we show that WSX-1 regulates Th1 cell terminal differentiation during malaria infection through IL-10 and Foxp3 independent mechanisms; the kinetics and magnitude of the Th1 response, and the degree of Th1 cell terminal differentiation, were comparable in WT, IL-10R1−/− and IL-10−/− mice and the numbers and phenotype of Foxp3+ cells were largely unaltered in WSX-1−/− mice during infection. As expected, depletion of Foxp3+ cells did not enhance Th1 cell polarisation or terminal differentiation during malaria infection. Our results significantly expand our understanding of how IL-27 regulates Th1 responses in vivo during inflammatory conditions and establishes WSX-1 as a critical and non-redundant regulator of the emergent Th1 effector response during malaria infection. PMID:23593003

  5. Exogenous Thyropin from p41 Invariant Chain Diminishes Cysteine Protease Activity and Affects IL-12 Secretion during Maturation of Human Dendritic Cells.

    Tina Zavašnik-Bergant

    Full Text Available Dendritic cells (DC play a pivotal role as antigen presenting cells (APC and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70 during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii.

  6. Circumvention of Immunity to the Adenovirus Major Coat Protein Hexon

    Roy, Soumitra; Shirley, Pamela S.; McClelland, Alan; Kaleko, Michael

    1998-01-01

    Immunity to adenoviruses is an important hurdle to be overcome for successful gene therapy. The presence of antibodies to the capsid proteins prevents efficacious adenovirus vector administration in vivo. We tested whether immunity to a particular serotype of adenovirus (Ad5) may be overcome with a vector that encodes the hexon sequences from a different adenovirus serotype (Ad12). We successfully constructed an adenovirus vector with a chimeric Ad5-Ad12 hexon which was not neutralized by plasma from C57BL/6 mice immunized with Ad5. The vector was also capable of transducing the livers of C57BL/6 mice previously immunized with Ad5. PMID:9658137

  7. Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge.

    Demberg, Thorsten; Boyer, Jean D; Malkevich, Nina; Patterson, L Jean; Venzon, David; Summers, Ebonita L; Kalisz, Irene; Kalyanaraman, V S; Lee, Eun Mi; Weiner, David B; Robert-Guroff, Marjorie

    2008-11-01

    Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.

  8. Clinical significance of changes of serum IL-12, TGF-β, CTGF and PDGF levels after treatment with integrated traditional and western medicine in patients with chronic severe hepatitis B

    Qian Yue

    2010-01-01

    Objective: To investigate the relationship between progress of disease process and changes of serum IL-12, TGF-β, CTGF and PDGF levels in patients with chronic severe hepatitis B. Methods: Serum TGF-β (with RIA) and IL-12, connective tissue growth factor (CTGF) platelet-derived growth factor (PDGF) (all with ELISA) levels were determined both before and after integrated traditional and western medicine treatment in 50 patients with chronic severe hepatitis β as well as once in 50 controls. Results: Before treatment the serum levels of IL-12 were significantly higher in patients with chronic severe hepatitis B than those in the controls (P<0.01), while after treatment, the serum levels of IL-12 were only slightly decreased and remained significantly higher than those in the controls (P<0.01). Before treatment the serum levels of TGF-β, CTGF and PDGF were all significantly higher than those in controls (P<0.01). After treatment, the levels all dropped significantly (vs before treatment, P<0.05), but still remained significantly higher than those in controls (TGF-β, P<0.05, CTGF and PDGF, P<0.01). Conclusion: Detection of changes of IL-12, TGF-β, CTGF and PDGF levels after treatment in patients with chronic severe hepatitis B provided a valuable laboratory basis for stu-ding the progress of disease process. (authors)

  9. Mouse adenovirus type 1 infection of macrophages

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  10. Deaths from Adenovirus in the US Military

    2012-03-26

    Dr. Joel Gaydos, science advisor for the Armed Forces Health Surveillance Center, and Dr. Robert Potter, a research associate for the Armed Forces Medical Examiner System, discuss deaths from adenovirus in the US military.  Created: 3/26/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/29/2012.

  11. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  12. Chimpanzee Adenovirus Vector Ebola Vaccine.

    Ledgerwood, Julie E; DeZure, Adam D; Stanley, Daphne A; Coates, Emily E; Novik, Laura; Enama, Mary E; Berkowitz, Nina M; Hu, Zonghui; Joshi, Gyan; Ploquin, Aurélie; Sitar, Sandra; Gordon, Ingelise J; Plummer, Sarah A; Holman, LaSonji A; Hendel, Cynthia S; Yamshchikov, Galina; Roman, Francois; Nicosia, Alfredo; Colloca, Stefano; Cortese, Riccardo; Bailer, Robert T; Schwartz, Richard M; Roederer, Mario; Mascola, John R; Koup, Richard A; Sullivan, Nancy J; Graham, Barney S

    2017-03-09

    The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10 10 particle units or 2×10 11 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10 11 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10 11 particle-unit dose than in the group that received the 2×10 10 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×10 11 particle-unit dose than among those who received the 2×10 10 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×10 11 particle-unit dose. Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At

  13. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  14. A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy

    Wei, Na; Fan, Jun Kai; Gu, Jin Fa; He, Ling Feng; Tang, Wen Hao; Cao, Xin; Liu, Xin Yuan

    2009-01-01

    Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lower than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.

  15. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  16. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dual effects of adenovirus-mediated thrombopoietin gene transfer on hepatic oval cell proliferation and platelet counts

    Ichiba, Miho; Shimomura, Takashi; Murai, Rie; Hashiguchi, Koichi; Saeki, Toshiya; Yoshida, Yoko; Kanbe, Takamasa; Tanabe, Naotada; Tsuchiya, Hiroyuki; Miura, Norimasa; Tajima, Fumihito; Kurimasa, Akihiro; Hamada, Hirofumi; Shiota, Goshi

    2005-01-01

    Thrombopoietin (TPO) is the growth factor for megakaryocytes and platelets, however, it also acts as a potent regulator of stem cell proliferation. To examine the significance of TPO expression in proliferation of hepatic oval cells, the effect of adenovirus-mediated TPO gene transfer into livers of the Solt-Farber model, which mimics the condition where liver regeneration is impaired, was examined. Hepatic TPO mRNA peaked its expression at 2 days after gene transduction and then gradually decreased. The peripheral platelet number began to increase at 4 days (P < 0.05) and reached its plateau at 9 days (P < 0.01). Oval cells expressed c-Mpl, a receptor for TPO as well as immature hematopoietic and hepatocytic surface markers such as CD34 and AFP. The proliferating cell nuclear antigen-positive oval cells in rats into which adenovirus-TPO gene was transferred at 7 and 9 days were significantly greater than those in adenovirus-LacZ gene transferred (P < 0.05, each), and the total numbers of oval cells in the adenovirus-TPO gene transferred at 9 and 13 days were also significantly greater than those in adenovirus-LacZ gene transferred (P < 0.05, each). Expression of SCF protein was increased at 4, 7, and 9 days by TPO gene administration and that of c-Kit was increased at 4 and 7 days. These data suggest that adenovirus-mediated TPO gene transfer stimulated oval cell proliferation in liver as well as increasing peripheral platelet counts, emphasizing the significance of the TPO/c-Mpl system in proliferation of hepatic oval cells

  18. Human LT-alpha-mediated resistance to autoimmune diabetes is induced in NOD, but not NOD-scid, mice and abrogated by IL-12.

    Miyaguchi, S; Satoh, J; Takahashi, K; Sakata, Y; Nakazawa, T; Miyazaki, J; Toyota, T

    2001-01-01

    Systemic administration of human lymphotoxin-alpha (hLT-alpha) made NOD mice resistant not only to spontaneous autoimmune type 1 diabetes mellitus but also to cyclophosphamide (CY)-induced diabetes and diabetes transfer by diabetic NOD spleen cells (triple resistance). In this study we analyzed the mechanisms of hLT-alpha-induced resistance, focusing on (1) hLT-alpha-induced resistance in the pancreatic beta cell, (2) CY-resistant suppressor cells, (3) suppression of induction or function of effector cells for beta cell destruction, or (4) others. To examine the first possibility in vitro, a NOD-derived beta cell line (MIN6N) was pretreated with hLT-alpha and then mixed with diabetic NOD spleen cells and MIN6N cell viability was measured. Treatment with hLT-alpha did not protect MIN6N cells but rather enhanced cytotoxicity. Next NOD-scid mice were pretreated with hLT-alpha and then transferred with diabetic NOD spleen. All the recipients developed diabetes. These results excluded the first possibility. The second possibility was also excluded by a cotransfer experiment, in which diabetic NOD spleen cells were cotransferred to NOD-scid mice with nontreated or hLT-alpha-treated nondiabetic NOD spleens. There was no significant difference in diabetes incidence between the two groups. To observe the third possibility, spleen cells of hLT-alpha-treated triple-resistant NOD mice were transferred to NOD-scid mice. Diabetes developed in the recipients, although the onset of diabetes was slightly delayed. Finally, hLT-alpha-treated triple-resistant NOD mice developed diabetes 1 week after daily IL-12 treatment. In summary, hLT-alpha administration made NOD mice resistant to effector cells for beta cell destruction. This resistance was induced in NOD, but not in NOD-scid, mice, indicating that lymphocytes were obligatory for the resistance. However, it was not mediated by transferable suppressor cells. Because effector cells were present in hLT-alpha-treated NOD spleen and

  19. Enhanced transduction and replication of RGD-fiber modified adenovirus in primary T cells.

    Sadhak Sengupta

    2011-03-01

    Full Text Available Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR. T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD.A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35-45% of splenic T cells were transduced by Ad-RGD.Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin.

  20. Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis.

    Ashish V Chintakuntlawar

    2010-04-01

    Full Text Available Human adenovirus (HAdV infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9 signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9(-/- mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD. These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins.

  1. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z.

    2005-01-01

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-α and IL-12, similar to that obtained using 5 μg/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-κB transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-α in U937 cells by hResistin was markedly reduced in the presence of either dominant negative IκBα plasmid or PDTC, a pharmacological inhibitor of NF-κB. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications

  2. Cytokine genes polymorphisms of TNF, IFN-y and IL-12 as potential predictors in the onset of cervical disease associated with HR HPV infections

    Tasić Dijana

    2015-01-01

    Full Text Available Cervical cancer highly correlates with infection caused by highly oncogenic types of human papillomavirus (high risk HPV, HR HPV, which is one of the most common sexually transmitted pathogens and is a key factor in the development of cervical disease. However, malignant transformation of cells and tumor development are multifactorial and result from the interaction of a large number of factors such as virus genotype and its oncogenic potential, the state of the infected cells, the immune response of the host, as well as many cofactors such as smoking, oral contraceptives, multiparity, early beginning of sexual life, promiscuity, poor socio-economic conditions, poor diet, etc. Recently, an increasing number of studies have focused on examining the role of genetic basis of the pathogenesis and evolution of HR HPV cervical disease. It is known that genes polymorphisms that encode proteins involved in the functioning of Th1 and Th17 cell response may be associated with better or worse prognosis of cervical disease in women with persistent HR HPV infection. Therefore, the single nucleotide polymorphisms (SNP of the genes encoding TNF, IFN-y and IL-12 can be considered as putative biomarkers that may have predictive value for the development of the HR HPV cervical carcinoma.

  3. A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition.

    Bagheri, Neda; Shiina, Marisa; Lauffenburger, Douglas A; Korn, W Michael

    2011-02-01

    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced

  4. A novel psittacine adenovirus identified during an outbreak of avian chlamydiosis and human psittacosis: zoonosis associated with virus-bacterium coinfection in birds.

    Kelvin K W To

    2014-12-01

    Full Text Available Chlamydophila psittaci is found worldwide, but is particularly common among psittacine birds in tropical and subtropical regions. While investigating a human psittacosis outbreak that was associated with avian chlamydiosis in Hong Kong, we identified a novel adenovirus in epidemiologically linked Mealy Parrots, which was not present in healthy birds unrelated to the outbreak or in other animals. The novel adenovirus (tentatively named Psittacine adenovirus HKU1 was most closely related to Duck adenovirus A in the Atadenovirus genus. Sequencing showed that the Psittacine adenovirus HKU1 genome consists of 31,735 nucleotides. Comparative genome analysis showed that the Psittacine adenovirus HKU1 genome contains 23 open reading frames (ORFs with sequence similarity to known adenoviral genes, and six additional ORFs at the 3' end of the genome. Similar to Duck adenovirus A, the novel adenovirus lacks LH1, LH2 and LH3, which distinguishes it from other viruses in the Atadenovirus genus. Notably, fiber-2 protein, which is present in Aviadenovirus but not Atadenovirus, is also present in Psittacine adenovirus HKU1. Psittacine adenovirus HKU1 had pairwise amino acid sequence identities of 50.3-54.0% for the DNA polymerase, 64.6-70.7% for the penton protein, and 66.1-74.0% for the hexon protein with other Atadenovirus. The C. psittaci bacterial load was positively correlated with adenovirus viral load in the lung. Immunostaining for fiber protein expression was positive in lung and liver tissue cells of affected parrots, confirming active viral replication. No other viruses were found. This is the first documentation of an adenovirus-C. psittaci co-infection in an avian species that was associated with a human outbreak of psittacosis. Viral-bacterial co-infection often increases disease severity in both humans and animals. The role of viral-bacterial co-infection in animal-to-human transmission of infectious agents has not received sufficient attention

  5. A novel psittacine adenovirus identified during an outbreak of avian chlamydiosis and human psittacosis: zoonosis associated with virus-bacterium coinfection in birds.

    To, Kelvin K W; Tse, Herman; Chan, Wan-Mui; Choi, Garnet K Y; Zhang, Anna J X; Sridhar, Siddharth; Wong, Sally C Y; Chan, Jasper F W; Chan, Andy S F; Woo, Patrick C Y; Lau, Susanna K P; Lo, Janice Y C; Chan, Kwok-Hung; Cheng, Vincent C C; Yuen, Kwok-Yung

    2014-12-01

    Chlamydophila psittaci is found worldwide, but is particularly common among psittacine birds in tropical and subtropical regions. While investigating a human psittacosis outbreak that was associated with avian chlamydiosis in Hong Kong, we identified a novel adenovirus in epidemiologically linked Mealy Parrots, which was not present in healthy birds unrelated to the outbreak or in other animals. The novel adenovirus (tentatively named Psittacine adenovirus HKU1) was most closely related to Duck adenovirus A in the Atadenovirus genus. Sequencing showed that the Psittacine adenovirus HKU1 genome consists of 31,735 nucleotides. Comparative genome analysis showed that the Psittacine adenovirus HKU1 genome contains 23 open reading frames (ORFs) with sequence similarity to known adenoviral genes, and six additional ORFs at the 3' end of the genome. Similar to Duck adenovirus A, the novel adenovirus lacks LH1, LH2 and LH3, which distinguishes it from other viruses in the Atadenovirus genus. Notably, fiber-2 protein, which is present in Aviadenovirus but not Atadenovirus, is also present in Psittacine adenovirus HKU1. Psittacine adenovirus HKU1 had pairwise amino acid sequence identities of 50.3-54.0% for the DNA polymerase, 64.6-70.7% for the penton protein, and 66.1-74.0% for the hexon protein with other Atadenovirus. The C. psittaci bacterial load was positively correlated with adenovirus viral load in the lung. Immunostaining for fiber protein expression was positive in lung and liver tissue cells of affected parrots, confirming active viral replication. No other viruses were found. This is the first documentation of an adenovirus-C. psittaci co-infection in an avian species that was associated with a human outbreak of psittacosis. Viral-bacterial co-infection often increases disease severity in both humans and animals. The role of viral-bacterial co-infection in animal-to-human transmission of infectious agents has not received sufficient attention and should be

  6. Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice

    Crettaz, J. (Julien); Berraondo, P. (Pedro); Mauleon, I. (Itsaso); Ochoa, L. (Laura); Shankar, V. (Vijay); Barajas, M. (Miguel); Rooijen, N. (Nico) van; Kochanek, S. (Stefan); Qian, C. (Cheng); Prieto, J. (Jesús); Hernandez-Alcoceba, R. (Rubén); Gonzalez-Aseguinolaza, G. (Gloria)

    2006-01-01

    Recombinant adenoviruses (Ad) are among the most extensively used vectors for liver gene transfer. One of the major limitations for the clinical application of these vectors is the inflammatory immune response associated with systemic administration of high dose of virus. We evaluated the effect of Ad administration route on the inflammatory immune response and liver transgene expression. We compared direct intrahepatic injection (IH) with the systemic administration via tail vein (IV). IH in...

  7. Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12

    Riezebos-Brilman, Annelies; Regts, Joke; Chen, Margaret; Wilschut, Jan; Daemen, Toos

    2009-01-01

    To enhance the efficacy of a therapeutic immunisition strategy against human papillomavirus-induced cervical cancer we evaluated the adjuvant effect of interleukin-12 (IL12) expressed by a Semliki Forest virus vector (SFV) in mice. Depending on the dose and schedule. SFV-IL12 Stimulated

  8. Development of a swine specific 9-plex Luminex cytokine assay and assessment of immunity after porcine reproductive and respiratory syndrome virus (PRRSV) vaccination: Elevated serum IL-12 levels are not predictive of protect

    A Luminex multiplex swine cytokine assay was developed to measure 9 cytokines simultaneously in pig serum and tested in a porcine reproductive and respiratory syndrome virus (PRRSV) vaccine/challenge study. This assay detects innate (IL-1ß, IL-6, IL-8, IFNa, TNFa); regulatory (IL-10), Th1 (IL-12, I...

  9. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  10. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  11. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  12. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults.

    Spyros A Kalams

    Full Text Available DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques.We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37 DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug IL-12 DNA. However, after three doses, 44.4% (4/9 of vaccinees receiving gag DNA and intermediate dose (500 ug of IL-12 DNA demonstrated a detectable cellular immune response.This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity.Clinicaltrials.gov NCT00115960 NCT00111605.

  13. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    Erkko Ylösmäki

    Full Text Available MicroRNAs (miRNAs are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5 in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  14. Accumulation of infectious mutants in stocks during the propagation of fiber-modified recombinant adenoviruses

    Ugai, Hideyo; Inabe, Kumiko; Yamasaki, Takahito; Murata, Takehide; Obata, Yuichi; Hamada, Hirofumi; Yokoyama, Kazunari K.

