WorldWideScience

Sample records for adenovirus based vaccine

  1. Adenovirus-based vaccine against Listeria monocytogenes

    DEFF Research Database (Denmark)

    Jensen, Søren; Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech

    2013-01-01

    The use of replication-deficient adenoviruses as vehicles for transfer of foreign genes offers many advantages in a vaccine setting, eliciting strong cellular immune responses involving both CD8(+) and CD4(+) T cells. Further improving the immunogenicity, tethering of the inserted target Ag to MHC...... class II-associated invariant chain (Ii) greatly enhances both the presentation of most target Ags, as well as overall protection against viral infection, such as lymphocytic choriomeningitis virus (LCMV). The present study extends this vaccination concept to include protection against intracellular...... bacteria, using Listeria monocytogenes as a model organism. Protection in C57BL/6 mice against recombinant L. monocytogenes expressing an immunodominant epitope of the LCMV glycoprotein (GP33) was greatly accelerated, augmented, and prolonged following vaccination with an adenoviral vaccine encoding GP...

  2. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    Science.gov (United States)

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines.

  3. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Directory of Open Access Journals (Sweden)

    Jason S Richardson

    Full Text Available BACKGROUND: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP. The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. METHODOLOGY/PRINCIPAL FINDINGS: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP. Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. CONCLUSIONS/SIGNIFICANCE: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the

  4. Adenovirus vector-based vaccines for human immunodeficiency virus type 1.

    Science.gov (United States)

    Barouch, Dan H; Nabel, Gary J

    2005-02-01

    Recombinant adenovirus (rAd) vectors have received considerable attention for gene therapy because of their high transduction efficiency. However, recombinant gene expression from rAd vectors elicits rapid and potent immune responses to foreign transgene products. Such immunogenicity limits the duration of transgene expression and poses a major challenge to the use of rAd vectors for gene therapy. In contrast, the inherent immunogenicity of these vectors is a desirable feature for vaccine development. The immunogenicity and protective efficacy of rAd vector-based vaccines have now been demonstrated in a number of animal models, and rAd vaccines for a variety of pathogens are currently being explored in early-phase clinical trials. In this review, we describe progress in the development of rAd vector-based vaccines with a focus on human immunodeficiency virus type 1.

  5. Novel adenovirus vaccine vectors based on the enteric-tropic serotype 41.

    Science.gov (United States)

    Lemiale, Franck; Haddada, Hedi; Nabel, Gary J; Brough, Douglas E; King, C Richter; Gall, Jason G D

    2007-03-01

    Replication-defective adenovirus vectors, primarily developed from serotype 5 (Ad5) viruses, have been widely used for gene transfer and vaccination approaches. Vectors based on other serotypes of adenovirus could be used in conjunction with, or in place of, Ad5 vectors. In this study, Ad41, an enteric adenovirus usually described as 'non-cultivable' or 'fastidious,' has been successfully cloned, rescued and propagated on 293-ORF6 cells. The complementation capabilities of this cell line allow generation of Ad41 vectors at titers comparable to those obtained for Ad5 vectors. Mice immunized with an Ad41 vector containing an HIV envelope (Env) gene mounted anti-Env cellular and humoral immune responses. Ad41-Env vectors appear to be particularly attractive when used in heterologous prime-boost regimens, where they induce significantly higher cellular immune responses to HIV-Env than Ad5-based regimens. Ad41-based constructs are attractive vaccine vectors alone or in combination with Ad5 adenovectors, since each vector type can provide circumvention of pre-existing immunity to the other.

  6. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity.

    Science.gov (United States)

    Smaill, Fiona; Jeyanathan, Mangalakumari; Smieja, Marek; Medina, Maria Fe; Thanthrige-Don, Niroshan; Zganiacz, Anna; Yin, Cindy; Heriazon, Armando; Damjanovic, Daniela; Puri, Laura; Hamid, Jemila; Xie, Feng; Foley, Ronan; Bramson, Jonathan; Gauldie, Jack; Xing, Zhou

    2013-10-02

    There is an urgent need to develop new tuberculosis (TB) vaccines to safely and effectively boost Bacille Calmette-Guérin (BCG)-triggered T cell immunity in humans. AdHu5Ag85A is a recombinant human type 5 adenovirus (AdHu5)-based TB vaccine with demonstrated efficacy in a number of animal species, yet it remains to be translated to human applications. In this phase 1 study, we evaluated the safety and immunogenicity of AdHu5Ag85A in both BCG-naïve and previously BCG-immunized healthy adults. Intramuscular immunization of AdHu5Ag85A was safe and well tolerated in both trial volunteer groups. Moreover, although AdHu5Ag85A was immunogenic in both trial volunteer groups, it much more potently boosted polyfunctional CD4(+) and CD8(+) T cell immunity in previously BCG-vaccinated volunteers. Furthermore, despite prevalent preexisting anti-AdHu5 humoral immunity in most of the trial volunteers, we found little evidence that such preexisting anti-AdHu5 immunity significantly dampened the potency of AdHu5Ag85A vaccine. This study supports further clinical investigations of the AdHu5Ag85A vaccine for human applications. It also suggests that the widely perceived negative effect of preexisting anti-AdHu5 immunity may not be universally applied to all AdHu5-based vaccines against different types of human pathogens.

  7. Delivery route, MyD88 signaling and cross-priming events determine the anti-tumor efficacy of an adenovirus based melanoma vaccine.

    NARCIS (Netherlands)

    Hangalapura, B.N.; Oosterhoff, D.; Gupta, T.; Groot, J. de; Wijnands, P.G.J.T.B.; Beusechem, V.W. van; Haan, J.; Tuting, T.; Eertwegh, A.J. van den; Curiel, D.T.; Scheper, R.J.; Gruijl, T.D. de

    2011-01-01

    Adenovirus (Ad)-based vaccines are considered for cancer immunotherapy, yet, detailed knowledge on their mechanism of action and optimal delivery route for anti-tumor efficacy is lacking. Here, we compared the anti-tumor efficacy of an Ad-based melanoma vaccine after intradermal, intravenous, intran

  8. Low seroprevalent species D adenovirus vectors as influenza vaccines.

    Directory of Open Access Journals (Sweden)

    Eric A Weaver

    Full Text Available Seasonal and pandemic influenza remains a constant threat. While standard influenza vaccines have great utility, the need for improved vaccine technologies have been brought to light by the 2009 swine flu pandemic, highly pathogenic avian influenza infections, and the most recent early and widespread influenza activity. Species C adenoviruses based on serotype 5 (AD5 are potent vehicles for gene-based vaccination. While potent, most humans are already immune to this virus. In this study, low seroprevalent species D adenoviruses Ad26, 28, and 48 were cloned and modified to express the influenza virus A/PR/8/34 hemagglutinin gene for vaccine studies. When studied in vivo, these species D Ad vectors performed quite differently as compared to species C Ad vectors depending on the route of immunization. By intramuscular injection, species D vaccines were markedly weaker than species C vaccines. In contrast, the species D vaccines were equally efficient as species C when delivered mucosally by the intranasal route. Intranasal adenovirus vaccine doses as low as 10(8 virus particles per mouse induced complete protection against a stringent lethal challenge dose of influenza. These data support translation of species D adenoviruses as mucosal vaccines and highlight the fundamental effects of differences in virus tropism on vaccine applications.

  9. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    Science.gov (United States)

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine.

  10. Progress on adenovirus-vectored universal influenza vaccines.

    Science.gov (United States)

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  11. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Isabela Resende Pereira

    2015-01-01

    Full Text Available Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd carrying sequences of amastigote surface protein-2 (rAdASP2 and trans-sialidase (rAdTS T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi, when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFNγ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi and the boost (analysis at 180 and 230 dpi. Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28, CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells

  12. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice.

    Directory of Open Access Journals (Sweden)

    Maria A Croyle

    Full Text Available Pre-existing immunity to human adenovirus serotype 5 (Ad5 is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M., nasal (I.N. or oral (P.O. route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-gamma+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-gamma+ CD8+ T cells (3.9+/-1% naïve vs. 3.6+/-1% pre-existing immunity, PEI nor anti-Ebola neutralizing antibody (NAB, 40+/-10 reciprocal dilution, both groups. The number of INF-gamma+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146+/-14, naïve vs. 120+/-16 SFC/million MNCs, PEI. However, pre-existing immunity reduced NAB levels in BAL by approximately 25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-gamma+ CD8+ T cells 10 days after administration (0.3+/-0.3% PEG vs. 1.7+/-0.5% unmodified. PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine.

  13. Future prospects for the development of cost-effective Adenovirus vaccines

    DEFF Research Database (Denmark)

    Fougeroux, Cyrielle; Holst, Peter J

    2017-01-01

    Vaccination is one of the most efficient tools for disease prevention, and a continuously growing field of research. However, despite progress, we still need more efficient and cost-effective vaccines that would improve access to those in need. In this review, we will describe the status of virus......-vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient...... as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes...

  14. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus

    Indian Academy of Sciences (India)

    Helin Li; Pengbo Ning; Zhi Lin; Wulong Liang; Kai Kang; Lei He; Yanming Zhang

    2015-03-01

    The use of adenovirus vector-based vaccines is a promising approach for generating antigen-specific immune responses. Improving vaccine potency is necessary in other approaches to address their inadequate protection for the majority of infectious diseases. This study is the first to reconstruct a recombinant replication-defective human adenovirus co-expressing E2 and invasin C-terminal (InvC) glycoproteins (rAd-E2-InvC). rAd-E2-InvC with 2×106 TCID50 was intramuscularly administered two times to CSFV-free pigs at 14 day intervals. No adverse clinical reactions were observed in any of the pigs after the vaccination. The CSFV E2-specific antibody titer was significantly higher in the rAd-E2-InvC group than that in the rAdV-E2 group as measured by NPLA and blocking ELISA. Pigs immunized with rAd-E2-InvC were completely protected against lethal challenge. Neither CSFV RNA nor pathological changes were detected in the tissues after CSFV challenge. These results demonstrate that rAd-E2-InvC could be an alternative to the existing CSF vaccine. Moreover, InvC that acts as an adjuvant could enhance the immunogenicity of rAdV-E2 and induce high CSFV E2-specific antibody titer and protection level.

  15. Adenovirus-based vaccine with epitopes incorporated in novel fiber sites to induce protective immunity against Pseudomonas aeruginosa.

    Science.gov (United States)

    Sharma, Anurag; Krause, Anja; Xu, Yaqin; Sung, Biin; Wu, Wendy; Worgall, Stefan

    2013-01-01

    Adenovirus (Ad) vector-based vaccines displaying pathogen-derived epitopes on Ad capsid proteins can elicit anti-pathogen immunity. This approach seems to be particularly efficient with epitopes incorporated into the Ad fiber protein. Here, we explore epitope insertion into various sites of the Ad fiber to elicit epitope-specific immunity. Ad vectors expressing the 14-mer Pseudomonas aeruginosa immune-dominant outer membrane protein F (OprF) epitope 8 (Epi8) in five distinct sites of the Ad5 fiber, loops CD (AdZ.F(CD)Epi8), DE (AdZ.F(DE)Epi8), FG (AdZ.F(FG)Epi8), HI (AdZ.F(HI)Epi8) and C terminus (AdZ.F(CT)Epi8), or the hexon HVR5 loop (AdZ.HxEpi8) were compared in their capacity to elicit anti-P. aeruginosa immunity to AdOprF, an Ad expressing the entire OprF protein. Intramuscular immunization of BALB/c mice with AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8 elicited higher anti-OprF humoral and cellular CD4 and CD8 responses as well as enhanced protection against respiratory infection with P. aeruginosa compared to immunization with AdZ.F(CD)Epi8, AdZ.F(DE)Epi8, AdZ.F(CT)Epi8 or AdZ.HxEpi8. Importantly, repeat administration of the fiber- and hexon-modified Ad vectors boosted the OprF-specific humoral immune response in contrast to immunization with AdOprF. Strikingly, following three doses of AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8 anti-OprF immunity surpassed that induced by AdOprF. Furthermore, in the presence of anti-Ad5 immunity, immunization with AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8, but not with AdOprF, induced protective immunity against P. aeruginosa. This suggests that incorporation of epitopes into distinct sites of the Ad fiber is a promising vaccine strategy.

  16. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  17. A Tetravalent Dengue Vaccine Based on a Complex Adenovirus Vector Provides Significant Protection in Rhesus Monkeys against All Four Serotypes of Dengue Virus▿

    OpenAIRE

    Raviprakash, Kanakatte; Wang, Danher; Ewing, Dan; Holman, David H.; Block, Karla; Woraratanadharm, Jan; Chen, Lan; Hayes, Curtis; Dong, John Y.; Porter, Kevin

    2008-01-01

    Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vect...

  18. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  19. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  20. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Science.gov (United States)

    2010-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing...

  1. Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens.

    Science.gov (United States)

    Sánchez Ramos, Oliberto; González Pose, Alain; Gómez-Puerta, Silvia; Noda Gomez, Julia; Vega Redondo, Armando; Águila Benites, Julio César; Suárez Amarán, Lester; Parra, Natalie C; Toledo Alonso, Jorge R

    2011-05-01

    Recombinant adenoviral vectors have emerged as an attractive system for veterinary vaccines development. However, for poultry vaccination a very important criterion for an ideal vaccine is its low cost. The objective of this study was to test the ability of chicken CD154 to enhance the immunogenicity of an adenoviral vector-based vaccine against avian influenza virus in order to reduce the amount of antigen required to induce an effective immune response in avian. Chickens were vaccinated with three different doses of adenoviral vectors encoding either HA (AdHA), or HA fused to extracellular domain chicken's CD154 (AdHACD). Hemagglutination inhibition (HI) assay and relative quantification of IFN-γ showed that the adenoviral vector encoding for the chimeric antigen is able to elicit an improved humoral and cellular immune response, which demonstrated that CD154 can be used as a molecular adjuvant allowing to reduce in about 50-fold the amount of adenoviral vector vaccine required to induce an effective immune response.

  2. Dramatic Decline of Respiratory Illness Among US Military Recruits After the Renewed Use of Adenovirus Vaccines

    Science.gov (United States)

    2014-10-01

    Naval Health Research Center Dramatic Decline of Respiratory Illness Among US Military Recruits After the Renewed Use of Adenovirus Vaccines ...Renewed Use of Adenovirus Vaccines Jennifer M. Radin,1,2 Anthony W. Hawksworth,1 Patrick J. Blair,1 Dennis J. Faix,3 Rema Raman,4 Kevin L. Russell,5...hiatus, oral vaccines against adenovirus types 4 (Ad4) and 7 (Ad7) were again produced and administered to US military recruits. This study examined the

  3. Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms Toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting Ad5 immunity.

    Science.gov (United States)

    Appledorn, Daniel M; Aldhamen, Yasser A; Godbehere, Sarah; Seregin, Sergey S; Amalfitano, Andrea

    2011-01-01

    HIV/AIDS continue to devastate populations worldwide. Recent studies suggest that vaccines that induce beneficial immune responses in the mucosal compartment may improve the efficacy of HIV vaccines. Adenovirus serotype 5 (Ad5)-based vectors remain a promising platform for the development of effective vaccines. In an effort to improve the efficacy of Ad5-based vaccines, even in the presence of preexisting Ad5 immunity, we evaluated the potential for an Ad5-based HIV vaccine to induce antigen-specific immune responses following sublingual (s.l.) administration, a route not previously tested in regard to Ad-based vaccines. s.l. vaccination with an Ad5-based HIV-Gag vaccine resulted in a significant induction of Gag-specific cytotoxic T-lymphocyte (CTL) responses in both the systemic and the mucosal compartment. We also show that s.l. immunization not only avoided preexisting Ad5 immunity but also elicited a broad repertoire of antigen-specific CTL clones. Additionally, we confirm for the first time that oral delivery of a vaccine expressing a potent Toll-like receptor (TLR) agonist can stimulate innate immune responses through induction of cytokines and chemokines and activation of NK cells, NKT cells, and macrophages in vivo. These results positively correlated with improved antigen-specific CTL responses. These results could be achieved both in Ad5-naïve mice and in mice with preexisting immunity to Ad5. The simplicity of the s.l. vaccination regimen coupled with augmentation of TLR-dependent pathways active in the oral cavity makes s.l. delivery a promising method for HIV vaccine development specifically, as well as for many other vaccine applications in general.

  4. Two Complex, Adenovirus-Based Vaccines That Together Induce Immune Responses to All Four Dengue Virus Serotypes▿

    OpenAIRE

    Holman, David H.; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U.; LUO, MIN; Zhang, Jianghui; Porter, Kevin R.; Dong, John Y.

    2006-01-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirement...

  5. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    Science.gov (United States)

    Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R.; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine. PMID:23100479

  6. Amplified and Persistent Immune Responses Generated by Single-Cycle Replicating Adenovirus Vaccines

    Science.gov (United States)

    Crosby, Catherine M.; Nehete, Pramod; Sastry, K. Jagannadha

    2014-01-01

    ABSTRACT Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered “single-cycle” adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. IMPORTANCE This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase

  7. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  8. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine.

    Science.gov (United States)

    Toro, Haroldo; Suarez, David L; Tang, De-chu C; van Ginkel, Frederik W; Breedlovea, Cassandra

    2011-03-01

    We evaluated protection conferred by mucosal vaccination with replication-competent adenovirus-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene from A/turkey/WI/68 (AdTW68.H5ck). Commercial, layer-type chicken groups were either singly vaccinated ocularly at 5 days of age, singly vaccinated via spray at 5 days of age, or ocularly primed at 5 days and ocularly boosted at 15 days of age. Only chickens primed and boosted via the ocular route developed AI systemic antibodies with maximum hemagglutination inhibition mean titers of 3.9 log2 at 32 days of age. In contrast, single vaccination via the ocular or spray routes maintained an antibody status similar to unvaccinated controls. All chickens (16/16) subjected to ocular priming and boosting with AdTW68.H5ck survived challenge with highly pathogenic AI virus A/chicken/Queretaro/14588-19/95 (H5N2). Single ocular vaccination resulted in 63% (10/16) of birds surviving the challenge followed by a 44% (7/16) survival of single-sprayed vaccinated birds. Birds vaccinated twice via the ocular route also showed significantly lower (P < 0.05) AI virus RNA concentrations in oropharyngeal swabs compared to unvaccinated-challenged controls.

  9. Liposomal enhancement of the immunogenicity of adenovirus type 5 hexon and fiber vaccines.

    Science.gov (United States)

    Kramp, W J; Six, H R; Drake, S; Kasel, J A

    1979-01-01

    Immunogenicity of adenovirus capsid proteins carried in liposomes was comparable to that with equivalent doses administered in Freund adjuvant, and both forms were more potent than aqueous vaccines. PMID:489132

  10. Acute Respiratory Disease in US Army Trainees 3 Years after Reintroduction of Adenovirus Vaccine1

    Science.gov (United States)

    McCormic, Zachary D.; Gaydos, Joel C.; Hawksworth, Anthony W.; Jordan, Nikki N.

    2017-01-01

    The 1999 cessation of vaccination against adenovirus types 4 and 7 among US Army trainees resulted in reemergence of acute respiratory disease (ARD) outbreaks. The 2011 implementation of a replacement vaccine led to dramatic and sustained decreases in ARD cases, supporting continuation of vaccination in this population at high risk for ARD. PMID:27748651

  11. Safety evaluation of adenovirus type 4 and type 7 vaccine live, oral in military recruits.

    Science.gov (United States)

    Choudhry, Azhar; Mathena, Julie; Albano, Jessica D; Yacovone, Margaret; Collins, Limone

    2016-08-31

    Before the widespread adoption of vaccination, adenovirus type 4 and type 7 were long associated with respiratory illnesses among military recruits. When supplies were depleted and vaccination was suspended in 1999 for approximately a decade, respiratory illnesses due to adenovirus infections resurged. In March 2011, a new live, oral adenovirus vaccine was licensed by the US Food and Drug Administration and was first universally administered to military recruits in October 2011, leading to rapid, dramatic elimination of the disease within a few months. As part of licensure, a postmarketing study (Sentinel Surveillance Plan) was performed to detect potential safety signals within 42days after immunization of military recruits. This study retrospectively evaluated possible adverse events related to vaccination using data from the Armed Forces Health Surveillance Branch Defense Medical Surveillance System (DMSS) database. Among 100,000 recruits who received the adenovirus vaccine, no statistically significant greater risk of prespecified medical events was observed within 42days after vaccination when compared with a historical cohort of 100,000 unvaccinated recruits. In an initial statistical analysis of International Classification of Disease, 9th Revision, Clinical Modification codes, a statistically significant higher risk for 19 other (not prespecified) medical events occurring in 5 or more recruits was observed among vaccinated compared with unvaccinated groups. After case record data abstraction for attribution and validation, two events (psoriasis [21 vs 7 cases] and serum reactions [12 vs 4 cases]) occurred more frequently in the vaccinated cohort. A causal relation of these rare events with adenovirus vaccination could not be established given confounding factors in the DMSS, such as coadministration of other vaccines and incomplete or inaccurate medical information, for some recruits. Prospective surveillance assessing these uncommon, but potentially

  12. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months

    Science.gov (United States)

    Pelliccia, Maria; Andreozzi, Patrizia; Paulose, Jayson; D'Alicarnasso, Marco; Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Broeckel, Rebecca M.; Haese, Nicole; Jacob Silva, Paulo; Carney, Randy P.; Marjomäki, Varpu; Streblow, Daniel N.; Lembo, David; Stellacci, Francesco; Vitelli, Vincenzo; Krol, Silke

    2016-11-01

    Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10-8-10-6 M) or polyethylene glycol (PEG, molecular weight ~8,000 Da, 10-7-10-4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ~48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step.

  13. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    Science.gov (United States)

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  14. An Adenovirus-Vectored Influenza Vaccine Induces Durable Cross-Protective Hemagglutinin Stalk Antibody Responses in Mice

    Directory of Open Access Journals (Sweden)

    Eun Hye Kim

    2017-08-01

    Full Text Available Currently licensed vaccines against the influenza A virus (IAV need to be updated annually to match the constantly evolving antigenicity of the influenza virus glycoproteins, hemagglutinin (HA, and neuramidiase (NA. Attempts to develop universal vaccines that provide broad protection have resulted in some success. Herein, we have shown that a replication-deficient adenovirus expressing H5/M2e induced significant humoral immunity against the conserved HA stalk. Compared to the humoral responses induced by an inactivated influenza vaccine, the humoral responses induced by the adenovirus-vectored vaccine against the conserved stalk domain mediated cross-protection against heterosubtypic influenza viruses. Importantly, virus inactivation by formaldehyde significantly reduced the binding of monoclonal antibodies (mAbs to the conserved nucleoprotein (NP, M2e, and HA stalk. These results suggest that inactivation by formaldehyde significantly alters the antigenicity of the HA stalk, and suggest that the conformation of the intact HA stalk provided by vector-based vaccines is important for induction of HA stalk-binding Abs. Our study provides insight into the mechanism by which a vector-based vaccine induces broad protection by stimulation of cross-protective Abs targeting conserved domains of viral proteins. The findings support further strategies to develop a vectored vaccine as a universal influenza vaccine for the control of influenza epidemics and unpredicted pandemics.

  15. An Adenovirus-Vectored Influenza Vaccine Induces Durable Cross-Protective Hemagglutinin Stalk Antibody Responses in Mice.

    Science.gov (United States)

    Kim, Eun Hye; Han, Gye-Yeong; Nguyen, Huan

    2017-08-21

    Currently licensed vaccines against the influenza A virus (IAV) need to be updated annually to match the constantly evolving antigenicity of the influenza virus glycoproteins, hemagglutinin (HA), and neuramidiase (NA). Attempts to develop universal vaccines that provide broad protection have resulted in some success. Herein, we have shown that a replication-deficient adenovirus expressing H5/M2e induced significant humoral immunity against the conserved HA stalk. Compared to the humoral responses induced by an inactivated influenza vaccine, the humoral responses induced by the adenovirus-vectored vaccine against the conserved stalk domain mediated cross-protection against heterosubtypic influenza viruses. Importantly, virus inactivation by formaldehyde significantly reduced the binding of monoclonal antibodies (mAbs) to the conserved nucleoprotein (NP), M2e, and HA stalk. These results suggest that inactivation by formaldehyde significantly alters the antigenicity of the HA stalk, and suggest that the conformation of the intact HA stalk provided by vector-based vaccines is important for induction of HA stalk-binding Abs. Our study provides insight into the mechanism by which a vector-based vaccine induces broad protection by stimulation of cross-protective Abs targeting conserved domains of viral proteins. The findings support further strategies to develop a vectored vaccine as a universal influenza vaccine for the control of influenza epidemics and unpredicted pandemics.

  16. Comparison of polystyrene nanoparticles and UV-inactivated antigen-displaying adenovirus for vaccine delivery in mice

    Science.gov (United States)

    2013-01-01

    Background Inert nanoparticles are attracting attention as carriers for protein-based vaccines. Here we evaluate the immunogenicity of the model antigen ovalbumin delivered on polystyrene particles and directly compare particulate delivery with adenovirus-based immunization. Findings Mice were vaccinated with soluble ovalbumin, ovalbumin-coated polystyrene particles of different sizes, or an adenovirus-based expression-display vector that encodes and displays a pIX-ovalbumin fusion protein. Antibody responses were clearly higher when ovalbumin was administered on polystyrene particles compared to soluble protein administration, regardless of the particle size. Compared to adenovirus-based immunization, antibody levels were lower if an equivalent amount of protein was delivered, and no cellular immune response was detectable. Conclusions We demonstrate in a side-by-side comparison that inert nanoparticles allow for the reduction of the administered antigen amount compared to immunization with soluble protein and induce strongly enhanced antibody responses, but responses are lower compared to adenovirus-based immunization. PMID:23560981

  17. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein to that e......Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin......-cell-independent immunity from adenovirus vectors offers prospects for vaccination against opportunistic pathogens in AIDS patients and possibly immunotherapy in chronic virus infections....

  18. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus.

    Science.gov (United States)

    Singh, Neetu; Pandey, Aseem; Jayashankar, Lakshmi; Mittal, Suresh K

    2008-05-01

    Because of the high prevalence of adenovirus (Ad) infections in humans, it is believed that pre-existing Ad-neutralizing antibodies (vector immunity) may negatively impact the immune response to vaccine antigens when delivered by human Ad (HAd) vectors. In order to evaluate whether bovine Ad subtype 3 (BAd3), a non-HAd vector, can effectively elude high levels of pre-existing vector immunity, naïve and HAd serotype 5 (HAd)-primed mice were immunized with BAd-H5HA [BAd3 vector expressing the hemagglutinin (HA) gene from H5N1 influenza virus]. Even in the presence of very high levels of HAd-specific neutralizing antibody, no significant reductions in HA-specific humoral and cell-mediated immune (CMI) responses were observed in HAd-primed mice immunized with BAd-H5HA. In naïve mice immunized with HAd-H5HA (HAd5 vector expressing H5N1 HA) and boosted with BAd-H5HA, the humoral responses elicited were significantly higher (P BAd-H5HA alone, while the CMI responses were comparable in the groups. This finding underlines the importance of a heterologous prime-boost approach for achieving an enhanced immune response. The immunization of naïve or HAd-primed mice with BAd-H5HA bestowed full protection from morbidity and mortality following a potentially lethal challenge with A/Hong Kong/483/97. These results demonstrate the importance of BAd vectors as an alternate or supplement to HAd vectors for influenza pandemic preparedness.

  19. Differential Innate Immune Stimulation Elicited by Adenovirus and Poxvirus Vaccine Vectors

    OpenAIRE

    Teigler, Jeffrey Edward

    2014-01-01

    Vaccines are one of the most effective advances in medical science and continue to be developed for applications against infectious diseases, cancers, and autoimmunity. A common strategy for vaccine construction is the use of viral vectors derived from various virus families, with Adenoviruses (Ad) and Poxviruses (Pox) being extensively used. Studies utilizing viral vectors have shown a broad variety of vaccine-elicited immune response phenotypes. However, innate immune stimulation elicited b...

  20. Acute Respiratory Disease in US Army Trainees 3 Years after Reintroduction of Adenovirus Vaccine

    Science.gov (United States)

    2017-01-15

    hospitalized (5). Routine use of oral adenovirus type 4 and 7 (AdV- 4 and -7) vaccine began in 1971 and eventually included year-round vaccination, resulting in...use of benzathine penicil- lin G prophylaxis for group A β-hemolytic streptococcus infections coupled with a surveillance artifact introduced when...1,100–2,700 hospitalizations , and 13,000 febrile infections among military recruits. Vaccination costs $150 per person, pro- viding a net savings of

  1. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis.

    Science.gov (United States)

    Maroof, Asher; Brown, Najmeeyah; Smith, Barbara; Hodgkinson, Michael R; Maxwell, Alice; Losch, Florian O; Fritz, Ulrike; Walden, Peter; Lacey, Charles N J; Smith, Deborah F; Aebischer, Toni; Kaye, Paul M

    2012-03-01

    Therapeutic vaccines, when used alone or in combination therapy with antileishmanial drugs, may have an important place in the control of a variety of forms of human leishmaniasis. Here, we describe the development of an adenovirus-based vaccine (Ad5-KH) comprising a synthetic haspb gene linked to a kmp11 gene via a viral 2A sequence. In nonvaccinated Leishmania donovani-infected BALB/c mice, HASPB- and KMP11-specific CD8(+) T cell responses were undetectable, although IgG1 and IgG2a antibodies were evident. After therapeutic vaccination, antibody responses were boosted, and IFNγ(+)CD8(+) T cell responses, particularly to HASPB, became apparent. A single vaccination with Ad5-KH inhibited splenic parasite growth by ∼66%, a level of efficacy comparable to that observed in early stage testing of clinically approved antileishmanial drugs in this model. These studies indicate the usefulness of adenoviral vectors to deliver leishmanial antigens in a potent and host protective manner to animals with existing L. donovani infection.

  2. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines.

    Directory of Open Access Journals (Sweden)

    Shakti Singh

    Full Text Available Adenoviruses (Ad are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV.

  3. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines

    Science.gov (United States)

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV. PMID:26751211

  4. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., shall be prepared from virus-bearing cell culture fluids. Only Master Seed Virus which has been... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...

  5. Oral immunization of raccoons and skunks with a canine adenovirus recombinant rabies vaccine.

    Science.gov (United States)

    Henderson, Heather; Jackson, Felix; Bean, Kayla; Panasuk, Brian; Niezgoda, Michael; Slate, Dennis; Li, Jianwei; Dietzschold, Bernard; Mattis, Jeff; Rupprecht, Charles E

    2009-11-27

    Oral vaccination is an important part of wildlife rabies control programs. Currently, the vaccinia-rabies glycoprotein recombinant virus is the only oral rabies vaccine licensed in the United States, and it is not effective in skunks. In the current study, captive raccoons and skunks were used to evaluate a vaccine developed by incorporating the rabies virus glycoprotein gene into a canine adenovirus serotype 2 vector (CAV2-RVG). Seven of 7 raccoons orally vaccinated with CAV2-RVG developed virus neutralizing antibodies and survived lethal challenge. Five of 5 and 6 of 6 skunks in 2 experimental groups receiving 10-fold different dilutions of CAV2-RVG developed neutralizing antibodies and survived challenge. The results of this preliminary study suggest that CAV2-RVG stimulates protective immunity against rabies in raccoons and skunks.

  6. A subunit vaccine against the adenovirus egg-drop syndrome using part of its fiber protein.

    Science.gov (United States)

    Fingerut, E; Gutter, B; Gallili, G; Michael, A; Pitcovski, J

    2003-06-20

    In this study, the effectiveness of antibodies against the hexon, fiber or a fiber fragment of an avian adenovirus egg-drop syndrome (EDS), in neutralizing the virus was tested. The fiber protein is responsible for binding the virus to the target cell. The fiber fragment knob-s comprises the carboxy-terminal knob domain and 34 amino acids of the immediately adjacent shaft domain of the adenovirus fiber protein. The hexon, fiber capsid protein and knob-s were produced in E. coli and injected into chickens. Antibodies that were produced against the whole fiber protein showed some hemagglutination inhibition (HI) activity. Antibodies produced against the knob-s protein showed HI activity and serum neutralization (SN) activity similar to the positive control-whole virus vaccine. We assume that production of only part of the fiber enables the protein produced in E. coli to fold correctly. Antibodies produced against the hexon protein showed no SN activity. In summary, knob-s induced SN and HI antibodies against EDS virus at a rate similar to the whole virus and were significantly more efficient than the full-length fiber. The recombinant knob-s protein may be used as a vaccine against pathogenic adenovirus infections.

  7. Protection against Mucosal SHIV Challenge by Peptide and Helper-Dependent Adenovirus Vaccines

    Directory of Open Access Journals (Sweden)

    K. Jagannadha Sastry

    2009-11-01

    Full Text Available Groups of rhesus macaques that had previously been immunized with HIV-1 envelope (env peptides and first generation adenovirus serotype 5 (FG-Ad5 vaccines expressing the same peptides were immunized intramuscularly three times with helperdependent adenovirus (HD-Ad vaccines expressing only the HIV-1 envelope from JRFL. No gag, pol, or other SHIV genes were used for vaccination. One group of the FG-Ad5-immune animals was immunized three times with HD-Ad5 expressing env. One group was immunized by serotype-switching with HD-Ad6, HD-Ad1, and HD-Ad2 expressing env. Previous work demonstrated that serum antibody levels against env were significantly higher in the serotype-switched group than in the HD-Ad5 group. In this study, neutralizing antibody and T cell responses were compared between the groups before and after rectal challenge with CCR5-tropic SHIV-SF162P3. When serum samples were assayed for neutralizing antibodies, only weak activity was observed. T cell responses against env epitopes were higher in the serotype-switched group. When these animals were challenged rectally with SHIV-SF162P3, both the Ad5 and serotype-switch groups significantly reduced peak viral loads 2 to 10-fold 2 weeks after infection. Peak viral loads were significantly lower for the serotype-switched group as compared to the HD-Ad5-immunized group. Viral loads declined over 18 weeks after infection with some animals viremia reducing nearly 4 logs from the peak. These data demonstrate significant mucosal vaccine effects after immunization with only env antigens. These data also demonstrate HD-Ad vectors are a robust platform for vaccination.

  8. Adenovirus structure.

    Science.gov (United States)

    Rux, John J; Burnett, Roger M

    2004-12-01

    Structural studies continue to play an essential role as the focus of adenovirus research shifts in emphasis from basic biology to adenovirus-based vector technologies. A crucial step in developing novel therapeutics for gene replacement, cancer, and vaccines is often to modify the virion. Such engineered changes are designed to retarget the virus, or to reduce the immunological responses to infection. These efforts are far more effective when they are based on detailed structural knowledge. This minireview provides a brief summary of the wealth of information that has been obtained from the combined application of X-ray crystallography and electron microscopy. This knowledge now includes a good working model for the architectural organization of the virion, and atomic resolution molecular structures for all the major capsid proteins, hexon, penton, and fiber. We highlight new developments, which include the structure of the penton base and the discovery that adenovirus has several relatives. We sketch how the structural information can be used to engineer novel virions and conclude with the prospects for future progress.

  9. Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Directory of Open Access Journals (Sweden)

    Andrea Amalfitano

    2010-09-01

    Full Text Available Adenovirus (Ad based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1 Ad-capsid-display of specific inhibitors or ligands; (2 covalent modifications of the entire Ad vector capsid moiety; (3 the use of tissue specific promoters and local administration routes; (4 the use of genome modified Ads; and (5 the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  10. Vaccination with recombinant adenoviruses expressing the peste des petits ruminants virus F or H proteins overcomes viral immunosuppression and induces protective immunity against PPRV challenge in sheep.

    Science.gov (United States)

    Rojas, José M; Moreno, Héctor; Valcárcel, Félix; Peña, Lourdes; Sevilla, Noemí; Martín, Verónica

    2014-01-01

    Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants caused by the Morbillivirus peste des petits ruminants virus (PPRV). Two recombinant replication-defective human adenoviruses serotype 5 (Ad5) expressing either the highly immunogenic fusion protein (F) or hemagglutinin protein (H) from PPRV were used to vaccinate sheep by intramuscular inoculation. Both recombinant adenovirus vaccines elicited PPRV-specific B- and T-cell responses. Thus, neutralizing antibodies were detected in sera from immunized sheep. In addition, we detected a significant antigen specific T-cell response in vaccinated sheep against two different PPRV strains, indicating that the vaccine induced heterologous T cell responses. Importantly, no clinical signs and undetectable virus shedding were observed after virulent PPRV challenge in vaccinated sheep. These vaccines also overcame the T cell immunosuppression induced by PPRV in control animals. The results indicate that these adenovirus constructs could be a promising alternative to current vaccine strategies for the development of PPRV DIVA vaccines.

  11. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine

    2008-01-01

    The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most...... potent and versatile Ag delivery vehicles available. However, the impact of chronic infections like HIV and hepatitis C virus underscore the need for further improvements. In this study, we show that the protective immune response to an adenovirus-encoded vaccine Ag can be accelerated, enhanced......, broadened, and prolonged by tethering of the rAg to the MHC class II-associated invariant chain (Ii). Thus, adenovirus-vectored vaccines expressing lymphocytic choriomeningitis virus (LCMV)-derived glycoprotein linked to Ii increased the CD4+ and CD8+ T cell stimulatory capacity in vitro and in vivo...

  12. Development of a Canine Adenovirus Type 1 Vaccine Strain E3-deleted Based Expression Vector%犬腺病毒1型疫苗株E3缺失表达载体的构建

    Institute of Scientific and Technical Information of China (English)

    黎皓; 唐七义; 张云; 王树蕙; 郭彩云

    2001-01-01

    Objective To evaluate canine adenovirus type 1 vaccine strain (Cannaught Laboratory Limited,CLL) as recombinant vaccine and gene transfer vector. Methods Recombinant virus CLLEGFP which contains enhanced green fluorescent protein(EGFP) reporter gene was constructed. CLLEGFP was used to infect various human derived cell lines (293, Hela, CO, SW, Hep-2 and CAM) by inoculating intraperitoneally(IP), intravenously(IV)and intramuscularly (IM)to Kunming mice other than oral administration. Various tissue samples of the mice were collected at multitime point for observing EGFP green fluorescence. Anti-EGFP antibodies were detected by Western blot analysis in the sera after 4 weeks. Results CLLEGFP can infect various human derived cell lines and express EGFP. EGFP green fluorescence were observed in liver tissue cells after IP transducing 3 days. All immune inoculation ways above could induce Kunming mice producing anti-EGFP antibodies which were identified by Western blot analysis. Conclusions These resluts indicate that CLL possess powerful potential as recombinant vaccine and gene transfer vector.%探索以犬腺病毒1型疫苗株(Cannaught Laboratory Limited.CLL)作为病毒重组疫苗和基因转移载体的可行性。方法构建带增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)报告基因的E3缺失重组病毒CLLEGFP。将CLLEGFP感染各种人源细胞,并以灌胃、腹腔注射、尾静脉注射和肌肉注射等不同途径接种昆明小鼠。多时间点取小鼠组织标本,冷冻干燥切片,观察EGFP的表达。4周后采集小鼠血清,以Western blot分析抗EGFP 抗体的产生。结果 CLLEGFP能够感染各种人源细胞并表达EGFP。在腹腔接种CLLEGFP 3 d的小鼠肝组织细胞中可见转导的EGFP。Western blot分析显示,以各种途径免疫接种重组病毒4周后的小鼠血清中均存在抗EGFP特异抗体。结论 CLL具有开发成为病毒重组疫苗和基因转移载体的潜力。

  13. Replication-Defective Vector Based on a Chimpanzee Adenovirus

    OpenAIRE

    Farina, Steven F.; Gao, Guang-Ping; Xiang, Z. Q.; Rux, John J.; Burnett, Roger M.; Alvira, Mauricio R.; Marsh, Jonathan; Ertl, Hildegund C.J.; Wilson, James M.

    2001-01-01

    An adenovirus previously isolated from a mesenteric lymph node from a chimpanzee was fully sequenced and found to be similar in overall structure to human adenoviruses. The genome of this virus, called C68, is 36,521 bp in length and is most similar to subgroup E of human adenovirus, with 90% identity in most adenovirus type 4 open reading frames that have been sequenced. Substantial differences in the hexon hypervariable regions were noted between C68 and other known adenoviruses, including ...

  14. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus.

    Science.gov (United States)

    Guo, Xiaojuan; Deng, Yao; Chen, Hong; Lan, Jiaming; Wang, Wen; Zou, Xiaohui; Hung, Tao; Lu, Zhuozhuang; Tan, Wenjie

    2015-08-01

    An ideal vaccine against mucosal pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) should confer sustained, protective immunity at both systemic and mucosal levels. Here, we evaluated the in vivo systemic and mucosal antigen-specific immune responses induced by a single intramuscular or intragastric administration of recombinant adenoviral type 5 (Ad5) or type 41 (Ad41) -based vaccines expressing the MERS-CoV spike (S) protein. Intragastric administration of either Ad5-S or Ad41-S induced antigen-specific IgG and neutralizing antibody in serum; however, antigen-specific T-cell responses were not detected. In contrast, after a single intramuscular dose of Ad5-S or Ad41-S, functional antigen-specific T-cell responses were elicited in the spleen and pulmonary lymphocytes of the mice, which persisted for several months. Both rAd-based vaccines administered intramuscularly induced systemic humoral immune responses (neutralizing IgG antibodies). Our results show that a single dose of Ad5-S- or Ad41-S-based vaccines represents an appealing strategy for the control of MERS-CoV infection and transmission.

  15. Intranasal immunisation with recombinant adenovirus vaccines protects against a lethal challenge with pneumonia virus of mice.

    Science.gov (United States)

    Maunder, Helen E; Taylor, Geraldine; Leppard, Keith N; Easton, Andrew J

    2015-11-27

    Pneumonia virus of mice (PVM) infection of BALB/c mice induces bronchiolitis leading to a fatal pneumonia in a dose-dependent manner, closely paralleling the development of severe disease during human respiratory syncytial virus infection in man, and is thus a recognised model in which to study the pathogenesis of pneumoviruses. This model system was used to investigate delivery of the internal structural proteins of PVM as a potential vaccination strategy to protect against pneumovirus disease. Replication-deficient recombinant human adenovirus serotype 5 (rAd5) vectors were constructed that expressed the M or N gene of PVM pathogenic strain J3666. Intranasal delivery of these rAd5 vectors gave protection against a lethal challenge dose of PVM in three different mouse strains, and protection lasted for at least 20 weeks post-immunisation. Whilst the PVM-specific antibody response in such animals was weak and inconsistent, rAd5N primed a strong PVM-specific CD8(+) T cell response and, to a lesser extent, a CD4(+) T cell response. These findings suggest that T-cell responses may be more important than serum IgG in the observed protection induced by rAd5N.

  16. Comparison of systemic and mucosal immunization with helper-dependent adenoviruses for vaccination against mucosal challenge with SHIV.

    Directory of Open Access Journals (Sweden)

    Eric A Weaver

    Full Text Available Most HIV-1 infections are thought to occur at mucosal surfaces during sexual contact. It has been hypothesized that vaccines delivered at mucosal surfaces may mediate better protection against HIV-1 than vaccines that are delivered systemically. To test this, rhesus macaques were vaccinated by intramuscular (i.m. or intravaginal (ivag. routes with helper-dependent adenoviral (HD-Ad vectors expressing HIV-1 envelope. Macaques were first immunized intranasally with species C Ad serotype 5 (Ad5 prior to serotype-switching with species C HD-Ad6, Ad1, Ad5, and Ad2 vectors expressing env followed by rectal challenge with CCR5-tropic SHIV-SF162P3. Vaccination by the systemic route generated stronger systemic CD8 T cell responses in PBMC, but weaker mucosal responses. Conversely, mucosal immunization generated stronger CD4 T cell central memory (Tcm responses in the colon. Intramuscular immunization generated higher levels of env-binding antibodies, but neither produced neutralizing or cytotoxic antibodies. After mucosal SHIV challenge, both groups controlled SHIV better than control animals. However, more animals in the ivag. group had lower viral set points than in in the i.m. group. These data suggest mucosal vaccination may have improve protection against sexually-transmitted HIV. These data also demonstrate that helper-dependent Ad vaccines can mediate robust vaccine responses in the face of prior immunity to Ad5 and during four rounds of adenovirus vaccination.

  17. Adenovirus serotype 5 vaccine vectors trigger IL-27-dependent inhibitory CD4+ T cell responses that impair CD8+ T cell function

    Science.gov (United States)

    Larocca, Rafael A.; Provine, Nicholas M.; Aid, Malika; Iampietro, M. Justin; Borducchi, Erica N.; Badamchi-Zadeh, Alexander; Abbink, Peter; Ng’ang’a, David; Bricault, Christine A.; Blass, Eryn; Penaloza-MacMaster, Pablo; Stephenson, Kathryn E.; Barouch, Dan H.