    2005-01-01

    In infected cells, replication errors during viral proliferation generate mutations in adenoviruses (Ads), and the mutant Ads proliferate and evolve in the intracellular environment. Genetically fiber-modified recombinant Ads (rAd variants) were generated, by modification of the fiber gene, for therapeutic applications in host cells that lack or express reduced levels of the Coxsackievirus and adenovirus receptor. To assess the genetic modifications of rAd variants that might induce the instability of Ad virions, we examined the frequencies of mutants that accumulated in propagated stocks. Seven of 41 lines of Ad variants generated mutants in the stocks and all mutants were infectious. Moreover, all the mutations occurred in the modified region that had been added at the 3' end of the fiber gene. Our results show that some genetic modifications at the carboxyl terminus of Ad fiber protein lead to the instability of Ad virions

  15. Canine Adenovirus Type 2 Vector Generation via I-Sce1-Mediated Intracellular Genome Release

    Ibanes, Sandy; Kremer, Eric J.

    2013-01-01

    When canine adenovirus type 2 (CAdV-2, or also commonly referred to as CAV-2) vectors are injected into the brain parenchyma they preferentially transduce neurons, are capable of efficient axonal transport to afferent regions, and allow transgene expression for at last >1 yr. Yet, translating these data into a user-friendly vector platform has been limited because CAV-2 vector generation is challenging. Generation of E1-deleted adenovirus vectors often requires transfection of linear DNA fragments of >30 kb containing the vector genome into an E1-transcomplementing cell line. In contrast to human adenovirus type 5 vector generation, CAV-2 vector generation is less efficient due, in part, to a reduced ability to initiate replication and poor transfectibility of canine cells with large, linear DNA fragments. To improve CAV-2 vector generation, we generated an E1-transcomplementing cell line expressing the estrogen receptor (ER) fused to I-SceI, a yeast meganuclease, and plasmids containing the I-SceI recognition sites flanking the CAV-2 vector genome. Using transfection of supercoiled plasmid and intracellular genome release via 4-OH-tamoxifen-induced nuclear translocation of I-SceI, we improved CAV-2 vector titers 1,000 fold, and in turn increased the efficacy of CAV-2 vector generation. PMID:23936483

  16. A rapid generation of adenovirus vector with a genetic modification in hexon protein.

    Di, Bingyan; Mao, Qinwen; Zhao, Junli; Li, Xing; Wang, Dongyang; Xia, Haibin

    2012-02-10

    The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Canine adenovirus type 2 vector generation via I-Sce1-mediated intracellular genome release.

    Sandy Ibanes

    Full Text Available When canine adenovirus type 2 (CAdV-2, or also commonly referred to as CAV-2 vectors are injected into the brain parenchyma they preferentially transduce neurons, are capable of efficient axonal transport to afferent regions, and allow transgene expression for at last >1 yr. Yet, translating these data into a user-friendly vector platform has been limited because CAV-2 vector generation is challenging. Generation of E1-deleted adenovirus vectors often requires transfection of linear DNA fragments of >30 kb containing the vector genome into an E1-transcomplementing cell line. In contrast to human adenovirus type 5 vector generation, CAV-2 vector generation is less efficient due, in part, to a reduced ability to initiate replication and poor transfectibility of canine cells with large, linear DNA fragments. To improve CAV-2 vector generation, we generated an E1-transcomplementing cell line expressing the estrogen receptor (ER fused to I-SceI, a yeast meganuclease, and plasmids containing the I-SceI recognition sites flanking the CAV-2 vector genome. Using transfection of supercoiled plasmid and intracellular genome release via 4-OH-tamoxifen-induced nuclear translocation of I-SceI, we improved CAV-2 vector titers 1,000 fold, and in turn increased the efficacy of CAV-2 vector generation.

  18. The search for adenovirus 14 in children in Houston, Texas.

    Laham, Federico R; Jewell, Alan M; Schoonover, Shauna L; Demmler, Gail J; Piedra, Pedro A

    2008-07-01

    Adenovirus (Ad)14 has recently emerged in the United States causing outbreaks of severe respiratory disease. To determine if Ad14 circulated in Houston, Texas, during the same time as an outbreak in military recruits in nearby San Antonio, 215 pediatric adenovirus isolates were serotyped using microneutralization. None were Ad14; Ad1, Ad2, and Ad3 were the most common identified serotypes.

  19. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  20. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Jason S Richardson

    Full Text Available BACKGROUND: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP. The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. METHODOLOGY/PRINCIPAL FINDINGS: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP. Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. CONCLUSIONS/SIGNIFICANCE: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the

  1. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  2. Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response.

    Poornima L N Kotha

    2015-03-01

    Full Text Available Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR, a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.

  3. Alternate adenovirus type-pairs for a possible circumvention of host immune response to recombinant adenovirus vectors.

    Nász, I; Adám, E; Lengyel, A

    2001-01-01

    With the help of monoclonal antibodies the existence of at least 18 different earlier not known intertype (IT) specific epitopes were demonstrated in different numbers and combinations on the hexons of different adenovirus serotypes. The IT specific epitopes play an important role in the experimental gene therapy and in the recombinant adenovirus vaccination because of the harmful immune response of the recipient organisms directed against the many different epitopes of the adenovirus vector. For the elimination of harmful effect the authors suggest the use of multiple vectors, each prepared from different adenovirus serotypes showing the loosest antigenic relationship to each other. The vectors would be used sequentially when second or multiple administration is needed. For this purpose the authors determined and described 31 such adenovirus type-pairs, which are probably the best alternates for sequential use in experimental gene therapy.

  4. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...

  5. Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre

    Guardado Calvo, Pablo [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Llamas-Saiz, Antonio L. [Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Langlois, Patrick [Agence Francaise de Securité Sanitaire des Aliments, Unité Génétique Virale et Biosecurité, Site Les Croix, BP 53, F-22440 Ploufragan (France); Raaij, Mark J. van, E-mail: vanraaij@usc.es [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain)

    2006-05-01

    Avian adenovirus long-fibre head trimers were expressed, purified and crystallized. The crystals belong to space group C2 (unit-cell parameters a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°). A complete highly redundant data set was collected to 2.2 Å resolution at 100 K using a rotating-anode X-ray source. Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress.

  6. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus Cholera Toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity

    Maeto, Cynthia Alejandra; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, Maria Magdalena

    2017-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after thei...

  7. Análisis de la diversidad genética de una población de caballos Criollo Argentino mediante polimorfismos de nucleótido simple de los genes IL12B y TNF-α

    Claudia Corbi Botto

    2016-12-01

    Full Text Available La caracterización de una población es el primer paso en el camino hacia su conservación y utilización. La raza Criollo Argentino es una de las referentes de la especie equina en Argentina y, por lo tanto, un patrimonio ganadero local que representa un recurso único en cuanto a la identidad y al sistema productivo del país. El objetivo de este trabajo fue analizar una población de caballos Criollo Argentino del norte de Argentina por medio de la caracterización de la variabilidad genética de cuatro marcadores moleculares del tipo single nucleotide polymorphism (SNP localizados en los genes que codifican para las citoquinas IL-12B y TNF-α. Se recolectaron muestras de 50 caballos Criollo Argentino y se extrajo ADN genómico que se utilizó para tipificar mediante PCR-Pirosecuenciación®, tres SNPs en el promotor del gen TNF-α y uno localizado en el exón 5 del gen IL-12B. Se estimaron frecuencias génicas y genotípicas, equilibrio de Hardy-Weinberg y diversidad genética. En IL-12B se detectaron dos alelos, mientras que en TNF-α se observaron 4 haplotipos, entre ellos uno no descripto hasta el momento en equinos. Los resultados muestran que la heterocigosis esperada fue superior en TNF-α (He=0,764 y la población se encuentra en equilibrio para el locus IL-12B (p-valor ≥0,05. Se destaca la importancia del caballo Criollo Argentino como acervo génico para el estudio de características genéticas y enfermedades de la especie equina.

  8. Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration

    Ugai, Hideyo; Yamasaki, Takahito; Hirose, Megumi; Inabe, Kumiko; Kujime, Yukari; Terashima, Miho; Liu, Bingbing; Tang, Hong; Zhao, Mujun; Murata, Takehide; Kimura, Makoto; Pan, Jianzhi; Obata, Yuichi; Hamada, Hirofumi; Yokoyama, Kazunari K.

    2005-01-01

    Adenoviruses are excellent vectors for gene transfer and are used extensively for high-level expression of the products of transgenes in living cells. The development of simple and rapid methods for the purification of stable infectious recombinant adenoviruses (rAds) remains a challenge. We report here a method for the purification of infectious adenovirus type 5 (Ad5) that involves ultracentrifugation on a cesium chloride gradient at 604,000g for 15 min at 4 deg C and tangential flow filtration. The entire procedure requires less than two hours and infectious Ad5 can be recovered at levels higher than 64% of the number of plaque-forming units (pfu) in the initial crude preparation of viruses. We have obtained titers of infectious purified Ad5 of 1.35 x 10 10 pfu/ml and a ratio of particle titer to infectious titer of seven. The method described here allows the rapid purification of rAds for studies of gene function in vivo and in vitro, as well as the rapid purification of Ad5

  9. Development of replication-deficient adenovirus malaria vaccines.

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  10. Mycobacterium tuberculosis promotes Th17 expansion via regulation of human dendritic cells toward a high CD14 and low IL-12p70 phenotype that reprograms upon exogenous IFN-γ

    Søndergaard, Jonas Nørskov; Laursen, Janne Marie; Rosholm, Lisbeth Buus

    2014-01-01

    ) are some of the first cells to interact with Mtb and they play an essential role in development of protective immunity against Mtb. Given that Mtb-infected macrophages have difficulties in degrading Mtb, they need help from IFN-γ-producing CD4+ T cells propagated via IL-12p70-producing DCs. Here we report...... that Mtb modifies human DC plasticity by expanding a CD14+ DC subset with weak IL-12p70-producing capacity. The CD14+ Mtb-promoted subset was furthermore poor inducers of IFN-γ by naive CD4+ T cells, but instead prompted IL-17A-producing RORγT+ CD4+ T cells. Mtb-derived peptidoglycan and mannosylated...... conclude that Mtb exploits DC plasticity to reduce production of IL-12p70, and that this process is entirely divertible by exogenous IFN-γ. These data suggest that strategies to increase local IFN-γ production in the lungs of tuberculosis patients may boost host immunity toward Mtb....

  11. Construction of an infectious clone of human adenovirus type 41.

    Chen, Duo-Ling; Dong, Liu-Xin; Li, Meng; Guo, Xiao-Juan; Wang, Min; Liu, Xin-Feng; Lu, Zhuo-Zhuang; Hung, Tao

    2012-07-01

    Human adenovirus type 41 (HAdV-41) is well known for its fastidiousness in cell culture. To construct an infectious clone of HAdV-41, a DNA fragment containing the left and right ends of HAdV-41 as well as a kanamycin resistance gene and a pBR322 replication origin was excised from the previously constructed plasmid pAd41-GFP. Using homologous recombination, the plasmid pKAd41 was generated by co-transformation of the E. coli BJ5183 strain with this fragment and HAdV-41 genomic DNA. Virus was rescued from pKAd41-transfected 293TE7 cells, a HAdV-41 E1B55K-expressing cell line. The genomic integrity of the rescued virus was verified by restriction analysis and sequencing. Two fibers on the virion were confirmed by western blot. Immunofluorescence showed that more expression of the hexon protein could be found in 293TE7 cells than in 293 cells after HAdV-41 infection. The feature of non-lytic replication was preserved in 293TE7 cells, since very few progeny HAdV-41 viruses were released to the culture medium. These results show that pKAd41 is an effective infectious clone and suggest that the combination of pKAd41 and 293TE7 cells is an ideal system for virological study of HAdV-41.

  12. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway.

    Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan

    2016-10-01

    Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

  13. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  14. ZEB1 limits adenoviral infectability by transcriptionally repressing the Coxsackie virus and Adenovirus Receptor

    Lacher Markus D

    2011-07-01

    Full Text Available Abstract Background We have previously reported that RAS-MEK (Cancer Res. 2003 May 1;63(9:2088-95 and TGF-β (Cancer Res. 2006 Feb 1;66(3:1648-57 signaling negatively regulate coxsackie virus and adenovirus receptor (CAR cell-surface expression and adenovirus uptake. In the case of TGF-β, down-regulation of CAR occurred in context of epithelial-to-mesenchymal transition (EMT, a process associated with transcriptional repression of E-cadherin by, for instance, the E2 box-binding factors Snail, Slug, SIP1 or ZEB1. While EMT is crucial in embryonic development, it has been proposed to contribute to the formation of invasive and metastatic carcinomas by reducing cell-cell contacts and increasing cell migration. Results Here, we show that ZEB1 represses CAR expression in both PANC-1 (pancreatic and MDA-MB-231 (breast human cancer cells. We demonstrate that ZEB1 physically associates with at least one of two closely spaced and conserved E2 boxes within the minimal CAR promoter here defined as genomic region -291 to -1 relative to the translational start ATG. In agreement with ZEB1's established role as a negative regulator of the epithelial phenotype, silencing its expression in MDA-MB-231 cells induced a partial Mesenchymal-to-Epithelial Transition (MET characterized by increased levels of E-cadherin and CAR, and decreased expression of fibronectin. Conversely, knockdown of ZEB1 in PANC-1 cells antagonized both the TGF-β-induced down-regulation of E-cadherin and CAR and the reduction of adenovirus uptake. Interestingly, even though ZEB1 clearly contributes to the TGF-β-induced mesenchymal phenotype of PANC-1 cells, TGF-β did not seem to affect ZEB1's protein levels or subcellular localization. These findings suggest that TGF-β may inhibit CAR expression by regulating factor(s that cooperate with ZEB1 to repress the CAR promoter, rather than by regulating ZEB1 expression levels. In addition to the negative E2 box-mediated regulation the minimal

  15. Adenovirus Infection in Children with Diarrhea Disease in ...

    Ad40) and type 41(Ad41), can cause acute and severe diarrhea in young children worldwide. This study was conducted to delineate the epidemiological features of adenoviruses identified in children with gastroenteritis in Northwestern Nigeria.

  16. Human adenovirus-36 and childhood obesity.

    Atkinson, Richard L

    2011-09-01

    There is increasing evidence that obesity in humans is associated with infection with human adenovirus-36 (Adv36). Infection of experimental animals with Adv36 demonstrates that this virus causes obesity. Human studies have shown a prevalence of Adv36 infection of 30% or greater in obese adult humans, but a correlation with obesity has not always been demonstrated. In contrast, three published studies and one presented study with a total of 559 children all show that there is an increase in prevalence of Adv36 infection in obese children (28%) compared to non-obese children (10%). The explanation for the apparently more robust correlation of Adv36 infection with obesity in children vs. adults is not clear. The data in animals and people suggests that Adv36 has contributed to the worldwide increase in childhood obesity. More research is needed to identify prevalences and consequences of Adv36 infection in people of all age groups and geographic locations.

  17. Adenovirus 36 DNA in human adipose tissue.

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  18. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  19. Acute Hepatitis and Pancytopenia in Healthy Infant with Adenovirus

    Amr Matoq

    2016-01-01

    Full Text Available Adenoviruses are a common cause of respiratory infection, pharyngitis, and conjunctivitis in infants and young children. They are known to cause hepatitis and liver failure in immunocompromised patients; they are a rare cause of hepatitis in immunocompetent patients and have been known to cause fulminant hepatic failure. We present a 23-month-old immunocompetent infant who presented with acute noncholestatic hepatitis, hypoalbuminemia, generalized anasarca, and pancytopenia secondary to adenovirus infection.

  20. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  1. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  2. Induction of mesenchymal cell phenotypes in lung epithelial cells by adenovirus E1A.

    Behzad, A R; Morimoto, K; Gosselink, J; Green, J; Hogg, J C; Hayashi, S

    2006-12-01

    Epithelial-mesenchymal transformation is now recognised as an important feature of tissue remodelling. The present report concerns the role of adenovirus infection in inducing this transformation in an animal model of chronic obstructive pulmonary disease. Guinea pig primary peripheral lung epithelial cells (PLECs) transfected with adenovirus E1A (E1A-PLECs) were compared to guinea pig normal lung fibroblasts (NLFs) transfected with E1A (E1A-NLFs). These cells were characterised by PCR, immunocytochemistry, electron microscopy, and Western and Northern blot analyses. Electrophoretic mobility shift assays were performed in order to examine nuclear factor (NF)-kappaB and activator protein (AP)-1 binding activities. E1A-PLECs and E1A-NLFs positive for E1A DNA, mRNA and protein expressed cytokeratin and vimentin but not smooth muscle alpha-actin. Both exhibited cuboidal morphology and junctional complexes, but did not contain lamellar bodies or express surfactant protein A, B or C mRNAs. These two cell types differed, however, in their NF-kappaB and AP-1 binding after lipopolysaccharide stimulation, possibly due to differences in the expression of the subunits that comprise these transcriptional complexes. E1A transfection results in the transformation of peripheral lung epithelial cells and normal lung fibroblasts to a phenotype intermediate between that of the two primary cells. It is postulated that this intermediate phenotype may play a major role in the remodelling of the airways in chronic obstructive pulmonary disease associated with persistence of adenovirus E1A DNA.

  3. Cellular promoters incorporated into the adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and beta-globin promoters.

    Babiss, L E; Friedman, J M; Darnell, J E

    1986-01-01

    In the accompanying paper (Friedman et al., Mol. Cell. Biol. 6:3791-3797, 1986), hepatoma-specific expression of the rat albumin promoter within the adenovirus genome was demonstrated. However, the rate of transcription was very low compared with that of the endogenous chromosomal albumin gene. Here we show that in hepatoma cells the adenovirus E1A enhancer, especially in the presence of E1A protein, greatly stimulates transcription from the albumin promoter but not the mouse beta-globin prom...