    2017-01-01

    Adenovirus serotype 5 (Ad5) vaccine vectors elicit robust CD8+ T cell responses, but these responses typically exhibit a partially exhausted phenotype. However, the immunologic mechanism by which Ad5 vectors induce dysfunctional CD8+ T cells has not previously been elucidated. Here we demonstrate that, following immunization of B6 mice, Ad5 vectors elicit antigen-specific IL-10+CD4+ T cells with a distinct transcriptional profile in a dose-dependent fashion. In rhesus monkeys, we similarly observed upregulated expression of IL-10 and PD-1 by CD4+ T cells following Ad5 vaccination. These cells markedly suppressed vaccine-elicited CD8+ T cell responses in vivo and IL-10 blockade increased the frequency and functionality of antigen-specific CD8+ T cells as well as improved protective efficacy against challenge with recombinant Listeria monocytogenes. Moreover, induction of these inhibitory IL-10+CD4+ T cells correlated with IL-27 expression and IL-27 blockade substantially improved CD4+ T cell functionality. These data highlight a role for IL-27 in the induction of inhibitory IL-10+CD4+ T cells, which suppress CD8+ T cell magnitude and function following Ad5 vector immunization. A deeper understanding of the cytokine networks and transcriptional profiles induced by vaccine vectors should lead to strategies to improve the immunogenicity and protective efficacy of viral vector-based vaccines.

  18. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    Science.gov (United States)

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  19. In situ tumor vaccination with adenovirus vectors encoding measles virus fusogenic membrane proteins and cytokines

    Institute of Scientific and Technical Information of China (English)

    Dennis Hoffmann; Wibke Bayer; Oliver Wildner

    2007-01-01

    AIM: To evaluate whether intratumoral expression of measles virus fusogenic membrane glycoproteins H and "F (MV-FMG), encoded by an adenovirus vector Ad.MV-H/ F, alone or in combination with local coexpression of cytokines (IL-2, IL-12, IL-18, IL-21 or GM-CSF), can serve as a platform for inducing tumor-specific immune responses in colon cancer.METHODS: We used confocal laser scanning microscopy and flow cytometry to analyze cell-cell fusion after expression of MV-FMG by dye colocalization. In a syngeneic bilateral subcutaneous MC38 and Colon26 colon cancer model in C57BL/6 and BALB/c mice, we assessed the effect on both the directly vector-treated tumor as well as the contralateral, not directly vector-treated tumor. We assessed the induction of a tumor-specific cytotoxic T lymphocyte (CTL) response with a lactate dehydrogenase (LDH) release assay.RESULTS: We demonstrated in vitro that transduction of MC38 and Colon26 cells with Ad.MV-H/F resulted in dye colocalization, indicative of cell-cell fusion. In addition, in the syngeneic bilateral tumor model we demonstrated a significant regression of the directly vector-inoculated tumor upon intratumoral expression of MV-FMG alone or in combination with the tested cytokines. We observed the highest anti-neoplastic efficacy with MV-FMG and IL-21 coexpression. The degree of tumor regression of the not directly vector-treated tumor correlated with the anti-neoplastic response of the directly vector-treated tumor. This regression was mediated by a tumor-specific CTL response.CONCLUSION: Our data indicate that intratumoral expression of measles virus fusogenic membrane glycoproteins is a promising tool both for direct tumor treatment as well as for tumor vaccination approaches that can be further enhanced by cytokine coexpression.

  20. Vaccination with recombinant adenoviruses expressing the peste des petits ruminants virus F or H proteins overcomes viral immunosuppression and induces protective immunity against PPRV challenge in sheep.

    Directory of Open Access Journals (Sweden)

    José M Rojas

    Full Text Available Peste des petits ruminants (PPR is a highly contagious disease of small ruminants caused by the Morbillivirus peste des petits ruminants virus (PPRV. Two recombinant replication-defective human adenoviruses serotype 5 (Ad5 expressing either the highly immunogenic fusion protein (F or hemagglutinin protein (H from PPRV were used to vaccinate sheep by intramuscular inoculation. Both recombinant adenovirus vaccines elicited PPRV-specific B- and T-cell responses. Thus, neutralizing antibodies were detected in sera from immunized sheep. In addition, we detected a significant antigen specific T-cell response in vaccinated sheep against two different PPRV strains, indicating that the vaccine induced heterologous T cell responses. Importantly, no clinical signs and undetectable virus shedding were observed after virulent PPRV challenge in vaccinated sheep. These vaccines also overcame the T cell immunosuppression induced by PPRV in control animals. The results indicate that these adenovirus constructs could be a promising alternative to current vaccine strategies for the development of PPRV DIVA vaccines.

  1. Evaluation of a Fiber-Modified Adenovirus Vector Vaccine against Foot-and-Mouth Disease in Cattle.

    Science.gov (United States)

    Medina, Gisselle N; Montiel, Nestor; Diaz-San Segundo, Fayna; Sturza, Diego; Ramirez-Medina, Elizabeth; Grubman, Marvin J; de los Santos, Teresa

    2015-11-25

    Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4(+) and CD8(+) gamma interferon (IFN-γ)(+) cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle.

  2. Evaluation of a Fiber-Modified Adenovirus Vector Vaccine against Foot-and-Mouth Disease in Cattle

    Science.gov (United States)

    Medina, Gisselle N.; Montiel, Nestor; Diaz-San Segundo, Fayna; Sturza, Diego; Ramirez-Medina, Elizabeth; Grubman, Marvin J.

    2015-01-01

    Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4+ and CD8+ gamma interferon (IFN-γ)+ cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle. PMID:26607309

  3. Alphavirus-Based Vaccines.

    Science.gov (United States)

    Lundstrom, Kenneth

    2016-01-01

    Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus.

  4. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, O; Svane, I M;

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  5. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Science.gov (United States)

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  6. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine

    Science.gov (United States)

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) sero-type O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa empty capsids. Swine inoculated with Ad5-O1Man developed an FMDV-specific neutralizing antibody response as compared to animals inoculated wi...

  7. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  8. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development.

  9. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Science.gov (United States)

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Alphavirus-based vaccines.

    Science.gov (United States)

    Lundstrom, Kenneth

    2014-06-16

    Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.

  11. Alphavirus-Based Vaccines

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2014-06-01

    Full Text Available Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.

  12. Alphavirus-Based Vaccines

    OpenAIRE

    Kenneth Lundstrom

    2014-01-01

    Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication...

  13. Adenovirus-based p53 gene therapy in ovarian cancer.

    Science.gov (United States)

    Santoso, J T; Tang, D C; Lane, S B; Hung, J; Reed, D J; Muller, C Y; Carbone, D P; Lucci, J A; Miller, D S; Mathis, J M

    1995-11-01

    Mutations of the p53 tumor suppressor gene are the most common molecular genetic abnormality to be described in ovarian cancer. To determine the feasibility of mutant p53 as a molecular target for gene therapy in ovarian cancer, we constructed an adenovirus vector containing the wild-type p53 gene. The ability of this adenovirus construct (Ad-CMV-p53) to express p53 protein was examined by Western blot analysis in the H358 lung cancer cell line, which has a homozygous deletion of the p53 gene. The ability of the adenovirus vector system to infect ovarian cancer cells was tested using an adenovirus containing the beta-galactosidase reporter gene under the control of the CMV promoter (Ad-CMV-beta gal). The ovarian cancer cell line 2774, which contains an Arg273His p53 mutation, was infected with Ad-CMV-beta gal, and the infected cells were assayed for beta-galactosidase activity after 24 hr. To test the ability of wild-type p53 to inhibit cell growth, the 2774 cell line was infected with Ad-CMV-p53 or Ad-CMV-beta gal, and the effect of these agents on the growth of 2774 cells was determined using an in vitro growth inhibition assay. Western blot analysis of lysates from H358 cells infected with Ad-CMV-p53 showed expression of wild-type p53 protein. When 2774 cells were infected with Ad-CMV-beta gal at a multiplicity of infection (m.o.i.) of 10 PFU/cell, > 90% of cells showed beta-galactosidase activity, demonstrating that these cells are capable of efficient infection by the adenovirus vector. Growth of 2774 cells infected with Ad-CMV-p53 was inhibited by > 90% compared to noninfected cells. The ability of the adenovirus vector to mediate high-level expression of infected genes and the inhibitory effect of Ad-CMV-p53 on the 2774 cell line suggests that the Ad-CMV-p53 could be further developed into a therapeutic agent for ovarian cancer.

  14. Biobased monoliths for adenovirus purification.

    Science.gov (United States)

    Fernandes, Cláudia S M; Gonçalves, Bianca; Sousa, Margarida; Martins, Duarte L; Barroso, Telma; Pina, Ana Sofia; Peixoto, Cristina; Aguiar-Ricardo, Ana; Roque, A Cecília A

    2015-04-01

    Adenoviruses are important platforms for vaccine development and vectors for gene therapy, increasing the demand for high titers of purified viral preparations. Monoliths are macroporous supports regarded as ideal for the purification of macromolecular complexes, including viral particles. Although common monoliths are based on synthetic polymers as methacrylates, we explored the potential of biopolymers processed by clean technologies to produce monoliths for adenovirus purification. Such an approach enables the development of disposable and biodegradable matrices for bioprocessing. A total of 20 monoliths were produced from different biopolymers (chitosan, agarose, and dextran), employing two distinct temperatures during the freezing process (-20 °C and -80 °C). The morphological and physical properties of the structures were thoroughly characterized. The monoliths presenting higher robustness and permeability rates were further analyzed for the nonspecific binding of Adenovirus serotype 5 (Ad5) preparations. The matrices presenting lower nonspecific Ad5 binding were further functionalized with quaternary amine anion-exchange ligand glycidyltrimethylammonium chloride hydrochloride by two distinct methods, and their performance toward Ad5 purification was assessed. The monolith composed of chitosan and poly(vinyl) alcohol (50:50) prepared at -80 °C allowed 100% recovery of Ad5 particles bound to the support. This is the first report of the successful purification of adenovirus using monoliths obtained from biopolymers processed by clean technologies.

  15. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    Science.gov (United States)

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-02-26

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.

  16. Preparation and evaluation of chicken embryo-adapted fowl adenovirus serotype 4 vaccine in broiler chickens.

    Science.gov (United States)

    Mansoor, Muhammad Khalid; Hussain, Iftikhar; Arshad, Muhammad; Muhammad, Ghulam

    2011-02-01

    The current study was planned to develop an efficient vaccine against hydropericardium syndrome virus (HSV). Currently, formalin-inactivated liver organ vaccines failed to protect the Pakistan broiler industry from this destructive disease of economic importance. A field isolate of the pathogenic hydropericardium syndrome virus was adapted to chicken embryos after four blind passages. The chicken embryo-adapted virus was further serially passaged (12 times) to get complete attenuation. Groups of broiler chickens free from maternal antibodies against HSV at the age of 14 days were immunized either with 16th passage attenuated HSV vaccine or commercially formalized liver organ vaccine. The antibody response, measured by enzyme-linked immunosorbent assay was significantly higher (P chickens in each group were challenged with 10(3.83) embryo infectious dose(50) of pathogenic HSV and were observed for 7 days post-challenge. Vaccination with the 16th passage attenuated HSV gave 94.73% protection as validated on the basis of clinical signs (5.26%), gross lesions in the liver and heart (5.26%), histopathological lesions in the liver (1.5 ± 0.20), and mortality (5.26%). The birds inoculated with liver organ vaccine showed significantly low (p chickens.

  17. Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults.

    Directory of Open Access Journals (Sweden)

    Martha Sedegah

    Full Text Available BACKGROUND: Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. METHODOLOGY/PRINCIPAL FINDINGS: The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. Group 1 (n = 6 healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct and Group 2 (n = 6 a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045 group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003, but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7-10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. SIGNIFICANCE: As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a

  18. Immunization of mice with a recombinant adenovirus vaccine inhibits the early growth of Mycobacterium tuberculosis after infection.

    Directory of Open Access Journals (Sweden)

    Edward O Ronan

    Full Text Available BACKGROUND: In pulmonary Mycobacterium tuberculosis (Mtb infection, immune responses are delayed compared to other respiratory infections, so that antigen-specific cells are not detected in the lungs earlier than day 14. Even after parenteral immunization with Bacille Calmette Guerin (BCG or a subunit vaccine, the immune response after Mtb challenge is only slightly accelerated and the kinetics of pulmonary Mtb growth do not differ between naïve and immunized animals up to day 14. METHODS AND FINDINGS: Mice were immunized intranasally with a recombinant adenovirus expressing mycobacterial antigen 85A (Ad85A, challenged by aerosol with Mtb and the kinetics of Mtb growth in the lungs measured. Intranasal immunization with Ad85A inhibits Mtb growth in the early phase of infection, up to day 8. Protection is sustained for at least 7 months and correlates with the presence of antigen-specific activated effector CD8 T cells in the lungs. Antigen 85A-specific T cells respond to antigen presenting cells from the lungs of mice immunized with Ad85A 23 weeks previously, demonstrating the persistence of antigen in the lungs. CONCLUSIONS/SIGNIFICANCE: Intranasal immunization with Ad85A can inhibit early growth of Mtb because it establishes a lung antigen depot and maintains an activated lung-resident lymphocyte population. We propose that an optimal immunization strategy for tuberculosis should aim to induce both lung and systemic immunity, targeting the early and late phases of Mtb growth.

  19. Immunoglobulin genes and the acquisition of HIV infection in a randomized trial of recombinant adenovirus HIV vaccine.

    Science.gov (United States)

    Pandey, Janardan P; Namboodiri, Aryan M; Bu, Shizhong; De Dieu Tapsoba, Jean; Sato, Alicia; Dai, James Y

    2013-06-20

    Our knowledge of the host genetic factors that contribute to the acquisition of HIV infection is limited. To identify the host genetic correlates of HIV1 acquisition, we genotyped 777 participants of a randomized trial of recombinant adenovirus HIV1 vaccine for Fcγ receptor IIa (FcγRIIa), FcγRIIIa, and several GM and KM alleles-genetic markers of immunoglobulin γ and κ chains, respectively. None of the genotypes by itself was significantly associated with the acquisition of HIV1 infection. However, particular combinations of GM and KM as well as those of GM and FcγRIIIa loci were significantly associated with the acquisition of HIV1 infection epistatically: KM1/3-GM3/17 (interaction p=0.0246; FDR=0.2952), KM1/3-GM5/21 (interaction p=0.0016; FDR=0.0960), and GM23+/-FcγRIIIa (interaction p=0.0060; FDR=0.1200). These results suggest the involvement of GM, KM, and FcγRIIIa loci in the acquisition of HIV infection. Additional studies are warranted.

  20. Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus.

    Science.gov (United States)

    Sun, Yuan; Li, Na; Li, Hong-Yu; Li, Miao; Qiu, Hua-Ji

    2010-09-15

    Classical swine fever (CSF) - caused by the classical swine fever virus (CSFV) - is a fatal disease of pigs that is responsible for extensive losses to the swine industry worldwide. We had demonstrated previously that a prime-boost vaccination strategy using an alphavirus (Semliki Forest virus, SFV) replicon-vectored DNA vaccine (pSFV1CS-E2) and a recombinant adenovirus (rAdV-E2) expressing the E2 glycoprotein of CSFV induced enhanced immune responses in a mouse model. In this study, we evaluated further the efficacy of the heterologous prime-boost immunization approach in pigs, the natural host of CSFV. The results showed that the pigs (n=5) receiving pSFV1CS-E2/rAdV-E2 heterologous prime-boost immunization developed significantly higher titers of CSFV-specific neutralizing antibodies and comparable CD4(+) and CD8(+) T-cell proliferation, compared to the pigs receiving double immunizations with rAdV-E2 alone. When challenged with virulent CSFV Shimen strain, the pigs of the heterologous prime-boost group did not show clinical symptoms or viremia, which were observed in one of the 5 pigs immunized with rAdV-E2 alone and all the 5 control pigs immunized with an empty adenovirus. The results demonstrate that the heterologous DNA prime and recombinant adenovirus boost strategy can induce solid protective immunity.

  1. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Directory of Open Access Journals (Sweden)

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  2. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Science.gov (United States)

    Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K; Boling, Susan; Carroll, Jennifer L; Li, Xiao-Lin; Rogers, Donna L; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V; Curiel, David T; Mathis, J Michael

    2012-01-01

    Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  3. Initiation of adenovirus DNA replication.

    OpenAIRE

    Reiter, T; Fütterer, J; Weingärtner, B; Winnacker, E L

    1980-01-01

    In an attempt to study the mechanism of initiation of adenovirus DNA replication, an assay was developed to investigate the pattern of DNA synthesis in early replicative intermediates of adenovirus DNA. By using wild-type virus-infected cells, it was possible to place the origin of adenovirus type 2 DNA replication within the terminal 350 to 500 base pairs from either of the two molecular termini. In addition, a variety of parameters characteristic of adenovirus DNA replication were compared ...

  4. A novel recombinant Peste des petits ruminants-canine adenovirus vaccine elicits long-lasting neutralizing antibody response against PPR in goats.

    Directory of Open Access Journals (Sweden)

    Junling Qin

    Full Text Available BACKGROUND: Peste des petits ruminants (PPR is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV expresses a hemagglutinin (H glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2 expressing the H gene of PPRV (China/Tibet strain was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. CONCLUSIONS/SIGNIFICANCE: This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach.

  5. Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component.

    Directory of Open Access Journals (Sweden)

    Cindy Tamminga

    Full Text Available BACKGROUND: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP. It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1 that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al. Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m] that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m. CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE: The NMRC-MV-Ad-PfC vaccine expressing CSP was

  6. Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses.

    Science.gov (United States)

    Rollier, Christine S; Hill, Adrian V S; Reyes-Sandoval, Arturo

    2016-08-31

    Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Sexual risk behaviors, circumcision status, and preexisting immunity to adenovirus type 5 among men who have sex with men participating in a randomized HIV-1 vaccine efficacy trial: step study.

    Science.gov (United States)

    Koblin, Beryl A; Mayer, Kenneth H; Noonan, Elizabeth; Wang, Ching-Yun; Marmor, Michael; Sanchez, Jorge; Brown, Stephen J; Robertson, Michael N; Buchbinder, Susan P

    2012-08-01

    The Step Study found that men who had sex with men (MSM) who received an adenovirus type 5 (Ad5) vector-based vaccine and were uncircumcised or had prior Ad5 immunity, had a higher HIV incidence than MSM who received placebo. We investigated whether differences in HIV exposure, measured by reported sexual risk behaviors, may explain the increased risk. Among 1764 MSM in the trial, 726 were uncircumcised, 994 had prior Ad5 immunity, and 563 were both uncircumcised and had prior Ad5 immunity. Analyses compared sexual risk behaviors and perceived treatment assignment among vaccine and placebo recipients, determined risk factors for HIV acquisition, and examined the role of insertive anal intercourse in HIV risk among uncircumcised men. Few sexual risk behaviors were significantly higher in vaccine versus placebo recipients at baseline or during follow-up. Among uncircumcised men, vaccine recipients at baseline were more likely to report unprotected insertive anal intercourse with HIV-negative partners (24.9% vs. 18.1%; P = 0.03). Among uncircumcised men who had prior Ad5 immunity, vaccine recipients were more likely to report unprotected insertive anal intercourse with partners of unknown HIV status (46.0% vs. 37.8%; P = 0.05). Vaccine recipients remained at higher risk of HIV infection compared with placebo recipients (hazard ratio = 2.8; 95% confidence interval, 1.2-6.8) controlling for potential confounders. These analyses do not support a behavioral explanation for the increased HIV infection rates observed among uncircumcised men in the Step Study. Identifying biologic mechanisms to explain the increased risk is a priority .

  8. Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse.

    Science.gov (United States)

    O'Brien, Lyn M; Stokes, Margaret G; Lonsdale, Stephen G; Maslowski, David R; Smither, Sophie J; Lever, Mark S; Laws, Thomas R; Perkins, Stuart D

    2014-03-01

    The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics.

  9. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine.

    Science.gov (United States)

    Fernandez-Sainz, Ignacio; Medina, Gisselle N; Ramirez-Medina, Elizabeth; Koster, Marla J; Grubman, Marvin J; de Los Santos, Teresa

    2017-02-01

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 10(7) pfu/animal while a dose of 4×10(7)pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine. Published by Elsevier Inc.

  10. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Science.gov (United States)

    Gach, Johannes S; Gorlani, Andrea; Dotsey, Emmanuel Y; Becerra, Juan C; Anderson, Chase T M; Berzins, Baiba; Felgner, Philip L; Forthal, Donald N; Deeks, Steven G; Wilkin, Timothy J; Casazza, Joseph P; Koup, Richard A; Katlama, Christine; Autran, Brigitte; Murphy, Robert L; Achenbach, Chad J

    2016-01-01

    Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5) boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART). Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB) and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC). We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  11. Immunity, safety and protection of an Adenovirus 5 prime--Modified Vaccinia virus Ankara boost subunit vaccine against Mycobacterium avium subspecies paratuberculosis infection in calves.

    Science.gov (United States)

    Bull, Tim J; Vrettou, Christina; Linedale, Richard; McGuinnes, Catherine; Strain, Sam; McNair, Jim; Gilbert, Sarah C; Hope, Jayne C

    2014-10-29

    Vaccination is the most cost effective control measure for Johne's disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.

  12. Novel transgenic rice-based vaccines.

    Science.gov (United States)

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  13. Possible Side-Effects from Vaccines

    Science.gov (United States)

    ... her at risk of contracting a potentially deadly disease. Adenovirus vaccine side-effects What are the risks from Adenovirus vaccine? A vaccine, like any medicine, could cause a serious reaction. But the risk ...

  14. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP

    Science.gov (United States)

    Rampling, Tommy; Ewer, Katie J.; Bowyer, Georgina; Bliss, Carly M.; Edwards, Nick J.; Wright, Danny; Payne, Ruth O.; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M.; Poulton, Ian D.; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K.; Ockenhouse, Christian F.; Sinden, Robert E.; Gerry, Stephen; Lawrie, Alison M.; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W.; Cooke, Graham S.; Faust, Saul N.; Gilbert, Sarah; Hill, Adrian V. S.

    2016-01-01

    Background. The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Method. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara–vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. Results. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. Conclusions. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. Clinical Trials Registration. NCT01883609. PMID:27307573

  15. The Early Activation of CD8+ T Cells Is Dependent on Type I IFN Signaling following Intramuscular Vaccination of Adenovirus Vector

    Directory of Open Access Journals (Sweden)

    Masahisa Hemmi

    2014-01-01

    Full Text Available Few of the vaccines in current use can induce antigen- (Ag- specific immunity in both mucosal and systemic compartments. Hence, the development of vaccines that realize both mucosal and systemic protection against various pathogens is a high priority in global health. Recently, it has been reported that intramuscular (i.m. vaccination of an adenovirus vector (Adv can induce Ag-specific cytotoxic T lymphocytes (CTLs in both systemic and gut mucosal compartments. We previously revealed that type I IFN signaling is required for the induction of gut mucosal CTLs, not systemic CTLs. However, the molecular mechanism via type I IFN signaling is largely unknown. Here, we report that type I IFN signaling following i.m. Adv vaccination is required for the expression of type I IFN in the inguinal lymph nodes (iLNs, which are the draining lymph nodes of the administration site. We also showed that the type I IFN signaling is indispensable for the early activation of CTLs in iLNs. These data suggested that type I IFN signaling has an important role in the translation of systemic innate immune response into mucosal adaptive immunity by amplifying the innate immune signaling and activating CTLs in the iLN.

  16. Extended Follow-up Confirms Early Vaccine-Enhanced Risk of HIV Acquisition and Demonstrates Waning Effect Over Time Among Participants in a Randomized Trial of Recombinant Adenovirus HIV Vaccine (Step Study)

    Science.gov (United States)

    Duerr, Ann; Huang, Yunda; Buchbinder, Susan; Coombs, Robert W.; Sanchez, Jorge; del Rio, Carlos; Casapia, Martin; Santiago, Steven; Gilbert, Peter; Corey, Lawrence; Robertson, Michael N.

    2012-01-01

    Background. The Step Study tested whether an adenovirus serotype 5 (Ad5)–vectored human immunodeficiency virus (HIV) vaccine could prevent HIV acquisition and/or reduce viral load set-point after infection. At the first interim analysis, nonefficacy criteria were met. Vaccinations were halted; participants were unblinded. In post hoc analyses, more HIV infections occurred in vaccinees vs placebo recipients in men who had Ad5-neutralizing antibodies and/or were uncircumcised. Follow-up was extended to assess relative risk of HIV acquisition in vaccinees vs placebo recipients over time. Methods. We used Cox proportional hazard models for analyses of vaccine effect on HIV acquisition and vaccine effect modifiers, and nonparametric and semiparametric methods for analysis of constancy of relative risk over time. Results. One hundred seventy-two of 1836 men were infected. The adjusted vaccinees vs placebo recipients hazard ratio (HR) for all follow-up time was 1.40 (95% confidence interval [CI], 1.03–1.92; P = .03). Vaccine effect differed by baseline Ad5 or circumcision status during first 18 months, but neither was significant for all follow-up time. The HR among uncircumcised and/or Ad5-seropositive men waned with time since vaccination. No significant vaccine-associated risk was seen among circumcised, Ad5-negative men (HR, 0.97; P = 1.0) over all follow-up time. Conclusions. The vaccine-associated risk seen in interim analysis was confirmed but waned with time from vaccination. Clinical Trials Registration. NCT00095576. PMID:22561365

  17. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults.

    Directory of Open Access Journals (Sweden)

    Michael C Keefer

    Full Text Available BACKGROUND: We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35 vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN and env (Ad35-ENV, both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults. METHODS: Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively within one of four dosage groups: Ad35-GRIN/ENV 2×10(9 (A, 2×10(10 (B, 2×10(11 (C, or Ad35-GRIN 1×10(10 (D viral particles. RESULTS: No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A-D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC per 10(6 PBMC to any antigen was 78-139 across Groups A-C and 158-174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A-C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination. CONCLUSION/SIGNIFICANCE: Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second

  18. Effects of body weight on antibody titers against canine parvovirus type 2, canine distemper virus, and canine adenovirus type 1 in vaccinated domestic adult dogs.

    Science.gov (United States)

    Taguchi, Masayuki; Namikawa, Kazuhiko; Maruo, Takuya; Saito, Miyoko; Lynch, Jonathan; Sahara, Hiroeki

    2012-10-01

    The objective of this study was to determine whether post-vaccination antibody titers vary according to body weight in adult dogs. Antibody titers against canine parvovirus type 2 (CPV-2), canine distemper virus (CDV), and canine adenovirus type 1 (CAdV-1) were measured for 978 domestic adult dogs from 2 to 6 y of age. The dogs had been vaccinated approximately 12 mo earlier with a commercial combination vaccine. The dogs were divided into groups according to their weight. It was found that mean antibody titers in all weight groups were sufficient to prevent infection. Intergroup comparison, however, revealed that CPV-2 antibody titers were significantly higher in the Super Light ( 20 kg) groups and were also significantly higher in the Light (5 to 9.9 kg) group than in the Heavy group. Antibody titers against CDV were significantly higher in the Super Light, Light, and Medium groups than in the Heavy group. There were no significant differences among the groups for the CAdV-1 antibody titers.

  19. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Science.gov (United States)

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.

  20. Trivalent adenovirus type 5 HIV recombinant vaccine primes for modest cytotoxic capacity that is greatest in humans with protective HLA class I alleles.

    Directory of Open Access Journals (Sweden)

    Stephen A Migueles

    2011-02-01

    Full Text Available If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish long-term nonprogressors (LTNP, patients with durable control over HIV replication, from those experiencing progressive disease. Here, measurements of granzyme B target cell activity and HIV-1-infected CD4+ T-cell elimination were applied for the first time to identify antiviral activities in recipients of a replication incompetent adenovirus serotype 5 (Ad5 HIV-1 recombinant vaccine and were compared with HIV-negative individuals and chronically infected patients, including a group of LTNP. We observed readily detectable HIV-specific CD8+ T-cell recall cytotoxic responses in vaccinees at a median of 331 days following the last immunization. The magnitude of these responses was not related to the number of vaccinations, nor did it correlate with the percentages of cytokine-secreting T-cells determined by ICS assays. Although the recall cytotoxic capacity of the CD8+ T-cells of the vaccinee group was significantly less than that of LTNP and overlapped with that of progressors, we observed significantly higher cytotoxic responses in vaccine recipients carrying the HLA class I alleles B*27, B*57 or B*58, which have been associated with immune control over HIV replication in chronic infection. These findings suggest protective HLA class I alleles might lead to better outcomes in both chronic infection and following immunization due to more efficient priming of HIV-specific CD8+ T-cell cytotoxic responses.

  1. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults

    Science.gov (United States)

    Omosa-Manyonyi, Gloria; Mpendo, Juliet; Ruzagira, Eugene; Kilembe, William; Chomba, Elwyn; Roman, François; Bourguignon, Patricia; Koutsoukos, Marguerite; Collard, Alix; Voss, Gerald; Laufer, Dagna; Stevens, Gwynn; Hayes, Peter; Clark, Lorna; Cormier, Emmanuel; Dally, Len; Barin, Burc; Ackland, Jim; Syvertsen, Kristen; Zachariah, Devika; Anas, Kamaal; Sayeed, Eddy; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Fast, Patricia; Priddy, Frances

    2015-01-01

    Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445 PMID:25961283

  2. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Directory of Open Access Journals (Sweden)

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  3. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    Science.gov (United States)

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  4. Single dose adenovirus vectored vaccine induces a potent and long-lasting immune response against rabbit hemorrhagic disease virus after parenteral or mucosal administration.

    Science.gov (United States)

    Fernández, Erlinda; Toledo, Jorge R; Chiong, Maylin; Parra, Francisco; Rodríguez, Elsa; Montero, Carlos; Méndez, Lídice; Capucci, Lorenzo; Farnós, Omar

    2011-08-15

    Rabbit hemorrhagic disease virus (RHDV) is the etiological agent of a lethal and contagious disease of rabbits that remains as a serious problem worldwide. As this virus does not replicate in cell culture systems, the capsid protein gene has been expressed in heterologous hosts or inserted in replication-competent viruses in order to obtain non-conventional RHDV vaccines. However, due to technological or safety issues, current RHDV vaccines are still prepared from organs of infected rabbits. In this work, two human type 5 derived replication-defective adenoviruses encoding the rabbit hemorrhagic disease virus VP60 capsid protein were constructed. The recombinant protein was expressed as a multimer in mouse and rabbit cell lines at levels that ranged from approximately 120 to 160 mg/L of culture. Mice intravenously or subcutaneously inoculated with a single 10(8) gene transfer units (GTU) dose of the AdVP60 vector (designed for VP60 intracellular expression) seroconverted at days 7 and 14 post-immunization, respectively. This vector generated a stronger response than that obtained with a second vector (AdVP60sec) designed for VP60 secretion. Rabbits were then immunized by parenteral or mucosal routes with a single 10(9)GTU dose of the AdVP60 and the antibody response was evaluated using a competition ELISA specific for RHDV or RHDVa. Protective hemagglutination inhibition (HI) titers were also promptly detected and IgG antibodies corresponding with inhibition percentages over 85% persisted up to one year in all rabbits, independently of the immunization route employed. These levels were similar to those elicited with inactivated RHDV or with VP60 obtained from yeast or insect cells. IgA specific antibodies were only found in saliva of rabbits immunized by intranasal instillation. The feasibility of VP60 production and vaccination of rabbits with replication-defective adenoviral vectors was demonstrated.

  5. B Cell Epitope-Based Vaccination Therapy

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    2015-08-01

    Full Text Available Currently, many peptide vaccines are undergoing clinical studies. Most of these vaccines were developed to activate cytotoxic T cells; however, the response is not robust. Unlike vaccines, anti-cancer antibodies based on passive immunity have been approved as a standard treatment. Since passive immunity is more effective in tumor treatment, the evidence suggests that limited B cell epitope-based peptide vaccines may have similar activity. Nevertheless, such peptide vaccines have not been intensively developed primarily because humoral immunity is thought to be preferable to cancer progression. B cells secrete cytokines, which suppress immune functions. This review discusses the possibility of therapeutic antibody induction by a peptide vaccine and the role of active and passive B cell immunity in cancer patients. We also discuss the use of humanized mice as a pre-clinical model. The necessity of a better understanding of the activity of B cells in cancer is also discussed.

  6. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    Science.gov (United States)

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  7. Algae-based oral recombinant vaccines.

    Science.gov (United States)

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  8. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  9. Replication-competent human adenovirus 11p vectors can propagate in Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Gokumakulapalle, Madhuri; Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se

    2016-08-15

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.

  10. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter.

    Science.gov (United States)

    Alonso, Marta M; Gomez-Manzano, Candelaria; Bekele, B Nebiyou; Yung, W K Alfred; Fueyo, Juan

    2007-12-15

    Currently, the most efficacious treatment for malignant gliomas is temozolomide; however, gliomas expressing the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) are resistant to this drug. Strong clinical evidence shows that gliomas with methylation and subsequent silencing of the MGMT promoter are sensitive to temozolomide. Based on the fact that adenoviral proteins directly target and inactivate key DNA repair genes, we hypothesized that the oncolytic adenovirus Delta-24-RGD could be successfully combined with temozolomide to overcome the reported MGMT-mediated resistance. Our studies showed that the combination of Delta-24-RGD and temozolomide induces a profound therapeutic synergy in glioma cells. We observed that Delta-24-RGD treatment overrides the temozolomide-mediated G(2)-M arrest. Furthermore, Delta-24-RGD infection was followed by down-modulation of the RNA levels of MGMT. Chromatin immunoprecipitation assays showed that Delta-24-RGD prevented the recruitment of p300 to the MGMT promoter. Importantly, using mutant adenoviruses and wild-type and dominant-negative forms of the p300 protein, we showed that Delta-24-RGD interaction with p300 was required to induce silencing of the MGMT gene. Of further clinical relevance, the combination of Delta-24-RGD and temozolomide significantly improved the survival of glioma-bearing mice. Collectively, our data provide a strong mechanistic rationale for the combination of oncolytic adenoviruses and temozolomide, and should propel the clinical testing of this therapy approach in patients with malignant gliomas.

  11. Plant-Based Vaccines: Production and Challenges

    Directory of Open Access Journals (Sweden)

    Erna Laere

    2016-01-01

    Full Text Available Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.

  12. Immunogenic comparison of chimeric adenovirus 5/35 vector carrying optimized human immunodeficiency virus clade C genes and various promoters.

    Science.gov (United States)

    Shoji, Masaki; Yoshizaki, Shinji; Mizuguchi, Hiroyuki; Okuda, Kenji; Shimada, Masaru

    2012-01-01

    Adenovirus vector-based vaccine is a promising approach to protect HIV infection. However, a recent phase IIb clinical trial using the vector did not show its protective efficacy against HIV infection. To improve the vaccine, we explored the transgene protein expression and its immunogenicity using optimized codon usage, promoters and adaptors. We compared protein expression and immunogenicity of adenovirus vector vaccines carrying native or codon usage-optimized HIV-1 clade C gag and env genes expression cassettes driven by different promoters (CMV, CMVi, and CA promoters) and adapters (IRES and F2A). The adenovirus vector vaccine containing optimized gag gene produced higher Gag protein expression and induced higher immune responses than the vector containing native gag gene in mice. Furthermore, CA promoter generated higher transgene expression and elicited higher immune responses than other two popularly used promoters (CMV and CMVi). The second gene expression using F2A adaptor resulted in higher protein expression and immunity than that of using IRES and direct fusion protein. Taken together, the adenovirus vector containing the expression cassette with CA promoter, optimized HIV-1 clade C gene and an F2A adaptor produced the best protein expression and elicited the highest transgene-specific immune responses. This finding would be promising for vaccine design and gene therapy.

  13. iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections

    Directory of Open Access Journals (Sweden)

    Hung V. Trinh

    2013-01-01

    Full Text Available Both isobaric tags for relative and absolute quantitation (iTRAQ and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24 h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or label-free methods were used, and the resulting samples were analyzed by liquid chromatography (LC and tandem mass spectrometry (MS/MS. To reduce a possible bias from quantitation software, we applied several software packages for each procedure. ProteinPilot and Scaffold Q+ software were used for iTRAQ-labeled samples, while Progenesis LC-MS and ProgenesisF-T2PQ/T3PQ were employed for label-free analyses. R2 correlation coefficients correlated well between two software packages applied to the same datasets with values between 0.48 and 0.78 for iTRAQ-label-based quantitations and 0.5 and 0.86 for label-free quantitations. Analyses of label-free samples showed higher levels of protein up- or downregulation in comparison to iTRAQ-labeled samples. The concentration differences were further evaluated by Western blotting for four downregulated proteins. These data suggested that the label-free method was more accurate than the iTRAQ method.

  14. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Directory of Open Access Journals (Sweden)

    Emma-Jo Hayton

    Full Text Available TRIAL DESIGN: HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. METHODS: Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. RESULTS: Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern. CONCLUSIONS: These data demonstrate

  15. Modification to the Capsid of the Adenovirus Vector That Enhances Dendritic Cell Infection and Transgene-Specific Cellular Immune Responses

    OpenAIRE

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Joseph T Bruder; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.

    2004-01-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetica...

  16. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Directory of Open Access Journals (Sweden)

    Hamada F Rady

    Full Text Available Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC. DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  17. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Science.gov (United States)

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  18. Mucosal immunization with recombinant adenovirus encoding soluble globular head of hemagglutinin protects mice against lethal influenza virus infection.

    Science.gov (United States)

    Kim, Joo Young; Choi, Youngjoo; Nguyen, Huan H; Song, Man Ki; Chang, Jun

    2013-12-01

    Influenza virus is one of the major sources of respiratory tract infection. Due to antigenic drift in surface glycoproteins the virus causes annual epidemics with severe morbidity and mortality. Although hemagglutinin (HA) is one of the highly variable surface glycoproteins of the influenza virus, it remains the most attractive target for vaccine development against seasonal influenza infection because antibodies generated against HA provide virus neutralization and subsequent protection against the virus infection. Combination of recombinant adenovirus (rAd) vector-based vaccine and mucosal administration is a promising regimen for safe and effective vaccination against influenza. In this study, we constructed rAd encoding the globular head region of HA from A/Puerto Rico/8/34 virus as vaccine candidate. The rAd vaccine was engineered to express high level of the protein in secreted form. Intranasal or sublingual immunization of mice with the rAd-based vaccine candidates induced significant levels of sustained HA-specific mucosal IgA and IgG. When challenged with lethal dose of homologous virus, the vaccinated mice were completely protected from the infection. The results demonstrate that intranasal or sublingual vaccination with HA-encoding rAd elicits protective immunity against infection with homologous influenza virus. This finding underlines the potential of our recombinant adenovirus-based influenza vaccine candidate for both efficacy and rapid production.

  19. Biotechnology-based allergy diagnosis and vaccination.

    Science.gov (United States)

    Bhalla, Prem L; Singh, Mohan B

    2008-03-01

    The diagnosis and immunotherapy currently applied to allergic diseases involve the use of crude extracts of the allergen source without defining the allergy-eliciting molecule(s). Advances in recombinant DNA technology have made identification, cloning, expression and epitope mapping of clinically significant allergens possible. Recombinant allergens that retain the immunological features of natural allergens form the basis of accurate protein-chip-based methods for diagnosing allergic conditions. The ability to produce rationally designed hypoallergenic forms of allergens is leading to the development of novel and safe forms of allergy vaccines with improved efficacy. The initial clinical tests on recombinant-allergen-based vaccine preparations have provided positive results, and ongoing developments in areas such as alternative routes of vaccine delivery will enhance patient compliance.

  20. A history of adolescent school based vaccination in Australia.

    Science.gov (United States)

    Ward, Kirsten; Quinn, Helen; Menzies, Robert; McIntyre, Peter

    2013-06-30

    As adolescents have become an increasingly prominent target group for vaccination, school-based vaccination has emerged as an efficient and effective method of delivering nationally recommended vaccines to this often hard to reach group. School-based delivery of vaccines has occurred in Australia for over 80 years and has demonstrated advantages over primary care delivery for this part of the population. In the last decade school-based vaccination programs have become routine practice across all Australian states and territories. Using existing records and the recollection of experts we have compiled a history of school-based vaccination in Australia, primarily focusing on adolescents.

  1. DNA-Based Vaccine Protects Against Zika in Animal Study

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161959.html DNA-Based Vaccine Protects Against Zika in Animal Study ... In animals infected with Zika virus, the synthetic DNA-based vaccine was 100 percent effective in protecting ...

  2. DNA-Based Vaccine Guards Against Zika in Monkey Study

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161106.html DNA-Based Vaccine Guards Against Zika in Monkey Study ... THURSDAY, Sept. 22, 2016 (HealthDay News) -- An experimental DNA-based vaccine protected monkeys from infection with the ...

  3. A Replicating Adenovirus Capsid Display Recombinant Elicits Antibodies against Plasmodium falciparum Sporozoites in Aotus nancymaae Monkeys

    OpenAIRE

    Karen, Kasey A.; Deal, Cailin; Adams, Robert J; Nielsen, Carolyn; Ward, Cameron; Espinosa, Diego A.; Xie, Jane; Zavala,Fidel; Ketner, Gary

    2014-01-01

    Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodie...

  4. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  5. Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses effectively suppress growth of malignant pleural mesothelioma.

    Science.gov (United States)

    Harada, Akiko; Uchino, Junji; Harada, Taishi; Nakagaki, Noriaki; Hisasue, Junko; Fujita, Masaki; Takayama, Koichi

    2017-01-01

    Malignant mesothelioma (MM) incidence is increasing drastically worldwide as an occupational disease resulting from asbestos exposure. However, no curative treatment for MM of advanced stage is available. Thus, new therapeutic approaches for MM are required. Because malignant pleural mesothelioma (MPM) cells spread along the pleural surface in most patients, MPM can be targeted using intrapleural therapeutic approaches. In this study, we investigated the effectiveness of the intrapleural instillation of a replication-competent adenovirus as an oncolytic agent against MPM. We constructed a vascular endothelial growth factor promoter-based conditionally replicative adenovirus (VEGF-CRAd) that replicates exclusively in VEGF-expressing cells. All of the MM cell lines that we tested expressed VEGF mRNA, and VEGF-CRAd selectively replicated in these MM cells and exerted a direct concentration-dependent oncolytic effect in vitro. Furthermore, our in vivo studies showed that pre-infection of MM cells with VEGF-CRAd potently suppressed MPM tumor formation in nude mice, and that intrapleural instillation of VEGF-CRAd prolonged the survival time of tumor-bearing mice. Our results indicate that VEGF-CRAd exerts an oncolytic effect on MM cells and that intrapleural instillation of VEGF-CRAd is safe and might represent a promising therapeutic strategy for MPM. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Kunjin replicon-based simian immunodeficiency virus gag vaccines

    NARCIS (Netherlands)

    Anruka, I.; Mokhonov, V.; Rattanasena, P.; Mokhonova, E.; Leung, J.Y.; Pijlman, G.P.; Cara, A.; Schroder, W.A.; Khromykh, A.A.; Suhrbier, A.

    2008-01-01

    An RNA-based, non-cytopathic replicon vector system, based on the flavivirus Kunjin, has shown considerable promise as a new vaccine delivery system. Here we describe the testing in mice of four different SIVmac239 gag vaccines delivered by Kunjin replicon virus-like-particles. The four vaccines

  7. Kunjin replicon-based simian immunodeficiency virus gag vaccines

    NARCIS (Netherlands)

    Anruka, I.; Mokhonov, V.; Rattanasena, P.; Mokhonova, E.; Leung, J.Y.; Pijlman, G.P.; Cara, A.; Schroder, W.A.; Khromykh, A.A.; Suhrbier, A.

    2008-01-01

    An RNA-based, non-cytopathic replicon vector system, based on the flavivirus Kunjin, has shown considerable promise as a new vaccine delivery system. Here we describe the testing in mice of four different SIVmac239 gag vaccines delivered by Kunjin replicon virus-like-particles. The four vaccines enc

  8. Adenovirus-associated health risks for recreational activities in a multi-use coastal watershed based on site-specific quantitative microbial risk assessment.