  4. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  5. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  6. Radioiodine uptake of undifferentiated thyroid cancer cells by adenovirus-mediated Na+/ I- symporter gene transfer

    So, Y.; Lee, Y. J.; Shin, J. H.; Oh, H. J.; Chung, J. K.; Lee, M. C.; Cho, B. Y. [College of Medicine, Univ. of Seoul National, Seoul (Korea, Republic of); Lee, K. H. [Samsung Medical Center, Seoul (Korea, Republic of)

    2003-07-01

    To increase radioiodine uptake on undifferentiated thyroid cancer cell (ARO cells) by adenovirus-mediated human Na+/I- symporter (hNIS) gene transfer. Recombinant adenovirus Ad-hNIS was manufactured successfully. After transfecting Ad-hNIS on ARO cells, in vitro I-125 uptake and efflux studies were performed. For in vivo studies, 1.510'8 p.f.u. (50 1) of Ad-hNIS was injected into xenograft ARO tumors on the R thigh of BALB/c nu/nu mice (n=12), and same amount of normal saline was injected into xenograft ARO tumors on the L thigh. Two, 3, 4 and 6 days after intratumoral injection of Ad-hNIS, I-131 images (3 mice per day) were taken and xenograft tumors on both thighs were all excised. Total RNA was extracted from each tumor tissue and RT-PCR was performed to confirm the hNIS expression of Ad-hNIS injected xenograft ARO tumors. I-125 uptake of Ad-hNIS transfected ARO cells was increased up to 233 folds at 120 minutes in vitro. I-125 efflux study revealed rapid washout of I-125 from Ad-hNIS transfected ARO cells. On dynamic image, I-131 uptake of Ad-hNIS injected ARO tumor was continuously increased until 60 minutes. Mean count ratios of xenograft ARO tumors (R/L) of 60 minutes I-131 images at 2, 3, 4 and 6 days after Ad-hNIS injection were 2.85, 2.54, 2.31, and 2.18, each. On RT-PCR, hNIS expression of Ad-hNIS transfected ARO xenograft tumors was confirmed. Radioiodine uptake was successfully increased in ARO cells by adenovirus-mediated hNIs gene transfer both in vitro and in vivo.

  7. Functional Interaction of the Adenovirus IVa2 Protein with Adenovirus Type 5 Packaging Sequences

    Ostapchuk, Philomena; Yang, Jihong; Auffarth, Ece; Hearing, Patrick

    2005-01-01

    Adenovirus type 5 (Ad5) DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent on the cis-acting packaging domain located between nucleotides 230 and 380. Seven AT-rich repeats that direct packaging have been identified within this domain. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a ro...

  8. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    Lúcia Cristina Jamli Abel

    2014-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins—are potent inducers of proinflammatory responses (i.e., cytokines and NO production by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.

  9. Latest Insights on Adenovirus Structure and Assembly

    Carmen San Martín

    2012-05-01

    Full Text Available Adenovirus (AdV capsid organization is considerably complex, not only because of its large size (~950 Å and triangulation number (pseudo T = 25, but also because it contains four types of minor proteins in specialized locations modulating the quasi-equivalent icosahedral interactions. Up until 2009, only its major components (hexon, penton, and fiber had separately been described in atomic detail. Their relationships within the virion, and the location of minor coat proteins, were inferred from combining the known crystal structures with increasingly more detailed cryo-electron microscopy (cryoEM maps. There was no structural information on assembly intermediates. Later on that year, two reports described the structural differences between the mature and immature adenoviral particle, starting to shed light on the different stages of viral assembly, and giving further insights into the roles of core and minor coat proteins during morphogenesis [1,2]. Finally, in 2010, two papers describing the atomic resolution structure of the complete virion appeared [3,4]. These reports represent a veritable tour de force for two structural biology techniques: X-ray crystallography and cryoEM, as this is the largest macromolecular complex solved at high resolution by either of them. In particular, the cryoEM analysis provided an unprecedented clear picture of the complex protein networks shaping the icosahedral shell. Here I review these latest developments in the field of AdV structural studies.

  10. Adenovirus 36 and Obesity: An Overview.

    Ponterio, Eleonora; Gnessi, Lucio

    2015-07-08

    There is an epidemic of obesity starting about 1980 in both developed and undeveloped countries definitely associated with multiple etiologies. About 670 million people worldwide are obese. The incidence of obesity has increased in all age groups, including children. Obesity causes numerous diseases and the interaction between genetic, metabolic, social, cultural and environmental factors are possible cofactors for the development of obesity. Evidence emerging over the last 20 years supports the hypothesis that viral infections may be associated with obesity in animals and humans. The most widely studied infectious agent possibly linked to obesity is adenovirus 36 (Adv36). Adv36 causes obesity in animals. In humans, Adv36 associates with obesity both in adults and children and the prevalence of Adv36 increases in relation to the body mass index. In vivo and in vitro studies have shown that the viral E4orf1 protein (early region 4 open reading frame 1, Adv) mediates the Adv36 effect including its adipogenic potential. The Adv36 infection should therefore be considered as a possible risk factor for obesity and could be a potential new therapeutic target in addition to an original way to understand the worldwide rise of the epidemic of obesity. Here, the data indicating a possible link between viral infection and obesity with a particular emphasis to the Adv36 will be reviewed.

  11. Adenovirus 36 and Obesity: An Overview

    Eleonora Ponterio

    2015-07-01

    Full Text Available There is an epidemic of obesity starting about 1980 in both developed and undeveloped countries definitely associated with multiple etiologies. About 670 million people worldwide are obese. The incidence of obesity has increased in all age groups, including children. Obesity causes numerous diseases and the interaction between genetic, metabolic, social, cultural and environmental factors are possible cofactors for the development of obesity. Evidence emerging over the last 20 years supports the hypothesis that viral infections may be associated with obesity in animals and humans. The most widely studied infectious agent possibly linked to obesity is adenovirus 36 (Adv36. Adv36 causes obesity in animals. In humans, Adv36 associates with obesity both in adults and children and the prevalence of Adv36 increases in relation to the body mass index. In vivo and in vitro studies have shown that the viral E4orf1 protein (early region 4 open reading frame 1, Adv mediates the Adv36 effect including its adipogenic potential. The Adv36 infection should therefore be considered as a possible risk factor for obesity and could be a potential new therapeutic target in addition to an original way to understand the worldwide rise of the epidemic of obesity. Here, the data indicating a possible link between viral infection and obesity with a particular emphasis to the Adv36 will be reviewed.

  12. Interaction of Human Enterochromaffin Cells with Human Enteric Adenovirus 41 Leads to Serotonin Release and Subsequent Activation of Enteric Glia Cells.

    Westerberg, Sonja; Hagbom, Marie; Rajan, Anandi; Loitto, Vesa; Persson, B David; Allard, Annika; Nordgren, Johan; Sharma, Sumit; Magnusson, Karl-Eric; Arnberg, Niklas; Svensson, Lennart

    2018-04-01

    Human adenovirus 41 (HAdV-41) causes acute gastroenteritis in young children. The main characteristics of HAdV-41 infection are diarrhea and vomiting. Nevertheless, the precise mechanism of HAdV-41-induced diarrhea is unknown, as a suitable small-animal model has not been described. In this study, we used the human midgut carcinoid cell line GOT1 to investigate the effect of HAdV-41 infection and the individual HAdV-41 capsid proteins on serotonin release by enterochromaffin cells and on enteric glia cell (EGC) activation. We first determined that HAdV-41 could infect the enterochromaffin cells. Immunofluorescence staining revealed that the cells expressed HAdV-41-specific coxsackievirus and adenovirus receptor (CAR); flow cytometry analysis supported these findings. HAdV-41 infection of the enterochromaffin cells induced serotonin secretion dose dependently. In contrast, control infection with HAdV-5 did not induce serotonin secretion in the cells. Confocal microscopy studies of enterochromaffin cells infected with HAdV-41 revealed decreased serotonin immunofluorescence compared to that in uninfected cells. Incubation of the enterochromaffin cells with purified HAdV-41 short fiber knob and hexon proteins increased the serotonin levels in the harvested cell supernatant significantly. HAdV-41 infection could also activate EGCs, as shown in the significantly altered expression of glia fibrillary acidic protein (GFAP) in EGCs incubated with HAdV-41. The EGCs were also activated by serotonin alone, as shown in the significantly increased GFAP staining intensity. Likewise, EGCs were activated by the cell supernatant of HAdV-41-infected enterochromaffin cells. IMPORTANCE The nonenveloped human adenovirus 41 causes diarrhea, vomiting, dehydration, and low-grade fever mainly in children under 2 years of age. Even though acute gastroenteritis is well described, how human adenovirus 41 causes diarrhea is unknown. In our study, we analyzed the effect of human adenovirus 41

  13. Uptake of 131I-FIAU in BMSCs infected by adenovirus vector-mediated HSV1-TK

    Zhang Binqing; Wu Tao; Sun Xun; An Rui

    2010-01-01

    Report gene HSV1-TK and therapy gene were connected by IRES, and recombinant adenovirus vector Ad5-TK-IRES-BDNF-EGFP was constructed and infected with BMSCs at MOI of 0, 50, 100, 150, 200 and 250, with the control recombinant adenovirus vector of Ad5-EGFP. Green fluorescence cell positive rate was observed under the microscopy. MTT assay was used to determine the cell proliferation. bFGF and EGF were used to induce the BMSCs, and RQ-PCR to determine target gene expression in infection BMSCs. Uptake of 131 I-FIAU was assessed by gamma counter. The data were processed by SPSS11.code. Recombinant adenovirus at MOI 150 had high infectionefficiency and low toxic in BMSCs. There was a strong relation between the mRNA expression of TK and BDNF in infection BMSCs. The significance between the infection BMSCs and control BMSCs for uptake of 131 I-FIAU at all the time points was t=23.06-173.83 and P 131 I-FIAU. This suggests a suitable gene vector for tracing genetically modified stem cells. (authors)

  14. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  15. Intratracheal injection of adenovirus containing the human MNSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis

    Epperly, Michael W.; Bray, Jenifer A.; Krager, Stephen; Berry, Luann M.; Gooding, William; Engelhardt, John F.; Zwacka, Ralf; Travis, Elizabeth L.; Greenberger, Joel S.

    1999-01-01

    Purpose: A dose and volume limiting factor in radiation treatment of thoracic cancer is the development of fibrosis in normal lung. The goal of the present study was to determine whether expression prior to irradiation of a transgene for human manganese superoxide dismutase (MnSOD) or human copper/zinc superoxide dismutase (Cu/ZnSOD) protects against irradiation-induced lung damage in mice. Methods and Materials: Athymic Nude (Nu/J) mice were intratracheally injected with 10 9 plaque-forming units (PFU) of a replication-incompetent mutant adenovirus construct containing the gene for either human MnSOD, human copper/zinc superoxide dismutase (Cu/ZnSOD) or LacZ. Four days later the mice were irradiated to the pulmonary cavity to doses of 850, 900, or 950 cGy. To demonstrate adenoviral infection, nested reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out with primers specific for either human MnSOD or Cu/ZnSOD transgene on freshly explanted lung, trachea, or alveolar type II cells, and immunohistochemistry was used to measure LacZ expression. RNA was extracted on day 0, 1, 4, or 7 after 850 cGy of irradiation from lungs of mice that had previously received adenovirus or had no treatment. Slot blot analysis was performed to quantitate RNA expression for IL-1, tumor necrosis factor (TNF)-α, TGF-β, MnSOD, or Cu/ZnSOD. Lung tissue was explanted and tested for biochemical activity of MnSOD or Cu/ZnSOD after adenovirus injection. Other mice were sacrificed 132 days after irradiation, lungs excised, frozen in OCT, (polyvinyl alcohol, polyethylene glycol mixture) sectioned, H and E stained, and evaluated for percent of the lung demonstrating organizing alveolitis. Results: Mice injected intratracheally with adenovirus containing the gene for human MnSOD had significantly reduced chronic lung irradiation damage following 950 cGy, compared to control mice or mice injected with adenovirus containing the gene for human Cu/ZnSOD or LacZ. Immunohistochemistry

  16. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens.

    Zhang, Dongchao; Long, Yuqing; Li, Meng; Gong, Jianfang; Li, Xiaohui; Lin, Jing; Meng, Jiali; Gao, Keke; Zhao, Ruili; Jin, Tianming

    2018-04-01

    Avian infectious bronchitis caused by the infectious bronchitis virus (IBV), and mycoplasmosis caused by Mycoplasma gallisepticum (MG) are two major respiratory diseases in chickens that have resulted in severe economic losses in the poultry industry. We constructed a recombinant adenovirus that simultaneously expresses the S1 spike glycoprotein of IBV and the TM-1 protein of MG (pBH-S1-TM-1-EGFP). For comparison, we constructed two recombinant adenoviruses (pBH-S1-EGFP and pBH-TM-1-EGFP) that express either the S1 spike glycoprotein or the TM-1 protein alone. The protective efficacy of these three vaccine constructs against challenge with IBV and/or MG was evaluated in specific pathogen free chickens. Groups of seven-day-old specific pathogen free chicks were immunized twice, two weeks apart, via the oculonasal route with the pBH-S1-TM-1-EGFP, pBH-S1-EGFP, or pBH-TM-1-EGFP vaccine candidates or the commercial attenuated infectious bronchitis vaccine strain H52 and MG vaccine strain F-36 (positive controls), and challenged with virulent IBV or MG two weeks later. Interestingly, by days 7 and 14 after the booster immunization, pBH-S1-TM-1-EGFP-induced antibody titre was significantly higher (P attenuated commercial IBV vaccine; however, there was no significant difference between the pBH-S1-TM-1-EGFP and attenuated commercial MG vaccine groups (P > 0.05). The clinical signs, the gross, and histopathological lesions scores of the adenovirus vaccine constructs were not significantly different from that of the attenuated commercial IBV or MG vaccines (positive controls) (P > 0.05). These results demonstrate the potential of the bivalent pBH-S1-TM-1-EGFP adenovirus construct as a combination vaccine against IB and mycoplasmosis.

  17. Adenovirus respiratory tract infections in Peru.

    Julia S Ampuero

    Full Text Available BACKGROUND: Currently, there is a paucity of data regarding human adenovirus (HAdv circulation in Andean regions of South America. To address this shortcoming, we report the clinical, phylogenetic, and epidemiologic characteristics of HAdv respiratory tract infection from a large sentinel surveillance study conducted among adults and children in Peru. METHODS/PRINCIPAL FINDINGS: Oropharyngeal swabs were collected from participants visiting any of 38 participating health centers, and viral pathogens were identified by immunofluorescence assay in cell culture. In addition, molecular characterization was performed on 226 randomly selected HAdv samples. Between 2000 and 2010, a total of 26,375 participants with influenza-like illness (ILI or severe acute respiratory infection (SARI were enrolled in the study. HAdv infection was identified in 2.5% of cases and represented 6.2% of all viral pathogens. Co-infection with a heterologous virus was found in 15.5% of HAdv cases. HAdv infection was largely confined to children under the age of 15, representing 88.6% of HAdv cases identified. No clinical characteristics were found to significantly distinguish HAdv infection from other respiratory viruses. Geographically, HAdv infections were more common in sites from the arid coastal regions than in the jungle or highland regions. Co-circulation of subgroups B and C was observed each year between 2006 and 2010, but no clear seasonal patterns of transmission were detected. CONCLUSIONS/SIGNIFICANCE: HAdv accounted for a significant fraction of those presenting with ILI and SARI in Peru and tended to affect the younger population disproportionately. Longitudinal studies will help better characterize the clinical course of patients with HAdv in Peru, as well as determine the role of co-infections in the evolution of illness.

  18. Adenovirus respiratory tract infections in Peru.

    Ampuero, Julia S; Ocaña, Víctor; Gómez, Jorge; Gamero, María E; Garcia, Josefina; Halsey, Eric S; Laguna-Torres, V Alberto

    2012-01-01

    Currently, there is a paucity of data regarding human adenovirus (HAdv) circulation in Andean regions of South America. To address this shortcoming, we report the clinical, phylogenetic, and epidemiologic characteristics of HAdv respiratory tract infection from a large sentinel surveillance study conducted among adults and children in Peru. Oropharyngeal swabs were collected from participants visiting any of 38 participating health centers, and viral pathogens were identified by immunofluorescence assay in cell culture. In addition, molecular characterization was performed on 226 randomly selected HAdv samples. Between 2000 and 2010, a total of 26,375 participants with influenza-like illness (ILI) or severe acute respiratory infection (SARI) were enrolled in the study. HAdv infection was identified in 2.5% of cases and represented 6.2% of all viral pathogens. Co-infection with a heterologous virus was found in 15.5% of HAdv cases. HAdv infection was largely confined to children under the age of 15, representing 88.6% of HAdv cases identified. No clinical characteristics were found to significantly distinguish HAdv infection from other respiratory viruses. Geographically, HAdv infections were more common in sites from the arid coastal regions than in the jungle or highland regions. Co-circulation of subgroups B and C was observed each year between 2006 and 2010, but no clear seasonal patterns of transmission were detected. HAdv accounted for a significant fraction of those presenting with ILI and SARI in Peru and tended to affect the younger population disproportionately. Longitudinal studies will help better characterize the clinical course of patients with HAdv in Peru, as well as determine the role of co-infections in the evolution of illness.