    Science.gov (United States)

    Kundu, Arti; McBride, Graham; Wuertz, Stefan

    2013-10-15

    We used site-specific quantitative microbial risk assessment (QMRA) to assess the probability of adenovirus illness for three groups of swimmers: adults with primary contact, children with primary contact, and secondary contact regardless of age. Human enteroviruses and adenoviruses were monitored by qPCR in a multi-use watershed and Adenovirus type 40/41 was detected in 11% of 73 samples, ranging from 147 to 4117 genomes per liter. Enterovirus was detected only once (32 genomes per liter). Seven of eight virus detections occurred when E. coli concentrations were below the single sample maximum water quality criterion for contact recreation, and five of eight virus detections occurred when fecal coliforms were below the corresponding criterion. We employed dose-harmonization to convert viral genome measurements to TCID50 values needed for dose-response curves. The three scenarios considered different amounts of water ingestion and Monte Carlo simulation was used to account for the variability associated with the doses. The mean illness risk in children based on adenovirus measurements obtained over 11 months was estimated to be 3.5%, which is below the 3.6% risk considered tolerable by the current United States EPA recreational criteria for gastrointestinal illnesses (GI). The mean risks of GI illness for adults and secondary contact were 1.9% and 1.0%, respectively. These risks changed appreciably when different distributions were fitted to the data as determined by Monte Carlo simulations. In general, risk was at a maximum for the log-logistic distribution and lowest for the hockey stick distribution in all three selected scenarios. Also, under default assumptions, the risk was lowered considerably when assuming that only a small proportion of Adenovirus 40/41 (3%) was as infectious as Adenovirus type 4, compared to the assumption that all genomes were Adenovirus 4. In conclusion, site-specific QMRA on water-borne adenoviruses in this watershed provided a similar

  9. Canadian school-based HPV vaccine programs and policy considerations.

    Science.gov (United States)

    Shapiro, Gilla K; Guichon, Juliet; Kelaher, Margaret

    2017-09-08

    The National Advisory Committee on Immunization in Canada recommends human papillomavirus (HPV) vaccination for females and males (ages 9-26). In Canada, the HPV vaccine is predominantly administered through publicly funded school-based programs in provinces and territories. This research provides an overview of Canadian provincial and territorial school-based HPV vaccination program administration and vaccination rates, and identifies foreseeable policy considerations. We searched the academic and grey literature and contacted administrators of provincial and territorial vaccination programs to compile information regarding HPV vaccine program administration and vaccination rates in Canada's 13 provincial and territorial jurisdictions. As of October 2016, all 13 Canadian jurisdictions vaccinate girls, and six jurisdictions include boys in school-based publicly funded HPV vaccination programs. Eleven jurisdictions administer the HPV vaccine in a two-dose schedule. The quadrivalent vaccine (HPV4) has been the vaccine predominantly used in Canada; however, the majority of provinces will likely adopt the nonavalent vaccine in the future. According to available data, vaccination uptake among females ranged between 46.7% and 93.9%, while vaccination uptake among males (in programs with available data to date) ranged between 75.0% and 87.4%. Future research and innovation will beneficially inform Canadian jurisdictions when considering whether to administer the nonavalent vaccine, whether to implement a two or one-dose vaccination schedule, and how to improve uptake and rates of completion. The usefulness of standardizing methodologies for collecting and reporting HPV vaccination coverage and implementing a national registry were identified as important priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    Science.gov (United States)

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  11. Expanding specificity of class I restricted CD8+ T cells for viral epitopes following multiple inoculations of swine with a human adenovirus vectored foot-and-mouth disease virus (FMDV) vaccine

    DEFF Research Database (Denmark)

    Pedersen, Lasse E.; Patch, Jared R; Kenney, Mary

    2016-01-01

    The immune response to the highly acute foot-and-mouth disease virus (FMDV) is routinely reported as a measure of serum antibody. However, a critical effector function of immune responses combating viral infection of mammals is the cytotoxic T lymphocyte (CTL) response mediated by virus specific CD......8 expressing T cells. This immune mechanism arrests viral spread by killing virus infected cells before new, mature virus can develop. We have previously shown that infection of swine by FMDV results in a measurable CTL response and have correlated CTL killing of virus-infected cells with specific...... class I major histocompatibility complex (MHC) tetramer staining. We also showed that a modified replication defective human adenovirus 5 vector expressing the FMDV structural proteins (Ad5-FMDV-T vaccine) targets the induction of a CD8(+) CTL response with a minimal humoral response. In this report, we...

  12. School-based influenza vaccination: parents' perspectives.

    Directory of Open Access Journals (Sweden)

    Candace Lind

    Full Text Available BACKGROUND: School-age children are important drivers of annual influenza epidemics yet influenza vaccination coverage of this population is low despite universal publicly funded influenza vaccination in Alberta, Canada. Immunizing children at school may potentially increase vaccine uptake. As parents are a key stakeholder group for such a program, it is important to consider their concerns. PURPOSE: We explored parents' perspectives on the acceptability of adding an annual influenza immunization to the immunization program that is currently delivered in Alberta schools, and obtained suggestions for structuring such a program. PARTICIPANTS: Forty-eight parents of children aged 5-18 years participated in 9 focus groups. Participants lived in urban areas of the Alberta Health Services Calgary Zone. FINDINGS: Three major themes emerged: Advantages of school-based influenza vaccination (SBIV, Disadvantages of SBIV, and Implications for program design & delivery. Advantages were perceived to occur for different populations: children (e.g. emotional support, families (e.g. convenience, the community (e.g. benefits for school and multicultural communities, the health sector (e.g. reductions in costs due to burden of illness and to society at large (e.g. indirect conduit of information about health services, building structure for pandemic preparedness, building healthy lifestyles. Disadvantages, however, might also occur for children (e.g. older children less likely to be immunized, families (e.g. communication challenges, perceived loss of parental control over information, choices and decisions and the education sector (loss of instructional time. Nine second-level themes emerged within the major theme of Implications for program design & delivery: program goals/objectives, consent process, stakeholder consultation, age-appropriate program, education, communication, logistics, immunizing agent, and clinic process. CONCLUSIONS: Parents perceived

  13. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  14. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    OpenAIRE

    Samantha Sayers; Guerlain Ulysse; Zuoshuang Xiang; Yongqun He

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bi...

  15. Rhabdovirus-Based Vaccine Platforms against Henipaviruses

    Science.gov (United States)

    Kurup, Drishya; Wirblich, Christoph; Feldmann, Heinz; Marzi, Andrea

    2014-01-01

    domestic animals. A recent escalation in the frequency of outbreaks has increased the need for a vaccine that prevents HeV and NiV infections. In this study, we performed an extensive comparison of live and killed particles of two recombinant rhabdoviral vectors, rabies virus and vesicular stomatitis virus (VSV), expressing wild-type or codon-optimized HeV glycoprotein, with the goal of developing a candidate vaccine against HeV. Based on our data from the presented mouse immunogenicity studies, we conclude that a killed RABV vaccine would be highly effective against HeV infections and would make an excellent vaccine candidate in areas where both RABV and henipaviruses pose a threat to human health. PMID:25320306

  16. Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses.

    Science.gov (United States)

    Marzi, Andrea; Feldmann, Friederike; Geisbert, Thomas W; Feldmann, Heinz; Safronetz, David

    2015-02-01

    We demonstrated that previous vaccination with a vesicular stomatitis virus (VSV)-based Lassa virus vaccine does not alter protective efficacy of subsequent vaccination with a VSV-based Ebola virus vaccine. These findings demonstrate the utility of VSV-based vaccines against divergent viral pathogens, even when preexisting immunity to the vaccine vector is present.

  17. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  18. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-11-01

    Full Text Available Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD in humans and non-human primates (NHPs. Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs, vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirus∆VP30, recombinant cytomegalovirus (CMV-based vaccines, recombinant rabies virus (RABV-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  19. Construction of recombinant adenovirus vector containing AFP and generation of adenovirus-mediated AFP gene modified dendritic cells vaccine%含人AFP基因重组腺病毒载体的构建及其转染树突状细胞瘤苗的制备

    Institute of Scientific and Technical Information of China (English)

    杨静悦; 曹大勇; 刘文超; 斯小明

    2009-01-01

    Objective:To construct recombinant adenovirus vectors containing human AFP genes,and infect dendritic cell. Methods: Full length AFP cDNAs were subcloned into pIND vector,followed by being cloned into shuttle2 vector.The AFP gene fragments resulted from the shuttle2-AFP digested with PI-Sce and I-Ceu were linked to the linear adeno-X virus DNA.After packaged with HEK293 cells,the adenovirus expression vector was obtained.The plasmid pAdeno-AFP was identified by endonuclease and PCR.After dendritic cells were infected pAdeno-AFP,the surface molecules of pAdeno-AFP/DC were analysed by flow cytometry.AFP levels in culture supernatant of pAdeno-AFP/DC were measured by ELISA. Results: AFP gene in the inserted DNA of adeno-AFP was confirmed by PCR,and predictive fragments proved by restriction enzyme digestion analysis were exhibited.All the above results indicated that human AFP gene had been connected with pAdeno-X vectors correctly.The recombinant adenovirus vector of human AFP gene packaged in HEK293 cells,it will be used to introduce the target gene into dendritic cell.pAdeno-AFP/DC were able to upregulate CD1a,CD11c,CD80,CD86 and HLA-DR.And pAdeno-AFP/DC could secrete high level of AFP in vitro. Conclusion: The recombinant adenovirus vector of human AFP gene have been constructed successfully.The established AFP -DC vaccine may be a tool of the hepatocellular carcinoma immunotherapy,and it will be the foundation of future clinical use of DC vaccine.%目的:构建含人AFP基因的腺病毒载体,体外转染树突状细胞,制备树突状细胞肝癌瘤苗.方法: 将AFP基因亚克隆到pIND 载体和Shuttle2载体中,构建穿梭载体Shuttle2-AFP.用PI-Sce Ⅰ和I-CeuⅠ双酶切后将所获AFP基因片段再与线性化的腺病毒载体pAdeno-X连接,构成pAdeno-AFP重组腺病毒载体.其后,用重组腺病毒载体转染HEK293细胞,包装腺病毒表达载体.通过酶切、PCR对腺病毒载体进行鉴定.包装好的重组病毒载体pAdeno-AFP体外

  20. Cellular Immune Response to an Engineered Cell-Based Tumor Vaccine at the Vaccination Site

    OpenAIRE

    Zhou,Qiang; Johnson, Bryon D.; Rimas J Orentas

    2007-01-01

    The engineered expression of the immune co-stimulatory molecules CD80 and CD137L on the surface of a neuroblastoma cell line converts this tumor into a cell-based cancer vaccine. The mechanism by which this vaccine activates the immune system was investigated by capturing and analyzing immune cells responding to the vaccine cell line embedded in a collagen matrix and injected subcutaneously. The vaccine induced a significant increase in the number of activated CD62L− CCR7− CD49b+ CD8 effector...

  1. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Science.gov (United States)

    2011-01-01

    Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were

  2. Immune response and protection in raccoons (Procyon lotor) following consumption of baits containing ONRAB®, a human adenovirus rabies glycoprotein recombinant vaccine.

    Science.gov (United States)

    Brown, L J; Rosatte, R C; Fehlner-Gardiner, C; Taylor, J S; Davies, J C; Donovan, D

    2012-10-01

    We investigated the immune response and protection conferred in raccoons (Procyon lotor) following consumption of ONRAB(®) oral rabies vaccine baits. Forty-two wild-caught, captive raccoons were each offered an ONRAB vaccine bait; 21 controls received no vaccine baits. Blood samples collected from all raccoons before treatment, and each week posttreatment for 16 wk, were assessed for the presence of rabies virus antibody. In the bait group, an individual was considered to have responded to vaccination if serum samples from three or more consecutive weeks were antibody-positive. Using this criterion, 77% (20/26) of raccoons that consumed ONRAB baits with no observed vaccine spillage (full dose) demonstrated a humoral immune response. In the group that received a partial dose (0.05-0.90 mL vaccine recovered), 50% (8/16) of raccoons responded to vaccination. Regardless of the vaccine dose received, among the 28 raccoons that responded to vaccination 18 had antibody initially detectable at week 2 and 22 remained antibody-positive for at least 10 consecutive weeks. Kinetics of the humoral immune response suggest that the best time to conduct postbaiting surveillance for evidence of vaccination would be 6-13 wk following bait deployment, with the highest antibody prevalence expected between weeks 8-10. A sub-sample of 29 raccoons (20 ONRAB, 9 controls) was challenged with raccoon rabies virus variant 350 days posttreatment. Eight of nine controls (89%) developed rabies whereas 15/20 vaccinates (75%) survived. Survival following rabies challenge was significantly higher in raccoons presented ONRAB vaccine baits.

  3. Adenovirus DNA Replication

    OpenAIRE

    Hoeben, Rob C.; Uil, Taco G.

    2013-01-01

    Adenoviruses have attracted much attention as probes to study biological processes such as DNA replication, transcription, splicing, and cellular transformation. More recently these viruses have been used as gene-transfer vectors and oncolytic agents. On the other hand, adenoviruses are notorious pathogens in people with compromised immune functions. This article will briefly summarize the basic replication strategy of adenoviruses and the key proteins involved and will deal with the new deve...

  4. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants

    Directory of Open Access Journals (Sweden)

    Marie-Ève Lebel

    2015-08-01

    Full Text Available Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.

  5. Intranasal vaccination with replication defective adenovirus-5 encoding influenza hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs

    Science.gov (United States)

    Influenza A virus (IAV) is widely circulating in the swine population and causes significant economic loss. To combat IAV infection the swine industry utilizes adjuvanted whole inactivated virus (WIV) vaccines. These vaccines can provide sterilizing immunity towards homologous virus but often have l...

  6. Comparative Analysis of SIV-specific Cellular Immune Responses Induced by Different Vaccine Platforms in Rhesus Macaques

    OpenAIRE

    Valentin, Antonio; McKinnon, Katherine; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Pilkington, Guy R.; Bear, Jenifer; Alicea, Candido; Vargas-Inchaustegui, Diego A.; Patterson, L. Jean; Pegu, Poonam; Liyanage, Namal P.M.; Gordon, Shari N.; Vaccari, Monica; Wang, Yichuan

    2014-01-01

    To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cel...

  7. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  8. Enhanced structural stability of adenovirus nanocapsule

    Institute of Scientific and Technical Information of China (English)

    Ding Weng; Ziyue Karen Jiang; Jing Jin; Lily Wu; Yunfeng Lu

    2014-01-01

    Application of viral vector in gene therapy and vaccination is still limited by their structural stability, which significantly increased avoidable cost in storage and transportation. Herein a non-covalent conjugated low-pH degradable nanocapsule has been adopted to stabilize viral vectors. By utilizing a luciferase expressing adenovirus, AdCMVLuc, we succeeded in a raise of over 11 folds in AdCMVLuc's structural stability after 12 days storage at 4 1C.

  9. Production of Rice Seed-Based Allergy Vaccines.

    Science.gov (United States)

    Takagi, Hidenori; Takaiwa, Fumio

    2016-01-01

    Recombinant hypoallergenic derivative is the next generation of tolerogen replacing the natural allergen extract to increase safety and efficacy. Japanese cedar pollinosis is the predominant seasonal allergy disease in Japan. A rice seed-based oral vaccine containing the recombinant hypoallergens derived from these allergens was developed. Efficacy of this rice-based allergy vaccine was evaluated by oral administration in animal models.

  10. Strategies to vaccinate against cancer of the cervix: feasibility of a school-based HPV vaccination program in Peru.

    Science.gov (United States)

    Penny, Mary; Bartolini, Rosario; Mosqueira, N Rocio; LaMontagne, D Scott; Mendoza, Maria Ana; Ramos, Irma; Winkler, Jennifer L; Villafana, Jose; Janmohamed, Amynah; Jumaan, Aisha O

    2011-07-12

    Operational research using a mixed method, cross-sectional, case-study approach assessed the feasibility and health system impact of large-scale implementation of human papillomavirus (HPV) vaccination into routine vaccine delivery by the Ministry of Health in Peru. The strategy was school-based vaccination of fifth grade girls in 527 primary schools in Piura region. Our evaluation showed that school-based HPV vaccination is feasible without major changes in existing health systems. This was reflected in the opinions of health personnel, the lack of impact on other vaccine coverage, and the high HPV vaccine coverage documented in routine records and by an independent community-based survey.

  11. Applications of nanoparticles for DNA based rabies vaccine.

    Science.gov (United States)

    Shah, Muhammad Ali A; Khan, Sajid Umar; Ali, Zeeshan; Yang, Haowen; Liu, Keke; Mao, Lanlan

    2014-01-01

    Rabies is a fatal encephalomyelitis. Most cases occur in developing countries and are transmitted by dogs. The cell culture vaccines as associated with high cost; therefore, have not replaced the unsafe brain-derived vaccines. In the developing countries these brain-derived rabies vaccines still can be seen in action. Moreover, there will be a need for vaccines against rabies-related viruses against which classical vaccines are not always effective. The worldwide incidence of rabies and the inability of currently used vaccination strategies to provide highly potent and cost-effective therapy indicate the need for alternate control strategies. DNA vaccines have emerged as the safest vaccines and best remedy for complicated diseases like hepatitis, HIV, and rabies. A number of recombinant DNA vaccines are now being developed against several diseases such as AIDS and malaria. Therefore, it can be a valuable alternative for the production of cheaper rabies vaccines against its larger spectrum of viruses. In this review we report published data on DNA-based immunization with sequences encoding rabies with special reference to nanotechnology.

  12. Catheter-based intramyocardial delivery (NavX of adenovirus achieves safe and accurate gene transfer in pigs.

    Directory of Open Access Journals (Sweden)

    Bo Chen

    Full Text Available BACKGROUND: Hepatocyte growth factor (HGF is one of the major angiogenic factors being studied for the treatment of ischemic heart diseases. Our previous study demonstrated adenovirus-HGF was effective in myocardial ischemia models. The first clinical safety study showed a positive effect in patients with severe and diffused triple coronary disease. METHODS: 12 Pigs were randomized (1:1 to receive HGF, which was administered as five injections into the infarcted myocardium, or saline (control group. The injections were guided by EnSite NavX left ventricular electroanatomical mapping. RESULTS: The catheter-based injections caused no pericardial effusion, malignant arrhythmia or death. During mapping and injection, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, serum creatinine and creatine kinase-MB levels have no significant increase as compared to those before and after the injection in HGF group(P>0.05. HGF group has high HGF expression with Western blot, less myocardial infarct sizes by electroanatomical mapping (HGF group versus after saline group, 5.28 ± 0.55 cm(2 versus 9.06 ± 1.06 cm(2, P<0.01, better cardiac function with Gated-Single Photon Emission Computed Tomography compared with those in saline group. Histological, strongly increased lectin-positive microvessels and microvessel density were found in the myocardial ischemic regions in HGF group. CONCLUSION: Intramyocardial injection guided by NavX system provides a method of feasible and safe percutaneous gene transfer to myocardial infarct regions.

  13. Selecting Viruses for the Seasonal Influenza Vaccine

    Science.gov (United States)

    ... and Flu Vaccines Vaccine Effectiveness Types of Flu Vaccine Flu Shot Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination ... Cell-Based Flu Vaccines Flublok Seasonal Influenza (Flu) Vaccine Flu Vaccination by Jet Injector Adjuvant Vaccine Vaccine Virus ...

  14. Seasonal Flu Vaccine Safety and Pregnant Women

    Science.gov (United States)

    ... and Flu Vaccines Vaccine Effectiveness Types of Flu Vaccine Flu Shot Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination ... Cell-Based Flu Vaccines Flublok Seasonal Influenza (Flu) Vaccine Flu Vaccination by Jet Injector Adjuvant Vaccine Vaccine Virus ...

  15. Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

    Science.gov (United States)

    2011-10-01

    recombi - nant AMA1 protein is protective in non-human primates[28], and has proven safe and immunogenic in Phase 1 studies in humans...2007) Extended immunization intervals enhance the immunogenicity and protective efficacy of plasmid DNA vaccines. Microbes Infect 9: 1439–1446. 36...Sedegah M, Hoffman SL (2006) Immunological responses of neonates and infants to DNA vaccines. Methods Mol Med 127: 239–251. 37. Wang R, Epstein J

  16. DNA-based influenza vaccines as immunoprophylactic agents toward universality.

    Science.gov (United States)

    Zhang, Han; El Zowalaty, Mohamed E

    2016-01-01

    Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.

  17. Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans.

    Directory of Open Access Journals (Sweden)

    Samuel O Pine

    Full Text Available The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732. Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36 or Ad5-seropositive (titer >200; n = 34. Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes. At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008, and significantly more IP-10 (p = 0.0009, IL-2 (p = 0.006 and IL-10 (p = 0.05 in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these

  18. Oncolytic Adenoviruses for Gynecologic Cancer

    OpenAIRE

    Bauerschmitz, Gerd Johannes

    2007-01-01

    Gene therapy is a promising novel approach for treating cancers resistant to or escaping currently available modalities. Treatment approaches are based on taking advantage of molecular differences between normal and tumor cells. Various strategies are currently in clinical development with adenoviruses as the most popular vehicle. Recent developments include improving targeting strategies for gene delivery to tumor cells with tumor specific promoters or infectivity enhancement. A rapidly deve...

  19. M2e-Based Universal Influenza A Vaccines

    Directory of Open Access Journals (Sweden)

    Lei Deng

    2015-02-01

    Full Text Available The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future.

  20. Merck Ad5艾滋病疫苗的研究进展%Progress in Research on Merck's Ad5-based AIDS Vaccine

    Institute of Scientific and Technical Information of China (English)

    刘强

    2011-01-01

    安全有效的疫苗是艾滋病防治的有效手段.上世纪90年代,Merck公司开始研发腺病毒5型(Ad5)载体T细胞概念艾滋病疫苗.2007年9月,在II b期临床观察中宣告失败,给疫苗学界带来沉重打击.本文就Merck Ad5艾滋病疫苗的构建、临床前期和I、Ⅱ期临床观察以及学术界对其失败原因的分析作一综述.%An effective vaccine remains the primary goal for a comprehensive strategy to curb the global HIV epidemic. Merck began to develop adenovirus type 5 ( Ad5 )-based AIDS vaccine in 1990s. In 2007, Merck and NIAID announced that a phase Ⅱb clinical trial of an Ad5-based AIDS vaccine was discontinued after an interim analysis revealed that the vaccine did not work. The vaccine construction, preclinical and clinical trials and causes of failure are reviewed in this paper.

  1. The phase 2b HVTN 503/Phambili study test-of-concept HIV vaccine study, investigating a recombinant adenovirus type 5 HIV gag/pol/nef vaccine in South Africa: unblinded, long-term follow-up

    Science.gov (United States)

    Gray, Glenda E; Moodie, Zoe; Metch, Barbara; Gilbert, Peter B.; Bekker, Linda-Gail; Churchyard, Gavin; Nchabeleng, Maphoshane; Mlisana, Koleka; Laher, Fatima; Roux, Surita; Mngadi, Kathryn; Innes, Craig; Mathebula, Matsontso; Allen, Mary; McElrath, M Julie; Robertson, Michael; Kublin, James; Corey, Lawrence

    2014-01-01

    Background The Phambili study, conducted in South Africa amongst a predominantly heterosexual population, evaluated the efficacy of the MRK Ad5 gag/pol/nef subtype B HIV-1 preventive vaccine. Enrollment and vaccinations were stopped, participants unblinded, and follow-up extended when the Step study evaluating the same vaccine in the Americas, Caribbean and Australia was unblinded for non-efficacy with more HIV infections amongst vaccinee than placebo recipients [ZM1]. Extensive analyses over the complete follow-up period, most of which was unblinded, are reported. Methods Phambili participants were HIV-1 uninfected, sexually active men and women aged 18–35 years, followed for 3.5 years. HIV testing and risk reduction counseling occurred at weeks 0, 12, 30 and were switched to a 3 monthly schedule after unblinding. Cox proportional hazards models were used to estimate HIV-1 infection hazard ratios (HR) comparing vaccine to placebo recipients, overall and within subgroups. Long-term vaccine efficacy was evaluated in participants who were unblinded early in follow-up. Results Of the 801 participants enrolled (400 vaccine, 401 placebo), 112 (28%) received 1 vaccination, 259 (65%) 2 vaccinations and 29(7%) 3 vaccinations. More infections occurred in vaccinees (n=63) as compared to placebo (n=37) (adjusted HR (vaccine:placebo) 1.70, 95% CI 1.13–2.55, p = 0.01). We found no increase in infections with the number of vaccinations received and that the HRs did not differ by gender, circumcision, or Ad5 serostatus. Differences in risk behavior at baseline or during the study, or differential drop-out (p=0.40) are unlikely explanations for the increased rate of HIV-1 infections seen in vaccinees. Conclusion The increased HR of HIV-1 acquisition, irrespective of number of doses received, warrants further investigation to understand the biological mechanism. Further use of the Ad5 vector for HIV vaccines is not warranted PMID:24560541

  2. Protection Induced by Simultaneous Subcutaneous and Endobronchial Vaccination with BCG/BCG and BCG/Adenovirus Expressing Antigen 85A against Mycobacterium bovis in Cattle.

    Directory of Open Access Journals (Sweden)

    Gillian S Dean

    Full Text Available The incidence of bovine tuberculosis (bTB in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission.

  3. Protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing TgAMA1 as vaccines against Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Yu, Longzheng; Yamagishi, Junya; Zhang, Shoufa; Jin, Chunmei; Aboge, Gabriel Oluga; Zhang, Houshuang; Zhang, Guohong; Tanaka, Tetsuya; Fujisaki, Kozo; Nishikawa, Yoshifumi; Xuan, Xuenan

    2012-09-01

    A heterologous prime-boost strategy with priming plasmid DNA followed by recombinant virus expressing relevant antigens is known to stimulate protective immunity against intracellular parasites. In this study, we have evaluated a heterologous prime-boost strategy for immunizing mice against Toxoplasma gondii infection. Our results revealed that the prime-boost strategy using both plasmid DNA and adenoviral vector encoding TgAMA1 may stimulate both humoral and Th1/Th2 cellular immune responses specific for TgAMA1. Moreover, C57BL/6 mice immunized with the pAMA1/Ad5Null, pNull/Ad5AMA1, and pAMA1/Ad5AMA1 constructs showed survival rates of 12.5%, 37.5%, and 50%, respectively. In contrast, all the pNull/Ad5Null immunized mice died after infection with the PLK-GFP strain of T. gondii. Brain cyst burden was reduced by 23% in mice immunized with pAMA1/Ad5AMA1 compared with the pNull/Ad5AMA1 immunized mice. These results demonstrate that the heterologous DNA priming and recombinant adenovirus boost strategy may provide protective immunity against T. gondii infection.

  4. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard...... to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored...

  5. Prospects of HA-Based Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Anwar M. Hashem

    2015-01-01

    Full Text Available Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs. Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA. Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.

  6. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  7. RNA-Based Vaccines in Cancer Immunotherapy.

    Science.gov (United States)

    McNamara, Megan A; Nair, Smita K; Holl, Eda K

    2015-01-01

    RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  8. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naïve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine

    Science.gov (United States)

    In order to investigate host factors associated with the establishment of persistent foot-and-mouth disease virus (FMDV) infection, the systemic immune response to vaccination and challenge was studied in 47 Holstein steers. Eighteen steers which had received one dose of recombinant FMDV A vaccine t...

  9. Vaccine to Confer to Nonhuman Primates Complete Protection Against Multistrain Ebola and Marburg Virus Infections

    Science.gov (United States)

    2008-01-01

    Therefore, much progress has been made using alternative vaccine platforms, such as recombinant viral vec- tors. For example, alphavirus replicons...immunogenicity in rhesus monkeys of DNA plas- mid, recombinant vaccinia virus, and replication -defective adenovirus vec- tors expressing a human...recombinants. Virology 239:206–216. 14. Hevey, M., D. Negley, P. Pushko, J. Smith, and A. Schmaljohn. 1998. Mar- burg virus vaccines based upon alphavirus

  10. Recent advances in recombinant protein-based malaria vaccines.

    Science.gov (United States)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.

  11. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  12. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  13. Encapsulation of Adenovirus Serotype 5 in Anionic Lecithin Liposomes using a Bead-Based Immunoprecipitation Technique Enhances Transfection Efficiency

    Science.gov (United States)

    Mendez, N.; Herrera, V.; Zhang, L.; Hedjran, F.; Feuer, R.; Blair, S.; Trogler, W.; Reid, T.

    2014-01-01

    Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140–180nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4× higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. PMID:25154663

  14. Development of a new hydrogen peroxide–based vaccine platform.

    Science.gov (United States)

    Amanna, Ian J; Raué, Hans-Peter; Slifka, Mark K

    2012-06-01

    Safe and effective vaccines are crucial for maintaining public health and reducing the global burden of infectious disease. Here we introduce a new vaccine platform that uses hydrogen peroxide (H(2)O(2)) to inactivate viruses for vaccine production. H(2)O(2) rapidly inactivates both RNA and DNA viruses with minimal damage to antigenic structure or immunogenicity and is a highly effective method when compared with conventional vaccine inactivation approaches such as formaldehyde or β-propiolactone. Mice immunized with H(2)O(2)-inactivated lymphocytic choriomeningitis virus (LCMV) generated cytolytic, multifunctional virus-specific CD8(+) T cells that conferred protection against chronic LCMV infection. Likewise, mice vaccinated with H(2)O(2)-inactivated vaccinia virus or H(2)O(2)-inactivated West Nile virus showed high virus-specific neutralizing antibody titers and were fully protected against lethal challenge. Together, these studies demonstrate that H(2)O(2)-based vaccines are highly immunogenic, provide protection against a range of viral pathogens in mice and represent a promising new approach to future vaccine development.

  15. Molecular confirmation of an adenovirus in brushtail possums (Trichosurus vulpecula).

    Science.gov (United States)

    Thomson, Darelle; Meers, Joanne; Harrach, Balázs

    2002-02-26

    Partial genome characterisation of a non-cultivable marsupial adenovirus is described. Adenovirus-like particles were found by electron microscopy (EM) in the intestinal contents of brushtail possums (Trichosurus vulpecula) in New Zealand. Using degenerate PCR primers complementary to the most conserved genome regions of adenoviruses, the complete nucleotide sequence of the penton base gene, and partial nucleotide sequences of the DNA polymerase, hexon, and pVII genes were obtained. Phylogenetic analysis of the penton base gene strongly suggested that the brushtail possum adenovirus (candidate PoAdV-1) belongs to the recently proposed genus Atadenovirus. Sequence analysis of the PCR products amplified from the intestinal contents of brushtail possums originating from different geographical regions of New Zealand identified a single genotype. This is the first report of molecular confirmation of an adenovirus in a marsupial.

  16. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice.

    Science.gov (United States)

    Li, Wu; Li, Min; Deng, Guangcun; Zhao, Liping; Liu, Xiaoming; Wang, Yujiong

    2015-08-01

    Tuberculosis (TB) remains to be a prevalent health issue worldwide. At present, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the singular anti-TB vaccine available for the prevention of disease in humans; however, this vaccine only provides limited protection against Mycobacterium tuberculosis (Mtb) infection. Therefore, the development of alternative vaccines and strategies for increasing the efficacy of vaccination against TB are urgently required. The present study aimed to evaluate the ability of a recombinant adenoviral vector (Ad5-CEAB) co-expressing 10-kDa culture filtrate protein, 6-kDa early-secreted antigenic target, antigen 85 (Ag85)A and Ag85B of Mtb to boost immune responses following primary vaccination with BCG in mice. The mice were first subcutaneously primed with BCG and boosted with two doses of Ad5-CEAB via an intranasal route. The immunological effects of Ad5-CEAB boosted mice primed with BCG were then evaluated using a series of immunological indexes. The results demonstrated that the prime-boost strategy induced a potent antigen-specific immune response, which was primarily characterized by an enhanced T cell response and increased production of cytokines, including interferon-γ, tumor necrosis factor-α and interleukin-2, in mice. In addition, this vaccination strategy was demonstrated to have an elevated humoral response with increased concentrations of antigen-specific bronchoalveolar lavage secretory immunoglobulin (Ig)A and serum IgG in mice compared with those primed with BCG alone. These data suggested that the regimen of subcutaneous BCG prime and mucosal Ad5-CEAB boost was a novel strategy for inducing a broad range of antigen-specific immune responses to Mtb antigens in vivo, which may provide a promising strategy for further development of adenoviral-based vaccine against Mtb infection.

  17. A novel adenovirus in Chinstrap penguins (Pygoscelis antarctica) in Antarctica.

    Science.gov (United States)

    Lee, Sook-Young; Kim, Jeong-Hoon; Park, Yon Mi; Shin, Ok Sarah; Kim, Hankyeom; Choi, Han-Gu; Song, Jin-Won

    2014-05-07

    Adenoviruses (family Adenoviridae) infect various organ systems and cause diseases in a wide range of host species. In this study, we examined multiple tissues from Chinstrap penguins (Pygoscelis antarctica), collected in Antarctica during 2009 and 2010, for the presence of novel adenoviruses by PCR. Analysis of a 855-bp region of the hexon gene of a newly identified adenovirus, designated Chinstrap penguin adenovirus 1 (CSPAdV-1), showed nucleotide (amino acid) sequence identity of 71.8% (65.5%) with South Polar skua 1 (SPSAdV-1), 71% (70%) with raptor adenovirus 1 (RAdV-1), 71.4% (67.6%) with turkey adenovirus 3 (TAdV-3) and 61% (61.6%) with frog adenovirus 1 (FrAdV-1). Based on the genetic and phylogenetic analyses, CSPAdV-1 was classified as a member of the genus, Siadenovirus. Virus isolation attempts from kidney homogenates in the MDTC-RP19 (ATCC® CRL-8135™) cell line were unsuccessful. In conclusion, this study provides the first evidence of new adenovirus species in Antarctic penguins.

  18. A Novel Adenovirus in Chinstrap Penguins (Pygoscelis antarctica in Antarctica

    Directory of Open Access Journals (Sweden)

    Sook-Young Lee

    2014-05-01

    Full Text Available Adenoviruses (family Adenoviridae infect various organ systems and cause diseases in a wide range of host species. In this study, we examined multiple tissues from Chinstrap penguins (Pygoscelis antarctica, collected in Antarctica during 2009 and 2010, for the presence of novel adenoviruses by PCR. Analysis of a 855-bp region of the hexon gene of a newly identified adenovirus, designated Chinstrap penguin adenovirus 1 (CSPAdV-1, showed nucleotide (amino acid sequence identity of 71.8% (65.5% with South Polar skua 1 (SPSAdV-1, 71% (70% with raptor adenovirus 1 (RAdV-1, 71.4% (67.6% with turkey adenovirus 3 (TAdV-3 and 61% (61.6% with frog adenovirus 1 (FrAdV-1. Based on the genetic and phylogenetic analyses, CSPAdV-1 was classified as a member of the genus, Siadenovirus. Virus isolation attempts from kidney homogenates in the MDTC-RP19 (ATCC® CRL-8135™ cell line were unsuccessful. In conclusion, this study provides the first evidence of new adenovirus species in Antarctic penguins.

  19. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  20. Guillain-Barré Syndrome (GBS) and Flu Vaccine

    Science.gov (United States)

    ... and Flu Vaccines Vaccine Effectiveness Types of Flu Vaccine Flu Shot Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination ... Cell-Based Flu Vaccines Flublok Seasonal Influenza (Flu) Vaccine Flu Vaccination by Jet Injector Adjuvant Vaccine Vaccine Virus ...

  1. Vaxign: The First Web-Based Vaccine Design Program for Reverse Vaccinology and Applications for Vaccine Development

    OpenAIRE

    Yongqun He; Zuoshuang Xiang; Mobley, Harry L. T.

    2010-01-01

    Vaxign is the first web-based vaccine design system that predicts vaccine targets based on genome sequences using the strategy of reverse vaccinology. Predicted features in the Vaxign pipeline include protein subcellular location, transmembrane helices, adhesin probability, conservation to human and/or mouse proteins, sequence exclusion from genome(s) of nonpathogenic strain(s), and epitope binding to MHC class I and class II. The precomputed Vaxign database contains prediction of vaccine tar...

  2. Vaccines based on structure-based design provide protection against infectious diseases.

    Science.gov (United States)

    Thomas, Sunil; Luxon, Bruce A

    2013-11-01

    Vaccines elicit immune responses, provide protection against microorganisms and are considered as one of the most successful medical interventions against infectious diseases. Vaccines can be produced using attenuated virus or bacteria, recombinant proteins, bacterial polysaccharides, carbohydrates or plasmid DNA. Conventional vaccines rely on the induction of immune responses against antigenic proteins to be effective. The genetic diversity of microorganisms, coupled with the high degree of sequence variability in antigenic proteins, presents a challenge to developing broadly effective conventional vaccines. The observation that whole protein antigens are not necessarily essential for inducing immunity has led to the emergence of a new branch of vaccine design termed 'structural vaccinology'. Structure-based vaccines are designed on the rationale that protective epitopes should be sufficient to induce immune responses and provide protection against pathogens. Recent studies demonstrated that designing structure-based vaccine candidates with multiple epitopes induce a higher immune response. As yet there are no commercial vaccines available based on structure-based design and most of the structure-based vaccine candidates are in the preclinical stages of development. This review focuses on recent advances in structure-based vaccine candidates and their application in providing protection against infectious diseases.

  3. Monovalent Virus-Like Particle Vaccine Protects Guinea Pigs and Nonhuman Primates Against Infection with Multiple Marburg Viruses

    Science.gov (United States)

    2008-05-01

    equine encephalitis replicon particle, where the antigen of interest, in this case the MARV glyc- oprotein (GP), is inserted in place of the struc- tural... herpes B antibody-negative in testing prior to initiation of the study. The VLP-vaccinated monkeys received three intramuscular injec- tions at 42-day...date, the most successful filovirus vaccines have been based on viral vec- tors, such as adenovirus, venezulan equine encephalitis repli- con, human

  4. New vaccine design based on defective genomes that combines features of attenuated and inactivated vaccines.

    Directory of Open Access Journals (Sweden)

    Teresa Rodríguez-Calvo

    Full Text Available BACKGROUND: New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises. We have previously shown that serial passages of FMD virus (FMDV C-S8c1 at high multiplicity of infection in cell culture resulted in virus populations consisting of defective genomes that are infectious by complementation (termed C-S8p260. PRINCIPAL FINDING: Here we evaluate the immunogenicity of C-S8p260, first in a mouse model system to establish a proof of principle, and second, in swine, the natural host of FMDV C-S8c1. Mice were completely protected against a lethal challenge with FMDV C-S8c1, after vaccination with a single dose of C-S8p260. Pigs immunized with different C-S8p260 doses and challenged with FMDV C-S8c1 either did not develop any clinical signs or showed delayed and mild disease symptoms. C-S8p260 induced high titers of both FMDV-specific, neutralizing antibodies and activated FMDV-specific T cells in swine, that correlated with solid protection against FMDV. CONCLUSIONS: The defective virus-based vaccine did not produce detectable levels of transmissible FMDV. Therefore, a segmented, replication-competent form of a virus, such as FMDV C-S8p260, can provide the basis of a new generation of attenuated antiviral vaccines with two safety barriers. The design can be extended to any viral pathogen that encodes trans-acting gene products, allowing complementation between replication-competent, defective forms.

  5. New vaccine design based on defective genomes that combines features of attenuated and inactivated vaccines.

    Science.gov (United States)

    Rodríguez-Calvo, Teresa; Ojosnegros, Samuel; Sanz-Ramos, Marta; García-Arriaza, Juan; Escarmís, Cristina; Domingo, Esteban; Sevilla, Noemí

    2010-04-29

    New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises. We have previously shown that serial passages of FMD virus (FMDV) C-S8c1 at high multiplicity of infection in cell culture resulted in virus populations consisting of defective genomes that are infectious by complementation (termed C-S8p260). Here we evaluate the immunogenicity of C-S8p260, first in a mouse model system to establish a proof of principle, and second, in swine, the natural host of FMDV C-S8c1. Mice were completely protected against a lethal challenge with FMDV C-S8c1, after vaccination with a single dose of C-S8p260. Pigs immunized with different C-S8p260 doses and challenged with FMDV C-S8c1 either did not develop any clinical signs or showed delayed and mild disease symptoms. C-S8p260 induced high titers of both FMDV-specific, neutralizing antibodies and activated FMDV-specific T cells in swine, that correlated with solid protection against FMDV. The defective virus-based vaccine did not produce detectable levels of transmissible FMDV. Therefore, a segmented, replication-competent form of a virus, such as FMDV C-S8p260, can provide the basis of a new generation of attenuated antiviral vaccines with two safety barriers. The design can be extended to any viral pathogen that encodes trans-acting gene products, allowing complementation between replication-competent, defective forms.

  6. Dendritic Cell-Based Vaccine Against Fungal Infection.

    Science.gov (United States)

    Ueno, Keigo; Urai, Makoto; Ohkouchi, Kayo; Miyazaki, Yoshitsugu; Kinjo, Yuki

    2016-01-01

    Several pathogenic fungi, including Cryptococcus gattii, Histoplasma capsulatum, Coccidioides immitis, and Penicillium marneffei, cause serious infectious diseases in immunocompetent humans. However, currently, prophylactic and therapeutic vaccines are not clinically used. In particular, C. gattii is an emerging pathogen and thus far protective immunity against this pathogen has not been well characterized. Experimental vaccines such as component and attenuated live vaccines have been used as tools to study protective immunity against fungal infection. Recently, we developed a dendritic cell (DC)-based vaccine to study protective immunity against pulmonary infection by highly virulent C. gattii strain R265 that was clinically isolated from bronchial washings of infected patients during the Vancouver Island outbreak. In this approach, bone marrow-derived DCs (BMDCs) are pulsed with heat-killed C. gattii and then transferred into mice prior to intratracheal infection. This DC vaccine significantly increases interleukin 17A (IL-17A)-, interferon gamma (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing T cells in the lungs and spleen and ameliorates the pathology, fungal burden, and mortality following C. gattii infection. This approach may result in the development of a new means of controlling lethal fungal infections. In this chapter, we describe the procedures of DC vaccine preparation and murine pulmonary infection model for analysis of immune response against C. gattii.

  7. Improved NYVAC-based vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Karen V Kibler

    Full Text Available While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144 have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.

  8. Introducing the ESAT-6 free IGRA, a companion diagnostic for TB vaccines based on ESAT-6

    DEFF Research Database (Denmark)

    Ruhwald, Morten; de Thurah, Lena; Kuchaka, Davis

    2017-01-01

    There is a need for an improved vaccine for tuberculosis. ESAT-6 is a cardinal vaccine antigen with unique properties and is included in several vaccine candidates in development. ESAT-6 is also the core antigen in the IFN-γ release assays (IGRA) used to diagnose latent infection, rendering IGRA...... tests unspecific after vaccination. This challenge has prompted the development of a companion diagnostic for ESAT-6 based vaccines, an ESAT-6 free IGRA. We screened a panel of seven potential new diagnostic antigens not recognized in BCG vaccinated individuals. Three highly recognized antigens Esp...... containing vaccines and as adjunct test for latent infection....

  9. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties.

    Science.gov (United States)

    Zhao, Qinjian; Li, Shaowei; Yu, Hai; Xia, Ningshao; Modis, Yorgo

    2013-11-01

    Human vaccines against three viruses use recombinant virus-like particles (VLPs) as the antigen: hepatitis B virus, human papillomavirus, and hepatitis E virus. VLPs are excellent prophylactic vaccine antigens because they are self-assembling bionanoparticles (20 to 60 nm in diameter) that expose multiple epitopes on their surface and faithfully mimic the native virions. Here we summarize the long journey of these vaccines from bench to patients. The physical properties and structural features of each recombinant VLP vaccine are described. With the recent licensure of Hecolin against hepatitis E virus adding a third disease indication to prophylactic VLP-based vaccines, we review how the crucial quality attributes of VLP-based human vaccines against all three disease indications were assessed, controlled, and improved during bioprocessing through an array of structural and functional analyses.

  10. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    Science.gov (United States)

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  11. Induction of pluripotent protective immunity following immunisation with a chimeric vaccine against human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Jie Zhong

    Full Text Available Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8(+ and CD4(+ T-cells which co-expressed IFN-gamma and TNF-alpha, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8(+ and CD4(+ T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings.

  12. Host defense mechanism-based rational design of live vaccine.

    Directory of Open Access Journals (Sweden)

    Yo Han Jang

    Full Text Available Live attenuated vaccine (LAV, mimicking natural infection, provides an excellent protection against microbial infection. The development of LAV, however, still remains highly empirical and the rational design of clinically useful LAV is scarcely available. Apoptosis and caspase activation are general host antiviral responses in virus-infected cells. Utilizing these tightly regulated host defense mechanisms, we present a novel apoptosis-triggered attenuation of viral virulence as a rational design of live attenuated vaccine with desired levels of safety, efficacy, and productivity. Mutant influenza viruses carrying caspase recognition motifs in viral NP and the interferon-antagonist NS1 proteins were highly attenuated both in vitro and in vivo by caspase-mediated cleavage of those proteins in infected cells. Both viral replication and interferon-resistance were substantially reduced, resulting in a marked attenuation of virulence of the virus. Despite pronounced attenuation, the viruses demonstrated high growth phenotype in embryonated eggs at lower temperature, ensuring its productivity. A single dose vaccination with the mutant virus elicited high levels of systemic and mucosal antibody responses and provided complete protection against both homologous and heterologous lethal challenges in mouse model. While providing a practical means to generate seasonal or pandemic influenza live vaccines, the sensitization of viral proteins to pathogen-triggered apoptotic signals presents a potentially universal, mechanism-based rational design of live vaccines against many viral infections.

  13. Host defense mechanism-based rational design of live vaccine.

    Science.gov (United States)

    Jang, Yo Han; Byun, Young Ho; Lee, Kwang-Hee; Park, Eun-Sook; Lee, Yun Ha; Lee, Yoon-Jae; Lee, Jinhee; Kim, Kyun-Hwan; Seong, Baik Lin

    2013-01-01

    Live attenuated vaccine (LAV), mimicking natural infection, provides an excellent protection against microbial infection. The development of LAV, however, still remains highly empirical and the rational design of clinically useful LAV is scarcely available. Apoptosis and caspase activation are general host antiviral responses in virus-infected cells. Utilizing these tightly regulated host defense mechanisms, we present a novel apoptosis-triggered attenuation of viral virulence as a rational design of live attenuated vaccine with desired levels of safety, efficacy, and productivity. Mutant influenza viruses carrying caspase recognition motifs in viral NP and the interferon-antagonist NS1 proteins were highly attenuated both in vitro and in vivo by caspase-mediated cleavage of those proteins in infected cells. Both viral replication and interferon-resistance were substantially reduced, resulting in a marked attenuation of virulence of the virus. Despite pronounced attenuation, the viruses demonstrated high growth phenotype in embryonated eggs at lower temperature, ensuring its productivity. A single dose vaccination with the mutant virus elicited high levels of systemic and mucosal antibody responses and provided complete protection against both homologous and heterologous lethal challenges in mouse model. While providing a practical means to generate seasonal or pandemic influenza live vaccines, the sensitization of viral proteins to pathogen-triggered apoptotic signals presents a potentially universal, mechanism-based rational design of live vaccines against many viral infections.

  14. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced.

  15. Gene therapy for colorectal cancer by adenovirus-mediated siRNA targeting CD147 based on loss of the IGF2 imprinting system.

    Science.gov (United States)

    Pan, Yuqin; He, Bangshun; Chen, Jie; Sun, Huiling; Deng, Qiwen; Wang, Feng; Ying, Houqun; Liu, Xian; Lin, Kang; Peng, Hongxin; Xie, Hongguang; Wang, Shukui

    2015-11-01

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) gene is an epigenetic abnormality phenomenon in CRC. Recently observed association of CRC with cluster of differentiation 147 (CD147) could provide a novel approach for gene therapy. In the present study, we investigated the feasibility of using adenovirus‑mediated siRNA targeting CD147 based on the IGF2 LOI system for targeted gene therapy of CRC. A novel adenovirus-mediated siRNA targeting CD147, rAd-H19-CD147mirsh, which was driven by the IGF2 imprinting system, was constructed. The results showed that the EGFP expression was detected only in the IGF2 LOI cell lines (HT-29 and HCT-8), but that no EGFP was produced in cell lines with maintenance of imprinting (MOI) (HCT116). Moreover, rAd-H19-CD147mirsh significantly inhibited the expression of CD147, decreased cell viability and invasive ability, and increased sensitivity to chemotherapeutic drugs only in the LOI cell lines in vitro. Furthermore, mice bearing HT-29 xenografted tumors, which received intratumoral administration of the rAd-H19-CD147mirsh, showed significantly reduced tumor growth and enhanced survival. We conclude that recombinant adenovirus-mediated siRNA targeting CD147 based on the IGF2 LOI system inhibited the growth of the LOI cells in vitro and in vivo, which would provide a novel approach for targeted CRC gene therapy.

  16. Virus-based nanoparticles as platform technologies for modern vaccines.

    Science.gov (United States)

    Lee, Karin L; Twyman, Richard M; Fiering, Steven; Steinmetz, Nicole F

    2016-07-01

    Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.

  17. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Science.gov (United States)

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  18. Are Clade Specific HIV Vaccines a Necessity? An Analysis Based on Mathematical Models

    Directory of Open Access Journals (Sweden)

    Dobromir Dimitrov

    2015-12-01

    Full Text Available As HIV-1 envelope immune responses are critical to vaccine related protection, most candidate HIV vaccines entering efficacy trials are based upon a clade specific design. This need for clade specific vaccine prototypes markedly reduces the implementation of potentially effective HIV vaccines. We utilized a mathematical model to determine the effectiveness of immediate roll-out of a non-clade matched vaccine with reduced efficacy compared to constructing clade specific vaccines, which would take considerable time to manufacture and test in safety and efficacy trials. We simulated the HIV epidemic in San Francisco (SF and South Africa (SA and projected effectiveness of three vaccination strategies: i immediate intervention with a 20–40% vaccine efficacy (VE non-matched vaccine, ii delayed intervention by developing a 50% VE clade-specific vaccine, and iii immediate intervention with a non-matched vaccine replaced by a clade-specific vaccine when developed. Immediate vaccination with a non-clade matched vaccine, even with reduced efficacy, would prevent thousands of new infections in SF and millions in SA over 30 years. Vaccination with 50% VE delayed for five years needs six and 12 years in SA to break-even with immediate 20 and 30% VE vaccination, respectively, while not able to surpass the impact of immediate 40% VE vaccination over 30 years. Replacing a 30% VE with a 50% VE vaccine after 5 years reduces the HIV acquisition by 5% compared to delayed vaccination. The immediate use of an HIV vaccine with reduced VE in high risk communities appears desirable over a short time line but higher VE should be the pursued to achieve strong long-term impact. Our analysis illustrates the importance of developing surrogate markers (correlates of protection to allow bridging types of immunogenicity studies to support more rapid assessment of clade specific vaccines.

  19. Development of lactococcal GEM-based pneumococcal vaccines.

    NARCIS (Netherlands)

    Audouy, S.A.; Selm, S. van; Roosmalen, M.L. van; Post, E.; Kanninga, R.; Neef, J.; Estevao, S.; Nieuwenhuis, E.E.; Adrian, P.V.; Leenhouts, K.; Hermans, P.W.M.

    2007-01-01

    We report the development of a novel protein-based nasal vaccine against Streptococcus pneumoniae, in which three pneumococcal proteins were displayed on the surface of a non-recombinant, killed Lactococcus lactis-derived delivery system, called Gram-positive Enhancer Matrix (GEM). The GEM particles

  20. Development of lactococcal GEM-based pneumococcal vaccines

    NARCIS (Netherlands)

    Audouy, Sandrine A. L.; van Selm, Saskia; van Roosmalen, Maarten L.; Post, Eduard; Kanninga, Rolf; Neef, Jolanda; Estevao, Silvia; Nieuwenhuis, Edward E. S.; Adrian, Peter V.; Leenhouts, Kees; Hermans, Peter W. M.

    2007-01-01

    We report the development of a novel protein-based nasal vaccine against Streptococcus pneumoniae, in which three pneumococcal proteins were displayed on the surface of a non-recombinant, killed Lactococcus lactis-derived delivery system, called Gram-positive Enhancer Matrix (GEM). The GEM particles

  1. Migration of dendritic cell based cancer vaccines: in vivo veritas?

    NARCIS (Netherlands)

    Adema, G.J.; Vries, I.J.M. de; Punt, C.J.A.; Figdor, C.G.

    2005-01-01

    Ex vivo generated cancer vaccines based on dendritic cells (DCs) are currently applied in the clinic. The migration of DCs from the tissues to the lymph nodes is tightly controlled and involves many different mediators and their receptors. A recent study demonstrated that the rate of migration of

  2. Structure of Human Adenovirus

    OpenAIRE

    Nemerow, Glen R.; Phoebe L Stewart; Reddy, Vijay S.

    2012-01-01

    A detailed structural analysis of the entire human adenovirus capsid has been stymied by the complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady improvements in viral genome manipulation concomitant with advances in crystallographic techniques and data processing software has allowed structure determination of this virus by X-ray diffraction at 3.5 Å resolution. The virus structure revealed the location, folds, and interactions of major and minor (ce...

  3. Seed-based oral vaccines as allergen-specific immunotherapies.

    Science.gov (United States)

    Takaiwa, Fumio

    2011-03-01

    Plant-based vaccines have advantages over conventional vaccines in terms of scalability, lack of requirement for cold chain logistics, stability, safety, cost-effectiveness and needle-free administration. In particular, when antigen is expressed in seeds, high production is possible and immunogenicity is not lost even if stocked at ambient temperature for several years. Induction of immune tolerance (desensitization) to allergen is a principle strategy for controlling allergic diseases, and is generally carried out by subcutaneous injection. Seed-based oral administration offers a straightforward and inexpensive alternative approach to deliver vaccines effectively to the GALT without loss of activity. Consumption of transgenic seeds containing modified hypo-allergenic tolerogen or T-cell epitope peptides derived from allergens has no or very few severe side effects and can induce immune tolerance leading to reduction of allergen-specific IgE production, T-cell proliferation and release of histamine. Suppression of allergen-specific clinical symptoms results. Thus, seed-based allergy vaccines offer an innovative and convenient allergen-specific immunotherapeutic approach as an alternative to conventional allergen-specific immunotherapy.

  4. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys.

    Science.gov (United States)

    Barouch, Dan H; Stephenson, Kathryn E; Borducchi, Erica N; Smith, Kaitlin; Stanley, Kelly; McNally, Anna G; Liu, Jinyan; Abbink, Peter; Maxfield, Lori F; Seaman, Michael S; Dugast, Anne-Sophie; Alter, Galit; Ferguson, Melissa; Li, Wenjun; Earl, Patricia L; Moss, Bernard; Giorgi, Elena E; Szinger, James J; Eller, Leigh Anne; Billings, Erik A; Rao, Mangala; Tovanabutra, Sodsai; Sanders-Buell, Eric; Weijtens, Mo; Pau, Maria G; Schuitemaker, Hanneke; Robb, Merlin L; Kim, Jerome H; Korber, Bette T; Michael, Nelson L

    2013-10-24

    The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:

  5. Lactococcus lactis-based vaccines from laboratory bench to human use: an overview.

    Science.gov (United States)

    Bahey-El-Din, Mohammed

    2012-01-17

    Developing effective vaccines is an important weapon in the battle against potential pathogens and their evolving antibiotic resistance trends. Several vaccine delivery vectors have been investigated among which the generally regarded as safe (GRAS) Lactococcus lactis has a distinguished position. In this review, different factors affecting the efficacy of L. lactis-based vaccines are discussed. In addition, the issues of biological containment and pharmaceutical quality assurance of L. lactis vaccines are highlighted. These issues are critical for the success of medical translation of L. lactis-based vaccines from research laboratories to clinical use by ensuring consistent manufacturing of safe and efficacious vaccines.

  6. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    OpenAIRE

    Yoshikazu Nakayama; Atsushi Aruga

    2015-01-01

    Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing he...

  7. Dendritic cell-based vaccine for pancreatic cancer in Japan

    Institute of Scientific and Technical Information of China (English)

    Masato Okamoto; Masanori Kobayashi; Yoshikazu Yonemitsu; Shigeo Koido; Sadamu Homma

    2016-01-01

    "Vaccell" is a dendritic cell(DC)-based cancer vaccine which has been established in Japan. The DCs play central roles in deciding the direction of host immune reactions as well as antigen presentation. We have demonstrated that DCs treated with a streptococcal immune adjuvant OK-432, produce interleukin-12, induce Th1-dominant state, and elicit anti-tumor effects, more powerful than those treated with the known DCmaturating factors. We therefore decided to mature DCs by the OK-432 for making an effective DC vaccine, Vaccell. The 255 patients with inoperable pancreatic cancer who received standard chemotherapy combined with DC vaccines, were analyzed retrospectively. Survival time of the patients with positive delayed type hypersensitivity(DTH) skin reaction was significantly prolonged as compared with that of the patients with negative DTH. The findings strongly suggest that there may be "Responders" for the DC vaccine in advanced pancreatic cancer patients. We next conducted a smallscale prospective clinical study. In this trial, we pulsed HLA class Ⅱ-restricted WT1 peptide(WT1-Ⅱ) in addition to HLA class Ⅰ-restricted peptide(WT1-Ⅰ) into the DCs. Survival of the patients received WT1-Ⅰ and-Ⅱ pulsed DC vaccine was significantly extended as compared to that of the patients received DCs pulsed with WT1-Ⅰ or WT1-Ⅱ alone. Furthermore, WT1-specific DTH positive patients showed significantly improved the overall survival as well as progressionfree survival as compared to the DTH negative patients. The activation of antigen-specific immune responses by DC vaccine in combination with standard chemotherapy may be associated with a good clinical outcome in advanced pancreatic cancer. We are now planning a pivotal study of the Vaccell in appropriate protocols in Japan.

  8. Immunogenicity of adenovirus-derived porcine parvovirus-like particles displaying B and T cell epitopes of foot-and-mouth disease.

    Science.gov (United States)

    Pan, Qunxing; Wang, Hui; Ouyang, Wei; Wang, Xiaoli; Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; He, Kongwang

    2016-01-20

    Virus-like particles (VLPs) vaccines combine many of the advantages of whole-virus vaccines and recombinant subunit vaccines, integrating key features that underlay their immunogenicity, safety and protective potential. We have hypothesized here the effective insertion of the VP1 epitopes (three amino acid residues 21-40, 141-160 and 200-213 in VP1, designated VPe) of foot-and-mouth disease (FMDV) within the external loops of PPV VP2 could be carried out without altering assembly based on structural and antigenic data. To investigate the possibility, development of two recombinant adenovirus rAd-PPV:VP2-FMDV:VPe a or rAd-PPV:VP2-FMDV:VPe b were expressed in HEK-293 cells. Out of the two insertion strategies tested, one of them tolerated an insert of 57 amino acids in one of the four external loops without disrupting the VLPs assembly. Mice were inoculated with the two recombinant adenoviruses, and an immunogenicity study showed that the highest levels of FMDV-specific humoral responses and T cell proliferation could be induced by rAd-PPV:VP2-FMDV:VPe b expressing hybrid PPV:VLPs (FMDV) in the absence of an adjuvant. Then, the protective efficacy of inoculating swine with rAd-PPV:VP2-FMDV:VPe b was tested. All pigs inoculated with rAd-PPV:VP2-FMDV:VPe b were protected from viral challenge, meanwhile the neutralizing antibody titers were significantly higher than those in the group inoculated with swine FMD type O synthetic peptide vaccine. Our results clearly demonstrate the potential usefulness of adenovirus-derived PPV VLPs as a vaccine strategy in prevention of FMDV.

  9. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    Science.gov (United States)

    2013-02-14

    next 5 years, based on gender, blood pressure, body mass index, smoking history and presence or absence of diabetes [29]. This was done to avoid the...9.2 African-American 11 (55%) 4 (67%) Caucasian 6 (30%) 2 (33%) Asian 3 (15%) 0 (0%) n = 15 n = 6 Ad5 neutralizing antibody ,12, ,12, ,12, ,12, ,12...using previously described methods [15]. Control stimulants were medium alone and the CEF peptide pool (Anaspec, San Jose, CA). Cells were phenotyped as

  10. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    Science.gov (United States)

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers.

  11. Antigen Gene Transfer to Human Plasmacytoid Dendritic Cells Using Recombinant Adenovirus and Vaccinia Virus Vectors

    Directory of Open Access Journals (Sweden)

    Hetty J. Bontkes

    2005-01-01

    Full Text Available Recombinant adenoviruses (RAd and recombinant vaccinia viruses (RVV expressing tumour-associated antigens (TAA are used as anti-tumour vaccines. It is important that these vaccines deliver the TAA to dendritic cells (DC for the induction of a strong immune response. Infection of myeloid DC (MDC with RAd alone is relatively inefficient but CD40 retargeting significantly increases transduction efficiency and DC maturation. Infection with RVV is efficient without DC maturation. Plasmacytoid dendritic cells (PDC play a role in the innate immune response to viral infections through the secretion of IFNα but may also play a role in specific T-cell induction. The aim of our study was to investigate whether PDC are better targets for RAd and RVV based vaccines. RAd alone hardly infected PDC (2% while CD40 retargeting did not improve transduction efficiency, but it did increase PDC maturation (25% CD83 positive cells. Accordingly, specific CTL activation by RAd infected PDC was limited (the number of IFNγ producing CTL was reduced by 75% compared to stimulation with peptide loaded PDC. RVV infected PDC specifically stimulated CTL but PDC were not activated. These Results indicate that PDC are not ideal targets for RAd and RVV based vaccines. However, PDC induced specific CTL activation after pulsing with recombinant protein, indicating that PDC can also cross-present antigens released from surrounding infected cells.

  12. Novel Vaccine Against Mycoplasma Hyosynoviae: The Immunogenic Effect of Iscom-Based Vaccines in Swine

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøll; Vinther Heydenreich, Annette; Riber, Ulla

    Arthritis in swine is frequently caused by Mycoplasma hyosynoviae (Mhs). For the development of an effective vaccine we investigated the immunogenic effect of three vaccine preparations with the ISCOM adjuvant Posintro™ from Nordic Vaccine. A: formalin fixed whole-cells Mhs (300 µg/dose) mixed...... with Posintro, B: Deoxycholate extracted lipoproteins from Mhs organisms (DOC-antigen, 300 μg/dose) in Posintro and C: DOC-antigen (50 μg/dose) in Posintro. Each vaccine-group contained three pigs. Vaccinations (i.m.) were performed at 12 and 15 weeks of age. The development of specific IgG and secretion...... of IFNγ were measured. Three weeks after the second vaccination, pigs were euthanised and autopsied. Vaccine B induced a high level of specific serum IgG in all pigs a week after boost. Vaccine C gave a variable response after boost, with two pigs seroconverting, while no response was seen by vaccine A...

  13. Novel Vaccine Against Mycoplasma Hyosynoviae: The Immunogenic Effect of Iscom-Based Vaccines in Swine

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøll; Vinther Heydenreich, Annette; Riber, Ulla;

    Arthritis in swine is frequently caused by Mycoplasma hyosynoviae (Mhs). For the development of an effective vaccine we investigated the immunogenic effect of three vaccine preparations with the ISCOM adjuvant Posintro™ from Nordic Vaccine. A: formalin fixed whole-cells Mhs (300 µg/dose) mixed...... with Posintro, B: Deoxycholate extracted lipoproteins from Mhs organisms (DOC-antigen, 300 μg/dose) in Posintro and C: DOC-antigen (50 μg/dose) in Posintro. Each vaccine-group contained three pigs. Vaccinations (i.m.) were performed at 12 and 15 weeks of age. The development of specific IgG and secretion...... of IFNγ were measured. Three weeks after the second vaccination, pigs were euthanised and autopsied. Vaccine B induced a high level of specific serum IgG in all pigs a week after boost. Vaccine C gave a variable response after boost, with two pigs seroconverting, while no response was seen by vaccine A...

  14. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    2009-08-01

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  15. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  16. Preventing rheumatic fever: M-protein based vaccine.

    Science.gov (United States)

    Tandon, Rajendra

    2014-01-01

    Group A beta hemolytic streptococcus (GAS), the organism which initiates rheumatic fever (RF) continues to be sensitive to penicillin. However, penicillin cannot prevent RF if the preceding sore throat is asymptomatic in more than 70 percent children. Prevention of rheumatic fever (RF) may be possible only with the use of a vaccine. Efforts to design a vaccine based on emm gene identification of GAS, M-protein going on for more than 40 years, is unlikely to succeed. M-protein is strain specific. Infection with one strain does not provide immunity from infection with another strain. Based on the emm gene identification, of 250 or more identified strains of GAS, the distribution is heterogenous and keeps changing. The M-protein gene sequence of the organism tends to mutate. A vaccine prepared from available strains may not be effective against a strain following mutation. Lethal toxic shock syndrome due to GAS infection has been described with organisms without identifiable or functional M-protein. M-protein has been excluded as the antigen responsible for acute glomerulonephritis (GN). Therefore M-protein plays no role in one suppurative (toxic shock syndrome) and one non-suppurative (acute GN) manifestation due to GAS infection. Lastly there is no direct evidence to indicate that M-protein is involved in inducing RF. The role of M-protein and the GAS component resulting in the suppurative manifestations of GAS infections like pyoderma, septic arthritis or necrotizing fasciitis etc is unknown. For a vaccine to be effective, an epitope of the streptococcus which is stable and uniformly present in all strains, needs to be identified and tested for its safety and efficacy. The vaccine if and when available is expected to prevent GAS infection. Preventing GAS infection will prevent all the suppurative as well as non-suppurative manifestations including RF.

  17. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma.

    Science.gov (United States)

    Siurala, Mikko; Bramante, Simona; Vassilev, Lotta; Hirvinen, Mari; Parviainen, Suvi; Tähtinen, Siri; Guse, Kilian; Cerullo, Vincenzo; Kanerva, Anna; Kipar, Anja; Vähä-Koskela, Markus; Hemminki, Akseli

    2015-02-15

    Despite originating from several different tissues, soft-tissue sarcomas (STS) are often grouped together as they share mesenchymal origin and treatment guidelines. Also, with some exceptions, a common denominator is that when the tumor cannot be cured with surgery, the efficacy of current therapies is poor and new treatment modalities are thus needed. We have studied the combination of a capsid-modified oncolytic adenovirus CGTG-102 (Ad5/3-D24-GMCSF) with doxorubicin, with or without ifosfamide, the preferred first-line chemotherapeutic options for most types of STS. We show that CGTG-102 and doxorubicin plus ifosfamide together are able to increase cell killing of Syrian hamster STS cells over single agents, as well as upregulate immunogenic cell death markers. When tested in vivo against established STS tumors in fully immunocompetent Syrian hamsters, the combination was highly effective. CGTG-102 and doxorubicin (without ifosfamide) resulted in synergistic antitumor efficacy against human STS xenografts in comparison with single agent treatments. Doxorubicin increased adenoviral replication in human and hamster STS cells, potentially contributing to the observed therapeutic synergy. In conclusion, the preclinical data generated here support clinical translation of the combination of CGTG-102 and doxorubicin, or doxorubicin plus ifosfamide, for the treatment of STS, and provide clues on the mechanisms of synergy.

  18. Clinical development of Ebola vaccines.

    Science.gov (United States)

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines.

  19. Co-administration of the Campylobacter jejuni N-glycan based vaccine with probiotics improves vaccine performance in broiler chickens.

    Science.gov (United States)

    Nothaft, H; Perez-Muñoz, M E; Gouveia, G J; Duar, R M; Wanford, J J; Lango-Scholey, L; Panagos, C G; Srithayakumar, V; Plastow, G S; Coros, C; Bayliss, C D; Edison, A S; Walter, J; Szymanski, C M

    2017-09-22

    Source attribution studies report that consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimizing the vaccine for commercial broiler chickens has great potential to prevent pathogen entry into the food chain. Here, we tested the same vaccination approach in broilers and observed similar efficacy in pathogen load reduction, stimulation of host IgY response, lack of C. jejuni resistance development, uniformity in microbial gut composition, and bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of the Clostridiales XIVa cluster, Anaerosporobacter mobilis, significantly more abundant in responder birds. In broilers, co-administration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody response, and weight gain. To investigate whether the responder/non-responder effect was due to selection of a C. jejuni 'super colonizer mutant' with altered phase-variable genes, we analysed all polyG-containing loci of the input strain compared to non-responder colony isolates and found no evidence of phase state selection. However, untargeted NMR-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels possibly linked to the increased microbial diversity in this subgroup. The comprehensive methods used to examine the vaccine response bimodality provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy.ImportanceCampylobacter jejuni is a common cause of human diarrheal disease worldwide and listed by the World Health Organization as a high priority

  20. Strengthening vaccination policies in Latin America: an evidence-based approach.

    Science.gov (United States)

    Tapia-Conyer, Roberto; Betancourt-Cravioto, Miguel; Saucedo-Martínez, Rodrigo; Motta-Murguía, Lourdes; Gallardo-Rincón, Héctor

    2013-08-20

    Despite many successes in the region, Latin American vaccination policies have significant shortcomings, and further work is needed to maintain progress and prepare for the introduction of newly available vaccines. In order to address the challenges facing Latin America, the Commission for the Future of Vaccines in Latin America (COFVAL) has made recommendations for strengthening evidence-based policy-making and reducing regional inequalities in immunisation. We have conducted a comprehensive literature review to assess the feasibility of these recommendations. Standardisation of performance indicators for disease burden, vaccine coverage, epidemiological surveillance and national health resourcing can ensure comparability of the data used to assess vaccination programmes, allowing deeper analysis of how best to provide services. Regional vaccination reference schemes, as used in Europe, can be used to develop best practice models for vaccine introduction and scheduling. Successful models exist for the continuous training of vaccination providers and decision-makers, with a new Latin American diploma aiming to contribute to the successful implementation of vaccination programmes. Permanent, independent vaccine advisory committees, based on the US Advisory Committee on Immunization Practices (ACIP), could facilitate the uptake of new vaccines and support evidence-based decision-making in the administration of national immunisation programmes. Innovative financing mechanisms for the purchase of new vaccines, such as advance market commitments and cost front-loading, have shown potential for improving vaccine coverage. A common regulatory framework for vaccine approval is needed to accelerate delivery and pool human, technological and scientific resources in the region. Finally, public-private partnerships between industry, government, academia and non-profit sectors could provide new investment to stimulate vaccine development in the region, reducing prices in the

  1. Immune modulation by dendritic-cell-based cancer vaccines

    Indian Academy of Sciences (India)

    CHAITANYA KUMAR; SAKSHI KOHLI; POONAMALLE PARTHASARATHY BAPSY; ASHOK KUMAR VAID; MINISH JAIN; VENKATA SATHYA SURESH ATTILI; BANDANA SHARAN

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells bymodulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing therecombinant human immune system components to target the pro-tumour microenvironment or by revitalizing theimmune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review,current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines arediscussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishingtumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy,radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents,might be beneficial to the patient.

  2. Home-based child vaccination records--a reflection on form.

    Science.gov (United States)

    Brown, David W; Gacic-Dobo, Marta; Young, Stacy L

    2014-04-01

    Home-based child vaccination records play an important role in documenting immunization services received by children. We report some of the results of a review of home-based vaccination records from 55 countries. In doing so, we categorize records into three groups (vaccination only cards, vaccination plus cards, child health books) and describe differences in characteristics related to the quality of data recorded on immunization. Moreover, we highlight areas of potential concern and areas in need of further research and investigation to improve our understanding of the home-based vaccination record form related to improved data quality from immunization service delivery.

  3. Learning from Successful School-based Vaccination Clinics during 2009 pH1N1

    Science.gov (United States)

    Klaiman, Tamar; O'Connell, Katherine; Stoto, Michael A.

    2014-01-01

    Background: The 2009 H1N1 vaccination campaign was the largest in US history. State health departments received vaccines from the federal government and sent them to local health departments (LHDs) who were responsible for getting vaccines to the public. Many LHD's used school-based clinics to ensure children were the first to receive limited…

  4. A population-based evaluation of a publicly funded, school-based HPV vaccine program in British Columbia, Canada: parental factors associated with HPV vaccine receipt.

    Directory of Open Access Journals (Sweden)

    Gina Ogilvie

    2010-05-01

    Full Text Available BACKGROUND: Information on factors that influence parental decisions for actual human papillomavirus (HPV vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada. METHODS AND FINDINGS: All parents of girls enrolled in grade 6 during the academic year of September 2008-June 2009 in the province of British Columbia were eligible to participate. Eligible households identified through the provincial public health information system were randomly selected and those who consented completed a validated survey exploring factors associated with HPV vaccine uptake. Bivariate and multivariate analyses were conducted to calculate adjusted odds ratios to identify the factors that were associated with parents' decision to vaccinate their daughter(s against HPV. 2,025 parents agreed to complete the survey, and 65.1% (95% confidence interval [CI] 63.1-67.1 of parents in the survey reported that their daughters received the first dose of the HPV vaccine. In the same school-based vaccine program, 88.4% (95% CI 87.1-89.7 consented to the hepatitis B vaccine, and 86.5% (95% CI 85.1-87.9 consented to the meningococcal C vaccine. The main reasons for having a daughter receive the HPV vaccine were the effectiveness of the vaccine (47.9%, advice from a physician (8.7%, and concerns about daughter's health (8.4%. The main reasons for not having a daughter receive the HPV vaccine were concerns about HPV vaccine safety (29.2%, preference to wait until the daughter is older (15.6%, and not enough information to make an informed decision (12.6%. In multivariate analysis, overall attitudes to vaccines, the impact of the HPV vaccine on sexual practices, and childhood vaccine history were predictive of parents having

  5. The foot-and-mouth disease carrier state divergence in vaccinated and non-vaccinated cattle

    Science.gov (United States)

    The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated following simulated-natural virus exposure of 43 cattle that were either naïve or vaccinated using a recombinant, adenovirus-vectored vaccine. Although vaccinated cattle were protected against clinical dise...

  6. Typhoid vaccine introduction: An evidence-based pilot implementation project in Nepal and Pakistan.

    Science.gov (United States)

    Khan, M Imran; Pach, Alfred; Khan, Ghulam Mustafa; Bajracharya, Deepak; Sahastrabuddhe, Sushant; Bhutta, Waqaas; Tahir, Rehman; Soofi, Sajid; Thapa, Chandra B; Joshi, Nilesh; Puri, Mahesh K; Shrestha, Parisha; Upreti, Shyam Raj; Clemens, John D; Bhutta, Zulfiqar; Ochiai, R Leon

    2015-06-19

    The World Health Organization (WHO) in 2008 recommended the use of currently licensed typhoid vaccines using a high risk or targeted approach. The epidemiology of disease and the vaccine characteristics make school-based vaccination most feasible in reducing typhoid disease burden in many settings. To assess feasibility of school-based typhoid vaccination, two districts in Kathmandu, Nepal and two towns in Karachi, Pakistan were selected for pilot program. Vaccination campaigns were conducted through the departments of health and in partnerships with not-for-profit organizations. In total 257,015 doses of Vi polysaccharide vaccine were given to students in grades 1-10 of participating schools. The vaccination coverage ranged from 39 percent (38,389/99,503) in Gulshan town in Karachi, to 81 percent (62,615/77,341) in Bhaktapur in Kathmandu valley. No serious adverse event was reported post vaccination. The coverage increased for vaccination of the second district in Pakistan as well as in Nepal. There was an initial concern of vaccine safety. However, as the campaign progressed, parents were more comfortable with vaccinating their children in schools. Supported and conducted by departments of health in Pakistan and Nepal, a school-based typhoid vaccination was found to be safe and feasible.

  7. Pre-vaccination care-seeking in females reporting severe adverse reactions to HPV vaccine. A registry based case-control study

    DEFF Research Database (Denmark)

    Mølbak, Kåre; Hansen, Niels Dalum; Valentiner-Branth, Palle

    2016-01-01

    to the DMA of suspected severe adverse reactions.We selected controls without reports of adverse reactions from the Danish vaccination registry and matched by year of vaccination, age of vaccination, and municipality, and obtained from the Danish National Patient Registry and The National Health Insurance...... Service Register the history of health care usage two years prior to the first vaccine. We analysed the data by logistic regression while adjusting for the matching variables. Results The study included 316 cases who received first HPV vaccine between 2006 and 2014. Age range of cases was 11 to 52 years...... vaccination programme has declined. The aim of the present study was to determine health care-seeking prior to the first HPV vaccination among females who suspected adverse reactions to HPV vaccine. Methods In this registry-based case-control study, we included as cases vaccinated females with reports...

  8. Novel Rapid Molecular Modeling Method Based on Evolutional Tree for Human Adenovirus Hexon Proteins Family%进化树指导的腺病毒六邻体家族蛋白的快速建模

    Institute of Scientific and Technical Information of China (English)

    袁晓辉; 杨志伟; 高虹; 王迎晨; 曲章义; 任家毅; 王靖飞; 郭莹莹; 王雅贤; 华东; 吴晓敏

    2011-01-01

    Human adenoviruses (HAdVs) are responsible for many infectious diseases. 54 different serotypes of HAdVs have been identified so far, and the diversity of HAdVs has brought some difficulties to clinical diagnosis and therapy. In this study, a novel rapid modeling method for proteins family was developed on the basis of evolutionary tree, and by this method 7 hexon homologous proteins from D sub-specie Human adenovi-ruses( HAdVs) were modeled. An evolutionary tree of these 7 hexon protein amino acid sequences was constructed by neighbor-joining( NJ) algorithm; based on the information from the evolutional tree, an optimal modeling route was determined to accelerate the modeling of these hexons; And then, rapid modeling of he-xons was automatically completed using homology modeling method within MODELER and CHARMM program; and the sturcures were proved to be acceptable by two assessment methods. Compared with the traditional scheme, this novel method can significantly reduce the amount of calculation. Every hexon structure model produced by this novel rapid modelling method could be reliably superimposed to the corresponding model produced by the traditional method. The rapid modeling of HAdVs hexon protein is very important to the molecular designing of HAdVs vaccines and the development of rapid HAdVs diagnostic typing agents.%为实现对人腺病毒六邻体家族蛋白进行快速准确的结构建模,发展了一种新的基于进化树的预测蛋白质家族中一系列分子三维空间结构的快速建模方法,首先利用邻接法对7株D亚属人腺病毒的六邻体序列构建了基于距离的进化树,并根据进化树所提供的信息确定最佳六邻体家族蛋白渐进式建模路径,然后利用Modeler与Charmm程序实现六邻体家族蛋白的快速建模,新的建模方法与传统方法相比,需要的计算量大大减少,经过结构评估以及与传统方法建模所得到的结构进行比较,证实基于进化树的快速建模

  9. Structure- and modeling-based identification of the adenovirus E4orf4 binding site in the protein phosphatase 2A B55α subunit.

    Science.gov (United States)

    Horowitz, Ben; Sharf, Rakefet; Avital-Shacham, Meirav; Pechkovsky, Antonina; Kleinberger, Tamar

    2013-05-10

    The adenovirus E4orf4 protein must bind protein phosphatase 2A (PP2A) for its functions. The E4orf4 binding site in PP2A was mapped to the α1,α2 helices of the B55α subunit. The E4orf4 binding site in PP2A-B55α lies above the substrate binding site and does not overlap it. A novel functional significance was assigned to the α1,α2 helices of the PP2A-B55α subunit. The adenovirus E4orf4 protein regulates the progression of viral infection and when expressed outside the context of the virus it induces nonclassical, cancer cell-specific apoptosis. All E4orf4 functions known to date require an interaction between E4orf4 and protein phosphatase 2A (PP2A), which is mediated through PP2A regulatory B subunits. Specifically, an interaction with the B55α subunit is required for induction of cell death by E4orf4. To gain a better insight into the E4orf4-PP2A interaction, mapping of the E4orf4 interaction site in PP2A-B55α has been undertaken. To this end we used a combination of bioinformatics analyses of PP2A-B55α and of E4orf4, which led to the prediction of E4orf4 binding sites on the surface of PP2A-B55α. Mutation analysis, immunoprecipitation, and GST pulldown assays based on the theoretical predictions revealed that the E4orf4 binding site included the α1 and α2 helices described in the B55α structure and involved at least three residues located in these helices facing each other. Loss of E4orf4 binding was accompanied by reduced contribution of the B55α mutants to E4orf4-induced cell death. The identified E4orf4 binding domain lies above the previously described substrate binding site and does not overlap it, although its location could be consistent with direct or indirect effects on substrate binding. This work assigns for the first time a functional significance to the α1,α2 helices of B55α, and we suggest that the binding site defined by these helices could also contribute to interactions between PP2A and some of its cellular regulators.

  10. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Directory of Open Access Journals (Sweden)

    Gennaro Ciliberto

    2011-09-01

    Full Text Available Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  11. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Aurisicchio, Luigi, E-mail: aurisicchio@takis-it.it [Takis, via di Castel Romano 100, 00128 Rome (Italy); BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV) (Italy); Ciliberto, Gennaro [Takis, via di Castel Romano 100, 00128 Rome (Italy); Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro (Italy)

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  12. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  13. Side-by-Side Comparison of Gene-Based Smallpox Vaccine with MVA in Nonhuman Primates

    Science.gov (United States)

    Golden, Joseph W.; Josleyn, Matthew; Mucker, Eric M.; Hung, Chien-Fu; Loudon, Peter T.; Wu, T. C.; Hooper, Jay W.

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA. PMID:22860117

  14. Recent advances in the development of subunit-based RSV vaccines.

    Science.gov (United States)

    Jaberolansar, Noushin; Toth, Istvan; Young, Paul R; Skwarczynski, Mariusz

    2016-01-01

    Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections causing pneumonia and bronchiolitis in infants. RSV also causes serious illness in elderly populations, immunocompromised patients and individuals with pulmonary or cardiac problems. The significant morbidity and mortality associated with RSV infection have prompted interest in RSV vaccine development. In the 1960s, a formalin-inactivated vaccine trial failed to protect children, and indeed enhanced pathology when naturally infected later with RSV. Hence, an alternative approach to traditional killed virus vaccines, which can induce protective immunity without serious adverse events, is desired. Several strategies have been explored in attempts to produce effective vaccine candidates including gene-based and subunit vaccines. Subunit-based vaccine approaches have shown promising efficacy in animal studies and several have reached clinical trials. The current stage of development of subunit-based vaccines against RSV is reviewed in this article.

  15. A Plasmodium vivax plasmid DNA- and adenovirus-vectored malaria vaccine encoding blood stage antigens AMA1 and MSP142 in a prime/boost heterologous immunization regimen partially protects Aotus monkeys against blood stage challenge.

    Science.gov (United States)

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-02-08

    Malaria is caused by parasites of the genus Plasmodium that are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of P. falciparum it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside of Africa, stressing the importance of developing a vaccine against malaria. In this study we assess the immunogenicity and protective efficacy of two P. vivax antigens, AMA1 and MSP142 in a recombinant DNA plasmid prime/adenoviral vector (Ad) boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with DNA alone, Ad alone, prime/boost regimens of each antigen, prime/boost with both antigens, and empty vector controls, and then subjected to blood stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, based on their ability to induced the longest pre-patent period and time to peak parasitemia; the lowest peak and mean parasitemia; the smallest area under the parasitemia curve and the highest self-cured rate. Overall, pre-challenge MSP1 antibody titers strongly correlated with decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, P. vivax plasmid DNA/Ad5 vaccine encoding blood stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen, provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and regimen for further development.

  16. Human adenovirus 52 uses sialic acid-containing glycoproteins and the coxsackie and adenovirus receptor for binding to target cells.

    Directory of Open Access Journals (Sweden)

    Annasara Lenman

    2015-02-01

    Full Text Available Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR protein. Human adenovirus type 52 (HAdV-52 is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK binds to CAR, and the knob domain of the short fiber (52SFK binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.

  17. Immune responses against hepatitis C virus genotype 3a virus-like particles in mice: A novel VLP prime-adenovirus boost strategy.

    Science.gov (United States)

    Kumar, Anuj; Das, Soma; Mullick, Ranajoy; Lahiri, Priyanka; Tatineni, Ranjitha; Goswami, Debashree; Bhat, Prasanna; Torresi, Joseph; Gowans, Eric James; Karande, Anjali Anoop; Das, Saumitra

    2016-02-17

    Chronic hepatitis C virus (HCV) infection represents a major health threat to global population. In India, approximately 15-20% of cases of chronic liver diseases are caused by HCV infection. Although, new drug treatments hold great promise for HCV eradication in infected individuals, the treatments are highly expensive. A vaccine for preventing or treating HCV infection would be of great value, particularly in developing countries. Several preclinical trials of virus-like particle (VLP) based vaccine strategies are in progress throughout the world. Previously, using baculovirus based system, we have reported the production of hepatitis C virus-like particles (HCV-LPs) encoding structural proteins for genotype 3a, which is prevalent in India. In the present study, we have generated HCV-LPs using adenovirus based system and tried different immunization strategies by using combinations of both kinds of HCV-LPs with other genotype 3a-based immunogens. HCV-LPs and peptides based ELISAs were used to evaluate antibody responses generated by these combinations. Cell-mediated immune responses were measured by using T-cell proliferation assay and intracellular cytokine staining. We observed that administration of recombinant adenoviruses expressing HCV structural proteins as final booster enhances both antibody as well as T-cell responses. Additionally, reduction of binding of VLP and JFH1 virus to human hepatocellular carcinoma cells demonstrated the presence of neutralizing antibodies in immunized sera. Taken together, our results suggest that the combined regimen of VLP followed by recombinant adenovirus could more effectively inhibit HCV infection, endorsing the novel vaccine strategy.

  18. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  19. Adjuvants for peptide-based cancer vaccines

    OpenAIRE

    Khong, Hiep; Overwijk, Willem W

    2016-01-01

    Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-...

  20. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available Ebola virus (EBOV causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs. Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV or Zaire ebolavirus (ZEBOV challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV, or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine

  1. Development of cross-protective influenza A vaccines based on cellular responses

    Directory of Open Access Journals (Sweden)

    Peter Christiaan Soema

    2015-05-01

    Full Text Available Seasonal influenza vaccines provide protection against matching influenza A virus (IAV strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to look for other influenza vaccine concepts, which have the ability to elicit cross-protective immune responses.One of the concepts that is currently been worked on are influenza vaccines inducing influenza-specific T cell responses. T cells are able to lyse infected host cells, thereby clearing the virus. More interestingly, these T cells can recognize highly conserved epitopes of internal influenza proteins, making cellular responses less vulnerable to antigenic variability. T cells are therefore cross-reactive against many influenza strains, and thus are a promising concept for future influenza vaccines. Despite their potential, there are currently no T cell based IAV vaccines on the market. Selection of the proper antigen, appropriate vaccine formulation and evaluation of the efficacy of T cell vaccines remains challenging, both in preclinical and clinical settings.In this review, we will discuss the current developments in influenza T cell vaccines, focusing on existing protein-based and novel peptide-based vaccine formulations. Furthermore, we will discuss the feasibility of influenza T cell vaccines and their possible use in the future.

  2. Potent tetravalent replicon vaccines against botulinum neurotoxins using DNA-based Semliki Forest virus replicon vectors.

    Science.gov (United States)

    Yu, Yun-Zhou; Guo, Jin-Peng; An, Huai-Jie; Zhang, Shu-Ming; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2013-05-07

    Human botulism is commonly associated with botulinum neurotoxin (BoNT) serotypes A, B, E and F. This suggests that the greatest need is for a tetravalent vaccine that provides protection against all four of these serotypes. In current study, we investigated the feasibility of generating several tetravalent vaccines that protected mice against the four serotypes. Firstly, monovalent replicon vaccine against BoNT induced better antibody response and protection than that of corresponding conventional DNA vaccine. Secondly, dual-expression DNA replicon pSCARSE/FHc or replicon particle VRP-E/FHc vaccine was well resistant to the challenge of BoNT/E and BoNT/F mixture as a combination vaccine composed of two monovalent replicon vaccines. Finally, the dual-expression DNA replicon or replicon particle tetravalent vaccine could simultaneously and effectively neutralize and protect the four BoNT serotypes. Protection correlated directly with serum ELISA titers and neutralization antibody levels to BoNTs. Therefore, replicon-based DNA or particle might be effective vector to develop BoNT vaccines, which might be more desirable for use in clinical application than the conventional DNA vaccines. Our studies demonstrate the utility of combining dual-expression DNA replicon or replicon particle vaccines into multi-agent formulations as potent tetravalent vaccines for eliciting protective responses to four serotypes of BoNTs.

  3. Adenovirus infection in immunocompromised patients

    Directory of Open Access Journals (Sweden)

    Sylwia Rynans

    2013-09-01

    Full Text Available Human adenoviruses belong to the Adenoviridae family and they are divided into seven species, including 56 types. Adenoviruses are common opportunistic pathogens that are rarely associated with clinical symptoms in immunocompetent patients. However, they are emerging pathogens causing morbidity and mortality in recipients of hematopoietic stem cell and solid organ transplants, HIV infected patients and patients with primary immune deficiencies. Clinical presentation ranges from asymptomatic viraemia to respiratory and gastrointestinal disease, haemorrhagic cystitis and severe disseminated illness. There is currently no formally approved therapy for the treatment of adenovirus infections.This article presents current knowledge about adenoviruses, their pathogenicity and information about available methods to diagnose and treat adenoviral infections.

  4. A replicating adenovirus capsid display recombinant elicits antibodies against Plasmodium falciparum sporozoites in Aotus nancymaae monkeys.

    Science.gov (United States)

    Karen, Kasey A; Deal, Cailin; Adams, Robert J; Nielsen, Carolyn; Ward, Cameron; Espinosa, Diego A; Xie, Jane; Zavala, Fidel; Ketner, Gary

    2015-01-01

    Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Anti-Lyme Subunit Vaccines: Design and Development of Peptide-Based Vaccine Candidates.