  19. Adenovirus Respiratory Tract Infections in Peru

    Ampuero, Julia S.; Ocaña, Víctor; Gómez, Jorge; Gamero, María E.; Garcia, Josefina; Halsey, Eric S.; Laguna-Torres, V. Alberto

    2012-01-01

    Background Currently, there is a paucity of data regarding human adenovirus (HAdv) circulation in Andean regions of South America. To address this shortcoming, we report the clinical, phylogenetic, and epidemiologic characteristics of HAdv respiratory tract infection from a large sentinel surveillance study conducted among adults and children in Peru. Methods/Principal Findings Oropharyngeal swabs were collected from participants visiting any of 38 participating health centers, and viral pathogens were identified by immunofluorescence assay in cell culture. In addition, molecular characterization was performed on 226 randomly selected HAdv samples. Between 2000 and 2010, a total of 26,375 participants with influenza-like illness (ILI) or severe acute respiratory infection (SARI) were enrolled in the study. HAdv infection was identified in 2.5% of cases and represented 6.2% of all viral pathogens. Co-infection with a heterologous virus was found in 15.5% of HAdv cases. HAdv infection was largely confined to children under the age of 15, representing 88.6% of HAdv cases identified. No clinical characteristics were found to significantly distinguish HAdv infection from other respiratory viruses. Geographically, HAdv infections were more common in sites from the arid coastal regions than in the jungle or highland regions. Co-circulation of subgroups B and C was observed each year between 2006 and 2010, but no clear seasonal patterns of transmission were detected. Conclusions/Significance HAdv accounted for a significant fraction of those presenting with ILI and SARI in Peru and tended to affect the younger population disproportionately. Longitudinal studies will help better characterize the clinical course of patients with HAdv in Peru, as well as determine the role of co-infections in the evolution of illness. PMID:23056519

  20. Adenovirus dodecahedron, as a drug delivery vector.

    Monika Zochowska

    Full Text Available BACKGROUND: Bleomycin (BLM is an anticancer antibiotic used in many cancer regimens. Its utility is limited by systemic toxicity and dose-dependent pneumonitis able to progress to lung fibrosis. The latter can affect up to nearly 50% of the total patient population, out of which 3% will die. We propose to improve BLM delivery by tethering it to an efficient delivery vector. Adenovirus (Ad dodecahedron base (DB is a particulate vector composed of 12 copies of a pentameric viral protein responsible for virus penetration. The vector efficiently penetrates the plasma membrane, is liberated in the cytoplasm and has a propensity to concentrate around the nucleus; up to 300000 particles can be observed in one cell in vitro. PRINCIPAL FINDINGS: Dodecahedron (Dd structure is preserved at up to about 50 degrees C at pH 7-8 and during dialysis, freezing and drying in the speed-vac in the presence of 150 mM ammonium sulfate, as well as during lyophilization in the presence of cryoprotectants. The vector is also stable in human serum for 2 h at 37 degrees C. We prepared a Dd-BLM conjugate which upon penetration induced death of transformed cells. Similarly to free bleomycin, Dd-BLM caused dsDNA breaks. Significantly, effective cytotoxic concentration of BLM delivered with Dd was 100 times lower than that of free bleomycin. CONCLUSIONS/SIGNIFICANCE: Stability studies show that Dds can be conveniently stored and transported, and can potentially be used for therapeutic purposes under various climates. Successful BLM delivery by Ad Dds demonstrates that the use of virus like particle (VLP results in significantly improved drug bioavailability. These experiments open new vistas for delivery of non-permeant labile drugs.

  1. Genomic stability of adipogenic human adenovirus 36.

    Nam, J-H; Na, H-N; Atkinson, R L; Dhurandhar, N V

    2014-02-01

    Human adenovirus Ad36 increases adiposity in several animal models, including rodents and non-human primates. Importantly, Ad36 is associated with human obesity, which has prompted research to understand its epidemiology and to develop a vaccine to prevent a subgroup of obesity. For this purpose, understanding the genomic stability of Ad36 in vivo and in vitro infections is critical. Here, we examined whether in vitro cell passaging over a 14-year period introduced any genetic variation in Ad36. We sequenced the whole genome of Ad36-which was plaque purified in 1998 from the original strain obtained from American Type Culture Collection, and passaged approximately 12 times over the past 14 years (Ad36-2012). This DNA sequence was compared with a previously published sequence of Ad36 likely obtained from the same source (Ad36-1988). Compared with Ad36-1988, only two nucleotides were altered in Ad36-2012: a T insertion at nucleotide 1862, which may induce early termination of the E1B viral protein, and a T➝C transition at nucleotide 26 136. Virus with the T insertion (designated Ad36-2012-T6) was mixed with wild-type virus lacking the T insertion (designated Ad36-2012-T5) in the viral stock. The transition at nucleotide 26 136 does not change the encoded amino acid (aspartic acid) in the pVIII viral protein. The rate of genetic variation in Ad36 is ∼2.37 × 10(-6) mutations/nucleotide/passage. Of particular importance, there were no mutations in the E4orf1 gene, the critical gene for producing obesity. This very-low-variation rate should reduce concerns about genetic variability when developing Ad36 vaccines or developing assays for detecting Ad36 infection in populations.

  2. Quantitative evaluation of interleukin-12 p40 gene expression in peripheral blood mononuclear cells.

    Conte, Enrico; Nigro, Luciano; Fagone, Evelina; Drago, Francesco; Cacopardo, Bruno

    2008-01-01

    The heterodimeric cytokine IL-12 (composed of a p35 and a p40 subunit) is produced primarily by monocytes, macrophages and B cells. In vitro and in vivo experiments have demonstrated the crucial role of IL-12 in initiating and establishing both innate immunity and T cell-mediated resistance to intracellular pathogens, including Leishmania donovani, Toxoplasma gondii, Listeria monocytogenes, and Mycobacterium tuberculosis. Assessment of cytokine expression has thus become crucial to understand host responses to infections. In this study, by using the reverse transcriptase-real time PCR we developed a highly specific and sensitive assay to quantitatively evaluate IL-12p40 mRNA transcription levels in peripheral blood mononuclear cells (PBMCs) stimulated with PHA vs. unstimulated cells. We also used the ELISA to evaluate bioactive IL-12 release in culture supernatants. We provide evidence that IL-12 p40 mRNA levels were significantly up-regulated in PHA-activated PBMCs. These results were correlated with data of IL-12 levels obtained by ELISA.

  3. Identification and characterization of a novel adenovirus in the cloacal bursa of gulls

    Bodewes, R.; Bildt, M.W.G. van de; Schapendonk, C.M.E.; Leeuwen, M. van; Boheemen, S. van; Jong, A.A.W. de; Osterhaus, A.D.M.E.; Smits, S.L.; Kuiken, T.

    2013-01-01

    Several viruses of the family of Adenoviridae are associated with disease in birds. Here we report the detection of a novel adenovirus in the cloacal bursa of herring gulls (Larus argentatus) and lesser black-backed gulls (Larus fuscus) that were found dead in the Netherlands in 2001. Histopathological analysis of the cloacal bursa revealed cytomegaly and karyomegaly with basophilic intranuclear inclusions typical for adenovirus infection. The presence of an adenovirus was confirmed by electron microscopy. By random PCR in combination with deep sequencing, sequences were detected that had the best hit with known adenoviruses. Phylogenetic analysis of complete coding sequences of the hexon, penton and polymerase genes indicates that this novel virus, tentatively named Gull adenovirus, belongs to the genus Aviadenovirus. The present study demonstrates that birds of the Laridae family are infected by family-specific adenoviruses that differ from known adenoviruses in other bird species. - Highlights: ► Lesions typical for adenovirus infection detected in cloacal bursa of dead gulls. ► Confirmation of adenovirus infection by electron microscopy and deep sequencing. ► Sequence analysis indicates that it is a novel adenovirus in the genus Aviadenovirus. ► The novel (Gull) adenovirus was detected in multiple organs of two species of gulls

  4. Interferon-α-conditioned human monocytes combine a Th1-orienting attitude with the induction of autologous Th17 responses: role of IL-23 and IL-12.

    Stefano M Santini

    Full Text Available IFN-α exerts multiple effects leading to immune protection against pathogens and cancer as well to autoimmune reactions by acting on monocytes and dendritic cells. We analyzed the versatility of human monocytes conditioned by IFN-α towards dendritic cell differentiation (IFN-DC in shaping the autologous T-helper response. Priming of naïve CD4 T cells with autologous IFN-DC in the presence of either SEA or anti-CD3, resulted, in addition to a prominent expansion of CXCR3+ IFN-γ-producing CD4 Th1 cells, in the emergence of two distinct subsets of IL-17-producing CD4 T cells: i a predominant Th17 population selectively producing IL-17 and expressing CCR6; ii a minor Th1/Th17 population, producing both IL-17 and IFN-γ. After phagocytosis of apoptotic cells, IFN-DC induced Th17 cell expansion and IL-17 release. Notably, the use of neutralizing antibodies revealed that IL-23 was an essential cytokine in mediating Th17 cell development by IFN-DC. The demonstration of the IFN-DC-induced expansion of both Th1 and Th17 cell populations reveals the intrinsic plasticity of these DC in orienting the immune response and provides a mechanistic link between IFN-α and the onset of autoimmune phenomena, which have been correlated with both IL-17 production and exposure to IFN-α.

  5. Construction of recombinant adenovirus with Egr-1 promoter and Smad7 cDNA and study of the Egr-1 promoter's biological activity

    Cai Xuwei; Fu Xiaolong; Yang Jian; Song Houyan

    2005-01-01

    Objective: To construct a recombinant replication-defective adenovirus containing Egr-1 promoter and Smad7 cDNA, then to evaluate the biological activity of Egr-1 promoter. Methods: Based on Adeno- X TM expression system, CMV promoter of the pShuttle vector was replaced by Egr-1 promoter, and the Smad7 cDNA was subcloned into the MCS(multiple cloning site) of pShuttle. The recombinant pShuttle was then sub-cloned into the Adeno-X TM genome, which was transformed into E. coli to get recombinant Adeno-X TM plasmid DNA. The recombinant adenovirus was packaged and amplified in the transfected HEK293 cells before it was purified and tested for viral titer. The fibroblasts (3T6 cells) infected by the recombinant adenovirus were irradiated , and the activity of Egr-1 promoter was quantitively determined by the amount of Smad7 protein expressed in the 3T6 cells using Western blot. Results: Identified by restriction endonuclease analysis and PCR, the recombinant adenovirus containing Egr-1 promoter and Smad7 cDNA was constructed successfully, with a viral titer of 1.0 x 10 11 TCID 50 /ml. The expressed amount of Smad7 protein varied at different dose levels and different time points post-irradiation in the 3T6 cells infected with the recombinant adenovirus. The amount of Smad7 protein increased along with the rising of the irradiation dose, and remained at a high expression level from 8 Gy to 15 Gy. The amount of Smad7 protein started to increase at 2 hours post-irradiation, and maintained a relatively high level for the next 5 hours before it descended, which was not observed in the control 3T6 cells. Conclusions: With the aid of Adeno-X TM expression system and molecular cloning techniques, construction of recombinant adenovirus could be quick and efficient. The recombined Egr-1 promoter has the activity of regulating the expression of downstream Smad7 cDNA. The increase in Smad7 expression under control of Egr-1 promoter induced by ionizing radiation is time- and dose

  6. Correlation of antigen-specific IFN-γ responses of fresh blood samples from Mycobacterium avium subsp. paratuberculosis infected heifers with responses of day-old samples co-cultured with IL-12 or anti-IL-10 antibodies

    Mikkelsen, Heidi; Aagaard, Claus; Nielsen, Søren Saxmose

    2012-01-01

    Paratuberculosis is a chronic infection of the intestine of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Early stage MAP infection can be detected by measuring cell-mediated immune responses using the interferon gamma (IFN-γ) assay. Whole blood samples are cultured...... to enhance IFN-γ responses of cultures stimulated with Johnin purified protein derivative (PPDj). Here we examined the correlation of IFN-γ production in response to PPDj and 15 recombinant antigens in day-old blood samples from heifers 10–21 months of age from a MAP infected herd with addition of either...... overnight with specific MAP antigens followed by quantification of IFN-γ by ELISA. It is recommended that the time interval from sampling to culture does not exceed eight hours but addition of the co-stimulating cytokine interleukin 12 (IL-12) or anti-IL-10 antibodies to culture have been demonstrated...

  7. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer.

    Julius W Kim

    Full Text Available Vectors based on human adenovirus serotype 5 (HAdV-5 continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting.As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4. This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells.These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.

  9. Adenovirus-assisted lipofection: efficient in vitro gene transfer of luciferase and cytosine deaminase to human smooth muscle cells.

    Kreuzer, J; Denger, S; Reifers, F; Beisel, C; Haack, K; Gebert, J; Kübler, W

    1996-07-01

    Smooth muscle cells (SMC) are a central cell type involved in multiple processes of coronary artery diseases including restenosis and therefore are major target cells for different aspects of gene transfer. Previous attempts to transfect primary arterial cells using different techniques like liposomes, CaPO4 and electroporation resulted in only low transfection efficiency. The development of recombinant adenoviruses dramatically improved the delivery of foreign genes into different cell types including SMC. However, cloning and identification of recombinants remain difficult and time-consuming techniques. The present study demonstrates that a complex consisting of reporter plasmid encoding firefly luciferase (pLUC), polycationic liposomes and replication-deficient adenovirus was able to yield very high in vitro transfection of primary human smooth muscle cells under optimized conditions. The technique of adenovirus-assisted lipofection (AAL) increases transfer and expression of plasmid DNA in human smooth muscle cells in vitro up to 1000-fold compared to lipofection. To verify the applicability of AAL for gene transfer into human smooth muscle cells we studied a gene therapy approach to suppress proliferation of SMC in vitro, using the prokaryotic cytosine deaminase gene (CD) which enables transfected mammalian cells to deaminate 5-fluorocytosine (5-FC) to the highly toxic 5-fluorouracil (5-FU). The effect of a transient CD expression on RNA synthesis was investigated by means of a cotransfection with a RSV-CD expression plasmid and the luciferase reporter plasmid. Western blot analysis demonstrated high expression of CD protein in transfected SMC. Cotransfected SMC demonstrated two-fold less luciferase activity in the presence of 5-FC (5 mmol/l) after 48 h compared to cells transfected with a non-CD coding plasmid. The data demonstrate that a transient expression of CD could be sufficient to reduce the capacity of protein synthesis in human SMC. This simple and

  10. Adenovirus-derived vectors for prostate cancer gene therapy

    de Vrij, J.; Willemsen, R. A.; Lindholm, L.; Hoeben, R. C.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Dautzenberg, I. J. C.; de Ridder, C.; Dzojic, H.; Erbacher, P.; Essand, M.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Jennings, I.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nugent, R.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schenk, E.; Schooten, E.; Seymour, L.; Slade, M.; Szyjanowicz, P.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; van der Weel, L.; van Weerden, W.; Wagner, E.; Zuber, G.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 795-805 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  11. Adenovirus Infection in Children with Diarrhea Disease in ...

    ANNALS

    Adenovirus Infection in Children with Diarrhea Disease in Northwestern. Nigeria. M. Aminu1, A. A. Ahmad1, J. U. Umoh2, M. C. de Beer3, M. D. Esona3, A. D. Steele3. 1Department of Microbiology, Faculty of Science, Ahmadu Bello University, Zaria Nigeria. 2Department of Veterinary Public Health and Preventive Medicine, ...

  12. characterisation of gastro- enteritis-associated adenoviruses in ...

    Objective. To analyse adenovirus (Ad) numbers and types associated with paediatric gastro-enteritis in South Africa. Setting. Gauteng, 1994-1996. Metfwds. A total of 234 paediatric diarrhoeal stool samples were screened for Ad using commercial enzyme-linked. iInmunosorbent assays (EUSAs). Adenoviral isolates were.

  13. Bioaccumulation of animal adenoviruses in the pink shrimp

    Roger B. Luz

    2015-09-01

    Full Text Available Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100 Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  14. Prevalence of rotavirus, adenovirus and astrovirus infection in young ...

    Objective: To determine the prevalence of three enteric viruses, namely rotavirus, adenovirus and astrovirus, as agents of diarrhoea in and around Gaborone, Botswana. Design: The sample were categorised into four groups according to the age of the patient: 0-3 months, 4-6 months, 7-12 months and 25-60 months.

  15. Improvement of oncolytic adenovirus vectors through genetic capsid modifications

    Vrij, Jeroen de

    2012-01-01

    Recombinant viral vectors hold great promise in the field of cancer gene therapy. While a plethora of viruses is being evaluated as oncolytic agents, human adenoviruses of serotype 5 (HAdV-5) are among the most popular of viruses to be developed. Although clinical studies have demonstrated safety of

  16. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail: lora.ellenson@med.cornell.edu

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  17. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Joshi, Ayesha; Ellenson, Lora Hedrick

    2011-01-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten +/- mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten +/- mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ERα as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  18. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  19. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure.

    Okegawa, T; Pong, R C; Li, Y; Bergelson, J M; Sagalowsky, A I; Hsieh, J T

    2001-09-01

    The coxsackie and adenovirus receptor (CAR) is identified as a high-affinity receptor for adenovirus type 5. We observed that invasive bladder cancer specimens had significantly reduced CAR mRNA levels compared with superficial bladder cancer specimens, which suggests that CAR may play a role in the progression of bladder cancer. Elevated CAR expression in the T24 cell line (CAR-negative cells) increased its sensitivity to adenovirus infection and significantly inhibited its in vitro growth, accompanied by p21 and hypophosphorylated retinoblastoma accumulation. Conversely, decreased CAR levels in both RT4 and 253J cell lines (CAR-positive cells) promoted their in vitro growth. To unveil the mechanism of action of CAR, we showed that the extracellular domain of CAR facilitated intercellular adhesion. Furthermore, interrupting intercellular adhesion of CAR by a specific antibody alleviates the growth-inhibitory effect of CAR. We also demonstrated that both the transmembrane and intracellular domains of CAR were critical for its growth-inhibitory activity. These data indicate that the cell-cell contact initiated by membrane-bound CAR can elicit a negative signal cascade to modulate cell cycle regulators inside the nucleus of bladder cancer cells. Therefore, the presence of CAR cannot only facilitate viral uptake of adenovirus but also inhibit cell growth. These results can be integrated to formulate a new strategy for bladder cancer therapy.

  20. Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells

    Rainbow, A.J.

    1989-01-01

    The DNA repair capacities of five human tumor cell lines, one SV40-transformed human cell line and one adenovirus-transformed human cell line were compared with that of normal human fibroblasts using a sensitive host cell reactivation (HCR) technique. Unirradiated and UV-irradiated suspensions of adenovirus type 2 (Ad 2) were assayed for their ability to form viral structural antigens (Vag) in the various cell types using immunofluorescent staining. The survival of Vag formation for UV-irradiated Ad 2 was significantly reduced in all the human tumor cell lines and the SV40-transformed human line compared to the normal human fibroblasts, but was apparently normal in the adenovirus-transformed human cells. D 0 values for the UV survival of Ad 2 Vag synthesis in the tumor and virally transformed lines expressed as a percentage of that obtained on normal fibroblast strains were used as a measure of DNA repair capacity. Percent HCR values ranged from 26 to 53% in the tumor cells. These results indicate a deficiency in the repair of UV-induced DNA damage associated with human tumorigenesis and the transformation of human cells by SV40 but not the transformation of human cells by adenovirus. (author)

  1. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1

    Carlisle, R. C.; Di, Y.; Cerny, A. M.; Sonnen, A. F. P.; Sim, R. B.; Green, N. K.; Šubr, Vladimír; Ulbrich, Karel; Gilbert, R. J. C.; Fisher, K. D.; Finberg, R. W.; Seymour, L. W.

    2009-01-01

    Roč. 113, č. 9 (2009), s. 1909-1918 ISSN 0006-4971 EU Projects: European Commission(XE) 512087 - GIANT Institutional research plan: CEZ:AV0Z40500505 Keywords : adenovirus * erythrocyte * complement receptor 1 Subject RIV: CD - Macromolecular Chemistry Impact factor: 10.555, year: 2009

  2. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-01-01

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth

  4. Nucleotide sequence analysis of regions of adenovirus 5 DNA containing the origins of DNA replication

    Steenbergh, P.H.

    1979-01-01

    The purpose of the investigations described is the determination of nucleotide sequences at the molecular ends of the linear adenovirus type 5 DNA. Knowledge of the primary structure at the termini of this DNA molecule is of particular interest in the study of the mechanism of replication of adenovirus DNA. The initiation- and termination sites of adenovirus DNA replication are located at the ends of the DNA molecule. (Auth.)

  5. Early RNA of adenovirus type 3 in permissive and abortive infections.

    Groff, D E; Daniell, E

    1981-01-01

    Early adenovirus type 3 cytoplasmic polyadenylated RNAs from HeLa and BHK-21 cells were detected and mapped on the viral genome by gel blotting and hybridization techniques. The sizes and locations of the 16 adenovirus type 3 RNAs were identical in the two cell types, although relative molarities of the various RNA species differed. Each of the early adenovirus type 3 RNAs was associated with polysomes in both cell types, suggesting that the abortive infection of hamster cells does not result...

  6. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  7. Adenovirus type 5 induces progression of quiescent rat cells into S phase without polyamine accumulation.

    Cheetham, B F; Shaw, D C; Bellett, A J

    1982-01-01

    Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112

  8. Recent advances in genetic modification of adenovirus vectors for cancer treatment.

    Yamamoto, Yuki; Nagasato, Masaki; Yoshida, Teruhiko; Aoki, Kazunori

    2017-05-01

    Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. ENTERIC ADENOVIRUS INFECTION IN INFANTS AND YOUNG CHILDREN WITH ACUTE GASTROENTERITIS IN TEHRAN

    F. Jam-Afzon S. Modarres

    2006-09-01

    Full Text Available Adenoviruses are one of the most important etiological agents of serious gastroenteritis among infants and young children. Fecal specimens from patients with an acute gastroenteritis were evaluated for the presence of adenovirus (Ad40, 41 from April 2002 to February 2004. During the study, 1052 samples were collected from children under the age of 5 years in six educational and therapeutic pediatric centers. The specimens were tested for adenovirus (Ad40, 41 by EIA technique in the Virology Department of Pasteur Institute of Iran. Adenoviruses (Ad40, 41 were detected from 27(2.6% samples, but were not detected in 150 samples of healthy control group. In this study the highest rate of adenovirus was found in children aged 6 to 12 months (40.7%, but the male to female ratio inpatients was approximately equal. Adenovirus (Ad40, 41 infections peaked in the winter as 48.1% was detected from December to March. There were a statistically significant difference between age and infection (P < 0.001, also between season with adenovirus (Ad40, 41 infection (P = 0.005. Breast-feeding had a protective action against adenovirus (Ad40, 41 infection. This study revealed that enteric adenovirus (Ad40, 41 is an etiological agent of acute gastroenteritis among children in Tehran.

  10. Concentration of Reovirus and Adenovirus from Sewage and Effluents by Protamine Sulfate (Salmine) Treatment 1

    England, Beatrice

    1972-01-01

    Protamine sulfate was employed to recover reoviruses, adenoviruses, and certain enteroviruses from sewage and treated effluents; 50- to 400-fold concentration of viral content was achieved. PMID:4342842

  11. Optimization and evaluation of a method to detect adenoviruses in river water

    U.S. Environmental Protection Agency — This dataset includes the recoveries of spiked adenovirus through various stages of experimental optimization procedures. This dataset is associated with the...

  12. Progress on adenovirus-vectored universal influenza vaccines.

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  13. High-Throughput Sequencing of MicroRNAs in Adenovirus Type 3 Infected Human Laryngeal Epithelial Cells

    Yuhua Qi

    2010-01-01

    Full Text Available Adenovirus infection can cause various illnesses depending on the infecting serotype, such as gastroenteritis, conjunctivitis, cystitis, and rash illness, but the infection mechanism is still unknown. MicroRNAs (miRNA have been reported to play essential roles in cell proliferation, cell differentiation, and pathogenesis of human diseases including viral infections. We analyzed the miRNA expression profiles from adenovirus type 3 (AD3 infected Human laryngeal epithelial (Hep2 cells using a SOLiD deep sequencing. 492 precursor miRNAs were identified in the AD3 infected Hep2 cells, and 540 precursor miRNAs were identified in the control. A total of 44 miRNAs demonstrated high expression and 36 miRNAs showed lower expression in the AD3 infected cells than control. The biogenesis of miRNAs has been analyzed, and some of the SOLiD results were confirmed by Quantitative PCR analysis. The present studies may provide a useful clue for the biological function research into AD3 infection.

  14. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells. © 2015 Wiley Periodicals, Inc.

  15. The hTERT promoter enhances the antitumor activity of an oncolytic adenovirus under a hypoxic microenvironment.

    Yuuri Hashimoto

    Full Text Available Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin, in which the human telomerase reverse transcriptase (hTERT promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5. In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen or a hypoxic (1% oxygen condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells.

  16. Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours

    Merron, Andrew; McNeish, Iain A.; Baril, Patrick; Tran, Lucile; Vassaux, Georges; Martin-Duque, Pilar; Vieja, Antonio de la; Briat, Arnaud; Harrington, Kevin J.

    2010-01-01

    In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma. We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated. In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart. This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects. (orig.)

  17. Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours

    Merron, Andrew; McNeish, Iain A. [Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology, Institute of Cancer, London (United Kingdom); Baril, Patrick; Tran, Lucile; Vassaux, Georges [CHU Hotel Dieu, INSERM, Nantes (France); CHU de Nantes, Institut des Maladies de l' Appareil Digestif, Nantes (France); Martin-Duque, Pilar [Instituto Aragones de Ciencias de la Salud, Zaragoza (Spain); Vieja, Antonio de la [Instituto de Investigaciones Biomedicas, Madrid (Spain); Briat, Arnaud [INSERM U877, Grenoble (France); Harrington, Kevin J. [Chester Beatty Laboratories, Institute of Cancer Research, London (United Kingdom)

    2010-07-15

    In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma. We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated. In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart. This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects. (orig.)

  18. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  19. Oncolytic adenovirus Ad657 for systemic virotherapy against prostate cancer

    Nguyen TV

    2018-05-01

    Full Text Available Tien V Nguyen,1,* Catherine M Crosby,2,* Gregory J Heller,3 Zachary I Mendel,3 Mary E Barry,1 Michael A Barry1,4,5 1Department of Internal Medicine, Division of Infectious Diseases, 2Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 3Postbaccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, 4Department of Immunology, 5Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA *These authors contributed equally to this work Background: Human species C adenovirus serotype 5 (Ad5 is the archetype oncolytic adenovirus and has been used in the vast majority of preclinical and clinical tests. While Ad5 can be robust, species C Ad6 has lower seroprevalence, side effects, and appears to be more potent as a systemic therapy against a number of tumors than Ad5. Historically, there have only been four species C human adenoviruses: serotypes 1, 2, 5, and 6. More recently a new species C adenovirus, Ad57, was identified. Ad57 is most similar to Ad6 with virtually all variation in their capsid proteins occurring in the hypervariable regions (HVRs of their hexon proteins. Most adenovirus neutralizing antibodies target the HVRs on adenoviruses. This led us to replace the hexon HVRs in Ad6 with those from Ad57 to create a new virus called Ad657 and explore this novel species C platform’s utility as an oncolytic virus. Methods: The HVR region from Ad57 was synthesized and used to replace the Ad6 HVR region by homologous recombination in bacteria generating a new viral platform that we call Ad657. Replication-competent Ad5, Ad6, and Ad657 were compared in vitro and in vivo for liver damage and oncolytic efficacy against prostate cancers after single intravenous treatment in mice. Results: Ad5, Ad6, and Ad657 had similar in vitro oncolytic activity against human prostate cancer cells. Ad5 provoked the highest level of liver toxicity after intravenous injection and Ad657

  20. Activation of the human beta interferon gene by the adenovirus type 12 E1B gene

    Shiroki, K.; Toth, M.

    1988-01-01

    The transcription of endogenous beta interferon mRNA was activated in human embryo kidney (HEK) cells infected with adenovirus 12 (Ad12) but was activated only inefficiently or not at all in HEK cells infected with Ad5 and rc-1 (Ad5 dl312 containing the Ad12 E1A region). The analysis with Ad12 mutants showed that Ad12 E1B products, especially the 19K protein, were important for the expression of the endogenous beta interferon gene and Ad12 E1A products were not involved in the expression. The expression of exogeneously transfected pIFN-CAT (a hybrid plasmid having the human beta interferon promoter fused with the CAT gene) was activated in HEK and chicken embryo fibroblast (CEF) cells infected with either Ad12 or Ad5. The analysis of cotransfection of CEF cells with pIFN-CAT and plasmids containing fragments of Ad12 or Ad5 DNA showed that Ad12 or Ad5 E1B (possibly the 19K protein) was and E1A was not involved in the expression of the exogenous pIFN-CAT

  1. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism

    Takayama, Koichi; Reynolds, Paul N.; Short, Joshua J.; Kawakami, Yosuke; Adachi, Yasuo; Glasgow, Joel N.; Rots, Marianne G.; Krasnykh, Victor; Douglas, Joanne T.; Curiel, David T.

    2003-01-01

    The efficiency of cancer gene therapy with recombinant adenoviruses based on serotype 5 (Ad5) has been limited partly because of variable, and often low, expression by human primary cancer cells of the primary cellular-receptor which recognizes the knob domain of the fiber protein, the coxsackie and adenovirus receptor (CAR). As a means of circumventing CAR deficiency, Ad vectors have been retargeted by utilizing chimeric fibers possessing knob domains of alternate Ad serotypes. We have reported that ovarian cancer cells possess a primary receptor for Ad3 to which the Ad3 knob binds independently of the CAR-Ad5 knob interaction. Furthermore, an Ad5-based chimeric vector, designated Ad5/3, containing a chimeric fiber proteins possessing the Ad3 knob, demonstrates CAR-independent tropism by virtue of targeting the Ad3 receptor. Based on these findings, we hypothesized that a mosaic virus possessing both the Ad5 knob and the Ad3 knob on the same virion could utilize either primary receptor, resulting in expanded tropism. In this study, we generated a dual-knob mosaic virus by coinfection of 293 cells with Ad5-based and Ad5/3-based vectors. Characterization of the resultant virions confirmed the incorporation of both Ad5 and Ad3 knobs in the same particle. Furthermore, this mosaic virus was able to utilize either receptor, CAR and the Ad3 receptor, for virus attachment to cells. Enhanced Ad infectivity with the mosaic virus was shown in a panel of cell lines, with receptor profiles ranging from CAR-dominant to Ad3 receptor-dominant. Thus, this mosaic virus strategy may offer the potential to improve Ad-based gene therapy approaches by infectivity enhancement and tropism expansion

  2. The structural basis for the integrity of adenovirus Ad3 dodecahedron.

    Ewa Szolajska

    Full Text Available During the viral life cycle adenoviruses produce excess capsid proteins. Human adenovirus serotype 3 (Ad3 synthesizes predominantly an excess of free pentons, the complexes of pentameric penton base and trimeric fiber proteins, which are responsible for virus penetration. In infected cells Ad3 pentons spontaneously assemble into dodecahedral virus-like nano-particles containing twelve pentons. They also form in insect cells during expression in the baculovirus system. Similarly, in the absence of fiber protein dodecahedric particles built of 12 penton base pentamers can be produced. Both kinds of dodecahedra show remarkable efficiency of intracellular penetration and can be engineered to deliver several millions of foreign cargo molecules to a single target cell. For this reason, they are of great interest as a delivery vector. In order to successfully manipulate this potential vector for drug and/or gene delivery, an understanding of the molecular basis of vector assembly and integrity is critical. Crystallographic data in conjunction with site-directed mutagenesis and biochemical analysis provide a model for the molecular determinants of dodecamer particle assembly and the requirements for stability. The 3.8 Å crystal structure of Ad3 penton base dodecamer (Dd shows that the dodecahedric structure is stabilized by strand-swapping between neighboring penton base molecules. Such N-terminal strand-swapping does not occur for Dd of Ad2, a serotype which does not form Dd under physiological conditions. This unique stabilization of the Ad3 dodecamer is controlled by residues 59-61 located at the site of strand switching, the residues involved in putative salt bridges between pentamers and by the disordered N-terminus (residues 1-47, as confirmed by site directed mutagenesis and biochemical analysis of mutant and wild type protein. We also provide evidence that the distal N-terminal residues are externally exposed and available for attaching cargo.

  3. Preliminary studies on gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan; Gao Yabing; Xiong Chengqi; Long Jianyin; Wang Huixin; Peng Ruiyun; Cui Xuemei

    2001-01-01

    Objective: To observed the efficiency of gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats. Methods: TGFβ1 sense and antisense gene expression vectors and adenovirus transfer vector were introduced into rat bronchus by way of intratracheal instillation. Results: At day 1.5 after TGFβ1 sense and antisense gene transfer, PCR amplification using neo gene-specific primer from lung tissue DNA was all positive. After day 5.5, 67% (2/3) of lung tissue DNA was positive. RNA dot blot hybridization indicated that TGFβ1 mRNA content of lung tissue transfected with pMAMneo-antiTGFβ1 gene decreased. Detection of lung hydroxyproline (Hyp) content after day 35 of gene transfer showed that even in lung of rats received pMAMneo-AntiTGFβ1 lipid complexes it raised remarkably (P 9 pfu/ml were instilled into bronchus at 0.5 ml per rat. After day 2 day 6, the lung tissues of all six rats (three per each group )expressed the transfected luciferase gene by luminometer. Conclusion: Cationic lipid-mediated TGFβ1 antisense gene therapy was a simple and easy method. It can slow down the course of pathogenesis of lung fibrosis. Replication-deficient recombinant adenovirus-mediated gene therapy of lung diseases is a good and efficient method

  4. Respiratory adenovirus-like infection in a rose-ringed parakeet (Psittacula krameri).

    Desmidt, M; Ducatelle, R; Uyttebroek, E; Charlier, G; Hoorens, J

    1991-01-01

    Intranuclear inclusions were observed under light microscopy in the bronchial epithelial cells of a recently purchased female rose-ringed parakeet that died of chlamydiosis. Transmission electron microscopy revealed the presence of numerous particles of adenovirus morphology. A latent adenovirus infection may have become more severe following chlamydiosis and the stress of handling.

  5. Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor.

    Freiberg, F.; Sauter, M.; Pinkert, S.; Govindarajan, T.; Kaldrack, J.; Thakkar, M.; Fechner, H.; Klingel, K.; Gotthardt, M.

    2014-01-01

    The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail

  6. Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation

    Meng, Q.S.; Gerba, C.P.

    1996-01-01

    The inactivation of enteric adenoviruses 40 and 41 by ultraviolet (UV) radiation was investigated and compared with poliovirus type 1 (strain LSc-2ab) and coliphages MS-2 and PRD-1. Purified stocks of the viruses were exposed to collimated ultraviolet radiation in a stirred reactor for a total dose of up to 140 mW s/cm 2 . The doses of UV to achieve a 90% inactivation of adenovirus 40, adenovirus 41, coliphages MS-2 and PRD-1 and poliovirus type 1 were 30, 23.6, 14, 8.7 and 4.1 mW s/cm 2 , respectively. Adenovirus 40 was significantly more resistant than coliphage MS-2 to UV irradiation (P < 0.01). Adenovirus 41 appeared slightly more sensitive than adenovirus 40, but the difference was not significant (P>0.05). The resistance of PRD-1 was less than MS-2 (P < 0.01), but greater than poliovirus type 1 (P < 0.01). Adenoviruses 40 and 41 were more resistant than Bacillus subtilis spores, often suggested as an indicator of UV light performance. The double-stranded DNA adenoviruses appear to be the most resistant of all potentially water-borne enteric viruses to UV light disinfection. (author)

  7. A simple negative selection method to identify adenovirus recombinants using colony PCR

    Yongliang Zhao

    2014-01-01

    Conclusions: The negative selection method to identify AdEasy adenovirus recombinants by colony PCR can identify the recombined colony within a short time-period, and maximally avoid damage to the recombinant plasmid by limiting recombination time, resulting in improved adenovirus packaging.

  8. Crystal structure of the fibre head domain of the Atadenovirus Snake Adenovirus 1.

    Abhimanyu K Singh

    Full Text Available Adenoviruses are non-enveloped icosahedral viruses with trimeric fibre proteins protruding from their vertices. There are five known genera, from which only Mastadenoviruses have been widely studied. Apart from studying adenovirus as a biological model system and with a view to prevent or combat viral infection, there is a major interest in using adenovirus for vaccination, cancer therapy and gene therapy purposes. Adenoviruses from the Atadenovirus genus have been isolated from squamate reptile hosts, ruminants and birds and have a characteristic gene organization and capsid morphology. The carboxy-terminal virus-distal fibre head domains are likely responsible for primary receptor recognition. We determined the high-resolution crystal structure of the Snake Adenovirus 1 (SnAdV-1 fibre head using the multi-wavelength anomalous dispersion (MAD method. Despite the absence of significant sequence homology, this Atadenovirus fibre head has the same beta-sandwich propeller topology as other adenovirus fibre heads. However, it is about half the size, mainly due to much shorter loops connecting the beta-strands. The detailed structure of the SnAdV-1 fibre head and other animal adenovirus fibre heads, together with the future identification of their natural receptors, may lead to the development of new strategies to target adenovirus vectors to cells of interest.