    Science.gov (United States)

    Small, Christina M; Mwangi, Waithaka; Esteve-Gassent, Maria D

    2016-01-01

    Vaccinology today has been presented with several avenues to improve protection against infectious disease. The recent employment of the reverse vaccinology technique has changed the face of vaccine development against many pathogens, including Borrelia burgdorferi, the causative agent of Lyme disease. Using this technique, genomics and in silico analyses come together to identify potentially antigenic epitopes in a high-throughput fashion. The forward methodology of vaccine development was used previously to generate the only licensed human vaccine for Lyme disease, which is no longer on the market. Using reverse vaccinology to identify new antigens and isolate specific epitopes to protect against B. burgdorferi, subunit vaccines will be generated that lack reactogenic and nonspecific epitopes, yielding more effective vaccine candidates. Additionally, novel epitopes are being utilized and are presently in the commercialization pipeline both for B. burgdorferi and other spirochaetal pathogens. The versatility and methodology of the subunit protein vaccine are described as it pertains to Lyme disease from conception to performance evaluation.

  6. Influenza Vaccination Coverage Rate for Medical Staff: Influence of Hospital-Based Vaccination Campaign.

    Science.gov (United States)

    Zielonka, T M; Szymańczak, M; Jakubiak, J; Nitsch-Osuch, A; Życińska, K

    2016-01-01

    Despite intensive recommendations, influenza vaccination rate in medical staff in Poland ranges from about 20 % in physicians to 10 % in nurses. The objective of this work was to assess the influence of hospital influenza vaccination campaign directed toward health care workers, combined with dispensing free of charge vaccine, on vaccination rate. The campaign was conducted by the Hospital Infection Control Team of the Czerniakowski Hospital in Warsaw, Poland, separately for physicians, nurses, and physiotherapists. Overall, 37 % of medical staff were vaccinated, including 55 % of physicians and 21 % of nurses. Concerning physicians, the greatest vaccination rate was in the orthopedic (80 %) and ophthalmology units (73 %), whereas the lowest rate was in the intensive care (22 %) and neurology units (20 %). Concerning nurses, the greatest vaccination rate was in those working in the outpatient (40 %) and emergency units (29 %), whereas the lowest rate was in the ophthalmology (6 %) and surgery units (11 %). We conclude that the professional knowledge campaign combined with the incentive of free of charge vaccine substantially raises the vaccination rate among medical staff.

  7. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  8. Multiple Approaches for Increasing the Immunogenicity of an Epitope-Based Anti-HIV Vaccine.

    Science.gov (United States)

    Rosa, Daniela Santoro; Ribeiro, Susan Pereira; Fonseca, Simone Gonçalves; Almeida, Rafael Ribeiro; Santana, Vinicius Canato; Apostólico, Juliana de Souza; Kalil, Jorge; Cunha-Neto, Edecio

    2015-11-01

    The development of a highly effective vaccine against the human immunodeficiency virus (HIV) will likely be based on rational vaccine design, since traditional vaccine approaches have failed so far. In recent years, an understanding of what type of immune response is protective against infection and/or disease facilitated vaccine design. T cell-based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. In this context, CD4(+) T cells play a direct cytotoxic role and are also important for the generation and maintenance of functional CD8(+) T and B cell responses. The use of MHC-binding algorithms has allowed the identification of novel CD4(+) T cell epitopes that could be used in vaccine design, the so-called epitope-driven vaccine design. Epitope-based vaccines have the ability to focus the immune response on highly antigenic, conserved epitopes that are fully recognized by the target population. We have recently mapped a set of conserved multiple HLA-DR-binding HIV-1 CD4 epitopes and observed interferon (IFN)-γ-producing CD4(+) T cells when we tested these peptides in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals. We then designed multiepitopic DNA vaccines that induced broad and polyfunctional T cell responses in immunized mice. In this review we will focus on alternative strategies to increase the immunogenicity of an epitope-based vaccine against HIV infection.

  9. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies.

    Science.gov (United States)

    Aboul-Ata, Aboul-Ata E; Vitti, Antonella; Nuzzaci, Maria; El-Attar, Ahmad K; Piazzolla, Giuseppina; Tortorella, Cosimo; Harandi, Ali M; Olson, Olof; Wright, Sandra A; Piazzolla, Pasquale

    2014-01-01

    A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and

  10. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith;

    2016-01-01

    for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce......The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  11. Print News Coverage of School-Based HPV Vaccine Mandate

    Science.gov (United States)

    Casciotti, Dana; Smith, Katherine C.; Andon, Lindsay; Vernick, Jon; Tsui, Amy; Klassen, Ann C.

    2015-01-01

    BACKGROUND In 2007, legislation was proposed in 24 states and the District of Columbia for school-based HPV vaccine mandates, and mandates were enacted in Texas, Virginia, and the District of Columbia. Media coverage of these events was extensive, and media messages both reflected and contributed to controversy surrounding these legislative activities. Messages communicated through the media are an important influence on adolescent and parent understanding of school-based vaccine mandates. METHODS We conducted structured text analysis of newspaper coverage, including quantitative analysis of 169 articles published in mandate jurisdictions from 2005-2009, and qualitative analysis of 63 articles from 2007. Our structured analysis identified topics, key stakeholders and sources, tone, and the presence of conflict. Qualitative thematic analysis identified key messages and issues. RESULTS Media coverage was often incomplete, providing little context about cervical cancer or screening. Skepticism and autonomy concerns were common. Messages reflected conflict and distrust of government activities, which could negatively impact this and other youth-focused public health initiatives. CONCLUSIONS If school health professionals are aware of the potential issues raised in media coverage of school-based health mandates, they will be more able to convey appropriate health education messages, and promote informed decision-making by parents and students. PMID:25099421

  12. Complete Genome Sequence of Human Adenovirus Type 55 Associated with Acute Respiratory Disease, Isolated from a Military Base in the Republic of Korea

    Science.gov (United States)

    Gu, Se Hun; Song, Dong Hyun; Lee, Daesang; Huh, Kyungmin; Yoo, Hongseok; Oh, Hong Sang; Jung, Jaehun; Woo, Koung In; Kim, Mirang; Seog, Woong; Hwang, Il-Ung

    2017-01-01

    ABSTRACT Human adenovirus (HAdV) (genus Mastadenovirus; family Adenoviridae) serotype 55 is a reemerging pathogen associated with acute respiratory disease. Here, we report the complete genome sequence of HAdV-55 strain AFMC 16-0011, isolated from a military recruit, using next-generation sequencing technology. PMID:28280019

  13. Challenges in manufacturing adenoviral vectors for global vaccine product deployment.

    Science.gov (United States)

    Vellinga, Jort; Smith, J Patrick; Lipiec, Agnieszka; Majhen, Dragomira; Lemckert, Angelique; van Ooij, Mark; Ives, Paul; Yallop, Christopher; Custers, Jerome; Havenga, Menzo

    2014-04-01

    Abstract Once adenovirus vector-based vaccines are licensed for the prevention of important infectious diseases, manufacturing processes capable of reliably delivering large numbers of vaccine doses will be required. The highest burden of disease for many infectious pathogens under investigation occurs in resource-poor settings. Therefore, the price per dose will be an important determinant of success. This review describes common practices for manufacturing replication-incompetent adenovirus vectors at clinical scale. Recent innovations and strategies aimed at improving the cost-effectiveness of manufacturing and ensuring high-volume vaccine production and purification are described. Hereto, technologies to increase bioreactor yields are reviewed. In addition, the use of single-use perfusion bioreactors, modification of some purification steps to avoid the use of expensive endonucleases, and use of charged filters during anion exchange all have the potential to bring down the cost of goods and are thus described. Finally, processes for ensuring quality throughout the manufacturing process, methods for testing viral identity, and safety of master seeds through to the end vaccine product are described.

  14. Human papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes.

    Science.gov (United States)

    Balagué, C; Noya, F; Alemany, R; Chow, L T; Curiel, D T

    2001-08-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells.

  15. Highest Vaccine Uptake after School-Based Delivery - A County-Level Evaluation of the Implementation Strategies for HPV Catch-Up Vaccination in Sweden.

    Directory of Open Access Journals (Sweden)

    Moa Rehn

    Full Text Available The Swedish school-based vaccination programme offers HPV vaccine to girls born ≥1999 in 5-6th grade. In 2012, all counties introduced free-of-charge catch-up vaccination campaigns targeting girls born 1993-1998. Varying vaccine uptake in the catch-up group by December 2012 suggested that some implementation strategies were more successful than others. In order to inform future vaccination campaigns, we assessed the impact of different implementation strategies on the county-level catch-up vaccine uptake.We conducted an ecological study including all Swedish counties (n = 21, asking regional health offices about the information channels they used and where vaccination of the catch-up target group took place in their counties. The uptake of ≥1 dose by 30 September 2014 was estimated using data from the voluntary national vaccination register. We investigated associations between counties' catch-up vaccine uptake, information channels and vaccination settings by calculating incidence rate ratios (IRR and 95% confidence intervals (CI, using negative binomial regression models.County level catch-up vaccine uptake varied between 49-84%. All counties offered vaccination through primary health care settings. Apart from this eight (34% also offered the vaccine in some of their schools, four (19% in all their schools, and two (10% in other health care centres. The information channels most frequently used were: information at the national on-line health care consulting web-page (100%, letter/invitations (90%, and advertisement (81%. Counties offering vaccination to girls in all schools and counties offering vaccination in some of their schools, reached higher vaccine uptake compared to counties not offering vaccination in any of their schools (all schools adjusted IRR: 1.3, 95% CI: 1.1-1.5, some schools adjusted IRR: 1.2, 95% CI: 1.1-1.3.Counties offering HPV vaccination to catch-up groups in schools reached the highest vaccine uptake. No information

  16. Automated production of plant-based vaccines and pharmaceuticals.

    Science.gov (United States)

    Wirz, Holger; Sauer-Budge, Alexis F; Briggs, John; Sharpe, Aaron; Shu, Sudong; Sharon, Andre

    2012-12-01

    A fully automated "factory" was developed that uses tobacco plants to produce large quantities of vaccines and other therapeutic biologics within weeks. This first-of-a-kind factory takes advantage of a plant viral vector technology to produce specific proteins within the leaves of rapidly growing plant biomass. The factory's custom-designed robotic machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein, and harvest the biomass once the target protein has accumulated in the plants-all in compliance with Food and Drug Administration (FDA) guidelines (e.g., current Good Manufacturing Practices). The factory was designed to be time, cost, and space efficient. The plants are grown in custom multiplant trays. Robots ride up and down a track, servicing the plants and delivering the trays from the lighted, irrigated growth modules to each processing station as needed. Using preprogrammed robots and processing equipment eliminates the need for human contact, preventing potential contamination of the process and economizing the operation. To quickly produce large quantities of protein-based medicines, we transformed a laboratory-based biological process and scaled it into an industrial process. This enables quick, safe, and cost-effective vaccine production that would be required in case of a pandemic.

  17. In silico-based vaccine design against Ebola virus glycoprotein

    Directory of Open Access Journals (Sweden)

    Dash R

    2017-03-01

    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  18. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test.

  19. Structure- and Modeling-based Identification of the Adenovirus E4orf4 Binding Site in the Protein Phosphatase 2A B55α Subunit*

    Science.gov (United States)

    Horowitz, Ben; Sharf, Rakefet; Avital-Shacham, Meirav; Pechkovsky, Antonina; Kleinberger, Tamar

    2013-01-01

    The adenovirus E4orf4 protein regulates the progression of viral infection and when expressed outside the context of the virus it induces nonclassical, cancer cell-specific apoptosis. All E4orf4 functions known to date require an interaction between E4orf4 and protein phosphatase 2A (PP2A), which is mediated through PP2A regulatory B subunits. Specifically, an interaction with the B55α subunit is required for induction of cell death by E4orf4. To gain a better insight into the E4orf4-PP2A interaction, mapping of the E4orf4 interaction site in PP2A-B55α has been undertaken. To this end we used a combination of bioinformatics analyses of PP2A-B55α and of E4orf4, which led to the prediction of E4orf4 binding sites on the surface of PP2A-B55α. Mutation analysis, immunoprecipitation, and GST pulldown assays based on the theoretical predictions revealed that the E4orf4 binding site included the α1 and α2 helices described in the B55α structure and involved at least three residues located in these helices facing each other. Loss of E4orf4 binding was accompanied by reduced contribution of the B55α mutants to E4orf4-induced cell death. The identified E4orf4 binding domain lies above the previously described substrate binding site and does not overlap it, although its location could be consistent with direct or indirect effects on substrate binding. This work assigns for the first time a functional significance to the α1,α2 helices of B55α, and we suggest that the binding site defined by these helices could also contribute to interactions between PP2A and some of its cellular regulators. PMID:23530045

  20. Investigating Stakeholder Attitudes and Opinions on School-Based Human Papillomavirus Vaccination Programs

    Science.gov (United States)

    Nodulman, Jessica A.; Starling, Randall; Kong, Alberta S.; Buller, David B.; Wheeler, Cosette M.; Woodall, W. Gill

    2015-01-01

    Background: In several countries worldwide, school-based human papillomavirus (HPV) vaccination programs have been successful; however, little research has explored US stakeholders' acceptance toward school-based HPV vaccination programs. Methods: A total of 13 focus groups and 12 key informant interviews (N?=?117; 85% females; 66% racial/ethnic…

  1. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    Science.gov (United States)

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine.

  2. In silico-based vaccine design against Ebola virus glycoprotein

    Science.gov (United States)

    Dash, Raju; Das, Rasel; Junaid, Md; Akash, Md Forhad Chowdhury; Islam, Ashekul; Hosen, SM Zahid

    2017-01-01

    Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY) interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. PMID:28356762

  3. Canine Recombinant Adenovirus Vector Induces an Immunogenicity-Related Gene Expression Profile in Skin-Migrated CD11b+ -Type DCs

    Science.gov (United States)

    Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b+ -type and CD103+ -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b+ -type DCs was far higher and broader than in the CD103+ -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b+ -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b+ DC type is more responsive to CAV2 than the CD103+ DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  4. Canine recombinant adenovirus vector induces an immunogenicity-related gene expression profile in skin-migrated CD11b⁺ -type DCs.

    Directory of Open Access Journals (Sweden)

    Vanessa Contreras

    Full Text Available Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2 as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b(+ -type and CD103(+ -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b(+ -type DCs was far higher and broader than in the CD103(+ -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b(+ -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b(+ DC type is more responsive to CAV2 than the CD103(+ DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness.

  5. DENGUE VACCINES.

    Science.gov (United States)

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has progressed to Phase 3 efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA, and purified inactivated vaccine candidates are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and Virus-Like Particles (VLP)-based vaccines are under evaluation in preclinical studies.

  6. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections.

    Science.gov (United States)

    Geisbert, Thomas W; Feldmann, Heinz

    2011-11-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections.

  7. Characterization nanoparticles-based vaccines and vaccine candidates: a Transmission Electron Microscopy study

    Directory of Open Access Journals (Sweden)

    I. Menéndez I

    2016-05-01

    Full Text Available Transmission Electron Microscopy (TEM is a valuable tool for the biotech industry. This paper summarizes some of the contributions of MET in the characterization of the recombinant antigens are part of vaccines or vaccine candidates obtained in the CIGB. It mentions the use of complementary techniques MET (Negative staining, and immunoelectron that enhance visualization and ultrastructural characterization of the recombinant proteins obtained by Genetic Engineering.

  8. Adenovirus Type 11 Uses CD46 as a Cellular Receptor

    OpenAIRE

    Segerman, Anna; Atkinson, John P.; Marttila, Marko; Dennerquist, Veronica; Wadell, Göran; Arnberg, Niklas

    2003-01-01

    The 51 human adenovirus serotypes are divided into six species (A to F). Many adenoviruses use the coxsackie-adenovirus receptor (CAR) for attachment to host cells in vitro. Species B adenoviruses do not compete with CAR-binding serotypes for binding to host cells, and it has been suggested that species B adenoviruses use a receptor other than CAR. Species B adenoviruses mainly cause disease in the respiratory tract, the eyes, and in the urinary tract. Here we demonstrate that adenovirus type...

  9. No acquisition: a new ambition for HIV vaccine development?

    Science.gov (United States)

    Lakhashe, Samir K; Silvestri, Guido; Ruprecht, Ruth M

    2011-10-01

    Development of a safe and effective prophylactic HIV-1 vaccine presents unique challenges. The pessimism following the failure of two HIV-1 vaccine concepts in clinical trials, HIV-1 gp120 and an adenovirus-based approach to induce only cellular immune responses, has been replaced by cautious optimism engendered by the RV144 trial outcome, the isolation of several new broadly reactive neutralizing monoclonal antibodies, and recent primate model data indicating prevention of viral acquisition by active or passive immunization. Intense efforts are underway to optimize immunogen design, adjuvants, and the tools for preclinical evaluation of candidate vaccines in primates, where correlates of protection can be examined in detail - as proof-of-concept for clinical trials.

  10. Timeliness of childhood vaccinations in Kampala Uganda: a community-based cross-sectional study.

    Science.gov (United States)

    Babirye, Juliet N; Engebretsen, Ingunn M S; Makumbi, Frederick; Fadnes, Lars T; Wamani, Henry; Tylleskar, Thorkild; Nuwaha, Fred

    2012-01-01

    Child survival is dependent on several factors including high vaccination coverage. Timely receipt of vaccines ensures optimal immune response to the vaccines. Yet timeliness is not usually emphasized in estimating population immunity. In addition to examining timeliness of the recommended Expanded Programme for Immunisation (EPI) vaccines, this paper identifies predictors of untimely vaccination among children aged 10 to 23 months in Kampala. In addition to the household survey interview questions, additional data sources for variables included data collection of child's weight and length. Vaccination dates were obtained from child health cards. Timeliness of vaccinations were assessed with Kaplan-Meier time-to-event analysis for each vaccine based on the following time ranges (lowest-highest target age): BCG (birth-8 weeks), polio 0 (birth-4 weeks), three polio and three pentavalent vaccines (4 weeks-2 months; 8 weeks-4 months; 12 weeks-6 months) and measles vaccine (38 weeks-12 months). Cox regression analysis was used to identify factors associated with vaccination timeliness. About half of 821 children received all vaccines within the recommended time ranges (45.6%; 95% CI 39.8-51.2). Timely receipt of vaccinations was lowest for measles (67.5%; 95% CI 60.5-73.8) and highest for BCG vaccine (92.7%: 95% CI 88.1-95.6). For measles, 10.7% (95% CI 6.8-16.4) of the vaccinations were administered earlier than the recommended time. Vaccinations that were not received within the recommended age ranges were associated with increasing number of children per woman (adjusted hazard ratio (AHR); 1.84, 95% CI 1.29-2.64), non-delivery at health facilities (AHR 1.58, 95% CI 1.02-2.46), being unmarried (AHR 1.49, 95% CI 1.15-1.94) or being in the lowest wealth quintile (AHR 1.38, 95% CI 1.11-1.72). Strategies to improve vaccination practices among the poorest, single, multiparous women and among mothers who do not deliver at health facilities are necessary to improve

  11. Timeliness of childhood vaccinations in Kampala Uganda: a community-based cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Juliet N Babirye

    Full Text Available BACKGROUND: Child survival is dependent on several factors including high vaccination coverage. Timely receipt of vaccines ensures optimal immune response to the vaccines. Yet timeliness is not usually emphasized in estimating population immunity. In addition to examining timeliness of the recommended Expanded Programme for Immunisation (EPI vaccines, this paper identifies predictors of untimely vaccination among children aged 10 to 23 months in Kampala. METHODS: In addition to the household survey interview questions, additional data sources for variables included data collection of child's weight and length. Vaccination dates were obtained from child health cards. Timeliness of vaccinations were assessed with Kaplan-Meier time-to-event analysis for each vaccine based on the following time ranges (lowest-highest target age: BCG (birth-8 weeks, polio 0 (birth-4 weeks, three polio and three pentavalent vaccines (4 weeks-2 months; 8 weeks-4 months; 12 weeks-6 months and measles vaccine (38 weeks-12 months. Cox regression analysis was used to identify factors associated with vaccination timeliness. RESULTS: About half of 821 children received all vaccines within the recommended time ranges (45.6%; 95% CI 39.8-51.2. Timely receipt of vaccinations was lowest for measles (67.5%; 95% CI 60.5-73.8 and highest for BCG vaccine (92.7%: 95% CI 88.1-95.6. For measles, 10.7% (95% CI 6.8-16.4 of the vaccinations were administered earlier than the recommended time. Vaccinations that were not received within the recommended age ranges were associated with increasing number of children per woman (adjusted hazard ratio (AHR; 1.84, 95% CI 1.29-2.64, non-delivery at health facilities (AHR 1.58, 95% CI 1.02-2.46, being unmarried (AHR 1.49, 95% CI 1.15-1.94 or being in the lowest wealth quintile (AHR 1.38, 95% CI 1.11-1.72. CONCLUSIONS: Strategies to improve vaccination practices among the poorest, single, multiparous women and among mothers who do not deliver at

  12. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques.

    Science.gov (United States)

    Valentin, Antonio; McKinnon, Katherine; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Pilkington, Guy R; Bear, Jenifer; Alicea, Candido; Vargas-Inchaustegui, Diego A; Jean Patterson, L; Pegu, Poonam; Liyanage, Namal P M; Gordon, Shari N; Vaccari, Monica; Wang, Yichuan; Hogg, Alison E; Frey, Blake; Sui, Yongjun; Reed, Steven G; Sardesai, Niranjan Y; Berzofsky, Jay A; Franchini, Genoveffa; Robert-Guroff, Marjorie; Felber, Barbara K; Pavlakis, George N

    2014-11-01

    To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.

  13. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    Directory of Open Access Journals (Sweden)

    Carla Giles

    Full Text Available Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

  14. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    Science.gov (United States)

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

  15. Design of nanomaterial based systems for novel vaccine development.

    Science.gov (United States)

    Yang, Liu; Li, Wen; Kirberger, Michael; Liao, Wenzhen; Ren, Jiaoyan

    2016-05-26

    With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines.

  16. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens....... Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation...

  17. [The vaccines based on the replicon of the venezuelan equine encephalomyelitis virus against viral hemorrhagic fevers].

    Science.gov (United States)

    Petrov, A A; Plekhanova, T M; Sidorova, O N; Borisevich, S V; Makhlay, A A

    2015-01-01

    The status of the various recombinant DNA and RNA-derived candidate vaccines, as well as the Venezuelan equine encephalomyelitis virus (VEEV) replicon vaccine system against extremely hazardous viral hemorrhagic fevers, were reviewed. The VEEV-based replication-incompetent vectors offer attractive features in terms of safety, high expression levels of the heterologous viral antigen, tropism to dendritic cells, robust immune responses, protection efficacy, low potential for pre-existing anti-vector immunity and possibility of engineering multivalent vaccines were tested. These features of the VEEV replicon system hold much promise for the development of new generation vaccine candidates against viral hemorrhagic fevers.

  18. Generation and immunity testing of a recombinant adenovirus expressing NcSRS2-NcGRA7 fusion protein of bovine Neospora caninum.

    Science.gov (United States)

    Jia, Li-Jun; Zhang, Shou-Fa; Qian, Nian-Chao; Xuan, Xue-Nan; Yu, Long-Zheng; Zhang, Xue-Mei; Liu, Ming-Ming

    2013-04-01

    Neospora caninum is the etiologic agent of bovine neosporosis, which affects the reproductive performance of cattle worldwide. The transmembrane protein, NcSRS2, and dense-granule protein, NcGRA7, were identified as protective antigens based on their ability to induce significant protective immune responses in murine neosporosis models. In the current study, NcSRS2 and NcGRA7 genes were spliced by overlap-extension PCR in a recombinant adenovirus termed Ad5-NcSRS2-NcGRA 7, expressing the NcSRS2-NcGRA7 gene, and the efficacy was evaluated in mice. The results showed that the titer of the recombinant adenovirus was 10(9)TCID50/ml. Three weeks post-boost immunization (w.p.b.i.), the IgG antibody titer in sera was as high as 1:4,096. IFN-γ and IL-4 levels were significantly different from the control group (P<0.01). This research established a solid foundation for the development of a recombinant adenovirus vaccine against bovine N. caninum.

  19. Influence of maternally-derived antibodies in 6-week old dogs for the efficacy of a new vaccine to protect dogs against virulent challenge with canine distemper virus, adenovirus or parvovirus

    Directory of Open Access Journals (Sweden)

    Stephen Wilson

    2014-01-01

    In conclusion, two doses of the DHPPi/L4R vaccine administered to dogs from six weeks of age in the presence of maternal antibodies aided in the protection against virulent challenge with CDV, CAV-1 or CPV.

  20. Oncolytic Adenoviruses in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  1. 含E型沙眼衣原体MOMP基因的重组腺病毒和DNA疫苗联合免疫效果的研究%Immune responses induced by DNA vaccine combined with recombinant adenovirus containing MOMP gene of Chlamydia trachomatis serovar E

    Institute of Scientific and Technical Information of China (English)

    吕慧; 李静; 孙娜; 关冰; 王红; 赵蔚明

    2013-01-01

      目的探讨E型沙眼衣原体(Ct)主要外膜蛋白(MOMP)DNA疫苗和重组腺病毒联合免疫小鼠诱导的免疫效应。方法构建、纯化重组腺病毒Ad-MOMP及重组真核表达质粒pVAX1-MOMP。设计4种免疫方案,分别为DNA免疫( DNA组)、重组腺病毒免疫( Ad组)、DNA初次免疫-重组腺病毒加强免疫( DNA/Ad组)、重组腺病毒初次免疫-DNA加强免疫( Ad/DNA组)。末次免疫后2周检测小鼠血清特异IgG、IgG1、IgG2a、IgA抗体,阴道分泌物SIgA抗体及脾淋巴细胞分泌IFN-γ、IL-10水平。结果DNA组诱导较弱免疫应答,未产生SIgA抗体及Th1反应。 Ad组诱导出Th1反应及SIgA抗体,且血清抗体显著高于DNA组。联合免疫均能诱导明显强于单独免疫的黏膜SIgA、血清抗体及Th1反应。 Ad/DNA组的Th1反应强于DNA/Ad组;而DNA/Ad组的血清抗体和黏膜抗体水平强于Ad/DNA组。结论Ad-MOMP能诱导黏膜免疫及Th1细胞免疫应答,DNA/Ad及Ad/DNA联合免疫产生的特异性免疫应答明显强于单独免疫。其中Ad/DNA的Th1反应优势更明显,DNA/Ad的血清抗体和黏膜抗体反应更强。接种顺序会影响联合免疫的强弱及类型,这为Ct疫苗的设计研究提供新的思路和实验依据。%Objective To investigate the specific immune responses induced by DNA vaccine com-bined with recombinant adenovirus carrying major outer membrane protein ( MOMP) gene of Chlamydia trachom-atis (Ct) serovar E.Methods Recombinant eukaryotic expression plasmid pVAX 1-MOMP and recombinant adenovirus Ad-MOMP were constructed and purified .Four immunization strategies were designed including DNA immunization (DNA group), recombinant adenovirus immunization (Ad group), DNA prime-recombinant ade-novirus boost regimen ( DNA/Ad group ) and recombinant adenovirus prime-DNA boost regimen ( Ad/DNA group) .Two weeks after the final immunization , vaginal wash specimens , blood samples and spleens were col

  2. Malaria vaccine based on Self-Assembling Protein Nanoparticles

    OpenAIRE

    Burkhard, Peter; David E Lanar

    2015-01-01

    Despite recent progress with GSK’s RTS’S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials ...

  3. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants.

    OpenAIRE

    Marie-Ève Lebel; Karine Chartrand; Denis Leclerc; Alain Lamarre

    2016-01-01

    International audience; Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the develop...

  4. Malaria vaccine based on Self-Assembling Protein Nanoparticles

    OpenAIRE

    Burkhard, Peter; Lanar, David E.

    2015-01-01

    Despite recent progress with GSK’s RTS’S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials ...

  5. Durability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus (MARV and Ebola virus, causes severe hemorrhagic fever with high mortality in humans and nonhuman primates. A promising filovirus vaccine under development is based on a recombinant vesicular stomatitis virus (rVSV that expresses individual filovirus glycoproteins (GPs in place of the VSV glycoprotein (G. These vaccines have shown 100% efficacy against filovirus infection in nonhuman primates when challenge occurs 28-35 days after a single injection immunization. Here, we examined the ability of a rVSV MARV-GP vaccine to provide protection when challenge occurs more than a year after vaccination. Cynomolgus macaques were immunized with rVSV-MARV-GP and challenged with MARV approximately 14 months after vaccination. Immunization resulted in the vaccine cohort of six animals having anti-MARV GP IgG throughout the pre-challenge period. Following MARV challenge none of the vaccinated animals showed any signs of clinical disease or viremia and all were completely protected from MARV infection. Two unvaccinated control animals exhibited signs consistent with MARV infection and both succumbed. Importantly, these data are the first to show 100% protective efficacy against any high dose filovirus challenge beyond 8 weeks after final vaccination. These findings demonstrate the durability of VSV-based filovirus vaccines.

  6. Durability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primates.

    Science.gov (United States)

    Mire, Chad E; Geisbert, Joan B; Agans, Krystle N; Satterfield, Benjamin A; Versteeg, Krista M; Fritz, Elizabeth A; Feldmann, Heinz; Hensley, Lisa E; Geisbert, Thomas W

    2014-01-01

    The filoviruses, Marburg virus (MARV) and Ebola virus, causes severe hemorrhagic fever with high mortality in humans and nonhuman primates. A promising filovirus vaccine under development is based on a recombinant vesicular stomatitis virus (rVSV) that expresses individual filovirus glycoproteins (GPs) in place of the VSV glycoprotein (G). These vaccines have shown 100% efficacy against filovirus infection in nonhuman primates when challenge occurs 28-35 days after a single injection immunization. Here, we examined the ability of a rVSV MARV-GP vaccine to provide protection when challenge occurs more than a year after vaccination. Cynomolgus macaques were immunized with rVSV-MARV-GP and challenged with MARV approximately 14 months after vaccination. Immunization resulted in the vaccine cohort of six animals having anti-MARV GP IgG throughout the pre-challenge period. Following MARV challenge none of the vaccinated animals showed any signs of clinical disease or viremia and all were completely protected from MARV infection. Two unvaccinated control animals exhibited signs consistent with MARV infection and both succumbed. Importantly, these data are the first to show 100% protective efficacy against any high dose filovirus challenge beyond 8 weeks after final vaccination. These findings demonstrate the durability of VSV-based filovirus vaccines.

  7. Malaria vaccine based on self-assembling protein nanoparticles.

    Science.gov (United States)

    Burkhard, Peter; Lanar, David E

    2015-01-01

    Despite recent progress with GSK's RTS,S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials with our most developed vaccine candidate will show good protection in a controlled human malaria infection trial.

  8. [Real-time monitoring of anti-influenza vaccination in the 65 and over population in France based on vaccine sales].

    Science.gov (United States)

    Pivette, M; Auvigne, V; Guérin, P; Mueller, J E

    2017-04-01

    The aim of this study was to describe a tool based on vaccine sales to estimate vaccination coverage against seasonal influenza in near real-time in the French population aged 65 and over. Vaccine sales data available on sale-day +1 came from a stratified sample of 3004 pharmacies in metropolitan France. Vaccination coverage rates were estimated between 2009 and 2014 and compared with those obtained based on vaccination refund data from the general health insurance scheme. The seasonal vaccination coverage estimates were highly correlated with those obtained from refund data. They were also slightly higher, which can be explained by the inclusion of non-reimbursed vaccines and the consideration of all individuals aged 65 and over. We have developed an online tool that provides estimates of daily vaccination coverage during each vaccination campaign. The developed tool provides a reliable and near real-time estimation of vaccination coverage among people aged 65 and over. It can be used to evaluate and adjust public health messages. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs.

    Science.gov (United States)

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude.

  10. Baculovirus-Based Nasal Drop Vaccine Confers Complete Protection against Malaria by Natural Boosting of Vaccine-Induced Antibodies in Mice▿ † ‡

    OpenAIRE

    Yoshida, Shigeto; Araki, Hitomi; Yokomine, Takashi

    2009-01-01

    Blood-stage malaria parasites ablate memory B cells generated by vaccination in mice, resulting in diminishing natural boosting of vaccine-induced antibody responses to infection. Here we show the development of a new vaccine comprising a baculovirus-based Plasmodium yoelii 19-kDa carboxyl terminus of merozoite surface protein 1 (PyMSP119) capable of circumventing the tactics of parasites in a murine model. The baculovirus-based vaccine displayed PyMSP119 on the surface of the virus envelope ...

  11. Antigen design enhances the immunogenicity of Semliki Forest virus-based therapeutic human papillomavirus vaccines

    NARCIS (Netherlands)

    Ip, P. P.; Boerma, A.; Walczak, M.; Oosterhuis, K.; Haanen, J. B.; Schumacher, T. N.; Nijman, H. W.; Daemen, T.

    Cellular immunity against cancer can be achieved with viral vector-and DNA-based immunizations. In preclinical studies, cancer vaccines are very potent, but in clinical trials these potencies are not achieved yet. Thus, a rational approach to improve cancer vaccines is warranted. We previously

  12. A novel sequence-based antigenic distance measure for H1N1, with application to vaccine effectiveness and the selection of vaccine strains

    Science.gov (United States)

    Pan, Keyao; Subieta, Krystina C.; Deem, Michael W.

    2011-01-01

    H1N1 influenza causes substantial seasonal illness and was the subtype of the 2009 influenza pandemic. Precise measures of antigenic distance between the vaccine and circulating virus strains help researchers design influenza vaccines with high vaccine effectiveness. We here introduce a sequence-based method to predict vaccine effectiveness in humans. Historical epidemiological data show that this sequence-based method is as predictive of vaccine effectiveness as hemagglutination inhibition assay data from ferret animal model studies. Interestingly, the expected vaccine effectiveness is greater against H1N1 than H3N2, suggesting a stronger immune response against H1N1 than H3N2. The evolution rate of hemagglutinin in H1N1 is also shown to be greater than that in H3N2, presumably due to greater immune selection pressure. PMID:21123189

  13. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  14. An Update on Canine Adenovirus Type 2 and Its Vectors

    Directory of Open Access Journals (Sweden)

    Eric J. Kremer

    2010-09-01

    Full Text Available Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2 biology and gives an overview of the generation of early region 1 (E1-deleted to helper-dependent (HD CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.

  15. Acute disseminated encephalomyelitis onset: evaluation based on vaccine adverse events reporting systems.

    Directory of Open Access Journals (Sweden)

    Paolo Pellegrino

    Full Text Available OBJECTIVE: To evaluate epidemiological features of post vaccine acute disseminated encephalomyelitis (ADEM by considering data from different pharmacovigilance surveillance systems. METHODS: The Vaccine Adverse Event Reporting System (VAERS database and the EudraVigilance post-authorisation module (EVPM were searched to identify post vaccine ADEM cases. Epidemiological features including sex and related vaccines were analysed. RESULTS: We retrieved 205 and 236 ADEM cases from the EVPM and VAERS databases, respectively, of which 404 were considered for epidemiological analysis following verification and causality assessment. Half of the patients had less than 18 years and with a slight male predominance. The time interval from vaccination to ADEM onset was 2-30 days in 61% of the cases. Vaccine against seasonal flu and human papilloma virus vaccine were those most frequently associated with ADEM, accounting for almost 30% of the total cases. Mean number of reports per year between 2005 and 2012 in VAERS database was 40±21.7, decreasing after 2010 mainly because of a reduction of reports associated with human papilloma virus and Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B vaccines. CONCLUSIONS: This study has a high epidemiological power as it is based on information on adverse events having occurred in over one billion people. It suffers from lack of rigorous case verification due to the weakness intrinsic to the surveillance databases used. At variance with previous reports on a prevalence of ADEM in childhood we demonstrate that it may occur at any age when post vaccination. This study also shows that the diminishing trend in post vaccine ADEM reporting related to Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B and human papilloma virus vaccine groups is most likely not [corrected] due to a decline in vaccine coverage indicative of a reduced attention to this adverse drug reaction.

  16. 78 FR 3906 - Prospective Grant of a Co-Exclusive License: Adenovirus-Based Controls and Calibrators for...

    Science.gov (United States)

    2013-01-17

    ...-Based Controls and Calibrators for Molecular Diagnostics of Infectious Disease Agents AGENCY: National... recombinant constructs as controls and calibrators for molecular diagnostics for infectious disease agents... diagnostics (e.g. real time PCR tests). The prospective co-exclusive license will comply with the terms...

  17. A candidate H1N1 pandemic influenza vaccine elicits protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    Julia Steitz

    Full Text Available BACKGROUND: In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. METHODS: We generated two adenovirus(Ad5-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA from the recently emerged swine influenza isolate A/California/04/2009 (H1N1pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNgamma Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. CONCLUSIONS/SIGNIFICANCE: A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization.

  18. Cell culture based production of avian influenza vaccines

    NARCIS (Netherlands)

    Wielink, van R.

    2012-01-01

    Vaccination of poultry can be used as a tool to control outbreaks of avian influenza, including that of highly pathogenic H5 and H7 strains. Influenza vaccines are traditionally produced in embryonated chicken eggs. Continuous cell lines have been suggested as an alternative substrate to produce inf

  19. Cell culture based production of avian influenza vaccines

    NARCIS (Netherlands)

    Wielink, van R.

    2012-01-01

    Vaccination of poultry can be used as a tool to control outbreaks of avian influenza, including that of highly pathogenic H5 and H7 strains. Influenza vaccines are traditionally produced in embryonated chicken eggs. Continuous cell lines have been suggested as an alternative substrate to produce

  20. Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Kollipara, Avinash; Wan, Charles; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2013-02-06

    Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Vaccines based on the cell surface carbohydrates of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Jones Christopher

    2005-01-01

    Full Text Available Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-organism is covalently attached to an appropriate carrier protein are proving to be the most effective means to generate protective immune responses to prevent a wide range of diseases. The technology appears to be generic and applicable to a wide range of pathogens, as long as antibodies against surface carbohydrates help protect against infection. Three such vaccines, against Haemophilus influenzae type b, Neisseria meningitidis Group C and seven serotypes of Streptococcus pneumoniae, have already been licensed and many others are in development. This article discusses the rationale for the development and use of glycoconjugate vaccines, the mechanisms by which they elicit T cell-dependent immune responses and the implications of this for vaccine development, the role of physicochemical methods in the characterisation and quality control of these vaccines, and the novel products which are under development.

  2. Zika virus-like particle (VLP) based vaccine

    Science.gov (United States)

    Boigard, Hélène; Alimova, Alexandra; Martin, George R.; Katz, Al; Gottlieb, Paul

    2017-01-01

    The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs) by co-expressing the structural (CprME) and non-structural (NS2B/NS3) proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV) used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development. PMID:28481898

  3. Zika virus-like particle (VLP based vaccine.

    Directory of Open Access Journals (Sweden)

    Hélène Boigard

    2017-05-01

    Full Text Available The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs by co-expressing the structural (CprME and non-structural (NS2B/NS3 proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development.

  4. Saponins from the Spanish saffron Crocus sativus are efficient adjuvants for protein-based vaccines.

    Science.gov (United States)

    Castro-Díaz, Nathaly; Salaun, Bruno; Perret, Rachel; Sierro, Sophie; Romero, Jackeline F; Fernández, Jose-Antonio; Rubio-Moraga, Angela; Romero, Pedro

    2012-01-05

    Protein and peptide-based vaccines provide rigorously formulated antigens. However, these purified products are only weakly immunogenic by themselves and therefore require the addition of immunostimulatory components or adjuvants in the vaccine formulation. Various compounds derived from pathogens, minerals or plants, possess pro-inflammatory properties which allow them to act as adjuvants and contribute to the induction of an effective immune response. The results presented here demonstrate the adjuvant properties of novel saponins derived from the Spanish saffron Crocus sativus. In vivo immunization studies and tumor protection experiments unambiguously establish the value of saffron saponins as candidate adjuvants. These saponins were indeed able to increase both humoral and cellular immune responses to protein-based vaccines, ultimately providing a significant degree of protection against tumor challenge when administered in combination with a tumor antigen. This preclinical study provides an in depth immunological characterization of a new saponin as a vaccine adjuvant, and encourages its further development for use in vaccine formulations.

  5. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.

    Science.gov (United States)

    Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

    2015-02-01

    Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination.

  6. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens

    2011-01-01

    Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b...... vaccination induced polyfunctional CD8(+) T cells characterized by coproduction of IFN-¿, TNF-a and IL-2, and this cell phenotype is associated with good viral control. The memory CD8(+) T cells also expressed high levels of CD27 and CD127, which are markers of long-term survival and maintenance of T cell...... memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...

  7. Vaccines for the common cold.

    Science.gov (United States)

    Simancas-Racines, Daniel; Franco, Juan Va; Guerra, Claudia V; Felix, Maria L; Hidalgo, Ricardo; Martinez-Zapata, Maria José

    2017-05-18

    The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat, and fever (usually Register of Controlled Trials (CENTRAL) (September 2016), MEDLINE (1948 to September 2016), Embase (1974 to September 2016), CINAHL (1981 to September 2016), and LILACS (1982 to September 2016). We also searched three trials registers for ongoing studies and four websites for additional trials (February 2017). We included no language or date restrictions. Randomised controlled trials (RCTs) of any virus vaccines compared with placebo to prevent the common cold in healthy people. Two review authors independently evaluated methodological quality and extracted trial data. We resolved disagreements by discussion or by consulting a third review author. We found no additional RCTs for inclusion in this update. This review includes one RCT dating from the 1960s with an overall high risk of bias. The RCT included 2307 healthy participants, all of whom were included in analyses. This trial compared the effect of an adenovirus vaccine against placebo. No statistically significant difference in common cold incidence was found: there were 13 (1.14%) events in 1139 participants in the vaccines group and 14 (1.19%) events in 1168 participants in the placebo group (risk ratio 0.95, 95% confidence interval 0.45 to 2.02; P = 0.90). No adverse events related to the live vaccine were reported. The quality of the evidence was low due to limitations in methodological quality and a wide 95% confidence interval. This Cochrane Review was based on one study with low-quality evidence. We found no conclusive results to support the use of vaccines for preventing the common cold in healthy people compared with placebo. We identified a need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Any future trials on medical treatments for preventing the

  8. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining.

    Science.gov (United States)

    Hur, Junguk; Ozgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2012-12-20

    Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since

  9. Analysis of hepatitis B vaccination behavior and vaccination willingness among migrant workers from rural China based on protection motivation theory

    National Research Council Canada - National Science Library

    Liu, Rugang; Li, Youwei; Wangen, Knut R; Maitland, Elizabeth; Nicholas, Stephen; Wang, Jian

    2016-01-01

    ...: Using protection motivation theory (PMT), we developed and measured HB cognitive variables and analyze the factors affecting HB vaccination behavior and willingness to vaccinate by migrant workers...

  10. The administration of a single dose of a multivalent (DHPPiL4R vaccine prevents clinical signs and mortality following virulent challenge with canine distemper virus, canine adenovirus or canine parvovirus

    Directory of Open Access Journals (Sweden)

    Stephen Wilson

    2014-01-01

    In conclusion, we demonstrated that a single administration of a minimum titre, multivalent vaccine to dogs of six weeks of age is efficacious and prevents clinical signs and mortality caused by CAV-1 and CDV; prevents clinical signs and significantly reduces virus shedding caused by CAV-2; and prevents clinical signs, leucopoenia and viral excretion caused by CPV.

  11. What you always needed to know about electroporation based DNA vaccines

    DEFF Research Database (Denmark)

    Gothelf, Anita Birgitte; Gehl, Julie

    2012-01-01

    Vaccinations are increasingly used to fight infectious disease, and DNA vaccines offer considerable advantages, including broader possibilities for vaccination and lack of need for cold storage. It has been amply demonstrated, that electroporation augments uptake of DNA in both skin and muscle......, and it is foreseen that future DNA vaccination may to a large extent be coupled with and dependent upon electroporation based delivery. Understanding the basic science of electroporation and exploiting knowledge obtained on optimization of DNA electrotransfer to muscle and skin, may greatly augment efforts...... on vaccine development. The purpose of this review is to give a succinct but comprehensive overview of electroporation as a delivery modality including electrotransfer to skin and muscle. As well, this review will speculate and discuss future uses for this powerful electrotransfer technology....