  9. Presence of adenovirus species C in infiltrating lymphocytes of human sarcoma.

    Karin Kosulin

    Full Text Available Human adenoviruses are known to persist in T-lymphocytes of tonsils, adenoids and intestinal tract. The oncogenic potential of different adenovirus types has been widely studied in rodents, in which adenovirus inoculation can induce multiple tumors such as undifferentiated sarcomas, adenocarcinomas and neuroectodermal tumors. However, the oncogenic potential of this virus has never been proven in human subjects. Using a highly sensitive broad-spectrum qRT-PCR, we have screened a set of different human sarcomas including leiomyosarcoma, liposarcoma and gastro intestinal stroma tumors. Primers binding the viral oncogene E1A and the capsid-coding gene Hexon were used to detect the presence of adenovirus DNA in tumor samples. We found that 18% of the tested leiomyosarcomas and 35% of the liposarcomas were positive for the presence of adenovirus DNA, being species C types the most frequently detected adenoviruses. However, only in one sample of the gastro intestinal stroma tumors the virus DNA could be detected. The occurrence of adenovirus in the tumor sections was confirmed by subsequent fluorescence in-situ-hybridization analysis and co-staining with the transcription factor Bcl11b gives evidence for the presence of the virus in infiltrating T-lymphocytes within the tumors. Together these data underline, for the first time, the persistence of adenovirus in T-lymphocytes infiltrated in muscular and fatty tissue tumor samples. If an impaired immune system leads to the viral persistence and reactivation of the virus is involved in additional diseases needs further investigation.

  10. Associations of polymorphisms in the cytokine genes IL1β (rs16944), IL6 (rs1800795), IL12b (rs3212227) and growth factor VEGFA (rs2010963) with anthracosilicosis in coal miners in Russia and related genotoxic effects.

    Volobaev, Valentin P; Larionov, Aleksey V; Kalyuzhnaya, Ekaterina E; Serdyukova, Ekaterina S; Yakovleva, Svetlana; Druzhinin, Vladimir G; Babich, Olga O; Hill, Elena G; Semenihin, Victor A; Panev, Nikolay I; Minina, Varvara I; Sivanesan, Saravana Devi; Naoghare, Pravin; da Silva, Juliana; Barcelos, Gustavo R M; Prosekov, Alexander Y

    2018-04-13

    Anthracosilicosis (AS), a prevalent form of pneumoconiosis among coal miners, results from the accumulation of carbon and silica in the lungs from inhaled coal dust. This study investigated genotoxic effects and certain cytokine genes polymorphic variants in Russian coal miners with АS. Peripheral leukocytes were sampled from 129 patients with AS confirmed by X-ray and tissue biopsy and from 164 asymptomatic coal miners. Four single-nucleotide polymorphisms were genotyped in the extracted DNA samples: IL1β T-511C (rs16944), IL6 C-174G (rs1800795), IL12b A1188C (rs3212227) and VEGFA C634G (rs2010963). Genotoxic effects were assessed by the analysis of chromosome aberrations in cultured peripheral lymphocytes. The mean frequency of chromatid-type aberrations and chromosome-type aberrations, namely, chromatid-type breaks and dicentric chromosomes, was found to be higher in AS patients [3.70 (95% confidence interval {CI}, 3.29-4.10) and 0.28 (95% CI, 0.17-0.38)] compared to the control group [2.41 (95% CI, 2.00-2.82) and 0.09 (95% CI, 0.03-0.15)], respectively. IL1β gene T/T genotype (rs16944) was associated with AS [17.83% in AS patients against 4.35% in healthy donors, odds ratio = 4.77 (1.88-12.15), P < 0.01]. A significant increase in the level of certain chromosome interchanges among AS donors is of interest because such effects are typical for radiation damage and caused by acute oxidative stress. IL1β T allele probably may be considered as an AS susceptibility factor among coal miners.

  11. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  12. Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control.

    Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H

    2004-08-01

    Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.

  13. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    Liu, Ran-yi; Zhou, Ling; Zhang, Yan-ling; Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min; Li, Li-xia; Fu, Xiang; Wu, Jiang-xue; Huang, Wenlin

    2013-01-01

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC

  14. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhou, Ling [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhang, Yan-ling [School of Biotechnology, Southern Medical University, Guangzhou 510515 (China); Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Li, Li-xia [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Fu, Xiang; Wu, Jiang-xue [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Huang, Wenlin, E-mail: hwenl@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Guangdong Provincial Key Laboratory of Tumor-Targeted Drug, Doublle Bioproducts Inc., Guangzhou 510663 (China)

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  15. Expression

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  16. Role of Bovine Adenovirus-3 33K protein in viral replication

    Kulshreshtha, Vikas; Babiuk, Lorne A.; Tikoo, Suresh K.

    2004-01-01

    The L6 region of bovine adenovirus type (BAdV)-3 encodes a nonstructural protein named 33K. To identify and characterize the 33K protein, rabbit polyclonal antiserum was raised against a 33K-GST fusion protein expressed in bacteria. Anti-33K serum immunoprecipitated a protein of 42 kDa in in vitro translated and transcribed mRNA of 33K. However, three proteins of 42, 38, and 33 kDa were detected in BAdV-3 infected cells. To determine the role of this protein in virus replication, a recombinant BAV-33S1 containing insertional inactivation of 33K (a stop codon created at the seventh amino acid of 33K ORF) was constructed. Although BAV-33S1 could be isolated, the mutant showed a severe defect in the production of progeny virus. Inactivation of the 33K gene showed no effect on early and late viral gene expression in cells infected with BAV-33S1. However, formation of mature virions was significantly reduced in cells infected with BAV-33S1. Surprisingly, insertional inactivation of 33K at amino acid 97 (pFBAV-33.KS2) proved lethal for virus production. Although expression of early or late genes was not affected, no capsid formation could be observed in mutant DNA-transfected cells. These results suggest that 33K is required for capsid assembly and efficient DNA capsid interaction

  17. The Coxsackievirus and Adenovirus Receptor: a new adhesion protein in cochlear development.

    Excoffon, Katherine J D A; Avenarius, Matthew R; Hansen, Marlan R; Kimberling, William J; Najmabadi, Hossein; Smith, Richard J H; Zabner, Joseph

    2006-05-01

    The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness.

  18. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing.

  19. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    in cryosections of spinal cords using in situ hybridization technique with synthetic oligonucleotide probes. Three stages of cytokine mRNA expression could be distinguished: (i) interleukin (IL)-12, tumor necrosis factor (TNF)-beta (= lymphotoxin-alpha) and cytolysin appeared early and before onset of clinical...... signs of EAE; (ii) TNF-alpha peaked at height of clinical signs of EAE; (iii) IL-10 appeared increasingly at and after clinical recovery. The early expression of IL-12 prior to the expression of interferon-gamma (IFN-gamma) mRNA shown previously is consistent with a role of IL-12 in promoting...... proliferation and activation of T helper 1 (Th1) type cells producing IFN-gamma. The TNF-beta mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-alpha was suggested from these observations that TNF-alpha mRNA expression...

  20. Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses.

    Yu, Xiaodi; Veesler, David; Campbell, Melody G; Barry, Mary E; Asturias, Francisco J; Barry, Michael A; Reddy, Vijay S

    2017-05-01

    Human adenoviruses (HAdVs) cause acute respiratory, ocular, and gastroenteric diseases and are also frequently used as gene and vaccine delivery vectors. Unlike the archetype human adenovirus C5 (HAdV-C5), human adenovirus D26 (HAdV-D26) belongs to species-D HAdVs, which target different cellular receptors, and is differentially recognized by immune surveillance mechanisms. HAdV-D26 is being championed as a lower seroprevalent vaccine and oncolytic vector in preclinical and human clinical studies. To understand the molecular basis for their distinct biological properties and independently validate the structures of minor proteins, we determined the first structure of species-D HAdV at 3.7 Å resolution by cryo-electron microscopy. All the hexon hypervariable regions (HVRs), including HVR1, have been identified and exhibit a distinct organization compared to those of HAdV-C5. Despite the differences in the arrangement of helices in the coiled-coil structures, protein IX molecules form a continuous hexagonal network on the capsid exterior. In addition to the structurally conserved region (3 to 300) of IIIa, we identified an extra helical domain comprising residues 314 to 390 that further stabilizes the vertex region. Multiple (two to three) copies of the cleaved amino-terminal fragment of protein VI (pVIn) are observed in each hexon cavity, suggesting that there could be ≥480 copies of VI present in HAdV-D26. In addition, a localized asymmetric reconstruction of the vertex region provides new details of the three-pronged "claw hold" of the trimeric fiber and its interactions with the penton base. These observations resolve the previous conflicting assignments of the minor proteins and suggest the likely conservation of their organization across different HAdVs.

  1. Effect of Malnutrition on the Expression of Cytokines Involved in Th1 Cell Differentiation

    Leonor Rodríguez

    2013-02-01

    Full Text Available Malnutrition is a common cause of secondary immune deficiency and has been linked to an increased susceptibility to infection in humans. Malnutrition specifically affects T-cell-mediated immune responses. The aim of this study was to assess in lymphocytes from malnourished children the expression levels of IL-12, IL-18 and IL-21, molecules that induce the differentiation of T cells related to the immunological cellular response (Th1 response and the production of cytokines related to the immunological cellular response (Th1 cytokines. We found that the expression levels of IL-12, IL-18 and IL-21 were significantly diminished in malnourished children compared to well-nourished children and were coincident with lower plasmatic levels of IL-2 and IFN-γ (Th1 cytokines. In this study, we show for the first time that the gene expression and intracellular production of cytokines responsible for Th1 cell differentiation (IL-12, IL-18 and IL-21 are diminished in malnourished children. As expected, this finding was related to lower plasmatic levels of IL-2 and IFN-γ. The decreased expression of Th1 cytokines observed in this study may contribute to the deterioration of the immunological Type 1 (cellular response. We hypothesize that the decreased production of IL-12, IL-18 and IL-21 in malnourished children contributes to their inability to eradicate infections.

  2. Adenoviruses using the cancer marker EphA2 as a receptor in vitro and in vivo by genetic ligand insertion into different capsid scaffolds.

    Michael Behr

    Full Text Available Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK. This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis.

  3. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures.

    Di Yu

    Full Text Available Recombinant adenovirus serotype 5 (Ad5 vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR on the surface of target cell for efficient transduction, which limits it's utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.

  4. Adenoviruses Using the Cancer Marker EphA2 as a Receptor In Vitro and In Vivo by Genetic Ligand Insertion into Different Capsid Scaffolds

    Behr, Michael; Kaufmann, Johanna K.; Ketzer, Patrick; Engelhardt, Sarah; Mück-Häusl, Martin; Okun, Pamela M.; Petersen, Gabriele; Neipel, Frank; Hassel, Jessica C.; Ehrhardt, Anja; Enk, Alexander H.; Nettelbeck, Dirk M.

    2014-01-01

    Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK). This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis. PMID:24760010

  5. A novel adenovirus of Western lowland gorillas (Gorilla gorilla gorilla

    Ludwig Carsten

    2010-11-01

    Full Text Available Abstract Adenoviruses (AdV broadly infect vertebrate hosts including a variety of primates. We identified a novel AdV in the feces of captive gorillas by isolation in cell culture, electron microscopy and PCR. From the supernatants of infected cultures we amplified DNA polymerase (DPOL, preterminal protein (pTP and hexon gene sequences with generic pan primate AdV PCR assays. The sequences in-between were amplified by long-distance PCRs of 2 - 10 kb length, resulting in a final sequence of 15.6 kb. Phylogenetic analysis placed the novel gorilla AdV into a cluster of primate AdVs belonging to the species Human adenovirus B (HAdV-B. Depending on the analyzed gene, its position within the cluster was variable. To further elucidate its origin, feces samples of wild gorillas were analyzed. AdV hexon sequences were detected which are indicative for three distinct and novel gorilla HAdV-B viruses, among them a virus nearly identical to the novel AdV isolated from captive gorillas. This shows that the discovered virus is a member of a group of HAdV-B viruses that naturally infect gorillas. The mixed phylogenetic clusters of gorilla, chimpanzee, bonobo and human AdVs within the HAdV-B species indicate that host switches may have been a component of the evolution of human and non-human primate HAdV-B viruses.

  6. Single-cycle adenovirus vectors in the current vaccine landscape.

    Barry, Michael

    2018-02-01

    Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.

  7. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  8. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.; Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J.; Mercier, George T.; Barry, Michael A.

    2015-01-01

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5

  9. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  10. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  11. Adenovirus chromatin structure at different stages of infection

    Daniell, E.; Groff, D.E.; Fedor, M.J.

    1981-12-01

    The authors investigated the structure of adenovirus deoxyribonecleic acid (DNA)-protein complexes in nuclei of infected cells by using micrococal nuclease. Parental (infecting) DNA was digested into multimers which had a unit fragment size that was indistinguishable from the size of the nucleosomal repeat of cellular chromatin. This pattern was maintained in parental DNA throughout infection. Similar repeating units were detected in hamster cells that were nonpermissive for human adenovirus and in cells pretreated with n-butyrate. Late in infection, the pattern of digestion of viral DNA was determined by two different experimental approaches. Nuclear DNA was electrophoresed, blotted, and hybridized with labeled viral sequences; in this procedure all virus-specific DNA was detected. This technique revealed a diffuse protected band of viral DNA that was smaller than 160 base pairs, but no discrete multimers. All regions of the genome were represented in the protected DNA. To examine the nuclease protection of newly replicated viral DNA, infected cells were labeled with (/sup 3/)thymidine after blocking of cellular DNA synthesis but not viral DNA synthesis. With this procedure they identified a repeating unit which was distinctly different from the cellular nucleosomal repeat. The authors found broad bands with midpoints at 200, 400, and 600 base pairs, as well as the limit digest material revealed by blotting. High-resolution acrylamide gel electrophoresis revealed that the viral species comprised a series of closely spaced bands ranging in size from less than 30 to 250 base pairs.

  12. Phylogenetic and pathogenic characterization of novel adenoviruses from long-tailed ducks (Clangula hyemalis)

    Counihan, Katrina; Skerratt, Lee; Franson, J. Christian; Hollmen, Tuula E.

    2015-01-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  13. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  14. The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene.

    Hale, T K; Braithwaite, A W

    1999-08-20

    Expression of the tumor suppressor protein p53 plays an important role in regulating the cellular response to DNA damage. During adenovirus infection, levels of p53 protein also increase. It has been shown that this increase is due not only to increased stability of the p53 protein but to the transcriptional activation of the p53 gene during infection. We demonstrate here that the E1a proteins of adenovirus are responsible for activating the mouse p53 gene and that both major E1a proteins, 243R and 289R, are required for complete activation. E1a brings about the binding of two cellular transcription factors to the mouse p53 promoter. One of these, ETF, binds to three upstream sites in the p53 promoter and one downstream site, whereas E2F binds to one upstream site in the presence of E1a. Our studies indicate that E2F binding is not essential for activation of the p53 promoter but that ETF is. Our data indicate the ETF site located downstream of the start site of transcription is the key site in conferring E1a responsiveness on the p53 promoter.

  15. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Adenovirus urethritis and concurrent conjunctivitis: a case series and review of the literature.

    Liddle, Olivia Louise; Samuel, Mannampallil Itty; Sudhanva, Malur; Ellis, Joanna; Taylor, Chris

    2015-03-01

    We present eight cases and review the literature of concurrent urethritis and conjunctivitis where adenovirus was identified as the causative pathogen. The focus of this review concerns the identification of specific sexual practices, symptoms, signs and any serotypes that seem more commonly associated with such adenovirus infections. We discuss the seasonality of adenovirus infection and provide practical advice for clinicians to give to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. EXPRESS

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  18. PCR Analysis of Egyptian Respiratory Adenovirus Isolates, Including Identification of Species, Serotypes, and Coinfections

    Metzgar, David; Osuna, Miguel; Yingst, Samuel; Rakha, Magda; Earhart, Kenneth; Elyan, Diaa; Esmat, Hala; Saad, Magdi D; Kajon, Adriana; Wu, Jianguo; Gray, Gregory C; Ryan, Margaret A; Russell, Kevin L

    2005-01-01

    Eighty-eight adenovirus (Ad) isolates and associated clinical data were collected from walk-in patients with influenza-like illness in Egypt during routine influenza surveillance from 1999 through 2002...

  19. Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica.

    Park, Yon Mi; Kim, Jeong-Hoon; Gu, Se Hun; Lee, Sook Young; Lee, Min-Goo; Kang, Yoon Kyoo; Kang, Sung-Ho; Kim, Hak Jun; Song, Jin-Won

    2012-01-05

    Adenoviruses have been identified in humans and a wide range of vertebrate animals, but not previously from the polar region. Here, we report the entire 26,340-bp genome of a novel adenovirus, detected by PCR, in tissues of six of nine South Polar skuas (Catharacta maccormicki), collected in Lake King Sejong, King George Island, Antarctica, from 2007 to 2009. The DNA polymerase, penton base, hexon and fiber genes of the South Polar skua adenovirus (SPSAdV) exhibited 68.3%, 75.4%, 74.9% and 48.0% nucleotide sequence similarity with their counterparts in turkey hemorrhagic enteritis virus. Phylogenetic analysis based on the entire genome revealed that SPSAdV belonged to the genus Siadenovirus, family Adenoviridae. This is the first evidence of a novel adenovirus, SPSAdV, from a large polar seabird (family Stercorariidae) in Antarctica. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. New adenoviruses from new primate hosts - growing diversity reveals taxonomic weak points

    Dadáková, E.; Chrudimský, Tomáš; Brožová, K.; Modrý, David; Celer, V.; Hrazdilová, K.

    2017-01-01

    Roč. 107, February (2017), s. 305-307 ISSN 1055-7903 Institutional support: RVO:60077344 Keywords : adenovirus * primate * phylogeny * taxonomy Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.419, year: 2016

  1. Detection of enteric Adenoviruses in South-African waters using gene probes

    Genthe, Bettina

    1995-01-01

    Full Text Available Gene probes developed locally for both enteric Adenoviruses 40 and 41 were used to determine whether these viruses were present in both raw and treated waters. Approximately sixty water samples were concentrated by ultra filtration and analysed...

  2. Partial characterization of new adenoviruses found in lizards.

    Ball, Inna; Behncke, Helge; Schmidt, Volker; Geflügel, F T A; Papp, Tibor; Stöhr, Anke C; Marschang, Rachel E

    2014-06-01

    In the years 2011-2012, a consensus nested polymerase chain reaction was used for the detection of adenovirus (AdV) infection in reptiles. During this screening, three new AdVs were detected. One of these viruses was detected in three lizards from a group of green striped tree dragons (Japalura splendida). Another was detected in a green anole (Anolis carolinensis). A third virus was detected in a Jackson's chameleon (Chamaeleo jacksonii). Analysis of a portion of the DNA-dependent DNA polymerase genes of each of these viruses revealed that they all were different from one another and from all previously described reptilian AdVs. Phylogenetic analysis of the partial DNA polymerase gene sequence showed that all newly detected viruses clustered within the genus Atadenovirus. This is the first description of AdVs in these lizard species.

  3. Bipartite structure and functional independence of adenovirus type 5 packaging elements.

    Schmid, S I; Hearing, P

    1997-01-01

    Selectivity and polarity of adenovirus type 5 DNA packaging are believed to be directed by an interaction of putative packaging factors with the cis-acting adenovirus packaging domain located within the genomic left end (nucleotides 194 to 380). In previous studies, this packaging domain was mutationally dissected into at least seven functional elements called A repeats. These elements, albeit redundant in function, exhibit differences in the ability to support viral packaging, with elements ...

  4. cis and trans requirements for the selective packaging of adenovirus type 5 DNA.

    Gräble, M; Hearing, P

    1992-01-01

    Polar packaging of adenovirus DNA into virions is dependent on the presence of cis-acting sequences at the left end of the viral genome. Our previous analyses demonstrated that the adenovirus type 5 (Ad5) packaging domain (nucleotides 194 to 358) is composed of at least five elements that are functionally redundant. A repeated sequence, termed the A repeat, was associated with packaging function. Here we report a more detailed analysis of the requirements for the selective packaging of Ad5 DN...

  5. Formation of a Multiple Protein Complex on the Adenovirus Packaging Sequence by the IVa2 Protein▿

    Tyler, Ryan E.; Ewing, Sean G.; Imperiale, Michael J.

    2007-01-01

    During adenovirus virion assembly, the packaging sequence mediates the encapsidation of the viral genome. This sequence is composed of seven functional units, termed A repeats. Recent evidence suggests that the adenovirus IVa2 protein binds the packaging sequence and is involved in packaging of the genome. Study of the IVa2-packaging sequence interaction has been hindered by difficulty in purifying the protein produced in virus-infected cells or by recombinant techniques. We report the first ...

  6. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway.

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-05-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.

  7. Detection of a putative novel adenovirus by PCR amplification, sequencing and phylogenetic characterisation of two gene fragments from formalin-fixed paraffin-embedded tissues of a cat diagnosed with disseminated adenovirus disease.

    Lakatos, Béla; Hornyák, Ákos; Demeter, Zoltán; Forgách, Petra; Kennedy, Frances; Rusvai, Miklós

    2017-12-01

    Adenoviral nucleic acid was detected by polymerase chain reaction (PCR) in formalin-fixed paraffin-embedded tissue samples of a cat that had suffered from disseminated adenovirus infection. The identity of the amplified products from the hexon and DNA-dependent DNA polymerase genes was confirmed by DNA sequencing. The sequences were clearly distinguishable from corresponding hexon and polymerase sequences of other mastadenoviruses, including human adenoviruses. These results suggest the possible existence of a distinct feline adenovirus.

  8. Getting genetic access to natural adenovirus genomes to explore vector diversity.

    Zhang, Wenli; Ehrhardt, Anja

    2017-10-01

    Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.

  9. A molecular epidemiology survey of respiratory adenoviruses circulating in children residing in Southern Palestine.

    Lina Qurei

    Full Text Available A molecular epidemiology survey was performed in order to establish and document the respiratory adenovirus pathogen profiles among children in Southern Palestine. Three hundred and thirty-eight hospitalized pediatric cases with adenovirus-associated respiratory tract infections were analyzed. Forty four cases out of the 338 were evaluated in more detail for the adenoviruses types present. All of the children resided in Southern Palestine, that is, in city, village and refugee camp environments within the districts of Hebron and Bethlehem. Human adenoviruses circulated throughout 2005-2010, with major outbreaks occurring in the spring months. A larger percent of the children diagnosed with adenoviral infections were male infants. DNA sequence analysis of the hexon genes from 44 samples revealed that several distinct adenovirus types circulated in the region; these were HAdV-C1, HAdV-C2, HAdV-B3 and HAdV-C5. However, not all of these types were detected within each year. This is the first study ever conducted in Palestine of the genetic epidemiology of respiratory adenovirus infections.

  10. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-01-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  11. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    Tomono, Takumi [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Kajita, Masahiro [Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Yano, Kentaro [Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Ogihara, Takuo, E-mail: togihara@takasaki-u.ac.jp [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan)

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  12. Suppression of Oncolytic Adenovirus-Mediated Hepatotoxicity by Liver-Specific Inhibition of NF-κB

    Mitsuhiro Machitani

    2017-12-01

    Full Text Available Telomerase-specific replication-competent adenoviruses (Ads, i.e., TRADs, which possess an E1 gene expression cassette driven by the human telomerase reverse transcriptase promoter, are promising agents for cancer treatment. However, even though oncolytic Ads, including TRAD, are intratumorally administered, they are disseminated from the tumor to systemic circulation, causing concern about oncolytic Ad-mediated hepatotoxicity (due mainly to leaky expression of Ad genes in liver. We reported that inhibition of nuclear factor-κB (NF-κB leads to the suppression of replication-incompetent Ad vector-mediated hepatotoxicity via reduction of the leaky expression of Ad genes in liver. Here, to develop a TRAD with an improved safety profile, we designed a TRAD that carries a liver-specific promoter-driven dominant-negative IκBα (DNIκBα expression cassette (TRAD-DNIκBα. Compared with a conventional TRAD, TRAD-DNIκBα showed hepatocyte-specific inhibition of NF-κB signaling and significantly reduced Ad gene expression and replication in the normal human hepatocyte cell line. TRAD-induced hepatotoxicity was largely suppressed in mice following intravenous administration of TRAD-DNIκBα. However, the replication profiles and oncolytic activities of TRAD-DNIκBα were comparable with those of the conventional TRAD in human non-hepatic tumor cells. These results indicate that oncolytic Ads containing the liver-specific DNIκBα expression cassette have improved safety profiles without inhibiting oncolytic activities.

  13. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  14. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  15. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A.

    2009-01-01

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.

  16. Oral Modeling of an Adenovirus-Based Quadrivalent Influenza Vaccine in Ferrets and Mice.

    Scallan, Ciaran D; Lindbloom, Jonathan D; Tucker, Sean N

    2016-06-01

    Oral vaccines delivered as tablets offer a number of advantages over traditional parenteral-based vaccines including the ease of delivery, lack of needles, no need for trained medical personnel, and the ability to formulate into temperature-stable tablets. We have been evaluating an oral vaccine platform based on recombinant adenoviral vectors for the purpose of creating a prophylactic vaccine to prevent influenza, and have demonstrated vaccine efficacy in animal models and substantial immunogenicity in humans. These studies have evaluated monovalent vaccines to date. To protect against the major circulating A and B influenza strains, a multivalent influenza vaccine will be required. In this study, the immunogenicity of orally delivered monovalent, bivalent, trivalent, and quadrivalent vaccines was tested in ferrets and mice. The various vaccine combinations were tested by blending monovalent recombinant adenovirus vaccines, each expressing hemagglutinin from a single strain. Human tablet delivery was modeled in animals by oral gavage in mice and by endoscopic delivery in ferrets. We demonstrated minimal interference between the various vaccine vectors when used in combination and that the oral quadrivalent vaccine compared favorably to an approved trivalent inactivated vaccine. The quadrivalent vaccine presented here produced immune responses that we predict should be capable of providing protection against multiple influenza strains, and the platform should have applications to other multivalent vaccines. Vaxart, Inc.

  17. Fas activity mediates airway inflammation during mouse adenovirus type 1 respiratory infection.

    Adkins, Laura J; Molloy, Caitlyn T; Weinberg, Jason B

    2018-06-13

    CD8 T cells play a key role in clearance of mouse adenovirus type 1 (MAV-1) from the lung and contribute to virus-induced airway inflammation. We tested the hypothesis that interactions between Fas ligand (FasL) and Fas mediate the antiviral and proinflammatory effects of CD8 T cells. FasL and Fas expression were increased in the lungs of C57BL/6 (B6) mice during MAV-1 respiratory infection. Viral replication and weight loss were similar in B6 and Fas-deficient (lpr) mice. Histological evidence of pulmonary inflammation was similar in B6 and lpr mice, but lung mRNA levels and airway proinflammatory cytokine concentrations were lower in MAV-1-infected lpr mice compared to infected B6 mice. Virus-induced apoptosis in lungs was not affected by Fas deficiency. Our results suggest that the proinflammatory effects of CD8 T cells during MAV-1 infection are mediated in part by Fas activation and are distinct from CD8 T cell antiviral functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  19. Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice

    Kramer, M. Gabriela; Masner, Martín; Casales, Erkuden; Moreno, María; Smerdou, Cristian; Chabalgoity, José A.

    2015-01-01

    Metastatic breast cancer is a major cause of death among women worldwide; therefore efficient therapeutic strategies are extremely needed. In this work we have developed a gene therapy- and bacteria-based combined neoadjuvant approach and evaluated its antitumor effect in a clinically relevant animal model of metastatic breast cancer. 2×10 8 particles of a Semliki Forest virus vector expressing interleukin-12 (SFV-IL-12) and/or 2×10 7 units of an aroC − Samonella Typhimurium strain (LVR01) were injected into 4T1 tumor nodules orthotopically implanted in mice. Tumors were surgically resected and long-term survival was determined. IL-12 and interferon-γ were quantified by Enzyme-Linked ImmunoSorbent Assay, bacteria was visualized by inmunohistochemistry and the number of lung metastasis was calculated with a clonogenic assay. SFV-IL-12 and LVR01 timely inoculated and followed by surgical resection of tumors succeeded in complete inhibition of lethal lung metastasis and long-term survival in 90 % of treated mice. The combined therapy was markedly synergistic compared to each treatment alone, since SFV-IL-12 monotherapy showed a potent antiangiogenic effect, being able to inhibit tumor growth and extend survival, but could not prevent establishment of distant metastasis and death of tumor-excised animals. On the other hand, LVR01 alone also showed a significant, although limited, antitumor potential, despite its ability to invade breast cancer cells and induce granulocyte recruitment. The efficacy of the combined therapy depended on the order in which both factors were administered; inasmuch the therapeutic effect was only observed when SFV-IL-12 was administered previous to LVR01, whereas administration of LVR01 before SFV-IL-12 had negligible antitumor activity. Moreover, pre-treatment with LVR01 seemed to suppress SFV-IL-12 antiangiogenic effects associated to lower IL-12 expression in this group. Re-challenged mice were unable to reject a second 4T1 tumor

  20. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3.

    Sirena, Dominique; Lilienfeld, Benjamin; Eisenhut, Markus; Kälin, Stefan; Boucke, Karin; Beerli, Roger R; Vogt, Lorenz; Ruedl, Christiane; Bachmann, Martin F; Greber, Urs F; Hemmi, Silvio

    2004-05-01

    Many human adenovirus (Ad) serotypes use the coxsackie B virus-Ad receptor (CAR). Recently, CD46 was suggested to be a receptor of species B Ad serotype 11 (Ad11), Ad14, Ad16, Ad21, Ad35, and Ad50. Using Sindbis virus-mediated cDNA library expression, we identify here the membrane cofactor protein CD46 as a surface receptor of species B Ad3. All four major CD46 transcripts and one minor CD46 transcript expressed in nucleated human cells were isolated. Rodent BHK cells stably expressing the BC1 form of CD46 bound radiolabeled Ad3 with a dissociation constant of 0.3 nM, identical to that of CD46-positive HeLa cells expressing twice as many Ad3 binding sites. Pull-down experiments with recombinant Ad3 fibers and a soluble form of the CD46 extracellular domain linked to the Fc portion of human immunoglobulin G (CD46ex-Fc) indicated direct interactions of the Ad3 fiber knob with CD46ex-Fc but not CARex-Fc (Fc-linked extracellular domain of CAR). Ad3 colocalized with cell surface CD46 in both rodent and human cells at the light and electron microscopy levels. Anti-CD46 antibodies and CD46ex-Fc inhibited Ad3 binding to CD46-expressing BHK cells more than 10-fold and to human cells 2-fold. In CD46-expressing BHK cells, wild-type Ad3 and a chimeric Ad consisting of the Ad5 capsid and the Ad3 fiber elicited dose-dependent cytopathic effects and transgene expression, albeit less efficiently than in human cells. Together, our results show that all of the major splice forms of CD46 are predominant and functional binding sites of Ad3 on CD46-expressing rodent and human cells but may not be the sole receptor of species B Ads on human cells. These results have implications for understanding viral pathogenesis and therapeutic gene delivery.

  1. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice...

  2. Adenovirus type 9 enhances differentiation and decreases cytokine release from preadipocytes.

    Bil-Lula, Iwona; Sochocka, Marta; Zatońska, Katarzyna; Szuba, Andrzej; Sawicki, Grzegorz; Woźniak, Mieczysław

    2015-02-01

    The hypothesis was that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to AdV9 infection. To test this hypothesis, the metabolic and molecular mechanisms responsible for AdV9-induced adipogenesis were examined. An association between anti-AdV9 antibodies and human obesity was also identified. 3T3L1 cells were used as a surrogate model to analyze the preadipocyte proliferation, differentiation, and maturation. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP and fatty acid synthase gene, intracellular lipid accumulation and cytokine release were assessed. The presence of anti-AdV antibodies, serum lipids, plasma leptin, and CRP was evaluated in 204 obese and non-obese patients. AdV9-infected cells accumulated more intracellular lipids in comparison to uninfected controls. AdV9 enhanced an expression of C/EBP-β and PPAR-γ leading to an increased differentiation of preadipocytes. Overexpression of aP2 and fatty acid synthase, and decreased expression of leptin confirmed an increased accumulation of intracellular lipids due to AdV infection. Secretion of TNF-α and IL-6 from AdV9-inoculated cells was decreased strongly. About 24.5% of prevalence of anti-AdV9 antibodies was reported in the study group. AdV9-infected subjects presented higher body weights, BMIs, WHR, and central obesity. The presence of anti-AdV9 antibodies was associated with changes in serum lipids level but neither elevated CRP nor decreased leptin levels were related to obesity due to AdV infection. Data obtained from this study provide the evidences that AdV9 is a second adenovirus, which has an influence on differentiation and lipid accumulation of 3T3L1 cells. © 2014 Wiley Periodicals, Inc.

  3. Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: Implications for ovarian cancer therapy

    Thoma, Clemens; Bachy, Veronique; Seaton, Patricia; Green, Nicola K.; Greaves, David R.; Klavinskis, Linda; Seymour, Leonard W.; Morrison, Joanne

    2013-01-01

    In a phase II/III clinical trial intraperitoneal (i.p.) administration of a group C adenovirus vector (Ad5) caused bowel adhesion formation, perforation and obstruction. However, we had found that i.p. group B, in contrast to group C adenoviruses, did not cause adhesions in nude BALB/c ovarian cancer models, prompting further investigation. Ex vivo, group B Ad11 caused lower inflammatory responses than Ad5 on BALB/c peritoneal macrophages. In vivo, i.p. Ad11 triggered short-term cytokine and cellular responses equal to Ad5 in both human CD46-positive and -negative mice. In contrast, in a long-term study of repeated i.p. administration, Ad11 caused no/mild, whereas Ad5 induced moderate/severe adhesions and substantial liver toxicity accompanied by elevated levels of IFNγ and VEGF and loss of i.p. macrophages, regardless of CD46 expression. It appears that, although i.p. Ad11 evokes immediate inflammation similar to Ad5, repeated administration of Ad11 is better tolerated and long-term fibrotic tissue remodelling is reduced. - Highlights: • i.p. Ad11 causes less long-term intraperitoneal inflammation than Ad5 in CD46-transgenic mice. • Ex vivo BALB/c peritoneal macrophages express less RANTES after Ad11 than Ad3 or Ad5 treatment. • In vivo, cytokine and cellular responses 6 h after i.p. Ad11 are equal to Ad5. • In contrast, after repeated i.p. application, Ad5, but not Ad11, causes severe i.p. toxicity. • The use of Ad11 instead of Ad5 might increase patient safety in future virotherapy of ovarian cancer

  4. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive sleeping beauty transposase for somatic integration.

    Wenli Zhang

    Full Text Available We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR and linear amplification-mediated PCR (LAM-PCR. Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models.