  12. Targeting immune response induction with cochleate and liposome-based vaccines.

    Science.gov (United States)

    Mannino; Canki; Feketeova; Scolpino; Wang; Zhang; Kheiri; Gould-Fogerite

    1998-07-06

    The immune response generated by infection with a pathogenic organism, or by vaccination with a live attenuated or whole killed pathogen, often does not stimulate optimal protection against that organism. Lipid matrix-based subunit vaccines can be used to produce custom-designed vaccines, that elicit desired immune responses targeted to specific parts of the pathogen that are relevant to protection. Harmful or competitive responses can be minimized or avoided. Earlier work with liposomes has allowed the development of a new class of subunit vaccines called cochleate delivery vehicles, whose structure and properties are very different from liposomes. Protein and DNA cochleates are highly effective vaccines when given via mucosal or parenteral routes, including oral, intranasal, intramuscular, or subcutaneous. Strong, long-lasting, mucosal and circulating, antibody and cell-mediated responses are generated. Protection from challenge with live viruses following oral or intramuscular administration has been achieved.

  13. Coding potential and transcript analysis of fowl adenovirus 4: insight into upstream ORFs as common sequence features in adenoviral transcripts.

    Science.gov (United States)

    Griffin, Bryan D; Nagy, Eva

    2011-06-01

    Recombinant fowl adenoviruses (FAdVs) have been successfully used as veterinary vaccine vectors. However, insufficient definitions of the protein-coding and non-coding regions and an incomplete understanding of virus-host interactions limit the progress of next-generation vectors. FAdVs are known to cause several diseases of poultry. Certain isolates of species FAdV-C are the aetiological agent of inclusion body hepatitis/hydropericardium syndrome (IBH/HPS). In this study, we report the complete 45667 bp genome sequence of FAdV-4 of species FAdV-C. Assessment of the protein-coding potential of FAdV-4 was carried out with the Bio-Dictionary-based Gene Finder together with an evaluation of sequence conservation among species FAdV-A and FAdV-D. On this basis, 46 potentially protein-coding ORFs were identified. Of these, 33 and 13 ORFs were assigned high and low protein-coding potential, respectively. Homologues of the ancestral adenoviral genes were, with few exceptions, assigned high protein-coding potential. ORFs that were unique to the FAdVs were differentiated into high and low protein-coding potential groups. Notable putative genes with high protein-coding capacity included the previously unreported fiber 1, hypothetical 10.3K and hypothetical 10.5K genes. Transcript analysis revealed that several of the small ORFs less than 300 nt in length that were assigned low coding potential contributed to upstream ORFs (uORFs) in important mRNAs, including the ORF22 mRNA. Subsequent analysis of the previously reported transcripts of FAdV-1, FAdV-9, human adenovirus 2 and bovine adenovirus 3 identified widespread uORFs in AdV mRNAs that have the potential to act as important translational regulatory elements.

  14. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.

    Science.gov (United States)

    Khurana, Surender; Coyle, Elizabeth M; Manischewitz, Jody; King, Lisa R; Ishioka, Glenn; Alexander, Jeff; Smith, Jon; Gurwith, Marc; Golding, Hana

    2015-01-01

    A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.

  15. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.

    Directory of Open Access Journals (Sweden)

    Surender Khurana

    Full Text Available A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR. Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1 and heterologous A/Indonesia-5/2005 (clade 2.1 HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2 and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.

  16. Molecular epidemiology and surveillance of circulating rotavirus and adenovirus in Congolese children with gastroenteritis.

    Science.gov (United States)

    Mayindou, Gontran; Ngokana, Berge; Sidibé, Anissa; Moundélé, Victoire; Koukouikila-Koussounda, Felix; Christevy Vouvoungui, Jeannhey; Kwedi Nolna, Sylvie; Velavan, Thirumalaisamy P; Ntoumi, Francine

    2016-04-01

    Infectious Diarrhea caused by rotavirus and adenovirus, is a leading cause of death in children in sub-Sahara Africa but there is limited published data on the diverse rotavirus genotypes and adenovirus serotypes circulating in the Republic of Congo. In this study, we investigated the prevalence of severe diarrhea caused by rotavirus A (RVA) and Adenovirus serotype 40 and 41 in Congolese children hospitalized with severe gastroenteritis. Stool samples were collected from 655 Congolese children less than 60 months of age hospitalized with acute gastroenteritis between June 2012 and June 2013. Rotavirus and adenovirus antigens were tested using commercially available ELISA kits and the RVA G- and P- genotypes were identified by seminested multiplex RT-PCR. Three hundred and four (46.4%) children were tested positive for RVA. Adenovirus infection was found in 5.5% of the 564 tested children. Rotavirus infection was frequently observed in children between 6-12 months (55.9%). The dry season months recorded increased RVA infection while no seasonality of adenovirus infection was demonstrated. The most common RVA genotypes were G1 (57.5%), G2 (6.4%), G1G2 mixture (15.5%), P[8] (58%), P[6] (13.2%), and P[8]P[6] mixture (26%). Additionally, the genotype G12P[6] was significantly associated with increased vomiting. This first study on Congolese children demonstrates a high prevalence and clinical significance of existing rotavirus genotypes. Adenovirus prevalence is similar to that of other Central African countries. This baseline epidemiology and molecular characterization study will contribute significantly to the RVA surveillance after vaccine implementation in the country.

  17. Evaluation of goat based 'indigenous vaccine' against bovine Johne's disease in endemically infected native cattle herds.

    Science.gov (United States)

    Singh, Shoor Vir; Singh, Pravin Kumar; Kumar, Naveen; Gupta, Saurabh; Chaubey, Kundan Kumar; Singh, Brajesh; Srivastav, Abhishek; Yadav, Sharad; Dhama, Kuldeep

    2015-01-01

    'Indigenous vaccine' prepared from 'Indian Bison Type' a native bio-type of Mycobacterium avium subspecies paratuberculosis strain 'S5' of goat origin (goat based) was evaluated in indigenous cattle herds located in gaushalas (cow shelters), endemic for Bovine Johne's disease. Cows (893) were randomly divided into vaccinated (702 = 626 adults + 76 calves) and control (191 = 173 adults + 18 calves) groups. Response to vaccination was evaluated on the basis of health (mortality, morbidity), productivity (growth rate, reproductive performance, total milk yield), immunological parameters (LTT, ELISA titer), survivability of animals naturally infected with MAP, bacterimia (by specific blood PCR), seroconversion (by indigenous ELISA) and status of shedding of MAP in feces (by microscopy) in the two groups before and after vaccination. Reduction in MAP shedding [to the extent of 100% in Herd A; and from 82.1% (0 DPV) to 10.7% (270 DPV) in Herd C] was the major finding in vaccinated cows. Whereas, the control group cows have shown no improvement. As the first indicator of vaccine efficacy, MAP bacilli disappeared from the blood circulation as early as 15 days post vaccination, however, peak titers were achieved around 90 DPV. Peak titers initially declined slightly but were maintained later throughout the study period. Control animals did not show any pattern in antibody titers. Mortality was low in vaccinated as compared to the control groups. Vaccination of endemically infected native cattle herds with inactivated whole-cell bacterin of novel 'Indian Bison Type' bio-type of goat origin strain 'S5' effectively restored health and productivity and reduced clinical BJD. Application of goat based 'indigenous vaccine' for therapeutic management of BJD in native cattle herds (gaushalas) is the first of its kind.

  18. Targeting species D adenoviruses replication to counteract the epidemic keratoconjunctivitis.

    Science.gov (United States)

    Nikitenko, Natalia A; Speiseder, Thomas; Groitl, Peter; Spirin, Pavel V; Prokofjeva, Maria M; Lebedev, Timofey D; Rubtsov, Petr M; Lam, Elena; Riecken, Kristoffer; Fehse, Boris; Dobner, Thomas; Prassolov, Vladimir S

    2015-06-01

    Human adenoviruses are non-enveloped DNA viruses causing various infections; their pathogenicity varies dependent on virus species and type. Although acute infections can sometimes take severe courses, they are rarely fatal in immune-competent individuals. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are hyperacute and highly contagious infections of the eye caused by human adenovirus types within species D. Currently there is no causal treatment available to counteract these diseases effectively. The E2B region of the adenovirus genome encodes for the viral DNA polymerase, which is required for adenoviral DNA replication. Here we propose novel model systems to test this viral key factor, DNA polymerase, as a putative target for the development of efficient antiviral therapy based on RNA interference. Using our model cell lines we found that different small interfering RNAs mediate significant suppression (up to 90%) of expression levels of viral DNA polymerase upon transfection. Moreover, permanent expression of short hairpin RNA based on the most effective small interfering RNA led to a highly significant, more than tenfold reduction in replication for different human group D adenoviruses involved in ocular infections.

  19. Parents' views of including young boys in the Swedish national school-based HPV vaccination programme: a qualitative study

    Science.gov (United States)

    Gottvall, Maria; Stenhammar, Christina; Grandahl, Maria

    2017-01-01

    Objective To explore parents' views of extending the human papillomavirus (HPV) vaccination programme to also include boys. Design Explorative qualitative design using individual, face-to-face, interviews and inductive thematic analysis. Setting 11 strategically chosen municipalities in central Sweden. Participants Parents (n=42) who were offered HPV vaccination for their 11–12 years old daughter in the national school-based vaccination programme. Results The key themes were: equality from a public health perspective and perception of risk for disease. Parents expressed low knowledge and awareness about the health benefits of male HPV vaccination, and they perceived low risk for boys to get HPV. Some parents could not see any reason for vaccinating boys. However, many parents preferred gender-neutral vaccination, and some of the parents who had not accepted HPV vaccination for their daughter expressed that they would be willing to accept vaccination for their son, if it was offered. It was evident that there was both trust and distrust in authorities' decision to only vaccinate girls. Parents expressed a preference for increased sexual and reproductive health promotion such as more information about condom use. Some parents shared that it was more important to vaccinate girls than boys since they believed girls face a higher risk of deadly diseases associated with HPV, but some also believed girls might be more vulnerable to side effects of the vaccine. Conclusions A vaccine offered only to girls may cause parents to be hesitant to vaccinate, while also including boys in the national vaccination programme might improve parents' trust in the vaccine. More information about the health benefits of HPV vaccination for males is necessary to increase HPV vaccination among boys. This may eventually lead to increased HPV vaccine coverage among both girls and boys. PMID:28246143

  20. Characterizing clearance of helper adenovirus by a clinical rAAV1 manufacturing process.

    Science.gov (United States)

    Thorne, Barbara A; Quigley, Paulene; Nichols, Gina; Moore, Christine; Pastor, Eric; Price, David; Ament, Jon W; Takeya, Ryan K; Peluso, Richard W

    2008-01-01

    Recombinant adeno-associated viral vectors (rAAV) are being developed as gene therapy delivery vehicles and as genetic vaccines, and some of the most scaleable manufacturing methods for rAAV use live adenovirus to induce production. One aspect of establishing safety of rAAV products is therefore demonstrating adequate and reliable clearance of this helper virus by the vector purification process. The ICH Q5A regulatory guidance on viral safety provides recommendations for process design and characterization of viral clearance for recombinant proteins, and these principles were adapted to a rAAV serotype 1 purification process for clinical vectors. Specific objectives were to achieve overall adenovirus clearance factors significantly greater than input levels by using orthogonal separation and inactivation methods, and to segregate adenovirus from downstream operations by positioning a robust clearance step early in the process. Analytical tools for process development and characterization addressed problematic in-process samples, and a viral clearance validation study was performed using adenovirus and two non-specific model viruses. Overall clearance factors determined were >23 LRV for adenovirus, 11 LRV for BVDV, and >23 LRV for AMuLV.

  1. Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease.

    Science.gov (United States)

    Lu, Zengjun; Bao, Huifang; Cao, Yimei; Sun, Pu; Guo, Jianhun; Li, Pinghua; Bai, Xingwen; Chen, Yingli; Xie, Baoxia; Li, Dong; Liu, Zaixin; Xie, Qingge

    2008-12-19

    Two recombinant adenoviruses were constructed expressing foot-and-mouth disease virus (FMDV) capsid and 3C/3CD proteins in replicative deficient human adenovirus type 5 vector. Guinea pigs vaccinated with 1-3 x 10(8)TCID(50) Ad-P12x3C recombinant adenovirus were completely protected against 10,000GID(50) homologous virulent FMDV challenge 25 days post vaccination (dpv). Ad-P12x3CD vaccinated guinea pigs were only partially protected. Swine were vaccinated once with 1x10(9)TCID(50) Ad-P12x3C hybrid virus and challenged 28 days later. Three of four vaccinated swine were completely protected against 200 pig 50% infectious doses (ID(50)) of homologous FMDV challenge, and vaccinated pigs developed specific cellular and humoral immune responses. The immune effect of Ad-P12x3C in swine further indicated that the recombinant adenovirus was highly efficient in transferring the foreign gene. This approach may thus be a very hopeful tool for developing FMD live virus vector vaccine.

  2. Adenovirus sequences required for replication in vivo.

    OpenAIRE

    Wang, K.; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  3. Parental education and text messaging reminders as effective community based tools to increase HPV vaccination rates among Mexican American children

    Directory of Open Access Journals (Sweden)

    Abraham Aragones

    2015-01-01

    Conclusions: Parental text messaging plus education, implemented in a community based setting, was strongly associated with vaccine completion rates among vaccine-eligible Mexican American children. Although pilot in nature, the study achieved an 88% series completion rate in the children of those who received the text messages, significantly higher than current vaccination levels.

  4. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  5. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    Directory of Open Access Journals (Sweden)

    Tomer Hertz

    Full Text Available Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5 vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1 Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2 Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3 Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4 Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5 Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which

  6. Human Papillomavirus vaccination in general practice in France, three years after the implementation of a targeted vaccine recommendation based on age and sexual history.

    Science.gov (United States)

    Thierry, Pascale; Lasserre, Andrea; Rossignol, Louise; Kernéis, Solen; Blaizeau, Fanette; Stheneur, Chantal; Blanchon, Thierry; Levy-Bruhl, Daniel; Hanslik, Thomas

    2016-01-01

    In France, vaccination against human papilloma virus (HPV) was recommended in 2007 for all 14-year-old girls as well as "catch-up" vaccination for girls between 15-23 y of age either before or within one year of becoming sexually active. We evaluated the vaccine coverage according to the eligibility for vaccination in a sample of young girls aged 14 to 23 years, who were seen in general practices. A survey was proposed to 706 general practitioners (GPs) and carried out from July to September 2010. GPs, also called "family doctor," are physicians whose practice is not restricted to a specific field of medicine but instead covers a variety of medical problems in patients of all ages. Each participating GP included, retrospectively, the last female patient aged 14-17 y and the last female patient aged 18-23 y whom he had seen. A questionnaire collected information regarding the GP and the patients' characteristics. The vaccine coverage was determined according to the eligibility for vaccination, i.e. the coverage among younger women (14-17) and among those sexually active in the second age range (18-23). Sexual activity status was assessed by GP, according to information stated in the medical record. The 363 participating physicians (response rate 51.4%) included 712 patients (357 in the 14- to 17-year-old group and 355 in the 15- to 23-year-old group) in their responses. The rate of the vaccination coverage in the 14- to 17-year-old group was 55%. Among the girls in the 18- to 23-year-old group, 126 were eligible, and their vaccination coverage rate was 82%. The evaluation of the eligibility by the GPs was incorrect in 36% of the cases. Of the 712 patients, 6% of the girls had been vaccinated without a need for the vaccination, and 26% of the girls had not been vaccinated, although they needed to be vaccinated. Regarding the vaccine uptake, vaccination at the age of 14 was not as effective as vaccinating the older population for which vaccination was indicated as a

  7. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  8. A novel M2e based flu vaccine formulation for dogs.

    Directory of Open Access Journals (Sweden)

    Denis Leclerc

    Full Text Available BACKGROUND: The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. METHODOLOGY AND PRINCIPAL FINDINGS: The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. CONCLUSIONS AND SIGNIFICANCE: The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs.

  9. HPV vaccination syndrome. A questionnaire-based study.

    Science.gov (United States)

    Martínez-Lavín, Manuel; Martínez-Martínez, Laura-Aline; Reyes-Loyola, Paola

    2015-11-01

    Isolated cases and small series have described the development of complex regional pain syndrome, postural orthostatic tachycardia, and fibromyalgia after human papillomavirus (HPV) vaccination. These illnesses are difficult to diagnose and have overlapping clinical features. Small fiber neuropathy and dysautonomia may play a major role in the pathogenesis of these entities. We used the following validated questionnaires to appraise the chronic illness that might appear after HPV vaccination: The 2010 American College of Rheumatology Fibromyalgia Diagnostic Criteria, COMPASS 31 dysautonomia questionnaire, and S-LANSS neuropathic pain form. These questionnaires and a "present illness" survey were e-mailed to persons who had the onset of a chronic ailment soon after HPV vaccination. Forty-five filled questionnaires from individuals living in 13 different countries were collected in a month's period. Mean (±SD) age at vaccination time was 14 ± 5 years. Twenty-nine percent of the cases had immediate (within 24 h) post-vaccination illness onset. The most common presenting complaints were musculoskeletal pain (66%), fatigue (57%), headache (57%), dizziness/vertigo (43%), and paresthesias/allodynia (36%). Fifty-three percent of affected individuals fulfill the fibromyalgia criteria. COMPASS-31 score was 43 ± 21, implying advanced autonomic dysfunction. Eighty-three percent of the patients who had ongoing pain displayed S-LANSS values >12, suggesting a neuropathic component in their pain experience. After a mean period of 4.2 ± 2.5 years post-vaccination, 93% of patients continue to have incapacitating symptoms and remain unable to attend school or work. In conclusion, a disabling syndrome of chronic neuropathic pain, fatigue, and autonomic dysfunction may appear after HPV vaccination.

  10. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses.

    Science.gov (United States)

    Li, Ning; Wang, Ning; Wang, Xueting; Zhen, Yuanyuan; Wang, Ting

    2016-11-01

    Recently, microneedle arrays (MAs) have been developed for painless inoculation of vaccines and possess many prominent advantages, including convenience for inoculation, and exact delivery of vaccine to the exact epidermal and dermal or mucosal compartments which teem with antigen-presenting cells (APCs). Among different types of MAs, while the micro-environmental stimulus-responsive MAs represent one of the developmental trends in the field, the MAs combined with the conventional vaccines that are based on nonvirulent viruses, such as live attenuated or whole inactivated viruses, and antigen-encoding DNA viral vectors, have developed rapidly into the advanced stages, with certain products already on clinical trials. The pre- and clinical research outcomes showed that the painless MA delivery of the conventional vaccines through mammalian skin or mucosa can not only elicit robust systemic and even mucosal immunity to pathogens but also, in certain circumstances, redirect the immune response toward a specific Th1 pathway, resulting in cytotoxic T lymphocytes (CTL) to erase the cell-hidden pathogens, thanks to the robust adjuvant function of MAs exerted through damaging the contacted cells to release dangerous signals. This paper focuses on reviewing the latest research and advancements in MA delivery of the conventional vaccines that are based on nonvirulent viruses, underlining MA enhancement of the overall vaccine performance and the most advanced MA vaccine products that are relatively close to markets.

  11. Early childhood measles vaccinations are not associated with paediatric IBD: a population-based analysis.

    Science.gov (United States)

    Shaw, Souradet Y; Blanchard, James F; Bernstein, Charles N

    2015-04-01

    Early childhood vaccinations have been hypothesized to contribute to the emergence of paediatric inflammatory bowel disease [IBD] in developed countries. Using linked population-based administrative databases, we aimed to explore the association between vaccination with measles-containing vaccines and the risk for IBD. This was a case-control study using the University of Manitoba IBD Epidemiology Database [UMIBDED]. The UMIBDED was linked to the Manitoba Immunization Monitoring System [MIMS], a population-based database of immunizations administered in Manitoba. All paediatric IBD cases in Manitoba, born after 1989 and diagnosed before March 31, 2008, were included. Controls were matched to cases on the basis of age, sex, and region of residence at time of diagnosis. Measles-containing vaccinations received in the first 2 years of life were documented, with vaccinations categorized as 'None' or 'Complete', with completeness defined according to Manitoba's vaccination schedule. Conditional logistic regression models were fitted to the data, with models adjusted for physician visits in the first 2 years of life and area-level socioeconomic status at case date. A total of 951 individuals [117 cases and 834 controls] met eligibility criteria, with average age of diagnosis among cases at 11 years. The proportion of IBD cases with completed vaccinations was 97%, compared with 94% of controls. In models adjusted for physician visits and area-level socioeconomic status, no statistically significant association was detected between completed measles vaccinations and the risk of IBD (adjusted odds ratio [AOR]: 1.5; 95% confidence interval [CI]: 0.5-4.4; p = 0.419]. No significant association between completed measles-containing vaccination in the first 2 years of life and paediatric IBD could be demonstrated in this population-based study. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For

  12. Hexon based PCRs combined with restriction enzyme analysis for rapid detection and differentiation of fowl adenoviruses and egg drop syndrome virus.

    Science.gov (United States)

    Raue, R; Hess, M

    1998-08-01

    Three different polymerase chain reactions (PCRs), two of them combined with restriction enzyme analysis (REA), were developed for detection and differentiation of all 12 fowl adenovirus (FAV) serotypes and the egg drop syndrome (EDS) virus. For primer construction FAV1, FAV10 and EDS virus hexon proteins were aligned and conserved and variable regions were determined. Two primer sets (H1/H2 and H3/H4) for single use were constructed which hybridize in three conserved regions of hexon genes. Each primer pair amplifies approximately half of the hexon gene including two loop regions. An amplification product was detected with both primer sets using purified DNA from all FAV1-12 reference strains. Viral EDS DNA was negative using the H1/H2 or H3/H4 primer pair. HaeII digestion of the H1/H2 amplification products differentiates between all viruses except FAV4 and FAV5. In comparison, much more clustering among genomic closely related FAV serotypes was seen after HpaII digestion of the H3/H4 PCR products. Oligonucleotides H5/H6 located in the variable regions of EDS virus hexon gene do not detect any of the FAV serotypes. The PCRs and REA described are suitable to detect all avian adenoviruses infecting chickens, to distinguish all 12 FAV reference strains and to differentiate FAVs from the EDS virus.

  13. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer.

    Science.gov (United States)

    Li, Jinming; Sun, Yanli; Jia, Tingting; Zhang, Rui; Zhang, Kuo; Wang, Lunan

    2014-04-01

    Prostate cancer (PCa) is the most diagnosed cancer in the western male population with high mortality. Recently, alternative approaches based on immunotherapy including mRNA vaccines for PCa have shown therapeutic promise. However, for mRNA vaccine, several disadvantages such as the instability of mRNA, the high cost of gold particles, the limited production scale for mRNA-transfected dendritic cells in vitro, limit their development. Herein, recombinant bacteriophage MS2 virus-like particles (VLPs), which based on the interaction of a 19-nucleotide RNA aptamer and the coat protein of bacteriophage MS2, successfully addressed these questions, in which target mRNA was packaged by MS2 capsid. MS2 VLP-based mRNA vaccines were easily prepared by recombinant protein technology, nontoxic and RNase-resistant. We show the packaged mRNA was translated into protein as early as 12 hr after phagocytosed by macrophages. Moreover, MS2 VLP-based mRNA vaccines induced strong humoral and cellular immune responses, especially antigen-specific cytotoxic T-lymphocyte (CTL) and balanced Th1/Th2 responses without upregulation of CD4(+) regulatory T cells, and protected C57BL/6 mice against PCa completely. As a therapeutic vaccine, MS2 VLP-based mRNA vaccines delayed tumor growth. Our results provide proof of concept on the efficacy and safety of MS2 VLP-based mRNA vaccine, which provides a new delivery approach for mRNA vaccine and implies important clinical value for the prevention and therapy of PCa.

  14. [The public health importance of vaccinations in the elderly: an evidence-based guide].

    Science.gov (United States)

    Kuhdari, Parvanè; Zorzoli, Ermanno; D'Alò, Gian Loreto; Brosio, Federica; Bonanni, Paolo; Valente, Stefano; Gabutti, Giovanni; Franco, Elisabetta

    2016-01-01

    Ageing represents an extremely current issue globally, and involves especially European populations. It is estimated that in Europe by the year 2025, about a third of the population will be over 60 years of age, hence the imperative for "healthy ageing". Vaccinations in seniors, in contrast with paediatric vaccinations, are very often neglected even by health care workers. This article aims to provide an evidence-based guide to establish vaccinations in seniors as one of the pillars of Public Health in the future.

  15. Progress and challenges in the vaccine-based treatment of head and neck cancers

    Directory of Open Access Journals (Sweden)

    Venuti Aldo

    2009-05-01

    Full Text Available Abstract Head and neck (HN cancer represents one of the most challenging diseases because the mortality remains high despite advances in early diagnosis and treatment. Although vaccine-based approaches for the treatment of advanced squamous cell carcinoma of the head and neck have achieved limited clinical success, advances in cancer immunology provide a strong foundation and powerful new tools to guide current attempts to develop effective cancer vaccines. This article reviews what has to be rather what has been done in the field for the development of future vaccines in HN tumours.

  16. Designing Peptide-Based HIV Vaccine for Chinese

    Directory of Open Access Journals (Sweden)

    Jiayi Shu

    2014-01-01

    Full Text Available CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese.

  17. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Science.gov (United States)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  18. Bioreactor concepts for cell culture-based viral vaccine production.

    Science.gov (United States)

    Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo

    2015-01-01

    Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.

  19. Major findings and recent advances in virus-like particle (VLP)-based vaccines.

    Science.gov (United States)

    Mohsen, Mona O; Zha, Lisha; Cabral-Miranda, Gustavo; Bachmann, Martin F

    2017-09-05

    Virus-like particles (VLPs) have made giant strides in the field of vaccinology over the last three decades. VLPs constitute versatile tools in vaccine development due to their favourable immunological characteristics such as their size, repetitive surface geometry, ability to induce both innate and adaptive immune responses as well as being safe templates with favourable economics. Several VLP-based vaccines are commercially available including vaccines against Human Papilloma Virus (HPV) such as Cervarix(®), Gardasil(®) & Gardasil9(®) and Hepatitis B Virus (HBV) including the 3rd generation Sci-B-Vac™. In addition, the first licensed malaria-VLP-based vaccine Mosquirix™ has been recently approved by the European regulators. Several other VLP-based vaccines are currently undergoing preclinical and clinical development. This review summarizes some of the major findings and recent advances in VLP-based vaccine development and technologies and outlines general principles that may be harnessed for induction of targeted immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Provider dismissal policies and clustering of vaccine-hesitant families: an agent-based modeling approach.

    Science.gov (United States)

    Buttenheim, Alison M; Cherng, Sarah T; Asch, David A

    2013-08-01

    Many pediatric practices have adopted vaccine policies that require parents who refuse to vaccinate according to the ACIP schedule to find another health care provider. Such policies may inadvertently cluster unvaccinated patients into practices that tolerate non vaccination or alternative schedules, turning them into risky pockets of low herd immunity. The objective of this study was to assess the effect of provider zero-tolerance vaccination policies on the clustering of intentionally unvaccinated children. We developed an agent-based model of parental vaccine hesitancy, provider non-vaccination tolerance, and selection of patients into pediatric practices. We ran 84 experiments across a range of parental hesitancy and provider tolerance scenarios. When the model is initialized, all providers accommodate refusals and intentionally unvaccinated children are evenly distributed across providers. As provider tolerance decreases, hesitant children become more clustered in a smaller number of practices and eventually are not able to find a practice that will accept them. Each of these effects becomes more pronounced as the level of hesitancy in the population rises. Heterogeneity in practice tolerance to vaccine-hesitant parents has the unintended result of concentrating susceptible individuals within a small number of tolerant practices, while providing little if any compensatory protection to adherent individuals. These externalities suggest an agenda for stricter policy regulation of individual practice decisions.

  1. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection.

    Science.gov (United States)

    Sack, Brandon; Kappe, Stefan H I; Sather, D Noah

    2017-05-01

    An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.

  2. Next-generation outer membrane vesicle vaccines against Neisseria meningitidis based on nontoxic LPS mutants.

    Science.gov (United States)

    van der Ley, Peter; van den Dobbelsteen, Germie

    2011-08-01

    Outer membrane vesicles (OMVs) have been used extensively as experimental vaccines against Neisseria meningitidis. Classical meningococcal OMV vaccines contain wildtype lipopolysaccharide (LPS) with a hexa-acylated lipid A moiety, which is a very potent activator of the TLR4 receptor. While this may make the LPS an effective "internal" adjuvant, it also contributes to vaccine reactogenicity. Reduction of endotoxic activity has therefore been essential for the application of meningococcal OMV vaccines in humans. Classical OMV vaccines have a reduced LPS content as a result of detergent extraction, mostly with deoxycholate. An alternative method is the use of meningococcal strains with genetically detoxified LPS, in particular where mutation in the lpxL1 gene has resulted in penta-acylated lipid A with strongly attenuated endotoxic activity. This allows the use of native OMVs without any need for LPS removal by detergent extraction, making it a much easier to produce and more versatile vaccine platform. Several groups have now started the development of native OMV vaccines based on non-toxic LPS mutants, and this Commentary provides an overview of the various approaches and results thus far.

  3. The case for a rational genome-based vaccine against malaria

    Directory of Open Access Journals (Sweden)

    Carla eProietti

    2015-01-01

    Full Text Available Historically, vaccines have been designed to mimic the immunity induced by natural exposure to the target pathogen, but this approach has not been effective for any parasitic pathogens of humans or complex pathogens that cause chronic disease in humans, such as Plasmodium. Despite intense efforts by many laboratories around the world on different aspects of Plasmodium spp. molecular and cell biology, epidemiology and immunology, progress towards the goal of an effective malaria vaccine has been disappointing. The premise of rational vaccine design is to induce the desired immune response against the key pathogen antigens or epitopes targeted by protective immune responses. We advocate that development of an optimally efficacious malaria vaccine will need to improve on nature, and that this can be accomplished by rational vaccine design facilitated by mining genomic, proteomic and transcriptomic datasets in the context of relevant biological function. In our opinion, modern genome-based rational vaccine design offers enormous potential above and beyond that of whole-organism vaccines approaches established over 200 years ago where immunity is likely suboptimal due to the many genetic and immunological host-parasite adaptations evolved to allow the Plasmodium parasite to coexist in the human host, and which are associated with logistic and regulatory hurdles for production and delivery.

  4. Rotavirus vaccination and herd immunity: an evidence-based review

    Directory of Open Access Journals (Sweden)

    Seybolt LM

    2012-06-01

    Full Text Available Lorna M Seybolt, Rodolfo E BéguéDepartment of Pediatrics, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, USAAbstract: Until recently, rotavirus was the most common cause of diarrhea in infants and young children with over 100 million cases and 400,000 deaths every year worldwide. Yet, its epidemiology is changing rapidly with the introduction of two rotavirus vaccines in the mid 2000s. Both vaccines were shown to be highly efficacious in prelicensure studies to reduce severe rotavirus disease; the efficacy being more pronounced in high- and middle-income countries than in low-income countries. Herd immunity – the indirect protection of unimmunized individuals as a result of others being immunized – was not expected to be a benefit of rotavirus vaccination programs since the vaccines were thought to reduce severe disease but not to decrease virus transmission significantly. Postlicensure studies, however, have suggested that this assumption may need reassessment. Studies in a variety of settings have shown evidence of greater than expected declines in rotavirus disease. While these studies were not designed specifically to detect herd immunity – and few failed to detect this phenomenon – the consistency of the evidence is compelling. These studies are reviewed and described here. While further work is needed, clarifying the presence of herd immunity is not just an academic exercise but an important issue for rotavirus control, especially in lower income countries where the incidence of the disease is highest and the direct protection of the vaccines is lower.Keywords: rotavirus, vaccine, herd immunity, efficacy

  5. Vaccine development for Tuberculosis: Past, Present and Future Challenges

    Directory of Open Access Journals (Sweden)

    Dileep Tiwari

    2011-06-01

    Full Text Available About one third of the world's population is infected with Mycobacterium tuberculosis (M. tb, and new infections occur at a rate of about one per second. Additionally, more people in the developed world contact tuberculosis (TB because their immune systems are more likely to be compromised due to higher exposure to immunosuppressive drugs, substance abuse, or AIDS. The distribution of tuberculosis is not uniform across the globe, still the treatment is difficult and requires long courses of multiple antibiotics. However, antibiotic resistance is a growing problem in multidrugresistant (MDR tuberculosis. But mostly the prevention relies on screening programs and vaccination, usually with Bacillus Calmette- Guérin (BCG vaccine. BCG is the most commonly used vaccine worldwide, but not as a powerful vaccine. BCG also provides some protection against severe forms of pediatric TB, but has been shown to be unreliable against adult pulmonary TB which accounts for most of the disease burden worldwide. Currently, there is an urgent need for novel, more effective vaccine that can prevent all forms of TB including drug resistant strains for all age groups and among people with HIV. The first recombinant tuberculosis vaccine rBCG30, entered clinical trials in year 2004, but, still no effective vaccine is available in a market. Study showed that DNA TB vaccine given with conventional chemotherapy can accelerate the disappearance of bacteria as well as protect against re-infection in mice and it is quite effective against TB. A very promising TB vaccine, MVA85A, is currently in phase II trials and is based on a genetically modified vaccinia virus. Many other strategies are also being used to develop novel vaccines, including both subunit vaccines such as Hybrid-1, HyVac4 or M72, and recombinant adenoviruses such as Ad35. Some of these vaccines can be effectively administered without needles making them preferable for areas where HIV is very common and few of

  6. Immunostimulation by Synthetic Lipopeptide-Based Vaccine Candidates: Structure-Activity Relationships

    OpenAIRE

    Zaman, Mehfuz; Toth, Istvan

    2013-01-01

    Peptide-based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of ad...

  7. Characterization of the immune response induced by pertussis OMVs-based vaccine.

    Science.gov (United States)

    Bottero, D; Gaillard, M E; Zurita, E; Moreno, G; Martinez, D Sabater; Bartel, E; Bravo, S; Carriquiriborde, F; Errea, A; Castuma, C; Rumbo, M; Hozbor, D

    2016-06-14

    For the development of a third generation of pertussis vaccine that could improve the control of the disease, it was proposed that the immune responses induced by the classic whole cell vaccine (wP) or after infection should be used as a reference point. We have recently identified a vaccine candidate based on outer membrane vesicles (OMVs) derived from the disease etiologic agent that have been shown to be safe and protective in mice model of infection. Here we characterized OMVs-mediated immunity and the safety of our new candidate. We also deepen the knowledge of the induced humoral response contribution in pertussis protection. Regarding the safety of the OMVs based vaccine (TdapOMVsBp,) the in vitro whole blood human assay here performed, showed that the low toxicity of OMVs-based vaccine previously detected in mice could be extended to human samples. Stimulation of splenocytes from immunized mice evidenced the presence of IFN-γ and IL-17-producing cells, indicated that OMVs induces both Th1 and Th17 response. Interestingly TdapOMVsBp-raised antibodies such as those induced by wP and commercial acellular vaccines (aP) which contribute to induce protection against Bordetella pertussis infection. As occurs with wP-induced antibodies, the TdapOMVsBp-induced serum antibodies efficiently opsonized B. pertussis. All the data here obtained shows that OMVs based vaccine is able to induce Th1/Th17 and Th2 mixed profile with robust humoral response involved in protection, positioning this candidate among the different possibilities to constitute the third generation of anti-pertussis vaccines.

  8. Vesicular Stomatitis Virus-Based Ebola Vaccine Is Well-Tolerated and Protects Immunocompromised Nonhuman Primates

    OpenAIRE

    Geisbert, Thomas W.; Daddario-DiCaprio, Kathleen M.; Lewis, Mark G.; Geisbert, Joan B.; Allen Grolla; Anders Leung; Jason Paragas; Lennox Matthias; Smith, Mark A.; Jones, Steven M.; Hensley, Lisa E.; Heinz Feldmann; Jahrling, Peter B.

    2008-01-01

    Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatmen...

  9. [Immunological safety and sensitizing effect of an MB-7-based vaccine against hepatitis A].

    Science.gov (United States)

    Smerdova, M A; Usova, S V; Smolina, M P; Netesov, S V; Maĭdaniuk, A G; Muntianova, M A; Nemtsov, Iu V; Kriuk, N I; Iashin, V V; Karpovich, L G; Kalashnikova, T V

    2004-01-01

    The influence of a vaccine based on the MB-7 strain of hepatitis A virus (VP-MB-7) designed at the "Vector" Center of Virology and Biotechnology was studied. VP-MB-7 was found to provoke no allergic response and to have an activating effect on the specific and non-specific responses of cell and humoral immunity similar to those evoked by hepatitis A vaccine "Hep-A-in Vac".

  10. Inclusion body hepatitis (IBH) outbreak associated with fowl adenovirus type 8b in broilers

    OpenAIRE

    2013-01-01

    The causative agent of inclusion body hepatitis (IBH) was identified as fowl adenovirus (FAdV) type 8b, a member of the Fowl adenovirus E species, based on PCR results of adenoviral polymerase and the hexon gene in an outbreak of acute mortality that affected a broiler flock of 12,000 animals. In two waves of elevated mortality rate, a total of 264 chickens were found dead. Affected birds showed ruffled feathers, depression, watery droppings and limping. Th...

  11. Crystal structure of human adenovirus at 3.5 Å resolution*

    OpenAIRE

    Reddy, Vijay S.; Natchiar, S. Kundhavai; Phoebe L Stewart; Nemerow, Glen R.

    2010-01-01

    Rational development of adenovirus vectors for therapeutic gene transfer is hampered by the lack of accurate structural information. Here we report the X-ray structure at 3.5 Å resolution of the 150 megadalton adenovirus capsid containing nearly 1 million amino acids. We describe interactions between the major capsid protein (hexon) and several accessory molecules that stabilize the capsid. The virus structure also reveals an altered association between the penton base and the trimeric fiber ...

  12. Adenovirus Vectors Expressing Hantavirus Proteins Protect Hamsters against Lethal Challenge with Andes Virus ▿

    OpenAIRE

    2009-01-01

    Hantaviruses infect humans following aerosolization from rodent feces and urine, producing hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Due to the high rates of mortality and lack of therapies, vaccines are urgently needed. Nonreplicating adenovirus (Ad) vectors that express Andes hantavirus (ANDV) nucleocapsid protein (AdN) or glycoproteins (AdGN and AdGC) were constructed. Ad vectors were tested for their ability to protect Syrian hamsters from a lethal ANDV infe...

  13. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens.

    Science.gov (United States)

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-02-05

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on VARV antigen sequences to induce immunity against poxvirus infection.

  14. Plant-based oral vaccines against zoonotic and non-zoonotic diseases.

    Science.gov (United States)

    Shahid, Naila; Daniell, Henry

    2016-11-01

    The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza.

    Directory of Open Access Journals (Sweden)

    Byoung-Shik Shim

    Full Text Available BACKGROUND: The ectodomain of matrix protein 2 (M2e of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n. route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l. route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. METHODS AND RESULTS: A recombinant M2 protein with three tandem copies of the M2e (3M2eC was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. CONCLUSIONS: The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.

  16. Feasibilty of oral immunisation with LTB-based edible vaccines

    NARCIS (Netherlands)

    Lauterslager, Tosca Genevieve Maria

    2003-01-01

    This thesis describes the research to explore the feasibility of plants for oral vaccination. The research focussed on a model of LTB produced in potato tubers or ovalbumin (OVA) as antigen and tested in mice. A general introduction into the backgrounds of oral immunisation is given in Chapter 1. Th

  17. Vaccine-based clinical trials in ovarian cancer

    NARCIS (Netherlands)

    Leffers, Ninke; Daemen, Toos; Boezen, H. Marike; Melief, Kees J. M.; Nijman, Hans W.

    2011-01-01

    Ovarian cancer vaccines are one of the new treatment strategies under investigation in epithelial ovarian cancer. This article discusses the results of different immunization strategies, points out potential pitfalls in study designs and provides possible solutions for augmentation of clinical effic

  18. Universal or Specific? A Modeling-Based Comparison of Broad-Spectrum Influenza Vaccines against Conventional, Strain-Matched Vaccines.

    Directory of Open Access Journals (Sweden)

    Rahul Subramanian

    2016-12-01

    Full Text Available Despite the availability of vaccines, influenza remains a major public health challenge. A key reason is the virus capacity for immune escape: ongoing evolution allows the continual circulation of seasonal influenza, while novel influenza viruses invade the human population to cause a pandemic every few decades. Current vaccines have to be updated continually to keep up to date with this antigenic change, but emerging 'universal' vaccines-targeting more conserved components of the influenza virus-offer the potential to act across all influenza A strains and subtypes. Influenza vaccination programmes around the world are steadily increasing in their population coverage. In future, how might intensive, routine immunization with novel vaccines compare against similar mass programmes utilizing conventional vaccines? Specifically, how might novel and conventional vaccines compare, in terms of cumulative incidence and rates of antigenic evolution of seasonal influenza? What are their potential implications for the impact of pandemic emergence? Here we present a new mathematical model, capturing both transmission dynamics and antigenic evolution of influenza in a simple framework, to explore these questions. We find that, even when matched by per-dose efficacy, universal vaccines could dampen population-level transmission over several seasons to a greater extent than conventional vaccines. Moreover, by lowering opportunities for cross-protective immunity in the population, conventional vaccines could allow the increased spread of a novel pandemic strain. Conversely, universal vaccines could mitigate both seasonal and pandemic spread. However, where it is not possible to maintain annual, intensive vaccination coverage, the duration and breadth of immunity raised by universal vaccines are critical determinants of their performance relative to conventional vaccines. In future, conventional and novel vaccines are likely to play complementary roles in

  19. Vaccines expressing the innate immune modulator EAT-2 elicit potent effector memory T lymphocyte responses despite pre-existing vaccine immunity.

    Science.gov (United States)

    Aldhamen, Yasser Ali; Seregin, Sergey S; Schuldt, Nathaniel J; Rastall, David P W; Liu, Chyong-Jy J; Godbehere, Sarah; Amalfitano, Andrea

    2012-08-01

    The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines. We recently confirmed that EAT-2-expressing rAd5 vectors uniquely activate the innate immune system and improve cellular immune responses against rAd5-expressed Ags, inclusive of HIV/Gag. In this study, we report that use of the rAd5-EAT-2 vaccine can also induce potent cellular immune responses to HIV-1 Ags despite the presence of Ad5-specific immunity. Compared to controls expressing a mutant SH2 domain form of EAT-2, Ad5 immune mice vaccinated with an rAd5-wild-type EAT-2 HIV/Gag-specific vaccine formulation significantly facilitated the induction of several arms of the innate immune system. These responses positively correlated with an improved ability of the vaccine to induce stronger effector memory T cell-biased, cellular immune responses to a coexpressed Ag despite pre-existing anti-Ad5 immunity. Moreover, inclusion of EAT-2 in the vaccine mixture improves the generation of polyfunctional cytolytic CD8(+) T cell responses as characterized by enhanced production of IFN-γ, TNF-α, cytotoxic degranulation, and increased in vivo cytolytic activity. These data suggest a new approach whereby inclusion of EAT-2 expression in stringent human vaccination applications can provide a more effective vaccine against HIV-1 specifically in Ad5 immune subjects.

  20. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Shu Ki Tsoi

    2015-01-01

    Full Text Available Group A streptococcus (GAS is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.

  1. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of

  2. Stimulation of innate immunity by in vivo cyclic di-GMP synthesis using adenovirus.

    Science.gov (United States)

    Koestler, Benjamin J; Seregin, Sergey S; Rastall, David P W; Aldhamen, Yasser A; Godbehere, Sarah; Amalfitano, Andrea; Waters, Christopher M

    2014-11-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesized in vivo by transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMP in vitro and in vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to a Clostridium difficile antigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination.

  3. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat...

  4. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines.

    Science.gov (United States)

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela; Van Der Wielen, Marie

    2016-07-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  5. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  6. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System.

    Science.gov (United States)

    Banik, Sukalyani; Mansour, Ahd Ahmed; Suresh, Ragavan Varadharajan; Wykoff-Clary, Sherri; Malik, Meenakshi; McCormick, Alison A; Bakshi, Chandra Shekhar

    2015-01-01

    Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV) based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA), chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100) doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  7. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV Based Delivery System.

    Directory of Open Access Journals (Sweden)

    Sukalyani Banik

    Full Text Available Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA, chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100 doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  8. Acceptability and uptake of HPV vaccine in Argentina before its inclusion in the immunization program: a population-based survey.