  5. Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: Implications for ovarian cancer therapy

    Thoma, Clemens, E-mail: c.thoma@oxfordalumni.org [Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU (United Kingdom); Bachy, Veronique [Peter Gorer Department of Immunobiology, Kings College London, Guys Hospital, Great Maze Pond, London SE1 9RT (United Kingdom); Seaton, Patricia [Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU (United Kingdom); Green, Nicola K. [Clinical Biomanufacturing Facility, University of Oxford, Old Road, Oxford OX3 7JT (United Kingdom); Greaves, David R. [Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Klavinskis, Linda [Peter Gorer Department of Immunobiology, Kings College London, Guys Hospital, Great Maze Pond, London SE1 9RT (United Kingdom); Seymour, Leonard W. [Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom); Morrison, Joanne [Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU (United Kingdom); Department of Obstetrics and Gynaecology, Musgrove Park Hospital, Taunton TA1 5DA (United Kingdom)

    2013-12-15

    In a phase II/III clinical trial intraperitoneal (i.p.) administration of a group C adenovirus vector (Ad5) caused bowel adhesion formation, perforation and obstruction. However, we had found that i.p. group B, in contrast to group C adenoviruses, did not cause adhesions in nude BALB/c ovarian cancer models, prompting further investigation. Ex vivo, group B Ad11 caused lower inflammatory responses than Ad5 on BALB/c peritoneal macrophages. In vivo, i.p. Ad11 triggered short-term cytokine and cellular responses equal to Ad5 in both human CD46-positive and -negative mice. In contrast, in a long-term study of repeated i.p. administration, Ad11 caused no/mild, whereas Ad5 induced moderate/severe adhesions and substantial liver toxicity accompanied by elevated levels of IFNγ and VEGF and loss of i.p. macrophages, regardless of CD46 expression. It appears that, although i.p. Ad11 evokes immediate inflammation similar to Ad5, repeated administration of Ad11 is better tolerated and long-term fibrotic tissue remodelling is reduced. - Highlights: • i.p. Ad11 causes less long-term intraperitoneal inflammation than Ad5 in CD46-transgenic mice. • Ex vivo BALB/c peritoneal macrophages express less RANTES after Ad11 than Ad3 or Ad5 treatment. • In vivo, cytokine and cellular responses 6 h after i.p. Ad11 are equal to Ad5. • In contrast, after repeated i.p. application, Ad5, but not Ad11, causes severe i.p. toxicity. • The use of Ad11 instead of Ad5 might increase patient safety in future virotherapy of ovarian cancer.

  6. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Image-aided Suicide Gene Therapy Utilizing Multifunctional hTERT-targeting Adenovirus for Clinical Translation in Hepatocellular Carcinoma.

    Kim, Yun-Hee; Kim, Kyung Tae; Lee, Sang-Jin; Hong, Seung-Hee; Moon, Ju Young; Yoon, Eun Kyung; Kim, Sukyoung; Kim, Eun Ok; Kang, Se Hun; Kim, Seok Ki; Choi, Sun Il; Goh, Sung Ho; Kim, Daehong; Lee, Seong-Wook; Ju, Mi Ha; Jeong, Jin Sook; Kim, In-Hoo

    2016-01-01

    Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.

  8. 5-Fluorouracil-related enhancement of adenoviral infection is Coxsackievirus-adenovirus receptor independent and associated with morphological changes in lipid membranes

    Cabrele, Chiara; Vogel, Mandy; Piso, Pompiliu; Rentsch, Markus; Schröder, Josef; Jauch, Karl W; Schlitt, Hans J; Beham, Alexander

    2006-01-01

    AIM: To evaluate the mechanism underlying the effects of 5-Fluorouracil (5-FU) on adenoviral infection. METHODS: Low and high Coxsackievirus-Adenovirus Receptor (CAR) expressing human colon carcinoma cell lines were treated with 5-FU and two E1-deleted adenoviral constructs, one transferring GFP (Ad/CMV-GFP) the other bax (Ad/CEA-bax). The number of infected cells were monitored by GFP expression. To evaluate the effects of 5-FU in a receptor free system, Ad/GFP were encapsulated in liposomes and treated with 5-FU. Ad/GFP release was estimated with PCR and infection of 293 cells with the supernatant. Electron microscopy of the Ad5-GFP-liposome complex was made to investigate morphological changes of the liposomes after 5-FU. RESULTS: Infection rates of all cell lines increased from 50% to 98% with emerging 5-FU concentrations. The enhanced viral uptake was independent of the CAR expression. Additionally, 5-FU treated liposomes released 2-2.5 times more adenoviruses. Furthermore, 5-FU-treated liposomes appeared irregular and porous-like. CONCLUSION: adenoviral uptake is enhanced in the presence of 5-FU irrespective of CAR and is associated with morphological changes in membranes making the combination of both a promising option in gene therapy. PMID:16937527

  9. Immunogenicity of adenovirus-derived porcine parvovirus-like particles displaying B and T cell epitopes of foot-and-mouth disease.

    Pan, Qunxing; Wang, Hui; Ouyang, Wei; Wang, Xiaoli; Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; He, Kongwang

    2016-01-20

    Virus-like particles (VLPs) vaccines combine many of the advantages of whole-virus vaccines and recombinant subunit vaccines, integrating key features that underlay their immunogenicity, safety and protective potential. We have hypothesized here the effective insertion of the VP1 epitopes (three amino acid residues 21-40, 141-160 and 200-213 in VP1, designated VPe) of foot-and-mouth disease (FMDV) within the external loops of PPV VP2 could be carried out without altering assembly based on structural and antigenic data. To investigate the possibility, development of two recombinant adenovirus rAd-PPV:VP2-FMDV:VPe a or rAd-PPV:VP2-FMDV:VPe b were expressed in HEK-293 cells. Out of the two insertion strategies tested, one of them tolerated an insert of 57 amino acids in one of the four external loops without disrupting the VLPs assembly. Mice were inoculated with the two recombinant adenoviruses, and an immunogenicity study showed that the highest levels of FMDV-specific humoral responses and T cell proliferation could be induced by rAd-PPV:VP2-FMDV:VPe b expressing hybrid PPV:VLPs (FMDV) in the absence of an adjuvant. Then, the protective efficacy of inoculating swine with rAd-PPV:VP2-FMDV:VPe b was tested. All pigs inoculated with rAd-PPV:VP2-FMDV:VPe b were protected from viral challenge, meanwhile the neutralizing antibody titers were significantly higher than those in the group inoculated with swine FMD type O synthetic peptide vaccine. Our results clearly demonstrate the potential usefulness of adenovirus-derived PPV VLPs as a vaccine strategy in prevention of FMDV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway.

    Shi, Yu; Fukuoka, Masahiro; Li, Guohua; Liu, Youan; Chen, Manyin; Konviser, Michael; Chen, Xin; Opavsky, Mary Anne; Liu, Peter P

    2010-06-22

    Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.

  11. Combined adenovirus-mediated artificial microRNAs targeting mfgl2, mFas, and mTNFR1 protect against fulminant hepatic failure in mice.

    Dong Xi

    Full Text Available Hepatitis B virus (HBV-related acute-on-chronic liver failure (ACLF has a poor prognosis with high in-hospital mortality. Hepatic and circulating inflammatory cytokines, such as fibrinogen like protein 2 (fgl2, FasL/Fas, and TNFα/TNFR1, play a significant role in the pathophysiology of ACLF. This study aimed to investigate the therapeutic effect of recombinant adenoviral vectors carrying constructed DNA code for non-native microRNA (miRNA targeting mouse fgl2 (mfgl2 or both mFas and mTNFR1 on murine hepatitis virus (MHV-3-induced fulminant hepatitis in BALB/cJ mice. Artificial miRNA eukaryotic expression plasmids against mfgl2, mFas, and mTNFR1 were constructed, and their inhibitory effects on the target genes were confirmed in vitro. pcDNA6.2-mFas-mTNFR1- miRNA,which expresses miRNA against both mFas and mTNFR1 simultaneously,was constructed. To construct a miRNA adenovirus expression vector against mfgl2, pcDNA6.2-mfgl2-miRNA was cloned using Gateway technology. Ad-mFas-mTNFR1- miRNA was also constructed by the same procedure. Adenovirus vectors were delivered by tail-vein injection into MHV-3-infected BALB/cJ mice to evaluate the therapeutic effect. 8 of 18 (44.4% mice recovered from fulminant viral hepatitis in the combined interference group treated with Ad-mfgl2-miRNA and Ad-mFas-mTNFR1-miRNA. But only 4 of 18 (22.2% mice receiving Ad-mfgl2-miRNA and 3 of 18 (16.7% mice receiving Ad-mFas-mTNFR1- miRNA survived. These adenovirus vectors significantly ameliorated inflammatory infiltration, fibrin deposition, hepatocyte necrosis and apoptosis, and prolonged survival time. Our data illustrated that combined interference using adenovirus-mediated artificial miRNAs targeting mfgl2, mFas, and mTNFR1 might have significant therapeutic potential for the treatment of fulminant hepatitis.

  12. Fiber mediated receptor masking in non-infected bystander cells restricts adenovirus cell killing effect but promotes adenovirus host co-existence.

    Johan Rebetz

    Full Text Available The basic concept of conditionally replicating adenoviruses (CRAD as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI, and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI. Excessive production of fiber molecules from initial CRAD infection of only 1 to 2% cancer cells and their release prior to the viral particle itself caused a tropism-specific receptor masking in both infected and non-infected bystander cells. Consequently, the non-infected bystander cells were inefficiently bound and infected by CRAD progenies. Further, fiber overproduction with concomitant restriction of adenovirus spread was observed in xenograft cancer therapy models. Besides the CAR-binding Ad4, Ad5, and Ad37, infection with CD46-binding Ad35 and Ad11 also caused receptor masking. Fiber overproduction and its resulting receptor masking thus play a key role in limiting CRAD functionality, but potentially promote adenovirus and host cell co-existence. These findings also give important clues for understanding mechanisms underlying the natural infection course of various adenoviruses.

  13. Genetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013.

    Sook-Young Lee

    Full Text Available Antarctica is considered a relatively uncontaminated region with regard to the infectious diseases because of its extreme environment, and isolated geography. For the genetic characterization and molecular epidemiology of the newly found penguin adenovirus in Antarctica, entire genome sequencing and annual survey of penguin adenovirus were conducted. The entire genome sequences of penguin adenoviruses were completed for two Chinstrap penguins (Pygoscelis antarctica and two Gentoo penguins (Pygoscelis papua. The whole genome lengths and G+C content of penguin adenoviruses were found to be 24,630-24,662 bp and 35.5-35.6%, respectively. Notably, the presence of putative sialidase gene was not identified in penguin adenoviruses by Rapid Amplification of cDNA Ends (RACE-PCR as well as consensus specific PCR. The penguin adenoviruses were demonstrated to be a new species within the genus Siadenovirus, with a distance of 29.9-39.3% (amino acid, 32.1-47.9% in DNA polymerase gene, and showed the closest relationship with turkey adenovirus 3 (TAdV-3 in phylogenetic analysis. During the 2008-2013 study period, the penguin adenoviruses were annually detected in 22 of 78 penguins (28.2%, and the molecular epidemiological study of the penguin adenovirus indicates a predominant infection in Chinstrap penguin population (12/30, 40%. Interestingly, the genome of penguin adenovirus could be detected in several internal samples, except the lymph node and brain. In conclusion, an analysis of the entire adenoviral genomes from Antarctic penguins was conducted, and the penguin adenoviruses, containing unique genetic character, were identified as a new species within the genus Siadenovirus. Moreover, it was annually detected in Antarctic penguins, suggesting its circulation within the penguin population.

  14. Adenovirus serotype 7 associated with a severe lower respiratory tract disease outbreak in infants in Shaanxi Province, China

    Xu Wenbo

    2011-01-01

    Full Text Available Abstract Background Pneumonia caused by adenovirus infection is usually severe especially with adenovirus serotype 7 commonly associated with lower respiratory tract disease outbreaks. We reported an outbreak of 70 cases of severe pneumonia with one death of infants in Shaanxi Province, China. Sampling showed adenovirus 7 (Ad7 as the primary pathogen with some co-infections. Results Two strains of adenovirus and two strains of enterovirus were isolated, the 21 pharynx swabs showed 14 positive amplifications for adenovirus; three co-infections with respiratory syncytial virus, two positive for rhinovirus, one positive for parainfluenza 3, and four negative. Adenovirus typing showed nine of the nine adenovirus positive samples were HAdV-7, three were HAdV-3 and two were too weak to perform sequencing. The entire hexon gene of adenovirus was sequenced and analyzed for the two adenovirus serotype 7 isolates, showing the nucleic acid homology was 99.8% between the two strains and 99.5% compared to the reference strain HAdV-7 (GenBank accession number AY769946. For the 21 acute phase serum samples from the 21 patients, six samples had positives results for ELISA detection of HAdV IgA, and the neutralization titers of the convalescent-phase samples were four times higher than those of the acute-phase samples in nine pairs. Conclusions We concluded adenovirus was the viral pathogen, primarily HAdV-7, with some co-infections responsible for the outbreak. This is the first report of an infant pneumonia outbreak caused by adenovirus serotype 7 in Shaanxi Province, China.

  15. Detection and Analysis of Six Lizard Adenoviruses by Consensus Primer PCR Provides Further Evidence of a Reptilian Origin for the Atadenoviruses

    Wellehan, James F. X.; Johnson, April J.; Harrach, Balázs; Benkö, Mária; Pessier, Allan P.; Johnson, Calvin M.; Garner, Michael M.; Childress, April; Jacobson, Elliott R.

    2004-01-01

    A consensus nested-PCR method was designed for investigation of the DNA polymerase gene of adenoviruses. Gene fragments were amplified and sequenced from six novel adenoviruses from seven lizard species, including four species from which adenoviruses had not previously been reported. Host species included Gila monster, leopard gecko, fat-tail gecko, blue-tongued skink, Tokay gecko, bearded dragon, and mountain chameleon. This is the first sequence information from lizard adenoviruses. Phyloge...

  16. Pandemic Influenza Virus 2009 H1N1 and Adenovirus in a High Risk Population of Young Adults: Epidemiology, Comparison of Clinical Presentations, and Coinfection

    2014-01-08

    a variety of pathogens. With the exception of the prior adenovirus vaccine era from 1980– 1996, adenoviruses have historically been the most common...administration of both live attenuated influenza and adenovirus vaccines , which could affect current trainee vaccine policies. In the meantime, concerns...change since the late 2011 reintroduction of adenovirus serotypes 4 and 7 vaccines in military trainees, or whether issues arise with concurrent

  17. Increasing the ex vivo antigen-specific IFN-γ production in subpopulations of T cells and NKp46+ cells by anti-CD28, anti-CD49d and recombinant IL-12 costimulation in cattle vaccinated with recombinant proteins from Mycobacterium avium subspecies paratuberculosis

    Thakur, Aneesh; Riber, Ulla; Davis, William C.

    2013-01-01

    -γ secretion by CD4, CD8, γδ T cells and NK cells. Age matched male jersey calves, experimentally infected with Mycobacterium avium subsp. paratuberculosis (MAP), were vaccinated with a cocktail of recombinant MAP proteins or left unvaccinated. Vaccine induced ex vivo recall responses were measured through Ag......T cells, which encounter specific antigen (Ag), require additional signals to mount a functional immune response. Here, we demonstrate activation of signal 2, by anti-CD28 mAb (aCD28) and other costimulatory molecules (aCD49d, aCD5), and signal 3, by recombinant IL-12, enhance Ag-specific IFN...

  18. On the mechanism of arginine requirement for adenovirus synthesis

    Plaat, D.; Weber, J.

    1979-01-01

    The effects of arginine deprivation on the synthesis and processing of viral proteins and the assembly of incomplete and complete virions were studied during infection with human adenovirus type 2. Arginine deprivation greatly reduced the synthesis of all viral proteins, particularly the precursor to core protein VII. The inhibition was completely reversible by the addition of arginine to the medium. Arginine deprivation between 7 and 20 hours post-infection inhibited the processing of PVII to VII, suggesting that PVII is not cleaved autocatalytically. The assembly of incomplete virions was sensitive to arginine deprivation only prior to 20 hours, while the assembly of complete virions was dependent on the continuous presence of arginine. This observation supports the hypothesis that incomplete virions are precursors of complete virions. The experiments on the PVII-specific endoprotease activity showed that arginine deprivation caused only slight reduction in the in vitro activity, although no activity was observed in vivo. The present results lead to the hypothesis that arginine deficiency inhibits the synthesis of a functional protein essential for virion maturation, other than the synthesis of processing of PVII. (author)

  19. Determination of the transforming activities of adenovirus oncogenes.

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  20. Oncolytic Replication of E1b-Deleted Adenoviruses

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  1. Taxonomy proposal for Old World monkey adenoviruses: characterisation of several non-human, non-ape primate adenovirus lineages.

    Pantó, Laura; Podgorski, Iva I; Jánoska, Máté; Márkó, Orsolya; Harrach, Balázs

    2015-12-01

    A species classification regarding Old World monkey adenoviruses is proposed. We determined the nucleotide sequences of PCR-amplified fragments from the genes of the IVa2, DNA-dependent DNA polymerase, penton base, and hexon proteins from every simian adenovirus (SAdV) serotype that originated from Old World monkeys for which the full genome sequence had not yet been published. We confirmed that the majority of Old Word monkey SAdVs belong to two previously established species. Interestingly, one is the most recently established human AdV species, Human mastadenovirus G, which includes a single human virus, HAdV-52, as well as SAdV-1, -2, -7, -11, -12, and -15. The other approved species, Simian mastadenovirus A includes SAdV-3, -4, -6, -9, -10, -14, and -48. Several SAdVs (SAdV-5, -8, -49, -50) together with baboon AdV-1 and rhesus monkey AdV strains A1139, A1163, A1173, A1258, A1285, A1296, A1312, A1327 and A1335 have been proposed to be classified into an additional species, Simian mastadenovirus B. Another proposed species, Simian mastadenovirus C has been described for SAdV-19, baboon AdV-2/4 and -3. Our study revealed the existence of four additional AdV lineages. The corresponding new candidate species are Simian mastadenovirus D (for SAdV-13), Simian mastadenovirus E (for SAdV-16), Simian mastadenovirus F (for SAdV-17 and -18), and Simian mastadenovirus G (for SAdV-20). Several biological and genomic properties, such as the host origin, haemagglutination profile, number of fibre genes, and G+C content of the genome, strongly support this classification. Three SAdV strains originating from the American Type Culture Collection turned out to be mixtures of at least two virus types, either of the same species (SAdV-12 and -15 types from Human mastadenovirus G) or of two different species (SAdV-5 types from Simian mastadenovirus B and Human mastadenovirus G).

  2. Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein

    Xingui Tian

    2015-10-01

    Full Text Available Human adenovirus type 55 (HAdV55 is a newly identified re-emergent acute respiratory disease (ARD pathogen with a proposed recombination of hexon gene between HAdV11 a