    Science.gov (United States)

    Arrossi, Silvina; Maceira, Veronica; Paolino, Melisa; Sankaranarayanan, Rengaswamy

    2012-03-23

    In Argentina, human papillomavirus (HPV) vaccination was approved in 2006, but not included in the National Immunization Program. In 2008 a mass media campaign was carried out by a cancer Non-Governmental Organization (NGO), but it was stopped due to criticisms about the publicity. In October 2011 the Ministry of Health (MoH) has introduced HPV vaccination in the National Immunization Program. In this context, to assure high HPV vaccine coverage, evidence is needed on factors both associated to vaccine acceptability and uptake. In 2009-2010 we carried out a population-based survey among a representative sample of 1200 women aged 18-49 years from the Metropolitan Area of Buenos Aires. The objective was twofold: first to analyze socio-demographic determinants of women's knowledge on HPV vaccine and secondly, determinants of actual HPV vaccine uptake and acceptability in Argentina after the above-mentioned vaccine advertising shown in mass media in the year 2008. We analyzed vaccine uptake/acceptability separately for women and for their daughters aged 9-15, and willingness to vaccinate one's daughter younger than 9 to receive future HPV vaccination. Results of the 1200 women interviewed, 438 women (36.5%) knew the HPV vaccine and 303 (25%) remembered the mass media advertisement about HPV vaccination. When asked whether she would get vaccinated after having seen/heard the advertisement, around 75% (n=226) of women answered surely/probably yes. No significant differences in socio-demographic characteristics were found among women who would or not get vaccinated. When surveyed, 6 women had been vaccinated. Main reasons for non-vaccination were: "Doctor did not mention/recommend it" (34.1%) and "Vaccine is too expensive" (15.7%). No woman had had their 9-15 year-old daughter vaccinated. Among women who only had at least one daughter under 9 (n=278), 74% answered that they would get their daughter vaccinated if they were pre-adolescents. The conclusion is that, in

  9. Vaccination in adult patients with auto-immune inflammatory rheumatic diseases : A systematic literature review for the European League Against Rheumatism evidence-based recommendations for vaccination in adult patients with auto-immune inflammatory rheumatic diseases

    NARCIS (Netherlands)

    van Assen, S.; Elkayam, O.; Agmon-Levin, N.; Cervera, R.; Doran, M. F.; Dougados, M.; Emery, P.; Geborek, P.; Ioannidis, J. P. A.; Jayne, D. R. W.; Kallenberg, C. G. M.; Mueller-Ladner, U.; Shoenfeld, Y.; Stojanovich, L.; Valesini, G.; Wulffraat, N. M.; Bijl, M.

    2011-01-01

    Objectives: To present the systematic literature review (SLR), which formed the basis for the European League Against Rheumatism (EULAR) evidence-based recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases (AIIRD). Methods: AIIRD, vaccines and immunomodula

  10. Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: A population-based study.

    Science.gov (United States)

    Herweijer, Eva; Sundström, Karin; Ploner, Alexander; Uhnoo, Ingrid; Sparén, Pär; Arnheim-Dahlström, Lisen

    2016-06-15

    Human papillomavirus (HPV) types 16/18, included in HPV vaccines, contribute to the majority of cervical cancer, and a substantial proportion of cervical intraepithelial neoplasia (CIN) grades 2/3 or worse (CIN2+/CIN3+) including adenocarcinoma in situ or worse. The aim of this study was to quantify the effect of quadrivalent HPV (qHPV) vaccination on incidence of CIN2+ and CIN3+. A nationwide cohort of girls and young women resident in Sweden 2006-2013 and aged 13-29 (n = 1,333,691) was followed for vaccination and histologically confirmed high-grade cervical lesions. Data were collected using the Swedish nationwide healthcare registers. Poisson regression was used to calculate incidence rate ratios (IRRs) and vaccine effectiveness [(1-IRR)x100%] comparing fully vaccinated with unvaccinated individuals. IRRs were adjusted for attained age and parental education, and stratified on vaccination initiation age. Effectiveness against CIN2+ was 75% (IRR = 0.25, 95%CI = 0.18-0.35) for those initiating vaccination before age 17, and 46% (IRR = 0.54, 95%CI = 0.46-0.64) and 22% (IRR = 0.78, 95%CI = 0.65-0.93) for those initiating vaccination at ages 17-19, and at ages 20-29, respectively. Vaccine effectiveness against CIN3+ was similar to vaccine effectiveness against CIN2+. Results were robust for both women participating to the organized screening program and for women at prescreening ages. We show high effectiveness of qHPV vaccination on CIN2+ and CIN3+ lesions, with greater effectiveness observed in girls younger at vaccination initiation. Continued monitoring of impact of HPV vaccination in the population is needed in order to evaluate both long-term vaccine effectiveness and to evaluate whether the vaccination program achieves anticipated effects in prevention of invasive cervical cancer.

  11. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice.

    Science.gov (United States)

    Chen, Zhenhai; Gupta, Tuhina; Xu, Pei; Phan, Shannon; Pickar, Adrian; Yau, Wilson; Karls, Russell K; Quinn, Frederick D; Sakamoto, Kaori; He, Biao

    2015-12-16

    Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an important human pathogen. Bacillus Calmette-Guérin (BCG), a live, attenuated variant of Mycobacterium bovis, is currently the only available TB vaccine despite its low efficacy against the infectious pulmonary form of the disease in adults. Thus, a more-effective TB vaccine is needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, has several characteristics that make it an attractive vaccine vector. It is safe, inexpensive to produce, and has been previously shown to be efficacious as the backbone of vaccines for influenza, rabies, and respiratory syncytial virus. In this work, recombinant PIV5 expressing M. tuberculosis antigens 85A (PIV5-85A) and 85B (PIV5-85B) have been generated and their immunogenicity and protective efficacy evaluated in a mouse aerosol infection model. In a long-term protection study, a single dose of PIV5-85A was found to be most effective in reducing M. tuberculosis colony forming units (CFU) in lungs when compared to unvaccinated, whereas the BCG vaccinated animals had similar numbers of CFUs to unvaccinated animals. BCG-prime followed by a PIV5-85A or PIV5-85B boost produced better outcomes highlighted by close to three-log units lower lung CFUs compared to PBS. The results indicate that PIV5-based M. tuberculosis vaccines are promising candidates for further development.

  12. DEVELOPMENT OF VACCINES BASED ON ADENOVIRAL VECTORS: A REVIEW OF FOREIGN CLINICAL STUDIES (PART 2

    Directory of Open Access Journals (Sweden)

    L. V. Cherenova

    2017-01-01

    Full Text Available Currently, many human infectious diseases do not developed effective methods of treatment and prevention. One of the latest successes of biotechnology is the use of adenoviral vectors carrying immunodominant antigens  of various pathogens as genetically engineered vaccines  both  preventive and therapeutic. The use of genetic  engineering technologies allows not  to use in the  manufacture of vaccines  live viruses and  bacteria, reduces  the  time  needed for vaccine  creation and  production of new vaccines.  Adenoviral vectors  naturally penetrate into human cells, causing a rather  long and significant  both humoral and cellular immune response. In the second  part of review, we provide  information about  the ongoing  worldwide  clinical  trials of adenoviral vector-based vaccines against various infectious diseases such as influenza, malaria, Ebola haemorrhagic fever, tuberculosis, hepatitis and  several others, like as to consider selection parameters of volunteers, vaccination schedule, doses of drug administration, results of completed experiments, and preliminary data  on currently ongoing  research.

  13. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

    Directory of Open Access Journals (Sweden)

    Peter M Ferguson

    Full Text Available Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.

  14. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  15. TAA Polyepitope DNA-Based Vaccines: A Potential Tool for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Roberto Bei

    2010-01-01

    Full Text Available DNA-based cancer vaccines represent an attractive strategy for inducing immunity to tumor associated antigens (TAAs in cancer patients. The demonstration that the delivery of a recombinant plasmid encoding epitopes can lead to epitope production, processing, and presentation to CD8+ T-lymphocytes, and the advantage of using a single DNA construct encoding multiple epitopes of one or more TAAs to elicit a broad spectrum of cytotoxic T-lymphocytes has encouraged the development of a variety of strategies aimed at increasing immunogenicity of TAA polyepitope DNA-based vaccines. The polyepitope DNA-based cancer vaccine approach can (a circumvent the variability of peptide presentation by tumor cells, (b allow the introduction in the plasmid construct of multiple immunogenic epitopes including heteroclitic epitope versions, and (c permit to enroll patients with different major histocompatibility complex (MHC haplotypes. This review will discuss the rationale for using the TAA polyepitope DNA-based vaccination strategy and recent results corroborating the usefulness of DNA encoding polyepitope vaccines as a potential tool for cancer therapy.

  16. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models

    Directory of Open Access Journals (Sweden)

    Soledad eMac Keon

    2015-05-01

    Full Text Available Dendritic cells (DCs play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel T there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts towards an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.

  17. Dendritic Cell-Based Vaccination in Cancer: Therapeutic Implications Emerging from Murine Models

    Science.gov (United States)

    Mac Keon, Soledad; Ruiz, María Sol; Gazzaniga, Silvina; Wainstok, Rosa

    2015-01-01

    Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment. PMID:26042126

  18. Vaccination: Developing and implementing a competency-based-curriculum at the Medical Faculty of LMU Munich

    Science.gov (United States)

    Vogel, B.; Reuter, S.; Taverna, M.; Fischer, M. R.; Schelling, J.

    2016-01-01

    Background: In Germany medical students should gain proficiency and specific skills in the vaccination field. Especially important is the efficient communication of scientific results about vaccinations to the community, in order to give professional counseling with a complete overview about therapeutic options. Aim of the project: The aim of this project is to set up a vaccination-related curriculum in the Medical Faculty at the Ludwig-Maximilians-University in Munich. The structure of the curriculum is based on the National catalogue for competency-based learning objectives in the field of vaccination (Nationaler Kompetenzbasierter Lernzielekatalog Medizin NKLM). Through this curriculum, the students will not only acquire the classical educational skills concerning vaccination in theory and practice, but they will also learn how to become independent in the decision-making process and counseling. Moreover, the students will become aware of consequences of action related to this specific topic. Methods: According to defined guidelines, an analysis was performed on courses, which are currently offered by the university. A separate analysis of the NKLM was carried out. Both analyses identified the active courses related to the topic of vaccination as well as the NKLM learning objectives. The match between the topics taught in current courses and the NKLM learning objectives identified gaps concerning the teaching of specific content. Courses were modified in order to implement the missing NKLM learning objectives. Results: These analyses identified 24 vaccination-related courses, which are currently taught at the University. Meanwhile, 35 learning objectives on vaccination were identified in the NKLM catalogue. Four of which were identified as not yet part of the teaching program. In summary, this interdisciplinary work enabled the development of a new vaccination-related curriculum, including 35 learning objectives, which are now implemented in regular teaching

  19. Vaccination: Developing and implementing a competency-based-curriculum at the Medical Faculty of LMU Munich

    Directory of Open Access Journals (Sweden)

    Vogel, B.

    2016-02-01

    Full Text Available Background: In Germany medical students should gain proficiency and specific skills in the vaccination field. Especially important is the efficient communication of scientific results about vaccinations to the community, in order to give professional counseling with a complete overview about therapeutic options.Aim of the project: The aim of this project is to set up a vaccination-related curriculum in the Medical Faculty at the Ludwig-Maximilians-University in Munich. The structure of the curriculum is based on the National catalogue for competency-based learning objectives in the field of vaccination (Nationaler Kompetenzbasierter Lernzielekatalog Medizin NKLM. Through this curriculum, the students will not only acquire the classical educational skills concerning vaccination in theory and practice, but they will also learn how to become independent in the decision-making process and counseling. Moreover, the students will become aware of consequences of action related to this specific topic.Methods: According to defined guidelines, an analysis was performed on courses, which are currently offered by the university. A separate analysis of the NKLM was carried out. Both analyses identified the active courses related to the topic of vaccination as well as the NKLM learning objectives. The match between the topics taught in current courses and the NKLM learning objectives identified gaps concerning the teaching of specific content. Courses were modified in order to implement the missing NKLM learning objectives.Results: These analyses identified 24 vaccination-related courses, which are currently taught at the University. Meanwhile, 35 learning objectives on vaccination were identified in the NKLM catalogue. Four of which were identified as not yet part of the teaching program. In summary, this interdisciplinary work enabled the development of a new vaccination-related curriculum, including 35 learning objectives, which are now implemented in

  20. Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and DeltaE1B adenovirus replication in human cells.

    Science.gov (United States)

    Steegenga, W T; Riteco, N; Bos, J L

    1999-09-09

    An adenovirus mutant lacking the expression of the large E1B protein (DeltaE1B) has been reported to replicate selectively in cells lacking the expression of functionally wild-type (wt) p53. Based on these results the DeltaE1B or ONYX-015 virus has been proposed to be an oncolytic virus which might be useful to treat p53-deficient tumors. Recently however, contradictory results have been published indicating that p53-dependent cell death is required for productive adenovirus infection. Since there is an urgent need for new methods to treat aggressive, mutant p53-expressing primary tumors and their metastases we carefully examined adenovirus replication in human cells to determine whether or not the DeltaE1B virus can be used for tumor therapy. The results we present here show that not all human tumor cell lines take up adenovirus efficiently. In addition, we observed inhibition of the expression of adenovirus early proteins in tumor cells. We present evidence that these two factors rather than the p53 status of the cell determine whether adenovirus infection results in lytic cell death. Furthermore, the results we obtained by infecting a panel of different tumor cell lines show that viral spread of the DeltaE1B is strongly inhibited in almost all p53-proficient and -deficient cell lines compared to the wt virus. We conclude that the efficiency of the DeltaE1B virus to replicate efficiently in tumor cells is determined by the ability to infect cells and to express the early adenovirus proteins rather than the status of p53.

  1. Predicting population coverage of T-cell epitope-based diagnostics and vaccines

    Directory of Open Access Journals (Sweden)

    Newman Mark J

    2006-03-01

    Full Text Available Abstract Background T cells recognize a complex between a specific major histocompatibility complex (MHC molecule and a particular pathogen-derived epitope. A given epitope will elicit a response only in individuals that express an MHC molecule capable of binding that particular epitope. MHC molecules are extremely polymorphic and over a thousand different human MHC (HLA alleles are known. A disproportionate amount of MHC polymorphism occurs in positions constituting the peptide-binding region, and as a result, MHC molecules exhibit a widely varying binding specificity. In the design of peptide-based vaccines and diagnostics, the issue of population coverage in relation to MHC polymorphism is further complicated by the fact that different HLA types are expressed at dramatically different frequencies in different ethnicities. Thus, without careful consideration, a vaccine or diagnostic with ethnically biased population coverage could result. Results To address this issue, an algorithm was developed to calculate, on the basis of HLA genotypic frequencies, the fraction of individuals expected to respond to a given epitope set, diagnostic or vaccine. The population coverage estimates are based on MHC binding and/or T cell restriction data, although the tool can be utilized in a more general fashion. The algorithm was implemented as a web-application available at http://epitope.liai.org:8080/tools/population. Conclusion We have developed a web-based tool to predict population coverage of T-cell epitope-based diagnostics and vaccines based on MHC binding and/or T cell restriction data. Accordingly, epitope-based vaccines or diagnostics can be designed to maximize population coverage, while minimizing complexity (that is, the number of different epitopes included in the diagnostic or vaccine, and also minimizing the variability of coverage obtained or projected in different ethnic groups.

  2. Anti-Viral Drugs for Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Chor Wing Sing

    2010-10-01

    Full Text Available There are many stages in the development of a new drug for viral infection and such processes are even further complicated for adenovirus by the fact that there are at least 51 serotypes, forming six distinct groups (A–F, with different degree of infectivity. This review attempts to address the importance of developing pharmaceuticals for adenovirus and also review recent development in drug discovery for adenovirus, including newer strategies such as microRNA approaches. Different drug screening strategies will also be discussed.

  3. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  4. Construction and Application of Newcastle Disease Virus-Based Vector Vaccines.

    Science.gov (United States)

    Wichgers Schreur, Paul J

    2016-01-01

    Paramyxoviruses are able to stably express a wide-variety of heterologous antigens at relatively high levels in various species and are consequently considered as potent gene delivery vehicles. A single vaccination is frequently sufficient for the induction of robust humoral and cellular immune responses. Here we provide detailed methods for the construction and application of Newcastle disease virus (NDV)-based vector vaccines. The in silico design and in vitro rescue as well as the in vivo evaluation of NDV based vectors are described in this chapter.

  5. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S

    2008-01-01

    Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...... on dendritic cells pulsed with an allogenic tumor cell lysate. Twenty patients with advanced colorectal cancer were consecutively enrolled. Dendritic cells (DC) were generated from autologous peripheral blood mononuclear cells and pulsed with allogenic tumor cell lysate containing high levels of cancer...

  6. Introducing Vi polysaccharide typhoid fever vaccine to primary school children in North Jakarta, Indonesia, via an existent school-based vaccination platform.

    Science.gov (United States)

    Agtini, M D; Ochiai, R L; Soeharno, R; Lee, H J; Sundoro, J; Hadinegoro, S R; Han, O P; Tana, L; Halim, F X S; Ghani, L; Delima; Lestari, W; Sintawati, F X; Kusumawardani, N; Malik, R; Santoso, T S; Nadjib, M; Soeroso, S; Wangsasaputra, F; Ali, M; Ivanoff, B; Galindo, C M; Pang, T; Clemens, J D; Suwandono, A; Acosta, C J

    2006-11-01

    To report results on coverage, safety and logistics of a large-scale, school-based Vi polysaccharide immunization campaign in North Jakarta. Of 443 primary schools in North Jakarta, Indonesia, 18 public schools were randomly selected for this study. Exclusion criteria were fever 37.5 degrees C or higher at the time of vaccination or a known history of hypersensitivity to any vaccine. Adverse events were monitored and recorded for 1 month after immunization. Because this was a pilot programme, resource use was tracked in detail. During the February 2004 vaccination campaign, 4828 students were immunized (91% of the target population); another 394 students (7%) were vaccinated during mop-up programmes. Informed consent was obtained for 98% of the target population. In all, 34 adverse events were reported, corresponding to seven events per 1000 doses injected; none was serious. The manufacturer recommended cold chain was maintained throughout the programme. This demonstration project in two sub-districts of North Jakarta shows that a large-scale, school-based typhoid fever Vi polysaccharide vaccination campaign is logistically feasible, safe and minimally disruptive to regular school activities, when used in the context of an existing successful immunization platform. The project had high parental acceptance. Nonetheless, policy-relevant questions still need to be answered before implementing a widespread Vi polysaccharide vaccine programme in Indonesia.

  7. Critical Role of Autophagy in the Processing of Adenovirus Capsid-Incorporated Cancer-Specific Antigens.

    Directory of Open Access Journals (Sweden)

    Sarah R Klein

    Full Text Available Adenoviruses are highly immunogenic and are being examined as potential vectors for immunotherapy. Infection by oncolytic adenovirus is followed by massive autophagy in cancer cells. Here, we hypothesize that autophagy regulates the processing of adenoviral proteins for antigen presentation. To test this hypothesis, we first examined the presentation of viral antigens by infected cells using an antibody cocktail of viral capsid proteins. We found that viral antigens were processed by JNK-mediated autophagy, and that autophagy was required for their presentation. Consistent with these results, splenocytes isolated from virus-immunized mice were activated by infected cells in an MHC II-dependent manner. We then hypothesize that this mechanism can be utilized to generate an efficient cancer vaccine. To this end, we constructed an oncolytic virus encompassing an EGFRvIII cancer-specific epitope in the adenoviral fiber. Infection of cancer cells with this fiber-modified adenovirus resulted in recognition of infected cancer cells by a specific anti-EGFRvIII antibody. However, inhibition of autophagy drastically decreased the capability of the specific antibody to detect the cancer-related epitope in infected cells. Our data suggest that combination of adenoviruses with autophagy inducers may enhance the processing and presentation of cancer-specific antigens incorporated into capsid proteins.

  8. (13) C-metabolic flux analysis of human adenovirus infection: Implications for viral vector production.

    Science.gov (United States)

    Carinhas, Nuno; Koshkin, Alexey; Pais, Daniel A M; Alves, Paula M; Teixeira, Ana P

    2017-01-01

    Adenoviruses are human pathogens increasingly used as gene therapy and vaccination vectors. However, their impact on cell metabolism is poorly characterized. We performed carbon labeling experiments with [1,2-(13) C]glucose or [U-(13) C]glutamine to evaluate metabolic alterations in the amniocyte-derived, E1-transformed 1G3 cell line during production of a human adenovirus type 5 vector (AdV5). Nonstationary (13) C-metabolic flux analysis revealed increased fluxes of glycolysis (17%) and markedly PPP (over fourfold) and cytosolic AcCoA formation (nearly twofold) following infection of growing cells. Interestingly, infection of growth-arrested cells increased overall carbon flow even more, including glutamine anaplerosis and TCA cycle activity (both over 1.5-fold), but was unable to stimulate the PPP and was associated with a steep drop in AdV5 replication (almost 80%). Our results underscore the importance of nucleic and fatty acid biosynthesis for adenovirus replication. Overall, we portray a metabolic blueprint of human adenovirus infection, highlighting similarities with other viruses and cancer, and suggest strategies to improve AdV5 production. Biotechnol. Bioeng. 2017;114: 195-207. © 2016 Wiley Periodicals, Inc.

  9. Peptide-based subunit vaccine against hookworm infection.

    Directory of Open Access Journals (Sweden)

    Mariusz Skwarczynski

    Full Text Available Hookworms infect more people than HIV and malaria combined, predominantly in third world countries. Treatment of infection with chemotherapy can have limited efficacy and re-infections after treatment are common. Heavy infection often leads to debilitating diseases. All these factors suggest an urgent need for development of vaccine. In an attempt to develop a vaccine targeting the major human hookworm, Necator americanus, a B-cell peptide epitope was chosen from the apical enzyme in the hemoglobin digestion cascade, the aspartic protease Na-APR-1. The A(291Y alpha helical epitope is known to induce neutralizing antibodies that inhibit the enzymatic activity of Na-APR-1, thus reducing the capacity for hookworms to digest hemoglobin and obtain nutrients. A(291Y was engineered such that it was flanked on both termini by a coil-promoting sequence to maintain native conformation, and subsequently incorporated into a Lipid Core Peptide (LCP self-adjuvanting system. While A(291Y alone or the chimeric epitope with or without Freund's adjuvants induced negligible IgG responses, the LCP construct incorporating the chimeric peptide induced a strong IgG response in mice. Antibodies produced were able to bind to and completely inhibit the enzymatic activity of Na-APR-1. The results presented show that the new chimeric LCP construct can induce effective enzyme-neutralising antibodies in mice, without the help of any additional toxic adjuvants. This approach offers promise for the development of vaccines against helminth parasites of humans and their livestock and companion animals.

  10. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    DEFF Research Database (Denmark)

    Burgdorf, Stefan; Claesson, Mogens; Nielsen, Hans

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction...... of responding patients. The aim of this study was to evaluate cytokine and biomarker responses in patients with colorectal cancer treated with a cancer vaccine based on dendritic cells pulsed with an allogeneic melanoma cell lysate. Material and methods. Plasma and serum samples were collected prior......-inflammatory cytokines in serum of patients who achieved stable disease following vaccination suggest the occurrence of vaccine-induced Th1 responses. Since Th1 responses seem to be essential in cancer immunotherapy this may indicate a therapeutic potential of the vaccine....

  11. A novel and simple method for construction of recombinant adenoviruses.

    Science.gov (United States)

    Tan, Rong; Li, Chunhua; Jiang, Sijing; Ma, Lixin

    2006-07-19

    Recombinant adenoviruses have been widely used for various applications, including protein expression and gene therapy. We herein report a new and simple cloning approach to an efficient and robust construction of recombinant adenoviral genomes based on the mating-assisted genetically integrated cloning (MAGIC) strategy. The production of recombinant adenovirus serotype 5-based vectors was greatly facilitated by the use of the MAGIC procedure and the development of the Adeasy adenoviral vector system. The recombinant adenoviral plasmid can be generated by a direct and seamless substitution, which replaces the stuff fragment in a full-length adenoviral genome with the gene of interest in a small plasmid in Escherichia coli. Recombinant adenoviral plasmids can be rapidly constructed in vivo by using the new method, without manipulations of the large adenoviral genome. In contrast to other traditional systems, it reduces the need for multiple in vitro manipulations, such as endonuclease cleavage, ligation and transformation, thus achieving a higher efficiency with negligible background. This strategy has been proven to be suitable for constructing an adenoviral cDNA expression library. In summary, the new method is highly efficient, technically less demanding and less labor-intensive for constructing recombinant adenoviruses, which will be beneficial for functional genomic and proteomic researches in mammalian cells.

  12. Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus.

    Science.gov (United States)

    Ghaffar, Khairunnisa Abdul; Marasini, Nirmal; Giddam, Ashwini Kumar; Batzloff, Michael R; Good, Michael F; Skwarczynski, Mariusz; Toth, Istvan

    2016-09-01

    Group A streptococcus (GAS), an exclusively human pathogen, causes a wide range of diseases ranging from trivial to life threatening. Treatment of infection is often ineffective following entry of bacteria into the bloodstream. To date, there is no vaccine available against GAS. In this study, cationic liposomes encapsulating lipopeptide-based vaccine candidates against GAS have been employed for intranasal vaccine delivery. Cationic liposomes were prepared with dimethyldioctadecylammonium bromide (DDAB) using the film hydration method. Female Swiss mice were immunized intranasally with the liposomes. In contrast to unmodified peptides, lipopeptides entrapped by liposomes induced both mucosal and systemic immunity, IgA and IgG (IgG1 and IgG2a) production in mice, respectively. High levels of antibody (IgA and IgG) titres were detected even five months post immunization. Thus, the combination of lipopeptides and liposomes generates a very promising delivery system for intranasal vaccines. Group A streptococcus, causing rheumatic heart diseases, kills approximately half a million people annually. There is no vaccine available against the infection. Mucosal immunity is vital in ensuring an individual is protected as this gram positive bacteria initially colonizes at the throat. Herein, we demonstrated that lipopeptides entrapped by liposomes induced both mucosal and systemic immunity. High levels of antibody (IgA and IgG) titres were detected even five months post immunization and lead vaccine candidate was able to induce humoral immune responses even after single immunization. Thus, the combination of lipopeptides and liposomes generates a very promising delivery system for intranasal vaccines. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Thomas W Geisbert

    2008-11-01

    Full Text Available Ebola virus (EBOV is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV. All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.

  14. Strain Selection for Generation of O-Antigen-Based Glycoconjugate Vaccines against Invasive Nontyphoidal Salmonella Disease.

    Directory of Open Access Journals (Sweden)

    Luisa Lanzilao

    Full Text Available Nontyphoidal Salmonellae, principally S. Typhimurium and S. Enteritidis, are a major cause of invasive bloodstream infections in sub-Saharan Africa with no vaccine currently available. Conjugation of lipopolysaccharide O-antigen to a carrier protein constitutes a promising vaccination strategy. Here we describe a rational process to select the most appropriate isolates of Salmonella as source of O-antigen for developing a bivalent glycoconjugate vaccine. We screened a library of 30 S. Typhimurium and 21 S. Enteritidis in order to identify the most suitable strains for large scale O-antigen production and generation of conjugate vaccines. Initial screening was based on growth characteristics, safety profile of the isolates, O-antigen production, and O-antigen characteristics in terms of molecular size, O-acetylation and glucosylation level and position, as determined by phenol sulfuric assay, NMR, HPLC-SEC and HPAEC-PAD. Three animal isolates for each serovar were identified and used to synthesize candidate glycoconjugate vaccines, using CRM197 as carrier protein. The immunogenicity of these conjugates and the functional activity of the induced antibodies was investigated by ELISA, serum bactericidal assay and flow cytometry. S. Typhimurium O-antigen showed high structural diversity, including O-acetylation of rhamnose in a Malawian invasive strain generating a specific immunodominant epitope. S. Typhimurium conjugates provoked an anti-O-antigen response primarily against the O:5 determinant. O-antigen from S. Enteritidis was structurally more homogeneous than from S. Typhimurium, and no idiosyncratic antibody responses were detected for the S. Enteritidis conjugates. Of the three initially selected isolates, two S. Typhimurium (1418 and 2189 and two S. Enteritidis (502 and 618 strains generated glycoconjugates able to induce high specific antibody levels with high breadth of serovar-specific strain coverage, and were selected for use in vaccine

  15. Statistical methods for down-selection of treatment regimens based on multiple endpoints, with application to HIV vaccine trials.

    Science.gov (United States)

    Huang, Ying; Gilbert, Peter B; Fu, Rong; Janes, Holly

    2016-09-20

    SummaryBiomarker endpoints measuring vaccine-induced immune responses are essential to HIV vaccine development because of their potential to predict the effect of a vaccine in preventing HIV infection. A vaccine's immune response profile observed in phase I immunogenicity studies is a key factor in determining whether it is advanced for further study in phase II and III efficacy trials. The multiplicity of immune variables and scientific uncertainty in their relative importance, however, pose great challenges to the development of formal algorithms for selecting vaccines to study further. Motivated by the practical need to identify a set of promising vaccines from a pool of candidate regimens for inclusion in an upcoming HIV vaccine efficacy trial, we propose a new statistical framework for the selection of vaccine regimens based on their immune response profile. In particular, we propose superiority and non-redundancy criteria to be achieved in down-selection, and develop novel statistical algorithms that integrate hypothesis testing and ranking for selecting vaccine regimens satisfying these criteria. Performance of the proposed selection algorithms are evaluated through extensive numerical studies. We demonstrate the application of the proposed methods through the comparison of immune responses between several HIV vaccine regimens. The methods are applicable to general down-selection applications in clinical trials.

  16. In vitro innate immune cell based models to assess whole cell Bordetella pertussis vaccine quality: a proof of principle.

    Science.gov (United States)

    Hoonakker, M E; Verhagen, L M; Hendriksen, C F M; van Els, C A C M; Vandebriel, R J; Sloots, A; Han, W G H

    2015-03-01

    Lot release testing of vaccines is primarily based on animal models that are costly, time-consuming and sometimes of questionable relevance. In order to reduce animal use, functional in vitro assays are being explored as an alternative approach for the current lot release testing paradigm. In this study, we present an evaluation of APC platforms assessing innate immune activation by whole cell Bordetella pertussis (wP) vaccines. Primary monocytes, monocyte-derived DC (moDC) and human monocyte/DC cell lines (MonoMac6 and MUTZ-3) were compared for their capacity to respond to wP vaccines of varying quality. To produce such vaccines, the production process of wP was manipulated, resulting in wP vaccines covering a range of in vivo potencies. The responses of MUTZ-3 cells and primary monocytes to these vaccines were marginal and these models were therefore considered inappropriate. Importantly, moDC and MonoMac6 cells responded to the wP vaccines and discriminated between vaccines of varying quality, although slight variations in the responses to wP vaccines of similar quality were also observed. This study provides a proof of principle for the use of in vitro APC platforms as part of a new strategy to assess wP vaccine lot consistency, though careful standardisation of assay conditions is necessary.

  17. Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: Potential utility and limitations.

    Science.gov (United States)

    Kudrna, Jeremy J; Ugen, Kenneth E

    2015-01-01

    There has been a recent expansion of vaccination and immunotherapeutic strategies from controlling infectious diseases to the targeting of non-infectious conditions including neurodegenerative disorders. In addition to conventional vaccine and immunotherapeutic modalities, gene-based methods that express antigens for presentation to the immune system by either live viral vectors or non-viral naked DNA plasmids have been developed and evaluated. This mini-review/commentary summarizes the advantages and disadvantages, as well as the research findings to date, of both of these gene-based vaccination approaches in terms of how they can be targeted against appropriate antigens within the Alzheimer and Parkinson disease pathogenesis processes as well as potentially against targets in other neurodegenerative diseases. Most recently, the novel utilization of these viral vector and naked DNA gene-based technologies includes the delivery of immunoglobulin genes from established biologically active monoclonal antibodies. This modified passive immunotherapeutic strategy has recently been applied to deliver passive antibody immunotherapy against the pathologically relevant amyloid β protein in Alzheimer disease. The advantages and disadvantages of this technological application of gene-based immune interventions, as well as research findings to date are also summarized. In sum, it is suggested that further evaluation of gene based vaccines and immunotherapies against neurodegenerative diseases are warranted to determine their potential clinical utility.

  18. A school-based human papillomavirus vaccination program in barretos, Brazil: final results of a demonstrative study.

    Directory of Open Access Journals (Sweden)

    José Humberto Tavares Guerreiro Fregnani

    Full Text Available INTRODUCTION: The implementation of a public HPV vaccination program in several developing countries, especially in Latin America, is a great challenge for health care specialists. AIM: To evaluate the uptake and the three-dose completion rates of a school-based HPV vaccination program in Barretos (Brazil. METHODS: THE STUDY INCLUDED GIRLS WHO WERE ENROLLED IN PUBLIC AND PRIVATE SCHOOLS AND WHO REGULARLY ATTENDED THE SIXTH AND SEVENTH GRADES OF ELEMENTARY SCHOOL (MEAN AGE: 11.9 years. A meeting with the parents or guardians occurred approximately one week before the vaccination in order to explain the project and clarify the doubts. The quadrivalent vaccine was administered using the same schedule as in the product package (0-2-6 months. The school visits for regular vaccination occurred on previously scheduled dates. The vaccine was also made available at Barretos Cancer Hospital for the girls who could not be vaccinated on the day when the team visited the school. RESULTS: Among the potential candidates for vaccination (n = 1,574, the parents or guardians of 1,513 girls (96.1% responded to the invitation to participate in the study. A total of 1,389 parents or guardians agreed to participate in the program (acceptance rate = 91.8%. The main reason for refusing to participate in the vaccination program was fear of adverse events. The vaccine uptake rates for the first, second, and third doses were 87.5%, 86.3% and 85.0%, respectively. The three-dose completion rate was 97.2%. CONCLUSIONS: This demonstrative study achieved high rates of vaccination uptake and completion of three vaccine doses in children 10-16 years old from Brazil. The feasibility and success of an HPV vaccination program for adolescents in a developing country may depend on the integration between the public health and schooling systems.

  19. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine.

    Directory of Open Access Journals (Sweden)

    Anke M Mulder

    Full Text Available BACKGROUND: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg VLP-based vaccine. METHODOLOGY: The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA. The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM and in-solution atomic force microscopy (AFM. PRINCIPAL FINDINGS: SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images--confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing. SIGNIFICANCE: Together, the methods presented here comprise a novel

  20. Structure-based vaccines provide protection in a mouse model of ehrlichiosis.

    Directory of Open Access Journals (Sweden)

    Sunil Thomas

    Full Text Available BACKGROUND: Recent advances in bioinformatics have made it possible to predict the B cell and T cell epitopes of antigenic proteins. This has led to design of peptide based vaccines that are more specific, safe, and easy to produce. The obligately intracellular gram negative bacteria Ehrlichia cause ehrlichioses in humans and animals. As yet there are no vaccines to protect against Ehrlichia infection. METHODOLOGY/PRINCIPAL FINDINGS: We applied the principle of structural vaccinology to design peptides to the epitopes of Ehrlichia muris outer membrane P28-19 (OMP-1/P28 and Ehrlichia Heat shock protein 60 (Hsp60/GroEL antigenic proteins. Both P28-19 and Ehrlichia Hsp60 peptides reacted with polyclonal antibodies against E. canis and E. chaffeensis and could be used as a diagnostic tool for ehrlichiosis. In addition, we demonstrated that mice vaccinated with Ehrlichia P28-19 and Hsp60 peptides and later challenged with E. muris were protected against the pathogen. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the power of structural vaccines and could be a new strategy in the development of vaccines to provide protection against pathogenic microorganisms.

  1. Immunostimulation by synthetic lipopeptide based vaccine candidates: structure-activity relationships.

    Directory of Open Access Journals (Sweden)

    Mehfuz eZaman

    2013-10-01

    Full Text Available Peptide based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of adjuvant (thus are self-adjuvanting. Several lipopeptides derived from microbial origin, and their synthetic versions or simpler fatty acid moieties impart this self-adjuvanting activity by signalling via Toll-like receptor 2 (TLR2. Engagement of this innate immune receptor on antigen-presenting cell leads to the initiation and development of potent immune responses. Therefore optimization of lipopeptides to enhance TLR2-mediated activation is a promising strategy for vaccine development. Considerable structure-activity relationships that determine TLR2 binding and consequent stimulation of innate immune responses have been investigated for a range of lipopeptides. In this review we address the development of lipopeptide vaccines, mechanism of TLR2 recognition, and immune activation. An overview is provided of the best studied lipopeptide vaccine systems.

  2. Hospital-based influenza vaccination of children: an opportunity to prevent subsequent hospitalization.

    Science.gov (United States)

    Zerr, Danielle M; Englund, Janet A; Robertson, Andrea S; Marcuse, Edgar K; Garrison, Michelle M; Christakis, Dimitri A

    2008-02-01

    We performed this study to determine the frequency of previous hospitalization among children hospitalized with influenza. The Pediatric Health Information System database (discharges that occurred between January 1, 2001, and December 31, 2006) was used to determine the proportion of children hospitalized with influenza or respiratory illness who had a previous hospitalization during the most recent influenza-vaccination season. Subjects included pediatric patients (through 18 years of age). The index hospitalization was defined as the first influenza or respiratory illness hospitalization for a child that occurred during the study period and between November 1 and April 30. A previous hospitalization during the most recent influenza-vaccination season was defined as a hospitalization for any reason in the 0.5 to 6 months before the index hospitalization but not before September 1 or on or after March 1. Overall, 16% of children hospitalized with influenza and 12% of children hospitalized with influenza or a respiratory illness had a previous hospitalization during the most recent influenza-vaccination season. Approximately 23% of the children hospitalized with influenza and a comorbidity had a previous hospitalization during the most recent influenza-vaccination season. Hospital-based programs for influenza vaccination have the potential to reach children at highest risk of influenza complications and to reduce the rates of pediatric hospitalization for treatment of influenza-related illness.

  3. Comparison of serological and sequence-based methods for typing feline calcivirus isolates from vaccine failures.

    Science.gov (United States)

    Radford, A D; Dawson, S; Wharmby, C; Ryvar, R; Gaskell, R M

    2000-01-29

    Feline calicivirus (FCV) can be typed by exploiting antigenic differences between isolates or, more recently, by the sequence analysis of a hypervariable region of the virus's capsid gene. These two methods were used to characterise FCV isolates from 20 vaccine failures which occurred after the use of a commercial, live-attenuated vaccine. Using virus neutralisation, the isolates showed a spectrum of relatedness to the vaccine; depending on the criterion adopted for identity, 10 to 40 per cent of them appeared to be similar to the vaccine virus. Using sequence analysis, the isolates fell into one of two categories; 20 per cent had a similar sequence to the vaccine (0-67 to 2-67 per cent distant), and the remainder had a dissimilar sequence (21-3 to 36-0 per cent distant). Sequence analysis identified one cat that appeared to be infected with two distinct FCVs. The serological and sequence-based typing methods gave the same result in 80 to 95 per cent of individual cases, depending on the criterion adopted for serological identity. It is suggested that molecular typing is a more definitive method for characterising the relatedness of FCV isolates.

  4. Using Community Engagement to Develop a Web-Based Intervention for Latinos about the HPV Vaccine.

    Science.gov (United States)

    Maertens, Julie A; Jimenez-Zambrano, Andrea M; Albright, Karen; Dempsey, Amanda F

    2017-04-01

    Human papillomavirus (HPV) infection is pervasive among sexually active women and men, and Hispanic women are at particularly high risk as they have higher rates of invasive cervical cancer compared to other racial or ethnic groups in the United States. There is a need for interventions to increase HPV vaccination among this high-risk population. This study investigated how to modify a previously developed web-based intervention that provided individually tailored information about HPV to improve its use among the Latino population. A community-oriented modification approach incorporated feedback from a community advisory committee, and focus groups among the Latino population, to modify the intervention. Several themes emerged including a need for basic information about HPV and HPV vaccination, changes to make the intervention appear less clinical, and incorporation of information addressing barriers specific to the Latino community. This work was done in preparation for a randomized trial to assess the impact of this modified intervention on HPV vaccination attitudes and uptake among Latino young adults and parents of adolescents. If effective, our intervention could be a resource for reducing HPV vaccination concerns, improving immunization rates, and educating Latinos about HPV and the HPV vaccine outside of the time boundaries of the traditional clinical encounter.

  5. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design.

    Science.gov (United States)

    Pancera, Marie; Changela, Anita; Kwong, Peter D

    2017-05-01

    An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.

  6. Anti-tumor effects of a human VEGFR-2-based DNA vaccine in mouse models

    OpenAIRE

    XIE, KE; Bai, Rui-Zhen; Wu, Yang; Liu, Quan; Liu,Kang; Wei, Yu-Quan

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2 (Flk-1/KDR), play a key role in tumor angiogenesis. Blocking the VEGF-VEGFR-2 pathway may inhibit tumor growth. Here, we used human VEGFR-2 as a model antigen to explore the feasibility of immunotherapy with a plasmid DNA vaccine based on a xenogeneic homologue of this receptor. Methods The protective effects and therapeutic anti-tumor immunity mediated by the DNA vaccine were investigated in mouse models. Anti-ang...

  7. Reassessing culture media and critical metabolites that affect adenovirus production.

    Science.gov (United States)

    Shen, Chun Fang; Voyer, Robert; Tom, Roseanne; Kamen, Amine

    2010-01-01

    Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell-specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell-specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 x 10(6) cells/mL. In comparison, only 50% of reduction in the cell-specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 x 10(6) cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 x 10(6) cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions.

  8. Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection.

    Science.gov (United States)

    Marzi, Andrea; Murphy, Aisling A; Feldmann, Friederike; Parkins, Christopher J; Haddock, Elaine; Hanley, Patrick W; Emery, Matthew J; Engelmann, Flora; Messaoudi, Ilhem; Feldmann, Heinz; Jarvis, Michael A

    2016-02-15

    Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity.

  9. A history of fish vaccination: science-based disease prevention in aquaculture.

    Science.gov (United States)

    Gudding, Roar; Van Muiswinkel, Willem B

    2013-12-01

    Disease prevention and control are crucial in order to maintain a sustainable aquaculture, both economically and environmentally. Prophylactic measures based on stimulation of the immune system of the fish have been an effective measure for achieving this goal. Immunoprophylaxis has become an important part in the successful development of the fish-farming industry. The first vaccine for aquaculture, a vaccine for prevention of yersiniosis in salmonid fish, was licensed in USA in 1976. Since then the use of vaccines has expanded to new countries and new species simultaneous with the growth of the aquaculture industry. This paper gives an overview of the achievements in fish vaccinology with particular emphasis on immunoprophylaxis as a practical tool for a successful development of bioproduction of aquatic animals.

  10. A cytomegalovirus-based vaccine provides long-lasting protection against lethal Ebola virus challenge after a single dose.

    Science.gov (United States)

    Tsuda, Yoshimi; Parkins, Christopher J; Caposio, Patrizia; Feldmann, Friederike; Botto, Sara; Ball, Susan; Messaoudi, Ilhem; Cicin-Sain, Luka; Feldmann, Heinz; Jarvis, Michael A

    2015-05-01

    Ebola virus (Zaire ebolavirus; EBOV) is a highly lethal hemorrhagic disease virus that most recently was responsible for two independent 2014 outbreaks in multiple countries in Western Africa, and the Democratic Republic of the Congo, respectively. Herein, we show that a cytomegalovirus (CMV)-based vaccine provides durable protective immunity from Ebola virus following a single vaccine dose. This study has implications for human vaccination against ebolaviruses, as well as for development of a 'disseminating' vaccine to target these viruses in wild African great apes.

  11. Rotavirus and adenovirus in Rondônia

    Directory of Open Access Journals (Sweden)

    Gleiciene Félix Magalhães

    2007-08-01

    Full Text Available Acute gastroenteritis is one of the most common diseases in humans worldwide. Viral gastroenteritis is a global problem in infants and young children. In this study the incidence of diarrhea was assessed in 877 hospitalized children under five years old, over a period of 24 months and distributed in 470 cases of diarrhea and 407 age-matched group with other pathologies, as control group. Two antigen detection techniques based on enzyme immunoassay (EIA and latex particles were used for detection of rotavirus and adenovirus. Rotavirus A was a major cause of gastroenteritis with 23.6% of cases, being 90% of these cases in young children. Adenovirus infections was detected by EIA with frequency of 6.4%. Rotavirus and adenovirus were detected in 10.1 and 1.7% of stools from control group, respectively. Interestingly, the frequency of the youngest children in the control group excreting Rotavirus A was comparable to that detected in stools from diarrheic children. We cannot rule out the existence of other enteric viruses because the etiology of 171 cases of diarrhea was not determined and active search for astrovirus and calicivirus was not done. This is the first study that shows the presence of enteric viruses in the infantile population from Western Brazilian Amazonia and it was important to help physicians in the treatment of viral gastroenteritis.

  12. Quadrivalent HPV vaccine effectiveness against high‐grade cervical lesions by age at vaccination: A population‐based study

    Science.gov (United States)

    Sundström, Karin; Ploner, Alexander; Uhnoo, Ingrid; Sparén, Pär; Arnheim‐Dahlström, Lisen

    2016-01-01

    Human papillomavirus (HPV) types 16/18, included in HPV vaccines, contribute to the majority of cervical cancer, and a substantial proportion of cervical intraepithelial neoplasia (CIN) grades 2/3 or worse (CIN2+/CIN3+) including adenocarcinoma in situ or worse. The aim of this study was to quantify the effect of quadrivalent HPV (qHPV) vaccination on incidence of CIN2+ and CIN3+. A nationwide cohort of girls and young women resident in Sweden 2006–2013 and aged 13–29 (n = 1,333,691) was followed for vaccination and histologically confirmed high‐grade cervical lesions. Data were collected using the Swedish nationwide healthcare registers. Poisson regression was used to calculate incidence rate ratios (IRRs) and vaccine effectiveness [(1‐IRR)x100%] comparing fully vaccinated with unvaccinated individuals. IRRs were adjusted for attained age and parental education, and stratified on vaccination initiation age. Effectiveness against CIN2+ was 75% (IRR = 0.25, 95%CI = 0.18–0.35) for those initiating vaccination before age 17, and 46% (IRR = 0.54, 95%CI = 0.46–0.64) and 22% (IRR = 0.78, 95%CI = 0.65–0.93) for those initiating vaccination at ages 17–19, and at ages 20–29, respectively. Vaccine effectiveness against CIN3+ was similar to vaccine effectiveness against CIN2+. Results were robust for both women participating to the organized screening program and for women at prescreening ages. We show high effectiveness of qHPV vaccination on CIN2+ and CIN3+ lesions, with greater effectiveness observed in girls younger at vaccination initiation. Continued monitoring of impact of HPV vaccination in the population is needed in order to evaluate both long‐term vaccine effectiveness and to evaluate whether the vaccination program achieves anticipated effects in prevention of invasive cervical cancer. PMID:26856527

  13. Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation

    Directory of Open Access Journals (Sweden)

    Hung Chien-Fu

    2010-11-01

    Full Text Available Abstract Background Effective vaccination against human papillomavirus (HPV represents an opportunity to control cervical cancer. Peptide-based vaccines targeting HPV E6 and/or E7 antigens while safe, will most likely require additional strategies to enhance the vaccine potency. Methods We tested the HPV-16 E7 peptide-based vaccine in combination with a strategy to enhance CD4+ T help using a Pan HLA-DR epitope (PADRE peptide and a strategy to enhance dendritic cell activation using the toll-like receptor 3 ligand, poly(I:C. Results We observed that mice vaccinated with E7 peptide-based vaccine in combination with PADRE peptide and poly(I:C generated better E7-specific CD8+ T cell immune responses as well as significantly improved therapeutic anti-tumor effects against TC-1 tumors compared to E7 peptide-based vaccine with either PADRE peptide or poly(I:C alone. Furthermore, we found that intratumoral vaccination with the E7 peptide in conjunction with PADRE peptide and poly(I:C generates a significantly higher frequency of E7-specific CD8+ T cells as well as better survival compared to subcutaneous vaccination with the same regimen in treated mice. Conclusions The combination of PADRE peptide and poly(I:C with antigenic peptide is capable of generating potent antigen-specific CD8+ T cell immune responses and antitumor effects in vaccinated mice. Our study has significant clinical implications for peptide-based vaccination.

  14. Imitation dynamics of vaccine decision-making behaviours based on the game theory.

    Science.gov (United States)

    Yang, Junyuan; Martcheva, Maia; Chen, Yuming

    2016-01-01

    Based on game theory, we propose an age-structured model to investigate the imitation dynamics of vaccine uptake. We first obtain the existence and local stability of equilibria. We show that Hopf bifurcation can occur. We also establish the global stability of the boundary equilibria and persistence of the disease. The theoretical results are supported by numerical simulations.

  15. Association of School-Based Influenza Vaccination Clinics and School Absenteeism--Arkansas, 2012-2013

    Science.gov (United States)

    Gicquelais, Rachel E.; Safi, Haytham; Butler, Sandra; Smith, Nathaniel; Haselow, Dirk T.

    2016-01-01

    Background: Influenza is a major cause of seasonal viral respiratory illness among school-aged children. Accordingly, the Arkansas Department of Health (ADH) coordinates >800 school-based influenza immunization clinics before each influenza season. We quantified the relationship between student influenza vaccination in Arkansas public schools…

  16. History of vaccination.

    Science.gov (United States)

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  17. Carbohydrate-based cancer vaccines: target cancer with sugar bullets.

    Science.gov (United States)

    Liu, Chang-Cheng; Ye, Xin-Shan

    2012-08-01

    With the booming development of glycobiology and glycochemistry, more and more structures of tumor-associated carbohydrate antigens (TACAs) are identified. Their broad expression and high specificity in cancer make them important targets to develop cancer vaccines or immunotherapies. However, most of the TACAs are T cell-independent antigens, they cannot elicit a powerful enough immune response to prevent or treat cancer. Immunotolerance and immunosuppression are more easily induced due to their endogenous properties and the declining immunity of the patients. This review summarizes the recent efforts to overcome these obstacles: coupling the carbohydrate antigens to proper carriers such as proteins or some small molecule carriers, and chemically modifying the structures of the TACAs to enhance the immunogenicity of TACAs and break the immunotolerance.

  18. Population-level impact of the bivalent, quadrivalent, and nonavalent human papillomavirus vaccines: a model-based analysis.

    Science.gov (United States)

    Van de Velde, Nicolas; Boily, Marie-Claude; Drolet, Mélanie; Franco, Eduardo L; Mayrand, Marie-Hélène; Kliewer, Erich V; Coutlée, François; Laprise, Jean-François; Malagón, Talía; Brisson, Marc

    2012-11-21

    Bivalent and quadrivalent human papillomavirus (HPV) vaccines are now licensed in several countries. Furthermore, clinical trials examining the efficacy of a nonavalent vaccine are underway. We aimed to compare the potential population-level effectiveness of the bivalent, quadrivalent, and candidate nonavalent HPV vaccines. We developed an individual-based, transmission-dynamic model of HPV infection and disease in a population stratified by age, gender, sexual activity, and screening behavior. The model was calibrated to highly stratified sexual behavior, HPV epidemiology, and cervical screening data from Canada. Under base case assumptions, vaccinating 12-year-old girls (70% coverage) with the bivalent (quadrivalent) vaccine is predicted to reduce the cumulative incidence of anogenital warts (AGWs) by 0.0% (72.1%), diagnosed cervical intraepithelial neoplasia lesions 2 and 3 (CIN2 and -3) by 51.0% (46.1%), and cervical squamous cell carcinoma (SCC) by 31.9% (30.5%), over 70 years. Changing from a bivalent (quadrivalent) to a nonavalent vaccine is predicted to reduce the cumulative number of AGW episodes by an additional 66.7% (0.0%), CIN2 and -3 episodes by an additional 9.3% (12.5%), and SCC cases by an additional 4.8% (6.6%) over 70 years. Differences in predicted population-level effectiveness between the vaccines were most sensitive to duration of protection and the time horizon of analysis. The vaccines produced similar effectiveness at preventing noncervical HPV-related cancers. The bivalent vaccine is expected to be slightly more effective at preventing CIN2 and -3 and SCC in the longer term, whereas the quadrivalent vaccine is expected to substantially reduce AGW cases shortly after the start of vaccination programs. Switching to a nonavalent vaccine has the potential to further reduce precancerous lesions and cervical cancer.

  19. Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection.

    NARCIS (Netherlands)

    J.A. Karlas (Jos); C.H.J. Siebelink (Kees); M.A. van Peer (Maartje); W. Huisman (Willem); A.M. Cuisinier; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1999-01-01

    textabstractCats were vaccinated with fixed autologous feline immunodeficiency virus (FIV)-infected cells in order to present viral proteins to the immune system of individual cats in an MHC-matched fashion. Upon vaccination, a humoral response against Gag was induced. Furthermore, virus-neutralizin

  20. Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection

    NARCIS (Netherlands)

    J.A. Karlas (Jos); C.H.J. Siebelink (Kees); M.A. Peer; W. Huisman (Willem); A.M. Cuisinier; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Ab)

    1999-01-01

    textabstractCats were vaccinated with fixed autologous feline immunodeficiency virus (FIV)-infected cells in order to present viral proteins to the immune system of individual cats in an MHC-matched fashion. Upon vaccination, a humoral response against Gag was induced. Furthermore,

  1. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines.

    Science.gov (United States)

    Hassapis, Kyriakos A; Stylianou, Dora C; Kostrikis, Leondios G

    2014-12-01

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  2. Architectural Insight into Inovirus-Associated Vectors (IAVs and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    Directory of Open Access Journals (Sweden)

    Kyriakos A. Hassapis

    2014-12-01

    Full Text Available Inovirus-associated vectors (IAVs are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  3. Enfermedad neurologica por adenovirus Neurologic disease due to adenovirus infection

    Directory of Open Access Journals (Sweden)

    Cristina L. Lema

    2005-06-01

    Full Text Available El objetivo de este trabajo fue determinar la prevalencia de adenovirus (ADV en las infecciones del sistema nervioso central (SNC. Se analizaron 108 muestras de líquido cefalorraquídeo (LCR provenientes de 79 casos de encefalitis, 7 meningitis y 22 de otras patologías neurológicas, recibidas en el período 2000-2002. Cuarenta y nueve (47.35% se obtuvieron de pacientes inmunocomprometidos. La presencia de ADV se investigó mediante reacción en cadena de la polimerasa en formato anidado (Nested-PCR. La identificación del genogrupo se realizó mediante análisis filogenético de la secuencia nucleotídica parcial de la región que codifica para la proteína del hexón. Se detectó la presencia de ADV en 6 de 108 (5.5% muestras de LCR analizadas. Todos los casos positivos pertenecieron a pacientes con encefalitis que fueron 79, (6/79, 7.6%. No se observó diferencia estadísticamente significativa entre los casos de infección por ADV en pacientes inmunocomprometidos e inmunocompetentes (p>0.05. Las cepas de ADV detectadas se agruparon en los genogrupos B1 y C. En conclusión, nuestros resultados describen el rol de los ADV en las infecciones neurológicas en Argentina. La información presentada contribuye al conocimiento de su epidemiología, en particular en casos de encefalitis.The aim of this study was to assess the prevalence of adenovirusm (ADV infections in neurological disorders. A total of 108 cerebrospinal fluid (CSF samples from 79 encephalitis cases, 7 meningitis and 22 other neurological diseases analysed in our laboratory between 2000 and 2002 were studied. Forty nine (47.4% belonged to immunocompromised patients. Viral genome was detected using nested polymerase chain reaction (Nested-PCR and ADV genotypes were identified using partial gene sequence analysis of hexon gene. Adenovirus were detected in 6 of 108 (5.5% CSF samples tested. All of these were from encephalitis cases, 6/79, representing 7.6% of them. No statistically

  4. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    NARCIS (Netherlands)

    Ip, Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all-or a part of

  5. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials.

    Science.gov (United States)

    Turriziani, Mario; Fantini, Massimo; Benvenuto, Monica; Izzi, Valerio; Masuelli, Laura; Sacchetti, Pamela; Modesti, Andrea; Bei, Roberto

    2012-09-01

    Carcinoembryonic antigen (CEA), a glycosylated protein of MW 180 kDa, is overexpressed in a wide range of human carcinomas, including colorectal, gastric, pancreatic, non-small cell lung and breast carcinomas. Accordingly, CEA is one of several oncofetal antigens that may serve as a target for active anti-cancer specific immunotherapy. Experimental results obtained by employing animal models have supported the design of clinical trials using a CEA-based vaccine for the treatment of different types of human cancers. This review reports findings from experimental models and clinical evidence on the use of a CEA-based vaccine for the treatment of cancer patients. Among the diverse CEA-based cancer vaccines, DCs- and recombinant viruses-based vaccines seem the most valid. However, although vaccination was shown to induce a strong immune response to CEA, resulting in a delay in tumor progression and prolonged survival in some cancer patients, it failed to eradicate the tumor in most cases, owing partly to the negative effect exerted by the tumor microenvironment on immune response. Thus, in order to develop more efficient and effective cancer vaccines, it is necessary to design new clinical trials combining cancer vaccines with chemotherapy, radiotherapy and drugs which target those factors responsible for immunosuppression of immune cells. This review also discusses relevant patents relating to the use of CEA as a cancer vaccine.

  6. A retrospective investigation of canine adenovirus (CAV infection in adult dogs in Turkey : article

    Directory of Open Access Journals (Sweden)

    S. Gur

    2009-05-01

    Full Text Available Canine adenovirus (CAV type 1 and 2, respectively, cause infectious canine hepatitis and infectious canine laryngotracheitis in members of the families Canidae and Ursidae worldwide. Both of these infections are acute diseases, especially in young dogs. The aim of this study was to conduct a serological investigation of canine adenovirus infection. For this purpose, serumsamples were collected from native pure-bred Kangal (n = 11, and Akbash dogs (n = 17 and Turkish Greyhounds (n=15 in Eskisehir and Konya provinces. None ofthe dogs were previously vaccinated against CAV types. Indirect ELISA detected 88.2 %, 93.3 % and 100 % prevalences in Akbash, Greyhound and Kangal dogs, respectively. The remainder of the samples (n = 51 were collected at the Afyonkarahisar Municipality Shelter. Fourty-two of these dogs (82.3 % were detected as seropositive. In total, 82 of 94 dogs (87.2 % were found to be positive for CAV serum antibodies.

  7. PERSPECTIVES OF THE DEVELOPMENT OF MUCOSAL VACCINES AGAINST DANGEROUS INFECTIONS ON THE BASE OF TRANSGENIC PLANTS

    Directory of Open Access Journals (Sweden)

    A.V. Tretyakova

    2012-08-01

    Full Text Available Mucosal vaccines created on the base of transgenic plants reacting with mucosal layers of the intestines and other organs are considered to be the perspective method of the vaccination. These vaccines induce both mucosal and general humoral immunogenicity after the peroral administration. The folding of antigenic proteins synthesizing in plants occurs via eukaryotic type and has advantages before yeast and prokaryotic platforms. This feature results to more adequate synthesis of antibodies against pathogens and to the interaction with effector molecules of complement. Earlier we together with The State Scientific Center “Vector”, Institute of chemical biology and fundamental medicine SB RAS and Dr R.Hammond from Laboratory of Plant Pathology (Maryland, USA created two candidate vaccines : one of them against AIDS (HIV-1 and hepatitis B on the base of the chimeric gene TBI-HBS, encoding simultaneously 9 antigenic determinants of HIV-1 and the main surface antigen of hepatitis B (HBsAg. The second candidate vaccine was created against hepatitis B on the base of the genetic construct with the gene preS2-S encoding the synthesis of two subunits of the main surface antigen of hepatitis B and the signal peptide HDEL which directed antigens for the accumulation on ER. Both vaccines were tested on mice and confirmed their immunogenicity as the pronounced antibodies response. Twice vaccinated mice maintained the antibodies response during 11 months after there was little tendency to lowering. It was established that transgenic plants – vaccines (tomato kept the capability to the synthesis of antigenic determinants in seven seed generations during 7 years. The results of the development of the mucosal vaccine against cervical carcinoma (carcinoma of uterine cervix evoked by human papillomaviruses of high oncogenic risks were presented in this report. We created the genetic construct consisting of 35S CaMV promoter, Ώ (omega leader of TMV, the

  8. Periluminal expression of a secreted transforming growth factor-β type II receptor inhibits in-stent neointima formation following adenovirus-mediated stent-based intracoronary gene transfer.

    Science.gov (United States)

    Appleby, Clare E; Ranjzad, Parisa; Williams, Paul D; Kakar, Salik J; Driessen, Anita; Tijsma, Edze; Fernandes, Brian; Heagerty, Anthony M; Kingston, Paul A

    2014-05-01

    Transforming growth factor-β1 (TGF-β1) has been shown unequivocally to enhance neointima formation in carotid and ileo-femoral arteries. In our previous studies, however, TGF-β1 expression in coronary arteries actually reduced neointima formation without affecting luminal loss postangioplasty, while expression of a TGF-β1 antagonist (RIIs) in balloon-injured coronary arteries reduced luminal loss without affecting neointima formation. These observed effects may be a consequence of the mode of coronary artery gene transfer employed, but they may also represent differences in the modes of healing of coronary, carotid, and ileo-femoral arteries after endoluminal injury. To help clarify whether a gene therapy strategy to antagonize TGF-β might have application within the coronary vasculature, we have investigated the effect of high-level periluminal expression of RIIs using stent-based adenovirus-mediated intracoronary gene transfer. Porcine coronary arteries were randomized to receive a custom-made CoverStent preloaded with saline only, or with 1×10(9) infectious units of adenovirus expressing RIIs or β-galactosidase (lacZ). Vessels were analyzed 28 days poststenting, at which time angiographic in-stent diameter was significantly greater in RIIs-treated arteries, and in-stent luminal loss significantly reduced. Computerized morphometric minimum in-stent lumen area was ~300% greater in RIIs-exposed vessels than in lacZ or saline-only groups. This was because of significantly reduced neointima formation in the RIIs group. RIIs had no demonstrable effect on cellular proliferation or apoptosis, but greater normalized neointimal/medial collagen content was observed in RIIs-exposed arteries. These data highlight the qualitatively similar effect of TGF-β antagonism on neointima formation in injured coronary and noncoronary arteries, and suggest that since cellular proliferation is unaffected, TGF-β1 antagonism might prevent in-stent restenosis without the delayed

  9. Qualitative and quantitative analysis of adenovirus type 5 vector-induced memory CD8 T cells: not as bad as their reputation.

    Science.gov (United States)

    Steffensen, Maria Abildgaard; Holst, Peter Johannes; Steengaard, Sanne Skovvang; Jensen, Benjamin Anderschou Holbech; Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2013-06-01

    It has been reported that adenovirus (Ad)-primed CD8 T cells may display a distinct and partially exhausted phenotype. Given the practical implications of this claim, we decided to analyze in detail the quality of Ad-primed CD8 T cells by directly comparing these cells to CD8 T cells induced through infection with lymphocytic choriomeningitis virus (LCMV). We found that localized immunization with intermediate doses of Ad vector induces a moderate number of functional CD8 T cells which qualitatively match those found in LCMV-infected mice. The numbers of these cells may be efficiently increased by additional adenoviral boosting, and, importantly, the generated secondary memory cells cannot be qualitatively differentiated from those induced by primary infection with replicating virus. Quantitatively, DNA priming prior to Ad vaccination led to even higher numbers of memory cells. In this case, the vaccination led to the generation of a population of memory cells characterized by relatively low CD27 expression and high CD127 and killer cell lectin-like receptor subfamily G member 1 (KLRG1) expression. These memory CD8 T cells were capable of proliferating in response to viral challenge and protecting against infection with live virus. Furthermore, viral challenge was followed by sustained expansion of the memory CD8 T-cell population, and the generated memory cells did not appear to have been driven toward exhaustive differentiation. Based on these findings, we suggest that adenovirus-based prime-boost regimens (including Ad serotype 5 [Ad5] and Ad5-like vectors) represent an effective means to induce a substantially expanded, long-lived population of high-quality transgene-specific memory CD8 T cells.

  10. Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses

    Institute of Scientific and Technical Information of China (English)

    Shahla; Shahsavandi; Mohammad; Majid; Ebrahimi; Kaveh; Sadeghi; Homayoon; Mahravani

    2015-01-01

    Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.

  11. Evaluation of peptide selection approaches for epitope‐based vaccine design

    DEFF Research Database (Denmark)

    Schubert, B.; Lund, Ole; Nielsen, Morten

    2013-01-01

    A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far, no thoro......A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far...... in terms of in silico measurements simulating important vaccine properties like the ability of inducing protection against a multivariant pathogen in a population; the predicted immunogenicity; pathogen, allele, and population coverage; as well as the conservation of selected epitopes. Additionally, we...... evaluate the use of human leukocyte antigen (HLA) supertypes with regards to their applicability for population-spanning vaccine design. The results showed that in terms of induced protection methods that simultaneously aim to optimize pathogen and HLA coverage significantly outperform methods focusing...

  12. Ontology-based time information representation of vaccine adverse events in VAERS for temporal analysis

    Directory of Open Access Journals (Sweden)

    Tao Cui

    2012-12-01

    Full Text Available Abstract Background The U.S. FDA/CDC Vaccine Adverse Event Reporting System (VAERS provides a valuable data source for post-vaccination adverse event analyses. The structured data in the system has been widely used, but the information in the write-up narratives is rarely included in these kinds of analyses. In fact, the unstructured nature of the narratives makes the data embedded in them difficult to be used for any further studies. Results We developed an ontology-based approach to represent the data in the narratives in a “machine-understandable” way, so that it can be easily queried and further analyzed. Our focus is the time aspect in the data for time trending analysis. The Time Event Ontology (TEO, Ontology of Adverse Events (OAE, and Vaccine Ontology (VO are leveraged for the semantic representation of this purpose. A VAERS case report is presented as a use case for the ontological representations. The advantages of using our ontology-based Semantic web representation and data analysis are emphasized. Conclusions We believe that representing both the structured data and the data from write-up narratives in an integrated, unified, and “machine-understandable” way can improve research for vaccine safety analyses, causality assessments, and retrospective studies.

  13. Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses

    Directory of Open Access Journals (Sweden)

    Sharmeen Nishat

    2016-05-01

    Full Text Available Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs. Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs, isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses.

  14. Nucleic Acid Vaccines

    Institute of Scientific and Technical Information of China (English)

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  15. Adsorption of Toll-Like Receptor 4 Agonist to Alum-Based Tetanus Toxoid Vaccine Dampens Pro-T Helper 2 Activities and Enhances Antibody Responses

    National Research Council Canada - National Science Library

    Bortolatto, Juliana; Mirotti, Luciana; Rodriguez, Dunia; Gomes, Eliane; Russo, Momtchilo

    2015-01-01

    Aluminum salts gels (alum) are TLR-independent adjuvants and have been used to boost antibody responses in alum-based vaccines such as diphtheria, pertussis, and tetanus toxoid (DPT) triple vaccine...

  16. Adsorption of Toll-Like Receptor 4 Agonist to Alum-Based Tetanus Toxoid Vaccine Dampens Pro-T Helper 2 Activities and Enhances Antibody Responses

    National Research Council Canada - National Science Library

    Bortolatto, Juliana; Mirotti, Luciana; Rodriguez, Dunia; Gomes, Eliane; Russo, Momtchilo

    2015-01-01

      Aluminum salts gels (alum) are TLR-independent adjuvants and have been used to boost antibody responses in alum-based vaccines such as diphtheria, pertussis, and tetanus toxoid (DPT) triple vaccine...

  17. Oral Cholera Vaccination Delivery Cost in Low- and Middle-Income Countries: An Analysis Based on Systematic Review.

    Science.gov (United States)

    Mogasale, Vittal; Ramani, Enusa; Wee, Hyeseung; Kim, Jerome H

    2016-12-01

    Use of the oral cholera vaccine (OCV) is a vital short-term strategy to control cholera in endemic areas with poor water and sanitation infrastructure. Identifying, estimating, and categorizing the delivery costs of OCV campaigns are useful in analyzing cost-effectiveness, understanding vaccine affordability, and in planning and decision making by program managers and policy makers. To review and re-estimate oral cholera vaccination program costs and propose a new standardized categorization that can help in collation, analysis, and comparison of delivery costs across countries. Peer reviewed publications listed in PubMed database, Google Scholar and World Health Organization (WHO) websites and unpublished data from organizations involved in oral cholera vaccination. The publications and reports containing oral cholera vaccination delivery costs, conducted in low- and middle-income countries based on World Bank Classification. Limits are humans and publication date before December 31st, 2014. No participants are involved, only costs are collected. Oral cholera vaccination and cost estimation. A systematic review was conducted using pre-defined inclusion and exclusion criteria. Cost items were categorized into four main cost groups: vaccination program preparation, vaccine administration, adverse events following immunization and vaccine procurement; the first three groups constituting the vaccine delivery costs. The costs were re-estimated in 2014 US dollars (US$) and in international dollar (I$). Ten studies were identified and included in the analysis. The vaccine delivery costs ranged from US$0.36 to US$ 6.32 (in US$2014) which was equivalent to I$ 0.99 to I$ 16.81 (in I$2014). The vaccine procurement costs ranged from US$ 0.29 to US$ 29.70 (in US$2014), which was equivalent to I$ 0.72 to I$ 78.96 (in I$2014). The delivery costs in routine immunization systems were lowest from US$ 0.36 (in US$2014) equivalent to I$ 0.99 (in I$2014). The reported cost categories

  18. Specific Dioscorea Phytoextracts Enhance Potency of TCL-Loaded DC-Based Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    Wei-Ting Chang

    2013-01-01

    Full Text Available Dioscorea tuber phytoextracts can confer immunomodulatory activities ex vivo and improve regeneration of bone marrow cells in vivo. In present study, we evaluated specific Dioscorea phytoextracts for use ex vivo as a bone-marrow-derived dendritic cell- (DC- based vaccine adjuvant for cancer immunotherapy. Fractionated Dioscorea extracts (DsII were assayed for their effect on maturation and functions of DC ex vivo and antimelanoma activity of DC-based vaccine in vivo. The phytoextract from 50–75% ethanol-precipitated fraction of Dioscorea alata var. purpurea Tainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL- loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1β in TCL-loaded DCs and downregulated the expression of TGF-β1. DC vaccines prepared by a specific schema (TCL (2 h + LPS (22 h showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53% of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines.

  19. Regulation of human adenovirus replication by RNA interference

    OpenAIRE

    Nikitenko, N. A.; SPEISEDER T.; Lam, E; Rubtsov, P. M.; TONAEVA KH. D.; S. A. Borzenok; Dobner, T; Prassolov, V.S.

    2015-01-01

    Adenoviruses cause a wide variety of human infectious diseases. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are commonly associated with human species D adenoviruses. Currently, there is no sufficient or appropriate treatment to counteract these adenovirus infections. Thus, there is an urgent need for new etiology-directed therapies with selective activity against human adenoviruses. To address this problem, the adenoviral early genes E1A and E2B (viral DNA polymerase) seem to...

  20. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Hansen, Troels Holz; Andersen, Mads Hald

    2009-01-01

    During the past years numerous clinical trials have been carried out to assess the ability of dendritic cell (DC) based immunotherapy to induce clinically relevant immune responses in patients with malignant diseases. A broad range of cancer types have been targeted including malignant melanoma...... which in the disseminated stage have a very poor prognosis and only limited treatment options with moderate effectiveness. Herein we describe the results of a focused search of recently published clinical studies on dendritic cell vaccination in melanoma and review different vaccine parameters which...

  1. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Susan Thrane

    Full Text Available Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP based vaccines (e.g., the licensed human papillomavirus vaccines have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of

  2. NAPPA-Based Vaccines for a New Proteogenomics Approach for Public Health

    Directory of Open Access Journals (Sweden)

    Nicola Luigi Bragazzi

    2015-03-01

    Full Text Available Vaccinology was developed for the first time in 1796 when Jenner empirically implemented a vaccine against smallpox using animal-to-human cowpox inoculation. Since then, it has become a very complex science due to the merging of disciplines ranging from structural and functional, cellular and molecular biology and immunology to bioinformatics and nanobiotechnology, as well as systems biology and synthetic biology and engineering. In the frame of evidence-based medicine (EBM, evidence-based vaccinology emerged as an important sub-field: vaccinology has nowadays become more and more predictive and personalized. With the discovery that many patients with cancer develop antibodies against p53 (the so-called oncoantibodies, it was evident that oncoprotein are immunogenic and can be used for immunotherapeutics purposes. In this manuscript, we report Nucleic Acid Programmable Protein Arrays (NAPPA-based Quartz Crystal Microbalance (QCM measurement of p53 immunogenicity and kinetics, in the perspective of developing an effective p53 therapy. NAPPA-based QCM_D can be a useful platform for proving the immunogenicity of oncoprotein-based vaccines. Recently, the field of vaccinology has extended from vaccines for infectious diseases to vaccines not only preventive but also therapeutic for chronic-degenerative diseases such as cancer. Peptide-based immunotherapeutics has been proven to be quite effective for cancer treatment and NAPPA-based QCM_D has the promise of providing clinicians with quick, rapid and cheap measurement of oncoprotein kinetics and bindings with immune cells. Moreover, it can be a precious tool for implementing personalized and predictive vaccinology.

  3. Components of Adenovirus Genome Packaging

    Science.gov (United States)

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  4. Chapter three--Syrian hamster as an animal model to study oncolytic adenoviruses and to evaluate the efficacy of antiviral compounds.

    Science.gov (United States)

    Wold, William S M; Toth, Karoly

    2012-01-01

    The Syrian (golden) hamster (Mesocricetus auratus) has served as a useful model for different aspects of biology for at least 50 years, and its use has been expanding recently. In earlier years, among other things, it was a model for cancer development. More recently, it has become a model for many different infectious diseases. It has also become an alternative model for the study of oncolytic adenovirus vectors for cancer gene therapy. Among several other human pathogens, the hamster is permissive for the replication of human species C adenoviruses, which are the parental virus for the majority of adenovirus vectors in use today. These vectors replicate in some of the established hamster tumor cell lines that can be used to generate tumors in vivo, that is, one can study oncolytic (replication competent) adenoviruses in a permissive, immunocompetent model. This has afforded the opportunity to study the effect of the host immune system on the vector-infected tumor and has allowed the use of a more relevant animal model to determine the safety and biodistribution of replication-competent adenoviruses. The hamster has also been used to evaluate antiviral compounds and vaccines against many viruses, including adenoviruses, flaviviruses, alphaviruses, arenaviruses, bunyaviruses, and paramyxoviruses.

  5. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection.

    Science.gov (United States)

    Dreesen, Imke A J; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2010-02-01

    While 15 million deaths per year are caused by communicable pathogens worldwide, health care authorities emphasize the considerable impact of poverty on the incidence of infectious diseases. The emergence of antigen-expressing plant tissues (e.g. rice, tomato, potato) has indicated the potential of land plants for low-cost vaccines in oral immunization programs. In this study, we engineered the chloroplasts of the unicellular green alga Chlamydomonas reinhardtii for the stable expression of the D2 fibronectin-binding domain of Staphylococcus aureus fused with the cholera toxin B subunit (CTB), under the control of rbcL UTRs. Analysis of sera and faeces of mice, fed for 5 weeks with transgenic algae grown in confined Wave Bioreactor, revealed the induction of specific mucosal and systemic immune responses. Algae-based vaccination significantly reduced the pathogen load in the spleen and the intestine of treated mice and protected 80% of them against lethal doses of S. aureus. Importantly, the alga vaccine was stable for more than 1.5 years at room temperature. These results indicate that C. reinhardtii may play an important role in molecular pharming, as it combines the beneficial features of land plant vaccines, while offering unmatched ease of growth compared to other members of the plant kingdom.

  6. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  7. Role of TLR3 in the immunogenicity of replicon plasmid-based vaccines.

    Science.gov (United States)

    Diebold, S S; Schulz, O; Alexopoulou, L; Leitner, W W; Flavell, R A; Reis e Sousa, C

    2009-03-01

    Replicon plasmids encoding an alphavirus RNA replicase constitute an alternative to conventional DNA plasmids with promise for DNA vaccination in humans. Replicase activity amplifies the levels of transgene mRNA through a copying process involving double-stranded (ds) RNA intermediates, which contribute to vaccine immunogenicity by activating innate antiviral responses. Toll-like receptor 3 (TLR3) is a dsRNA innate immune receptor expressed by antigen-presenting dendritic cells (DCs). Here, we test the hypothesis that TLR3 is necessary for the immunogenicity of replicon plasmid-based DNA vaccines. We show that mouse CD8 alpha(+) DC phagocytose dying replicon plasmid-transfected cells in vitro and are activated in a TLR3-dependent manner by dsRNA present within those cells. However, we find that cytotoxic T-cell responses to a replicon plasmid intramuscular vaccine are not diminished in the absence of TLR3 in vivo. Our results underscore the potential role of TLR3 in mediating immune activation by dsRNA-bearing replicon plasmid-transfected cells and indicate that other innate sensing pathways can compensate for TLR3 absence in vivo.

  8. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.

    Science.gov (United States)

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-04-01

    Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.

  9. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism.

    Directory of Open Access Journals (Sweden)

    Kenneth Plante

    2011-07-01

    Full Text Available Chikungunya virus (CHIKV is a reemerging mosquito-borne pathogen that has recently caused devastating urban epidemics of severe and sometimes chronic arthralgia. As with most other mosquito-borne viral diseases, control relies on reducing mosquito populations and their contact with people, which has been ineffective in most locations. Therefore, vaccines remain the best strategy to prevent most vector-borne diseases. Ideally, vaccines for diseases of resource-limited countries should combine low cost and single dose efficacy, yet induce rapid and long-lived immunity with negligible risk of serious adverse reactions. To develop such a vaccine to protect against chikungunya fever, we employed a rational attenuation mechanism that also prevents the infection of mosquito vectors. The internal ribosome entry site (IRES from encephalomyocarditis virus replaced the subgenomic promoter in a cDNA CHIKV clone, thus altering the levels and host-specific mechanism of structural protein gene expression. Testing in both normal outbred and interferon response-defective mice indicated that the new vaccine candidate is highly attenuated, immunogenic and efficacious after a single dose. Furthermore, it is incapable of replicating in mosquito cells or infecting mosquitoes in vivo. This IRES-based attenuation platform technology may be useful for the predictable attenuation of any alphavirus.

  10. Literature-Based Discovery of IFN-γ and Vaccine-Mediated Gene Interaction Networks

    Directory of Open Access Journals (Sweden)

    Arzucan Özgür

    2010-01-01

    Full Text Available Interferon-gamma (IFN-γ regulates various immune responses that are often critical for vaccine-induced protection. In order to annotate the IFN-γ-related gene interaction network from a large amount of IFN-γ research reported in the literature, a literature-based discovery approach was applied with a combination of natural language processing (NLP and network centrality analysis. The interaction network of human IFN-γ (Gene symbol: IFNG and its vaccine-specific subnetwork were automatically extracted using abstracts from all articles in PubMed. Four network centrality metrics were further calculated to rank the genes in the constructed networks. The resulting generic IFNG network contains 1060 genes and 26313 interactions among these genes. The vaccine-specific subnetwork contains 102 genes and 154 interactions. Fifty six genes such as TNF, NFKB1, IL2, IL6, and MAPK8 were ranked among the top 25 by at least one of the centrality methods in one or both networks. Gene enrichment analysis indicated that these genes were classified in various immune mechanisms such as response to extracellular stimulus, lymphocyte activation, and regulation of apoptosis. Literature evidence was manually curated for the IFN-γ relatedness of 56 genes and vaccine development relatedness for 52 genes. This study also generated many new hypotheses worth further experimental studies.

  11. Public acceptance of a hypothetical Ebola virus vaccine in Aceh, Indonesia: A hospital-based survey

    Directory of Open Access Journals (Sweden)

    Harapan Harapan

    2017-04-01

    Full Text Available Objective: To determine the acceptance towards a hypothetical Ebola virus vaccine (EVV and associated factors in a non-affected country, Indonesia. Methods: A hospital-based, cross-sectional study was conducted in four regencies of Aceh, Indonesia. A set of pre-tested questionnaires was used to obtain information on acceptance towards EVV and a range of explanatory variables. Associations between EVV acceptance and explanatory variables were tested using multi-steps logistic regression analysis and the Spearman's rank correlation. Results: Participants who had knowledge on Ebola virus disease (EVD were 45.3% (192/424 and none of the participants achieved 80% correct answers on the knowledge regarding to EVD. About 73% of participants expressed their willingness to receive the EVV. Education attainment, occupation, monthly income, have heard regarding to EVD previously, socioeconomic level, attitude towards vaccination practice and knowledge regarding to EVD were associated significantly with acceptance towards EVV in univariate analysis (P < 0.05. In the final multivariate model, socio-economic level, attitude towards vaccination practice and knowledge regarding to EVD were the independent explanatory variables for EVV acceptance. Conclusions: The knowledge of EVD was low, but this minimally affected the acceptance towards EVV. However, to facilitate optimal uptake of EVV, dissemination of vaccine-related information prior to its introduction is required.

  12. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES

    Directory of Open Access Journals (Sweden)

    Chen Hui-Ming

    2012-04-01

    Full Text Available Abstract Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs, a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100 DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100 tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can

  13. What Vaccines Do You Need?

    Science.gov (United States)

    ... Recommendations Why Immunize? Vaccines: The Basics The Adult Vaccine Quiz Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Vaccines are recommended for adults based on age, health ...

  14. HIV-1 vaccines based on replication-competent Tiantan vaccinia protected Chinese rhesus macaques from simian HIV infection.

    Science.gov (United States)

    Liu, Qiang; Li, Yue; Luo, Zhenwu; Yang, Guibo; Liu, Yong; Liu, Ying; Sun, Maosheng; Dai, Jiejie; Li, Qihan; Qin, Chuan; Shao, Yiming

    2015-03-27

    To assess the efficacy of HIV vaccines constructed from replication-competent Tiantan vaccinia virus (rTV) alone or combined with DNA in protecting Chinese rhesus macaques from homologous Simian/Human Immunodeficiency Virus (SHIV)-CN97001 challenge. The nef, gag, pol, and gp140 genes from strain CRF07_BC HIV-1 CN54 were selected to construct an HIV vaccine using the rTV or rTV/DNA vaccine. After vaccination, the vaccine and control groups were intravenously challenged with SHIV-CN97001 (32 MID50). HIV-specific antibodies and neutralizing antibodies, gp70 V1V2 binding antibodies, and cytotoxic T-lymphocyte responses were measured prospectively after vaccination with an ELISA, a virus infectivity assay in TZM-bl cells, and ELISPOT assays, respectively. Viral RNA was quantified after challenge with real-time reverse transcriptase-PCR (RT-PCR), and protection efficacy was determined with an analysis of CD8 lymphocyte depletion in vivo. Both rTV and DNA/rTV vaccine groups developed strong cellular and humoral responses against HIV-1 CN54 antigens, including Gag and Env, and also developed significant and persistent anti-Env antibodies and neutralizing antibodies after immunization. Both the rTV and DNA/rTV groups were significantly protected against SHIV-CN97001 or displayed lower viremia than the controls. After CD8 lymphocyte depletion, no viremia was detectable in the vaccinated monkeys, but rebounded rapidly in the control animals. Protection against infection correlated with vaccine-elicited neutralizing antibodies specific for homologous HIV-1 viruses. An rTV-based HIV-1 vaccine, with or without a DNA primer, provided protection from SHIV challenge in a macaque model. Replication-competent Tiantan vaccinia is a promising vector and should enable advances in HIV-1 vaccine development.

  15. Recent advances in the development of vaccines for Ebola virus disease.

    Science.gov (United States)

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines.

  16. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    Science.gov (United States)

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB.

  17. Hepatitis B Vaccination in Bangladesh: a Suggestion Based on Current Evidence

    Directory of Open Access Journals (Sweden)

    Shafquat Mohammed Rafiq

    2006-12-01

    Full Text Available IntroductionThe hepatitis B virus (HBV causes up to a million deaths worldwide and 16 million health care related infections in the tropics each year(1,2, and over 350 million become chronically infected carriers who have no significant liver disease; approximately three quarters of them are in Asia and the western pacific region(3,4. HBV infection is a potentially life threatening condition as many of the affected individuals progress to chronic hepatitis,cirrhosis and hepatocellular carcinoma (HCC(3. In infants and children, acute hepatitis B infection is nearly always asymptomatic, whereas in adults it is usually the opposite. But on the other hand, the risk of becoming chronic carriage is much greater in children than in adults; as many as 90% of infants born to Hepatitis B e Antigen (HBeAg positive mothers become carriers themselves and, therefore, in long term are more likely to developchronic liver disease(5. Currently, though several antiviral drugs are used,there is no reliable curative treatment for HBV once it has been acquired and prevention by universal immunization remains the strategy for reducing the number of acute infections, chronic carriage and the long-term burden from diseases such as HCC(4,6. In 1991, in an attempt to reduce the global impact of HBV infection, WHO recommended that hepatitis B vaccination should be integrated into national immunization programs in all countries(7.Some Asian countries, for instance, Thailand, haveadopted the policy of immunizing children universally against the disease as early as 1992, however many others lagged behind(4.The true prevalence of Hepatitis B in Bangladesh is yet to be ascertained by a reliable study. Data available from different studies show that it ranges between 0.8 and 5.4% depending on the study design, samples and laboratory methods used(8-10.These data were based on detection of HBsAg antigen; the rates would have been higher, had they been based on anti-HBc antibody(11

  18. Exploring the cost-effectiveness of HPV vaccination in Vietnam: insights for evidence-based cervical cancer prevention policy.

    Science.gov (United States)

    Kim, Jane J; Kobus, Katie E; Diaz, Mireia; O'Shea, Meredith; Van Minh, Hoang; Goldie, Sue J

    2008-07-29

    Using mathematical models of cervical cancer for the northern and southern regions of Vietnam, we assessed the cost-effectiveness of cervical cancer prevention strategies and the tradeoffs between a national and region-based policy in Vietnam. With 70% vaccination and screening coverage, lifetime risk of cancer was reduced by 20.4-76.1% with vaccination of pre-adolescent girls and/or screening of older women. Only when the cost per vaccinated girl was low (i.e., I$100), screening alone was most cost-effective. When optimal policies differed between regions, implementing a national strategy resulted in health and economic inefficiencies. HPV vaccination appears to be an attractive cervical cancer prevention strategy for Vietnam, provided high coverage can be achieved in young pre-adolescent girls, cost per vaccinated girl is

  19. Construction and identification of recombinant adenovirus-mediated gene transfer system for rat vascular endothelial growth factor

    Institute of Scientific and Technical Information of China (English)

    Hongyu Yang; Hong Qi; Junjie Zou; Xiwei Zhang

    2008-01-01

    Objective: To construct the recombinant adenovirus vector carrying rat vascular endothelial growth factor(VEGF), as preparation for genetic transfection that follows. Methods: Rat VEGF was obtained by using RT-PCR amplification and then cloned into the shutter plasmid pDC316. Subsequently, this newly constructed plasmid pDC316-VEGF, after identification by nuclease digestion analysis and sequencing analysis, was transfected into human embryonic kidney cells HEK293 by Lipofectamine 2000 mediation, together with adenovirus-packaging plasmid pBHGE3. Based on the homologous recombination of the two plasmids within HEK293 cells, the recombinant adenovirus vector carrying VEGF and VDC316-VEGF was created. VDC316-VEGF was subsequently identified using PCR, purified using repeated plaque passages, proliferated using freezing and melting within HEK293 cells, and titrated using 50% Tissue Culture Infective Dose(TCID50) assay. Results:The newly constructed recombinant adenovirus was confirmed to carry rat VEGF based on PCR results, and its titration value determined based on TCID50 assay was 3×109 pfu/ml. Conclusion:The recombinant adenovirus carrying rat VEGF was successfully constructed. The newly constructed adenovirus can produce a sufficiently high titration value within HEK293 cells, providing a reliable tool for genetic transfection in further gene therapy researches.

  20. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine.

    NARCIS (Netherlands)

    Hangalapura, B.N.; Oosterhoff, D.; Groot, J. de; Boon, L.; Tuting, T.; Eertwegh, A.J. van den; Gerritsen, W.R.; Beusechem, V.W. van; Pereboev, A.; Curiel, D.T.; Scheper, R.J.; Gruijl, T.D. de

    2011-01-01

    In situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of express

  1. Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice

    Science.gov (United States)

    Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462

  2. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice.

    Directory of Open Access Journals (Sweden)

    Frances E Pearson

    Full Text Available The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose, though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.

  3. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice.

    Science.gov (United States)

    Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.

  4. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines

    Science.gov (United States)

    Richie, Thomas L.; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Chakravarty, Sumana; Epstein, Judith E.; Lyke, Kirsten E.; Mordmüller, Benjamin; Alonso, Pedro; Duffy, Patrick E.; Doumbo, Ogobara K.; Sauerwein, Robert W.; Tanner, Marcel; Abdulla, Salim; Kremsner, Peter G.; Seder, Robert A.; Hoffman, Stephen L.

    2016-01-01

    Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015–2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication. PMID:26469720

  5. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines.

    Science.gov (United States)

    Richie, Thomas L; Billingsley, Peter F; Sim, B Kim Lee; James, Eric R; Chakravarty, Sumana; Epstein, Judith E; Lyke, Kirsten E; Mordmüller, Benjamin; Alonso, Pedro; Duffy, Patrick E; Doumbo, Ogobara K; Sauerwein, Robert W; Tanner, Marcel; Abdulla, Salim; Kremsner, Peter G; Seder, Robert A; Hoffman, Stephen L

    2015-12-22

    Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine