WorldWideScience

Sample records for adenosine triphosphate

  1. Imaging Adenosine Triphosphate (ATP).

    Science.gov (United States)

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  2. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Science.gov (United States)

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  3. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  4. Treatment of paroxysmal supraventricular tachycardia with intravenous injection of adenosine triphosphate.

    OpenAIRE

    Saito, D.; Ueeda, M; Abe, Y.; Tani, H; Nakatsu, T.; Yoshida, H.; Haraoka, S; Nagashima, H

    1986-01-01

    Intravenous adenosine triphosphate rapidly terminated all 11 episodes of paroxysmal supraventricular tachycardia in 10 patients. Eight patients reported side effects but these resolved within 20 seconds and did not require treatment. Adenosine triphosphate is a suitable agent for the rapid termination of paroxysmal supraventricular tachycardia.

  5. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis

    Institute of Scientific and Technical Information of China (English)

    Na Lu; Baoying Wang; Xiaohui Deng; Honggang Zhao; Yong Wang; Dongliang Li

    2014-01-01

    After hypoxia, ischemia, or inlfammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, lfow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy ifrst appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.

  6. Electroacupuncture improves neuropathic pain Adenosine,adenosine 5'-triphosphate disodium and their receptors perhaps change simultaneously

    Institute of Scientific and Technical Information of China (English)

    Wen Ren; Wenzhan Tu; Songhe Jiang; Ruidong Cheng; Yaping Du

    2012-01-01

    Applying a stimulating current to acupoints through acupuncture needles-known as electroacupuncture-has the potential to produce analgesic effects in human subjects and experimental animals.When acupuncture was applied in a rat model,adenosine 5'-triphosphate disodium in the extracellular space was broken down into adenosine,which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process.Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture.The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves.In neuropathic pain,there is upregulation of P2X purinoceptor 3(P2X3)receptor expression in dorsal root ganglion neurons.Conversely,the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated.The pathways upon which electroacupuncture appear to act are interwoven with pain pathways,and electroacupuncture stimuli converge with impulses originating from painful areas.Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.

  7. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  8. Intracellular Adenosine Triphosphate Deprivation through Lanthanide-Doped Nanoparticles.

    Science.gov (United States)

    Tian, Jing; Zeng, Xiao; Xie, Xiaoji; Han, Sanyang; Liew, Oi-Wah; Chen, Yei-Tsung; Wang, Lianhui; Liu, Xiaogang

    2015-05-27

    Growing interest in lanthanide-doped nanoparticles for biological and medical uses has brought particular attention to their safety concerns. However, the intrinsic toxicity of this new class of optical nanomaterials in biological systems has not been fully evaluated. In this work, we systematically evaluate the long-term cytotoxicity of lanthanide-doped nanoparticles (NaGdF4 and NaYF4) to HeLa cells by monitoring cell viability (mitochondrial activity), adenosine triphosphate (ATP) level, and cell membrane integrity (lactate dehydrogenase release), respectively. Importantly, we find that ligand-free lanthanide-doped nanoparticles induce intracellular ATP deprivation of HeLa cells, resulting in a significant decrease in cell viability after exposure for 7 days. We attribute the particle-induced cell death to two distinct cell death pathways, autophagy and apoptosis, which are primarily mediated via the interaction between the nanoparticle and the phosphate group of cellular ATP. The understanding gained from the investigation of cytotoxicity associated with lanthanide-doped nanoparticles provides keen insights into the safe use of these nanoparticles in biological systems.

  9. Decreased intravesical adenosine triphosphate in patients with refractory detrusor overactivity and bacteriuria.

    Science.gov (United States)

    Walsh, Colin A; Cheng, Ying; Mansfield, Kylie J; Parkin, Katrina; Mukerjee, Chinmoy; Moore, Kate H

    2013-04-01

    Although several studies have examined the relationship between adenosine triphosphate release from the urothelium and bladder sensations including painful filling and urgency, the association between bacteriuria and urothelial adenosine triphosphate release has not been well studied. We evaluated women with refractory detrusor overactivity who were experiencing an acute exacerbation of detrusor overactivity symptoms including frequency, urgency and nocturia (and/or urge incontinence). We measured changes in intravesical adenosine triphosphate levels in these women with and without bacteriuria. In this prospective cohort study women with refractory detrusor overactivity were invited to our unit during acute symptomatic exacerbation. On presentation a catheter urine specimen was collected and 50 ml normal saline instilled into the bladder to evoke gentle stretch, with removal after 5 minutes. Adenosine triphosphate concentrations were determined on fresh washings using a bioluminescence assay. The incidence of bacteriuria 10(3) cfu/ml or greater was 27% (15 of 56 specimens) during the 16-month study period. Adenosine triphosphate concentrations were lower during episodes of bacteriuria in the overall cohort (p = 0.0013) and paired samples from individual patients (p = 0.031) compared to episodes of sterile urine. In the first study on the subject to our knowledge, we demonstrated a striking difference between adenosine triphosphate levels measured in the presence and absence of bacteriuria in this patient group. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  11. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    Science.gov (United States)

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects.

  12. Determination of Adenosine Triphosphate on Marine Particulates:Synthesis of Methods for Use on OTEC Samples

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Anthony T.; Hartwig, Eric O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  13. Determination of adenosine triphosphate on marine particulates: synthesis of methods for use on OTEC samples

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.T.; Hartwig, E.O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  14. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    Science.gov (United States)

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  15. Extracellular Adenosine Triphosphate Affects Systemic and Kidney Immune Cell Populations in Pregnant Rats

    NARCIS (Netherlands)

    Spaans, Floor; Melgert, Barbro N.; Borghuis, Theo; Klok, Pieter A.; de Vos, Paul; Bakker, Winston W.; van Goor, Harry; Faas, Marijke

    PROBLEM: Changes in the systemic immune response are found in preeclampsia. This may be related to high extracellular adenosine triphosphate (ATP) levels. The question arose whether ATP could affect immune responses in pregnancy. Previously, we investigated whether ATP affected monocyte activation

  16. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β

  17. Microcontroller-assisted compensation of adenosine triphosphate levels: instrument and method development.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L

    2015-01-30

    In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.

  18. In vivo effects of adenosine 5´-triphosphate on rat preneoplastic liver

    Directory of Open Access Journals (Sweden)

    Ana V. Frontini

    2011-04-01

    Full Text Available The utilization of adenosine 5´-triphosphate (ATP infusions to inhibit the growth of some human and animals tumors was based on the anticancer activity observed in in vitro and in vivo experiments, but contradictory results make the use of ATP in clinical practice rather controversial. Moreover, there is no literature regarding the use of ATP infusions to treat hepatocarcinomas. The purpose of this study was to investigate whether ATP prevents in vivo oncogenesis in very-early-stage cancer cells in a well characterized two-stage model of hepatocarcinogenesis in the rat. As we could not preclude the possible effect due to the intrinsic properties of adenosine, a known tumorigenic product of ATP hydrolysis, the effect of the administration of adenosine was also studied. Animals were divided in groups: rats submitted to the two stage preneoplasia initiation/promotion model of hepatocarcinogenesis, rats treated with intraperitoneal ATP or adenosine during the two phases of the model and appropriate control groups. The number and volume of preneoplastic foci per liver identified by the expression of glutathione S-transferase placental type and the number of proliferating nuclear antigen positive cells significantly increased in ATP and adenosine treated groups. Taken together, these results indicate that in this preneoplastic liver model, ATP as well as adenosine disturb the balance between apoptosis and proliferation contributing to malignant transformation.

  19. Electrophysiologic effects of adenosine triphosphate on rabbit sinoatrial node pace maker cells via P1 receptors

    Institute of Scientific and Technical Information of China (English)

    RENLei-Ming; LIJun-Xia; SHIChen-Xia; ZHAODing

    2003-01-01

    AIM: To study the electrophysiologic effects of adenosine triphosphate (ATP) on rabbit sinoatrial node pacemakercells and the receptors related with the action of ATP. METHODS: Intracellular microelectrode method was usedto record the parameters of action potential (AP) in the rabbit sinoatrial nodes. RESULTS: ATP (0.1-3 mmol/L)decreased the rate of pacemaker firing (RPF) by 16 %-43 % and velocity of diastolic depolarization (VDD) by 33 %-67 %, increased the amplitude of AP (APA) by 6 %-9 % and maximal rate of depolarization (Vmax) by 30 %-76 %,shortened APD50 by 7 %-12 % and APD90 by 6.3 %-9 %, concentration-dependently. The effects of ATP, adenos-ine (Ado), and adenosine diphosphate at the same concentration on AP were not different from each other significantly.Neither uridine triphosphate nor, α,β-methylene ATP had significant electrophysiologic effects on the sinoatrialnode of rabbits. Both the electrophysiologic effects of ATP and Ado on pacemaker cells were inhibited by P1receptor antagonist aminophylline 0.1 mmol/L (P0.05). CONCLUSION: There are nofunctional P2X1 and P2Y2 receptors on pacemaker cells of the rabbit sinoatrial nodes, and the electrophysiologiceffects of ATP in the rabbit sinoatrial node pacemaker cells are mediated via P1 receptors by Ado degraded fromATP.

  20. Enhanced Diffusion of Molecular Motors in the Presence of Adenosine Triphosphate and External Force

    Science.gov (United States)

    Shinagawa, Ryota; Sasaki, Kazuo

    2016-06-01

    The diffusion of a molecular motor in the presence of a constant external force is considered on the basis of a simple theoretical model. The motor is represented by a Brownian particle moving in a series of parabolic potentials placed periodically on a line, and the potential is switched stochastically from one parabola to another by a chemical reaction, which corresponds to the hydrolysis or synthesis of adenosine triphosphate (ATP) in motor proteins. It is found that the diffusion coefficient as a function of the force exhibits peaks. The mechanism of this diffusion enhancement and the possibility of observing it in F1-ATPase, a biological rotary motor, are discussed.

  1. Estimation of adenosine triphosphate utilization of rat mast cells during and after anaphylactic histamine secretion

    DEFF Research Database (Denmark)

    Johansen, Torben

    1990-01-01

    Determination of the cellular content of adenosine triphosphate (ATP) and the rate of ATP-synthesis were used to estimate the cellular utilization of ATP in relation to anaphylactic histamine secretion. There was an increased rate of oxidative ATP-synthesis and a decreased cellular ATP content...... during the time period of histamine secretion and immediately after its completion. During secretion the additional ATP-utilization above the basal level of ATP-synthesis was 0.51 pmol/10(3) cells. 2.5 min after cell activation, the rate of additional ATP-utilization was 0.30 pmol/10(3) cells...

  2. [An adenosine triphosphate bioluminescence assay for detecting the number of living cells].

    Science.gov (United States)

    Liu, S; Peng, Z; Wang, H; Lou, J; He, B; Tang, Q; Qiu, D

    2000-06-01

    The method for detecting the number of living cells was studied. Using an adenosine triphosphate (ATP) bioluminescence assay, the present authors reported a perfect linear relationship between lg ATP concentrations and lg luminescence counts (r = 0.9963) as well as a relationship between lg number of cells and lg ATP luminescence counts (r = 0.9922). The detectable cells ranged from 10(2) to 10(6) cells/ml, the coefficients of variation 1-3%. This method is simple, accurate and sensitive and has a high reproducibility.

  3. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate

    OpenAIRE

    Brans Alain; Makarchikov Alexander F; Bettendorff Lucien

    2007-01-01

    Abstract Background We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP), in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a metabolizable carbon source and quickly disappears as soon as the cells receive a carbon source such as glucose. Thus, we hypothesized that AThTP may be a signal produced in response to carbon starvation. Results Here we show that, in bacterial extracts, the biosynthesis of AThTP is carried o...

  4. Interaction of Divalent Metal Ions with the Adenosine Triphosphate Measured Using Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The interaction of adenosine triphosphate with divalent metal ions is important in biochemical functions. The effects of pH and metal ions Mg2+, Ca2+, Zn2+, Mn2+, and Co2+ on the chemical shift of the phosphate group of ATP have been studied using Nuclear Magnetic Resonance. The chemical shift of the β-phosphate of ATP is the most sensitive to pH. Ca2+ and Mg2+ bind with the α- and β-phosphate groups of ATP. Zn2+ binds to the adenosine ring hydrogen as well as to phosphate. The paramagnetic ions Mn2+ and Co2+ do not cause chemical shifts of the phosphate or proton peak. Mn2+ and Co2+ broaden the resonance peak only.

  5. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Szu-Ying; Shih, Ya-Chen [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China); Center for Stem Cell Research, Kaohsiung Medical University, Taiwan (China)

    2015-02-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  6. Adenosine triphosphate levels during anaphylactic histamine release in rat mast cells in vitro. Effects of glycolytic and respiratory inhibitors

    DEFF Research Database (Denmark)

    Johansen, Torben

    1979-01-01

    The adenosine triphosphate (ATP) content of rat mast cells was studied during and after anaphylactic histamine release. The almost identical time course of ATP decrease from mast cells treated with either glycolytic or respiratory inhibitors supports the view that the ATP depletion was largely re...

  7. A Destabilized Case of Stable Effort Angina Pectoris Induced by Low-dose Adenosine Triphosphate

    Science.gov (United States)

    Sueta, Daisuke; Kojima, Sunao; Izumiya, Yasuhiro; Yamamuro, Megumi; Kaikita, Koichi; Hokimoto, Seiji; Ogawa, Hisao

    2016-01-01

    A 79-year-old man was diagnosed with sudden deafness. He had previously experienced a suspected episode of angina pectoris. At a local hospital, after 500 mg of hydrocortisone and 80 mg adenosine triphosphate (ATP) were administered, he became aware of chest discomfort. An electrocardiogram revealed serious ST-segment depressions. He was diagnosed with a non-ST elevated myocardial infarction (NSTEMI). Emergency coronary angiography revealed triple vessel disease, and the lesion was successfully stented. The mechanisms whereby the stable effort angina pectoris destabilized in this case were thought to include a reduction of the local blood flow because of an ATP product and probable thrombus formation in response to the administered steroids. PMID:27853071

  8. Adenosine triphosphate concentration in relation to microbial biomass in aquatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, H.W. Jr.

    1977-01-01

    Analyses of adenosine triphosphate (ATP) extracted from a sediment community by the sulfuric acid method are complicated by inhibitions from inorganic and organic compounds. Inhibitions by inorganic compounds are reversible while those by organic compounds are irreversible. The primary inhibition by organic compounds results by complexing with acid-soluble fulvic acids which will prevent the detection of as much as 80% of the ATP present in a sample by the luciferin-luciferase reaction. Analytical techniques were developed to parially circumvent such interferences. Biomass interpretations from ATP concentrations in aquatic systems are complicated by the diversity of the microbiota and by the variability in the carbon to ATP ratio caused by environmental conditions. However, when levels of ATP are considered as a physiological condition of a sedimentary community, this data provide a means to interpret community metabolism not available hitherto.

  9. Adenosine triphosphate concentration in relation to microbial biomass in aquatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, H.W. Jr.

    1977-01-01

    Analyses of adenosine triphosphate (ATP) extracted from a sediment community of an aquatic ecosystem by the sulfuric acid method are complicated by inhibitions from inorganic and organic compounds. Inhibitions by inorganic compounds are reversible while those by organic compounds are irreversible. The primary inhibition by organic compounds results by complexing with acid-soluble fulvic acids which will prevent the detection of as much as 80% of the ATP present in a sample by the luciferin-luciferase reaction. Analytical techniques were developed to partially circumvent such interferences. Biomass interpretations from ATP concentrations in aquatic systems are complicated by the diversity of the microbiota and by the variability in the carbon to ATP ratio caused by environmental conditions. However, when levels of ATP are considered as a physiological condition of a sedimentary community, this data provides a means to interpret community metabolism not available hitherto.

  10. CREATING AND INVESTIGATION OF ADENOSINE-5-TRIPHOSPHATE LIPOSOMAL FORMS FOR ORAL APPLYING

    Directory of Open Access Journals (Sweden)

    O. V. Khrobatenko

    2013-06-01

    Full Text Available Liposomal form of adenosine-5-triphosphate (ATP for oral applying was studied. The methods of obtaining and determining the size of the liposomes, the definition of ATP percentage content in liposomes were proposed. The effect of liposomal form of ATP on physical performance of laboratory animals by swimming to the limit of exhaustion was studied. It was shown that using of the liposomal form as compared with free ATP (in a similar dose promoted the increased efficiency of laboratory animals. Application of liposomal form occurring at single administration for 6 days at a dose of 30 mg/kg facilated a 62% increase of efficiency, and 60 mg/kg did 76%, while consumption of liposomal form of ATP for 12 days did 64% and 93%, respectively.

  11. Genetics and complementation of Haemophilus influenzae mutants deficient in adenosine 5'-triphosphate-dependent nuclease

    Energy Technology Data Exchange (ETDEWEB)

    Kooistra, J.; Small, G.D.; Setlow, J.K.; Shapanka, R.

    1976-04-01

    Eight different mutations in Haemophilus influenzae leading to deficiency in adenosine 5'-triphosphate (ATP)-dependent nuclease have been investigated in strains in which the mutations of the originally mutagenized strains have been transferred into the wild type. Sensitivity to mitomycin C and deoxycholate and complementation between extracts and deoxyribonucleic acid (DNA)-dependent ATPase activity have been measured. Genetic crosses have provided information on the relative position of the mutations on the genome. There are three complementation groups, corresponding to three genetic groups. The strains most sensitive to mitomycin and deoxycholate, derived from mutants originally selected on the basis of sensitivity to mitomycin C or methyl methanesulfonate, are in one group. Apparently all these sensitive strains lack DNA-dependent ATPase activity, as does a strain intermediate in sensitivity to deoxycholate, which is the sole representative of another group. There are four strains that are relatively resistant to deoxycholate and mitomycin C, and all of these contain the ATPase activity.

  12. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    Science.gov (United States)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  13. Adenosine triphosphate bioluminescence analysis for rapid screening of microbial contamination in non-sterile pharmaceutical samples.

    Science.gov (United States)

    Jimenez, Luis

    2004-01-01

    An Adenosine Triphosphate (ATP) bioluminescence system was compared and validated against standard methods for rapid microbiological monitoring of several non-sterile pharmaceutical formulations such as creams, tablets, and capsules. Results obtained using 1%, 2.5%, and 10% of product suspensions indicated that most samples that did not contain non-microbial ATP neither inhibited the bioluminescence reaction nor did something else. Ten percent product suspensions were inoculated with different concentrations of Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Candida albicans, and Aspergillus niger. Samples were incubated for 24-120 h at 35 degrees C with shaking. Results indicated a strong inhibitory effect of microbial growth, as no microorganisms were detected by using the ATP bioluminescence assay. However, when 1% and 2.5% product suspensions were spiked with the same microorganisms, positive detection was confirmed. After incubation, all microorganisms were detected by the bioluminescence system within 24-72 h. All positive samples were confirmed by using standard plating media. However, to optimize detection of all microorganisms, different enrichment media were developed.

  14. An efficient extraction method for quantitation of adenosine triphosphate in mammalian tissues and cells.

    Science.gov (United States)

    Chida, Junji; Yamane, Kazuhiko; Takei, Tunetomo; Kido, Hiroshi

    2012-05-21

    Firefly bioluminescence is widely used in the measurement of adenosine 5'-triphosphate (ATP) levels in biological materials. For such assays in tissues and cells, ATP must be extracted away from protein in the initial step and extraction efficacy is the main determinant of the assay accuracy. Extraction reagents recommended in the commercially available ATP assay kits are chaotropic reagents, trichloroacetic acid (TCA), perchloric acid (PCA), and ethylene glycol (EG), which extract nucleotides through protein precipitation and/or nucleotidase inactivation. We found that these reagents are particularly useful for measuring ATP levels in materials with relatively low protein concentrations such as blood cells, cultured cells, and bacteria. However, these methods are not suitable for ATP extraction from tissues with high protein concentrations, because some ATP may be co-precipitated with the insolubilized protein during homogenization and extraction, and it could also be precipitated by neutralization in the acid extracts. Here we found that a phenol-based extraction method markedly increased the ATP and other nucleotides extracted from tissues. In addition, phenol extraction does not require neutralization before the luciferin-luciferase assay step. ATP levels analyzed by luciferase assay in various tissues extracted by Tris-EDTA-saturated phenol (phenol-TE) were over 17.8-fold higher than those extracted by TCA and over 550-fold higher than those in EG extracts. Here we report a simple, rapid, and reliable phenol-TE extraction procedure for ATP measurement in tissues and cells by luciferase assay.

  15. Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model.

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2009-08-14

    Measurement of intrinsic optical signals (IOSs) is an attractive technique for monitoring tissue viability in brains since it enables noninvasive, real-time monitoring of morphological characteristics as well as physiological and biochemical characteristics of tissue. We previously showed that light scattering signals reflecting cellular morphological characteristics were closely related to the IOSs associated with the redox states of cytochrome c oxidase in the mitochondrial respiratory chain. In the present study, we examined the relationship between light scattering and energy metabolism. Light scattering signals were transcranially measured in rat brains after oxygen and glucose deprivation, and the results were compared with concentrations of cerebral adenosine triphosphate (ATP) measured by luciferin-luciferase bioluminescence assay. Electrophysiological signal was also recorded simultaneously. After starting saline infusion, EEG activity ceased at 108+/-17s, even after which both the light scattering signal and ATP concentration remained at initial levels. However, light scattering started to change in three phases at 236+/-15s and then cerebral ATP concentration started to decrease at about 260s. ATP concentration significantly decreased during the triphasic scattering change, indicating that the start of scattering change preceded the loss of cerebral ATP. The mean time difference between the start of triphasic scattering change and the onset of ATP loss was about 24s in the present model. DC potential measurement showed that the triphasic scattering change was associated with anoxic depolarization. These findings suggest that light scattering signal can be used as an indicator of loss of tissue viability in brains.

  16. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells.

    Science.gov (United States)

    Cutarelli, Alessandro; Marini, Mario; Tancredi, Virginia; D'Arcangelo, Giovanna; Murdocca, Michela; Frank, Claudio; Tarantino, Umberto

    2016-05-01

    In the last years adenosine triphosphate (ATP) and subsequent purinergic system activation through P2 receptors were investigated highlighting their pivotal role in bone tissue biology. In osteoblasts ATP can regulate several activities like cell proliferation, cell death, cell differentiation and matrix mineralization. Since controversial results exist, in this study we analyzed the ATP effects on differentiation and mineralization in human osteoblast-like Saos-2 cells. We showed for the first time the altered functional activity of ATP receptors. Despite that, we found that ATP can reduce cell proliferation and stimulate osteogenic differentiation mainly in the early stages of in vitro maturation as evidenced by the enhanced expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and Osteocalcin (OC) genes and by the increased ALP activity. Moreover, we found that ATP can affect mineralization in a biphasic manner, at low concentrations ATP always increases mineral deposition while at high concentrations it always reduces mineral deposition. In conclusion, we show the osteogenic effect of ATP on both early and late stage activities like differentiation and mineralization, for the first time in human osteoblastic cells.

  17. Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5'-triphosphate (ATP).

    Science.gov (United States)

    Sharma, Piyush S; Dabrowski, Marcin; Noworyta, Krzysztof; Huynh, Tan-Phat; Kc, Chandra B; Sobczak, Janusz W; Pieta, Piotr; D'Souza, Francis; Kutner, Wlodzimierz

    2014-09-24

    For molecular imprinting of oxidatively electroactive analytes by electropolymerization, we used herein reductively electroactive functional monomers. As a proof of concept, we applied C60 fullerene adducts as such for the first time. For that, we derivatized C60 to bear either an uracil or an amide, or a carboxy addend for recognition of the adenosine-5'-triphosphate (ATP) oxidizable analyte with the ATP-templated molecularly imprinted polymer (MIP-ATP). Accordingly, the ATP complex with all of the functional monomers formed in solution was potentiodynamically electropolymerized to deposit an MIP-ATP film either on an Au electrode of the quartz crystal resonator or on a Pt disk electrode for the piezoelectric microgravimetry (PM) or capacitive impedimetry (CI) determination of ATP, respectively, under the flow-injection analysis (FIA) conditions. The apparent imprinting factor for ATP was ∼4.0. After extraction of the ATP template, analytical performance of the resulting chemosensors, including detectability, sensitivity, and selectivity, was characterized. The limit of detection was 0.3 and 0.03mM ATP for the PM and CI chemosensor, respectively. The MIP-ATP film discriminated structural analogues of ATP quite well. The Langmuir, Freundlich, and Langmuir-Freundlich isotherms were fitted to the experimental data of the ATP sorption and sorption stability constants appeared to be nearly independent of the adopted sorption model.

  18. Protective effect of exogenous adenosine triphosphate on hypothermically preserved rat liver

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Tan; Hiroshi Egami; Feng-Shan Wang; Michio Ogawa

    2004-01-01

    AIM: To clarify the protective effect of exogenous adenosine triphosphate (ATP) on hypothermically preserved rat livers.METHODS: Establishment of continuous hypothermicmachine perfusion model, detection of nucleotides inhepatocytes with HPLC, measurement of activities of LDHand AST in the perfusate, observation of histopathologicalchanges in different experiment groups, and autoradiographywere carried out to reveal the underlying mechanism of theprotective effect of ATP.RESULTS: The intracellular levels of ATP and EC decreasedrapidly after hypothermic preservation in control group, whilea higher ATP and EC level, and a slower decreasing ratewere observed when ATP-MgCl2 was added to the perfusate(P<0.01). As compared with the control group, the activitiesof LDH and AST in the ATP-MgCl2 group were lower (P<0.05).Furthermore, more severe hepatocyte damage and neutrophil infiltration were observed in the control group. Radioactive [α-32P] ATP entered the hypothermically preserved rat hepatocytes.CONCLUSION: Exogenous ATP has a protective effect on rat livers during hypothermical preservation. However, Mg2+ is indispensable, addition of ATP alone produces no protective effect. The underlying mechanism may be that exogenous ATP enters the hypothermically preserved rat liver cells.

  19. Antihyperlipidemic activity of adenosine triphosphate in rabbits fed a high-fat diet and hyperlipidemic patients.

    Science.gov (United States)

    Zhang, Lianshan; Liang, Libin; Tong, Tong; Qin, Yuguo; Xu, Yanping; Tong, Xinglong

    2016-10-01

    Context Recently, adenosine triphosphate (ATP) was occasionally found to decrease the triglyceride (TG) levels in several hyperlipidemic patients in our clinical practice. Objective The study investigates the anti-hyperlipidemic effects of ATP in a high-fat fed rabbit model and hyperlipidemic patients. Materials and methods Twenty-four rabbits were randomly divided into three groups of eight animals each as follows: normal diet, high-fat diet and high-fat diet + ATP group. ATP supplementation (40 mg/day) was started at the 20th day and lasted for 10 days. Serum concentrations of total cholesterol (TC), TG, LDL-C, HDL-C were measured on the 20th day and 30th day. Heart, liver and aorta were subjected histopathological examination. Twenty outpatients diagnosed primary hyperlipidemia took ATP at a dose of 60 mg twice a day for 1 week. Results Feeding rabbits with a high-fat diet resulted in a significant elevation of lipid parameters including TC, TG, LDL-C, VLDL-C compared to the normal diet group (p ATP treatment significantly decreased serum TG level (p ATP significantly reduced the thickness of fat layer in cardiac epicardium (p ATP for 1 week, hyperlipidemia patients exhibited a significant decrease of TG (p ATP selectively decreases serum TG levels in high-fat diet rabbits and hyperlipidemic patients. Therefore, ATP supplementation may provide an effective approach to control TG level.

  20. Red blood cells (RBCs), epoxyeicosatrienoic acids (EETs) and adenosine triphosphate (ATP).

    Science.gov (United States)

    Jiang, Houli; Anderson, Gail D; McGiff, John C

    2010-01-01

    In addition to serving as carriers of O(2), red blood cells (RBCs) regulate vascular resistance and the distribution of microvascular perfusion by liberating adenosine triphosphate (ATP) and epoxyeicosatrienoic acids (EETs) upon exposure to a low O(2) environment. Therefore, RBCs act as sensors that respond to low pO(2) by releasing millimolar amounts of ATP, a signaling molecule, and lipid mediators (EETs). The release of EETs occurs by a mechanism that is activated by ATP stimulation of P2X(7) receptors coupled to ATP transporters, which should greatly amplify the circulatory response to ATP. RBCs are reservoirs of EETs and the primary sources of plasma EETs, which are esterified to the phospholipids of lipoproteins. Levels of free EETs in plasma are low, about 3% of circulating EETs. RBC EETs are produced by direct oxidation of arachidonic acid (AA) esterified to glycerophospholipids and the monooxygenase-like activity of hemoglobin. On release, EETs affect vascular tone, produce profibrinolysis and dampen inflammation. A soluble epoxide hydrolase (sEH) regulates the concentrations of RBC and vascular EETs by metabolizing both cis- and trans-EETs to form dihydroxyeicosatrienoic acids (DHETs). The function and pathophysiological roles of trans-EETs and erythro-DHETs has yet to be integrated into a physiological and pathophysiological context.

  1. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.

    Science.gov (United States)

    Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P

    2016-04-01

    The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples.

  2. A Graphene and Aptamer Based Liquid Gated FET-Like Electrochemical Biosensor to Detect Adenosine Triphosphate.

    Science.gov (United States)

    Mukherjee, Souvik; Meshik, Xenia; Choi, Min; Farid, Sidra; Datta, Debopam; Lan, Yi; Poduri, Shripriya; Sarkar, Ketaki; Baterdene, Undarmaa; Huang, Ching-En; Wang, Yung Yu; Burke, Peter; Dutta, Mitra; Stroscio, Michael A

    2015-12-01

    Here we report successful demonstration of a FET-like electrochemical nano-biosensor to accurately detect ultralow concentrations of adenosine triphosphate. As a 2D material, graphene is a promising candidate due to its large surface area, biocompatibility, and demonstrated surface binding chemistries and has been employed as the conducting channel. A short 20-base DNA aptamer is used as the sensing element to ensure that the interaction between the analyte and the aptamer occurs within the Debye length of the electrolyte (PBS). Significant increase in the drain current with progressive addition of ATP is observed whereas for control experiments, no distinct change in the drain current occurs. The sensor is found to be highly sensitive in the nanomolar (nM) to micromolar ( μM) range with a high sensitivity of 2.55 μA (mM) (-1), a detection limit as low as 10 pM, and it has potential application in medical and biological settings to detect low traces of ATP. This simplistic design strategy can be further extended to efficiently detect a broad range of other target analytes.

  3. INHIBITORY EFFECTS OF ADENOSINE 5' -TRIPHOSPHATE ON COCHLEAR FUNCTION OF GUINEA PIG

    Institute of Scientific and Technical Information of China (English)

    杨军; 李吉平; 钱敏飞; 徐秀玲; 王家东; 丁大连

    2005-01-01

    Objective To study effects of adenosine 5'-triphosphate (ATP) on cochlear function of guinea pig. Methods After perfusion of ATP into perilymphatic spaces of the guinea pig cochlea, summating potential (SP), cochlear microphonic (CM) , auditory nerve compound action potential ( CAP ) , distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) were measured. Results The results showed concentration-dependent effect of ATP on the response alterations of bioelectric activity in cochlea. Administration of lmmol/L ATP caused an increase both in the amplitude of the SP and in the threshold of ABR, a decrease in amplitude of the CAP and DPOAE. In addition, response alterations of the CAP and DPOAE showed in an intensity- and frequency-dependent manner, respectively. At levels of 20 -70dB nHL sound intensity, lmmol/L ATP caused a significant decrease in the CAP amplitude, while at moderate and high frequency ranges of 2 -8kHz it reduced DPOAE amplitude significantly. 330μmol/L ATP also increased the threshold of ABR. Conclusion ATP through perilymphatic perfusion could inhibit cochlear function of guinea pig.

  4. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress

    Directory of Open Access Journals (Sweden)

    Zorzi Willy

    2010-05-01

    Full Text Available Abstract Background E. coli cells are rich in thiamine, most of it in the form of the cofactor thiamine diphosphate (ThDP. Free ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate (ThTP and the newly discovered adenosine thiamine triphosphate (AThTP. While, ThTP accumulation requires oxidation of a carbon source, AThTP slowly accumulates in response to carbon starvation, reaching ~15% of total thiamine. Here, we address the question whether AThTP accumulation in E. coli is triggered by the absence of a carbon source in the medium, the resulting drop in energy charge or other forms of metabolic stress. Results In minimal M9 medium, E. coli cells produce AThTP not only when energy substrates are lacking but also when their metabolization is inhibited. Thus AThTP accumulates in the presence of glucose, when glycolysis is blocked by iodoacetate, or in the presence lactate, when respiration is blocked by cyanide or anoxia. In both cases, ATP synthesis is impaired, but AThTP accumulation does not appear to be a direct consequence of reduced ATP levels. Indeed, in the CV2 E. coli strain (containing a thermolabile adenylate kinase, the ATP content is very low at 37°C, even in the presence of metabolizable substrates (glucose or lactate and under these conditions, the cells produce ThTP but not AThTP. Furthermore, we show that ThTP inhibits AThTP accumulation. Therefore, we conclude that a low energy charge is not sufficient to trigger AThTP accumulation and the latter can only accumulate under conditions where no ThTP is synthesized. We further show that AThTP production can also be induced by the uncoupler CCCP but, unexpectedly, this requires the presence of pyruvate or a substrate yielding pyruvate (such a D-glucose or L-lactate. Under the conditions described, AThTP production is not different when RelA or SpoT mutants are used. Conclusions In E. coli, AThTP accumulates in response to two different conditions of

  5. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV).

    Science.gov (United States)

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-10-12

    Zr(IV) can form phosphate and Zr(IV) (-PO₃(2-)-Zr(4+)-) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  6. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    Science.gov (United States)

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (–PO32−–Zr4+–) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP. PMID:27754349

  7. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2016-10-01

    Full Text Available Zr(IV can form phosphate and Zr(IV (–PO32−–Zr4+– complex owing to the high affinity between Zr(IV with phosphate. Zr(IV can induce the aggregation of gold nanoparticles (AuNPs, while adenosine triphosphate(ATP can prevent Zr(IV-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRAsensor for ATP have been developed using AuNPs based on the high affinity between Zr(IVwith ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV. After the addition of ATP, ATP reacts with Zr(IV and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV, ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945 with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  8. Monitoring of endoscope reprocessing with an adenosine triphosphate (ATP) bioluminescence method.

    Science.gov (United States)

    Parohl, Nina; Stiefenhöfer, Doris; Heiligtag, Sabine; Reuter, Henning; Dopadlik, Dana; Mosel, Frank; Gerken, Guido; Dechêne, Alexander; Heintschel von Heinegg, Evelyn; Jochum, Christoph; Buer, Jan; Popp, Walter

    2017-01-01

    Background: The arising challenges over endoscope reprocessing quality proposes to look for possibilities to measure and control the process of endoscope reprocessing. Aim: The goal of this study was to evaluate the feasibility of monitoring endoscope reprocessing with an adenosine triphosphate (ATP) based bioluminescence system. Methods: 60 samples of eight gastroscopes have been assessed from routine clinical use in a major university hospital in Germany. Endoscopes have been assessed with an ATP system and microbial cultures at different timepoints during the reprocessing. Findings: After the bedside flush the mean ATP level in relative light units (RLU) was 19,437 RLU, after the manual cleaning 667 RLU and after the automated endoscope reprocessor (AER) 227 RLU. After the manual cleaning the mean total viable count (TVC) per endoscope was 15.3 CFU/10 ml, and after the AER 5.7 CFU/10 ml. Our results show that there are reprocessing cycles which are not able to clean a patient used endoscope. Conclusion: Our data suggest that monitoring of flexible endoscope with ATP can identify a number of different influence factors, like the endoscope condition and the endoscopic procedure, or especially the quality of the bedside flush and manual cleaning before the AER. More process control is one option to identify and improve influence factors to finally increase the overall reprocessing quality, best of all by different methods. ATP measurement seems to be a valid technique that allows an immediate repeat of the manual cleaning if the ATP results after manual cleaning exceed the established cutoff of 200 RLU.

  9. Optimization of adenosine 5'-triphosphate extraction for the measurement of acidogenic biomass utilizing whey wastewater.

    Science.gov (United States)

    Lee, Changsoo; Kim, Jaai; Hwang, Seokhwan

    2006-08-01

    A set of experiments was carried out to maximize adenosine 5'-triphosphate (ATP) extraction efficiency from acidogenic culture using whey wastewater. ATP concentrations at different microbial concentrations increased linearly as microbial concentration decreased. More than 50% of ATP was extracted from the sample of 39 mg volatile suspended solids (VSS)/l compared to the sample of 2.8 g VSS/l. The ATP concentrations of the corresponding samples were 0.74+/-0.06 and 0.49+/-0.05 mg/l, respectively. For low VSS concentrations ranging from 39 to 92 mg/l, the extracted ATP concentration did not vary significantly at 0.73+/-0.01 mg ATP/l. Response surface methodology with a central composite in cube design for the experiments was used to locate the optimum for maximal ATP extraction with respect to boiling and bead beating treatments. The overall designed intervals were from 0 to 15 min and from 0 to 3 min for boiling and bead beating, respectively. The extracted ATP concentration ranged from 0.01 to 0.74 mg/l within the design boundary. The following is a partial cubic model where eta is the concentration of ATP and x ( k ) is the corresponding variable term (k=boiling time and bead beating time in order): eta=0.629+0.035x (1)-0.818x (2)-0.002x (1) x (2)-0.003x (1) (2) +0.254x (2) (2) +0.002x (1) (2) x (2). This model successfully approximates the response of ATP concentration with respect to the boiling- and bead beating-time. The condition for maximal ATP extraction was 5.6 min boiling without bead beating. The maximal ATP concentration using the model was 0.74 mg/l, which was identical to the experimental value at optimum condition for ATP extraction.

  10. Extracellular adenosine 5'-triphosphate and lipopolysaccharide induce interleukin-1β release in canine blood.

    Science.gov (United States)

    Spildrejorde, Mari; Curtis, Stephen J; Curtis, Belinda L; Sluyter, Ronald

    2014-01-15

    Binding of extracellular adenosine 5'-triphosphate (ATP) or lipopolysaccharide (LPS) to the damage-associated molecular pattern receptor P2X7 or the pathogen-associated molecular pattern receptor Toll-like receptor (TLR)4, respectively, can induce the release of the pleiotropic cytokine interleukin (IL)-1β in humans and mice. However, the release of IL-1β in dogs remains poorly defined. Using a canine IL-1β enzyme-linked immunosorbent assay, this study investigated whether ATP or LPS could induce IL-1β release in a canine blood-based assay. Short-term incubations (30 min) with ATP induced IL-1β release in LPS-primed canine blood, and this process could be near-completely impaired by the P2X7 antagonist, A438079. In contrast, ATP failed to induce IL-1β release from blood not primed with LPS. ATP-induced IL-1β release was observed with LPS-primed blood from eight different pedigrees or cross breeds. Long-term incubations (24h) with LPS induced IL-1β release in canine blood in a concentration-dependent manner. This process was not altered by co-incubation with A438079. LPS-induced IL-1β release was observed with blood from 10 different pedigrees or cross breeds. These results demonstrate that both extracellular ATP and LPS can induce IL-1β release in dogs, and that ATP- but not LPS-induced IL-1β release in blood is dependent on P2X7 activation. These findings support the role of both P2X7 and TLR4 in IL-1β release in dogs.

  11. SNC-80-induced preconditioning: selective activation of the mitochondrial adenosine triphosphate-gated potassium channel.

    Science.gov (United States)

    Fischbach, Peter S; Barrett, Terrance D; Reed, Nathan J; Lucchesi, Benedict R

    2003-05-01

    Pharmacologic preconditioning by delta-opioid agonists occurs via activation of an adenosine triphosphate (ATP)-gated potassium channel (I(KATP)). Opening of mitochondrial I(KATP) confers pharmacologic preconditioning whereas opening the sarcolemmal I(KATP) shortens action potential duration and is proarrhythmic. This study investigated whether SNC-80, a selective delta-opioid agonist, is associated with development of ventricular arrhythmia due to activation of I(KATP). Rabbit isolated hearts were subjected to 12 min of hypoxia and 40 min of reoxygenation after pretreatment with SNC-80 (1 microM, n = 6), pinacidil (1.25 microM, n = 12), or BMS-191095 (6.0 microM, n = 4). Nine additional hearts served as controls. The cytoprotective effects of SNC-80 at a concentration of 1 microM were confirmed using 30 min of regional ischemia followed by 120 min of reperfusion. Ventricular fibrillation (VF) developed in 11 of 12 pinacidil-treated hearts whereas none of the SNC-80-treated (zero of six) hearts developed VF (P SNC-80 reduced infarct size expressed as a percentage of the area at risk from 33 +/- 4% to 14 +/- 3% (P = 0.004) compared with control. SNC-80, which selectively activates the delta-opioid receptor, provided cytoprotection but did not induce VF after hypoxia reoxygenation. The results indicate that pinacidil-induced nonselective activation of I(KATP) results in proarrhythmia that is dependent on activation of the sarcolemmal I(KATP). Selectivity for the mitochondrial I(KATP) is necessary to prevent induction of a proarrhythmic state.

  12. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    Science.gov (United States)

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  13. Molecular structure of tetraaqua adenosine 5'-triphosphate aluminium(III) complex: a study involving Raman spectroscopy, theoretical DFT and potentiometry.

    Science.gov (United States)

    Tenório, Thaís; Silva, Andréa M; Ramos, Joanna Maria; Buarque, Camilla D; Felcman, Judith

    2013-03-15

    The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques. Studies reveal that AlATP complex promotes the formation of reactive fibrils of β-amyloid protein and independent amyloidogenic peptides, suggesting the action of the complex as a chaperone in the role pathogenic process. In this research, one of complexes formed by Al(III) and adenosine 5'-triphosphate in aqueous solution is analyzed by potentiometry, Raman spectroscopy and ab initio calculations. The value of the logK(AlATP) found was 9.21±0.01 and adenosine 5'-triphosphate should act as a bidentate ligand in the complex. Raman spectroscopy and potentiometry indicate that donor atoms are the oxygen of the phosphate β and the oxygen of the phosphate γ, the terminal phosphates. Computational calculations using Density Functional Theory, with hybrid functions B3LYP and 6-311++G(d,p) basis set regarding water solvent effects, have confirmed the results. Frontier molecular orbitals, electrostatic potential contour surface, electrostatic potential mapped and Mulliken charges of the title molecule were also investigated.

  14. Molecular structure of tetraaqua adenosine 5'-triphosphate aluminium(III) complex: A study involving Raman spectroscopy, theoretical DFT and potentiometry

    Science.gov (United States)

    Tenório, Thaís; Silva, Andréa M.; Ramos, Joanna Maria; Buarque, Camilla D.; Felcman, Judith

    2013-03-01

    The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques. Studies reveal that AlATP complex promotes the formation of reactive fibrils of β-amyloid protein and independent amyloidogenic peptides, suggesting the action of the complex as a chaperone in the role pathogenic process. In this research, one of complexes formed by Al(III) and adenosine 5'-triphosphate in aqueous solution is analyzed by potentiometry, Raman spectroscopy and ab initio calculations. The value of the log KAlATP found was 9.21 ± 0.01 and adenosine 5'-triphosphate should act as a bidentate ligand in the complex. Raman spectroscopy and potentiometry indicate that donor atoms are the oxygen of the phosphate β and the oxygen of the phosphate γ, the terminal phosphates. Computational calculations using Density Functional Theory, with hybrid functions B3LYP and 6-311++G(d,p) basis set regarding water solvent effects, have confirmed the results. Frontier molecular orbitals, electrostatic potential contour surface, electrostatic potential mapped and Mulliken charges of the title molecule were also investigated.

  15. Effects of adenosine triphosphate (ATP) on early recovery after total knee arthroplasty (TKA): a randomized, double-blind, controlled study.

    Science.gov (United States)

    Long, Gong; Zhang, Guo Qiang

    2014-12-01

    Functional exercise after total knee arthroplasty (TKA) is necessary. However, it may be a difficult and painful process for the patient. Desirable methods of relieving the patient's pain are worth exploring. Oral supplement of adenosine triphosphate (ATP) is a potential option. In the present study, we decide to investigate whether short-term administration of ATP benefits patients undergoing TKA. A total of 244 subjects were randomized to receive 120mg ATP or placebo each day for 4weeks. Significant differences in quadriceps strength, pain scores at postoperative days 7, 14, 21, and 28 and total opioid consumption were detected. It follows that oral supplement of ATP could benefit patients recovering from TKA.

  16. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate

    Directory of Open Access Journals (Sweden)

    Brans Alain

    2007-08-01

    Full Text Available Abstract Background We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP, in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a metabolizable carbon source and quickly disappears as soon as the cells receive a carbon source such as glucose. Thus, we hypothesized that AThTP may be a signal produced in response to carbon starvation. Results Here we show that, in bacterial extracts, the biosynthesis of AThTP is carried out from thiamine diphosphate (ThDP and ADP or ATP by a soluble high molecular mass nucleotidyl transferase. We partially purified this enzyme and characterized some of its functional properties. The enzyme activity had an absolute requirement for divalent metal ions, such as Mn2+ or Mg2+, as well as for a heat-stable soluble activator present in bacterial extracts. The enzyme has a pH optimum of 6.5–7.0 and a high Km for ThDP (5 mM, suggesting that, in vivo, the rate of AThTP synthesis is proportional to the free ThDP concentration. When ADP was used as the variable substrate at a fixed ThDP concentration, a sigmoid curve was obtained, with a Hill coefficient of 2.1 and an S0.5 value of 0.08 mM. The specificity of the AThTP synthesizing enzyme with respect to nucleotide substrate is restricted to ATP/ADP, and only ThDP can serve as the second substrate of the reaction. We tentatively named this enzyme ThDP adenylyl transferase (EC 2.7.7.65. Conclusion This is the first demonstration of an enzyme activity transferring a nucleotidyl group on thiamine diphosphate to produce AThTP. The existence of a mechanism for the enzymatic synthesis of this compound is in agreement with the hypothesis of a non-cofactor role for thiamine derivatives in living cells.

  17. The synthesis of 2′-methylseleno adenosine and guanosine 5′-triphosphates

    OpenAIRE

    Santner, Tobias; Siegmund, Vanessa; Marx, Andreas; Micura, Ronald

    2012-01-01

    Modified nucleoside triphosphates (NTPs) represent powerful building blocks to generate nucleic acids with novel properties by enzymatic synthesis. We have recently demonstrated the access to 20-SeCH3-uridine and 20-SeCH3-cytidine derivatized RNAs for applications in RNA crystallography, using the correspondingnucleoside triphosphates and distinct mutants of T7 RNA polymerase. In the present note, we introduce the chemical synthesis of the novel 20-methylseleno-20-deoxyadenosine and -guanosin...

  18. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    Science.gov (United States)

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  19. Fast determination of adenosine 5'-triphosphate (ATP) and its catabolites in royal jelly using ultraperformance liquid chromatography.

    Science.gov (United States)

    Zhou, Ling; Xue, XiaoFeng; Zhou, JinHui; Li, Yi; Zhao, Jing; Wu, LiMing

    2012-09-12

    To obtain insight into the metabolic regulation of adenosine 5'-triphosphate (ATP) in royal jelly and to determine whether ATP and its catabolites can be used as objective parameters to evaluate the freshness and quality of royal jelly (RJ), a rapid ultraperformance liquid chromatography (UPLC) method has been developed for feasible separation and quantitation of ATP and its catabolites in RJ, namely, adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), inosine monophosphate (IMP), inosine (HxR), and hypoxanthine (Hx). The analytes in the sample were extracted using 5% precooled perchloric acid. Chromatographic separation was performed on a Waters Acquity UPLC system with a Waters BEH Shield RP18 column and gradient elution based on a mixture of two solvents: solvent A, 50 mM phosphate buffer (pH 6.5); and solvent B, acetonitrile. The recoveries were in the range of 86.0-102.3% with RSD of no more than 3.6%. The correlation coefficients of six analytes were high (r(2) ≥ 0.9988) and within the test ranges. The limits of detection and quantification for the investigated compounds were lower, at 0.36-0.68 and 1.22-2.30 mg/kg, respectively. The overall intra- and interday RSDs were no more than 1.8%. The developed method was successfully applied to the analysis of the analytes in samples. The results showed that ATP in RJ sequentially degrades to ADP, AMP, IMP, HxR, and Hx during storage.

  20. Sterol transporter adenosine triphosphate-binding cassette transporter G8, gallstones, and biliary cancer in 62,000 individuals from the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Nordestgaard, Børge G;

    2011-01-01

    Gallstone disease, a risk factor for biliary cancer, has a strong heritable component, but the underlying genes are largely unknown. To test the hypothesis that ABCG8 (adenosine triphosphate-binding cassette transporter G8) Asp19His (D19H) genotype predicted risk of gallstones and biliary cancer ...

  1. Sterol transporter adenosine triphosphate-binding cassette transporter G8, gallstones, and biliary cancer in 62,000 individuals from the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Nordestgaard, Børge G

    2011-01-01

    Gallstone disease, a risk factor for biliary cancer, has a strong heritable component, but the underlying genes are largely unknown. To test the hypothesis that ABCG8 (adenosine triphosphate-binding cassette transporter G8) Asp19His (D19H) genotype predicted risk of gallstones and biliary cancer ...

  2. Adenosine 5 '-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    NARCIS (Netherlands)

    Arts, I.C.W.; Coolen, E.J.C.M.; Bours, M.J.L.; Huyghebaert, N.; Cohen Stuart, M.A.; Bast, A.; Dagnelie, P.C.

    2012-01-01

    Background: Nutritional supplements designed to increase adenosine 5'-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity

  3. An improved red blood cell additive solution maintains 2,3-diphosphoglycerate and adenosine triphosphate levels by an enhancing effect on phosphofructokinase activity during cold storage

    NARCIS (Netherlands)

    P. Burger; H. Korsten; D. de Korte; E. Rombout; R. van Bruggen; A.J. Verhoeven

    2010-01-01

    BACKGROUND: Current additive solutions (ASs) for red blood cells (RBCs) do not maintain constant 2,3-diphosphoglycerate (DPG) and adenosine triphosphate (ATP) levels during cold storage We have previously shown that with a new AS called phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM)

  4. Adenosine 5 '-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    NARCIS (Netherlands)

    Arts, I.C.W.; Coolen, E.J.C.M.; Bours, M.J.L.; Huyghebaert, N.; Cohen Stuart, M.A.; Bast, A.; Dagnelie, P.C.

    2012-01-01

    Background: Nutritional supplements designed to increase adenosine 5'-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity

  5. Plaque retention by self-ligating vs elastomeric orthodontic brackets: quantitative comparison of oral bacteria and detection with adenosine triphosphate-driven bioluminescence.

    NARCIS (Netherlands)

    Pellegrini, P.; Sauerwein, R.W.; Finlayson, T.; McLeod, J.; Covell, D.A.; Maier, T.; Machida, C.A.

    2009-01-01

    INTRODUCTION: Enamel decalcification is a common problem in orthodontics. The objectives of this randomized clinical study were to enumerate and compare plaque bacteria surrounding 2 bracket types, self-ligating (SL) vs elastomeric ligating (E), and to determine whether adenosine triphosphate (ATP)-

  6. Utilization of adenosine triphosphate in rat mast cells during histamine release induced by the ionophore A23187

    DEFF Research Database (Denmark)

    Johansen, Torben

    1979-01-01

    The role of endogenous adenosine triphosphate (ATP) in histamine release from rat mast cells induced by the ionophore A23187 in vitro has been studied. 2 The amount of histamine released by calcium from rat mast cells primed with the ionophore A23187 was dependent on the ATP content of the mast...... cells. 3 In aerobic experiments a drastic reduction in mast cell ATP content was found during the time when histamine release induced by A23187 takes place. 4 Anaerobic experiments were performed with metabolic inhibitors (antimycin A, oligomycin, and carbonyl cyanide p......-trifluorometroxyphenylnydrazone), which are known to block the energy-dependent calcium uptake by isolated mitochondria. The mast cell ATP content was reduced during A23187-induced histamine release under anaerobic conditions in the presence of glucose. This indicates an increased utilization of ATP during the release process. 5...

  7. Detection of somatic coliphages through a bioluminescence assay measuring phage mediated release of adenylate kinase and adenosine 5'-triphosphate.

    Science.gov (United States)

    Guzmán Luna, Carolina; Costán-Longares, Ana; Lucena, Francisco; Jofre, Joan

    2009-10-01

    The feasibility of detecting somatic coliphages by phage infection of Escherichia coli WG5 and measurement of phage propagation by the lysis mediated release of the bacterial host adenylate kinase (AK) and adenosine 5'-triphosphate (ATP) detected by a bioluminescent signal was evaluated. After 2h of incubation, all cultures infected with reference bacteriophage phiX174 showed a significant increase in the bioluminescent signal, even with number of phages as low as less of 10 plaque forming units (PFU). Naturally occurring somatic coliphages ensured a significant bioluminescent signal after 3h of infection when >10 PFU were inoculated. These results indicate that an easy and reliable method to detect low numbers of coliphages in less than 3h is feasible.

  8. Adenosine triphosphate-binding cassette member A3 gene mutation in children from one family from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Gawahir Mohamed Ahmed Mukhtar

    2016-01-01

    Full Text Available Mutation in ABCA3, which is adenosine triphosphate-binding cassette member A3, a member of protein transporter family for phospholipids into the lamellar bodies during synthesis of surfactant, can cause lung disease related to surfactant dysfunction with autosomal recessive pattern. We reported three cases from same family with ABCA3 mutation, their gene, clinical course, and outcomes mentioning that one patient had successful lung transplantation, one started the process of the lung transplantation while the third one died during infancy. We concluded that the patients with ABCA3 gene mutations are increasing in numbers may be due to the availability of the genetic testing and high index of suspicion among physicians. Lung transplantation is the definitive treatment, but availability is limited in our region.

  9. Determination of adenosine disodium triphosphate (ATP) using norfloxacin-Tb{sup 3+} as a fluorescence probe by spectrofluorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yanhong [Department of Chemistry, Shandong Normal University, Jinan 250014 (China); College of Science and Technology, Shandong Agriculture University, Taian 271000 (China); Liu Jinkai [Department of Chemistry, Shandong Normal University, Jinan 250014 (China); Hou Faju [Department of Chemistry, Shandong Normal University, Jinan 250014 (China); Jiang Chongqiu [Department of Chemistry, Shandong Normal University, Jinan 250014 (China)]. E-mail: jiangchongqiu@sdnu.edu.cn

    2006-01-15

    A new spectrofluorimetric method was developed for determination of trace amount of adenosine disodium triphosphate (ATP). Using norfloxacin (NFLX)-terbium (Tb{sup 3+}) as a fluorescent probe, in the buffer solution of pH=7.40, ATP can remarkably enhance the fluorescence intensity of the NFLX-Tb{sup 3+} complex at {lambda}=545nm and the enhanced fluorescence intensity of Tb{sup 3+} ion is in proportion to the concentration of ATP. Optimum conditions for the determination of ATP were also investigated. The dynamic range for the determination of ATP is 1.00x10{sup -6}-1.60x10{sup -5}mol/L with detection limit of 4.13x10{sup -8}mol/L. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of ATP in samples.

  10. The effect of adenosine triphosphate on sevoflurane requirements for minimum alveolar anesthetic concentration and minimum alveolar anesthetic concentration-awake.

    Science.gov (United States)

    Suzuki, A; Katoh, T; Ikeda, K

    1998-01-01

    We evaluated the effects of i.v. adenosine triphosphate (ATP) on sevoflurane minimum alveolar anesthetic concentration (MAC) and MAC-Awake. The study group included healthy patients 20-60 yr of age. The study groups for MAC-Awake determination included 49 patients who were scheduled for elective surgery. The study groups for MAC determination included 53 patients scheduled for elective surgery involving a skin incision. These patients were randomly assigned to two groups, an ATP group and a control group. The ATP group received 100 micrograms.kg-1.min-1 ATP i.v., and the control group received no medication. The ATP group and the control group were compared with regard to MAC-Awake (anesthetic concentration achieving 50% probability of eye opening in response to a verbal command) and MAC (anesthetic concentration achieving 50% probability of no movement in response to skin incision). The MAC-Awake was 0.7% +/- 0.1% in the control group (mean +/- SD) and 0.7% +/- 0.1% in the ATP group. MAC was 1.9% +/- 0.1% in the control group and 2.1% +/- 0.2% in the ATP group. The differences in MAC and MAC-Awake between the two groups were not statistically significant. We conclude that ATP infusion (100 micrograms.kg-1.min-1) has no effect on sevoflurane MAC and MAC-Awake. We found that an i.v. adenosine triphosphate infusion (100 micrograms.kg-1.min-1) has no effect on sevoflurane minimum alveolar anesthetic concentration (anesthetic concentration achieving 50% probability of no movement in response to skin incision) and minimum alveolar anesthetic concentration-Awake (anesthetic concentration achieving 50% probability of eye opening in response to a verbal command) in humans.

  11. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.

    Science.gov (United States)

    Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang

    2017-06-01

    Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H2S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria.

  12. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.

    Science.gov (United States)

    Huo, Yuan; Qi, Liang; Lv, Xiao-Jun; Lai, Ting; Zhang, Jing; Zhang, Zhi-Qi

    2016-04-15

    Adenosine triphosphate (ATP) is the most direct source of energy in organisms. This study is the first to demonstrate that ATP-aptamer complexes provide greater protection for unmodified gold nanoparticles (AuNPs) against salt-induced aggregation than either aptamer or ATP alone. This protective effect was confirmed using transmission electron microscopy, dynamic light scattering, Zeta potential measurement, and fluorescence polarization techniques. Utilizing controlled particle aggregation/dispersion as a gauge, a sensitive and selective aptasensor for colorimetric detection of ATP was developed using ATP-binding aptamers as the identification element and unmodified AuNPs as the probe. This aptasensor exhibited a good linear relationship between the absorbance and the logarithm concentration of ATP within a 50-1000 nM range. ATP analogs such as guanosine triphosphate, uridine triphosphate and cytidine triphosphate resulted in little or no interference in the determination of ATP.

  13. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    Science.gov (United States)

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% flush volume. Optimum separation of the three compounds was achieved in AMP levels in 15 samples of royal jelly of different origins was performed. Sample results indicated that the AMP concentration was 24.2-2214.4 mg kg(-1), whereas ATP and ADP were not detectable or present only at low levels.

  14. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    Science.gov (United States)

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis.

  15. Adenosine-5'-triphosphate (ATP supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets

    Directory of Open Access Journals (Sweden)

    Rathmacher John A

    2012-10-01

    Full Text Available Abstract Background Intracellular concentrations of adenosine-5’-triphosphate (ATP are many times greater than extracellular concentrations (1–10 mM versus 10–100 nM, respectively and cellular release of ATP is tightly controlled. Transient rises in extracellular ATP and its metabolite adenosine have important signaling roles; and acting through purinergic receptors, can increase blood flow and oxygenation of tissues; and act as neurotransmitters. Increased blood flow not only increases substrate availability but may also aid in recovery through removal of metabolic waste products allowing muscles to accomplish more work with less fatigue. The objective of the present study was to determine if supplemental ATP would improve muscle torque, power, work, or fatigue during repeated bouts of high intensity resistance exercise. Methods Sixteen participants (8 male and 8 female; ages: 21–34 years were enrolled in a double-blinded, placebo-controlled study using a crossover design. The participants received either supplemental ATP (400 mg/d divided into 2 daily doses or placebo for 15 d. After an overnight fast, participants underwent strength and fatigue testing, consisting of 3 sets of 50 maximal knee extensions performed on a Biodex® leg dynamometer. Results No differences were detected in high peak torque, power, or total work with ATP supplementation; however, low peak torque in set 2 was significantly improved (p Conclusions Supplementation with 400 mg ATP/d for 15 days tended to reduce muscle fatigue and improved a participant’s ability to maintain a higher force output at the end of an exhaustive exercise bout.

  16. Effects of oral adenosine-5′-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men

    OpenAIRE

    Wilson, Jacob M; Joy, Jordan M; Ryan P. Lowery; Roberts, Michael D.; Lockwood, Christopher M; Manninen, Anssi H; Fuller, John C; Souza, Eduardo O.; Baier, Shawn M.; Wilson, Stephanie MC; Rathmacher, John A

    2013-01-01

    Background Currently, there is a lack of studies examining the effects of adenosine-5′-triphosphate (ATP) supplementation utilizing a long-term, periodized resistance-training program (RT) in resistance-trained populations. Therefore, we investigated the effects of 12 weeks of 400 mg per day of oral ATP on muscular adaptations in trained individuals. We also sought to determine the effects of ATP on muscle protein breakdown, cortisol, and performance during an overreaching cycle. Methods The ...

  17. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  18. Action of angiotensin II, 5-hydroxytryptamine and adenosine triphosphate on ionic currents in single ear artery cells of the rabbit.

    Science.gov (United States)

    Hughes, A D; Bolton, T B

    1995-10-01

    1. Angiotensin II, 5-hydroxytryptamine (5-HT) and adenosine triphosphate (ATP) evoked a transient inward current in isolated single car artery cells of rabbit held at -60 mV by whole cell voltage clamp in physiological saline using a KCL-containing pipette solution. Under these conditions agonist did not activate a calcium-dependent potassium current. 2. Responses to each agonist were transient and desensitized rapidly. Inward current at -60 mV holding potential was not abolished by blockade of voltage-dependent calcium channels or by buffering intracellular calcium with BAPTA, a calcium chelator, or following depletion of intracellular calcium stores with ryanodine. 3. The shape of the current-voltage relationships and the reversal potentials of the current induced by angiotensin II, 5-HT and ATP were similar under a variety of ionic conditions. Agonist-induced current was unaffected by replacing intracellular chloride with citrate ions or by replacing intracellular sodium with caesium or extracellular sodium with barium or calcium. Replacement of extracellular sodium with Tris shifted the reversal potential in all cases by around 30 mV negatively. 4. These data suggest that angiotensin II, 5-HT and ATP activate similar cationic conductances which are relatively non-selective allowing mono- and divalent cations to cross the smooth muscle cell membrane. These channels may allow the influx of calcium under physiological conditions.

  19. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  20. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    Science.gov (United States)

    Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.

    2016-01-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732

  1. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP)

    Science.gov (United States)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, ⿦), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard οGads ° was estimated to only ⿿4 kJ/mol, the large value of Nmax led to significantly negative effective οGads values down to ⿿33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, ⿦).

  2. Inhibitory effects of extracellular adenosine triphosphate on growth of esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Ming-Xia Wang; Lei-Ming Ren; Bao-En Shan

    2005-01-01

    AIM: To study the growth inhibitory effects of ATP on TE-13 human squamous esophageal carcinoma cells in vitro.METHODS: MTT assay was used to determine the inhibition of proliferation of ATP or adenosine (ADO) on TE-13 cell line. The morphological changes of TE-13 cells induced by ATP or ADO were observed under fluorescence light microscope by acridine orange (AO)/ethidium bromide (EB) double stained cells. The intemudeosomal fragmentation of genomic DNA was detected by agarose gel electrophoresis.The apoptotic rate and cell cycle after treatment with ATP or ADO were determined by flow cytometry.RESULTS: ATP and ADO produced inhibitory effects on TE-13 cells at the concentration between 0.01 and 1.0 mmol/L.The IC50 of TE-13 cells exposed to ATP or ADO for 48 and 72 h was 0.71 or 1.05, and 0.21 or 0.19 mmol/L, respectively.The distribution of cell cycle phase and proliferation index (PI) value of TE-13 cells changed, when being exposed to ATP or ADO at the concentrations of 0.01, 0.1, and 1 mmol/L for 48 h. ATP and ADO inhibited the cell proliferation by changing the distribution of cell cycle phase via either G0/G1 phase (ATP or ADO, 1 mmol/L) or S phase (ATP, 0.1 mmol/L)arrest. Under light microscope, the tumor cells exposed to 0.3 mmol/L ATP or ADO displayed morphological changes of apoptosis. A ladder-like pattern of DNA fragmentation was obtained from TE-13 cells treated with 0.1-1 mmol/L ATP or ADO in agarose gel electrophoresis. ATP and ADO induced apoptosis of TE-13 cells in a dose-dependent manner at the concentration between 0.03 and 1 mmol/L.The maximum apoptotic rate of TE-13 cells exposed to ATP or ADO for 48 h was 16.63% or 16.9%, respectively.CONCLUSION: ATP and ADO inhibit cell proliferation,arrest cell cycle, and induce apoptosis of TE-13 cell line.

  3. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    Science.gov (United States)

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p ATP readings and plate counts varied from system to system, was poor (r2 values ranged from ATP method was not sufficiently sensitive to measure counts below approximately 10(4) CFU/mL.

  4. Nitrite-induced methemoglobinaemia affects blood ionized and total magnesium level by hydrolysis of plasma adenosine triphosphate in rat.

    Science.gov (United States)

    Rahman, Md Mizanur; Kim, Shang-Jin; Kim, Gi-Beum; Hong, Chul-Un; Lee, Young-Up; Kim, Sung-Zoo; Kim, Jin-Shang; Kang, Hyung-Sub

    2009-11-01

    The objective of this study was to evaluate the effects of sodium nitrite (NaNO(2))-induced methemoglobinaemia on plasma ATP (adenosine triphosphate) and corresponding changes of blood-ionized magnesium (iMg(2+)) as well as total magnesium (tMg(2+)) in a time-dependent manner. This study was performed on male Sprague-Dawley rats to which NaNO(2) was injected (10 mg/kg i.p.) to induce methemoglobinaemia. Methemoglobin (MetHb) in blood was measured before (0 min.) and after 10, 30, 60 and 120 min. of NaNO(2) injection. At respective time points, the tMg(2+), blood ions and gases were measured by atomic absorption spectrometry and ion selective electrode, respectively. Haematological parameters were checked by automatic blood cell count, and blood films were observed under light microscope. Plasma ATP was measured by bioluminescence assay using a luminometer, and plasma proteins were measured by an automatic analyser. Blood cell count (RBC, WBC and platelet), haematocrit, and haemoglobin were found to be decreased with the advancement of MetHb concentration. With the gradual increase of MetHb concentration, the plasma ATP decreased and blood iMg(2+) and plasma tMg(2+) increased significantly as time passed by in comparison with the pre-drug values. A significant decrease of the ratio of ionized calcium to iMg(2+), Na(+) and increase of K(+) was observed. In conclusion, NaNO(2)-induced methemoglobinaemia is a cause of hydrolysis of plasma ATP which is responsible for the increase of blood iMg(2+) and plasma tMg(2+) in rats.

  5. Lack of correlation between Legionella colonization and microbial population quantification using heterotrophic plate count and adenosine triphosphate bioluminescence measurement.

    Science.gov (United States)

    Duda, Scott; Baron, Julianne L; Wagener, Marilyn M; Vidic, Radisav D; Stout, Janet E

    2015-07-01

    This investigation compared biological quantification of potable and non-potable (cooling) water samples using pour plate heterotrophic plate count (HPC) methods and adenosine triphosphate (ATP) concentration measurement using bioluminescence. The relationship between these measurements and the presence of Legionella spp. was also examined. HPC for potable and non-potable water were cultured on R2A and PCA, respectively. Results indicated a strong correlation between HPC and ATP measurements in potable water (R = 0.90, p ATP and HPC were much weaker but statistically significant (make-up water: R = 0.37, p = 0.005; cooling tower 1: R = 0.52, p ATP. However, ATP measurements showed higher microbial concentrations than HPC measurements. Following chlorination of the cooling towers, ATP measurements indicated very low bacterial concentrations (1000 CFU/mL) which consisted primarily of non-tuberculous mycobacteria. HPC concentrations have been suggested to be predictive of Legionella presence, although this has not been proven. Our evaluation showed that HPC or ATP demonstrated a fair predictive capacity for Legionella positivity in potable water (HPC: receiver operating characteristic (ROC) = 0.70; ATP: ROC = 0.78; p = 0.003). However, HPC or ATP correctly classified sites as positive only 64 and 62% of the time, respectively. No correlation between HPC or ATP and Legionella colonization in non-potable water samples was found (HPC: ROC = 0.28; ATP: ROC = 0.44; p = 0.193).

  6. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    Science.gov (United States)

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  7. Intrapulmonary arteries respond to serotonin and adenosine triphosphate in broiler chickens susceptible to idiopathic pulmonary arterial hypertension.

    Science.gov (United States)

    Kluess, H A; Stafford, J; Evanson, K W; Stone, A J; Worley, J; Wideman, R F

    2012-06-01

    This study examined factors contributing to increased vascular resistance and plexiform lesion formation in broiler chickens susceptible to idiopathic pulmonary arterial hypertension (IPAH). A diet supplemented with excess tryptophan (high-Trp diet), the precursor for serotonin, was used to accelerate the development of IPAH. Broilers fed the high-Trp diet had higher pulmonary arterial pressures than broilers fed the control diet, and plexiform lesion incidences tended to be higher (P = 0.11) in the high-Trp group than in the control group at 30 d of age. The intrapulmonary arteries were assessed for vasoconstriction in response to serotonin and adenosine triphosphate (ATP) and for activities of key metabolic enzymes for serotonin and ATP. The pulmonary artery (defined as the first major branch of the pulmonary artery inside the lung) and the primary pulmonary arterial rami (defined as the second major branch of the pulmonary artery inside the lung) both exhibited vasoconstriction in response to serotonin and ATP. This is the first study to demonstrate purinergic-mediated vasoconstriction in intrapulmonary arteries from broilers. Arteriole responsiveness did not differ between broilers fed the control diet or the high-Trp diet. Therefore, the high-Trp diet enhanced the development of IPAH but did not affect the artery's sensitivity to serotonin or ATP. Monoamine oxidase activity, responsible for the breakdown of serotonin, was severely impaired in pulmonary arteries from broilers in the high-Trp group. Accordingly, serotonin may persist longer and elicit an amplified response in broilers fed the high-Trp diet.

  8. Application of adenosine 5'-triphosphate (ATP infusions in palliative home care: design of a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    van den Borne Ben E

    2007-01-01

    Full Text Available Abstract Background Palliative care in cancer aims at alleviating the suffering of patients. A previous study in patients with advanced non-small-cell lung cancer showed that adenosine 5'-triphosphate (ATP infusions had a favourable effect on fatigue, appetite, body weight, muscle strength, functional status and quality of life. The present study was designed 1. To evaluate whether ATP has favourable effects in terminally ill cancer patients, 2. To evaluate whether ATP infusions may reduce family caregiver burden and reduce the use of professional health care services, and 3. To test the feasibility of application of ATP infusions in a home care setting. Methods/Design The study can be characterized as an open-labelled randomized controlled trial with two parallel groups. The intervention group received usual palliative care, two visits by an experienced dietician for advice, and regular ATP infusions over a period of 8 weeks. The control group received palliative care as usual and dietetic advice, but no ATP. This paper gives a description of the study design, selection of patients, interventions and outcome measures. Discussion From April 2002 through October 2006, a total of 100 patients have been randomized. Follow-up of patients will be completed in December 2006. At the time of writing, five patients are still in follow up. Of the 95 patients who have completed the study, 69 (73% have completed four weeks of follow-up, and 53 (56% have completed the full eight-week study period. The first results are expected in 2007.

  9. Diastolic Dysfunction Induced by a High-Fat Diet Is Associated with Mitochondrial Abnormality and Adenosine Triphosphate Levels in Rats

    Directory of Open Access Journals (Sweden)

    Ki-Woon Kang

    2015-12-01

    Full Text Available BackgroundObesity is well-known as a risk factor for heart failure, including diastolic dysfunction. However, this mechanism in high-fat diet (HFD-induced obese rats remain controversial. The purpose of this study was to investigate whether cardiac dysfunction develops when rats are fed with a HFD for 10 weeks; additionally, we sought to investigate the association between mitochondrial abnormalities, adenosine triphosphate (ATP levels and cardiac dysfunction.MethodsWe examined myocardia in Wistar rats after 10 weeks of HFD (45 kcal% fat, n=6 or standard diet (SD, n=6. Echocardiography, histomorphologic analysis, and electron microscopy were performed. The expression levels of mitochondrial oxidative phosphorylation (OXPHOS subunit genes, peroxisome-proliferator-activated receptor γ co-activator-1α (PGC1α and anti-oxidant enzymes were assessed. Markers of oxidative stress damage, mitochondrial DNA copy number and myocardial ATP level were also examined.ResultsAfter 10 weeks, the body weight of the HFD group (349.6±22.7 g was significantly higher than that of the SD group (286.8±14.9 g, and the perigonadal and epicardial fat weights of the HFD group were significantly higher than that of the SD group. Histomorphologic and electron microscopic images were similar between the two groups. However, in the myocardium of the HFD group, the expression levels of OXPHOS subunit NDUFB5 in complex I and PGC1α, and the mitochondrial DNA copy number were decreased and the oxidative stress damage marker 8-hydroxydeoxyguanosine was increased, accompanied by reduced ATP levels.ConclusionDiastolic dysfunction was accompanied by the mitochondrial abnormality and reduced ATP levels in the myocardium of 10 weeks-HFD-induced rats.

  10. Adenosine Triphosphate (ATP Is a Candidate Signaling Molecule in the Mitochondria-to-Nucleus Retrograde Response Pathway

    Directory of Open Access Journals (Sweden)

    Zhengchang Liu

    2013-03-01

    Full Text Available Intracellular communication from the mitochondria to the nucleus is achieved via the retrograde response. In budding yeast, the retrograde response, also known as the RTG pathway, is regulated positively by Rtg1, Rtg2, Rtg3 and Grr1 and negatively by Mks1, Lst8 and two 14-3-3 proteins, Bmh1/2. Activation of retrograde signaling leads to activation of Rtg1/3, two basic helix-loop-helix leucine zipper transcription factors. Rtg1/3 activation requires Rtg2, a cytoplasmic protein with an N-terminal adenosine triphosphate (ATP binding domain belonging to the actin/Hsp70/sugar kinase superfamily. The critical regulatory step of the retrograde response is the interaction between Rtg2 and Mks1. Rtg2 binds to and inactivates Mks1, allowing for activation of Rtg1/3 and the RTG pathway. When the pathway is inactive, Mks1 has dissociated from Rtg2 and bound to Bmh1/2, preventing activation of Rtg1/3. What signals association or disassociation of Mks1 and Rtg2 is unknown. Here, we show that ATP at physiological concentrations dissociates Mks1 from Rtg2 in a highly cooperative fashion. We report that ATP-mediated dissociation of Mks1 from Rtg2 is conserved in two other fungal species, K. lactis and K. waltii. Activation of Rtg1/3 upregulates expression of genes encoding enzymes catalyzing the first three reactions of the Krebs cycle, which is coupled to ATP synthesis through oxidative phosphorylation. Therefore, we propose that the retrograde response is an ATP homeostasis pathway coupling ATP production with ATP-mediated repression of the retrograde response by releasing Mks1 from Rtg2.

  11. Kinetics of calcium uptake by isolated sarcoplasmic reticulum vesicles using flash photolysis of caged adenosine 5'-triphosphate.

    Science.gov (United States)

    Pierce, D H; Scarpa, A; Topp, M R; Blasie, J K

    1983-11-08

    The kinetics of ATP-induced Ca2+ uptake by vesicular dispersions of sarcoplasmic reticulum were determined with a time resolution of about 10 ms, depending on the temperature. Ca2+ uptake was initiated by the addition of ATP through the flash photolysis of P3-1-(2-nitrophenyl)-ethyl adenosine 5'-triphosphate utilizing a frequency-doubled ruby laser and measured with two different detector systems that followed the absorbance changes of the metallochromic indicator arsenazo III sensitive to changes in the extravesicular [Ca2+]. The temperature range investigated was -2 to 26 degrees C. The Ca2+ ionophore A23187 was used to distinguish those features of the Ca2+ uptake kinetics associated with the formation of a transmembrane Ca2+ gradient. The acid-stable phosphorylated enzyme intermediate, E approximately P, was determined independently with a quenched-flow technique. Ca2+ uptake is characterized by at least two phases, a fast initial phase and a slow phase. The fast phase exhibits pseudo-first-order kinetics with a specific rate constant of 64 +/- 10 s-1 at 23-26 degrees C, an activation energy of 16 +/- 1 kcal mol-1, and a delta S* of approximately 5 cal deg-1 mol-1, is insensitive to the presence of a Ca2+ ionophore, and occurs simultaneously with the formation of the phosphorylated enzyme, E approximately P, with a stoichiometry of approximately 2 mol of Ca2+/mol of phosphorylated enzyme intermediate. The slow phase also exhibits pseudo-first-order kinetics with a specific rate constant of 0.60 +/- 0.09 s-1 at 25-26 degrees C, an activation energy of 22 +/- 1 kcal mol-1, and a delta S* of approximately 16 cal deg-1 mol-1, is inhibited by the presence of a Ca2+ ionophore, and has a stoichiometry of approximately 2 mol of Ca2+/mol of ATP hydrolyzed.

  12. Ratiometric detection of adenosine triphosphate (ATP) in water and real-time monitoring of apyrase activity with a tripodal zinc complex.

    Science.gov (United States)

    Butler, Stephen J

    2014-11-24

    Two tripodal fluorescent probes Zn⋅L(1,2) have been synthesised, and their anion-binding capabilities were examined by using fluorescence spectroscopy. Probe Zn⋅L(1) allows the selective and ratiometric detection of adenosine triphosphate (ATP) at physiological pH, even in the presence of several competing anions, such as ADP, phosphate and bicarbonate. The probe was applied to the real-time monitoring of the apyrase-catalysed hydrolysis of ATP, in a medium that mimics an extracellular fluid.

  13. Radioimmunoassay for guanosin-5'-diphosphate-3'-diphosphate and adenosine-5'-triphosphate-3'-diphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Hamagishi, Y.; Oki, T.; Tone, H.; Inui, T. (Sanraku-Ocean Co. Ltd., Fujisawa, Kanagawa (Japan). Central Research Lab.)

    1980-12-01

    A radioimmunoassay for guanosine-5'-diphosphate-3'-diphosphate (ppGpp) and adenosine-5'-triphosphate-3'-diphosphate (pppApp) has been developed. The assay method is based on competition of an unlabeled highly phosphorylated nucleotide with /sup 3/H-labeled highly phosphorylated nucleotide for binding sites on a specific antibody. Antibodies to ppGpp and pppApp were obtained by immunizing rabbits with the antigen prepared by conjugating ppGpp with human serum albumin using 1-ethyl-3-(3-dimethylaminoprophyl)carbodiimide, and with the antigen prepared by conjugating 8-(6-aminohexyl)amino-adenosine-5'-triphosphate-3'-diphosphate with human serum albumin using glutaraldehyde, respectively. Antibody-bound /sup 3/H-labeled highly phosphorylated nucleotides were separated from the free /sup 3/H-labeled highly phosphorylated nucleotides by selective adsorption on dextran-coated charcoal. Displacement plots were linear over a concentration range of 5 - 1,000 pmol/assay tube in a log-probit percentage plot. Application of this method to biological systems offers improved accuracy and convenience compared with the previous /sup 32/PO/sub 4/-labeling technique.

  14. Effects of oral adenosine 5'-triphosphate and adenosine in enteric-coated capsules on indomethacin-induced permeability changes in the human small intestine: a randomized cross-over study

    Directory of Open Access Journals (Sweden)

    Bours Martijn JL

    2007-06-01

    Full Text Available Abstract Background It is well-known that nonsteroidal anti-inflammatory drugs (NSAIDs can cause damage to the small bowel associated with disruption of mucosal barrier function. In healthy human volunteers, we showed previously that topical administration of adenosine 5'-triphosphate (ATP by naso-intestinal tube attenuated a rise in small intestinal permeability induced by short-term challenge with the NSAID indomethacin. This finding suggested that ATP may be involved in the preservation of intestinal barrier function. Our current objective was to corroborate the favourable effect of ATP on indomethacin-induced permeability changes in healthy human volunteers when ATP is administered via enteric-coated capsules, which is a more practically feasible mode of administration. Since ATP effects may have been partly mediated through its breakdown to adenosine, effects of encapsulated adenosine were tested also. Methods By ingesting a test drink containing 5 g lactulose and 0.5 g L-rhamnose followed by five-hour collection of total urine, small intestinal permeability was assessed in 33 healthy human volunteers by measuring the urinary lactulose/rhamnose excretion ratio. Urinary excretion of lactulose and L-rhamnose was determined by fluorescent detection high-pressure liquid chromatography (HPLC. Basal permeability of the small intestine was assessed as a control condition (no indomethacin, no ATP/adenosine. As a model of increased small intestinal permeability, two dosages of indomethacin were ingested at 10 h (75 mg and 1 h (50 mg before ingesting the lactulose/rhamnose test drink. At 1.5 h before indomethacin ingestion, two dosages of placebo, ATP (2 g per dosage or adenosine (1 g per dosage were administered via enteric-coated hydroxypropyl methylcellulose (HPMC capsules with Eudragit© L30D-55. Results Median urinary lactulose/rhamnose excretion ratio (g/g in the control condition was 0.032 (interquartile range: 0.022–0.044. Compared to the

  15. Further observations on the utilization of adenosine triphosphate in rat mast cells during histamine release induced by the ionophore A23187

    DEFF Research Database (Denmark)

    Johansen, Torben

    1980-01-01

    1 The relation between A23187-induced histamine release and the energy metabolism of the rat mast cells has been studied. 2 Ethacrynic acid was used as an inhibitor of calcium-induced histamine release from mast cells primed with the ionophore A23187, and to study calcium-induced changes...... in the adenosine triphosphate (ATP) content and the rate of lactate production of A23187-primed mast cells. 3 Ethacrynic acid by itself decreased the rate of glycolytic ATP production. 4 By measurement of the ATP content and the lactate production of mast cells with or without secretory activity, the increased...... demand of energy for exocytosis was estimated to be equivalent to 0.14 pmol of ATP pr 10(3) mast cells....

  16. Utilization of adenosine triphosphate in rat mast cells during and after secretion of histamine in response to compound 48/80

    DEFF Research Database (Denmark)

    Johansen, Torben

    1983-01-01

    The adenosine triphosphate (ATP) content of rat mast cells and their lactate production were measured during and after secretion of histamine induced by compound 48/80. Antimycin A and oligomycin were used to block oxidative ATP synthesis, and 2-deoxyglucose (2-DG) was used to block glycolytic ATP...... synthesis. Histamine secretion was completed after 10 sec. exposure of the cells to compound 48/80. During that time period there was an increased ATP-utilization of 0.15 pmol/10(3) cells. After completion of the secretory process there seemed to be an enhanced utilization of ATP of 0.40 pmol/10(3) cells....../min., which may be associated with recovery of the cells....

  17. Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges.

    Science.gov (United States)

    Kelly, Daniel N; Schwartz, Craig P; Uejio, Janel S; Duffin, Andrew M; England, Alice H; Saykally, Richard J

    2010-09-14

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen and carbon K-edges was used to study the hydration of adenosine triphosphate in liquid microjets. The total electron yield spectra were recorded as a function of concentration, pH, and the presence of sodium, magnesium, and copper ions (Na(+)/Mg(2+)/Cu(2+)). Significant spectral changes were observed upon protonation of the adenine ring, but not under conditions that promote π-stacking, such as high concentration or presence of Mg(2+), indicating that NEXAFS is insensitive to the phenomenon. Intramolecular inner-sphere association of Cu(2+) did create observable broadening of the nitrogen spectrum, whereas outer-sphere association with Mg(2+) did not.

  18. Effects of bicarbonate buffer on acetylcholine-, adenosine 5'triphosphate-, and cyanide-induced responses in the cat petrosal ganglion in vitro.

    Science.gov (United States)

    Soto, Carolina R; Arroyo, Jorge; Alcayaga, Julio

    2002-01-01

    Acetylcholine (ACh), adenosine 5'-triphosphate (ATP) and sodium cyanide (NaCN) activate petrosal ganglion (PG) neurons in vitro, and evoke ventilatory reflexes in situ, which are abolished after bilateral chemosensory denervation. Because in our previous experiments we superfused the isolated PG with solutions free of CO2/HCO3- buffer, we studied its effects on the PG responses evoked in vitro. PGs from adult cats were superfused at a constant pH, with HEPES-supplemented (5 mM) saline with or without CO2/HCO3- (5%/26.2 mM) buffer, and carotid (sinus) nerve frequency discharge (fCN) recorded. Increases in fCN evoked by ACh, ATP and NaCN in CO2- free saline were significantly reduced (P buffer appears to reduce PG neurons sensitivity to ACh, ATP and NaCN, an effect that may underlie the lack of ventilatory reflexes after bilateral chemodenervation.

  19. Increased binding of a hydrophobic, photolabile probe to Escherichia coli inversely correlates to membrane potential but not adenosine 5'-triphosphate levels.

    Science.gov (United States)

    Wolf, M K; Konisky, J

    1981-01-01

    We describe conditions for a quantitative determination of azidopyrene binding to Escherichia coli cells. In addition, we define conditions whereby irradiation of azidopyrene in the presence of cells leads to irreversible association of probe with cells. This is presumably due to the light-dependent generation of reactive nitrenes and subsequent incorporation of nitrenopyrene moieties into cellular components. These methods allowed us to determine that the amount of azidopyrene bound to cells was inversely correlated with the magnitude of the cellular membrane potential, but was not correlated with high or low adenosine 5-triphosphate levels per se. Cells bound more azidopyrene if the delta psi was low. Cell-bound azidopyrene was found to be entirely associated with the inner and outer membrane. We suggest that the decreased association of hydrophobic probes upon energization of whole cells reflects a rapid transition in structural properties of the cell envelope. PMID:7007317

  20. Interaction of Beta-Hydroxy-Beta-Methylbutyrate Free Acid and Adenosine Triphosphate on Muscle Mass, Strength, and Power in Resistance Trained Individuals.

    Science.gov (United States)

    Lowery, Ryan P; Joy, Jordan M; Rathmacher, John A; Baier, Shawn M; Fuller, John C; Shelley, Mack C; Jäger, Ralf; Purpura, Martin; Wilson, Stephanie M C; Wilson, Jacob M

    2016-07-01

    Lowery, RP, Joy, JM, Rathmacher, JA, Baier, SM, Fuller, JC Jr, Shelley, MC II, Jäger, R, Purpura, M, Wilson, SMC, and Wilson, JM. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res 30(7): 1843-1854, 2016-Adenosine-5'-triphosphate (ATP) supplementation helps maintain performance under high fatiguing contractions and with greater fatigue recovery demands also increase. Current evidence suggests that the free acid form of β-hydroxy-β-methylbutyrate (HMB-FA) acts by speeding regenerative capacity of skeletal muscle after high-intensity or prolonged exercise. Therefore, we investigated the effects of 12 weeks of HMB-FA (3 g) and ATP (400 mg) administration on lean body mass (LBM), strength, and power in trained individuals. A 3-phase double-blind, placebo-, and diet-controlled study was conducted. Phases consisted of an 8-week periodized resistance training program (phase 1), followed by a 2-week overreaching cycle (phase 2), and a 2-week taper (phase 3). Lean body mass was increased by a combination of HMB-FA/ATP by 12.7% (p jump and Wingate power were increased in the HMB-FA/ATP-supplemented group compared with the placebo-supplemented group, and the 12-week increases were 21.5 and 23.7%, respectively. During the overreaching cycle, strength and power declined in the placebo group (4.3-5.7%), whereas supplementation with HMB-FA/ATP resulted in continued strength gains (1.3%). In conclusion, HMB-FA and ATP in combination with resistance exercise training enhanced LBM, power, and strength. In addition, HMB-FA plus ATP blunted the typical response to overreaching, resulting in a further increase in strength during that period. It seems that the combination of HMB-FA/ATP could benefit those who continuously train at high levels such as elite athletes or military personnel.

  1. An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator.

    Science.gov (United States)

    Huang, Xiang; Li, Yuqin; Zhang, Xiaoshan; Zhang, Xin; Chen, Yaowen; Gao, Wenhua

    2015-09-07

    An efficient aptasensor was developed in which graphene oxide (GO) was employed as an indicator for both electrochemical impedance spectroscopy and electrochemiluminescence (ECL) signal generation. The aptasensor was fabricated by self-assembling the ECL probe of a thiolated adenosine triphosphate binding aptamer (ABA) tagged with a Ru complex (Ru(bpy)3(2+) derivatives) onto the surface of gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). ABA immobilized onto AuNP modified GCE could strongly adsorb GO due to the strong π-π interaction between ABA and graphene oxide; ECL quenching of the Ru complex then takes place because of energy transfer and electron transfer, and a large increase of the electron transfer resistance (Ret) of the electrode. While in the presence of target adenosine triphosphate (ATP), the ABA prefers to form ABA-ATP bioaffinity complexes, which have weak affinity to graphene oxide and keep the graphene oxide away from the electrode surface, thus allowing the ECL signal enhancement, and in conjunction with the decrease of the Ret. Because of the high ECL quenching efficiency, unique structure, and electronic properties of graphene oxide, the Ret and ECL intensity versus the logarithm of ATP concentration was linear in the wide range from 10 pM to 10 nM with an ultra-low detection limit of 6.7 pM to 4.8 pM, respectively. The proposed aptasensor exhibited excellent reproducibility, stability, and outstanding selectivity, and ATP could be effectively distinguished from its analogues. More significantly, this efficient ECL aptasensor strategy based on GO acting both as an electrochemical and ECL signal indicator is general and can be easily extended to other biological binding events.

  2. Biological effects of exogenous adenosine 5 prime -triphosphate on cultured mammalian cells: Evidence for a receptor mechanism and its regulation by desensitization

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, F.A.

    1989-01-01

    Exogenous adenosine 5{prime}-triphosphate (ATP) mobilized intracellular calcium in human carcinoma A43l cells and in Swiss 3T3 and 3T6 mouse fibroblasts by increasing inositol trisphosphate similar to well down growth factors (platelet-derived growth factor (PDGF), epidermal growth factor (EGF), bradykinin (BK), serum). Calcium mobilization was examined by video imaging of fura-2 fluorescence is single cells, following the radioactive isotope {sup 45}Ca, and monitoring the decrease in fluorescence of cells loaded with chlortetracycline. Uridine 5{prime}-triphosphate, but not other nucleotides, mimicked ATP. Single-cell analysis revealed synchronous responses in 10 sec to ATP, BK or serum, while PDGF (3T3) and EGF (A431) produced slower signals with significant cell-to-cell variation. PDGF desensitized 3T3 cells to ATP and BK added 100 sec later but ATP or BK did not desensitized to PDGF. Homologous desensitization was seen with all agonists. Heterologous desensitization was also observed in A431 cells where ATP desensitized to serum, but serum did not to ATP. ATP-stimulated calcium entry was detected after 10 sec in A431 cells, but not in Swiss 3T6 cells. Entry started before significant efflux had occurred and did not fit the capacitance model of Putney. A 2-3 hr ATP pretreatment produced a homologous desensitization state that required 20 hr to disappear, probably due to down-regulation of the putative ATP receptors.

  3. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  4. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel.

    Science.gov (United States)

    Yun, Junxian; Shen, Shaochuan; Chen, Fang; Yao, Kejian

    2007-12-01

    Adenosine triphosphate (ATP) is an important high-energy compound widely used in biological and therapeutic fields. It can be produced by phosphorylation of adenosine monophosphate (AMP) with microbial cells in industrial scale and the effective isolation of ATP from microbial fermentation broth is a challenging work. In this work, we develop a novel one-step method to directly separate ATP from fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. The cryogel bed with tertiary amine groups was prepared by grafting N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer chains onto the matrix of a polyacrylamide-based cryogel in a glass column and its properties of liquid dispersion, water permeability, porosity as well as the ligand density were measured. Chromatographic separation of ATP from the fermentation broth by the cryogel was carried out using deionised water and 0.01 M HCl as running buffer, respectively. The breakthrough characteristics and elution performance in the cryogel bed were revealed and analyzed. The purities of the obtained ATP were analyzed quantitatively by high performance liquid chromatography (HPLC). The maximal purity of ATP by the one-step separation method was 95.5% using 0.01 M HCl as running buffer in this work. The corresponding chromatographic behaviors were investigated and analyzed.

  5. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    Science.gov (United States)

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  6. Clinical Observation on Adenosine Triphosphate Treatment of Paroxysmal Supraventricular Tachycardia%三磷酸腺苷治疗阵发性室上心动过速的临床观察

    Institute of Scientific and Technical Information of China (English)

    王宝金

    2014-01-01

    目的:探讨三磷酸腺苷对于治疗阵发性室上心动过速的临床效果。方法将我院接受治疗的40例患有阵发性室上心动过速的患者通过肘静脉注射三磷酸腺苷药物进行治疗,观察疗效。结果通过一段时间治疗观察发现,三磷酸腺苷对患有阵发性室上心动过速有很好的治疗效果,第一次转复成功达到92.5%。第二次转复成功,达到66.7%。结论临床研究表明,三磷酸腺苷对于PSVT有较强的治疗作用。%Objective To explore the clinical efficacy of the treatment of Paroxysmal Supraventricular Tachycardi awith Adenosine Triphosphate. Method The patients were treated in our hospital on 40 patients suffering from Paroxysmal Supraventricular Tachycardia treated by intravenous Adenosine Triphosphate elbow drugs, observing the effective.Results Treatment period of observation by finding, Adenosine Triphosphate on the body with Paroxysmal Supraventricular Tachycardia have a good therapeutic effect for the first time a successful cardioversion,it has reached 92.5%.e second cardioversion success, it has reached 66.7%.Conclusion Clinical studies have shown that adenosine triphosphate for PSVT has a strong therapeutic effect.

  7. Use of a Sampling Area-Adjusted Adenosine Triphosphate Bioluminescence Assay Based on Digital Image Quantification to Assess the Cleanliness of Hospital Surfaces

    Directory of Open Access Journals (Sweden)

    Yu-Huai Ho

    2016-06-01

    Full Text Available Contaminated surfaces play an important role in the transmission of pathogens. We sought to establish a criterion that could indicate “cleanliness” using a sampling area–adjusted adenosine triphosphate (ATP assay. In the first phase of the study, target surfaces were selected for swab sampling before and after daily cleaning; then, an aerobic colony count (ACC plate assay of bacteria and antibiotic-resistant bacteria was conducted. ATP swabs were also tested, and the ATP readings were reported as relative light units (RLUs. The results of the ACC and ATP assays were adjusted according to the sampling area. During the second phase of the study, a new cleaning process employing sodium dichloroisocyanurate (NaDCC was implemented for comparison. Using the criterion of 2.5 colony-forming units (CFU/cm2, 45% of the sampled sites were successfully cleaned during phase one of the study. During phase two, the pass rates of the surface samples (64% were significantly improved, except under stringent (5 RLU/cm2 and lax (500 RLU ATP criteria. Using receiver-operating characteristic curve analysis, the best cut-off point for an area-adjusted ATP level was 7.34 RLU/cm2, which corresponded to culture-assay levels of <2.5 CFU/cm2. An area adjustment of the ATP assay improved the degree of correlation with the ACC-assay results from weak to moderate.

  8. Evaluation of the Relationship between the Adenosine Triphosphate (ATP Bioluminescence Assay and the Presence of Bacillus anthracis Spores and Vegetative Cells

    Directory of Open Access Journals (Sweden)

    Shawn G. Gibbs

    2014-05-01

    Full Text Available Background: The Adenosine triphosphate (ATP bioluminescence assay was utilized in laboratory evaluations to determine the presence and concentration of vegetative and spore forms of Bacillus anthracis Sterne 34F2. Methods: Seventeen surfaces from the healthcare environment were selected for evaluation. Surfaces were inoculated with 50 µL of organism suspensions at three concentrations of 104, 106, 108 colony forming units per surface (CFU/surface of B. anthracis. Culture-based methods and ATP based methods were utilized to determine concentrations. Results: When all concentrations were evaluated together, a positive correlation between log-adjusted CFU and Relative Light Units (RLU for endospores and vegetative cells was established. When concentrations were evaluated separately, a significant correlation was not demonstrated. Conclusions: This study demonstrated a positive correlation for ATP and culture-based methods for the vegetative cells of B. anthracis. When evaluating the endospores and combining both metabolic states, the ATP measurements and CFU recovered did not correspond to the initial concentrations on the evaluated surfaces. The results of our study show that the low ATP signal which does not correlate well to the CFU results would not make the ATP measuring devises effective in confirming contamination residual from a bioterrorist event.

  9. Use of a Sampling Area-Adjusted Adenosine Triphosphate Bioluminescence Assay Based on Digital Image Quantification to Assess the Cleanliness of Hospital Surfaces.

    Science.gov (United States)

    Ho, Yu-Huai; Wang, Lih-Shinn; Jiang, Hui-Li; Chang, Chih-Hui; Hsieh, Chia-Jung; Chang, Dan-Chi; Tu, Hsin-Yu; Chiu, Tan-Yun; Chao, Huei-Jen; Tseng, Chun-Chieh

    2016-06-09

    Contaminated surfaces play an important role in the transmission of pathogens. We sought to establish a criterion that could indicate "cleanliness" using a sampling area-adjusted adenosine triphosphate (ATP) assay. In the first phase of the study, target surfaces were selected for swab sampling before and after daily cleaning; then, an aerobic colony count (ACC) plate assay of bacteria and antibiotic-resistant bacteria was conducted. ATP swabs were also tested, and the ATP readings were reported as relative light units (RLUs). The results of the ACC and ATP assays were adjusted according to the sampling area. During the second phase of the study, a new cleaning process employing sodium dichloroisocyanurate (NaDCC) was implemented for comparison. Using the criterion of 2.5 colony-forming units (CFU)/cm², 45% of the sampled sites were successfully cleaned during phase one of the study. During phase two, the pass rates of the surface samples (64%) were significantly improved, except under stringent (5 RLU/cm²) and lax (500 RLU) ATP criteria. Using receiver-operating characteristic curve analysis, the best cut-off point for an area-adjusted ATP level was 7.34 RLU/cm², which corresponded to culture-assay levels of ATP assay improved the degree of correlation with the ACC-assay results from weak to moderate.

  10. Comparison of immunomagnetic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater.

    Science.gov (United States)

    Bushon, Rebecca N; Likirdopulos, Christina A; Brady, Amie M G

    2009-11-01

    Untreated wastewater samples from California, North Carolina, and Ohio were analyzed by the immunomagnetic separation/adenosine triphosphate (IMS/ATP) method and the traditional culture-based method for E. coli and enterococci concentrations. The IMS/ATP method concentrates target bacteria by immunomagnetic separation and then quantifies captured bacteria by measuring bioluminescence induced by release of ATP from the bacterial cells. Results from this method are available within 1h from the start of sample processing. Significant linear correlations were found between the IMS/ATP results and results from traditional culture-based methods for E. coli and enterococci enumeration for one location in California, two locations in North Carolina, and one location in Ohio (r values ranged from 0.87 to 0.97). No significant linear relation was found for a second location in California that treats a complex mixture of residential and industrial wastewater. With the exception of one location, IMS/ATP showed promise as a rapid method for the quantification of faecal-indicator organisms in wastewater.

  11. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations.

    Science.gov (United States)

    Martić, Sanela; Rains, Meghan K; Freeman, Daniel; Kraatz, Heinz-Bernhard

    2011-08-17

    The 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates (3 and 4), containing the poly(ethylene glycol) spacers, were synthesized and compared to a hydrophobic analogue as co-substrates for the following protein kinases: sarcoma related kinase (Src), cyclin-dependent kinase (CDK), casein kinase II (CK2α), and protein kinase A (PKA). Electrochemical kinase assays indicate that the hydrophobic Fc-ATP analogue was an optimal co-substrate for which K(M) values were determined to be in the 30-200 μM range, depending on the particular protein kinase. The luminescence kinase assay demonstrated the kinase utility for all Fc-ATP conjugates, which is in line with the electrochemical data. Moreover, Fc-ATP bioconjugates exhibit competitive behavior with respect to ATP. Relatively poor performance of the polar Fc-ATP bioconjugates as co-substrates for protein kinases was presumably due to the additional H-bonding and electrostatic interactions of the poly(ethylene glycol) linkers of Fc-ATP with the kinase catalytic site and the target peptides. Phosphorylation of the full-length protein, His-tagged pro-caspase-3, was demonstrated through Fc-phosphoamide transfer to the Ser residues of the surface-bound protein by electrochemical means. These results suggest that electrochemical detection of the peptide and protein Fc-phosphorylation via tailored Fc-ATP co-substrates may be useful for probing protein-protein interactions.

  12. Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

    Science.gov (United States)

    Yukawa, Ayako; Watanabe, Rikiya; Noji, Hiroyuki

    2015-03-13

    F1-ATPase (F1), an important rotary motor protein, converts the chemical energy of ATP hydrolysis into mechanical energy using rotary motion with extremely high efficiency. The energy-conversion mechanism for this molecular motor has been extensively clarified by previous studies, which indicate that the interactions between the catalytic residues and the β- and γ-phosphates of ATP are indispensable for efficient catalysis and torque generation. However, the role of α-phosphate is largely unknown. In this study, we observed the rotation of F1 fuelled with an ATP analogue, adenosine 5'-[α-thio]-triphosphate (ATPαS), in which the oxygen has been substituted with a sulfur ion to perturb the α-phosphate/F1 interactions. In doing so, we have revealed that ATPαS does not appear to have any impact on the kinetic properties of the motor or on torque generation compared to ATP. On the other hand, F1 was observed to lapse into the ADP-inhibited intermediate states when in the presence of ATPαS more severely than in the presence of ATP, suggesting that the α-phosphate group of ATP contributes to the avoidance of ADP-inhibited intermediate formation.

  13. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs.

    Science.gov (United States)

    Ye, Rui; Liu, Jun; Jia, Zhiying; Wang, Hongyang; Wang, YongAn; Sun, Wei; Wu, Xuan; Zhao, Zhifei; Niu, Baolong; Li, Xingqi; Dai, Guanghai; Li, Jianxiong

    2016-06-13

    BACKGROUND There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. MATERIAL AND METHODS Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen's cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. RESULTS ATP (0.1-10 µM) reduced the potassium current (IK+) in the majority of the recorded Hensen's cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 µM to 10 mM), which was reversibly blocked by 100 µM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. CONCLUSIONS Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL).

  14. Proline modulates the effect of bisphosphonate on calcium levels and adenosine triphosphate production in cell lines derived from bovine Echinococcus granulosus protoscoleces.

    Science.gov (United States)

    Fuchs, A G; Echeverría, C I; Pérez Rojo, F G; Prieto González, E A; Roldán, E J A

    2014-12-01

    Bisphosphonates have been proposed as pharmacological agents against parasite and cancer cell growth. The effect of these compounds on helminthic cell viability and acellular compartment morphology, however, has not yet been studied. The effects of different types of bisphosphonates, namely etidronate (EHDP), pamidronate (APD), alendronate (ABP), ibandronate (IB) and olpadronate (OPD), and their interaction with amiloride, 1,25-dihydroxycholecalciferol (D3) and proline were evaluated on a cell line derived from bovine Echinococcus granulousus protoscoleces (EGPE) that forms cystic colonies in agarose. The EGPE cell line allowed testing the effect of bisphosphonates alone and in association with other compounds that could modulate calcium apposition/deposition, and were useful in measuring the impact of these compounds on cell growth, cystic colony formation and calcium storage. Decreased cell growth and cystic colony formation were found with EHDP, IB and OPD, and increased calcium storage with EHDP only. Calcium storage in EGPE cells appeared to be sensitive to the effect of amiloride, D3 and proline. Proline decreased calcium storage and increased colony formation. Changes in calcium storage may be associated with degenerative changes of the cysts, as shown in the in vitro colony model and linked to an adenosine triphosphate (ATP) decrease. In conclusion, bisphosphonates could be suitable tempering drugs to treat cestode infections.

  15. Adenosine triphosphate-sensitive potassium channel opener protects PC12 cells against hypoxia-induced apoptosis through PI3K/Akt and Bcl-2 signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Chunhong Jia; Danyang Zhao; Yang Lu; Runling Wang; Jia Li

    2010-01-01

    Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.

  16. Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR

    Science.gov (United States)

    Majer, Günter; Southan, Alexander

    2017-06-01

    The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.

  17. Mixed Self-Assembly of Polyethylene Glycol and Aptamer on Polydopamine Surface for Highly Sensitive and Low-Fouling Detection of Adenosine Triphosphate in Complex Media.

    Science.gov (United States)

    Wang, Guixiang; Xu, Qingjun; Liu, Lei; Su, Xiaoli; Lin, Jiehua; Xu, Guiyun; Luo, Xiliang

    2017-09-13

    Detection of disease biomarkers within complex biological media is a substantial outstanding challenge because of severe biofouling and nonspecific adsorptions. Herein, a reliable strategy for sensitive and low-fouling detection of a biomarker, adenosine triphosphate (ATP) in biological samples was developed through the formation of a mixed self-assembled sensing interface, which was constructed by simultaneously self-assembling polyethylene glycol (PEG) and ATP aptamer onto the self-polymerized polydopamine-modified electrode surface. The developed aptasensor exhibited high selectivity and sensitivity toward the detection of ATP, and the linear range was 0.1-1000 pM, with a detection limit down to 0.1 pM. Moreover, owing to the presence of PEG within the sensing interface, the aptasensor was capable of sensing ATP in complex biological media such as human plasma with significantly reduced nonspecific adsorption effect. Assaying ATP in real biological samples including breast cancer cell lysates further proved the feasibility of this biosensor for practical application.

  18. Comparison of immunomagnetic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater

    Science.gov (United States)

    Bushon, R.N.; Likirdopulos, C.A.; Brady, A.M.G.

    2009-01-01

    Untreated wastewater samples from California, North Carolina, and Ohio were analyzed by the immunomagnetic separation/adenosine triphosphate (IMS/ATP) method and the traditional culture-based method for E. coli and enterococci concentrations. The IMS/ATP method concentrates target bacteria by immunomagnetic separation and then quantifies captured bacteria by measuring bioluminescence induced by release of ATP from the bacterial cells. Results from this method are available within 1 h from the start of sample processing. Significant linear correlations were found between the IMS/ATP results and results from traditional culture-based methods for E. coli and enterococci enumeration for one location in California, two locations in North Carolina, and one location in Ohio (r??values ranged from 0.87 to 0.97). No significant linear relation was found for a second location in California that treats a complex mixture of residential and industrial wastewater. With the exception of one location, IMS/ATP showed promise as a rapid method for the quantification of faecal-indicator organisms in wastewater.

  19. Adenosine triphosphate stress 99mTc-methoxyisobutylisonitrile gated myocardial perfusion imaging efficacy in diagnosing stent restenosis following coronary stent implantation

    Science.gov (United States)

    Zhang, Pengfei; Chen, Song; Li, Yang; Du, Qiuhong; Wang, Lijuan; Sun, Yingxian; Li, Yaming

    2016-01-01

    Coronary stent restenosis rate following implantation is considerably high. The adenosine stress gated myocardial perfusion imaging (G-MPI) method has been widely used in the diagnosis, risk stratification and prognosis evaluation of coronary heart disease; however, the high cost of adenosine limits its clinical application. The aim of the present study was to investigate the efficacy of adenosine triphosphate (ATP) stress 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) G-MPI for diagnosis in-stent restenosis following coronary stent implantation. Data from 66 patients with typical angina pectoris symptoms who had undergone percutaneous coronary stent implantation >3 months prior to participation in the study were analyzed. All the patients underwent ATP stress 99mTc-MIBI G-MPI and coronary artery angiography as the criterion diagnostic standard within 1 month. The sensitivity, specificity, and accuracy of ATP stress 99mTc-MIBI G-MPI in the assessment of in-stent restenosis were calculated. In addition, Fisher's exact probability methods were used to compare differences between experimental groups. Among 66 patients with a total of 99 implanted coronary arterial branches, 39 patients (59%) with 45 coronary arteries (45%) presented in-stent restenosis. The diagnostic sensitivity, specificity, accuracy, positive predictive and negative predictive value of ATP stress 99mTc-MIBI G-MPI for assessing stent restenosis in all patients were 85, 89, 86, 92 and 80%, respectively. Similarly, these values in patients with myocardial infarction were 79, 88, 83, 88 and 78%, respectively, while in patients without myocardial infarction the values were 90, 91, 90, 95 and 83%, respectively. Therefore, the diagnostic efficacy of ATP stress 99mTc-MIBI G-MPI in patients without myocardial infarction was higher compared with those with myocardial infarction; however, no significant difference was observed between the two groups. Furthermore, the sensitivity, specificity and accuracy for

  20. Adenosine triphosphate stress (99m)Tc-methoxyisobutylisonitrile gated myocardial perfusion imaging efficacy in diagnosing stent restenosis following coronary stent implantation.

    Science.gov (United States)

    Zhang, Pengfei; Chen, Song; Li, Yang; Du, Qiuhong; Wang, Lijuan; Sun, Yingxian; Li, Yaming

    2016-12-01

    Coronary stent restenosis rate following implantation is considerably high. The adenosine stress gated myocardial perfusion imaging (G-MPI) method has been widely used in the diagnosis, risk stratification and prognosis evaluation of coronary heart disease; however, the high cost of adenosine limits its clinical application. The aim of the present study was to investigate the efficacy of adenosine triphosphate (ATP) stress (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) G-MPI for diagnosis in-stent restenosis following coronary stent implantation. Data from 66 patients with typical angina pectoris symptoms who had undergone percutaneous coronary stent implantation >3 months prior to participation in the study were analyzed. All the patients underwent ATP stress (99m)Tc-MIBI G-MPI and coronary artery angiography as the criterion diagnostic standard within 1 month. The sensitivity, specificity, and accuracy of ATP stress (99m)Tc-MIBI G-MPI in the assessment of in-stent restenosis were calculated. In addition, Fisher's exact probability methods were used to compare differences between experimental groups. Among 66 patients with a total of 99 implanted coronary arterial branches, 39 patients (59%) with 45 coronary arteries (45%) presented in-stent restenosis. The diagnostic sensitivity, specificity, accuracy, positive predictive and negative predictive value of ATP stress (99m)Tc-MIBI G-MPI for assessing stent restenosis in all patients were 85, 89, 86, 92 and 80%, respectively. Similarly, these values in patients with myocardial infarction were 79, 88, 83, 88 and 78%, respectively, while in patients without myocardial infarction the values were 90, 91, 90, 95 and 83%, respectively. Therefore, the diagnostic efficacy of ATP stress (99m)Tc-MIBI G-MPI in patients without myocardial infarction was higher compared with those with myocardial infarction; however, no significant difference was observed between the two groups. Furthermore, the sensitivity, specificity and

  1. Using an Adenosine Triphosphate Bioluminescent Assay to Determine Effective Antibiotic Combinations against Carbapenem-Resistant Gram Negative Bacteria within 24 Hours.

    Directory of Open Access Journals (Sweden)

    Yiying Cai

    Full Text Available Current in vitro combination testing methods involve enumeration by bacterial plating, which is labor-intensive and time-consuming. Measurement of bioluminescence, released when bacterial adenosine triphosphate binds to firefly luciferin-luciferase, has been proposed as a surrogate for bacterial counts. We developed an ATP bioluminescent combination testing assay with a rapid turnaround time of 24h to determine effective antibiotic combinations.100 strains of carbapenem-resistant (CR GNB [30 Acinetobacter baumannii (AB, 30 Pseudomonas aeruginosa (PA and 40 Klebsiella pneumoniae (KP] were used. Bacterial suspensions (105 CFU/ml were added to 96-well plates containing clinically achievable concentrations of multiple single and two-antibiotic combinations. At 24h, the luminescence intensity of each well was measured. Receiver operator characteristic curves were plotted to determine optimal luminescence threshold (TRLU to discriminate between inhibitory/non-inhibitory combinations when compared to viable plating. The unweighted accuracy (UA [(sensitivity + specificity/2] of TRLU values was determined. External validation was further done using 50 additional CR-GNB.Predictive accuracies of TRLU were high for when all antibiotic combinations and species were collectively analyzed (TRLU = 0.81, UA = 89%. When individual thresholds for each species were determined, UA remained high. Predictive accuracy was highest for KP (TRLU = 0.81, UA = 91%, and lowest for AB (TRLU = 0.83, UA = 87%. Upon external validation, high overall accuracy (91% was observed. The assay distinguished inhibitory/non-inhibitory combinations with UA of 80%, 94% and 93% for AB, PA and KP respectively.We developed an assay that is robust at identifying useful combinations with a rapid turn-around time of 24h, and may be employed to guide the timely selection of effective antibiotic combinations.

  2. Construction of deletion mutants in the phosphotransferase transport system and adenosine triphosphate-binding cassette transporters in Listeria monocytogenes and analysis of their growth under different stress conditions

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2013-10-01

    Full Text Available Functional genomics approaches enable us to investigate the biochemical, cellular, and physiological properties of each gene product and are nowadays applied to enhance food safety by understanding microbial stress responses in food and host-pathogen interactions. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to eliminate this pathogen since it can survive under multiple stress conditions such as low pH and low temperature. Detailed studies are needed to determine its mode of action and to understand the mechanisms that protect the pathogen when it is subjected to stress. In this study, deletion mutants of phosphotransferase transport system genes (PTS and adenosine triphosphate(ATP-binding cassette transporters (ABC of Listeria monocytogenes F2365 were created using molecular techniques. These mutants and the wild-type were tested under different stress conditions, such as in solutions with different NaCl concentration, pH value and for nisin resistance. Results demonstrate that the behaviour of these deletion mutants is different from the wild type. In particular, deleted genes may be involved in L. monocytogenes resistance to nisin and to acid and salt concentrations. Functional genomics research on L. monocytogenes allows a better understanding of the genes related to stress responses and this knowledge may help in intervention strategies to control this food-borne pathogen. Furthermore, specific gene markers can be used to identify and subtype L. monocytogenes. Thus, future development of this study will focus on additional functional analyses of important stress response-related genes, as well as on methods for rapid and sensitive detection of L. monocytogenes such as using DNA microarrays.

  3. Selective protection of human liver tissue in TNF-targeting of cancers of the liver by transient depletion of adenosine triphosphate.

    Directory of Open Access Journals (Sweden)

    Timo Weiland

    Full Text Available BACKGROUND: Tumor necrosis factor alpha (TNF is able to kill cancer cells via receptor-mediated cell death requiring adenosine triphosphate (ATP. Clinical usage of TNF so far is largely limited by its profound hepatotoxicity. Recently, it was found in the murine system that specific protection of hepatocytes against TNF's detrimental effects can be achieved by fructose-mediated ATP depletion therein. Before employing this quite attractive selection principle in a first clinical trial, we here comprehensively investigated the interdependence between ATP depletion and TNF hepatotoxicity in both in vitro and ex vivo experiments based on usage of primary patient tissue materials. METHODS: Primary human hepatocytes, and both non-tumorous and tumorous patient-derived primary liver tissue slices were used to elucidate fructose-induced ATP depletion and TNF-induced cytotoxicity. RESULTS: PHH as well as tissue slices prepared from non-malignant human liver specimen undergoing a fructose-mediated ATP depletion were both demonstrated to be protected against TNF-induced cell death. In contrast, due to tumor-specific overexpression of hexokinase II, which imposes a profound bypass on hepatocytic-specific fructose catabolism, this was not the case for human tumorous liver tissues. CONCLUSION: Normal human liver tissues can be protected transiently against TNF-induced cell death by systemic pretreatment with fructose used in non-toxic/physiologic concentrations. Selective TNF-targeting of primary and secondary tumors of the liver by transient and specific depletion of hepatocytic ATP opens up a new clinical avenue for the TNF-based treatment of liver cancers.

  4. Effects of oral adenosine-5′-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men

    Science.gov (United States)

    2013-01-01

    Background Currently, there is a lack of studies examining the effects of adenosine-5′-triphosphate (ATP) supplementation utilizing a long-term, periodized resistance-training program (RT) in resistance-trained populations. Therefore, we investigated the effects of 12 weeks of 400 mg per day of oral ATP on muscular adaptations in trained individuals. We also sought to determine the effects of ATP on muscle protein breakdown, cortisol, and performance during an overreaching cycle. Methods The study was a 3-phase randomized, double-blind, and placebo- and diet-controlled intervention. Phase 1 was a periodized resistance-training program. Phase 2 consisted of a two week overreaching cycle in which volume and frequency were increased followed by a 2-week taper (Phase 3). Muscle mass, strength, and power were examined at weeks 0, 4, 8, and 12 to assess the chronic effects of ATP; assessment performance variables also occurred at the end of weeks 9 and 10, corresponding to the mid and endpoints of the overreaching cycle. Results There were time (p jump power (+ 796 ± 75 ATP vs. 614 ± 52 watts placebo, p < 0.001); and greater ultrasound determined muscle thickness (+4.9 ± 1.0 ATP vs. (2.5 ± 0.6 mm placebo, p < 0.02) with ATP supplementation. During the overreaching cycle, there were group x time effects for strength and power, which decreased to a greater extent in the placebo group. Protein breakdown was also lower in the ATP group. Conclusions Our results suggest oral ATP supplementation may enhance muscular adaptations following 12-weeks of resistance training, and prevent decrements in performance following overreaching. No statistically or clinically significant changes in blood chemistry or hematology were observed. Trial registration ClinicalTrials.gov NCT01508338 PMID:24330670

  5. Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water

    Directory of Open Access Journals (Sweden)

    F. Hammes

    2008-06-01

    Full Text Available The general microbial quality of drinking water is normally monitored by heterotrophic plate counts (HPC. This method has been used for more than 100 years and is recommended in drinking water guidelines. However, the HPC method is handicapped because it is time-consuming and restricted to culturable bacteria. Recently, rapid and accurate detection methods have emerged, such as adenosine tri-phosphate (ATP measurements to assess microbial activity in drinking water, and flow cytometry (FCM to determine the total cell concentration (TCC. It is necessary and important for drinking water quality control to understand the relationships among the conventional and new methods. In the current study, all three methods were applied to 200 drinking water samples obtained from two local buildings connected to the same distribution system. Samples were taken both on normal working days and weekends, and the correlations between the different microbiological parameters were determined. TCC in the samples ranged from 0.37–5.61×105 cells/ml, and two clusters, the so-called high (HNA and low (LNA nucleic acid bacterial groups, were clearly distinguished. The results showed that the rapid determination methods (i.e., FCM and ATP correlated well (R2=0.69, but only a weak correlation (R2=0.31 was observed between the rapid methods and conventional HPC data. With respect to drinking water monitoring, both FCM and ATP measurements were confirmed to be useful and complimentary parameters for rapid assessing of drinking water microbial quality.

  6. Visual and surface plasmon resonance sensor for zirconium based on zirconium-induced aggregation of adenosine triphosphate-stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wenjing; Zhao, Jianming [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Zhang, Wei; Liu, Zhongyuan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Xu, Min [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Anjum, Saima [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, 63100 (Pakistan); Majeed, Saadat [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Department of Chemistry, Bahauddin Zakaryia University, Multan 60800 (Pakistan); Xu, Guobao, E-mail: guobaoxu@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2013-07-17

    Graphical abstract: Visual and surface plasmon resonance (SPR) sensor for Zr(IV) has been developed for the first time based on Zr(IV)-induced change of SPR absorption spectra of ATP-stabilized AuNP solutions. -- Highlights: •Visual and SPR absorption Zr{sup 4+} sensors have been developed for the first time. •The high affinity between Zr{sup 4+} and ATP makes sensor highly sensitive and selective. •A fast response to Zr{sup 4+} within 4 min. -- Abstract: Owing to its high affinity with phosphate, Zr(IV) can induce the aggregation of adenosine 5′-triphosphate (ATP)-stabilized AuNPs, leading to the change of surface plasmon resonance (SPR) absorption spectra and color of ATP-stabilized AuNP solutions. Based on these phenomena, visual and SPR sensors for Zr(IV) have been developed for the first time. The A{sub 660} {sub nm}/A{sub 518} {sub nm} values of ATP-stabilized AuNPs in SPR absorption spectra increase linearly with the concentrations of Zr(IV) from 0.5 μM to 100 μM (r = 0.9971) with a detection limit of 95 nM. A visual Zr(IV) detection is achieved with a detection limit of 30 μM. The sensor shows excellent selectivity against other metal ions, such as Cu{sup 2+}, Fe{sup 3+}, Cd{sup 2+}, and Pb{sup 2+}. The recoveries for the detection of 5 μM, 10 μM, 25 μM and 75 μM Zr(IV) in lake water samples are 96.0%, 97.0%, 95.6% and 102.4%, respectively. The recoveries of the proposed SPR method are comparable with those of ICP-OES method.

  7. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer.

  8. Supplementation of Exogenous Adenosine 5′-Triphosphate Enhances Mechanical Properties of 3D Cell–Agarose Constructs for Cartilage Tissue Engineering

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr

    2013-01-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5′-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure–function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct. PMID:23651296

  9. Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-sensitive potassium channel subunit Kir6.1.

    Science.gov (United States)

    Henn, Matthew C; Janjua, M Burhan; Zhang, Haixia; Kanter, Evelyn M; Makepeace, Carol M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2016-12-01

    The adenosine triphosphate-sensitive potassium (KATP) channel opener diazoxide (DZX) prevents myocyte volume derangement and reduced contractility secondary to stress. KATP channels are composed of pore-forming (Kir6.1 or Kir6.2) and regulatory (sulfonylurea receptor, SUR1 or SUR2) subunits. Gain of function (GOF) of Kir6.1 subunits has been implicated in cardiac pathology in Cantu syndrome in humans (cardiomegaly, lymphedema, and pericardial effusions). We hypothesized that GOF of Kir6.1 subunits would result in altered myocyte response to stress. Isolated cardiac myocytes from wild type (WT) and transgenic Kir6.1GOF mice were exposed to Tyrode's physiologic solution for 20 min, test solution (Tyrode's or stress [hyperkalemic cardioplegia {CPG, known myocyte stress}] +/- KATP channel opener DZX), followed by Tyrode's for 20 min. Myocyte volume and contractility were measured and compared. WT myocytes demonstrated significant swelling in response to stress, but significantly less swelling was seen in Kir6.1GOF myocytes. DZX prevented swelling secondary to CPG in WT but resulted in a nonsignificant reduction in swelling in Kir6.1GOF myocytes. Both WT and Kir6.1GOF myocytes demonstrated a reduction in contractility during stress, although this was only significant in Kir6.1GOF myocytes. DZX was not associated with an improvement in contractility in Kir6.1GOF myocytes following stress. Similar to previous results in Kir6.1(-/-) myocytes, Kir6.1GOF myocytes demonstrate resistance (less volume derangement) to stress of cardioplegia. Understanding the role of Kir6.1 in myocyte response to stress may aid in the treatment of patients with Cantu syndrome and warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of chronic digitalization on cardiac and renal Na+ + K+-dependent adenosine triphosphate activity and circulating catecholamines in the dog.

    Science.gov (United States)

    Nechay, B R; Jackson, R E; Ziegler, M G; Neldon, S L; Thompson, J D

    1981-09-01

    To extend our understanding of the mechanism of action of digitalis drugs, we studied electrocardiograms (ECGs), renal function, plasma concentrations of catecholamines, and myocardial and renal Na+ + K+-dependent adenosine triphosphate (Na+ + K+ ATPase) activity in chronically digitalized dogs. Five healthy, male, mongrel dogs received a therapeutic regimen of digoxin (0.1 mg/kg on day 1 in three divided doses followed by 0.025 mg/kg per day) orally for 2-4 months. This resulted in plasma digoxin concentrations of 1.1 to 4.7 ng/ml as determined by radioimmunoassay. Six control dogs received daily gelatin capsules by mouth. ECGs monitored throughout the study showed no changes. Digitalized dogs had elevated plasma norepinephrine concentrations (347 vs. 137 pg/ml in controls) and no change in plasma epinephrine concentrations. Digitalized dogs had elevated glomerular filtration rates (0.74 vs. 0.94 ml/min per g of kidney) without significant changes in renal handling of electrolytes and water. All of the above studies were done without the aid of restraining drugs or infusions. The animals were killed with an overdose of pentobarbital for in vitro studies. In digitalized dogs, microsomal Na+ + K+ ATPase-specific activity was 26 to 33% lower in the renal cortex, medulla, and papilla, and 46% lower in the cardiac left ventricle than in control dogs. Digitalization did not alter the osmolalities of renal tissues. We conclude that chronic reduction Na+ + K+ ATPase activity by one-third dose does not cause abnormalities in renal handling of electrolytes and water, and inhibition of Na+ + K+ ATPase in the left ventricular muscle by one-half is associated with no obvious ECG changes in the dog. Further, elevated plasma norepinephrine concentrations may contribute to both the therapeutic and the toxic effects of digitalis.

  11. Electrochemical oxidation of adenosine-5 Prime -triphosphate on a chitosan-graphene composite modified carbon ionic liquid electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Liu Jun; Wang Xiuzhen; Li Tongtong; Li Guangjiu; Wu Jie [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhang Liqi [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-01

    In this paper a new electrochemical method was proposed for the determination of adenosine-5 Prime -triphosphate (ATP) based on a chitosan (CTS) and graphene (GR) composite film modified carbon ionic liquid electrode (CTS-GR/CILE). CILE was fabricated by using ionic liquid 1-butyl-3-methylimidazolium dihydrogen phosphate ([BMIM]H{sub 2}PO{sub 4}) as the binder, which was further modified by GR and CTS composite. The modified electrode exhibited an excellent electrocatalytic activity toward the oxidation of ATP with the increase of the oxidation peak current and the decrease of the oxidation peak potential. The electrochemical parameters of ATP on CTS-GR/CILE were calculated with the electron transfer coefficient ({alpha}) as 0.329, the electron transfer number (n) as 2.15, the apparent heterogeneous electron transfer rate constant (ks) as 3.705 Multiplication-Sign 10{sup -5} s{sup -1} and the surface coverage ({Gamma}{sub T}) as 9.33 Multiplication-Sign 10{sup -10} mol cm{sup -2}. Under the optimal conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -3} M with the detection limit of 0.311 {mu}M (S/N = 3). The proposed electrode showed excellent reproducibility, stability, anti-interference ability and further successfully applied to the ATP injection sample detection. - Highlights: Black-Right-Pointing-Pointer Ionic liquid [BMIM]H{sub 2}PO{sub 4} based carbon ionic liquid electrode (CILE) was prepared. Black-Right-Pointing-Pointer Graphene modified CILE was fabricated for the sensitive electrochemical detection of ATP. Black-Right-Pointing-Pointer Good electrocatalytic ability to the ATP oxidation was achieved. Black-Right-Pointing-Pointer Detection of 5 Prime -ATP in commercial injection samples with satisfactory results.

  12. 运动与ATP-敏感型钾离子通道%Exercise and adenosine triphosphate-sensitive potassium channel

    Institute of Scientific and Technical Information of China (English)

    张如江; 宋永晶

    2014-01-01

    背景:在运动生理状态下,KATP 在调节冠状动脉张力、运动诱导心肌保护效应和延缓骨骼肌疲劳等多个方面具有重要作用。目的:对KATP在运动中的作用进行了综述和探讨,以期为深入了解运动调节机体代谢提供理论参考。方法:检索1991年1月至2014年6月 PubMed数据库及维普中文科技数据库文献。英文检索词为“KATP Channels;Adenosine Triphosphate;Sports;Myocardium;Ion Channels”,中文检索词为“KATP通道;三磷酸腺苷;运动;心肌;离子通道”。选择与KATP分子结构、生物学功能及调控相关,以及KATP与冠状动脉、心肌、骨骼肌疲劳及运动能力相关的文献42篇文献进行探讨。结果与结论:ATP敏感性钾离子通道可以偶联细胞内能量代谢和细胞膜兴奋性,在应对各种生理和病理应激时是保护心肌的效应器之一。长期的耐力训练则会增加骨骼肌和心肌KATP的表达,可能是心肌和骨骼肌对运动应激产生的一种适应性表现。KATP 可能参与冠状动脉血流量的调节。在运动诱导的减轻心肌缺血再灌注损伤的保护效应中,心肌KATP具有重要作用。当骨骼肌疲劳发生时,KATP的激活有利于防止ATP的过度消耗而造成肌纤维损伤和细胞死亡,有利于疲劳的快速恢复。关于KATP与运动能力的关系仍需进一步的研究。%BACKGROUND:In the condition of exercise physiology, adenosine triphosphate-sensitive potassium (KATP) channel plays an important role in many aspects, such as regulation of coronary artery tension, exercise-induced myocardial protection effect and delay of skeletal muscle fatigue. OBJECTIVE:To review and investigate the role of KATP in exercise in order to provide theoretical reference for understanding mechanism underlying exercise regulation of body’s metabolism. METHODS: A computer-based online search of PubMed and VIP databases was performed for articles

  13. Evidence that the adenosine triphosphate-binding cassette G5/G8-independent pathway plays a determinant role in cholesterol gallstone formation in mice.

    Science.gov (United States)

    Wang, Helen H; Li, Xiaodan; Patel, Shailendra B; Wang, David Q-H

    2016-09-01

    The adenosine triphosphate-binding cassette (ABC) sterol transporter, Abcg5/g8, is Lith9 in mice, and two gallstone-associated variants in ABCG5/G8 have been identified in humans. Although ABCG5/G8 plays a critical role in determining hepatic sterol secretion, cholesterol is still secreted to bile in sitosterolemic patients with a defect in either ABCG5 or ABCG8 and in either Abcg5/g8 double- or single-knockout mice. We hypothesize that in the defect of ABCG5/G8, an ABCG5/G8-independent pathway is essential for regulating hepatic secretion of biliary sterols, which is independent of the lithogenic mechanism of the ABCG5/G8 pathway. To elucidate the effect of the ABCG5/G8-independent pathway on cholelithogenesis, we investigated the biliary and gallstone characteristics in male wild-type (WT), ABCG5(-/-)/G8(-/-), and ABCG8 (-/-) mice fed a lithogenic diet or varying amounts of cholesterol, treated with a liver X receptor (LXR) agonist, or injected intravenously with [(3) H]sitostanol- and [(14) C]cholesterol-labeled high-density lipoprotein (HDL). We found that ABCG5(-/-)/G8(-/-) and ABCG8 (-/-) mice displayed the same biliary and gallstone phenotypes. Although both groups of knockout mice showed a significant reduction in hepatic cholesterol output compared to WT mice, they still formed gallstones. The LXR agonist significantly increased biliary cholesterol secretion and gallstones in WT, but not ABCG5(-/-)/G8(-/-) or ABCG8 (-/-), mice. The 6-hour recovery of [(14) C]cholesterol in hepatic bile was significantly lower in both groups of knockout mice than in WT mice and [(3) H]sitostanol was detected in WT, but not ABCG5(-/-)/G8(-/-) or ABCG8 (-/-), mice. The ABCG5/G8-independent pathway plays an important role in regulating biliary cholesterol secretion, the transport of HDL-derived cholesterol from plasma to bile, and gallstone formation, which works independently of the ABCG5/G8 pathway. Further studies are needed to observe whether this pathway is also

  14. Effect of extracellular adenosine 5'-triphosphate on cryopreserved epididymal cat sperm intracellular ATP concentration, sperm quality, and in vitro fertilizing ability.

    Science.gov (United States)

    Thuwanut, Paweena; Arya, Nlin; Comizzoli, Pierre; Chatdarong, Kaywalee

    2015-09-15

    Intracellular adenosine 5'-triphosphate (ATP) is essential for supporting sperm function in the fertilization process. During cryopreservation, damage of sperm mitochondrial membrane usually leads to compromised production of intracellular ATP. Recently, extracellular ATP (ATPe) was introduced as a potent activator of sperm motility and fertilizing ability. This study aimed to evaluate (1) levels of intracellular ATP in frozen-thawed epididymal cat sperm after incubation with ATPe and (2) effects of ATPe on epididymal cat sperm parameters after freezing and thawing. Eighteen male cats were included. For each replicate, epididymal sperm from two cats were pooled to one sample (N = 9). Each pooled sample was cryopreserved with the Tris-egg yolk extender into three straws. After thawing, the first and second straws were incubated with 0-, 1.0-, or 2.5-mM ATPe for 10 minutes and evaluated for sperm quality at 10 minutes, 1, 3, and 6 hours after thawing and fertilizing ability. The third straw was evaluated for intracellular ATP concentration in control and with 2.5-mM ATPe treatment. Higher concentration of intracellular sperm ATP was observed in the samples treated with 2.5-mM ATPe compared to the controls (0.339 ± 0.06 μg/2 × 10(6) sperm vs. 0.002 ± 0.003 μg/2 × 10(6) sperm, P ≤ 0.05). In addition, incubation with 2.5-mM ATPe for 10 minutes promoted sperm motility (56.7 ± 5.0 vs. 53.3 ± 4.4%, P ≤ 0.05) and progressive motility (3.1 ± 0.2 vs. 2.8 ± 0.4, P ≤ 0.05), mitochondrial membrane potential (36.4 ± 5.5 vs. 28.7 ± 4.8%, P ≤ 0.05), and blastocyst rate (36.1 ± 7.0 and 28.8 ± 7.4%, P ≤ 0.05) compared with the controls. In contrast, ATPe remarkably interfered acrosome integrity after 6 hours of postthawed incubation. In sum, the present finding that optimal incubation time of postthaw epididymal cat sperm under proper ATPe condition might constitute a rationale for the studies on other endangered wild felids regarding sperm quality and embryo

  15. Quantitative circumferential strain analysis using adenosine triphosphate-stress/rest 3-T tagged magnetic resonance to evaluate regional contractile dysfunction in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masashi, E-mail: m.nakamura1230@gmail.com [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan); Kido, Tomoyuki [Department of Radiology, Saiseikai Matsuyama Hospital, Ehime 791-0295 (Japan); Kido, Teruhito; Tanabe, Yuki; Matsuda, Takuya; Nishiyama, Yoshiko; Miyagawa, Masao; Mochizuki, Teruhito [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan)

    2015-08-15

    Highlights: • Infarcted segments could be differentiated from non-ischemic and ischemic segments with high sensitivity and specificity under at rest conditions. • The time-to-peak circumferential strain values in infarcted segments were more significantly delayed than those in non-ischemic and ischemic segments. • Both circumferential strain and circumferential systolic strain rate values under ATP-stress conditions were significantly lower in ischemic segments than in non-ischemic segments. • Subtracting stress and rest circumferential strain had a higher diagnostic capability for ischemia relative to only utilizing rest or ATP-stress circumferential strain values. • A circumferential strain analysis using tagged MR can quantitatively assess contractile dysfunction in ischemic and infarcted myocardium. - Abstract: Purpose: We evaluated whether a quantitative circumferential strain (CS) analysis using adenosine triphosphate (ATP)-stress/rest 3-T tagged magnetic resonance (MR) imaging can depict myocardial ischemia as contractile dysfunction during stress in patients with suspected coronary artery disease (CAD). We evaluated whether it can differentiate between non-ischemia, myocardial ischemia, and infarction. We assessed its diagnostic performance in comparison with ATP-stress myocardial perfusion MR and late gadolinium enhancement (LGE)-MR imaging. Methods: In 38 patients suspected of having CAD, myocardial segments were categorized as non-ischemic (n = 485), ischemic (n = 74), or infarcted (n = 49) from the results of perfusion MR and LGE-MR. The peak negative CS value, peak circumferential systolic strain rate (CSR), and time-to-peak CS were measured in 16 segments. Results: A cutoff value of −12.0% for CS at rest allowed differentiation between infarcted and other segments with a sensitivity of 79%, specificity of 76%, accuracy of 76%, and an area under the curve (AUC) of 0.81. Additionally, a cutoff value of 477.3 ms for time-to-peak CS at rest

  16. Adenosine 5′-triphosphate (ATP supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    Directory of Open Access Journals (Sweden)

    Arts Ilja CW

    2012-04-01

    Full Text Available Abstract Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine, or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube or 7 h (pellets post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003 and naso-duodenal tube (P = 0.001, but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of

  17. Association study on adenosine triphosphate biofluorescence detection technology%ATP生物荧光检测技术相关性基础研究

    Institute of Scientific and Technical Information of China (English)

    易滨; 刘军; 王芳; 涂显春; 赵晓晓; 赵江丽

    2012-01-01

    Objective To test the relation between adenosine triphosphate (ATP) biofluorescence detection technology and bacterial colony forming unit (CFU) and blood content Methods Escherichia coli (E. coli) ATCC 8099 and heathy controls' blood were diluted to the concentration of 10"' ,10-2,10-3,10-4,10-5,10-6 and 10-7', respectively, then lysate, luciferase and ATP standard substance were added, relative light unit (RLU) values were determined twice by fluorimeter, ATP contents(amol) were converted according to formulaCATP content = A1/A2-A1 × 106); hemoglobin values were measured by hematology analyzer to reflect protein residue leveL Curve demarcate standardization was made to show the relation between diluted bacteria, hemoglobin content and ATP content. Results Bacterial CFU and ATP content logarithm values (y = 1. 07x - 0. 55, R2 = 0. 99), bacterial CFU and ATP RLU logarithm values (y=1.14x + 0. 33,R2 =0. 99) showed linear relationship respectively. There was no significant difference between the logical values figured out by different RLU values and the actual values. After hemodilution, hemoglobin and ATP RLU logarithm values also showed linear relationship (y= 1. 03x-8. 42, R2 =0. 99). Conclusion ATP biofluorescence detection technology can detect the content of bacteria and protein through ATP value and RLU, it can determine contamination degree and clean effect of medical equipments and object surface, it's a new, sensitive and rapid detection method.%目的 测试三磷酸腺苷(ATP)生物荧光检测技术与菌落数和血液含量的关系.方法 将大肠埃希菌ATCC 8099菌液和健康人的血液分别稀释为10-1、10-2、10-3、10-4、10-5、10-6、10-7,加入裂解液、酶、ATP标准品,用荧光光度计测定2次相对发光值(RLU),按照公式(ATP含量=A1/A2-A1×106)换算成ATP含量(amol);用血细胞分析仪测定血红蛋白值,以反映蛋白残留量.将各稀释度菌液、血红蛋白含量与ATP含量之间的关系进行曲线

  18. Comparison of the Immunomagnetic Separation/Adenosine Triphosphate Rapid Method and the Modified mTEC Membrane-Filtration Method for Enumeration of Escherichia coli

    Science.gov (United States)

    Brady, Amie M.G.; Bushon, Rebecca N.; Bertke, Erin E.

    2009-01-01

    Water quality at beaches is monitored for fecal indicator bacteria by traditional, culture-based methods that can take 18 to 24 hours to obtain results. A rapid detection method that provides estimated concentrations of fecal indicator bacteria within 1 hour from the start of sample processing would allow beach managers to post advisories or close the beach when the conditions are actually considered unsafe instead of a day later, when conditions may have changed. A rapid method that couples immunomagnetic separation with adenosine triphosphate detection (IMS/ATP rapid method) was evaluated through monitoring of Escherichia coli (E. coli) at three Lake Erie beaches in Ohio (Edgewater and Villa Angela in Cleveland and Huntington in Bay Village). Beach water samples were collected between 4 and 5 days per week during the recreational seasons (May through September) of 2006 and 2007. Composite samples were created in the lab from two point samples collected at each beach and were shown to be comparable substitutes for analysis of two individual samples. E. coli concentrations in composite samples, as determined by the culture-based method, ranged from 4 to 24,000 colony-forming units per 100 milliliters during this study across all beaches. Turbidity also was measured for each sample and ranged from 0.8 to 260 neophelometric turbidity ratio units. Environmental variables were noted at the time of sampling, including number of birds at the beach and wave height. Rainfall amounts were measured at National Weather Service stations at local airports. Turbidity, rainfall, and wave height were significantly related to the culture-based method results each year and for both years combined at each beach. The number of birds at the beach was significantly related to the culture-based method results only at Edgewater during 2006 and during both years combined. Results of the IMS/ATP method were compared to results of the culture-based method for samples by year for each beach

  19. In vivo effects of adenosine 5´-triphosphate on rat preneoplastic liver Efecto in vivo de adenosina 5´-trifosfato sobre el hígado preneoplásico de la rata

    Directory of Open Access Journals (Sweden)

    Ana V. Frontini

    2011-04-01

    Full Text Available The utilization of adenosine 5´-triphosphate (ATP infusions to inhibit the growth of some human and animals tumors was based on the anticancer activity observed in in vitro and in vivo experiments, but contradictory results make the use of ATP in clinical practice rather controversial. Moreover, there is no literature regarding the use of ATP infusions to treat hepatocarcinomas. The purpose of this study was to investigate whether ATP prevents in vivo oncogenesis in very-early-stage cancer cells in a well characterized two-stage model of hepatocarcinogenesis in the rat. As we could not preclude the possible effect due to the intrinsic properties of adenosine, a known tumorigenic product of ATP hydrolysis, the effect of the administration of adenosine was also studied. Animals were divided in groups: rats submitted to the two stage preneoplasia initiation/promotion model of hepatocarcinogenesis, rats treated with intraperitoneal ATP or adenosine during the two phases of the model and appropriate control groups. The number and volume of preneoplastic foci per liver identified by the expression of glutathione S-transferase placental type and the number of proliferating nuclear antigen positive cells significantly increased in ATP and adenosine treated groups. Taken together, these results indicate that in this preneoplastic liver model, ATP as well as adenosine disturb the balance between apoptosis and proliferation contributing to malignant transformation.La utilización de adenosina 5´-trifosfato (ATP para inhibir el crecimiento de algunos tumores en humanos y en animales se basa en la actividad anticancerígena observada en experimentos in vitro e in vivo. El uso del ATP en la práctica clínica es discutido debido a resultados contradictorios. Por otra parte, no existen antecedentes del uso de ATP en el tratamiento de hepatocarcinomas. El objetivo del presente estudio fue determinar si el ATP previene la oncogénesis in vivo en un modelo de

  20. Oral administration of amino acidic supplements improves protein and energy profiles in skeletal muscle of aged rats: elongation of functional performance and acceleration of mitochondrial recovery in adenosine triphosphate after exhaustive exertion.

    Science.gov (United States)

    Chen Scarabelli, Carol; McCauley, Roy B; Yuan, Zhaokan; Di Rezze, Justin; Patel, David; Putt, Jeff; Raddino, Riccardo; Allebban, Zuhair; Abboud, John; Scarabelli, Gabriele M; Chilukuri, Karuna; Gardin, Julius; Saravolatz, Louis; Faggian, Giuseppe; Mazzucco, Alessandro; Scarabelli, Tiziano M

    2008-06-02

    Sarcopenia is an inevitable age-related degenerative process chiefly characterized by decreased synthesis of muscle proteins and impaired mitochondrial function, leading to progressive loss of muscle mass. Here, we sought to probe whether long-term administration of oral amino acids (AAs) can increase protein and adenosine triphosphate (ATP) content in the gastrocnemius muscle of aged rats, enhancing functional performance. To this end, 6- and 24-month-old male Fisher 344 rats were divided into 3 groups: group A (6-month-old rats) and group B (24-month-old rats) were used as adult and senescent control group, respectively, while group C (24-month-old rats) was used as senescent treated group and underwent 1-month oral treatment with a mixture of mainly essential AAs. Untreated senescent animals exhibited a 30% reduction in total and fractional protein content, as well as a 50% reduction in ATP content and production, compared with adult control rats (p supplementation with mixed AAs significantly improved protein and high-energy phosphate content, as well as the rate of mitochondrial ATP production, conforming their values to those of adult control animals (p energy substrates in the gastrocnemius muscle of treated aged rats paralleled a significant enhancement in functional performance assessed by swim test, with dramatic elongation of maximal exertion times compared with untreated senescent rats (p supplementation with oral AAs improved protein and energy profiles in the gastrocnemius of treated rats, enhancing functional performance and accelerating high-energy phosphate recovery after exhaustive exertion.

  1. The application of adenosine triphosphate bioluminescence assay in the diagnosis of multidrug-resistant ;Mycobacterium tuberculosis%三磷酸腺苷发光法在耐多药结核分枝杆菌诊断中的运用

    Institute of Scientific and Technical Information of China (English)

    刘君; 胡嘉波; 裴豪; 蒯守刚; 陈丽艳

    2013-01-01

    目的:通过与罗氏固体培养法比较,评估三磷酸腺苷发光法检测耐多药结核分枝杆菌的可行性。方法采用三磷酸腺苷发光法与罗氏固体培养法同时检测和分析149例临床分离的结核分枝杆菌。结果三磷酸腺苷发光法与罗氏固体培养法的一致率为92.6%(138/149),差异无统计学意义(χ2=0.57,P=0.45)。三磷酸腺苷发光法检测时间为(6.6±2.1)d,明显快于传统罗氏固体培养法的28 d(t=422.7,P<0.001)。结论与常规检测方法比较,三磷酸腺苷发光法具有快速、简便、准确性高等优点,对耐多药结核患者的早期诊断和耐药结核分枝杆菌流行的控制有很大帮助,适合实验室开展。%Objective To compare with Roche solid culture method,and to evaluate the feasibility of adenosine triphosphate bioluminescence assay for detecting multidrug-resistant Mycobacterium tuberculosis.Methods By Roche solid culture method and adenosine triphosphate bioluminescence assay,149 clinical isolates of Mycobacterium tuber-culosis were determined and analyzed.Results The coincidence rate of adenosine triphosphate bioluminescence assay with Roche solid culture method was 92.6%(138/149),and the difference had no statistical significance (χ2 =0.57, P=0.45).The detection time of adenosine triphosphate bioluminescence assay was (6.6 ±2.1)d,which was faster than that of Roche solid culture method (28 d,t=422.7,P<0.001).Conclusions Compared with the conventional detection methods,adenosine triphosphate bioluminescence assay is simple,rapid and accurate.It is helpful for detecting multidrug-resistant tuberculosis patients and controlling the prevalence of Mycobacterium tuberculosis.It is suitable for clinical laboratory.

  2. Effect of coriaria lactone on adenosine triphosphate-sensitive potassium channels in pyramidal neurons%马桑内酯对锥体神经元三磷酸腺苷敏感钾通道的作用

    Institute of Scientific and Technical Information of China (English)

    邹晓毅; 周华; 周树舜

    2005-01-01

    BACKGROUND: Abnormal neuronal discharge arose from the activation of cell membrane ion channels and transmembrane ion transport. The electric activity of the cells is associated with cell metabolism fundamentally through adenosine triphosphate (ATP)-sensitive potassium(KATP) channels.Currently the involvement of KATP channels in the pathogenesis of epilepsy and the regulation of KATP channels by coriaria lacton (EL) remain unknown.OBJETCIVE: To investigate the changes of cell membrane KATP channels in rat hippocampal neurons in response to CL as an epilepsy-inducing agent, and explore the role of KATP channels in the pathogenesis of epilepsy.DESIGN: Randomized controlled experiment.SETTING: Department of Neurology, West China Hospital Affiliated to Sichuan University, and Teaching and Research Section of Physiology,West China College of Preclinical Medicine and Forensic Medicine of Sichuan University.MATERIALS: This experiment was carried out at Luzhou Medical College between May and December 2000. Hippocampus pyramidal neurons were obtained from neonatal Wistar rats and randomized into normal control group, tetraethylammonium chloride (TEA) group, DNP group, CL group, and electric conductance and dynamics group.METHODS: The hippocampus of newborn Wistar rats was separated under aseptic condition and cultured for 24 hours prior to treatment with 10 μmol/L cytarabine for selective cell culture for 7-10 days. The cells in good growth exhibiting typical morphology of pyramidal neurons were then selected for patch-clamp experiment. The cells in the normal control group were treated with normal saline, which was replaced by 5 mmol/L TEA in TEA group, by 30 μmol/L DNP then 0.5 mol/L ATP in DNP group, and by 1.0 mL/L CL then 1 μmol/L glibenclamide in CL group. In electric conductance and dynamics group, the clamp voltage was firstly adjusted to investigate the channel opening before CL was added to the cells.MAIN OUTCOME MEASURES: ① Activity and curve of neuronal

  3. Adenosine triphosphate-dependent copper transport in human liver

    NARCIS (Netherlands)

    vandenBerg, GJ; Wolters, H; Veld, GI; Slooff, MJH; Heymans, GSA; Kuipers, F; Vonk, RJ

    1996-01-01

    Background/Aim: The recent cloning and sequencing of the Wilson disease gene indicates that hepatic copper (Cu) transport is mediated by a P-type ATPase. The location of this Cu-transporting protein within the hepatocyte is not known; in view of its proposed function and current concepts of hepatic

  4. Rapid, quantitative determination of bacteria in water. [adenosine triphosphate

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Thomas, R. R.; Jeffers, E. L.; Deming, J. W. (Inventor)

    1978-01-01

    A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction.

  5. Bacterial adenosine triphosphate as a measure of urinary tract infection

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.

    1971-01-01

    Procedure detects and counts bacteria present in urine samples. Method also determines bacterial levels in other aqueous body fluids including lymph fluid, plasma, blood, spinal fluid, saliva and mucous.

  6. Extracellular ATP and adenosine : The Yin and Yang in immune responses?

    NARCIS (Netherlands)

    Faas, M. M.; Saez, T.; de Vos, P.

    Extracellular adenosine 50-triphosphate (ATP) and adenosine molecules are intimately involved in immune responses. ATP is mostly a pro-inflammatory molecule and is released during hypoxic condition and by necrotic cells, as well as by activated immune cells and endothelial cells. However, under

  7. A MoS2-based AC impedance aptasensor for adenosine triphosphate determination%基于二硫化钼交流阻抗适体传感器对三磷酸腺苷的无标记检测

    Institute of Scientific and Technical Information of China (English)

    曹文芳; 孙浩帆; 苏邵

    2015-01-01

    An AC impedance aptasensor has been developed for label-free adenosine triphosphate (ATP) determination based on gold nanoparticles-decorated MoS2 (AuNPs@ MoS2 ) nanocomposite .AuNPs@ MoS2 nanocomposite has been synthesized by using MoS2 self-reduction ability .The ATP aptamer (ATPA) was immobilized on the surface of AuNPs@ MoS2 modified electrode via Au-S ,which can selectively detect ATP by using K3 Fe(CN)6 and K4 Fe(CN)6 as the electrochemical indicator .The structure of ATPA is switched with the ATP addition ,resulting in the electron transfer is blocked and the resistance value increases .The ex-perimental results show that the linear range of the MoS2-based sensor is 10 nmol/L-1 mmol/L with a detection limit of 1 nmol/L .Moreover ,the sensor can efficiently distinguish ATP ,CTP ,GTP and UTP ,suggesting the sensor has high sensitivity and good selectivity .This proposed biosensor can offer a potential application for other biomolecules detection .%为了实现对三磷酸腺苷(ATP)无标记、高灵敏地检测,构建了基于二硫化钼的交流阻抗适体传感器。利用二硫化钼自身的还原性成功合成了金纳米颗粒功能化二硫化钼(AuNPs@ MoS2)纳米复合材料,并通过Au-S键将ATP核酸适体组装到AuNPs@ MoS2修饰电极表面。当核酸适体与ATP结合后,其构型发生变化,将会阻碍电化学信号分子K3Fe(CN)6和K4Fe (CN)6与修饰电极间的电子传递,使该适体传感器的电阻变大。在最优条件下,该传感器检测ATP的线性范围为10 nmol/L~1 mmol/L ,检出限为1 nmol/L ,并能很好地区分ATP与CTP、GTP和UTP ,表明该传感器具有较高的检测灵敏度和良好的特异性。该传感器的成功构建,为其他生物分子的检测提供了新的思路。

  8. Experimental study on the effect of adenosine disodium triphosphate on myocardial infarction rats%注射用三磷酸腺苷辅酶胰岛素对心肌梗死动物心功能改善作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    邵明香; 王维亭; 郝春华; 赵专友; 汤立达

    2014-01-01

    目的:研究注射用三磷酸腺苷辅酶胰岛素( ADT)对心肌梗死大鼠心功能的改善作用。方法结扎大鼠冠状动脉左前降支,造成急性心肌梗死模型,造模成功大鼠按心肌缺血程度随机分组,分别给予0.9%NaCl、ADT 1,2,4 mg·( kg· d)-1以及依那普利10 mg·( kg· d)-1,另设8只大鼠作为假手术,给予0.9%NaCl。连续给药30 d,通过彩色多普勒超声心动图、血流动力学、心脏重量、肺水含量以及Ⅰ、Ⅲ型胶原的测定,研究ADT对实验大鼠的左心室功能、左心室构型、心肌肥厚程度、肺水肿、心肌梗死范围和心肌重塑等改善作用。结果与模型组比较,ADT可以改善心肌梗死大鼠的左心室功能,明显提高左心室的射血分数,降低左室舒张末压,缩小左心室腔体积,降低肺水含量,减少心肌梗死的范围,抑制心室重塑等。结论 ADT能改善心肌梗死大鼠的心功能。%Objective To investigate the effect of adenosine disodium triphosphate(ADT) on myocardial infarction in rats.Methods The a-cute myocardial infarction rat model was induced by ligation of the left anterior descending coronary artery.The model rats were divided into five groups randomly:model group, ADT 1, 2, 4 mg· (kg· d) -1 and enal-aprilat 10 mg· ( kg· d) -1 , and the other 8 rats received sham surgery.The effect of ADT on myocardial infarction rats included left ventricular of configuration , the degree of myocardial hypertrophy and pulmonary ede-ma, scope of myocardial infarction and myocardial remodeling were deter-mined by color Doppler echocardiography , hemodynamic , heart weight , lung water content and the content of collagen type ⅠandⅢafter contin-uous dosing for 30 days.Results Compared with model , ADT can im-prove left ventricular function of myocardial infarction rats , improve sig-nificantly left ventricular ejection fraction significantly , reduce left ven-tricular end

  9. Application of adenosine triphosphate bioluminescence assay in rapid detection of bacteria on the surface of health care workers’mobile phones%ATP 荧光检测仪在医务人员手机表面细菌快速检测中的应用

    Institute of Scientific and Technical Information of China (English)

    李倩; 李宝珍; 平宝华

    2015-01-01

    Objective To detect bacterial content on surface of mobile phones of health care workers (HCWs)by adenosine triphosphate (ATP )bioluminescence assay.Methods HCWs in departments of internal medicine,surgery, medical laboratory,and administration were randomly selected,50 in each department,field detection on bacterial content on surface of mobile phones of HCWs was conducted,the relevant data were recorded.Results A total of 200 mobile phones were detected,33 mobile phone surface were qualified,the qualified rate was 16.50%.Qualified rate of mobile phone surface of HCWs in different departments as well as mobile phone disinfected by different modes were different(χ2 =13.46,10.24,respectively,both P 0.05).Conclusion The qualified rate of bacterial content on surface of HCWs’mobile phone is low,the awareness of hand hygiene of HCWs should be strengthened,regular cleaning and disinfection on the mo-bile phone can effectively reduce bacteria on the mobile phone surface.%目的:应用 ATP 荧光检测技术检测医务人员手机表面细菌含量。方法随机抽取某院内科、外科、医技、行政科室医务人员各50名,应用 ATP 荧光检测仪对其手机表面细菌含量进行现场检测,同时记录相关信息。结果共检测200台手机,33台手机表面检测合格,合格率为16.50%。不同科室医务人员、不同消毒情况手机合格率比较差异均有统计学意义(χ2值分别为13.46、10.24,均 P <0.01);手机不同类型、不同使用年限、不同保护方式合格率比较,差异均无统计学意义(χ2值分别为4.37、1.87、0.25,均 P >0.05)。结论医务人员手机细菌含量合格率低,建议强化医务人员手卫生意识,定期对手机擦拭消毒,以降低手机表面细菌量。

  10. Evaluation of 99m Tc-MIBI myocardial perfusion imaging with intravenous infusion of adenosine triphosphate in diagnosis of coronary artery disease%静脉注射三磷酸腺苷99mTc-MIBI心肌灌注显像诊断冠心病的评价

    Institute of Scientific and Technical Information of China (English)

    何青; 姚稚明; 于雪; 屈婉莹; 孙福成; 季福绥; 许锋; 钱贻简

    2002-01-01

    目的评价三磷酸腺苷(ATP)药物负荷99mTc-MIBI 心肌灌注断层显像在诊断冠心病中的可行性、安全性和特异性.方法共263例临床诊断为冠心病的病人.所有病人都行ATP负荷的99mTc-MIBI心肌灌注显像(0.16 mg/kg/min, 5 min)检查. 在静脉注射ATP 3分钟时静脉注射20 mCi的99mTc-MIBI, 60分钟后行心肌断层显像.再于48小时后静脉注射99mTc-MIBI 20 mCi, 行静息心肌灌注断层显像.51例病人在2周内行冠状动脉造影以评价ATP介入心肌灌注断层显像诊断冠心病的准确性.在静脉注射ATP的过程中仔细地观察心脏的和非心脏的反应.结果所有病人都完成整个ATP负荷试验.尽管有58.9% 的病人有不同类型的副作用发生,但其程度都不严重.无任何病人需要氨茶碱.最为严重的副作用是II度II型房室传导阻滞(4/263 ),但其持续时间均短暂.ATP介入心肌灌注断层显像诊断冠心病的敏感性和特异性分别为97.1%和82.4%.结论对于不能完成运动试验的病人,ATP负荷心肌灌注断层显像是安全、可行的诊断冠心病的影像学技术.%Objective To evaluate the feasibility, safety and diagnostic accuracy of pharmacologic stress of 99m Technetium-MIBI single-photon emission computed tomography (SPECT) with intravenous adenosine triphosphate (ATP) in patients with suspected coronary artery disease.Methods The study group included 263 patients who were suspected of having coronary artery disease. All patients underwent 99m Tc-MIBI myocardial perfusion imaging with ATP infusion (0.16 mg/kg body weight per min for 5 min). 20 mCi of 99m Tc-MIBI were injected 3 minutes after the start of ATP infusion. Myocardial SPECT images were obtained 60 minutes later. Then, two days later, 20 mCi of 99m Tc-MIBI were administered at rest and myocardial SPECT was repeated. 51 patients also underwent coronary angiography within two weeks for evaluation of sensitivity and specificity of ATP-myocardial perfusion

  11. Dynamic changes of adenosine triphosphate enzyme activity in encephalon tissue of rat with posttraumatic stress disorder psycho and behaviour abnormity%创伤后应激障碍样情感行为异常大鼠脑组织ATP酶活性的动态变化

    Institute of Scientific and Technical Information of China (English)

    肖凯

    2004-01-01

    AIM:To discuss the pathophysiology basis of posttraumatic stress disorder(PTSD like) psycho and behaviour abnormity in attempt to provide a new method in treatments. METHODS:Seventy two male Wistar rats were randomly divided into three groups:hippocampus under threshold electric stimulation group(SE,n=32),hippocampus electrode burying control group(CE,n=32) and normal control group(NC,n=8).Hippocampus were continuously stimulated by constant monopulse electricity,with 25 Hz frequency,1 ms wave length,10 s cluster length,7 min cluster interval and 100 μ A strength under eclampsia threshold. The enzymatic activity changes of Na+ K+ adenosine triphosphate enzyme(ATPase) and Ca2+ ATPase in hippocampal homogenate of the experimental animals and mitochondria were detected in quantitation.RESULTS:The enzymatic activity of Na+-K+-ATPase in hippocampus mitochondria decreased obviously(0.56±0.15)mmol/(kg·s)(F=4.348,P<0.01) in under-threshold electric stimulation group atfer 12 hours of electric timulations as well as(0.61±0.17) mmol/(kg·s) (P<0.05) after 48 hours,which were significantly lower than NC group (0.84±0.22) mmol/(kg·s) the enzymatic activity of Ca2+-ATPase in hippocampus mitochondria also decreased obviously into (0.53±0.14) mmol/(kg·s) (F=4.999,P<0.05) after 24 hours of electric stimulations as well as (0.60±0.16) mmol/(kg·s) after 72 hours, which were significantly lower than NC group (0.83±0.22) mmol/(kg·s).CONCLUSION:Functional damages of the hippocampus, especially the Na K pump and Ca2+ pump in hippocampal mitochondria may have an important significance in the occurrence and development of long term PTSD like psycho and behaviour abnormity in experimental animals.%目的:探讨创伤后应激障碍( posttraumatic stress disorder,PTSD)样精神与行为异常的病理生理基础,为其治疗途径提供新思路. 方法:将 72只雄性 Wistar大鼠随机分组为海马阈下电刺激组( SE, n=32)、海马电极埋植对照组( CE, n=32)

  12. 黄芪和当归注射液对兔肾缺血再灌注损伤时腺苷三磷酸酶的影响%Effects of astragalus and angelica injections on adenosine triphosphate-ase in renal injury induced by ischemia / reperfusion in rabbits

    Institute of Scientific and Technical Information of China (English)

    李达兵; 赵春玲; 林海英; 李先华; 邬于川

    2005-01-01

    血再灌注组差异无显著性外,余均较单纯缺血再灌注组高(t=2.372~2.786,P<0.05).结论:黄芪、当归具有抑制ATP酶下降和改善肾局部血流调节紊乱的作用,为其通过保护ATP酶而减轻肾缺血再灌注损伤提供实验学基础.%BACKGROUND: It is indicated in researches of recent years that both astragalus and angelica act on anti-free radical and protect renal injury due to ischemia / reperfusion.OBJECTIVE: To observe the protection and its mechanism of astragalus and angelica injections on adenosine triphosphate-ase (ATPase) in renal injury due to ischemia/reperfusion.DESIGN: The observing controlled experiment based on experimental animals .SETTING: Physiological teaching & research room and teaching & research room of renal functional protection in a medical college. MATERIALS: The experiment was performed in Physiological Experimental Room of Luzhou Medical College from January 2001 to March 2001. Totally 33 Japanese big-ear white healthy adult rabbits of either sex were employed,provided by Experimental Animal Center of Luzhou Medical College, in the mass of(1.63 + 0. 22) kg. According to random number table, they were divided in sham-operation control(8 rabbits), simple ischemia/reperfusion group (8 rabbits), astragalus injection + ischemia/reperfusion group (astragalus group) (8 rabbits) and angelica injection + ischemia/reperfusion group(angelica group) (9 rabbits).METHODS: One day before operation, on the day of operation and 1 day after operation, successively, intravenous medical injections (astragalus 1.25 g/kg,angelica 12.5 g/kg) were administrated in astragalus and angelica groups everyday respectively, and injection with physiological saline 5 mL/kg was applied in the control and simple ischemia/reperfusion group. In 48 hours reperfusion after 1 hour ischemia in kidney, blood sample was collected from inferior vena cava. The upper tissue of the right kidney was collected and fixed by placed in 30 m

  13. Adenosine and adenosine receptors: Newer therapeutic perspective

    Directory of Open Access Journals (Sweden)

    Manjunath S

    2009-01-01

    Full Text Available Adenosine, a purine nucleoside has been described as a ′retaliatory metabolite′ by virtue of its ability to function in an autocrine manner and to modify the activity of a range of cell types, following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by binding of adenosine to any of the four adenosine receptor subtypes namely A1, A2a, A2b, A3, which have been cloned in humans, and are expressed in most of the organs. Each is encoded by a separate gene and has different functions, although overlapping. For instance, both A1 and A2a receptors play a role in regulating myocardial oxygen consumption and coronary blood flow. It is a proven fact that adenosine plays pivotal role in different physiological functions, such as induction of sleep, neuroprotection and protection against oxidative stress. Until now adenosine was used for certain conditions like paroxysmal supraventricular tachycardia (PSVT and Wolff Parkinson White (WPW syndrome. Now there is a growing evidence that adenosine receptors could be promising therapeutic targets in a wide range of conditions including cardiac, pulmonary, immunological and inflammatory disorders. After more than three decades of research in medicinal chemistry, a number of selective agonists and antagonists of adenosine receptors have been discovered and some have been clinically evaluated, although none has yet received regulatory approval. So this review focuses mainly on the newer potential role of adenosine and its receptors in different clinical conditions.

  14. Localization of Adenosine Triphosphatase Activity on the Chloroplast Envelope in Tendrils of Pisum sativum1

    Science.gov (United States)

    Sabnis, Dinkar D.; Gordon, Mildred; Galston, Arthur W.

    1970-01-01

    When samples of pea tendril tissue were incubated in the Wachstein-Meisel medium for the demonstration of adenosine triphosphatases, deposits of lead reaction product were localized between the membranes of the chloroplast envelope. The presence of Mg2+ was necessary for adenosine triphosphatase activity, and Ca2+ could not substitute for this requirement. Varying the pH of incubation to 5.5 or 9.4 inhibited enzyme activity, as did the addition of p-chloromercuribenzoic acid or N-ethylmaleimide. The adenosine triphosphatase was apparently inactivated or degraded when the plants were grown in the dark for 24 hours prior to incubation. The enzyme was substrate-specific for adenosine triphosphate; no reaction was obtained with adenosine diphosphate, uridine triphosphate, inosine triphosphate, p-nitrophenyl phosphate, and sodium β-glycerophosphate. Sites of nonspecific depositions of lead are described. The adenosine triphosphatase on the chloroplast envelope may be involved in the light-induced contraction of this organelle. Images PMID:4245003

  15. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  16. A Small Aptamer with Strong and Specific Recognition of the Triphosphate of ATP

    Science.gov (United States)

    Sazani, Peter L.; Larralde, Rosa

    2004-01-01

    We report the in vitro selection of an RNA-based ATP aptamer with the ability to discriminate between adenosine ligands based on their 5‘ phosphorylation state. Previous selection of ATP aptamers yielded molecules that do not significantly discriminate between ligands at the 5‘ position. By applying a selective pressure that demands recognition of the 5‘ triphosphate, we obtained an aptamer that binds to ATP with a Kd of approximately 5 μM, and to AMP with a Kd of approximately 5.5 mM, a difference of 1100-fold. This aptamer demonstrates the ability of small RNAs to interact with negatively charged moieties. PMID:15237981

  17. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.

    Science.gov (United States)

    Bettendorff, Lucien; Wins, Pierre

    2009-06-01

    Prokaryotes, yeasts and plants synthesize thiamin (vitamin B1) via complex pathways. Animal cells capture the vitamin through specific high-affinity transporters essential for internal thiamin homeostasis. Inside the cells, thiamin is phosphorylated to higher phosphate derivatives. Thiamin diphosphate (ThDP) is the best-known thiamin compound because of its role as an enzymatic cofactor. However, in addition to ThDP, at least three other thiamin phosphates occur naturally in most cells: thiamin monophosphate, thiamin triphosphate (ThTP) and the recently discovered adenosine thiamin triphosphate. It has been suggested that ThTP has a specific neurophysiological role, but recent data favor a much more basic metabolic function. During amino acid starvation, Escherichia coli accumulate ThTP, possibly acting as a signal involved in the adaptation of the bacteria to changing nutritional conditions. In animal cells, ThTP can phosphorylate some proteins, but the physiological significance of this mechanism remains unknown. Adenosine thiamin triphosphate, recently discovered in E. coli, accumulates during carbon starvation and might act as an alarmone. Among the proteins involved in thiamin metabolism, thiamin transporters, thiamin pyrophosphokinase and a soluble 25-kDa thiamin triphosphatase have been characterized at the molecular level, in contrast to thiamin mono- and diphosphatases whose specificities remain to be proven. A soluble enzyme catalyzing the synthesis of adenosine thiamin triphosphate from ThDP and ADP or ATP has been partially characterized in E. coli, but the mechanism of ThTP synthesis remains elusive. The data reviewed here illustrate the complexity of thiamin biochemistry, which is not restricted to the cofactor role of ThDP.

  18. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  19. Adenosine and sleep

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  20. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates

    DEFF Research Database (Denmark)

    Abraham, E H; Shrivastav, B; Salikhova, A Y

    2001-01-01

    P-glycoprotein is involved with the removal of drugs, most of them cations, from the plasma membrane and cytoplasm. Pgp is also associated with movement of ATP, an anion, from the cytoplasm to the extracellular space. The central question of this study is whether drug and ATP transport associated...... with the expression of Pgp are in any way coupled. We have measured the stoichiometry of transport coupling between drug and ATP release. The drug and ATP transport that is inhibitable by the sulfonylurea compound, glyburide (P. E. Golstein, A. Boom, J. van Geffel, P. Jacobs, B. Masereel, and R. Beauwens, Pfluger......'s Arch. 437, 652, 1999), permits determination of the transport coupling ratio, which is close to 1:1. In view of this result, we asked whether ATP interacts directly with Pgp substrates. We show by measuring the movement of Pgp substrates in electric fields that ATP and drug movement are coupled...

  1. ADENOSINE TRIPHOSPHATE-DEPENDENT COPPER TRANSPORT IN ISOLATED RAT-LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    INTVELD, G; VANDENBERG, GJ; MULLER, M; KUIPERS, F; VONK, RJ

    1995-01-01

    The process of hepatobiliary copper (Cu) secretion is still poorly understood: Cu secretion as a complex with glutathione and transport via a lysosomal pathway have been proposed. The recent cloning and sequencing of the gene for Wilson disease indicates that Cu transport in liver cells may be media

  2. Ultrasensitive bioluminescent determinations of adenosine triphosphate (ATP) for investigating the energetics of host-grown microbes

    Science.gov (United States)

    Hanks, J. H.; Dhople, A. M.

    1975-01-01

    Stability and optimal concentrations of reagents were studied in bioluminescence assay of ATP levels. Luciferase enzyme was prepared and purified using Sephadex G-100. Interdependencies between enzyme and luciferin concentrations in presence of optimal Mg are illustrated. Optimal ionic strength was confirmed to be 0.05 M for the four buffers tested. Adapted features of the R- and H-systems are summarized, as well as the percentages of ATP pools released from representative microbes by heat and chloroform.

  3. Studies on adenosine triphosphate transphosphorylases. Amino acid sequence of rabbit muscle ATP-AMP transphosphorylase.

    Science.gov (United States)

    Kuby, S A; Palmieri, R H; Frischat, A; Fischer, A H; Wu, L H; Maland, L; Manship, M

    1984-05-22

    The total amino acid sequence of rabbit muscle adenylate kinase has been determined, and the single polypeptide chain of 194 amino acid residues starts with N-acetylmethionine and ends with leucyllysine at its carboxyl terminus, in agreement with the earlier data on its amino acid composition [Mahowald, T. A., Noltmann, E. A., & Kuby, S. A. (1962) J. Biol. Chem. 237, 1138-1145] and its carboxyl-terminus sequence [Olson, O. E., & Kuby, S. A. (1964) J. Biol. Chem. 239, 460-467]. Elucidation of the primary structure was based on tryptic and chymotryptic cleavages of the performic acid oxidized protein, cyanogen bromide cleavages of the 14C-labeled S-carboxymethylated protein at its five methionine sites (followed by maleylation of peptide fragments), and tryptic cleavages at its 12 arginine sites of the maleylated 14C-labeled S-carboxymethylated protein. Calf muscle myokinase, whose sequence has also been established, differs primarily from the rabbit muscle myokinase's sequence in the following: His-30 is replaced by Gln-30; Lys-56 is replaced by Met-56; Ala-84 and Asp 85 are replaced by Val-84 and Asn-85. A comparison of the four muscle-type adenylate kinases, whose covalent structures have now been determined, viz., rabbit, calf, porcine, and human [for the latter two sequences see Heil, A., Müller, G., Noda, L., Pinder, T., Schirmer, H., Schirmer, I., & Von Zabern, I. (1974) Eur. J. Biochem. 43, 131-144, and Von Zabern, I., Wittmann-Liebold, B., Untucht-Grau, R., Schirmer, R. H., & Pai, E. F. (1976) Eur. J. Biochem. 68, 281-290], demonstrates an extraordinary degree of homology.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Adenosine triphosphate in cholinergic vesicles isolated from the electric organ of Electrophorus electricus.

    Science.gov (United States)

    Zimmermann, H; Denston, C R

    1976-07-30

    Synaptic vesicles have been isolated from the electirc organ of the bony fish Electrophorus electricus using sucrose step gradients and zonal centrifugation. Although the acetylcholine (ACh) content of the Electrophorus electric organ is only 2% of that of Torpedo, ACh and ATP can readily be measured in the peak fractions using the leech microassay and the firefly luciferin luciferase assay respectively. The protein content of the vesicle fraction in experiments with Electrophorus was much higher than with Torpedo, but a possible contamination of this fraction with mitochondrial or cytoplasmic particles could be excluded. The ACh to ATP ratio of 10.8 is close to that found for cholinergic vesicles isolated from Torpedo and also to that of other amine storing granules.

  5. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.

    Science.gov (United States)

    Coskuner, Orkid; Murray, Ian V J

    2014-01-01

    Alzheimer's disease (AD) is a devastating disease of aging that initiates decades prior to clinical manifestation and represents an impending epidemic. Two early features of AD are metabolic dysfunction and changes in amyloid-β protein (Aβ) levels. Since levels of ATP decrease over the course of the disease and Aβ is an early biomarker of AD, we sought to uncover novel linkages between the two. First and remarkably, a GxxxG motif is common between both Aβ (oligomerization motif) and nucleotide binding proteins (Rossmann fold). Second, ATP was demonstrated to protect against Aβ mediated cytotoxicity. Last, there is structural similarity between ATP and amyloid binding/inhibitory compounds such as ThioT, melatonin, and indoles. Thus, we investigated whether ATP alters misfolding of the pathologically relevant Aβ42. To test this hypothesis, we performed computational and biochemical studies. Our computational studies demonstrate that ATP interacts strongly with Tyr10 and Ser26 of Aβ fibrils in solution. Experimentally, both ATP and ADP reduced Aβ misfolding at physiological intracellular concentrations, with thresholds at ~500 μM and 1 mM respectively. This inhibition of Aβ misfolding is specific; requiring Tyr10 of Aβ and is enhanced by magnesium. Last, cerebrospinal fluid ATP levels are in the nanomolar range and decreased with AD pathology. This initial and novel finding regarding the ATP interaction with Aβ and reduction of Aβ misfolding has potential significance to the AD field. It provides an underlying mechanism for published links between metabolic dysfunction and AD. It also suggests a potential role of ATP in AD pathology, as the occurrence of misfolded extracellular Aβ mirrors lowered extracellular ATP levels. Last, the findings suggest that Aβ conformation change may be a sensor of metabolic dysfunction.

  6. Monitoring of bacterial contamination of dental unit water lines using adenosine triphosphate bioluminescence.

    Science.gov (United States)

    Watanabe, A; Tamaki, N; Yokota, K; Matsuyama, M; Kokeguchi, S

    2016-12-01

    Bacterial contamination of dental unit waterlines (DUWLs) was evaluated using ATP bioluminescence analysis and a conventional culture method. Water samples (N=44) from DUWLs were investigated for heterotrophic bacteria by culture on R2A agar, which gave counts ranging from 1.4×10(3) to 2.7×10(5) cfu/mL. The ATP bioluminescence results for DUWL samples ranged from 6 to 1189 relative light units and could be obtained within 1min; these correlated well with the culture results (r=0.727-0.855). We conclude that the results of the ATP bioluminescence assay accurately reflect the results of conventional culture-based testing. This method is potentially useful for rapid and simple monitoring of DUWL bacterial contamination.

  7. Extracellular Adenosine Triphosphate Associated with Amphibian Erythrocytes: Inhibition of ATP Release by Anion Channel Blockers.

    Science.gov (United States)

    1986-01-01

    ATP may mediate contraction in the urinary bladder of the rat and guinea-pig (53,63,99,238), relaxation in taenia coli (17,63,87,173,380,381) and...receptors. This uncertainty has been generated because of findings in rabbit anococcygeus muscle (405) and guinea-pig taenia coli (457), in which, as...and Holmberg, B. The effects of extracellularly -~ applied ATP and related compounds on electrical and mechanical activity of the smooth muscle taenia

  8. Effect of different superovulation stimulation protocols on adenosine triphosphate concentration in rabbit oocytes.

    Science.gov (United States)

    Cortell, Carmela; Salvetti, Pascal; Joly, Thierry; Viudes-de-Castro, Maria Pilar

    2015-08-01

    Ovarian stimulation protocols are used usually to increase the number of oocytes collected. The determination of how oocyte quality may be affected by these superovulation procedures, therefore, would be very useful. There is a high correlation between oocyte ATP concentration and developmental competence of the resulting embryo. The aim of this study was to evaluate the effect of follicle stimulating hormone (FSH) origin and administration protocols on oocyte ATP content. Rabbit does were distributed randomly into four groups: (i) a control group; (ii) the rhFSH3 group: females were injected, every 24 h over 3 days, with 0.6 μl of rhFSH diluted in polyvinylpyrrolidone (PVP); (iii) the pFSH3 group: females were injected every 24 h over 3 days with 11.4 μg of pFSH diluted in PVP; and (iv) the pFSH5 group: females were injected twice a day for 5 days with 11.4 μg of pFSH diluted in saline serum. Secondly, the effect of pFSH5 protocol on developmental potential was evaluated. Developmental competence of oocytes from the control and pFSH5 groups was examined. Differences in superovulation treatments were found for ATP levels. In the pFSH5 group, the ATP level was significantly lower than that of the other groups (5.63 ± 0.14 for pFSH group versus 6.42 ± 0.13 and 6.19 ± 0.15 for rhFSH3 and pFSH3, respectively; P superovulation treatment, oocyte metabolism would be affected.

  9. ADENOSINE-TRIPHOSPHATE DEPENDENT TAUROCHOLATE TRANSPORT IN HUMAN LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    WOLTERS, H; KUIPERS, F; SLOOFF, MJH; VONK, RJ

    1992-01-01

    Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles iso

  10. CHARACTERISTICS AND OPTIMAL WORKING CONDITIONS OF AMPEROMETRIC BIOSENSOR FOR ADENOSINE TRIPHOSPHATE DETERMINATION

    Directory of Open Access Journals (Sweden)

    Kucherenko I. S.

    2014-02-01

    Full Text Available Analytical characteristics of a biosensor based on glucose oxidase and hexokinase and intended for ATP determination were studied. Platinum disc electrodes were used as amperometric transducers. Range of working potentials for biosensor functioning was shown. An optimal time of enzymes immobilization was determined. Optimal conditions for biosensor functioning during work with biological fluids were selected. Biosensor work in three buffer solutions (PBS, tris and HEPES was investigated and it was shown that it was possible to obtain various operational characteristics of the biosensor depending on tasks that are assigned to it by varying the composition of sample. Reproducibility of biosensor responses to ATP and glucose during a day and of biosensor preparation was shown. The proposed biosensor can be further used for analysis of glucose and ATP content in water solutions.

  11. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate

    NARCIS (Netherlands)

    Peters, E; Geraci, S; Heemskerk, S; Wilmer, M J; Bilos, A; Kraenzlin, B; Gretz, N; Pickkers, P; Masereeuw, R

    2015-01-01

    BACKGROUND AND PURPOSE: Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection by alkaline phosphatase presum

  12. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (AlATP).

    Science.gov (United States)

    Exley, C; Korchazhkina, O V

    2001-04-01

    The formation of amyloid fibrils is considered to be an important step in the aetiology of Alzheimer's disease and other amyloidoses. Fibril formation in vitro has been shown to depend on many different factors including modifications to the amino acid profile of fibrillogenic peptides and interactions with both large and small molecules of physiological significance. How these factors might contribute to amyloid fibril formation in vivo is not clear as very little is known about the promotion of fibril formation in undersaturated solutions of amyloidogenic peptides. We have used thioflavin T fluorescence and reverse phase high performance liquid chromatography to show that ATP, and in particular AlATP, promoted the formation of thioflavin T-reactive fibrils of beta amyloid and, an unrelated amyloidogenic peptide, amylin. Evidence is presented that induction of fibril formation followed the complexation of AIATP by one or more monomers of the respective peptide. However, the complex formed could not be identified directly and it is suggested that AlATP might be acting as a chaperone in the assembly of amyloid fibrils. The effect of AlATP was not mimicked by either AlADP or AlAMP. However, it was blocked by suramin, a P2 ATP receptor antagonist, and this has prompted us to speculate that the precursor proteins to beta amyloid and amylin may be substrates or receptors for ATP in vivo.

  13. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.

    Science.gov (United States)

    Bachelard, H S

    1971-11-01

    1. Substrate-saturation curves of brain hexokinase for MgATP(2-) were sigmoidal at sub-saturating concentrations of glucose when the Mg(2+)/ATP ratio was maintained at 1:1. Under identical conditions, except that Mg(2+) was present in excess, hyperbolic curves were observed. 2. The number of binding sites (calculated from Hill plots) is 1.8 at a Mg(2+)/ATP ratio 1:1, and 1.0 with excess of Mg(2+). The apparent K(m) for MgATP(2-) is 6.5x10(-4)m at a Mg(2+)/ATP ratio 1:1, and 3.5x10(-4)m with excess of Mg(2+). 3. Interdependence between substrate-binding sites was indicated by the effects of varying the concentration of glucose. The sigmoidality and deviation from Michaelis-Menten kinetics at a Mg(2+)/ATP ratio 1:1 became less pronounced with increasing glucose concentration. Also, although substrate-saturation curves for glucose were hyperbolic when the Mg(2+)/ATP ratio was 1:1, reciprocal plots were non-linear. These were linear with excess of Mg(2+). 4. High concentrations of Mg(2+) (Mg(2+)/ATP ratios above 5:1) were inhibitory. 5. The results are taken to indicate homotropic co-operative binding of MgATP(2-) and that Mg(2+) is an allosteric activator. Possible implications in regulation are discussed.

  14. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  15. Adenosine improves cardiomyocyte respiratory efficiency.

    Science.gov (United States)

    Babsky, A M; Doliba, M M; Doliba, N M; Osbakken, M D

    1998-01-01

    The role of adenosine on the regulation of mitochondrial function has been studied. In order to evaluate this the following experiments were done in isolated rat cardiomyocites and mitochondria using polarographic techniques. Cardiomyocyte oxygen consumption (MVO2) and mitochondrial respiratory function (State 3 and State 4, respiratory control index, and ADP/O ratio) were evaluated after exposure to adenosine. Cardiomyocyte MVO2 was significantly lower in cells previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) than in cells not exposed to adenosine (control). Addition of dipyridamole (10 microM) or 8-(p-Sulfophenyl) theophylline (50 microM) to cardiomyocytes before adenosine incubation prevented the adenosine-induced changes in MVO2. Mitochondria obtained from isolated perfused beating heart previously perfused with adenosine (10 microM, 30 min heart perfusion) also resulted in significant increases in ADP/O and respiratory control index compared to matching control. Mitochondria isolated from cardiomyocytes previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) resulted in a significant increase in mitochondrial ADP/O ratio compared to control. Adenosine-induced decrease in cardiomyocyte MVO2 may be related to an increase in efficiency of mitochondrial oxidative phosphorylation, and more economical use of oxygen, which is necessary for survival under ischemic stress.

  16. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chia-Lin Ho

    Full Text Available Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.

  17. Effects of adenosine on lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Bénédicte Lenoir

    Full Text Available BACKGROUND: The lymphatic system controls tissue homeostasis by draining protein-rich lymph to the vascular system. Lymphangiogenesis, the formation of lymphatic vessels, is a normal event in childhood but promotes tumor spread and metastasis during adulthood. Blocking lymphangiogenesis may therefore be of therapeutic interest. Production of adenosine is enhanced in the tumor environment and contributes to tumor progression through stimulation of angiogenesis. In this study, we determined whether adenosine affects lymphangiogenesis. METHODS: Lymphatic endothelial cells (HMVEC-dLy were cultured in presence of adenosine and their proliferation, migration and tube formation was assessed. Gelatin sponges embedded with the stable analogue of adenosine 2-chloro adenosine were implanted in mice ear and lymphangiogenesis was quantified. Mice were intravenously injected with adenoviruses containing expression vector for 5'-endonucleotidase, which plays a major role in the formation of adenosine. RESULTS: In vitro, we observed that adenosine decreased the proliferation of lymphatic endothelial cells, their migration and tube formation. However, in vivo, gelatin sponges containing 2-chloro adenosine and implanted in mice ear displayed an elevated level of lymphangiogenesis (2.5-fold, p<0.001. Adenovirus-mediated over-expression of cytosolic 5'-nucleotidase IA stimulated lymphangiogenesis and the recruitment of macrophages in mouse liver. Proliferation of lymphatic endothelial cells was enhanced (2-fold, p<0.001 when incubated in the presence of conditioned medium from murine macrophages. CONCLUSION: We have shown that adenosine stimulates lymphangiogenesis in vivo, presumably through a macrophage-mediated mechanism. This observation suggests that blockade of adenosine receptors may help in anti-cancer therapies.

  18. Some neural effects of adenosin.

    Science.gov (United States)

    Haulică, I; Brănişteanu, D D; Petrescu, G H

    1978-01-01

    The possible neural effects of adenosine were investigated by using electrophysiological techniques at the level of some central and peripheral synapses. The evoked potentials in the somatosensorial cerebral cortex are influenced according to both the type of administration and the level of the electrical stimulation. While the local application does not induce significant alterations, the intrathalamic injections and the perfusion of the IIIrd cerebral ventricle do change the distribution of activated units at the level of different cortical layers especially during the peripheral stimulation. The frequency of spontaneous miniature discharges intracellularly recorded in the neuromuscular junction (mepp) is significantly depressed by adenosine. This effect is calcium- and dose-dependent. The end plate potentials (EPP) were also depressed. The statistical binomial analysis of the phenomenon indicated that adenosine induces a decrease if the presynaptic pool of the available transmitter. The data obtained demonstrate a presynaptic inhibitory action of adenosine beside its known vascular and metaholic effects.

  19. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    Plasma adenosine-5'-triphosphate (ATP) is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study...... investigated: 1) the role of nitric oxide (NO), prostaglandins and adenosine as mediators of ATP induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5-7 min of femoral intra......-arterial infusion of ATP (0.45-2.45 micromol/min; mean+/-SEM) in 19 healthy, male subjects with and without co-infusion of NG-mono-methyl-L-arginine (L-NMMA; NO formation inhibitor; 12.3+/-0.3 mg/min), indomethacin (INDO; prostaglandin formation blocker; 613+/-12 microg/min) and/or theophylline (adenosine receptor...

  20. Estimating the Distribution and Production of Microplankton in a Coastal Upwelling Front from the Cellular Content of Guanosine-5’-Triphosphate and Adenosine-5’-Triphosphate.

    Science.gov (United States)

    1981-09-01

    the filter, the vacuum was released and the filter quickly immersed in 10 ml of boiling Trizma (Tris (hydroxymethyl) aminomethane and hydrochloride... buffer (pH 7.7) in order to extract the nucleotides present in the water sample. The test tubes containing the extracts were labeled and stored frozen...come to temperature and then 0.2 ml of an enzyme solution containing 75mM potassium phosphate buffer (pH 7.4), 15mM YgCl2,0.5 mM NADP, 0.5mM d-glucose

  1. P2X receptors regulate adenosine diphosphate release from hepatic cells.

    Science.gov (United States)

    Chatterjee, Cynthia; Sparks, Daniel L

    2014-12-01

    Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

  2. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    Science.gov (United States)

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  3. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoës, Martin; Kilstrup, Mogens

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur by the tran......Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur...

  4. Five putative nucleoside triphosphate diphosphohydrolase genes are expressed in Trichomonas vaginalis.

    Science.gov (United States)

    Frasson, Amanda Piccoli; Dos Santos, Odelta; Meirelles, Lúcia Collares; Macedo, Alexandre José; Tasca, Tiana

    2016-01-01

    Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis.

  5. Upregulation of nucleoside triphosphate diphosphohydrolase-1 and ecto-5'-nucleotidase in rat hippocampus after repeated low-dose dexamethasone administration.

    Science.gov (United States)

    Drakulić, Dunja; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana; Veličković, Nataša; Guševac, Ivana; Mitrović, Nataša; Buzadžić, Ivana; Horvat, Anica

    2015-04-01

    Although dexamethasone (DEX), a synthetic glucocorticoid receptor (GR) analog with profound effects on energy metabolism, immune system, and hypothalamic-pituitary-adrenal axis, is widely used therapeutically, its impact on the brain is poorly understood. The aim of the present study was to explore the effect of repeated low-dose DEX administration on the activity and expression of the ectonucleotidase enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. Ectonucleotidases tested were ectonucleoside triphosphate diphosphohydrolase 1-3 (NTPDase1-3) and ecto-5'-nucleotidase (eN), whereas the effects were evaluated in two brain areas that show different sensitivity to glucocorticoid action, hippocampus, and cerebral cortex. In the hippocampus, but not in cerebral cortex, modest level of neurodegenerative changes as well as increase in ATP, ADP, and AMP hydrolysis and upregulation of NTPDase1 and eN mRNA expression ensued under the influence of DEX. The observed pattern of ectonucleotidase activation, which creates tissue volume with enhanced capacity for adenosine formation, is the hallmark of the response after different insults to the brain.

  6. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, M.

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP + (d)NDP ¿ ADP + (d)NTP. This reaction, suggested to occur...

  7. Regulation of adenosine levels during cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Stephanie CHU; Wei XIONG; Dali ZHANG; Hanifi SOYLU; Chao SUN; Benedict C ALBENSI; Fiona E PARKINSON

    2013-01-01

    Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events,and attenuates the excitotoxic neuronal injury.Adenosine is produced both intracellularly and extracellularly,and nucleoside transport proteins transfer adenosine across plasma membranes.Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption,cellular release of ATP,metabolism of extracellular ATP (and other adenine nucleotides),adenosine influx,adenosine efflux and adenosine metabolism.Recent studies have used genetically modified mice to investigate the relative contributions of intra-and extracellular pathways for adenosine formation.The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase.From these studies,we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures,but not in hippocampal slices or in vivo mice exposed to ischemic conditions.

  8. Novel aspects of extracellular adenosine dynamics revealed by adenosine sensor cells

    Directory of Open Access Journals (Sweden)

    Kunihiko Yamashiro

    2017-01-01

    Full Text Available Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.

  9. Modified Nucleoside Triphosphates for in-vitro Selection Techniques

    Science.gov (United States)

    Iribarren, Adolfo; Dellafiore, María; Montserrat, Javier

    2016-05-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  10. Synthesis of (gamma-/sup 32/P)thiamine triphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Grandfils, C.; Bettendorff, L.; de Rycker, C.; Schoffeniels, E.

    1988-03-01

    We developed a novel chemical synthesis of thiamine triphosphate which allows us to incorporate /sup 32/P in the gamma position. The reaction is based on the condensation of (/sup 32/P)orthophosphoric acid and thiamine diphosphate in the presence of ethyl chloroformate. After purification by two ion-exchange purification steps, the thiamine derivative has a specific radioactivity of 10 Ci/mmol. The average final yield synthesis is about 10%.

  11. Potassium and sodium ions in the glycerinated skeletal muscle. Distribution changes induced by adenosine triphosphate and nondissociable anesthetic substances.

    Science.gov (United States)

    Dragomir, C T; Barbier, A; Ungureanu, D; Ionescu, V; Pausescu, E; Chirvasie, R; Ghitescu, D; Filipescu, G

    1975-01-01

    Investigation of the ionic behavior of glycerinated muscle fibers showed that the residual structures of this biologic cellular material, lacking functional membranes, are able to discriminate between alkaline ions. The characteristics of the ionic selectivity of the glycerinated fibers change with their functional state and with the presence in the medium of certain nonionic substances. Among the more important features of ionic distribution between the membrane-free fibers and the medium are the following: (1) There is evident adsorption of potassium on the fibers, in the absence of ATP. (2) This adsorption increases in contraction and decreases in relaxation. (3) At high ionic concentrations, in contrast to what occurs at low potassium concentrations, the glycerinated muscle prefers sodium to potassium, but even under these conditions both ions are accumulated in the fibers to far greater levels than in the medium. This strongly suggests a Donnan ionic equilibrium developing parallel to the adsorption process. (4) Nonionic substances of the general anesthetic group markedly alter the ionic selectivity of the glycerinated fibers, probably by their action on the water's physical state. A mechanism is proposed for the observed ionic adsorption specific of the muscle-a mechanism in which actin-myosin coupling plays the cardinal adsorption role. In the general interpretation of the data a synthetic concept is advanced according to which an entire set of processes and factors concurs with the distribution of ions between the muscle and the medium.

  12. A simple enzymic method for the synthesis of adenosine 5'-[alpha-32P]triphosphate on a preparative scale.

    Science.gov (United States)

    Martin, B R; Voorheis, H P

    1977-03-01

    A simple, rapid and inexpensive method is described for the enzymic synthesis of [alpha-32P]ATP from [32P]Pi on a preparative scale with an overall yield of 53%. The final product contained all of the detectable radioactivity (less than 99.9%) in the alpha position and has been shown to behave identically with commerically availabe [alpha-32P]ATP during the synthesis of 3':5'-cyclic AMP in the reaction catalysed by adenylate cyclase.

  13. Expression of adenosine triphosphate-sensitive potassium channels in rats with cirrhosis: correlationship with sympathetic activity and renal function

    Directory of Open Access Journals (Sweden)

    Julio Cesar Martins Monte

    2006-12-01

    Full Text Available Objective: The aim of this study was to perform a direct analysis ofKATP mRNA expression by RT-PCR in kidney and isolated aorta fromrats with cirrhosis (induced by carbon tetrachloride and controls.The present study also analyses the relation between induced cirrhosisand urinary excretion of sodium and sympathetic activity in cirrhoticrats. Methods: Rats were placed in metabolic cages and allowedfree access to food and water. Cirrhosis was induced by repeateddoses of carbon tetrachloride by gastric gavage. After some weeks,the kidney and aorta were dissected and utilized for RNA extraction.Blood and urine were analyzed for electrolytes. Renal function wasestimated by creatinine clearance and sodium urinary excretion.Serum catecholamines were measured by HPLC analysis. Results:First, RT-PCR analysis showed that KATP mRNA is expressed in liverwith cirrhosis and intense fibrosis, but not with moderate fibrosis.Second, RT-PCR analysis revealed that KATP mRNA was detectedonly in aorta dissected from rats with cirrhosis. Finally, an enhancedreabsorption of sodium without renal failure suggests a potentialmediator would increase the activity of the sympathetic system.Conclusion: These results suggest that KATP mRNA is expressed incirrhotic rats with sympathetic activation and renal dysfunction. Thischannel might be involved in another route where the vascular tonecan be modulated in cirrhosis.

  14. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.

    Science.gov (United States)

    Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng

    2015-01-15

    A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.

  15. Adenosine 5'triphosphate transport and accumulation during the cold preservation of rat hepatocytes in University of Wisconsin solution

    Institute of Scientific and Technical Information of China (English)

    María E. Mamprin; Félix Vega; Joaquín V. Rodriguez

    2005-01-01

    AIM: We used isolated hepatocytes to investigate how different concentrations of ATP in the University of Wisconsin (UW) solution affected both cellular ATP content and cell viability during the cold storage and the rewarming step. The mechanism involved in ATP transport and accumulation in hypothermia was also determined.METHODS: The cells were preserved up to 72 h in different conditions: UW solution without ATP (a-group),UW+5 mmol/L ATP (b-group), and UW+10 mmol/L ATP (c-group). The ATP content and the cell viability (LDH release) were determined during the cold storage and the rewarming step. In the groups a and c, the respiratory function of the cells at rewarming was studied. In addition,the cell volume of hepatocytes and the mechanism involved in ATP transport and accumulation were assessed. The extracellular degradation of exogenous nucleotides during transport experiments was investigated by a HPLC technique.RESULTS: After three days of cold storage a loss of cellular ATP content was observed in hepatocytes preserved either without nucleotides (a-group) or with 5 mmol/L ATP (b-group). In contrast, 10 mmol/L ATP (c-group) was able to maintain a normal ATP cellular content, with only a 6% diminution after 72 h of cold storage. The respiratory function was significantly different in hepatocytes preserved with 10 mmol/L ATP than without ATP. No significant change was detected for the three groups in cellular volume during the cold storage. We also report that the time course accumulation of [3H]-ATP by cold stored hepatocytes is a rapid process that is completed after 180 s with linear dependence on the extracellular ATP concentration (linear fitting results in a slope of 0.5624±0.1179 mmol/L ATP intracell/mmol/L ATP extracell).CONCLUSION: Our results show that, during hypothermic storage in UW solution, hepatocytes are permeable to ATP by a diffusive mechanism. Also, we found that it is ATP the main extracellular nucleotide available for transport and it is not the breakdown products.

  16. Rapid and direct detection of attomole adenosine triphosphate (ATP) by MALDI-MS using rutile titania chips.

    Science.gov (United States)

    Manikandan, Muthu; Hasan, Nazim; Wu, Hui-Fen

    2012-11-07

    We report the rutile titania-based capture of ATP and its application as a MALDI-MS target plate. This chip, when immersed in solutions containing different concentrations of ATP, can capture ATP and lead to its successful detection in MALDI-MS. We have optimized the ideal surface, showing an increased capture efficacy of the 900 °C (rutile) titania surfaces. We demonstrate the use of this chip as a target plate for direct analysis of the attached ATP using MALDI-MS, down to attomolar concentrations. This chip has a promising future for the detection of ATP in environmental samples, which may eventually be used as a pollution indicator in particular environments.

  17. Comparison of Activities and Properties of Pyrophosphate and Adenosine Triphosphate-Dependent Phosphofructokinases of Black Gram (Phaseolus mungo) Seeds.

    Science.gov (United States)

    Ashihara, H; Stupavska, S

    1984-09-01

    Both pyrophosphate-dependent phosphofructokinase (PPi-PFKase, EC 2.7.1.90) and ATPdependent phosphofructokinase (ATP-PFKase, EC 2.7. 1.11) were present in dry and germinated black gram seeds. In the absence of fructose-2,6-biphosphate (F2,6BP), the activity of PPi-PFKase expressed as nmol · min(-1) · (pair of cotyledons)(-1) was much lower than that of ATP-PFKase in both dry and germinated seeds. However, PPi-PFKase was activated by F2,6BP and its activity reached the same level as ATP-PFKase activity. ATP-PFKase showed sigmoidal kinetics respective to fructose-6-phosphate (F6P), while PPi-PFKase exhibited hyperbolic kinetics in the presence of F2,6BP. The F6P concentration for half maximal activity of ATP-PFKase (1.5 mM) was nearly 5 times lower than that of PPi-PFKase (7.1 mM). The apparent Km values of PPi-PFKase for PPi and that of ATP-PFKase for ATP were 0.29 mM and 0.23 mM, respectively. Phosphoenolpyruvate (PEP) and citrate inhibited ATP-PFKase activity, but they did not affect PPi-PFKase activity. The activity of PPi-PFKase was inhibited by Pi, while only a little Pi inhibition was observed in the case of ATP-PFKase. These results suggest that the control mechanism of PPi-PFKase and that of ATP-PFKase are quite different. In contrast to pineapple leaves (Carnal, N. W. and C. C. Black, Biochem. Biophys. Res. Commun. 86, 20-26, 1979) and caster bean seedlings (Krugar et al., FEBS Lett. 153, 409-412, 1983), PPi-PFKase is not the predominant PFKase activity in black gram seeds.

  18. Rosuvastatin lowers coenzyme Q10 levels, but not mitochondrial adenosine triphosphate synthesis, in children with familial hypercholesterolemia

    NARCIS (Netherlands)

    H.J. Avis; I.P. Hargreaves; J.P.N. Ruiter; J.M. Land; R.J. Wanders; F.A. Wijburg

    2011-01-01

    To investigate whether statin therapy affects coenzyme Q10 (CoQ10) status in children with heterozygous familial hypercholesterolemia (FH). Samples were obtained at baseline (treatment naïve) and after dose titration with rosuvastatin, aiming for a low-density lipoprotein cholesterol level of 110 mg

  19. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    Science.gov (United States)

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  20. Pathologic overproduction: the bad side of adenosine.

    Science.gov (United States)

    Borea, Pier Andrea; Gessi, Stefania; Merighi, Stefania; Vincenzi, Fabrizio; Varani, Katia

    2017-03-02

    Adenosine is an endogenous ubiquitous purine nucleoside, increased by hypoxia, ischemia and tissue damage that mediates a number of physiopathological effects by interacting with four G-protein-coupled receptors, identified as A1 , A2A , A2B , and A3 . Physiological and acutely-increased adenosine is associated with beneficial effects mostly including vasodilation and decrease of inflammation. In contrast chronic overproduction of adenosine occurs in important pathological states, where long lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review we describe and critically discuss the pathologic overproduction of adenosine analysing when, where and how adenosine exerts its detrimental effects through the body.

  1. Uridine Triphosphate Thio Analogues Inhibit Platelet P2Y12 Receptor and Aggregation

    Science.gov (United States)

    Gündüz, Dursun; Tanislav, Christian; Sedding, Daniel; Parahuleva, Mariana; Santoso, Sentot; Troidl, Christian; Hamm, Christian W.; Aslam, Muhammad

    2017-01-01

    Platelet P2Y12 is an important adenosine diphosphate (ADP) receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma, we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 µM ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 µM. An eight-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 µM. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 µM was 33-fold more effective. A three-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the γ phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptor was verified by P2Y12 receptor binding and cyclic AMP (cAMP) assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention. PMID:28146050

  2. Adenosine, Energy Metabolism, and Sleep

    Directory of Open Access Journals (Sweden)

    Tarja Porkka-Heiskanen

    2003-01-01

    Full Text Available While the exact function of sleep remains unknown, it is evident that sleep was developed early in phylogenesis and represents an ancient and vital strategy for survival. Several pieces of evidence suggest that the function of sleep is associated with energy metabolism, saving of energy, and replenishment of energy stores. Prolonged wakefulness induces signs of energy depletion in the brain, while experimentally induced, local energy depletion induces increase in sleep, similarly as would a period of prolonged wakefulness. The key molecule in the induction of sleep appears to be adenosine, which induces sleep locally in the basal forebrain.

  3. Synergistic myoprotection of L-arginine and adenosine in a canine model of global myocardial ischaemic reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    DU Lei; DIAN Ke; CHEN Hui-jiao; AN Qi; JIA Meng-xing; YANG Ping-liang; WANG Wei; DENG Shuo-zeng; LIU Jin

    2007-01-01

    Background Endogenous nitric oxide and adenosine increase simultaneously to keep the balance of energy demand and supply when the oxygen supply is insufficient, which suggests that nitric oxide and adenosine might exert a synergistic myoprotection during tissue hypoxia. In this study, we tested this hypothesis utilizing a canine model of prolonged global myocardial ischaemic reperfusion injury.Methods In this double blind, controlled study, the hearts of 24 anaesthetized mongrel dogs were arrested for 2 hours with aortic cross clamping and blood cardioplegia. The treatment groups were those supplemented with 2 mmol/L L-arginine (ARG), supplemented with 1 mmol/L adenosine (ADO), ARG + ADO supplemented with both, and no supplementation (control) (n=6 in each group). Haemodynamics, biochemical indices, adenosine triphosphate (ATP) content and myeloperoxidase activities of myocardium were determined to evaluate myocardial injury. Statistical comparison was performed by two way ANOVA.Results Although the requirements for inotropic supports were higher, the cardiac outputs were lower in control group than in ARG, ADO and the combination groups. Plasma cardiac troponin I levels were higher and the areas of hydropic changes were larger in control group than in ARG and ADO groups. Combination of arginine and adenosine provided further myoprotection with respect to better cardiac performance, lower release of cardiac troponin I, and smaller areas of hydropic changes compared with ARG and ADO groups. ATP content was higher, but myeloperoxidase activities of myocardium were significantly lower in the combination group than in control, ARG and ADO groups (P<0.05).Conclusions Combination of L-arginine and adenosine provides synergistic myoprotection in a canine model of global myocardial ischaemia. Thus, the combination is recommended when the heart is exposed to a prolonged ischaemia during cardiac surgery.

  4. Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

    Science.gov (United States)

    Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung

    2017-03-08

    Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe3O4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe3O4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H2O2) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe3O4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe(2+)/Fe(3+) sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H2O2. Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe3O4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe3O4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe3O4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe3O4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe3O4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.

  5. Clofarabine 5'-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit.

    Science.gov (United States)

    Aye, Yimon; Stubbe, Joanne

    2011-06-14

    Human ribonucleotide reductases (hRNRs) catalyze the conversion of nucleotides to deoxynucleotides and are composed of α- and β-subunits that form active α(n)β(m) (n, m = 2 or 6) complexes. α binds NDP substrates (CDP, UDP, ADP, and GDP, C site) as well as ATP and dNTPs (dATP, dGTP, TTP) allosteric effectors that control enzyme activity (A site) and substrate specificity (S site). Clofarabine (ClF), an adenosine analog, is used in the treatment of refractory leukemias. Its mode of cytotoxicity is thought to be associated in part with the triphosphate functioning as an allosteric inhibitor of hRNR. Studies on the mechanism of inhibition of hRNR by ClF di- and triphosphates (ClFDP and ClFTP) are presented. ClFTP is a reversible inhibitor (K(i) = 40 nM) that rapidly inactivates hRNR. However, with time, 50% of the activity is recovered. D57N-α, a mutant with an altered A site, prevents inhibition by ClFTP, suggesting its A site binding. ClFDP is a slow-binding, reversible inhibitor ( K(i)*; t(1/2) = 23 min). CDP protects α from its inhibition. The altered off-rate of ClFDP from E•ClFDP* by ClFTP (A site) or dGTP (S site) and its inhibition of D57N-α together implicate its C site binding. Size exclusion chromatography of hRNR or α alone with ClFDP or ClFTP, ± ATP or dGTP, reveals in each case that α forms a kinetically stable hexameric state. This is the first example of hexamerization of α induced by an NDP analog that reversibly binds at the active site.

  6. Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5'-Nucleotidase by Rat Cortical Astrocytes In Vitro.

    Science.gov (United States)

    Brisevac, Dusica; Adzic, Marija; Laketa, Danijela; Parabucki, Ana; Milosevic, Milena; Lavrnja, Irena; Bjelobaba, Ivana; Sévigny, Jean; Kipp, Markus; Nedeljkovic, Nadezda

    2015-11-01

    Extracellular ATP (eATP) acts as a danger-associated molecular pattern which induces reactive response of astrocytes after brain insult, including morphological remodeling of astrocytes, proliferation, chemotaxis, and release of proinflammatory cytokines. The responses induced by eATP are under control of ecto-nucleotidases, which catalyze sequential hydrolysis of ATP to adenosine. In the mammalian brain, ecto-nucleotidases comprise three enzyme families: ecto-nucleoside triphosphate diphosphohydrolases 1-3 (NTPDase1-3), ecto-nucleotide pyrophosphatase/phospodiesterases 1-3 (NPP1-3), and ecto-5'-nucleotidase (eN), which crucially determine ATP/adenosine ratio in the pericellular milieu. Altered expression of ecto-nucleotidases has been demonstrated in several experimental models of human brain dysfunctions. In the present study, we have explored the pattern of NTPDase1-3, NPP1-3, and eN expression by cultured cortical astrocytes challenged with 1 mmol/L ATP (eATP). At the transcriptional level, eATP upregulated expression of NTPDase1, NTPDase2, NPP2, and eN, while, at translational and functional levels, these were paralleled only by the induction of NTPDase2 and eN. Additionally, eATP altered membrane topology of eN, from clusters localized in membrane domains to continuous distribution along the cell membrane. Our results suggest that eATP, by upregulating NTPDase2 and eN and altering the enzyme membrane topology, affects local kinetics of ATP metabolism and signal transduction that may have important roles in the process related to inflammation and reactive gliosis.

  7. Non-infectious lung disease in patients with adenosine deaminase deficient severe combined immunodeficiency.

    Science.gov (United States)

    Booth, C; Algar, V E; Xu-Bayford, J; Fairbanks, L; Owens, C; Gaspar, H B

    2012-06-01

    Adenosine deaminase deficiency is a disorder of purine metabolism manifesting severe combined immunodeficiency (ADA-SCID) and systemic abnormalities. Increased levels of the substrate deoxyadenosine triphosphate (dATP) lead to immunodeficiency and are associated in a murine model with pulmonary insufficiency. We compared a cohort of patients with ADA-SCID and X-linked SCID and found that despite similar radiological and respiratory findings, positive microbiology is significantly less frequent in ADA-SCID patients (p < 0.0005), suggesting a metabolic pathogenesis for the lung disease. Clinicians should be aware of this possibility and correct metabolic abnormalities either through enzyme replacement or haematopoietic stem cell transplant, in addition to treating infectious complications.

  8. Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.

    Science.gov (United States)

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatár, Jan; Ribeiro, Joaquim A; Maggi, Laura; Frenguelli, Bruno G; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.

  9. Poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith coupled to high-performance liquid chromatography for the determination of adenosine phosphates in royal jelly.

    Science.gov (United States)

    Liu, Dan; Zhang, Tianbin; Cheng, Yechun; Jia, Qiong

    2014-07-01

    A polymer monolith microextraction method coupled with high-performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused-silica capillaries using thermal initiation free-radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross-linker, cyclohexanol, and 1-dodecanol as the porogen. N-Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate-co-ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high-performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9-104.7% when applied to the determination of the adenosines in five royal jelly samples.

  10. Repeated administration of adenosine increases its cardiovascular effects in rats.

    Science.gov (United States)

    Vidrio, H; García-Márquez, F; Magos, G A

    1987-01-20

    Hypotensive and negative chronotropic responses to adenosine in anesthetized rats increased after previous administration of the nucleoside. Bradycardia after adenosine in the isolated perfused rat heart was also potentiated after repeated administration at short intervals. This self-potentiation could be due to extracellular accumulation of adenosine and persistent stimulation of receptors caused by saturation or inhibition of cellular uptake of adenosine.

  11. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  12. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    Science.gov (United States)

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  13. Adenosine Deaminase Activities in Hyperlipidaemic Patients ...

    African Journals Online (AJOL)

    Journal of Health and Visual Sciences ... Abstract. Adenosine Deaminase Activities, markers of cellular-mediated immunity ... were statistically significantly higher (P<0.001) in the test groups than in the control groups (10.7+3iu/1) respectively.

  14. Inositol tri-phosphate inhuman and ascidian spermatozoa.

    Science.gov (United States)

    Tosti, E; Palumbo, A; Dale, B

    1993-05-01

    Using a specific protein binding assay we have shown that a spermatozoon of the ascidian Ciona intestinalis contains 1.58 +/- 0.74 x 10(-19) moles of inositol 1,4,5-tri-phosphate (InsP3), while a human spermatozoon contains 6.4 +/- 0.14 x 10(-19) moles. Induction of the acrosome reaction (AR) in both species, by exposure to the calcium ionophore A23187, does not significantly alter levels of InsP3, suggesting that phosphatidylinositol (PI) turnover is not necessary for the calcium ionophore induced AR. Furthermore, PI turnover in ascidian spermatozoa appears to be insensitive to lithium and phorbol ester. The high intracellular concentration of InsP3 in spermatozoa, corresponding to 50-200 microM, suggests it may play a role in egg activation.

  15. 2-Selenouridine triphosphate synthesis and Se-RNA transcription.

    Science.gov (United States)

    Sun, Huiyan; Jiang, Sibo; Caton-Williams, Julianne; Liu, Hehua; Huang, Zhen

    2013-09-01

    2-Selenouridine ((Se)U) is one of the naturally occurring modifications of Se-tRNAs ((Se)U-RNA) at the wobble position of the anticodon loop. Its role in the RNA-RNA interaction, especially during the mRNA decoding, is elusive. To assist the research exploration, herein we report the enzymatic synthesis of the (Se)U-RNA via 2-selenouridine triphosphate ((Se)UTP) synthesis and RNA transcription. Moreover, we have demonstrated that the synthesized (Se)UTP is stable and recognizable by T7 RNA polymerase. Under the optimized conditions, the transcription yield of (Se)U-RNA can reach up to 85% of the corresponding native RNA. Furthermore, the transcribed (Se)U-hammerhead ribozyme has the similar activity as the corresponding native, which suggests usefulness of (Se)U-RNAs in function and structure studies of noncoding RNAs, including the Se-tRNAs.

  16. Impairment of skeletal muscle adenosine triphosphate–sensitive K+ channels in patients with hypokalemic periodic paralysis

    Science.gov (United States)

    Tricarico, Domenico; Servidei, Serenella; Tonali, Pietro; Jurkat-Rott, Karin; Camerino, Diana Conte

    1999-01-01

    The adenosine triphosphate (ATP)–sensitive K+ (KATP) channel is the most abundant K+ channel active in the skeletal muscle fibers of humans and animals. In the present work, we demonstrate the involvement of the muscular KATP channel in a skeletal muscle disorder known as hypokalemic periodic paralysis (HOPP), which is caused by mutations of the dihydropyridine receptor of the Ca2+ channel. Muscle biopsies excised from three patients with HOPP carrying the R528H mutation of the dihydropyridine receptor showed a reduced sarcolemma KATP current that was not stimulated by magnesium adenosine diphosphate (MgADP; 50–100 μM) and was partially restored by cromakalim. In contrast, large KATP currents stimulated by MgADP were recorded in the healthy subjects. At channel level, an abnormal KATP channel showing several subconductance states was detected in the patients with HOPP. None of these were surveyed in the healthy subjects. Transitions of the KATP channel between subconductance states were also observed after in vitro incubation of the rat muscle with low-K+ solution. The lack of the sarcolemma KATP current observed in these patients explains the symptoms of the disease, i.e., hypokalemia, depolarization of the fibers, and possibly the paralysis following insulin administration. PMID:10074484

  17. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  18. Growth inhibitory effect and apoptosis induced by extracellular ATP and adenosine on human gastric carcinoma cells: involvement of intracellular uptake of adenosine

    Institute of Scientific and Technical Information of China (English)

    Ming-xia WANG; Lei-ming REN

    2006-01-01

    Aim: To study the growth inhibitory and apoptotic effects of adenosine triphosphate (ATP) and adenosine (ADO) on human gastric carcinoma (HGC)-27 cells in vitro and the mechanisms related to the actions of ATP and ADO. Methods: MTT assay was used to determine the reduction of cell viability. The morphological changes of HGC-27 cells induced by ATP or ADO were observed under fluorescence light microscope by acridine orange/ethidium bromide double-stained cells. The internucleosomal fragmentation of genomic DNA was detected by agarose gel electrophoresis. The apoptotic rate and cell-cycle analysis after treatment with ATP or ADO was determined by flow cytometry. Results: ATP, ADO and the intermediate metabolites, ADP and AMP, and the agonist of purinergic receptors, reduced cell viability of HGC-27 cells at doses of 0.3 and 1.0 mmol·L-1. The distribution of cell cycle phase and proliferation index (PI) value of HGC-27 cells changed when exposed to ATP or ADO at the concentrations of 0.1,0.3 and 1 mmol/L for 48 h. ATP and ADO both altered the distribution of cell cycle phase via Go/G1-phase arrest and significantly decreased PI value. Under light microscope, the tumor cells exposed to 0.3 mmol·L-1 ATP or ADO displayed morphological changes of apoptosis; a ladder-like pattern of DNA fragmentation obtained from HGC-27 cells treated with 0.1-1 mmol·L-1 ATP or ADO appeared in agarose gel electrophoresis; ATP and ADO induced the apoptosis of HGC-27 cells in a dose-dependent manner at concentrations between 0.03-1 mmol·L-1. The maximum apoptotic rate of HGC-27 cells exposed to ATP or ADO for 48 h was 13.53% or 15.9%, respectively. HGC-27 cell death induced by ATP or ADO was significantly inhibited by dipy-ridamole (10 mmol·L-1), an inhibitor of adenosine transporter, but was not affected by aminophylline, a broad inhibitor of PI receptors and pyridoxal-phosphate-6-azophenyl-2, 4-disulphonic acid tetrasodium salt (30 nmol·L-1), a non-selective antagonist of P2

  19. Adenosine stress protocols for myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Baškot Branislav

    2008-01-01

    Full Text Available Background/Aim. Treadmill test combined with myocardial perfusion scintigraphy (MPS is a commonly used technique in the assessment of coronary artery disease. There are many patients, however, who may not be able to undergo treadmill test. Such patients would benefit from pharmacological stress procedures combined with MPS. The most commonly used pharmacological agents for cardiac stress are coronary vasodilatators (adenosine, dipyridamol and catecholamines. Concomitant low-level treadmill exercise with adenosine pharmacologic stress (AdenoEX during MPS has become commonly used in recent years. A number of studies have demonstrated a beneficial impact of AdenoEX protocol. The aim of the study was, besides introducing into practice the two types of protocols of pharmatological stress test with adenosine, as a preparation for MPS, to compare and monitor the frequency of their side effects to quality, acquisition, as well as to standardize the onset time of acquisition (diagnostic imaging for both protocols. Methods. A total of 130 patients underwent pharmacological stress test with adenosine (vasodilatator. In 108 of the patients we performed concomitant exercise (AdenoEX of low level (50W by a bicycle ergometar. In 28 of the patients we performed Adenosine abbreviated protocol (AdenoSCAN. Side effects of adenosine were followed and compared between the two kinds of protocols AdenoEX and AdenoSCAN. Also compared were image quality and suggested time of acquisition after the stress test. Results. Numerous side effects were found, but being short-lived they did not require any active interventions. The benefit of AdenoEX versus AdenoSCAN included decreased side effects (62% vs 87%, improved safety and patients tolerance, improved target-to-background ratios because of less subdiaphragmatic activity, earlier acquisition, and improved sensitivity. Conclusion. The safety and efficacy of adenosine pharmacological stress is even better with concomitant

  20. Adenosine receptor targeting in health and disease.

    Science.gov (United States)

    Gessi, Stefania; Merighi, Stefania; Fazzi, Debora; Stefanelli, Angela; Varani, Katia; Borea, Pier Andrea

    2011-12-01

    The adenosine receptors A(1), A(2A), A(2B) and A(3) are important and ubiquitous mediators of cellular signaling that play vital roles in protecting tissues and organs from damage. In particular, adenosine triggers tissue protection and repair by different receptor-mediated mechanisms, including increasing the oxygen supply:demand ratio, pre-conditioning, anti-inflammatory effects and the stimulation of angiogenesis. The state of the art of the role of adenosine receptors which have been proposed as targets for drug design and discovery, in health and disease, and an overview of the ligands for these receptors in clinical development. Selective ligands of A(1), A(2A), A(2B) and A(3) adenosine receptors are likely to find applications in the treatment of pain, ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The aim of this review is to provide an overview of the present knowledge regarding the role of these adenosine receptors in health and disease.

  1. Modulation and metamodulation of synapses by adenosine.

    Science.gov (United States)

    Ribeiro, J A; Sebastião, A M

    2010-06-01

    The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of 'regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses.

  2. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    Science.gov (United States)

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  3. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  4. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels.

    Science.gov (United States)

    Makarchikov, Alexander F; Wins, Pierre; Janssen, Edwin; Wieringa, Bé; Grisar, Thierry; Bettendorff, Lucien

    2002-10-21

    Thiamine triphosphate (ThTP) is found at low concentrations in most animal tissues and it may act as a phosphate donor for the phosphorylation of proteins, suggesting a potential role in cell signaling. Two mechanisms have been proposed for the enzymatic synthesis of ThTP. A thiamine diphosphate (ThDP) kinase (ThDP+ATP if ThTP+ADP) has been purified from brewer's yeast and shown to exist in rat liver. However, other data suggest that, at least in skeletal muscle, adenylate kinase 1 (AK1) is responsible for ThTP synthesis. In this study, we show that AK1 knockout mice have normal ThTP levels in skeletal muscle, heart, brain, liver and kidney, demonstrating that AK1 is not responsible for ThTP synthesis in those tissues. We predict that the high ThTP content of particular tissues like the Electrophorus electricus electric organ, or pig and chicken skeletal muscle is more tightly correlated with high ThDP kinase activity or low soluble ThTPase activity than with non-stringent substrate specificity and high activity of adenylate kinase.

  5. Kinetic and biochemical characterization of Trypanosoma evansi nucleoside triphosphate diphosphohydrolase.

    Science.gov (United States)

    Weiss, Paulo Henrique Exterchoter; Batista, Franciane; Wagner, Glauber; Magalhães, Maria de Lourdes Borba; Miletti, Luiz Claudio

    2015-06-01

    Nucleoside triphosphate diphospho-hydrolases (NTPDases) catalyze the hydrolysis of several nucleosides tri and diphosphate playing major roles in eukaryotes including purinergic signaling, inflammation, hemostasis, purine salvage and host-pathogen interactions. These enzymes have been recently described in parasites where several evidences indicated their involvement in virulence and infection. Here, we have investigated the presence of NTPDase in the genome of Trypanosoma evansi. Based on the genomic sequence from Trypanosoma brucei, we have amplified an 1812 gene fragment corresponding to the T. evansi NTPDase gene. The protein was expressed in the soluble form and purified to homogeneity and enzymatic assays were performed confirming the enzyme identity. Kinetic parameters and substrate specificity were determined. The dependence of cations on enzymatic activity was investigated indicating the enzyme is stimulated by divalent cations and carbohydrates but inhibited by sodium. Bioinformatic analysis indicates the enzyme is a membrane bound protein facing the extracellular side of the cell with 98% identity to the T. brucei homologous NTPDase gene.

  6. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity

    Directory of Open Access Journals (Sweden)

    Kubilay Oransay

    2014-01-01

    Full Text Available Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist, 8-(-3-chlorostyryl-caffeine (CSC; A 2a receptor antagonist, or dimethyl sulfoxide (DMSO administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour prior to citalopram. Other rats were pretreated with erythro-9-(2-hydroxy-3-nonyl adenine (EHNA; inhibitor of adenosine deaminase and S-(4-Nitrobenzyl-6-thioinosine (NBTI; inhibitor of facilitated adenosine transport. After pretreatment, group 2 received 5% dextrose and group 3 received citalopram. Adenosine concentrations, mean arterial pressure (MAP, heart rate (HR,  QRS duration and QT interval were evaluated. Results: In the dextrose group, citalopram infusion caused a significant decrease in MAP and HR and caused a significant prolongation in QRS and QT. DPCPX infusion significantly prevented the prolongation of the QT interval when compared to control. In the second protocol, citalopram infusion did not cause a significant change in plasma adenosine concentrations, but a significant increase observed in EHNA/NBTI groups. In EHNA/NBTI groups, citalopram-induced MAP and HR reductions, QRS and QT prolongations were more significant than the dextrose group. Conclusions: Citalopram may lead to QT prolongation by stimulating adenosine A 1 receptors without affecting the release of adenosine.

  7. Evidence that acute taurine treatment alters extracellular AMP hydrolysis and adenosine deaminase activity in zebrafish brain membranes.

    Science.gov (United States)

    Rosemberg, Denis Broock; Kist, Luiza Wilges; Etchart, Renata Jardim; Rico, Eduardo Pacheco; Langoni, Andrei Silveira; Dias, Renato Dutra; Bogo, Maurício Reis; Bonan, Carla Denise; Souza, Diogo Onofre

    2010-09-06

    Taurine is one of the most abundant free amino acids in excitable tissues. In the brain, extracellular taurine may act as an inhibitory neurotransmitter, neuromodulator, and neuroprotector. Nucleotides are ubiquitous signaling molecules that play crucial roles for brain function. The inactivation of nucleotide-mediated signaling is controlled by ectonucleotidases, which include the nucleoside triphosphate diphosphohydrolase (NTPDase) family and ecto-5'-nucleotidase. These enzymes hydrolyze ATP/GTP to adenosine/guanosine, which exert a modulatory role controlling several neurotransmitter systems. The nucleoside adenosine can be inactivated in extracellular or intracellular milieu by adenosine deaminase (ADA). In this report, we tested whether acute taurine treatment at supra-physiological concentrations alters NTPDase, ecto-5'-nucleotidase, and ADA activities in zebrafish brain. Fish were treated with 42, 150, and 400 mg L(-1) taurine for 1h, the brains were dissected and the enzyme assays were performed. Although the NTPDase activities were not altered, 150 and 400 mg L(-1) taurine increased AMP hydrolysis (128 and 153%, respectively) in zebrafish brain membranes and significantly decreased ecto-ADA activity (29 and 38%, respectively). In vitro assays demonstrated that taurine did not change AMP hydrolysis, whereas it promoted a significant decrease in ecto-ADA activity at 150 and 400 mg L(-1) (24 and 26%, respectively). Altogether, our data provide the first evidence that taurine exposure modulates the ecto-enzymes responsible for controlling extracellular adenosine levels in zebrafish brain. These findings could be relevant to evaluate potential beneficial effects promoted by acute taurine treatment in the central nervous system (CNS) of this species. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. The role of adenosine in Alzheimer's disease.

    Science.gov (United States)

    Rahman, Anisur

    2009-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.

  9. WBC27, an Adenosine Tri-phosphate-binding Cassette Protein, Controls Pollen Wall Formation and Patterning in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ying Dou; Ke-Zhen Yang; Yi Zhang; Wei Wang; Xiao-Lei Liu; Li-Qun Chen; Xue-Qin Zhang; De Ye

    2011-01-01

    In flowering plants, the exine components are derived from tapetum. Despite its importance to sexual plant reproduction, little is known about the translocation of exine materials from tapetum to developing microspores. Here we report functional characterization of the arabidopsis WBC27 gene. WBC27 encodes an adenosine tri-phosphate binding cassette (ABC) transporter and is expressed preferentially in tapetum. Mutation of WBC27 disrupted the exine formation. The wbc27 mutant microspores began to degenerate once released from tetrads and most of the microspores collapsed at the uninucleate stage. Only a small number of wbc27-1 microspores could develop into tricellular pollen grains. These survival pollen grains lacked exine and germinated in the anther before anthesis. All of these results suggest that the ABC transporter, WBC27 plays important roles in the formation of arabidopsis exine, possibly by translocation of lipidic precursors of sporopollenin from tapetum to developing microspores.

  10. Fabrication and characterization of micro-band boron-doped diamond electrode for an application in adenosine phosphates sensor

    Science.gov (United States)

    Prayikaputri, P. U.; Gunlazuardi, J.; Ivandini, T. A.

    2017-04-01

    Micro-band electrode was successfully fabricated by lamination method through sealing a piece of boron-doped diamond film inside a sandwich of two insulating plates, namely Teflon and silicon rubber as the gaskets. Characterization was performed using Raman and XPS spectra of the BDD film, while the fabricated micro-band was characterized by analyzing its SEM image. The electrode was examined for cyclic voltammetry of adenosine triphosphate solution, where an oxidation peak at +0.9 V vs. Ag/AgCl can be observed. The influence of scan rate and pH was also studied, in which pH 2 was selected as the optimum pH. The diffusion coefficient of 0.1 mM ATP at micro-band electrode was 3.84 x 10-8 m2/s, while the effective surface of the micro-band BDD electrode was 8.72 x 10-14 m2.

  11. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  12. Adenosine: An immune modulator of inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Jeff Huaqing Ye; Vazhaikkurichi M Rajendran

    2009-01-01

    Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease. Emerging treatments are being developed to target inflammatory cytokines which initiate and perpetuate the immune response. Adenosine is an important modulator of inflammation and its anti-inflammatory effects have been well established in humans as well as in animal models. High extracellular adenosine suppresses and resolves chronic inflammation in IBD models. High extracellular adenosine levels could be achieved by enhanced adenosine absorption and increased de novo synthesis. Increased adenosine concentration leads to activation of the A2a receptor on the cell surface of immune and epithelial cells that would be a potential therapeutic target for chronic intestinal inflammation. Adenosine is transported via concentrative nucleoside transporter and equilibrative nucleoside transporter transporters that are localized in apical and basolateral membranes of intestinal epithelial cells, respectively. Increased extracellular adenosine levels activate the A2a receptor, which would reduce cytokines responsible for chronic inflammation.

  13. Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

    OpenAIRE

    Kleynhans, Janke

    2013-01-01

    Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-m...

  14. Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo.

    Directory of Open Access Journals (Sweden)

    Michael Koeppen

    Full Text Available OBJECTIVE: Intravenous adenosine induces temporary bradycardia. This is due to the activation of extracellular adenosine receptors (ARs. While adenosine can signal through any of four ARs (A1AR, A2AAR, A2BAR, A3AR, previous ex vivo studies implicated the A1AR in the heart-rate slowing effects. Here, we used comparative genetic in vivo studies to address the contribution of individual ARs to the heart-rate slowing effects of intravascular adenosine. METHODS AND RESULTS: We studied gene-targeted mice for individual ARs to define their in vivo contribution to the heart-rate slowing effects of adenosine. Anesthetized mice were treated with a bolus of intravascular adenosine, followed by measurements of heart-rate and blood pressure via a carotid artery catheter. These studies demonstrated dose-dependent slowing of the heart rate with adenosine treatment in wild-type, A2AAR(-/-, A2BAR(-/-, or A3AR(-/- mice. In contrast, adenosine-dependent slowing of the heart-rate was completely abolished in A1AR(-/- mice. Moreover, pre-treatment with a specific A1AR antagonist (DPCPX attenuated the heart-rate slowing effects of adenosine in wild-type, A2AAR(-/-, or A2BAR(-/- mice, but did not alter hemodynamic responses of A1AR(-/- mice. CONCLUSIONS: The present studies combine pharmacological and genetic in vivo evidence for a selective role of the A1AR in slowing the heart rate during adenosine bolus injection.

  15. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    Science.gov (United States)

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  16. Effects of adenosine agonist R-phenylisopropyl-adenosine on halothane anesthesia and antinociception in rats

    Institute of Scientific and Technical Information of China (English)

    Hai-chun MA; Yan-fen WANG; Chun-sheng FENG; Hua ZHAO; Shuji DOHI

    2005-01-01

    Aim: To investigate the antinociceptive effect of adenosine agonist Rphenylisopropyl-adenosine (R-PIA) given to conscious rats by intracerebroventricular (ICV) and intrathecal (IT), and identify the effect of R-PIA on minimum alveolar concentration (MAC) of halothane with pretreatment of A1 receptor an tagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or K+ channel blocker 4-aminopyridine (4-AP). Methods: Sprague-Dawley rats were implanted with 24 gauge stainless steel guide cannula using stereotaxic apparatus and ICV method, and an IT catheter (PE-10, 8.5 cm) was inserted into the lumbar subarachnoid space, while the rats were under pentobarbital anesthesia. After one week of recovery from surgery, rats were randomly assigned to one of the following protocols: MAC of halothane, or tail-flick latency. All measurements were performed after R-PIA (0.8-2.0 μg) microinjection into ICV and IT with or without pretreatment of DPCPX or 4-AP. Results: Microinjection of adenosine agonist R PIA in doses of 0.8-2.0 μg into ICV and IT produced a significant dose- and time dependent antinociceptive action as reflected by increasing latency times and ICV administration of adenosine agonist R-PIA (0.8 μg) reducing halothane anes thetic requirements (by 29%). The antinociception and reducing halothane requirements effected by adenosine agonist R-PIA was abolished by DPCPX and 4-AP. Conclusion: ICV and IT administration of adenosine agonist R-PIA produced an antinociceptive effect in a dose-dependent manner and decreased hal othane MAC with painful stimulation through activation of A1 receptor subtype, and the underlying mechanism involves K+ channel activation.

  17. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  18. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  19. Characterization of an adenosine deaminase-deficient human histiocytic lymphoma cell line (DHL-9) and selection of mutants deficient in adenosir kinase and deoxycytidine kinase.

    Science.gov (United States)

    Kubota, M; Kamatani, N; Daddona, P E; Carson, D A

    1983-06-01

    The association of adenosine deaminase (ADA) deficiency with immunodeficiency disease has emphasized the importance of this purine metabolic enzyme for human lymphocyte growth and function. This report describes the natural occurrence of ADA deficiency in a human histiocytic lymphoma cell line, DHL-9. The minimal ADA activity in DHL-9 extracts, 0.028 nmol/min/mg protein, was less than 50% of the activity in two B-lymphoblastoid cell lines from ADA-deficient patients and was resistant to the potent ADA inhibitor deoxycoformycin. A sensitive radioimmunoassay failed to detect immunoreactive ADA in DHL-9 cells. Moreover, in DHL-9 cells, deoxycoformycin did not augment either the growth-inhibitory effects of adenosine and deoxyadenosine or the accumulation of deoxyadenosine triphosphate from deoxyadenosine. When compared to six other human hematopoietic cell lines, DHL-9 had 5.6-fold-higher levels of adenosylhomocysteinase. Chromosome 20, which bears the structural gene for ADA and adenosylhomocysteinase, was diploid and had a normal Giemsa banding pattern. The parental DHL-9 cell line was used for the selection and cloning of secondary mutants deficient in deoxycytidine kinase and adenosine kinase.

  20. The alterations in adenosine nucleotides and lactic acid levels in striated muscles following death with cervical dislocation or electric shock.

    Science.gov (United States)

    Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Bakan, Ebubekir; Kök, Ahmet Nezih; Kocoglu, Hasan

    2003-01-01

    In this study, changes in adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid levels in masseter, triceps, and quadriceps muscles obtained from right and left sides of Spraque-Dawley rats following two different types of death were investigated. The samples were taken immediately and 120 minutes after death occurred either by cervical dislocation or electric shock. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than that of samples obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in masseter muscles of the rats killed with electric shock. When the rats killed with cervical dislocation and with electric shock were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of electric shock, ATP is consumed faster because of immediate contractions during death, resulting in a faster rigor mortis. This finding was confirmed with higher lactic acid levels in muscles of the rats killed with electric shock than the other group. In the cervical dislocation and electric shock group rats, ATP decreased in different levels in the three different muscle types mentioned above, being much decline in masseter in cervical dislocation and in quadriceps in electric shock group. This may be caused by low mass and less glycogen storage of masseter and by near localisation of electrode to quadriceps. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

  1. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    Science.gov (United States)

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  2. The Role of Adenosine Signaling in Headache: A Review

    Directory of Open Access Journals (Sweden)

    Nathan T. Fried

    2017-03-01

    Full Text Available Migraine is the third most prevalent disease on the planet, yet our understanding of its mechanisms and pathophysiology is surprisingly incomplete. Recent studies have built upon decades of evidence that adenosine, a purine nucleoside that can act as a neuromodulator, is involved in pain transmission and sensitization. Clinical evidence and rodent studies have suggested that adenosine signaling also plays a critical role in migraine headache. This is further supported by the widespread use of caffeine, an adenosine receptor antagonist, in several headache treatments. In this review, we highlight evidence that supports the involvement of adenosine signaling in different forms of headache, headache triggers, and basic headache physiology. This evidence supports adenosine A2A receptors as a critical adenosine receptor subtype involved in headache pain. Adenosine A2A receptor signaling may contribute to headache via the modulation of intracellular Cyclic adenosine monophosphate (cAMP production or 5' AMP-activated protein kinase (AMPK activity in neurons and glia to affect glutamatergic synaptic transmission within the brainstem. This evidence supports the further study of adenosine signaling in headache and potentially illuminates it as a novel therapeutic target for migraine.

  3. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  4. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    Institute of Scientific and Technical Information of China (English)

    V Haktan Ozacmak; Hale Sayan

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  5. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  6. Serum adenosine deaminase activity in cutaneous anthrax.

    Science.gov (United States)

    Sunnetcioglu, Mahmut; Karadas, Sevdegul; Aslan, Mehmet; Ceylan, Mehmet Resat; Demir, Halit; Oncu, Mehmet Resit; Karahocagil, Mustafa Kasım; Sunnetcioglu, Aysel; Aypak, Cenk

    2014-07-06

    Adenosine deaminase (ADA) activity has been discovered in several inflammatory conditions; however, there are no data associated with cutaneous anthrax. The aim of this study was to investigate serum ADA activity in patients with cutaneous anthrax. Sixteen patients with cutaneous anthrax and 17 healthy controls were enrolled. We measured ADA activity; peripheral blood leukocyte, lymphocyte, neutrophil, and monocyte counts; erythrocyte sedimentation rate; and C reactive protein levels. Serum ADA activity was significantly higher in patients with cutaneous anthrax than in the controls (panthrax.

  7. Hyperinsulinemic hypoglycemia in Beckwith-Wiedemann syndrome due to defects in the function of pancreatic beta-cell adenosine triphosphate-sensitive potassium channels

    DEFF Research Database (Denmark)

    Hussain, K; Cosgrove, K E; Shepherd, R M

    2005-01-01

    Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth syndrome that is clinically and genetically heterogeneous. Hyperinsulinemic hypoglycemia occurs in about 50% of children with BWS and, in the majority of infants, it resolves spontaneously. However, in a small group of patients the hypo......Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth syndrome that is clinically and genetically heterogeneous. Hyperinsulinemic hypoglycemia occurs in about 50% of children with BWS and, in the majority of infants, it resolves spontaneously. However, in a small group of patients...

  8. The utilization of adenosine triphosphate in rat mast cells during histamine release induced by anaphylactic reaction and compound 48/80

    DEFF Research Database (Denmark)

    Johansen, Torben; Chakravarty, N

    1975-01-01

    The ATP content of rat peritoneal mast cells has been studied in relation to histamine release induced by compound 48/80 and antigen-antibody (anaphylactic) reaction in vitro. When the ATP content of actively sensitized mast cells was reduced to different levels by oligomycin, a good correlation...... was obtained between the ATP levels and the amounts of histamine released by the anaphylactic reaction. A similar linear relation has previously been demonstrated between the ATP levels of mast cells and histamine release induced by compound 48/80. The ATP content of mast cells was also studied at different...... intervals after the exposure of the cells to antigen or compound 48/80. No significant change in the ATP content was observed in untreated mast cells during the short period when histamine release occurs. If, however, the mast cells were preincubated with oligomycin or 2-deoxyglucose to reduce the rate...

  9. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    Science.gov (United States)

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  10. Effect of adenosine triphosphate on triggers arrhythmias%三磷酸腺苷对触发性心律失常的影响

    Institute of Scientific and Technical Information of China (English)

    李家殊; 余更生; 钱永如

    2003-01-01

    目的研究三磷酸腺苷(ATP)对正常和存在触发活动的心脏电生理作用,以探讨ATP致室性心律失常的机制.方法应用接触电极记录心内膜单相动作电位(MAP)技术,观察ATP静脉快速注射对正常心脏MAP变化和氯化铯(CsCl)诱发触发活动时观察应用ATP对心脏的影响.结果 ATP对正常心脏的MAP振幅(MAPA)和0相最大上升速率(Vmax)影响不大,在初期心率减慢不明显,MAP时程(MAPD90)明显延长,并能诱发早期后除极(EAD),后期心率明显抑制,EAD消失,而对存在氯化铯(CsCl)诱发出EAD的心脏,具有双重作用,在作用初期对后除极(EAD或DAD)具有短暂促进作用,而后迅速抑制.结论 ATP对不同心脏状态,有不同作用,表现为兴奋和抑制双重作用,并具有剂量相关性,值得临床重视.

  11. Double-gating mechanism and diversity of an adenosine triphosphate (ATP)-sensitive K~+ channel in neurons acutely dissociated from rat neocortex

    Institute of Scientific and Technical Information of China (English)

    佟振清; 唐向东; 杨文俊

    1997-01-01

    Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage-sensitive channels. Single ATP-sensitive K+ (K-ATP) channel currents were recorded in acutely dissociated rat neo-cortical neurons using patch clamp technique. A type of K-ATP channel has been found to be gated not only by intra-cellular ATP, but also by membrane potential ( Vm) , and proved to be a novel mechanism underlying the gating of ion channels, namely bi-gating mechanism. The results also show that the K-ATP channels possess heterogeneity and di-versity. These types of K-ATP channels have been identified in 40.12% of all patches, which are different in activa-tion-threshold and voltage-sensitivity. The present experiment studied the type-3 K-ATP channel with a unitary con-ductance of about 80 pS in detail ( n = 15). Taking account of all the available data, a variety of K-ATP channels are suggested to exist in body, and one type of them is bi-gated by both chemical substances and membrane poten

  12. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema.

    Science.gov (United States)

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-12-13

    BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (pATP (pATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.

  13. Detection of adenosine triphosphate in HeLa cell using capillary electrophoresis-laser induced fluorescence detection based on aptamer and graphene oxide.

    Science.gov (United States)

    Fang, Bi-Yun; Yao, Ming-Hao; Wang, Chun-Yuan; Wang, Chao-Yang; Zhao, Yuan-Di; Chen, Fang

    2016-04-01

    A method for ATP quantification based on dye-labeled aptamer/graphene oxide (aptamer/GO) using capillary electrophoresis-laser induced fluorescence (CE-LIF) detecting technique has been established. In this method, the carboxyfluorescein (FAM)-labelled ATP aptamers were adsorbed onto the surface of GO, leading to the fluorescence quenching of FAM; after the incubation with a limited amount of ATP, stronger affinity between ATP aptamer and ATP resulted in the desorption of aptamers and the fluorescence restoration of FAM. Then, aptamer-ATP complex and excess of aptamer/GO and GO were separated and quantified by CE-LIF detection. It was shown that a linear relation was existing in the CE-LIF peak intensity of aptamer-ATP and ATP concentration in range of 10-700 μM, the regression equation was F=1.50+0.0470C(ATP) (R(2)=0.990), and the limit of detection was 1.28 μM (3S/N, n=5), which was one order magnitude lower than that of detection in solution by fluorescence method. The approach with excellent specificity and reproducibility has been successfully applied to detecting concentration of ATP in HeLa cell.

  14. Increased Na+/K(+)-pump activity and adenosine triphosphate utilization after compound 48/80-induced histamine secretion from rat mast cells

    DEFF Research Database (Denmark)

    Johansen, Torben; Praetorius, Birger Hans

    1994-01-01

    -production were measured by the bioluminescence technique (firefly lantern) and by measurement of the lactate production under anaerobic conditions (antimycin A, oligomycin), respectively. There was an increased requirement for ATP after the secretory response associated with an increased activity of the Na...

  15. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  16. Comorbidities in Neurology: Is Adenosine the Common Link?

    Science.gov (United States)

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  17. Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis

    NARCIS (Netherlands)

    Eigler, A; Greten, T F; Sinha, B; Haslberger, C; Sullivan, G W; Endres, S

    1997-01-01

    Recent studies have demonstrated the inhibitory effect of exogenous adenosine on TNF production. During inflammation endogenous adenosine levels are elevated and may be one of several anti-inflammatory mediators that reduce TNF synthesis. In the present study the authors investigated this role of ad

  18. Adenosine receptor modulation: potential implications in veterinary medicine.

    Science.gov (United States)

    Dip, Ramiro G

    2009-01-01

    Adenosine is a purine nucleoside whose concentration increases during inflammation and hypoxia and the many roles of this molecule are becoming better understood. Increased reactivity to adenosine of the airways of asthmatic but not of normal subjects underlines the role of adenosine in airway inflammation. The identification and pharmacological characterisation of different adenosine receptors have stimulated the search for subtype-specific ligands able to modulate the effects of this molecule in a directed way. Several compounds of different chemical classes have been identified as having potential drawbacks, including side effects resulting from the broad distribution of the receptors across the organism, have prevented clinical application. In this article, the effects of adenosine's different receptors and the intracellular signalling pathways are reviewed. The potential of adenosine receptor modulation as a therapeutic target for chronic airway inflammation is considered, taking equine recurrent airway disease and feline asthma as examples of naturally occurring airway obstructive diseases. Other potential applications for adenosine receptor modulation are also discussed. As the intrinsic molecular events of adenosine's mechanism of action become uncovered, new concrete therapeutic approaches will become available for the treatment of various conditions in veterinary medicine.

  19. Extending the Clinical Phenotype of Adenosine Deaminase 2 Deficiency.

    Science.gov (United States)

    Ben-Ami, Tal; Revel-Vilk, Shoshana; Brooks, Rebecca; Shaag, Avraham; Hershfield, Michael S; Kelly, Susan J; Ganson, Nancy J; Kfir-Erenfeld, Shlomit; Weintraub, Michael; Elpeleg, Orly; Berkun, Yackov; Stepensky, Polina

    2016-10-01

    Adenosine deaminase 2 deficiency is an autoinflammatory disease, characterized by various forms of vasculitis. We describe 5 patients with adenosine deaminase 2 deficiency with various hematologic manifestations, including pure red cell aplasia, with no evidence for vasculitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Adenosine Receptors: Expression, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Sandeep Sheth

    2014-01-01

    Full Text Available Adenosine receptors (ARs comprise a group of G protein-coupled receptors (GPCR which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

  1. Vasoconstrictor and vasodilator effects of adenosine in the kidney

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Schnermann, Jurgen

    2003-01-01

    Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a respons...... activation from changes in vascular adenosine concentration, a characteristic that is ideally suited for the role of renal adenosine as a paracrine factor in the control of glomerular function.......Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a response...... that has been suggested to be an organ-specific version of metabolic control designed to restrict organ perfusion when transport work increases. However, the vasoconstriction elicited by an intravenous infusion of adenosine is only short lasting, being replaced within 1-2 min by vasodilatation. It appears...

  2. Temporal variations of adenosine metabolism in human blood.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  3. Increased Cortical Extracellular Adenosine Correlates with Seizure Termination

    Science.gov (United States)

    Van Gompel, Jamie J.; Bower, Mark R.; Worrell, Gregory A.; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J.; Kim, Inyong; Bennet, Kevin E.; Meyer, Fredric B.; Marsh, W. Richard; Blaha, Charles D.; Lee, Kendall H.

    2014-01-01

    Objective Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent upon neurotransmitters of which little is known regarding their peri-ictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Further, microdialysis studies in humans suggest adenosine is elevated peri-ictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. Methods White farm swine (n=45) were used in an acute cortical model of epilepsy and 10 human epilepsy patients were studied during intraoperative electrocorticography (Ecog). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) based fast scan cyclic voltametry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine specific triangular waveform or biosensors respectively. Results Simultaneous Ecog and electrochemistry demonstrated an average adenosine rise of 260% compared to baseline at 7.5 ± 16.9 seconds with amperometry (n=75 events) and 2.6 ± 11.2 seconds with FSCV (n=15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Significance Simultaneous Ecog and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. PMID:24483230

  4. Increased deoxythymidine triphosphate levels is a feature of relative cognitive decline

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Frederiksen, Jane H; Olsen, Maria Nathalie Angleys;

    2015-01-01

    Mitochondrial bioenergetics, mitochondrial reactive oxygen species (ROS) and cellular levels of nucleotides have been hypothesized as early indicators of Alzheimer's disease (AD). Utilizing relative decline of cognitive ability as a predictor of AD risk, we evaluated the correlation between change...... of deoxythymidine-triphosphate (dTTP) (20%), but not mitochondrial bioenergetics parameters measured in this study or mitochondrial ROS. Levels of dTTP in PBMCs are indicators of relative cognitive change suggesting a role of deoxyribonucleotides in the etiology of AD....... of deoxyribonucleotide triphosphates were measured in peripheral blood mononuclear cells (PBMCs) from a total of 103 selected participants displaying the most pronounced relative cognitive decline and relative cognitive improvement. We show that relative cognitive decline is associated with higher PBMC content...

  5. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Mamta [School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States); Moriyama, Hideaki, E-mail: hmoriyama2@unl.edu [Department of Chemistry, e-Toxicology and Biotechnology, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, Nebraska 68588-0304 (United States); School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States)

    2007-05-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V{sub M} of 1.8 Å{sup 3} Da{sup −1}.

  6. Adenosine and Preexcitation Variants: Reappraisal of Electrocardiographic Changes.

    Science.gov (United States)

    Ali, Hussam; Lupo, Pierpaolo; Foresti, Sara; De Ambroggi, Guido; Epicoco, Gianluca; Fundaliotis, Angelica; Cappato, Riccardo

    2016-07-01

    Intravenous adenosine is a short-acting blocker of the atrioventricular node that has been used to unmask subtle or latent preexcitation, and also to enable catheter ablation in selected patients with absent or intermittent preexcitation. Depending on the accessory pathway characteristics, intravenous adenosine may produce specific electrocardiographic changes highly suggestive of the preexcitation variant. Herein, we view different ECG responses to this pharmacological test in various preexcitation patterns that were confirmed by electrophysiological studies. Careful analysis of electrocardiographic changes during adenosine test, with emphasis on P-delta interval, preexcitation degree, and atrioventricular block, can be helpful to diagnose the preexcitation variant/pattern.

  7. Possible mechanism of adenosine protection in carbon tetrachloride acute hepatotoxicity. Role of adenosine by-products and glutathione peroxidase.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Yáñez, L; Vidrio, S; Díaz-Muñoz, M

    1995-02-01

    Adenosine proved to be an effective hepatoprotector increasing the survival rate of rats receiving lethal doses of CCl4. Searching for the mechanism of action, we found that adenosine transiently prevents the necrotic liver damage associated to an acute CCl4 treatment. The antilipoperoxidative action of the nucleoside was evidenced by a decrease of TBA-reactive products and the diene conjugates elicited by the hepatotoxin. Adenosine's protective effect was demonstrated by reverting the decrease of cytochrome P-450 while preserved intact the activity of the microsomal enzyme glucose-6-phosphatase. CCl4 promoted an increase in the oxidant stress through an enhancement in oxidized glutathione levels. This action was also completely counteracted by the nucleoside. Adenosine was unable to prevent CCl4 activation and, even, increased .CCl3 formation in the presence of PBN in vivo. However, in the presence of the nucleoside, irreversible binding of 14CCl4 to the microsomal lipid fraction of the treated animals was decreased. These results suggest that adenosine protective action might be exerted at the level of the propagation reaction following CCl4 activation. Two possible mechanisms were associated to the nucleoside protection: (1) the peroxide-metabolyzed enzymes, GSH-per, showed a marked increase after 30 minutes of adenosine treatment, which was potentiated by the hepatotoxin, suggesting an important role of this enzyme in the nucleoside's action; (2) the adenosine catabolism induced an increase in uric acid level, and allopurinol, a purine metabolism inhibitor, prevented such elevation as well as the antilipoperoxidative action of adenosine and the increase of GSH-per associated with the nucleoside treatment. These facts strongly suggest that the protective effect elicited by adenosine is not a direct one, but rather is related to its catabolic products, such as uric acid, which has been recognized as a free radical scavenger.

  8. Rosuvastatin increases extracellular adenosine formation in humans in vivo: a new perspective on cardiovascular protection.

    OpenAIRE

    Meijer, P; Oyen, W.J.G.; Dekker, D.; Broek, P.H.H. van den; Wouters, C.W.; Boerman, O.C.; Scheffer, G. J.; Smits, P; Rongen, G.A.P.J.M.

    2009-01-01

    OBJECTIVE: Statins may increase extracellular adenosine formation from adenosine monophosphate by enhancing ecto-5'-nucleotidase activity. This theory was tested in humans using dipyridamole-induced vasodilation as a read-out for local adenosine formation. Dipyridamole inhibits the transport of extracellular adenosine into the cytosol resulting in increased extracellular adenosine and subsequent vasodilation. In addition, we studied the effect of statin therapy in a forearm model of ischemia-...

  9. Adenosine Deaminase Activity in Diabetic and Obese Patients ...

    African Journals Online (AJOL)

    Journal of Health and Visual Sciences ... Abstract. Adenosine deaminase (ADA) commonly associated with severe combined ... The results (mean±) show that the mean values in the test groups were significantly higher than the controls ...

  10. Inhibition of uptake of adenosine into human blood platelets

    NARCIS (Netherlands)

    Lips, J.P.M.; Sixma, J.J.; Trieschnigg, A.C.

    1980-01-01

    Adenosine transport into human blood platelets is mediated by two independent systems with different affinities. Both systems transport only purine nucleosides and no pyrimidine nucleosides. In experiments with differently substituted purine nucleosides, purines and analogues, differences in carrier

  11. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    OpenAIRE

    Kathryn Victoria Whitmore; Hubert Bobby Gaspar

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidenc...

  12. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Science.gov (United States)

    Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav

    2003-01-01

    Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523

  13. The A3 adenosine receptor: history and perspectives.

    Science.gov (United States)

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.

  14. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Directory of Open Access Journals (Sweden)

    Nedeljkovic Milan

    2003-06-01

    Full Text Available Abstract Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.

  15. 1-(beta-D-Erythrofuranosyl)adenosine.

    Science.gov (United States)

    Kline, Paul C; Zhao, Hongqiu; Noll, Bruce C; Oliver, Allen G; Serianni, Anthony S

    2010-04-01

    The title compound, also known as beta-erythroadenosine, C(9)H(11)N(5)O(3), (I), a derivative of beta-adenosine, (II), that lacks the C5' exocyclic hydroxymethyl (-CH(2)OH) substituent, crystallizes from hot ethanol with two independent molecules having different conformations, denoted (IA) and (IB). In (IA), the furanose conformation is (O)T(1)-E(1) (C1'-exo, east), with pseudorotational parameters P and tau(m) of 114.4 and 42 degrees, respectively. In contrast, the P and tau(m) values are 170.1 and 46 degrees, respectively, in (IB), consistent with a (2)E-(2)T(3) (C2'-endo, south) conformation. The N-glycoside conformation is syn (+sc) in (IA) and anti (-ac) in (IB). The crystal structure, determined to a resolution of 2.0 A, of a cocrystal of (I) bound to the enzyme 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya shows the furanose ring in a near-ideal (O)E (east) conformation (P = 90 degrees and tau(m) = 42 degrees) and the base in an anti (-ac) conformation.

  16. Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: insight into the receptor activation switch.

    Science.gov (United States)

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Kachler, Sonja; Falgner, Nico; Marucci, Gabriella; Thomas, Ajiroghene; Cristalli, Gloria; Volpini, Rosaria; Klotz, Karl-Norbert

    2014-01-15

    A3 Adenosine receptors are promising drug targets for a number of diseases and intense efforts are dedicated to develop selective agonists and antagonists of these receptors. A series of adenosine derivatives with 2-(ar)-alkynyl chains, with high affinity and different degrees of selectivity for human A3 adenosine receptors was tested for the ability to inhibit forskolin-stimulated adenylyl cyclase. All these derivatives are partial agonists at A3 adenosine receptors; their efficacy is not significantly modified by the introduction of small alkyl substituents in the N(6)-position. In contrast, the adenosine-5'-N-ethyluronamide (NECA) analogs of 2-(ar)-alkynyladenosine derivatives are full A3 agonists. Molecular modeling analyses were performed considering both the conformational behavior of the ligands and the impact of 2- and 5'-substituents on ligand-target interaction. The results suggest an explanation for the different agonistic behavior of adenosine and NECA derivatives, respectively. A sub-pocket of the binding site was analyzed as a crucial interaction domain for receptor activation.

  17. Role of A3 adenosine receptor in diabetic neuropathy.

    Science.gov (United States)

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  18. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  19. Determination of Adenosine A1 Receptor Agonist and Antagonist Pharmacology Using Saccharomyces cerevisiae: Implications for Ligand Screening and Functional Selectivity

    Science.gov (United States)

    Stewart, Gregory D.; Valant, Celine; Dowell, Simon J.; Mijaljica, Dalibor; Devenish, Rodney J.; Scammells, Peter J.; Sexton, Patrick M.

    2009-01-01

    The budding yeast, Saccharomyces cerevisiae, is a convenient system for coupling heterologous G protein-coupled receptors (GPCRs) to the pheromone response pathway to facilitate empirical ligand screening and/or GPCR mutagenesis studies. However, few studies have applied this system to define GPCR-G protein-coupling preferences and furnish information on ligand affinities, efficacies, and functional selectivity. We thus used different S. cerevisiae strains, each expressing a specific human Gα/yeast Gpa1 protein chimera, and determined the pharmacology of various ligands of the coexpressed human adenosine A1 receptor. These assays, in conjunction with the application of quantitative models of agonism and antagonism, revealed that (−)-N6-(2-phenylisopropyl)adenosine was a high-efficacy agonist that selectively coupled to Gpa/1Gαo, Gpa1/Gαi1/2, and Gpa1/Gαi3, whereas the novel compound, 5′-deoxy-N6-(endo-norborn-2-yl)-5′-(2-fluorophenylthio)adenosine (VCP-189), was a lower-efficacy agonist that selectively coupled to Gpa1/Gαi proteins; the latter finding suggested that VCP-189 might be functionally selective. The affinity of the antagonist, 8-cyclopentyl-1,3-dipropylxanthine, was also determined at the various strains. Subsequent experiments performed in mammalian Chinese hamster ovary cells monitoring cAMP formation/inhibition, intracellular calcium mobilization, phosphorylation of extracellular signal-regulated kinase 1 and 2 or 35S-labeled guanosine 5′-(γ-thio)triphosphate binding, were in general agreement with the yeast data regarding agonist efficacy estimation and antagonist affinity estimation, but revealed that the apparent functional selectivity of VCP-189 could be explained by differences in stimulus-response coupling between yeast and mammalian cells. Our results suggest that this yeast system is a useful tool for quantifying ligand affinity and relative efficacy, but it may lack the sensitivity required to detect functional selectivity of

  20. Intracoronary adenosine improves myocardial perfusion in late reperfused myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Myocardial perfusion associates with clinical syndromes and prognosis.Adenosine could improve myocardial perfusion of acute myocardial infarction within 6 hours,but few data are available on late perfusion of myocardial infarction (MI).This study aimed at quantitatively evaluating the value of intracoronary adenosine improving myocardial perfusion in late reperfused MI with myocardial contrast echocardiography(MCE).Methods Twenty-six patients with anterior wall infarcts were divided randomly into 2 groups:adenosine group(n=12) and normal saline group(n=14).Their history of myocardial infarction was about 3-12 weeks.Adenosine or normalsaline was given when the guiding wire crossed the lesion through percutaneous coronary intervention(PCI),then the balloon was dilated and stent(Cypher/Cypher select)was implanted at the lesion.Contrast pulse sequencing MCE with Sonovue contrast via the coronary route was done before PCI and 30 minutes after PCI.Video densitometry and contrast filled-blank area were calculated with the CUSQ off-line software.Heart function and cardiac events were followed up within 30 days.Results Perfusion in the segments of the criminal occlusive coronary artery in the adenosine group was better than that in the saline group(5.71±0.29 vs 4.95±1.22,P<0.05).Ischemic myocardial segment was deminished significantly afterPCI,but the meliorated area was bigger in the adenosine group than in the saline group((1.56±0.60)cm2 vs(1.02±0.56) cm2,P<0.05).The video densitometry in critical segments was also improved significantly in the adenosine group (5.53±0.36 vs 5.26±0.35,P<0.05).Left ventricular ejection fraction(LVEF)was improved in all patients after PCI,but EF was not significant between the two groups((67±6)% vs(62±7)%,P>0.05).There was no in-hospital or 30-day major adverse cardiac event(MACE)in the adenosine group but 3 MACE in the saline group in 30 days after PCI.Conclusions Adenosine could improve myocardial microvascular

  1. The degradation of nucleotide triphosphates extracted under boiling ethanol conditions is prevented by the yeast cellular matrix.

    Science.gov (United States)

    Gil, Andres; Siegel, David; Bonsing-Vedelaar, Silke; Permentier, Hjalmar; Reijngoud, Dirk-Jan; Dekker, Frank; Bischoff, Rainer

    2017-01-01

    Boiling ethanol extraction is a frequently used method for metabolomics studies of biological samples. However, the stability of several central carbon metabolites, including nucleotide triphosphates, and the influence of the cellular matrix on their degradation have not been addressed. To study how a complex cellular matrix extracted from yeast (Saccharomyces cerevisiae) may affect the degradation profiles of nucleotide triphosphates extracted under boiling ethanol conditions. We present a double-labelling LC-MS approach with a (13)C-labeled yeast cellular extract as complex surrogate matrix, and (13)C(15)N-labeled nucleotides as internal standards, to study the effect of the yeast matrix on the degradation of nucleotide triphosphates. While nucleotide triphosphates were degraded to the corresponding diphosphates in pure solutions, degradation was prevented in the presence of the yeast matrix under typical boiling ethanol extraction conditions. Extraction of biological samples under boiling ethanol extraction conditions that rapidly inactivate enzyme activity are suitable for labile central energy metabolites such as nucleotide triphosphates due to the stabilizing effect of the yeast matrix. The basis of this phenomenon requires further study.

  2. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles.

    Science.gov (United States)

    Aaker, Aaron; Laughlin, M H

    2002-09-01

    The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.

  3. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    Science.gov (United States)

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  4. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules.

    Science.gov (United States)

    Hillaireau, H; Le Doan, T; Besnard, M; Chacun, H; Janin, J; Couvreur, P

    2006-10-31

    Nucleoside analogues are widely used in the treatment of various viral infections. However, the poor in vivo conversion of the nucleoside analogues like azidothymidine (AZT) into their active triphosphate nucleotide counterpart limits their pharmacological efficacy. This could be overcome by the direct administration of azidothymidine triphosphate (AZT-TP), but it requires an appropriate drug delivery approach. Besides nucleoside analogues, nucleotide analogues like cidofovir (CDV) are also used in the treatment of viral infections. CDV has raised recent interest because of its promising activity against smallpox, but its use is limited by its poor bioavailability and nephrotoxicity. Here again, a proper drug delivery system should address these issues. In this study, we investigated the encapsulation of the nucleotide analogues AZT-TP and CDV into poly(iso-butylcyanoacrylate) aqueous core nanocapsules, known to efficiently entrap oligonucleotides. We show here that the encapsulation of these mono-nucleotides is less efficient than with oligonucleotides and that a rapid release of AZT-TP from the nanocapsules occurred in vitro. This highlights the importance of the molecular weight of the entrapped molecules which, if they are too small, are diffusing through the thin polymer membrane of the nanocapsules. On the other hand, a good protection of the encapsulated AZT-TP was observed.

  5. Correlation between blood adenosine metabolism and sleep in humans.

    Science.gov (United States)

    Díaz-Muñoz, M; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yááñez, L; Aguilar-Roblero, R; Rosenthal, L; Villalobos, L; Fernández-Cancino, F; Drucker-Colín, R; Chagoya De Sanchez, V

    1999-01-01

    Blood adenosine metabolism, including metabolites and metabolizing enzymes, was studied during the sleep period in human volunteers. Searching for significant correlations among biochemical parameters found: adenosine with state 1 of slow-wave sleep (SWS); activity of 5'-nucleotidase with state 2 of SWS; inosine and AMP with state 3-4 of SWS; and activity of 5'-nucleotidase and lactate with REM sleep. The correlations were detected in all of the subjects that presented normal hypnograms, but not in those who had fragmented sleep the night of the experiment. The data demonstrate that it is possible to obtain information of complex brain operations such as sleep by measuring biochemical parameters in blood. The results strengthen the notion of a role played by adenosine, its metabolites and metabolizing enzymes, during each of the stages that constitute the sleep process in humans.

  6. The Use of Adenosine Agonists to Treat Nerve Agent-Induced Seizure and Neuropathology

    Science.gov (United States)

    2016-09-01

    kainate, adenosine and neuropeptide Y receptors. Neurochemical Research. 28: 1501-1515. 23. Bjorness, T. E. & R. W. Greene. 2009. Adenosine and sleep ...al. 2004. Adenosine and sleep -wake regulation. Progress in Neurobiology. 73: 379-396. 31. Schubert, P., et al. 1997. Protective mechanisms of...effects of adenosine by caffeine or 8-(p-sulfophenyl)theophylline. The Journal of Pharmacology and Experimental Therapeutics. 240: 428-432. 44

  7. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ?

    OpenAIRE

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoim...

  8. Development of coronary vasospasm during adenosine-stress myocardial perfusion CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jeong Gu; Choi, Seong Hoon; Kang, Byeong Seong; Bang, Min Aeo; Kwon, Woon Jeong [Dept. of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)

    2015-06-15

    Adenosine is a short-acting coronary vasodilator, and it is widely used during pharmacological stress myocardial perfusion imaging. It has a well-established safety profile, and most of its side effects are known to be mild and transient. Until now, coronary vasospasm has been rarely reported as a side effect of adenosine during or after adenosine stress test. This study reports a case of coronary vasospasm which was documented on stress myocardial perfusion CT imaging during adenosine stress test.

  9. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  10. Adenosine A(3) receptor-induced CCL2 synthesis in cultured mouse astrocytes

    NARCIS (Netherlands)

    Wittendorp, MC; Boddeke, HWGM; Biber, K

    2004-01-01

    During neuropathological conditions, high concentrations of adenosine are released, stimulating adenosine receptors in neurons and glial cells. It has recently been shown that stimulation of adenosine receptors in glial cells induces the release of neuroprotective substances such as NGF, S-100beta,

  11. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  12. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K

    2005-01-01

    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  13. Contributory role of adenosine deaminase in metabolic syndrome

    African Journals Online (AJOL)

    olayemitoyin

    Summary: Adenosine deaminase (ADA) is an enzyme of purine metabolism ... as obesity, insulin resistance, fasting hyperglycaemia, lipid abnormalities and ... Body mass index (BMI), fasting blood glucose (FBG), Glycated ... regulation of intracellular and extra cellular ... studies have indicated that defective signalling from.

  14. No role of interstitial adenosine in insulin-mediated vasodilation

    DEFF Research Database (Denmark)

    Dela, F; Stallknecht, B

    1999-01-01

    The mechanisms behind the vasodilatory effect of insulin are not fully understood, but nitric oxide plays an important role. We have investigated the possibility that insulin mediates vasodilatation in the human skeletal muscle via an increase in extracellular adenosine concentrations. In eight h...

  15. Adenosine receptor blockade reduces splanchnic hyperemia in cirrhotic rats.

    Science.gov (United States)

    Lee, S S; Chilton, E L; Pak, J M

    1992-06-01

    To explore a possible role for adenosine in the pathogenesis of the splanchnic hyperemia of cirrhosis, we administered 8-phenyltheophylline, a specific adenosine receptor antagonist, to rats with biliary cirrhosis caused by bile duct ligation and to control sham-operated rats. Micro-Doppler flow studies showed that a 10-mumol/kg dose of 8-phenyltheophylline completely abolished the superior mesenteric hyperemic response to infusions of exogenous adenosine in both cirrhotic and control rats. Analysis of regional blood flows by radioactive microspheres demonstrated that this dose of 8-phenyltheophylline in cirrhotic rats significantly increased portal tributary vascular resistance by 60% and decreased portal tributary blood flow by 26%. This decrease was entirely the result of a 42% reduction in the intestinal blood flow. 8-phenyltheophylline did not affect cardiac output, arterial pressure or any other extrasplanchnic hemodynamic variables in cirrhotic rats. No detectable effect of 8-phenyltheophylline was seen in sham-operated rats. These results suggest that adenosine may be involved in the genesis of splanchnic hyperemia in cirrhotic rats.

  16. Adenosine receptor modulation of seizure susceptibility in rats

    Energy Technology Data Exchange (ETDEWEB)

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A{sub 1} adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of {sup 3}H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A{sub 1} adenosine receptors in the cerebral cortex.

  17. Searching Inhibitors of Adenosine Kinase by Simulation Methods

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui-Xin; ZHANG Xing-Long; DONG Xi-Cheng; CHEN Min-Bo

    2006-01-01

    Searching new inhibitors of adenosine kinase (AK) is still drawing attention of experimental scientists. A better and solid model is here proposed by means of simulation methods from different ways, the direct analysis of receptor itself, the conventional 3D-QSAR methods and the integration of docking method and the conventional QSAR analysis.

  18. CD39/adenosine pathway is involved in AIDS progression.

    Directory of Open Access Journals (Sweden)

    Maria Nikolova

    2011-07-01

    Full Text Available HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25(high FoxP3+CD127(low T cells (Treg play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS.

  19. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  20. Chromatographic separation of cytidine triphosphate from fermentation broth of yeast using anion-exchange cryogel.

    Science.gov (United States)

    Wang, Lianghua; Shen, Shaochuan; Yun, Junxian; Yao, Kejian; Yao, Shan-Jing

    2008-03-01

    A novel separation method was developed to isolate directly cytidine triphosphate (CTP) from fermentation broth of yeast using anion-exchange supermacroporous cryogel. The anion-exchange cryogel with tertiary amine groups was prepared by graft polymerization. The breakthrough characteristics and elution performance of pure CTP in the cryogel bed were investigated experimentally and the CTP binding capacity was determined. Then the separation experiments of CTP from crude fermentation broth of yeast using the cryogel column were carried out using deionized water and 0.01 M HCl as washing buffer, respectively. The chromatographic behavior was monitored and analyzed. The purity and concentration of the obtained CTP in these processes were determined quantitatively by HPLC. The maximal purity of CTP obtained at the condition of 0.01 M HCl as washing buffer and 0.5 M NaCl in 0.01 M HCl as elution buffer reached 93%.

  1. Localization of RNA transcription sites in insect oocytes using microinjections of 5-bromouridine 5'-triphosphate.

    Directory of Open Access Journals (Sweden)

    Dmitry Bogolyubov

    2007-06-01

    Full Text Available In the present study we used 5-bromouridine 5'-triphosphate (BrUTP microinjections to localize the transcription sites in oocytes of insects with different types of the ovarium structure: panoistic, meroistic polytrophic, and meroistic telotrophic. We found that in an insect with panoistic ovaries (Acheta domesticus, oocyte nuclei maintain their transcription activity during the long period of oocyte growth. In insects with meroistic ovaries (Tenebrio molitor and Panorpa communis, early oocyte chromosomes were found to be transcriptionally active, and some transcription activity still persist while the karyosphere, a compact structure formed by all condensed oocyte chromosomes, begins to develop. At the latest stages of karyosphere development, no anti-Br-RNA signal was registered in the karyosphere.

  2. Discovery of β-D-2'-deoxy-2'-α-fluoro-4'-α-cyano-5-aza-7,9-dideaza adenosine as a potent nucleoside inhibitor of respiratory syncytial virus with excellent selectivity over mitochondrial RNA and DNA polymerases.

    Science.gov (United States)

    Clarke, Michael O; Mackman, Richard; Byun, Daniel; Hui, Hon; Barauskas, Ona; Birkus, Gabriel; Chun, Byoung-Kwon; Doerffler, Edward; Feng, Joy; Karki, Kapil; Lee, Gary; Perron, Michel; Siegel, Dustin; Swaminathan, Swami; Lee, William

    2015-06-15

    Novel 4'-substituted β-d-2'-deoxy-2'-α-fluoro (2'd2'F) nucleoside inhibitors of respiratory syncytial virus (RSV) are reported. The introduction of 4'-substitution onto 2'd2'F nucleoside analogs resulted in compounds demonstrating potent cell based RSV inhibition, improved inhibition of the RSV polymerase by the nucleoside triphosphate metabolites, and enhanced selectivity over incorporation by mitochondrial RNA and DNA polymerases. Selectivity over the mitochondrial polymerases was found to be extremely sensitive to the specific 4'-substitution and not readily predictable. Combining the most potent and selective 4'-groups from N-nucleoside analogs onto a 2'd2'F C-nucleoside analog resulted in the identification of β-D-2'-deoxy-2'-α-fluoro-4'-α-cyano-5-aza-7,9-dideaza adenosine as a promising nucleoside lead for RSV.

  3. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  4. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain.

    Science.gov (United States)

    Gangolf, Marjorie; Wins, Pierre; Thiry, Marc; El Moualij, Benaïssa; Bettendorff, Lucien

    2010-01-01

    In animals, thiamine deficiency leads to specific brain lesions, generally attributed to decreased levels of thiamine diphosphate, an essential cofactor in brain energy metabolism. However, another far less abundant derivative, thiamine triphosphate (ThTP), may also have a neuronal function. Here, we show that in the rat brain, ThTP is essentially present and synthesized in mitochondria. In mitochondrial preparations from brain (but not liver), ThTP can be produced from thiamine diphosphate and P(i). This endergonic process is coupled to the oxidation of succinate or NADH through the respiratory chain but cannot be energized by ATP hydrolysis. ThTP synthesis is strongly inhibited by respiratory chain inhibitors, such as myxothiazol and inhibitors of the H(+) channel of F(0)F(1)-ATPase. It is also impaired by disruption of the mitochondria or by depolarization of the inner membrane (by protonophores or valinomycin), indicating that a proton-motive force (Deltap) is required. Collapsing Deltap after ThTP synthesis causes its rapid disappearance, suggesting that both synthesis and hydrolysis are catalyzed by a reversible H(+)-translocating ThTP synthase. The synthesized ThTP can be released from mitochondria in the presence of external P(i). However, ThTP probably does not accumulate in the cytoplasm in vivo, because it is not detected in the cytosolic fraction obtained from a brain homogenate. Our results show for the first time that a high energy triphosphate compound other than ATP can be produced by a chemiosmotic type of mechanism. This might shed a new light on our understanding of the mechanisms of thiamine deficiency-induced brain lesions.

  5. [Selective inhibition of pyruvate dehydrogenase in the liver and heart of mice by triphosphate esters of thiochrome and tetrahydrothiamine].

    Science.gov (United States)

    Ostrovskiĭ, Iu M; Zabrodskaia, S V; Zimatkina, T I; Oparin, D A

    1983-06-01

    In experiments with white mice it was shown that in contrast to hydroxythiamine and other known vitamin B1 antagonists, triphosphate esters of thiochrome and tetrahydrothiamine possess a selective anticoenzyme activity with respect to the only one of the thiamine pyrophosphate-dependent enzymes, i.e. pyruvate dehydrogenase.

  6. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    AIMS: Adenosine causes vasoconstriction of afferent arterioles of the mouse kidney through activation of adenosine A(1) receptors and Gi-mediated stimulation of phospholipase C. In the present study, we further explored the signalling pathways by which adenosine causes arteriolar vasoconstriction....... METHODS AND RESULTS: Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release...

  7. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  8. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    Science.gov (United States)

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  9. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2011-01-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX

  10. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2011-01-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX c

  11. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    Science.gov (United States)

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  12. Intracerebral adenosine infusion improves neurological outcome after transient focal ischemia in rats.

    Science.gov (United States)

    Kitagawa, Hisashi; Mori, Atsushi; Shimada, Jun; Mitsumoto, Yasuhide; Kikuchi, Tetsuro

    2002-04-01

    Second Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan In order to elucidate the role of adenosine in brain ischemia, the possible protective effects of adenosine on ischemic brain injury were investigated in a rat model of brain ischemia both in vitro and in vivo. Exogenous adenosine dose-dependently rescued cortical neuronal cells from injury after glucose deprivation in vitro. Adenosine (1 mM) also significantly reduced hypoglycemia/hypoxia-induced glutamate release from the hippocampal slice. In a rat model of transient middle cerebral artery occlusion (MCAO), extracellular adenosine concentration was increased immediately after occlusion, and then returned to the baseline by 30 min after reperfusion. Adenosine infusion through a microdialysis probe into the ipsilateral striatum (1 mM adenosine, 2 microl min(-1), total 4.5 h from the occlusion to 3 h after reperfusion) showed a significant improvement in the neurological outcome, and about 25% reduction of infarct volume, although the effect did not reach statistical significance, compared with the vehicle-treated group at 20 h after 90 min of MCAO. These results demonstrated the neuroprotective effect of adenosine against ischemic brain injury both in vitro and in vivo, suggesting the possible therapeutic application of adenosine regulating agents, which inhibit adenosine uptake or metabolism to enhance or maintain extracellular endogenous adenosine levels, for stroke treatment.

  13. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  14. Adenosine receptor control of cognition in normal and disease.

    Science.gov (United States)

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  15. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

    Science.gov (United States)

    Moore, Kimberly A.; Nicoll, Roger A.; Schmitz, Dietmar

    2003-11-01

    The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

  16. Expression of human adenosine deaminase in murine hematopoietic cells.

    Science.gov (United States)

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  17. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    Science.gov (United States)

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output.

  18. Evidence for an A1-adenosine receptor in the guinea-pig atrium.

    Science.gov (United States)

    Collis, M. G.

    1983-01-01

    1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium. PMID:6297647

  19. Adenosine receptors and stress : Studies using methylmercury, caffeine and hypoxia

    OpenAIRE

    Björklund, Olga

    2008-01-01

    Brain development is a precisely organized process that can be disturbed by various stress factors present in the diet (e.g. exposure to xenobiotics) as well as insults such as decreased oxygen supply. The consequent adverse changes in nervous system function may not necessarily be apparent until a critical age when neurodevelopmental defects may be unmasked by a subsequent challenge. Adenosine and its receptors (AR) (A1, A2A, A2B and A3) which participate in the brain stres...

  20. Synthesis of novel chromene scaffolds for adenosine receptors.

    Science.gov (United States)

    Costa, Marta; Areias, Filipe; Castro, Marian; Brea, Jose; Loza, María I; Proença, Fernanda

    2011-06-07

    A one-pot procedure was developed for the synthesis of novel 3-[amino(methoxy)methylene]-2-oxo-3,4-dihydro-2H-chromen-4-yl)-3-cyanoacetamides and chromeno[3,4-c]pyridine-1-carbonitriles from the reaction of 2-oxo-2H-chromene-3-carbonitriles and cyanoacetamides. These chromene derivatives were identified as new scaffolds for adenosine receptors and the hits 3a, 3c, 5a, and 5b were found.

  1. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    Science.gov (United States)

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  2. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    Science.gov (United States)

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  3. Adenosine testing during cryoballoon ablation and radiofrequency ablation of atrial fibrillation: A propensity score-matched analysis.

    Science.gov (United States)

    Tokuda, Michifumi; Matsuo, Seiichiro; Isogai, Ryota; Uno, Goki; Tokutake, Kenichi; Yokoyama, Kenichi; Kato, Mika; Narui, Ryohsuke; Tanigawa, Shinichi; Yamashita, Seigo; Inada, Keiichi; Yoshimura, Michihiro; Yamane, Teiichi

    2016-11-01

    The infusion of adenosine triphosphate after radiofrequency (RF) pulmonary vein (PV) isolation (PVI), which may result in acute transient PV-atrium reconnection, can unmask dormant conduction. The purpose of this study was to compare the incidence and characteristics of dormant conduction after cryoballoon (CB) and RF ablation of atrial fibrillation (AF). Of 414 consecutive patients undergoing initial catheter ablation of paroxysmal AF, 246 (59%) propensity score-matched patients (123 CB-PVI and 123 RF-PVI) were included. Dormant conduction was less frequently observed in patients who underwent CB-PVI than in those who underwent RF-PVI (4.5% vs 12.8% of all PVs; P PVI than in those who underwent RF-PVI in the left superior PV (P PVI. Multivariable analysis revealed that a longer time to the elimination of the PV potential (odds ratio 1.018; 95% confidence interval 1.001-1.036; P = .04) and the necessity of touch-up ablation (odds ratio 3.242; 95% confidence interval 2.761-7.111; P PVI. After the elimination of dormant conduction by additional ablation, the AF-free rate was similar in patients with and without dormant conduction after both CB-PVI and RF-PVI (P = .28 and P = .73, respectively). The results of the propensity score-matched analysis showed that dormant PV conduction was less frequent after CB ablation than after RF ablation and was not associated with ablation outcomes. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. Novel treatment strategies in triple-negative breast cancer: specific role of poly(adenosine diphosphate-ribose polymerase inhibition

    Directory of Open Access Journals (Sweden)

    Audeh MW

    2014-10-01

    Full Text Available M William Audeh Division of Medical Oncology, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA Abstract: Inhibitors of the poly(adenosine triphosphate-ribose polymerase (PARP-1 enzyme induce synthetic lethality in cancers with ineffective DNA (DNA repair or homologous repair deficiency, and have shown promising clinical activity in cancers deficient in DNA repair due to germ-line mutation in BRCA1 and BRCA2. The majority of breast cancers arising in carriers of BRCA1 germ-line mutations, as well as half of those in BRCA2 carriers, are classified as triple-negative breast cancer (TNBC. TNBC is a biologically heterogeneous group of breast cancers characterized by the lack of immunohistochemical expression of the ER, PR, or HER2 proteins, and for which the current standard of care in systemic therapy is cytotoxic chemotherapy. Many “sporadic” cases of TNBC appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of TNBC. Significant genetic heterogeneity has been observed within the TNBC cohort, creating challenges for interpretation of prior clinical trial data, and for the design of future clinical trials. Several PARP inhibitors are currently in clinical development in BRCA-mutated breast cancer. The use of PARP inhibitors in TNBC without BRCA mutation will require biomarkers that identify cancers with homologous repair deficiency in order to select patients likely to respond. Beyond mutations in the BRCA genes, dysfunction in other genes that interact with the homologous repair pathway may offer opportunities to induce synthetic lethality when combined with PARP inhibition. Keywords: PARP, triple negative breast cancer, PARP inhibitors

  5. Adenosine receptors in post-mortem human brain.

    Science.gov (United States)

    James, S; Xuereb, J H; Askalan, R; Richardson, P J

    1992-01-01

    1. Adenosine A2-like binding sites were characterized in post-mortem human brain membranes by examining several compounds for their ability to displace [3H]-CGS 21680 (2[p-(2 carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) binding. 2. Two A2-like binding sites were identified in the striatum. 3. The more abundant striatal site was similar to the A2a receptor previously described in rat striatum, both in its pharmacological profile and striatal localization. 4. The less abundant striatal site had a pharmacological profile similar to that of the binding site characterized in the other brain regions examined. This was intermediate in character between A1 and A2 and may represent another adenosine receptor subtype. 5. The co-purification of [3H]-CGS 21680 binding during immunoisolation of human striatal cholinergic membranes was used to assess the possible cholinergic localization of A2-like binding sites in the human striatum. Only the more abundant striatal site co-purified with cholinergic membranes. This suggests that this A2a-like site is present on cholinergic neurones in the human striatum.

  6. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  7. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration

    Science.gov (United States)

    Lee, Bora; Lee, Seung-Min; Bahn, Young Jae; Lee, Kwang-Pyo; Kang, Moonkyung; Kim, Yeon-Soo; Woo, Sun-Hee; Lim, Jae-Young; Kim, Eunhee; Kwon, Ki-Sun

    2016-01-01

    Skeletal muscle mass and power decrease with age, leading to impairment of mobility and metabolism in the elderly. Ca2+ signaling is crucial for myoblast differentiation as well as muscle contraction through activation of transcription factors and Ca2+-dependent kinases and phosphatases. Ca2+ channels, such as dihydropyridine receptor (DHPR), two-pore channel (TPC) and inositol 1,4,5-triphosphate receptor (ITPR), function to maintain Ca2+ homeostasis in myoblasts. Here, we observed a significant decrease in expression of type 1 IP3 receptor (ITPR1), but not types 2 and 3, in aged mice skeletal muscle and isolated myoblasts, compared with those of young mice. ITPR1 knockdown using shRNA-expressing viruses in C2C12 myoblasts and tibialis anterior muscle of mice inhibited myotube formation and muscle regeneration after injury, respectively, a typical phenotype of aged muscle. This aging phenotype was associated with repression of muscle-specific genes and activation of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. ERK inhibition by U0126 not only induced recovery of myotube formation in old myoblasts but also facilitated muscle regeneration after injury in aged muscle. The conserved decline in ITPR1 expression in aged human skeletal muscle suggests utility as a potential therapeutic target for sarcopenia, which can be treated using ERK inhibition strategies. PMID:27658230

  8. Enzymatic primer-extension with glycerol-nucleoside triphosphates on DNA templates.

    Directory of Open Access Journals (Sweden)

    Jesse J Chen

    Full Text Available BACKGROUND: Glycerol nucleic acid (GNA has an acyclic phosphoglycerol backbone repeat-unit, but forms stable duplexes based on Watson-Crick base-pairing. Because of its structural simplicity, GNA is of particular interest with respect to the possibility of evolving functional polymers by in vitro selection. Template-dependent GNA synthesis is essential to any GNA-based selection system. PRINCIPAL FINDINGS: In this study, we investigated the ability of various DNA polymerases to use glycerol-nucleoside triphosphates (gNTPs as substrates for GNA synthesis on DNA templates. Therminator DNA polymerase catalyzes quantitative primer-extension by the incorporation of two glyceronucleotides, with much less efficient extension up to five glyceronucleotides. Steady-state kinetic experiments suggested that GNA synthesis by Therminator was affected by both decreased catalytic rates and weakened substrate binding, especially for pyrimidines. In an attempt to improve pyrimidine incorporation by providing additional stacking interactions, we synthesized two new gNTP analogs with 5-propynyl substituted pyrimidine nucleobases. This led to more efficient incorporation of gC, but not gT. CONCLUSIONS: We suggest that directed evolution of Therminator might lead to mutants with improved substrate binding and catalytic efficiency.

  9. Trypanosoma brucei brucei: effects of ferrous iron and heme on ecto-nucleoside triphosphate diphosphohydrolase activity.

    Science.gov (United States)

    Leite, Milane S; Thomaz, Rachel; Oliveira, José Henrique M; Oliveira, Pedro L; Meyer-Fernandes, José Roberto

    2009-02-01

    Trypanosoma brucei brucei is the causative agent of animal African trypanosomiasis, also called nagana. Procyclic vector form resides in the midgut of the tsetse fly, which feeds exclusively on blood. Hemoglobin digestion occurs in the midgut resulting in an intense release of free heme. In the present study we show that the magnesium-dependent ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of procyclic T. brucei brucei is inhibited by ferrous iron and heme. The inhibition of E-NTPDase activity by ferrous iron, but not by heme, was prevented by pre-incubation of cells with catalase. However, antioxidants that permeate cells, such as PEG-catalase and N-acetyl-cysteine prevented the inhibition of E-NTPDase by heme. Ferrous iron was able to induce an increase in lipid peroxidation, while heme did not. Therefore, both ferrous iron and heme can inhibit E-NTPDase activity of T. brucei brucei by means of formation of reactive oxygen species, but apparently acting through distinct mechanisms.

  10. Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wins Pierre

    2008-01-01

    Full Text Available Abstract Background Thiamine triphosphate (ThTP exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known that vertebrate adenylate kinase 1 catalyzes ThTP synthesis at a very low rate and it has been postulated that this enzyme is responsible for ThTP synthesis in vivo. Results Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP synthesis, but at a rate more than 106-fold lower than ATP synthesis. This activity is too low to explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation. Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of total thiamine at 37°C despite complete inactivation of adenylate kinase and a subsequent drop in cellular ATP. Conclusion These results clearly demonstrate that adenylate kinase is not responsible for ThTP synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under severe energy stress when ATP levels are very low, an observation not in favor of an ATP-dependent mechanisms for ThTP synthesis.

  11. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes].

    Science.gov (United States)

    Rusina, I M; Makarchikov, A F; Makar, E A; Kubyshin, V L

    2006-01-01

    Activity and some properties of a soluble enzyme hydrolyzing nucleoside-5'-triphosphates were studied in the liver and kidney of normal and diabetic rats. The enzyme activity was shown to be reduced by 34% (p < 0.01) in the liver extracts of diabetic animals, while no difference was observed in the kidney. When ITP was used as substrate, the apparent Michaelis constant of the enzyme was significantly lower in the liver of controls as compared to experimental rats (32.3 +/- 1.3 microM and 54.3 +/- 1.0 microM, respectively, p < 0.01). The KM values of the enzyme in the kidney were not distinguishable in both groups. NTPase exhibits maximal activity at pH 7.0 and has a broad substrate specificity with respect to different nucleoside-5'-tri- and diphosphates. Molecular mass of the enzyme was estimated by gel filtration to be 63.7 +/- 0.9 kD.

  12. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis

    Science.gov (United States)

    Antoun, Ayman; Pavlov, Michael Y.; Andersson, Kerstin; Tenson, Tanel; Ehrenberg, Måns

    2003-01-01

    The role of IF2 from Escherichia coli was studied in vitro using a system for protein synthesis with purified components. Stopped flow experiments with light scattering show that IF2 in complex with guanosine triphosphate (GTP) or a non-cleavable GTP analogue (GDPNP), but not with guanosine diphosphate (GDP), promotes fast association of ribosomal subunits during initiation. Biochemical experiments show that IF2 promotes fast formation of the first peptide bond in the presence of GTP, but not GDPNP or GDP, and that IF2–GDPNP binds strongly to post-initiation ribosomes. We conclude that the GTP form of IF2 accelerates formation of the 70S ribosome from subunits and that GTP hydrolysis accelerates release of IF2 from the 70S ribosome. The results of a recent report, suggesting that GTP and GDP promote initiation equally fast, have been addressed. Our data, indicating that eIF5B and IF2 have similar functions, are used to rationalize the phenotypes of GTPase-deficient mutants of eIF5B and IF2. PMID:14532131

  13. Ionic interaction of amiloride and uridine 5'-triphosphate in nebulizer solutions.

    Science.gov (United States)

    Pettis, Ronald J; Knowles, Michael R; Olivier, Kenneth N; Kazantseva, Masha; Hickey, Anthony J

    2004-09-01

    Combination therapy using nebulized amiloride hydrochloride and uridine-5'-triphosphate (UTP) trisodium salt aerosols has been investigated for the treatment of cystic fibrosis (CF). Amiloride in aqueous solution precipitates in the presence of UTP, reducing drug concentrations. Interactions between these drugs and NaCl in solution were studied using phase-solubility techniques monitored by UV spectrophotometry. Elemental analyses were employed for precipitate characterization. Amiloride solubility was reduced by more than 85% in saline. Amiloride solubility decreased with increasing UTP concentration, resulting in formation of a precipitated complex. The theoretical molar ratio of complexes range from 1-3 amiloride:1 UTP. At most concentrations only 3 amiloride:1 UTP complex was observed in precipitate. This is a reflection of low Ksp for the 3:1 complex of 2.92 x 10(-11) M4 compared with 2.09 x 10(-4) M2 for amiloride alone. Equilibration over excess bulk solid resulted in higher solubility estimates and different phase solubility diagrams than solubility studies utilizing precipitation technique. This may be explained by the absence of amiloride in the solid state and its impact on complex equilibria with UTP. The solubility suppressing effects of UTP and saline were largely additive. A number of ionic interactions increase complex solubility profile of amiloride hydrochloride in the presence of UTP and NaCl.

  14. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    Science.gov (United States)

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  15. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5'-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway.

    Science.gov (United States)

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-12-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity.

  16. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  17. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  18. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  19. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia

    2009-01-01

    /min); (2) whether adenosine-induced vasodilation is mediated via formation of prostaglandins and/or NO; and (3) the femoral arterial and venous plasma adenosine concentrations during leg exercise with the microdialysis technique in a total of 24 healthy, male subjects. Inhibition of adenosine receptors......+/-8%, and 66+/-8%, respectively (Pplasma adenosine concentrations were similar at rest and during exercise. These results suggest that adenosine contributes to the regulation of skeletal muscle blood flow by stimulating prostaglandin and NO synthesis.......Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act...

  20. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.

    OpenAIRE

    Conlay, L A; Evoniuk, G; Wurtman, R J

    1988-01-01

    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  1. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia.

    OpenAIRE

    Felicita Pedata; Anna Maria Pugliese; Elisabetta Coppi; Ilaria Dettori; Giovanna Maraula; Lucrezia Cellai; Alessia Melani

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by ...

  2. Interaction between Intrathecal Gabapentin and Adenosine in the Formalin Test of Rats

    OpenAIRE

    Yoon, Myung Ha; Choi, Jeong Il; Park, Heon Chang; Bae, Hong Beom

    2004-01-01

    Spinal gabapentin and adenosine have been known to display an antinociceptive effect. We evaluated the nature of the interaction between gabapentin and adenosine in formalin-induced nociception at the spinal level. Male Sprague-Dawley rats were prepared for intrathecal catheterization. Pain was evoked by injection of formalin solution (5%, 50 µL) into the hindpaw. After examination of the effects of gabapentin and adenosine, the resulting interaction was investigated with isobolographic and f...

  3. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.

    OpenAIRE

    Conlay, L A; Evoniuk, G; Wurtman, R.J.

    1988-01-01

    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  4. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    Science.gov (United States)

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P thick hair in Caucasian men with AGA as well as in Japanese men and women.

  5. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation.

    Science.gov (United States)

    Cheon, Yong-Pil

    2016-06-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence..

  6. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7.

    Science.gov (United States)

    Srivastava, A; Tripathi, A K

    2006-10-01

    Azospirillum brasilense is a nitrogen-fixing, root-colonizing bacterium that brings about plant-growth-promoting effects mainly because of its ability to produce phytohormones. Ethylenediamine (EDA)-resistant mutants of A. brasilense were isolated and screened for their higher ability to decrease acetylene and release ammonia in the medium. One of the mutants showed considerably higher levels of acetylene decrease and ammonia excretion. Nitrogenase activity of this mutant was relatively resistant to inhibition by NH(4)Cl. Adenosine triphosphate ribosylation of dinitrogenase reductase in the mutant did not increase even in presence of 10 mM NH(4)Cl. Although the mutant showed decreased glutamine synthetase (GS) activity, neither the levels of GS synthesized by the mutant nor the NH (4) (+) -binding site in the GS differed from those of the parent. The main reason for the release of ammonia by the mutant seems to be the fixation of higher levels of nitrogen than its GS can assimilate, as well as higher levels of adenylylation of GS, which may decrease ammonia assimilation.

  7. Identification of a dithiol-dependent nucleoside triphosphate hydrolase in Sarcocystis neurona.

    Science.gov (United States)

    Zhang, Deqing; Gaji, Rajshekhar Y; Howe, Daniel K

    2006-09-01

    A putative nucleoside triphosphate hydrolase (NTPase) gene was identified in a database of expressed sequence tags (ESTs) from the apicomplexan parasite Sarcocystis neurona. Analysis of culture-derived S. neurona merozoites demonstrated a dithiol-dependent NTPase activity, consistent with the presence of a homologue to the TgNTPases of Toxoplasma gondii. A complete cDNA was obtained for the S. neurona gene and the predicted amino acid sequence shared 38% identity with the two TgNTPase isoforms from T. gondii. Based on the obvious homology, the S. neurona protein was designated SnNTP1. The SnNTP1 cDNA encodes a polypeptide of 714 amino acids with a predicted 22-residue signal peptide and an estimated mature molecular mass of 70kDa. Southern blot analysis of the SnNTP1 locus revealed that the gene exists as a single copy in the S. neurona genome, unlike the multiple gene copies that have been observed in T. gondii and Neospora caninum. Analyses of the SnNTP1 protein demonstrated that it is soluble and secreted into the culture medium by extracellular merozoites. Surprisingly, indirect immunofluorescence analysis of intracellular S. neurona revealed apical localisation of SnNTP1 and temporal expression characteristics that are comparable with the microneme protein SnMIC10. The absence of SnNTP1 during much of endopolygeny implies that this protein does not serve a function during intracellular growth and development of S. neurona schizonts. Instead, SnNTP1 may play a role in events that occur during or proximal to merozoite egress from and/or invasion into cells.

  8. Association of guanosine triphosphate cyclohydrolase 1 gene polymorphisms with fibromyalgia syndrome in a Korean population.

    Science.gov (United States)

    Kim, Seong-Kyu; Kim, Seong-Ho; Nah, Seong-Su; Lee, Ji Hyun; Hong, Seung-Jae; Kim, Hyun-Sook; Lee, Hye-Soon; Kim, Hyoun Ah; Joung, Chung-Il; Bae, Jisuk; Choe, Jung-Yoon; Lee, Shin-Seok

    2013-03-01

    Guanosine triphosphate cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the synthesis of tetrahydrobiopterin, which is an essential cofactor in nitric oxide (NO) production. Polymorphisms in the GCH1 gene have been implicated in protection against pain sensitivity. The aim of our study was to determine whether single-nucleotide polymorphisms (SNP) in the GCH1 gene affect susceptibility and/or pain sensitivity in fibromyalgia syndrome (FM). A total of 409 patients with FM and 422 controls were enrolled. The alleles and genotypes at 4 positions [rs3783641(T>A), rs841(C>T), rs752688(C>T), and rs4411417(T>C)] in the GCH1 gene were analyzed. The associations of the GCH1 SNP with susceptibility and clinical measures in patients with FM were assessed. The frequencies of alleles and genotypes of the 4 SNP did not differ between patients with FM and healthy controls. Among 13 constructed haplotypes, we further examined 4 (CCTT, TTCT, TTCA, and CCTA) with > 1% frequency in both FM and controls. No associations of GCH1 polymorphisms with FM-related activity or severity indexes were found, although the number and total score of tender points in patients with FM differed among the 4 haplotypes (p = 0.03 and p = 0.01, respectively). The CCTA haplotype of GCH1 was associated with significantly lower pain sensitivity and occurred less frequently than the CCTT haplotype in patients with FM (p = 0.04, OR 0.45, 95% CI 0.21-0.96). Our study provides evidence that certain GCH1 haplotypes may be protective against susceptibility and pain sensitivity in FM. Our data suggest that NO is responsible for pain sensitivity in the pathogenesis of FM.

  9. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation.

    Directory of Open Access Journals (Sweden)

    Qian Feng

    Full Text Available Upon viral infections, pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs and stimulate an antiviral state associated with the production of type I interferons (IFNs and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3, a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.

  10. CaMKII Regulation of Cardiac Ryanodine Receptors and Inositol Triphosphate Receptors

    Directory of Open Access Journals (Sweden)

    Emmanuel eCamors

    2014-05-01

    Full Text Available Ryanodine receptors (RyRs and inositol triphosphate receptors (InsP3Rs are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca2+ signals, triggering muscle contraction and oscillatory Ca2+ waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca2+ release from sarcoplasmic reticulum (SR, and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca2+ signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and posttranslational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca2+ leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.

  11. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role.

    Science.gov (United States)

    Bettendorff, Lucien; Lakaye, Bernard; Kohn, Gregory; Wins, Pierre

    2014-12-01

    Thiamine triphosphate (ThTP) was discovered over 60 years ago and it was long thought to be a specifically neuroactive compound. Its presence in most cell types, from bacteria to mammals, would suggest a more general role but this remains undefined. In contrast to thiamine diphosphate (ThDP), ThTP is not a coenzyme. In E. coli cells, ThTP is transiently produced in response to amino acid starvation, while in mammalian cells, it is constitutively produced at a low rate. Though it was long thought that ThTP was synthesized by a ThDP:ATP phosphotransferase, more recent studies indicate that it can be synthesized by two different enzymes: (1) adenylate kinase 1 in the cytosol and (2) FoF1-ATP synthase in brain mitochondria. Both mechanisms are conserved from bacteria to mammals. Thus ThTP synthesis does not seem to require a specific enzyme. In contrast, its hydrolysis is catalyzed, at least in mammalian tissues, by a very specific cytosolic thiamine triphosphatase (ThTPase), controlling the steady-state cellular concentration of ThTP. In some tissues where adenylate kinase activity is high and ThTPase is absent, ThTP accumulates, reaching ≥ 70% of total thiamine, with no obvious physiological consequences. In some animal tissues, ThTP was able to phosphorylate proteins, and activate a high-conductance anion channel in vitro. These observations raise the possibility that ThTP is part of a still uncharacterized cellular signaling pathway. On the other hand, its synthesis by a chemiosmotic mechanism in mitochondria and respiring bacteria might suggest a role in cellular energetics.

  12. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting.

    Science.gov (United States)

    Swami, Rajan; Singh, Indu; Jeengar, Manish Kumar; Naidu, V G M; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Delivering chemotherapeutics by nanoparticles into tumor is impeded majorly by two factors: nonspecific targeting and inefficient penetration. Targeted delivery of anti-cancer agents solely to tumor cells introduces a smart strategy because it enhances the therapeutic index compared with untargeted drugs. The present study was performed to investigate the efficiency of adenosine (ADN) to target solid lipid nanoparticles (SLN) to over expressing adenosine receptor cell lines such as human breast cancer and prostate cancer (MCF-7 and DU-145 cells), respectively. SLN were prepared by emulsification and solvent evaporation process using docetaxel (DTX) as drug and were characterized by various techniques like dynamic light scattering, differential scanning calorimeter and transmission electron microscopy. DTX loaded SLNs were surface modified with ADN, an adenosine receptors ligand using carbodiimide coupling. Conjugation was confirmed using infrared spectroscopy and quantified using phenol-sulfuric acid method. Conjugated SLN were shown to have sustained drug release as compared to unconjugated nanoparticles and drug suspension. Compared with free DTX and unconjugated SLN, ADN conjugated SLN showed significantly higher cytotoxicity of loaded DTX, as evidenced by in vitro cell experiments. The IC50 was 0.41 μg/ml for native DTX, 0.30 μg/ml for unconjugated SLN formulation, and 0.09 μg/ml for ADN conjugated SLN formulation in MCF-7 cell lines. Whereas, in DU-145, there was 2 fold change in IC50 of ADN-SLN as compared to DTX. IC50 was found to be 0.44 μg/ml for free DTX, 0.39 μg/ml for unconjugated SLN and 0.22 μg/ml for ADN-SLN. Annexin assay and cell cycle analysis assay further substantiated the cell cytotoxicity. Fluorescent cell uptake and competitive ligand-receptor binding assay corroborated the receptor mediated endocytosis pathway indicated role of adenosine receptors in internalization of conjugated particles. Pharmacokinetic studies of lipidic

  13. Ribosome-inactivating lectins with polynucleotide:adenosine glycosidase activity.

    Science.gov (United States)

    Battelli, M G; Barbieri, L; Bolognesi, A; Buonamici, L; Valbonesi, P; Polito, L; Van Damme, E J; Peumans, W J; Stirpe, F

    1997-05-26

    Lectins from Aegopodium podagraria (APA), Bryonia dioica (BDA), Galanthus nivalis (GNA), Iris hybrid (IRA) and Sambucus nigra (SNAI), and a new lectin-related protein from Sambucus nigra (SNLRP) were studied to ascertain whether they had the properties of ribosome-inactivating proteins (RIP). IRA and SNLRP inhibited protein synthesis by a cell-free system and, at much higher concentrations, by cells and had polynucleotide:adenosine glycosidase activity, thus behaving like non-toxic type 2 (two chain) RIP. APA and SNAI had much less activity, and BDA and GNA did not inhibit protein synthesis.

  14. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.

    Science.gov (United States)

    Nguyen, Michael D; Lee, Scott T; Ross, Ashley E; Ryals, Matthew; Choudhry, Vishesh I; Venton, B Jill

    2014-01-01

    Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N(6)-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.

  15. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  16. Effect of phentolamine on the hyperemic response to adenosine in patients with microvascular disease.

    Science.gov (United States)

    Aarnoudse, Wilbert; Geven, Maartje; Barbato, Emanuele; Botman, Kees-joost; De Bruyne, Bernard; Pijls, Nico H J

    2005-12-15

    For accurate measurement of the fractional flow reserve (FFR) of the myocardium, the presence of maximum hyperemia is of paramount importance. It has been suggested that the hyperemic effect of the conventionally used hyperemic stimulus, adenosine, could be submaximal in patients who have microvascular dysfunction and that adding alpha-blocking agents could augment the hyperemic response in these patients. We studied the effect of the nonselective alpha-blocking agent phentolamine, which was administered in addition to adenosine after achieving hyperemia, in patients who had microvascular disease and those who did not. Thirty patients who were referred for percutaneous coronary intervention were selected. Of these 30 patients, 15 had strong indications for microvascular disease and 15 did not. FFR was measured using intracoronary adenosine, intravenous adenosine, and intracoronary papaverine before and after intracoronary administration of the nonselective alpha blocker phentolamine. In patients who did not have microvascular disease, no differences in hyperemic response to adenosine were noted, whether or not alpha blockade was given before adenosine administration; FFR levels before and after phentolamine were 0.76 and 0.75, respectively, using intracoronary adenosine (p = 0.10) and 0.75 and 0.74, respectively, using intravenous adenosine (p = 0.20). In contrast, in patients who had microvascular disease, some increase in hyperemic response was observed after administration of phentolamine; FFR levels decreased from 0.74 to 0.70 using intracoronary adenosine (p = 0.003) and from 0.75 to 0.72 using intravenous adenosine (p = 0.04). Although statistically significant, the observed further decrease in microvascular resistance after addition of phentolamine was small and did not affect clinical decision making in any patient. In conclusion, when measuring FFR, routinely adding an alpha-blocking agent to adenosine does not affect clinical decision making.

  17. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    Science.gov (United States)

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  18. Different Modulating Effects of Adenosine on Neonatal and Adult Polymorphonuclear Leukocytes

    Directory of Open Access Journals (Sweden)

    Pei-Chen Hou

    2012-01-01

    Full Text Available Polymorphonuclear leukocytes (PMNs are the major leukocytes in the circulation and play an important role in host defense. Intact PMN functions include adhesion, migration, phagocytosis, and reactive oxygen species (ROS release. It has been known for a long time that adenosine can function as a modulator of adult PMN functions. Neonatal plasma has a higher adenosine level than that of adults; however, little is known about the modulating effects of adenosine on neonatal PMNs. The aim of this study was to investigate the effects of adenosine on neonatal PMN functions. We found that neonatal PMNs had impaired adhesion, chemotaxis, and ROS production abilities, but not phagocytosis compared to adult PMNs. As with adult PMNs, adenosine could suppress the CD11b expressions of neonatal PMNs, but had no significant suppressive effect on phagocytosis. In contrast to adult PMNs, adenosine did not significantly suppress chemotaxis and ROS production of neonatal PMNs. This may be due to impaired phagocyte reactions and a poor neonatal PMN response to adenosine. Adenosine may not be a good strategy for the treatment of neonatal sepsis because of impaired phagocyte reactions and poor response.

  19. The effect of circulating adenosine on cerebral haemodynamics and headache generation in healthy subjects

    DEFF Research Database (Denmark)

    Birk, S; Petersen, K.A.; Kruuse, Christina Rostrup

    2005-01-01

    been investigated in man and reports regarding the effect of intravenous adenosine on cerebral blood flow are conflicting. Twelve healthy participants received adenosine 80, 120 microg kg(-1) min(-1) and placebo intravenously for 20 min, in a double-blind, three-way, crossover, randomized design...

  20. Genetically Controlled Upregulation of Adenosine A(1) Receptor Expression Enhances the Survival of Primary Cortical Neurons

    NARCIS (Netherlands)

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-01-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are i

  1. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2012-07-07

    Adenosine is a neuromodulator that regulates neurotransmission. Adenosine can be monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes and ATP is a possible interferent in vivo because the electroactive moiety, adenine, is the same for both molecules. In this study, we investigated carbon-fiber microelectrodes coated with Nafion and carbon nanotubes (CNTs) to enhance the sensitivity of adenosine and decrease interference by ATP. Electrodes coated in 0.05 mg mL(-1) CNTs in Nafion had a 4.2 ± 0.2 fold increase in current for adenosine, twice as large as for Nafion alone. Nafion-CNT electrodes were 6 times more sensitive to adenosine than ATP. The Nafion-CNT coating did not slow the temporal response of the electrode. Comparing different purine bases shows that the presence of an amine group enhances sensitivity and that purines with carbonyl groups, such as guanine and hypoxanthine, do not have as great an enhancement after Nafion-CNT coating. The ribose group provides additional sensitivity enhancement for adenosine over adenine. The Nafion-CNT modified electrodes exhibited significantly more current for adenosine than ATP in brain slices. Therefore, Nafion-CNT modified electrodes are useful for sensitive, selective detection of adenosine in biological samples.

  2. Photomodulation of G protein-coupled adenosine receptors by a novel light-switchable ligand.

    Science.gov (United States)

    Bahamonde, María Isabel; Taura, Jaume; Paoletta, Silvia; Gakh, Andrei A; Chakraborty, Saibal; Hernando, Jordi; Fernández-Dueñas, Víctor; Jacobson, Kenneth A; Gorostiza, Pau; Ciruela, Francisco

    2014-10-15

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N(6) substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities.

  3. Adenosine testing after cryoballoon pulmonary vein isolation improves long-term clinical outcome

    NARCIS (Netherlands)

    Y. van Belle (Yves); P. Janse (Petter); N. de Groot (Natasja); W. Anné (Wim); D.A.M.J. Theuns (Dominic); L.J.L.M. Jordaens (Luc)

    2012-01-01

    textabstractBackground Adenosine infusion after pulmonary vein isolation (PVI) with radiofrequency energy reveals dormant muscular sleeves and predicts atrial fibrillation (AF) recurrence. The aim of our study was to determine whether adenosine could reveal dormant PV sleeves after cryoballoon isola

  4. The ischemic preconditioning effect of adenosine in patients with ischemic heart disease

    Directory of Open Access Journals (Sweden)

    Berglund Margareta

    2009-11-01

    Full Text Available Abstract Introduction In vivo and in vitro evidence suggests that adenosine and its agonists play key roles in the process of ischemic preconditioning. The effects of low-dose adenosine infusion on ischemic preconditioning have not been thoroughly studied in humans. Aims We hypothesised that a low-dose adenosine infusion could reduce the ischemic burden evoked by physical exercise and improve the regional left ventricular (LV systolic function. Materials and methods We studied nine severely symptomatic male patients with severe coronary artery disease. Myocardial ischemia was induced by exercise on two separate occasions and quantified by Tissue Doppler Echocardiography. Prior to the exercise test, intravenous low-dose adenosine or placebo was infused over ten minutes according to a randomized, double blind, cross-over protocol. The LV walls were defined as ischemic if a reduction, no increment, or an increment of Results PSV increased from baseline to maximal exercise in non-ischemic walls both during placebo (P = 0.0001 and low-dose adenosine infusion (P = 0.0009. However, in the ischemic walls, PSV increased only during low-dose adenosine infusion (P = 0.001, while no changes in PSV occurred during placebo infusion (P = NS. Conclusion Low-dose adenosine infusion reduced the ischemic burden and improved LV regional systolic function in the ischemic walls of patients with exercise-induced myocardial ischemia, confirming that adenosine is a potential preconditioning agent in humans.

  5. Adenosine Amine Congener as a Cochlear Rescue Agent

    Directory of Open Access Journals (Sweden)

    Srdjan M. Vlajkovic

    2014-01-01

    Full Text Available We have previously shown that adenosine amine congener (ADAC, a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg was administered intraperitoneally to Wistar rats (8–10 weeks old at intervals (6–72 hours after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours. Hearing sensitivity was assessed using auditory brainstem responses (ABR before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz. Pharmacokinetic studies demonstrated a short (5 min half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.

  6. Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Peter A Keyel

    Full Text Available Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA, which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.

  7. Adenosine signaling and the energetic costs of induced immunity.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2015-04-01

    Full Text Available Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected.

  8. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Kathryn Victoria Whitmore

    2016-08-01

    Full Text Available Adenosine deaminase (ADA deficiency is best known as a form of severe combined immunodeficiency (SCID which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences.

  9. Novel trypanocidal analogs of 5'-(methylthio)-adenosine.

    Science.gov (United States)

    Sufrin, Janice R; Spiess, Arthur J; Marasco, Canio J; Rattendi, Donna; Bacchi, Cyrus J

    2008-01-01

    The purine nucleoside 5'-deoxy-5'-(hydroxyethylthio)-adenosine (HETA) is an analog of the polyamine pathway metabolite 5'-deoxy-5'-(methylthio)-adenosine (MTA). HETA is a lead structure for the ongoing development of selectively targeted trypanocidal agents. Thirteen novel HETA analogs were synthesized and examined for their in vitro trypanocidal activities against bloodstream forms of Trypanosoma brucei brucei LAB 110 EATRO and at least one drug-resistant Trypanosoma brucei rhodesiense clinical isolate. New compounds were also assessed in a cell-free assay for their activities as substrates of trypanosome MTA phosphorylase. The most potent analog in this group was 5'-deoxy-5'-(hydroxyethylthio)-tubercidin, whose in vitro cytotoxicity (50% inhibitory concentration [IC50], 10 nM) is 45 times greater than that of HETA (IC50, 450 nM) against pentamidine-resistant clinical isolate KETRI 269. Structure-activity analyses indicate that the enzymatic cleavage of HETA analogs by trypanosome MTA phosphorylase is not an absolute requirement for trypanocidal activity. This suggests that additional biochemical mechanisms are associated with the trypanocidal effects of HETA and its analogs.

  10. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2010-01-01

    femoral artery infusion of adenosine (1 mg * min(-1) * litre thigh volume(-1)), which has previously been shown to induce maximal whole thigh blood flow of ~8 L/min. This response was compared to the blood flow induced by moderate-high intensity one-leg dynamic knee extension exercise. Adenosine increased...... muscle. Additionally, it remains to be determined what proportion of adenosine-induced flow elevation is specifically directed to muscle only. In the present study we measured thigh muscle capillary nutritive blood flow in nine healthy young men using positron emission tomography at rest and during...... muscle blood flow on average to 40 +/- 7 ml. min(-1) per 100g(-1) of muscle and an aggregate value of 2.3 +/- 0.6 L * min(-1) for the whole thigh musculature. Adenosine also induced a substantial change in blood flow distribution within individuals. Muscle blood flow during adenosine infusion...

  11. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Thaning, Pia;

    2010-01-01

    One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate....... In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion...... levels. These findings provide novel insight into the role of adenosine in skeletal muscle blood flow regulation and vascular function by revealing that both interstitial and plasma adenosine have a stimulatory effect on NO and prostacyclin formation. In addition, both skeletal muscle and microvascular...

  12. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    Science.gov (United States)

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...... of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  14. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huicong Kang; Qi Hu; Xiaoyan Liu; Yinhe Liu; Feng Xu; Xiang Li; Suiqiang Zhu

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges.

  15. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Science.gov (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  16. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    Science.gov (United States)

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma.

  17. Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.

    Directory of Open Access Journals (Sweden)

    Sébastien Plumet

    Full Text Available BACKGROUND: Double stranded RNA (dsRNA is widely accepted as an RNA motif recognized as a danger signal by the cellular sentries. However, the biology of non-segmented negative strand RNA viruses, or Mononegavirales, is hardly compatible with the production of such dsRNA. METHODOLOGY AND PRINCIPAL FINDINGS: During measles virus infection, the IFN-beta gene transcription was found to be paralleled by the virus transcription, but not by the virus replication. Since the expression of every individual viral mRNA failed to activate the IFN-beta gene, we postulated the involvement of the leader RNA, which is a small not capped and not polyadenylated RNA firstly transcribed by Mononegavirales. The measles virus leader RNA, synthesized both in vitro and in vivo, was efficient in inducing the IFN-beta expression, provided that it was delivered into the cytosol as a 5'-trisphosphate ended RNA. The use of a human cell line expressing a debilitated RIG-I molecule, together with overexpression studies of wild type RIG-I, showed that the IFN-beta induction by virus infection or by leader RNA required RIG-I to be functional. RIG-I binds to leader RNA independently from being 5-trisphosphate ended; while a point mutant, Q299A, predicted to establish contacts with the RNA, fails to bind to leader RNA. Since the 5'-triphosphate is required for optimal RIG-I activation but not for leader RNA binding, our data support that RIG-I is activated upon recognition of the 5'-triphosphate RNA end. CONCLUSIONS/SIGNIFICANCE: RIG-I is proposed to recognize Mononegavirales transcription, which occurs in the cytosol, while scanning cytosolic RNAs, and to trigger an IFN response when encountering a free 5'-triphosphate RNA resulting from a mislocated transcription activity, which is therefore considered as the hallmark of a foreign invader.

  18. Inhibition by adenosine of histamine and leukotriene release from human basophils.

    Science.gov (United States)

    Peachell, P T; Lichtenstein, L M; Schleimer, R P

    1989-06-01

    Adenosine inhibited the release of histamine and leukotriene C4 (LTC4) from immunologically-activated basophils in a dose-dependent manner. Structural congeners of adenosine also attenuated the elaboration of these two mediators from stimulated basophils and a rank order of potency for the inhibition was observed following the sequence 2-chloroadenosine greater than or equal to N-ethylcarboxamidoadenosine (NECA) greater than adenosine greater than or equal to R-phenylisopropyladenosine (R-PIA) greater than or equal to S-PIA. These same nucleosides modulated the generation of LTC4 more potently than the release of histamine. A number of methylxanthines, which are antagonists of cell surface adenosine receptors, reversed the inhibition by adenosine and its congeners of the release of both histamine and LTC4 to varying extents. Dipyridamole and nitrobenzylthioinosine (NBTI), agents that block the intracellular uptake of adenosine, antagonized the inhibition of histamine release by adenosine (and 2-chloroadenosine) but failed to reverse the attenuation of LTC4 generation by the nucleoside. These same uptake blockers were unable to antagonize the inhibitory effects of NECA on either histamine or LTC4 release. In purified basophils, NECA and R-PIA, and in that order of decreasing reactivity, increased total cell cyclic adenosine monophosphate (cAMP) levels and inhibited the stimulated release of mediators. In total, these results suggest that the basophil possesses a cell surface adenosine receptor which, on the basis of both pharmacological and biochemical criteria, most closely conforms to an A2/Ra-like receptor. However, in addition to an interaction at the cell surface, studies with agents that block the intracellular uptake of adenosine suggest that the nucleoside may also exert intracellular effects when countering the release of histamine (but not LTC4).

  19. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2014-08-05

    Fast-scan cyclic voltammetry (FSCV) is an electrochemistry technique which allows subsecond detection of neurotransmitters in vivo. Adenosine detection using FSCV has become increasingly popular but can be difficult because of interfering agents which oxidize at or near the same potential as adenosine. Triangle shaped waveforms are traditionally used for FSCV, but modified waveforms have been introduced to maximize analyte sensitivity and provide stability at high scan rates. Here, a modified sawhorse waveform was used to maximize the time for adenosine oxidation and to manipulate the shapes of cyclic voltammograms (CVs) of analytes which oxidize at the switching potential. The optimized waveform consists of scanning at 400 V/s from -0.4 to 1.35 V and holding briefly for 1.0 ms followed by a ramp back down to -0.4 V. This waveform allows the use of a lower switching potential for adenosine detection. Hydrogen peroxide and ATP also oxidize at the switching potential and can interfere with adenosine measurements in vivo; however, their CVs were altered with the sawhorse waveform and they could be distinguished from adenosine. Principal component analysis (PCA) was used to determine that the sawhorse waveform was better than the triangle waveform at discriminating between adenosine, hydrogen peroxide, and ATP. In slices, mechanically evoked adenosine was identified with PCA and changes in the ratio of ATP to adenosine were observed after manipulation of ATP metabolism by POM-1. The sawhorse waveform is useful for adenosine, hydrogen peroxide, and ATP discrimination and will facilitate more confident measurements of these analytes in vivo.

  20. Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation.

    Science.gov (United States)

    Bui, Yen Kim; Sternberg, Paul W

    2002-05-01

    Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP(3)) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP(3) signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23-mediated IP(3) signaling pathway genes. We infer that IPP-5 negatively regulates IP(3) signaling to ensure proper spermathecal contraction.

  1. The Regulation of Skeletal Muscle Active Hyperemia: The Differential Role of Adenosine in Muscles of Varied Fiber Types

    Science.gov (United States)

    1986-04-21

    response. Proctor (1984) found theophylline, a competitiv~ antagonist of adenosine, attenuated the response in the low-oxidative hamster cremaster ...exogenously applied adenosine in hamster cremaster muscle but did not affect the vascular response to muscle stimulation. Differences in the exact drugs...found that the addition of adenosine deaminase to the suffusion solution adjacent to the arterioles of the transilluminated hamster cremaster muscle

  2. 75 FR 8981 - Prospective Grant of Exclusive License: Treatment of Glaucoma by Administration of Adenosine A3...

    Science.gov (United States)

    2010-02-26

    ... Glaucoma by Administration of Adenosine A3 Antagonists AGENCY: National Institutes of Health, Public Health.../092,292, entitled ``A3 Adenosine Receptor Antagonists,'' filed July 10, 1998 , PCT Application PCT/US99/ 15562, entitled''A3 Adenosine Receptor Antagonists,'' filed July 2, 1999 , U.S. Patent...

  3. Use of a Novel 5′-Regioselective Phosphitylating Reagent for One-Pot Synthesis of Nucleoside 5′-Triphosphates from Unprotected Nucleosides

    Science.gov (United States)

    Caton-Williams, Julianne; Hoxhaj, Rudiona; Fiaz, Bilal

    2013-01-01

    The 5′-triphosphates are the building blocks for the enzymatic synthesis of DNAs and RNAs. This unit presents a protocol for the convenient synthesis of 2′-deoxyribo- and ribo-nucleoside 5′-triphosphates (dNTPs and NTPs) containing all the natural bases and the modified bases. This one-pot synthesis can also be applied to prepare the triphosphate analogs that contain sulfur or selenium atoms replacing the non-bridging oxygen atoms of the alpha phosphates of the triphosphates. These S- or Se-modified dNTPs and NTPs can be used to prepare diastereomerically-pure phosphorothioate nucleic acids (PS-NAs) or phosphoroselenoate nucleic acids (PSe-NAs, i.e., one type of selenium-derivatized nucleic acids: SeNA). Even without extensive purification, the synthesized dNTPs or NTPs are of high quality and can be directly used in DNA polymerization or RNA transcription. Synthesis and purification of the 5′-triphosphates, analysis and confirmation of natural and sulfur-or selenium-modified nucleic acids are described in this protocol unit. PMID:23512692

  4. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability.

    Science.gov (United States)

    Mugford, Sarah G; Matthewman, Colette A; Hill, Lionel; Kopriva, Stanislav

    2010-01-04

    In Arabidopsis thaliana, adenosine-5'-phosphosulfate kinase (APK) provides activated sulfate for sulfation of secondary metabolites, including the glucosinolates. We have successfully isolated three of the four possible triple homozygous mutant combinations of this family. The APK1 isoform alone was sufficient to maintain WT levels of growth and development. Analysis of apk1 apk2 apk3 and apk1 apk3 apk4 mutants suggests that APK3 and APK4 are functionally redundant, despite being located in cytosol and plastids, respectively. We were, however, unable to isolate apk1 apk3 apk4 mutants, most probably because the apk1 apk3 apk4 triple mutant combination is pollen lethal. Therefore, we conclude that APS kinase is essential for plant reproduction and viability.

  5. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  6. Late-onset adenosine deaminase deficiency presenting with Heck's disease.

    Science.gov (United States)

    Artac, Hasibe; Göktürk, Bahar; Bozdemir, Sefika Elmas; Toy, Hatice; van der Burg, Mirjam; Santisteban, Ines; Hershfield, Michael; Reisli, Ismail

    2010-08-01

    Focal epithelial hyperplasia, also known as Heck's disease, is a rare but distinctive entity of viral etiology with characteristic clinical and histopathological features. It is a benign, asymptomatic disease of the oral mucosa caused by human papilloma viruses (HPV). Previous studies postulated an association between these lesions and immunodeficiency. Genetic deficiency of adenosine deaminase (ADA) results in varying degrees of immunodeficiency, including neonatal onset severe combined immunodeficiency (ADA-SCID), and milder, later onset immunodeficiency. We report a 12-year-old girl with the late onset-ADA deficiency presenting with Heck's disease. Our case report should draw attention to the possibility of immunodeficiency in patients with HPV-induced focal epithelial hyperplasia.

  7. Adenosine for postoperative analgesia: A systematic review and meta-analysis

    Science.gov (United States)

    2017-01-01

    Purpose Perioperative infusion of adenosine has been suggested to reduce the requirement for inhalation anesthetics, without causing serious adverse effects in humans. We conducted a meta-analysis of randomized controlled trials evaluating the effect of adenosine on postoperative analgesia. Methods We retrieved articles in computerized searches of Scopus, Web of Science, PubMed, EMBASE, and Cochrane Library databases, up to July 2016. We used adenosine, postoperative analgesia, and postoperative pain(s) as key words, with humans, RCT, and CCT as filters. Data of eligible studies were extracted, which included pain scores, cumulative opioid consumption, adverse reactions, and vital signs. Overall incidence rates, relative risk (RR), and 95% confidence intervals (CI) were calculated employing fixed-effects or random-effects models, depending on the heterogeneity of the included trials. Results In total, 757 patients from 9 studies were included. The overall effect of adenosine on postoperative VAS/VRS scores and postoperative opioid consumption was not significantly different from that of controls (P >0.1). The occurrence of PONV and pruritus was not statistically significantly different between an adenosine and nonremifentanil subgroup (P >0.1), but the rate of PONV occurrence was greater in the remifentanil subgroup (P 0.1). Conclusion Adenosine has no analgesic effect or prophylactic effect against PONV, but reduce systolic blood pressure and heart rates. Adenosine may benefit patients with hypertension, ischemic heart disease, and tachyarrhythmia, thereby improving cardiac function. PMID:28333936

  8. The Role of Adenosine in Pulmonary Vein Isolation: A Critical Review

    Directory of Open Access Journals (Sweden)

    Paolo D. Dallaglio

    2016-01-01

    Full Text Available The cornerstone of atrial fibrillation (AF ablation is pulmonary vein isolation (PVI, which can be achieved in more than 95% of patients at the end of the procedure. However, AF recurrence rates remain high and are related to recovery of PV conduction. Adenosine testing is used to unmask dormant pulmonary vein conduction (DC. The aim of this study is to review the available literature addressing the role of adenosine testing and determine the impact of ablation at sites of PV reconnection on freedom from AF. Adenosine infusion, by restoring the excitability threshold, unmasks reversible injury that could lead to recovery of PV conduction. The studies included in this review suggest that adenosine is useful to unmask nontransmural lesions at risk of reconnection and that further ablation at sites of DC is associated with improvement in freedom from AF. Nevertheless it has been demonstrated that adenosine is not able to predict all veins at risk of later reconnection, which means that veins without DC are not necessarily at low risk. The role of the waiting period in the setting of adenosine testing has also been analyzed, suggesting that in the acute phase adenosine use should be accompanied by enough waiting time.

  9. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    Science.gov (United States)

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  10. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Schousboe, A.; Frandsen, A.; Drejer, J. (Univ. of Copenhagen (Denmark))

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

  11. Role of adenosine signalling and metabolism in β-cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  12. Smoke Extract Impairs Adenosine Wound Healing. Implications of Smoke-Generated Reactive Oxygen Species

    Science.gov (United States)

    Zimmerman, Matthew C.; Zhang, Hui; Castellanos, Glenda; O’Malley, Jennifer K.; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H.; Wyatt, Todd A.

    2013-01-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5′-(N-cyclopropyl)–carboxamido–adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract–mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate–dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species–dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of

  13. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    Science.gov (United States)

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  14. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    Science.gov (United States)

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  15. Role of adenosine A2b receptor overexpression in tumor progression.

    Science.gov (United States)

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  16. An STS in the human adenosine deaminase gene (located 20q12-q13. 11)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, B.C.; States, J.C. (Wayne State Univ., Detroit, MI (United States))

    1991-09-25

    The human adenosine deaminase gene has been characterized in detail. The adenosine gene product, as part of the purine catabolic pathway, catalyzes the irreversible deamination of adenosine and deoxyadenosine. Deficiency of this activity in humans is associated with an autosomal recessive form of severe combined immunodeficiency disease. Recently, this genetic deficiency disease has been targeted for the first attempts at gene therapy in humans. Using the polymerase chain reaction (PCR), a fragment of the expected size (160 bp) was amplified from human genomic DNA.

  17. 基于三磷酸腺苷调节的分子马达单向能量跃迁模型%The single-direction energy transition model of molecular motor based on the control of adenosine triphosphate

    Institute of Scientific and Technical Information of China (English)

    李晨璞; 韩英荣; 展永; 谢革英; 胡金江; 张礼刚; 贾利云

    2013-01-01

    分子马达的梯跳运动和在过阻尼溶液中动力学原理尚未揭示清楚,从分子马达输运特点和实验现象出发,构建满足朗之万方程的单向能量跃迁模型,并通过Monte Carlo方法分析了分子马达的随机动力学行为。结果表明,在合适的跃迁能量作用下,分子马达可以利用噪声进行稳定的梯跳运动和有效的输运,但负载力会减弱分子马达系统的输运能力;轨道周期势虽影响分子马达速度的大小但不会改变其运动方向,分子马达运动方向由跃迁能量决定;另外,虽然在不同的噪声强度时平均速度不为零,但是分子马达系统的高效输运对噪声有一定选择性。%The dynamic principle of molecular motor transport in overdamped solution remains unclear. Starting from the transport charac-teristics and phenomenon of the molecular motor system, the single-direction energy transition model is established, which conforms to the Langevin equation, and the stochastic dynamics of molecular motors is analyzed by Monte Carlo simulations. Results show that with the right transition energy, molecular motors could take a stable stepping motion and effective transport by means of the environment noise, and the load force can weaken material transportation of the molecular motor system. The potential field between a molecular motor and its orbit can affect the magnitude of the velocity of motor, but cannot change the direction of the velocity, the direction of motion of the molecular motor therefore is adjusted by the transition energy of the motor. In addition, although the average velocity is not zero for different noise intensities, the efficient transport of a molecular motor system indicates that the system is selective for the noise intensity.

  18. In Vitro Tumor Chemoesensitivity Assay of Oral Carcinoma by Adenosine Triphosphate Bioluminescence Method%ATP生物荧光肿瘤体外药物敏感性检测在口腔癌化疗中的应用

    Institute of Scientific and Technical Information of China (English)

    王一凤; 乐飞

    2007-01-01

    目的 探讨肿瘤体外药敏实验ATP生物荧光法(ATP-TCA)在口腔癌化疗中的应用.方法 应用ATP生物荧光肿瘤体外药物敏感性检测法,检测48例口腔癌组织对6种常用化疗方案的敏感性.结果 组织标本的可评估率为92.0%.口腔癌对TAT+DDP最敏感,体外有效率为83.3%,其次为5-Fu+DDP(75.0%),BLM(54.2%),DDP(60.4%),MTX(45.8%),5-Fu(62.5%).化疗药物对口腔癌的杀伤作用具有较强的个体差异性.结论 TP生物荧光肿瘤体外药物敏感性检测法敏感性高、稳定性好、简便、快速、检测结果可靠,可用于临床制定个体化的化疗方案.

  19. Studies on adenosine triphosphate transphosphorylases. XVIII. Synthesis and preparation of peptides and peptide fragments of rabbit muscle ATP-AMP transphosphorylase (adenylate kinase) and their nucleotide-binding properties.

    Science.gov (United States)

    Kuby, S A; Hamada, M; Johnson, M S; Russell, G A; Manship, M; Palmieri, R H; Fleming, G; Bredt, D S; Mildvan, A S

    1989-08-01

    Two peptide fragments, derived from the head and tail of rabbit muscle myokinase, were found to possess remarkable and specific ligand-binding properties (Hamada et al., 1979). By initiating systematic syntheses and measurements of equilibrium substrate-binding properties of these two sets of peptides, or portions thereof, which encompass the binding sites for (a) the magnesium complexes of the nucleotide substrates (MgATP2- and MgADP-) and (b) the uncomplexed nucleotide substrates (ADP3- and AMP2-) of rabbit muscle myokinase, some of the requirements for binding of the substrates to ATP-AMP transphosphorylase are being deduced and chemically outlined. One requirement for tight nucleotide binding appears to be a minimum peptide length of 15-25 residues. In addition, Lys-172 and/or Lys-194 may be involved in the binding of epsilon AMP. The syntheses are described as a set of peptides corresponding to residues 31-45, 20-45, 5-45, and 1-45, and a set of peptides corresponding to residues 178-192, 178-194, and 172-194 of rabbit muscle adenylate kinase. The ligand-binding properties of the first set of synthetic peptides to the fluorescent ligands: epsilon MgATP/epsilon ATP and epsilon MgADP/epsilon ADP are quantitatively presented in terms of their intrinsic dissociation constants (K'd) and values of N (maximal number of moles bound per mole of peptide); and compared with the peptide fragment MT-I (1-44) obtained from rabbit muscle myokinase (Kuby et al., 1984) and with the native enzyme (Hamada et al., 1979). In addition, the values of N and K'd are given for the second set of synthetic peptides to the fluorescent ligands epsilon AMP and epsilon ADP as well as for the peptide fragments MT-XII(172-194) and CB-VI(126-194) (Kuby et al., 1984) and, in turn, compared with the native enzyme. A few miscellaneous dissociation constants which had been derived kinetically are also given for comparison (e.g., the Ki for epsilon AMP and the value of KMg epsilon ATP obtained for the native enzyme) (Hamada and Kuby, 1978), and the K'd measured for Cr3+ ATP [corrected] and the synthetic peptide I1-45 (Fry et al., 1985b).

  20. 三磷酸腺苷致室性心律失常的机制研究%A study on the mechanism of ventricular arrhythmias induced by adenosine triphosphate

    Institute of Scientific and Technical Information of China (English)

    余更生; 钱永如; 田杰; 张德蓉; 钟家蓉; 刘晓燕

    2002-01-01

    目的:研究三磷酸腺苷(ATP)对正常和存在触发活动的兔在体心脏电生理作用,以探讨ATP致室性心律失常的机制.方法:应用接触电极记录心内膜单相动作电位(MAP)技术,观察ATP静脉快速注射对正常心脏MAP变化和氯化铯(CsCl)诱发触发活动时使用ATP对心脏的影响.结果:ATP对正常心脏的MAP振幅(MAPA)和0相最大上升速率(Vmax)影响不大,在初期心率减慢不明显,MAP时程(MAPD90)明显延长,并能诱发早期后除极(EAD),后期心率明显抑制,EAD消失,而对存在氯化铯(CsCi)诱发出EAD的心脏,具有双重作用,在作用初期对后除极(EAD或DAD)具有短暂促进作用,尔后迅速抑制.结论:ATP对不同心脏状态,有不同作用机制,表现为兴奋和抑制双重作用,并具有剂量相关性,值得临床使用上重视.

  1. Profil Kinetik dan Efektivitas Enrofloksasin yang Dikombinasikan dengan BioATP dalam Mengatasi Coxiella burnetii (KINETIC PROFILE AND EFFECTIVITY OF ENROFLOXACINE WITH BIO ADENOSIN TRIPHOSPHATE SUPPLEMENTATION AGAINST COXIELLA BURNETII

    Directory of Open Access Journals (Sweden)

    Andriyanto .

    2013-11-01

    Full Text Available Coxiella burnetii belongs to rikettsia group living obligate intracellularly and as the agent of zoonosisQ fever. Enrofloxacine is an antibiotic in quinolon group used to treat infection of C. burnetii in chicken,goat, calve, pig, dog, cat,  and horse. From ruminant practical experience, enrofloxacine if combined withBioATP  can enhance the enrofloxacine activity. Research for the effecivity of enrofloxacine and BioATP totreat C. burnetii has never been carried out. The research was conducted to explore effect of enrofloxacinewith supplementation BioATP against C. burnetii. Enrofloxacine pharmacokinetic study was carried outby using simental beef as an experimental animals. The effectivity of BioATP supplementation onenrofloxacine activity to treat C. burnetii was tested by using Vero cell tissue culture. The results showedthat combination of enrofloxacine and BioATP increased kinetic profile of enrofloxacine in term of onset,duration, pharmacology intensity, and bioavailaibility. Enrofloxacine had activity to treat C. burnetii withvalue of minimal inhibitory concentration (MIC at 1-2 ppm and value of minimal bactericidal concentrationat 4 ppm. Supplementation of BioATP improved the effectivity of enrofloxacine in treating C. burnetii.

  2. Evaluation of Adenosine Triphosphate-Binding Cassette Transporter A1 (ABCA1) R219K and C-Reactive Protein Gene (CRP) +1059G/C Gene Polymorphisms in Susceptibility to Coronary Heart Disease.

    Science.gov (United States)

    Li, Jing-Fang; Peng, Dian-Ying; Ling, Mei; Yin, Yong

    2016-08-25

    BACKGROUND This meta-analysis investigated the correlation of ABCA1 R219K and C-Reactive Protein Gene (CRP) +1059G/C gene polymorphisms with susceptibility to coronary heart disease (CHD). MATERIAL AND METHODS We searched PubMed, Springer link, Wiley, EBSCO, Ovid, Wanfang database, VIP database, and China National Knowledge Infrastructure (CNKI) databases to retrieve published studies by keyword. Searches were filtered using our stringent inclusion and exclusion criteria. Resultant high-quality data collected from the final selected studies were analyzed using Comprehensive Meta-analysis 2.0 software. Eleven case-control studies involving 3053 CHD patients and 3403 healthy controls met our inclusion criteria. Seven studies were conducted in Asian populations, 3 studies were done in Caucasian populations, and 1 was in an African population. RESULTS Our major finding was that ABCA1 R219K polymorphism increased susceptibility to CHD in allele model (OR=0.729, 95% CI=0.559~0.949, P=0.019) and dominant model (OR=0.698, 95% CI=0.507~0.961, P=0.027). By contrast, we were unable to find any significant association between the CRP +1059G/C polymorphism and susceptibility to CHD (allele model: OR=1.170, 95% CI=0.782~1.751, P=0.444; dominant model: OR=1.175, 95% CI=0.768~1.797, P=0.457). CONCLUSIONS This meta-analysis provides convincing evidence that polymorphism of ABCA1 R219K is associated with susceptibility to CHD while the CRP +1059G/C polymorphism appears to have no correlation with susceptibility to CHD.

  3. The Dynamics of the Microbial Population as Measured by the Quantification of adenosine 5'-triphosphate (ATP) at Three Sampling Locations Within the North Inlet Estuary, Georgetown, SC: 1981-1985.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Water samples were collected daily at approximately 10:00 AM, from a depth of 50 cm at three stations, and transported immediately to the laboratory. The three...

  4. Analysis of the effect of the bovine adenosine triphosphate-binding cassette transporter G2 single nucleotide polymorphism Y581S on transcellular transport of veterinary drugs using new cell culture models.

    Science.gov (United States)

    Real, R; González-Lobato, L; Baro, M F; Valbuena, S; de la Fuente, A; Prieto, J G; Alvarez, A I; Marques, M M; Merino, G

    2011-12-01

    In commercial dairy production, the risk of drug residues and environmental pollutants in milk from ruminants has become an outstanding problem. One of the main determinants of active drug secretion into milk is the ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP). It is located in several organs associated with drug absorption, metabolism, and excretion, and its expression is highly induced during lactation in the mammary gland of ruminants, mice, and humans. As a consequence, potential contamination of milk could expose suckling infants to xenotoxins. In cows, a SNP for this protein affecting quality and quantity of milk production has been described previously (Y581S). In this study, our main purpose was to determine whether this polymorphism has an effect on transcellular transport of veterinary drugs because this could alter substrate pharmacokinetics and milk residues. We stably expressed the wild-type bovine ABCG2 and the Y581S variant in Madin-Darby canine kidney epithelial cells (MDCKII) and MEF3.8 cell lines generating cell models in which the functionality of the bovine transporter could be addressed. Functional studies confirmed the greater functional activity in mitoxantrone accumulation assays for the Y581S variant with a greater relative V(MAX) value (P = 0.040) and showed for the first time that the Y581S variant presents greater transcellular transport of the model ABCG2 substrate nitrofurantoin (P = 0.024) and of 3 veterinary antibiotics, the fluoroquinolone agents enrofloxacin (P = 0.035), danofloxacin (P = 0.001), and difloxacin (P = 0.008), identified as new substrates of the bovine ABCG2. In addition, the inhibitory effect of the macrocyclic lactone ivermectin on the activity of wild-type bovine ABCG2 and the Y581S variant was also confirmed, showing a greater inhibitory potency on the wild-type protein at all the concentrations tested (5 μM, P = 0.017; 10 μM, P = 0.001; 25 μM, P = 0.008; and 50 μM, P = 0.003). Differential transport activity depending on the genotype together with the differential inhibition pattern might have clinical consequences, including changes in substrate pharmacokinetics (and subsequently pharmacodynamics) and more specifically, changes in secretion of ABCG2 substrates into milk, potentially implying important consequences to veterinary therapeutics.

  5. Study on the Practicability of Bacterial Endotoxins Test for Adenosine Disodium Triphosphate Raw Material%三磷酸腺苷二钠原料药的细菌内毒素检查法可行性研究

    Institute of Scientific and Technical Information of China (English)

    李薇; 刘肃; 何华红; 吴婷

    2010-01-01

    目的:建立三磷酸腺苷二钠原料药中细菌内毒素的鲎试剂检查方法.方法:复核鲎试剂标示灵敏度,确定样品细菌内毒素限值;通过干扰预试验确定样品稀释倍数,正式干扰试验确定样品的最大无干扰浓度,根据方法对11批样品进行细菌内毒素检查.结果:所用鲎试剂灵敏度均符合规定,样品细菌内毒素限值确定为2.0 EU·mg-1,最大无干扰浓度为0.125 mg·mL-1,11批样品内毒素检查结果均符合规定.结论:采用鲎试剂法检查三磷酸腺苷二钠原料药中细菌内毒素的方法可行,可代替家兔热原检查法.

  6. Profil Kinetik dan Efektivitas Enrofloksasin yang Dikombinasikan dengan BioATP dalam Mengatasi Coxiella burnetii (KINETIC PROFILE AND EFFECTIVITY OF ENROFLOXACINE WITH BIO ADENOSIN TRIPHOSPHATE SUPPLEMENTATION AGAINST COXIELLA BURNETII)

    OpenAIRE

    Andriyanto; Agus Setiyono; Min Rahminiwati; Neni Nuryani; Unang Patriana

    2013-01-01

    Coxiella burnetii belongs to rikettsia group living obligate intracellularly and as the agent of zoonosisQ fever. Enrofloxacine is an antibiotic in quinolon group used to treat infection of C. burnetii in chicken,goat, calve, pig, dog, cat,  and horse. From ruminant practical experience, enrofloxacine if combined withBioATP  can enhance the enrofloxacine activity. Research for the effecivity of enrofloxacine and BioATP totreat C. burnetii has never been carried out. The research was conducted...

  7. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  8. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana;

    2016-01-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− chann...

  9. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  10. Hemodynamic significance of coronary stenosis by vessel attenuation measurement on CT compared with adenosine perfusion MRI

    NARCIS (Netherlands)

    den Dekker, Martijn A. M.; Pelgrim, Gert Jan; Pundziute, Gabija; van den Heuvel, Edwin R.; Oudkerk, Matthijs; Vliegenthart, Rozemarijn

    Purpose: We assessed the association between corrected contrast opacification (CCO) based on coronary computed tomography angiography (cCTA) and inducible ischemia by adenosine perfusion magnetic resonance imaging (APMR). Methods: Sixty cardiac asymptomatic patients with extra-cardiac arterial

  11. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka;

    2007-01-01

    ) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine...... exercise intensity in the QF muscle group. Adenosine seems to play a role in muscle BF heterogeneity even in the absence of changes in bulk BF at low and moderate one-leg intermittent isometric exercise intensities.......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...

  12. Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax

    OpenAIRE

    Popov, Serguei G.; Popova, Taissia G.; Kashanchi, Fatah; Bailey, Charles

    2011-01-01

    AIM: To establish whether activation of adenosine type-3 receptors (A3Rs) and inhibition of interleukin-1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores.

  13. Influence of the adenosine A1 receptor on blood pressure regulation and renin release

    DEFF Research Database (Denmark)

    Brown, Russell D.; Thorén, Peter; Steege, Andreas

    2006-01-01

    The present study was performed to investigate the role of adenosine A1 receptors in regulating blood pressure in conscious mice. Adenosine A1-receptor knockout (A1R-/-) mice and their wild-type (A1R+/+) littermates were placed on standardized normal-salt (NS), high-salt (HS), or salt-deficient (SD......) diets for a minimum of 10 days before telemetric blood pressure and urinary excretion measurements in metabolic cages. On the NS diet, daytime and nighttime mean arterial blood pressure (MAP) was 7-10 mmHg higher in A1R-/- than in A1R+/+ mice. HS diet did not affect the MAP in A1R-/- mice....... The elevated plasma renin concentrations found in the A1R-/- mice could also result in increased blood pressure. Our results confirm that adenosine, acting through the adenosine A1 receptor, plays an important role in regulating blood pressure, renin release, and sodium excretion....

  14. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After aller

  15. Evidence that the positive inotropic effects of the alkylxanthines are not due to adenosine receptor blockade.

    Science.gov (United States)

    Collis, M. G.; Keddie, J. R.; Torr, S. R.

    1984-01-01

    We investigated the possibility that the positive inotropic effects of the alkylxanthines are due to adenosine receptor blockade. The potency of 8-phenyltheophylline, theophylline and enprofylline as adenosine antagonists was assessed in vitro, using the guinea-pig isolated atrium, and in vivo, using the anaesthetized dog. The order of potency of the alkylxanthines as antagonists of the negative inotropic response to 2-chloroadenosine in vitro, and of the hypotensive response to adenosine in vivo was 8-phenyltheophylline greater than theophylline greater than enprofylline. The order of potency of the alkylxanthines as positive inotropic and chronotropic agents in the anaesthetized dog was enprofylline greater than theophylline greater than 8-phenyltheophylline. The results of this study indicate that the inotropic effects of the alkylxanthines in the anaesthetized dog are not due to adenosine receptor blockade. PMID:6322898

  16. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After

  17. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    Science.gov (United States)

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  18. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome.

    Science.gov (United States)

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R

    1999-10-01

    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc.

  19. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts.

    Science.gov (United States)

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-02-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats.

  20. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    effect remain unanswered. METHODS AND RESULTS: The interstitial adenosine concentration was determined in the vastus lateralis muscle of healthy humans via dialysis probes inserted in the muscle. The probes were perfused with buffer, and the dialysate samples were collected at rest and during graded knee...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  1. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    Science.gov (United States)

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  2. Cardiac endothelial transport and metabolism of adenosine and inosine

    Science.gov (United States)

    Schwartz, Lisa M.; Bukowski, Thomas R.; Revkin, James H.; Bassingthwaighte, James B.

    2010-01-01

    The influence of transmembrane flux limitations on cellular metabolism of purine nucleosides was assessed in whole organ studies. Transcapillary transport of the purine nucleosides adenosine (Ado) and inosine (Ino) via paracellular diffusion through interendothelial clefts in parallel with carrier-mediated transendothelial fluxes was studied in isolated, Krebs-Henseleit-perfused rabbit and guinea pig hearts. After injection into coronary inflow, multiple-indicator dilution curves were obtained from coronary outflow for 90 s for 131I-labeled albumin (intravascular reference tracer), [3H]arabinofuranosyl hypoxanthine (AraH; extracellular reference tracer and nonreactive adenosine analog), and either [14C]Ado or [14C]Ino. Ado or Ino was separated from their degradative products, hypoxanthine, xanthine, and uric acid, in each outflow sample by HPLC and radioisotope counting. Ado and Ino, but not AraH, permeate the luminal membrane of endothelial cells via a saturable transporter with permeability-surface area product PSecl and also diffuse passively through interendothelial clefts with the same conductance (PSg) as AraH. These parallel conductances were estimated via fitting with an axially distributed, multi-pathway, four-region blood-tissue exchange model. PSg for AraH were ~4 and 2.5 ml · g−1 · min−1 in rabbits and guinea pigs, respectively. In contrast, transplasmalemmal conductances (endothelial PSecl) were ~0.2 ml · g−1 · min−1 for both Ado and Ino in rabbit hearts but ~2 ml · g−1 · min−1 in guinea pig hearts, an order of magnitude different. Purine nucleoside metabolism also differs between guinea pig and rabbit cardiac endothelium. In guinea pig heart, 50% of the tracer Ado bolus was retained, 35% was washed out as Ado, and 15% was lost as effluent metabolites; 25% of Ino was retained, 50% washed out, and 25% was lost as metabolites. In rabbit heart, 45% of Ado was retained and 5% lost as metabolites, and 7% of Ino was retained and 3% lost as

  3. Caenorhabditis elegans Inositol 5-Phosphatase Homolog Negatively Regulates Inositol 1,4,5-Triphosphate Signaling in Ovulation V⃞

    Science.gov (United States)

    Bui, Yen Kim; Sternberg, Paul W.

    2002-01-01

    Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP3) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP3 signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23–mediated IP3 signaling pathway genes. We infer that IPP-5 negatively regulates IP3 signaling to ensure proper spermathecal contraction. PMID:12006659

  4. Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases

    Energy Technology Data Exchange (ETDEWEB)

    Vivian, Julian P.; Riedmaier, Patrice; Ge, Honghua; Le Nours, Jérôme; Sansom, Fiona M.; Wilce, Matthew C.J.; Byres, Emma; Dias, Manisha; Schmidberger, Jason W.; Cowan, Peter J.; d' Apice, Anthony J.F.; Hartland, Elizabeth L.; Rossjohn, Jamie; Beddoe, Travis (Monash); (Melbourne)

    2010-04-19

    Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.

  5. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice.

    Science.gov (United States)

    Lee, Moonnoh R; Ruby, Christina L; Hinton, David J; Choi, Sun; Adams, Chelsea A; Young Kang, Na; Choi, Doo-Sup

    2013-02-01

    Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.

  6. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging

    Institute of Scientific and Technical Information of China (English)

    Roberto Federico Villa; Federica Ferrari; Antonella Gorini

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential.

  7. Purine molecules as hypnogenic factors role of adenosine, ATP, and caffeine.

    Science.gov (United States)

    Díaz-Muñoz, M; Salín-Pascual, R

    2010-12-01

    Purines are ubiquitous molecules with important roles in the regulation of metabolic networks and signal transduction events. In the central nervous system, adenosine and ATP modulate the sleep-wake cycle, acting as ligands of specific transmembrane receptors and as allosteric effectors of key intracellular enzymes for brain energy expenditure. Two types of adenosine receptors seem to be relevant to the sleep function, A1 and A2A. Caffeine, an antagonist of adenosine receptors, has been used as a tool in some of the studies reviewed in the present chapter. Possible changes in adenosine functioning due to the aging process have been observed in animal models and abnormalities in the adenosine system could also explain primary insomnia or the reduced amount of delta sleep and increased sensitivity to caffeine in some subjects with sleep deficits. Caffeine is a methylated-derivate of xanthine with profound effects on the onset and quality of sleep episodes. This purine acts principally as an antagonist of the A2A receptors. Adenosine and ATP in the nervous system are the bridge between metabolic activity, recovery function, and purinergic transmission that underlies the daily wake-sleep cycle in mammals. Modulators of purine actions have the potential to alleviate insomnia and other sleep disorders based on their physiopathological role during the sleep process.

  8. Lung injury pathways: Adenosine receptor 2B signaling limits development of ischemic bronchiolitis obliterans organizing pneumonia.

    Science.gov (United States)

    Densmore, John C; Schaid, Terry R; Jeziorczak, Paul M; Medhora, Meetha; Audi, Said; Nayak, Shraddha; Auchampach, John; Dwinell, Melinda R; Geurts, Aron M; Jacobs, Elizabeth R

    2017-02-01

    Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague-Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury.

  9. Serum adenosine deaminase as oxidative stress marker in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Shashikala Magadi Dasegowda

    2015-05-01

    Results: The study observed an increased level of serum adenosine deaminase, malondialdehyde and decreased levels of total antioxidant capacity in type 2 diabetes mellitus compared to controls. Serum adenosine deaminase levels in type 2 diabetics were 50.77 +/- 6.95 and in controls was 17.86 +/- 4.04. Serum Malondialdehyde levels in type 2 diabetics was 512.13 +/- 70.15 and in controls was 239.32 +/- 23.97. Serum total antioxidant levels in type 2 diabetics was 0.39+/-0.15 and in controls was 1.66+/-0.25. Positive correlation was seen between serum adenosine deaminase and malondialdehyde and it was statistically significant. Statistically significant negative correlation was seen between serum adenosine deaminase and total antioxidant capacity. Conclusion: Adenosine deaminase can be used as oxidative stress marker. Their increased levels indicate oxidative stress in type 2 diabetes mellitus. Therefore, estimation of serum adenosine deaminase levels help in early prediction and prevention of long term complications occurring due to oxidative stress in diabetics, thereby decreasing the mortality and morbidity in them. [Int J Res Med Sci 2015; 3(5.000: 1195-1198

  10. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  11. Expression of adenosine 5'-monophosphate-Activated protein kinase (AMPK) in ovine testis (Ovis aries): In vivo regulation by nutritional state.

    Science.gov (United States)

    Taibi, N; Dupont, J; Bouguermouh, Z; Froment, P; Ramé, C; Anane, A; Amirat, Z; Khammar, F

    2017-03-01

    In the present study, we identified AMPK and investigated its potential role in steroidogenesis in vivo in the ovine testis in response to variation in nutritional status (fed control vs. restricted). We performed immunoblotting to show that both active and non-active forms of AMPK exist in ovine testis and liver. In testis, we confirmed these results by immunohistochemistry. We found a correlation between ATP (Adenosine-Triphosphate) levels and the expression of AMPK in liver. Also, low and high caloric diets induce isoform-dependent AMPK expression, with an increase in α2, ß1ß2 and γ1 activity levels. Although the restricted group exhibited an increase in lipid balance, only the triglyceride and HC-VLDL (Cholesterol-Very low density lipoprotein) fractions showed significant differences between groups, suggesting an adaptive mechanism. Moreover, the relatively low rate of non-esterified fatty acid released into the circulation implies re-esterification to compensate for the physiological need. In the fed control group, AMPK activates the production of testosterone in Leydig cells; this is, in turn, associated with an increase in the expression of 3ß-HSD (3 beta hydroxy steroid deshydrogenase), p450scc (Cholesterol side-chain cleavage enzyme) and StAR (Steroidogenic acute regulatory protein) proteins induced by decreased MAPK ERK½ (Extracellular signal-regulated kinase -Mitogen-activated protein kinase) phosphorylation. In contrast, in the restricted group, testosterone secretion was reduced but intracellular cholesterol concentration was not. Furthermore, the combination of high levels of lipoproteins and emergence of the p38 MAP kinase pathway suggest the involvement of pro-inflammatory cytokines, as confirmed by transcriptional repression of the StAR protein. Taken together, these results suggest that AMPK expression is tissue dependent.

  12. Simple detection of hepatitis C virus using {sup 125}I-2'-deoxyuridine triphosphate and gamma counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Jin; Ahn, S. H.; Chung, W. S.; Woo, K. S.; Lim, S. J.; Choi, C. W.; Lim, S. M. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2000-07-01

    Hepatitis C Virus (HCV) is the major cause of post transfusion and sporadic non A, non B hepatitis. Current infection of HCV can be detected by PCR method. Using PCR, it has been possible to detect HCV viremia prior to immunological sero-conversion and to detect fluctuation of viremia in antibody-positive chronic HCV patients undergoing therapy with interferon. In this study, we established the simple method to detect HCV DNA by incorporation of {sup 125}I-deoxyuridine triphosphate(dUTP) into DNA during the PCR, and counted the radioactivity of PCR product by gamma counter. {sup 125}I-2'-deoxyuridine 5'-triphosphate was prepared, and incorporated into DNA during PCR. dUTP was radiolabeled by the iododemercuration of 5-mercuri intermediate. Iododemercuration labeling was completed with 98% yield and the obtained product was incorporated into DNA without further purification. After incorporation, covalently bonded radioiodine substituent was remained stable during PCR procedure HCV positive standard and positive patient sera in immunological assay were centrifuged. HCV RNA is isolated from by GTC(Guanidine Thiocyanate) and phenol/chloroform extraction method and synthesized complementary DNA by using reverse transcriptase. The '1{sup 25}I-dUTP was incorporated into HCV C DNA during PCR. PCR product purified by fiber matrix column and counted by gamma counter. PCR products were electrophoresized, and autoradiography image obtained. Amplified HCV DNA by {sup 125}I-dUTP PCR obtained the band on the gel by electrophoresis and autoradiography at the same position. In patient sera, radioactivity of HCV positive sample was 8 times higher than HCV negative viremia sample. We established HCV detection method using {sup 125}I-dUTP. {sup 125}I-dUTP PCR detection of HCV is convenient and reporducible.

  13. Variants of the inosine triphosphate pyrophosphatase gene are associated with reduced relapse risk following treatment for HCV genotype 2/3

    DEFF Research Database (Denmark)

    Rembeck, Karolina; Waldenström, Jesper; Hellstrand, Kristoffer

    2014-01-01

    The present study evaluated the impact of variations in the inosine triphosphate pyrophosphatase (ITPase) gene (ITPA) on treatment outcome in patients with hepatitis C virus (HCV) genotype 2/3 infection receiving peginterferon-α2a and lower, conventional 800 mg daily dose of ribavirin. Previous s...

  14. AN ESCHERICHIA-COLI STRAIN DEFICIENT FOR BOTH EXONUCLEASE-V AND DEOXYCYTIDINE TRIPHOSPHATE DEAMINASE SHOWS ENHANCED SENSITIVITY TO IONIZING-RADIATION

    NARCIS (Netherlands)

    ESTEVENON, AM; KOOISTRA, J; SICARD, N

    1995-01-01

    An Escherichia coli mutant lacking deoxycytidine triphosphate deaminase (Dcd) activity and an unknown function encoded by a gene designated ior exhibits sensitivity to ionizing radiation whereas dcd mutants themselves are not sensitive. A DNA fragment from an E. coli genomic library that restores th

  15. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    DOU Ai-xia; WANG Xin

    2010-01-01

    Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis oflymphoma and explore a potential lymphoma therapy targeted on this signaling pathway.Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed,published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma".Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and itspotential role in targeted therapy of lymphoma.Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, thecAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells. cAMPpathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems tobe a new direction for lymphoma treatment, aiming at restoring the cAMP function.Conclusions cAMP signal pathway has different effects on various lymphoma cells. cAMP analogues andphosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain inunderstanding the various roles of such agents.

  16. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  17. Role of adenosine in tubuloglomerular feedback and acute renal failure.

    Science.gov (United States)

    Osswald, H; Vallon, V; Mühlbauer, B

    1996-12-01

    1. Adenosine (ADO) can induce renal vasoconstriction and a fall in glomerular filtration rate. When the rate of ATP hydrolysis prevails over the rate of ATP synthesis the kidney generates ADO at an enhanced rate. 2. Tubuloglomerular feedback (TGF) is the vascular response to changes of the NaCl concentration in the tubular fluid at the macula densa segment, which is the result of transepithelial electrolyte reabsorption by the proximal tubule and the loop of Henle. 3. TGF can be inhibited by ADO-A1 receptor antagonists and is potentiated by substances that can elevate extracellular ADO concentrations. These observations led to the hypothesis that ADO is an element of the signal transmission processes in the juxtaglomerular apparatus. 4. Renal ischaemia and nephrotoxic substances can induce acute renal failure (ARF). ADO receptor antagonists have been shown to ameliorate renal function in several different models of ARF in laboratory animals and humans. 5. A number of factors, such as extracellular volume contraction, low NaCl diet, angiotensin II and cyclooxygenase inhibitors enhance to a similar extent: (a) the renal vascular response to endogenous and exogenous ADO; (b) the TGF response of the nephron; and (c) the severity of ARF. All three phenomena are susceptible to antagonism by ADO receptor antagonists. 6. Therefore, we conclude that ADO plays a significant role in normal and pathological states of kidney function.

  18. In Vitro Functional Study of Rice Adenosine 5'-Phosphosulfate Kinase

    Institute of Scientific and Technical Information of China (English)

    WANG De-zhen; CHEN Guo-guo; LU Lu-jia; JIANG Zhao-jun; RAO Yu-chun; SUN Mei-hao

    2016-01-01

    Sulfate can be activated by ATP sulfurylase and adenosine 5'-phosphosulfate kinase (APSK)in vivo. Recent studies suggested that APSK inArabidopsis thaliana regulated the partition between APS reduction and phosphorylation and its activity can be modulated by cellular redox status. In order to study regulation of APSK in rice (OsAPSK),OsAPSK1 gene was cloned and its activity was analyzed. OsAPSK1 C36 and C69 were found to be the conserved counterparts of C86 and C119, which involved in disulfide formation in AtAPSK.C36A/C69A OsAPSK1 double mutation was made by site directed mutagenesis. OsAPSK1 and its mutant were prokaryotically over-expressed and purified, and then assayed for APS phosphorylation activity. OsAPSK1 activity was depressed by oxidized glutathione, while the activity of its mutantwas not. Further studies in the case that oxidative stress will fluctuatein vivo3'-phosphoadenosine-5'-phosphosulfate content, and all APSK isoenzymes have similar regulation patterns are necessary to be performed.

  19. Diagnostic value of adenosine deaminase to differentiate exudates and transudates.

    Science.gov (United States)

    Jadhav, Ashish Anantrao; Bardapurkar, Jayashree Suhas

    2007-01-01

    The differentiation of pleural effusions as exudates or transudates is the first step in the diagnosis of pleural effusions. The aim of this study was to evaluate the value of adenosine deaminase (ADA) concentration in the pleural effusions for differentiating exudates from transudates. Sixty indoor patients, admitted to our hospital, having pleural effusions and suffering from varying etiologies were included in this study. According to the final diagnosis, these 60 patients were divided into two groups: exudates (50) and transudates (10). The mean pleural ADA, serum ADA and pleural fluid/serum ADA ratio were significantly (P exudates as compared to transudates. Using a cut-off point of 22 IU/L, the sensitivity and specificity of pleural ADA in the diagnosis of exudates was computed to be 90% and 90% respectively. At a cut-off point 1.28, pleural fluid/serum ADA ratio was found to have sensitivity 84% and specificity 90%, respectively. From this study it is concluded that, ADA is a useful biochemical marker to suggest exudative effusions.

  20. Ion-Pairing Liquid Chromatography Coupled with Mass Spectrometry for the Simultaneous Determination of Nucleosides and Nucleotides%离子对液相色谱-质谱应用于核苷和核苷酸的同时测定

    Institute of Scientific and Technical Information of China (English)

    蔡宗苇; 钱天秀; 杨斯敏

    2004-01-01

    Adenosine and its corresponding nucleotides adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate ( ADP ) and adenosine 5'-triphos-phate (ATP) are important biomolecules that provide energy and substrates for various cellular bio-chemical processes. There have been strong

  1. Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Holloway Cameron J

    2010-11-01

    Full Text Available Abstract Introduction Adenosine is the most widely used vasodilator stress agent for Cardiovascular Magnetic Resonance (CMR perfusion studies. With the standard dose of 140 mcg/kg/min some patients fail to demonstrate characteristic haemodynamic changes: a significant increase in heart rate (HR and mild decrease in systolic blood pressure (SBP. Whether an increase in the rate of adenosine infusion would improve peripheral and, likely, coronary vasodilatation in those patients is unknown. The aim of the present study was to assess the tolerance and safety of a high-dose adenosine protocol in patients with inadequate haemodynamic response to the standard adenosine protocol when undergoing CMR perfusion imaging. Methods 98 consecutive patients with known or suspected coronary artery disease (CAD underwent CMR perfusion imaging at 1.5 Tesla. Subjects were screened for contraindications to adenosine, and an electrocardiogram was performed prior to the scan. All patients initially received the standard adenosine protocol (140 mcg/kg/min for at least 3 minutes. If the haemodynamic response was inadequate (HR increase Results All patients successfully completed the CMR scan. Of a total of 98 patients, 18 (18% did not demonstrate evidence of a significant increase in HR or decrease in SBP under the standard adenosine infusion rate. Following the increase in the rate of infusion, 16 out of those 18 patients showed an adequate haemodynamic response. One patient of the standard infusion group and two patients of the high-dose group developed transient advanced AV block. Significantly more patients complained of chest pain in the high-dose group (61% vs. 29%, p = 0.009. On multivariate analysis, age > 65 years and ejection fraction Conclusions A substantial number of patients do not show adequate peripheral haemodynamic response to standard-dose adenosine stress during perfusion CMR imaging. Age and reduced ejection fraction are predictors of inadequate

  2. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    Science.gov (United States)

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  3. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A(2A) receptors

    DEFF Research Database (Denmark)

    Andersen, Henrik; Jaff, Mohammad G; Høgh, Ditte;

    2011-01-01

    Aims:  Adenosine plays an important role in the regulation of heart rate and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, the present study investigated the effect of the nucleoside on mean...... arterial blood pressure (MAP) and heart rate (HR) in conscious mice. Methods:  Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knock-out (eNOS(-/-) ) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis involment of adenosine...... receptors was investigated in human and mouse renal blood vessels Results:  Bolus infusion of 0.5 mg/kg adenosine elicited significant transient decreases in MAP (99.3±2.3 to 70.4±4.5 mmHg) and HR (603.2±18.3 to 364.3±49.2 min(-1) ) which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation...

  4. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P muscular activity increases the interstitial concentrations...... of bradykinin and adenosine in both skeletal muscle and the connective tissue around its adjacent tendon. These findings support a role for bradykinin and adenosine in exercise-induced hyperaemia in skeletal muscle and suggest that bradykinin and adenosine are potential regulators of blood flow in peritendinous...

  5. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  6. In vivo adenosine A(2B) receptor desensitization in guinea-pig airway smooth muscle: implications for asthma.

    Science.gov (United States)

    Breschi, Maria Cristina; Blandizzi, Corrado; Fogli, Stefano; Martinelli, Cinzia; Adinolfi, Barbara; Calderone, Vincenzo; Camici, Marcella; Martinotti, Enrica; Nieri, Paola

    2007-12-01

    This study was aimed at characterizing the role of adenosine receptor subtypes in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. In vitro and in vivo experiments were performed by testing selective agonists and antagonists on isolated tracheal smooth muscle preparations and pulmonary inflation pressure, respectively, under normal conditions or following ovalbumin-induced allergic sensitization. In normal and sensitized animals, the adenosine A(2A)/A(2B) receptor agonist, NECA, evoked relaxing responses of isolated tracheal preparations precontracted with histamine, and such an effect was reversed by the adenosine A(2B) antagonist, MRS 1706, in the presence or in the absence of epithelium. The expression of mRNA coding for adenosine A(2B) receptors was demonstrated in tracheal specimens. In vitro desensitization with 100 microM NECA markedly reduced the relaxing effect of the agonist. In vivo NECA or adenosine administration to normal animals inhibited histamine-mediated bronchoconstriction, while these inhibitory effects no longer occurred in sensitized guinea-pigs. Adenosine plasma levels were significantly higher in sensitized than normal animals. In conclusion, our data demonstrate that: (i) adenosine A(2B) receptors are responsible for the relaxing effects of adenosine on guinea-pig airways; (ii) these receptors can undergo rapid adaptive changes that may affect airway smooth muscle responsiveness to adenosine; (iii) ovalbumin-induced sensitization promotes a reversible inactivation of adenosine A(2B) receptors which can be ascribed to homologous desensitization. These findings can be relevant to better understand adenosine functions in airways as well as mechanisms of action of asthma therapies targeting the adenosine system.

  7. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  8. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Gérard Jean-Louis

    2010-07-01

    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  9. Ameliorative effect of adenosine on hypoxia-reoxygenation injury in LLC-PK1, a porcine kidney cell line.

    Science.gov (United States)

    Yonehana, T; Gemba, M

    1999-06-01

    We studied the effects of adenosine on injury caused by hypoxia and reoxygenation in LLC-PK1 cells. Lactate dehydrogenase and gamma-glutamyltranspeptidase were released from cells exposed to hypoxia for 6 hr and then reoxygenation for 1 hr. The addition of adenosine at 100 microM to the medium before hypoxia began significantly decreased enzyme leakage into medium during both hypoxia and reoxygenation. The adenosine A1-receptor agonist, R(-)-N6-(2-phenylisopropyl)adenosine (R-PIA), at the concentration of 100 microM, did not affect enzyme release, but the adenosine A2-receptor agonist 2-p-[2-car-boxyethyl]phenethyl-amino-5'-N-ethylcarboxamido-adenosi ne hydrochloride (CGS 21680) at the concentration of 100 nM, suppressed the injury caused by hypoxia and reoxygenation. There were decreases in cAMP contents and ATP levels in LLC-PK1 cells injured by hypoxia and reoxygenation. Adenosine (100 microM) restored ATP levels in the cells during reoxygenation. With adenosine, the intracellular cAMP level was increased prominently during reoxygenation. These results suggest that adenosine protects LLC-PK1 cells from injury caused by hypoxia and reoxygenation by increasing the intracellular cAMP level via adenosine A2 receptor.

  10. CSF ADENOSINE DEAMINASE (ADA ACTIVITY IN PATIENTS WITH MENINGITIS

    Directory of Open Access Journals (Sweden)

    Justin

    2016-05-01

    Full Text Available Meningitis is inflammation of the meninges (pia, arachnoid and dura mater covering the brain and the spinal cord. ADA is an enzyme in the purine salvage pathway which is found in abundance in active T-lymphocytes. Hence, an attempt was made to estimate the CSF ADA level in patients with suspected meningitis and throw light on its use in differentiating the various types of meningitis. AIMS AND OBJECTIVES To estimate the level of CSF adenosine deaminase level in different types of meningitis. To assess its usefulness in differentiating the various types (bacterial, viral and tuberculous of meningitis. MATERIALS AND METHODS The study was conducted at the medical wards of Govt. Rajaji Hospital, Madurai, a prospective analytical study from a period of April 2012 to September 2012. OBSERVATION AND RESULTS Tuberculous meningitis occurred more in the age group of 21–40 years. Bacterial meningitis was seen mainly in patients < 20 years of age. Viral meningitis was seen in all age groups. CSF ADA level was highest in tuberculous meningitis, the mean value being 24.5 U/L. The mean value of ADA in bacterial meningitis was 4.54 U/L and viral meningitis patients had lowest mean ADA value of 2.65 U/L. CONCLUSION In our study, 50 patients with meningitis admitted in Government Rajaji Hospital from April 2012 to September 2012 were evaluated. Meningitis predominantly affected people in the age group of 20-40 years in our study with a male: female ratio of 1.9:1. Cases of tuberculous meningitis constituted 48% of the study group and bacterial and viral meningitis were 26% each. CSF protein values were higher and sugar values lower in patients with tuberculous and bacterial meningitis. CSF cell counts were higher in patients with bacterial meningitis.

  11. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    Science.gov (United States)

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications.

  12. Role of nitric oxide and adenosine in the onset of vasodilation during dynamic forearm exercise.

    Science.gov (United States)

    Casey, Darren P; Mohamed, Essa A; Joyner, Michael J

    2013-02-01

    We tested the hypothesis that nitric oxide (NO) and adenosine contribute to the onset of vasodilation during dynamic forearm exercise. Twenty-two subjects performed rhythmic forearm exercise (20 % of maximum) during control and NO synthase (NOS) inhibition (N (G)-monomethyl-L-arginine; L-NMMA) trials. A subset of subjects performed a third trial of forearm exercise during combined inhibition of NOS and adenosine (aminophylline; n = 9). Additionally, a separate group of subjects (n = 7) performed rhythmic forearm exercise during control, inhibition of adenosine alone and combined inhibition of adenosine and NOS. Forearm vascular conductance (FVC; ml min(-1) · 100 mmHg(-1)) was calculated from blood flow and mean arterial pressure (mmHg). The onset of vasodilation was assessed by calculating the slope of the FVC response for every duty cycle between baseline and steady state, and the number of duty cycles (1-s contraction/2-s relaxation) to reach steady state. NOS inhibition blunted vasodilation at the onset of exercise (11.1 ± 0.8 vs. 8.5 ± 0.6 FVC units/duty cycle; P Vasodilation was blunted further with combined inhibition of NOS and adenosine (7.5 ± 0.6 vs. 6.2 ± 0.8 FVC units/duty cycle; P vasodilation during dynamic forearm exercise.

  13. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    Science.gov (United States)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  14. Pulmonary Vascular Capacitance as a Predictor of Vasoreactivity in Idiopathic Pulmonary Arterial Hypertension Tested by Adenosine

    Directory of Open Access Journals (Sweden)

    Shafie

    2015-09-01

    Full Text Available Background Acute pulmonary vasoreactivity testing has been recommended in the diagnostic work-up of patients with idiopathic pulmonary arterial hypertension (IPAH. Pulmonary arteriolar capacitance (Cp approximated by stroke volume divided by pulmonary pulse pressure (SV/PP is considered as an independent predictor of mortality in patients with IPAH. Objectives We sought to evaluate any differences in baseline and adenosine Cp between vasoreactive and non-vasoreactive IPAH patients tested with adenosine. Patients and Methods Fourteen patients with IPAH and a vasoreactive adenosine vasoreactivity testing according to the ESC guidelines were compared with 24 IPAH patients with nonreactive adenosine test results. Results There were no statistical significant differences between the two groups regarding NYHA class, body surface area, heart rate, and systemic blood pressure during right heart catheterization. Hemodynamic study showed no statistical significant differences in cardiac output/Index, mean pulmonary artery pressure, pulmonary vascular resistance, and baseline Cp between the two groups. There was a statistical significant but weak increase in adenosine Cp in vasoreactive group compared to non-reactive group (P = 0.04. Multivariable analysis showed an association between Cp and vasoreactivity (Beta = 2, P = 0.04, OR = 0.05 (95%CI = 0.003 - 0.9. Conclusions Cp could be considered as an index for the prediction of vasoreactivity in patients with IPAH. Prediction of long-term response to calcium channel blockers in patients with IPAH and a positive vasoreactive test by this index should be addressed in further studies.

  15. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  16. Circadian variations of adenosine level in blood and liver and its possible physiological significance.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Díaz-Muñoz, M; Villalobos, R; Glender, W; Vidrio, S; Suárez, J; Yañez, L

    1983-09-12

    The role of adenosine as a possible physiological modulator was explored by measuring its concentration in different tissues during a 24-hour period. Initially the circadian variations of adenosine and other purine compounds such as inosine, hypoxanthine, uric acid and adenine nucleotides were studied in the rat blood. A daily cyclic response was observed, with low levels of adenosine from 08.00 - 20.00 h, followed by an increase from this time on. Inosine and hypoxanthine levels were elevated during the day and low at night. The uric acid changes observed indicate that the decrease in purine catabolism coincides with a decrease in inosine and hypoxanthine levels and an increase in adenosine. The blood adenine nucleotides, energy charge and phosphorylation potential remained constant during the day and showed oscillatory changes during the night. Similar studies were made in the liver, a primary source of circulating purines. Liver adenosine was high during the night while inosine and hypoxanthine remained low along the 24 hours. The results suggest that liver purine metabolism might participate in the maintenance and renewal of the blood purine pool and in the energy state of erythrocytes in vivo.

  17. Adenosine A2A receptor hyperexpression in patients with severe SIRS after cardiopulmonary bypass.

    Science.gov (United States)

    Kerbaul, François; Bénard, Frédéric; Giorgi, Roch; Youlet, By; Carrega, Louis; Zouher, Ibrahim; Mercier, Laurence; Gérolami, Victoria; Bénas, Vincent; Blayac, Dorothée; Gariboldi, Vlad; Collart, Frédéric; Guieu, Régis

    2008-08-01

    Adenosine (ADO) is an endogenous nucleoside, which has been involved in blood pressure failure during severe systemic inflammatory response syndrome (severe SIRS) after cardiac surgery with cardiopulmonary bypass (CPB). Adenosine acts via its receptor subtypes, namely A1, A2A, A2B, or A3. Because A2A receptors are implicated in vascular tone, their expression might contribute to severe SIRS. We compared adenosine plasma levels (APLs) and A2A ADO receptor expression (ie, B, K, and mRNA amount) in patients with or without postoperative SIRS. : This was a prospective comparative observational study. Forty-four patients who underwent cardiac surgery involving CPB. Ten healthy subjects served as controls. Among the patients, 11 presented operative vasoplegia and postoperative SIRS (named complicated patients) and 33 were without vasoplegia or SIRS (named uncomplicated patients). Adenosine plasma levels, K, B, and mRNA amount (mean +/- SD) were measured on peripheral blood mononuclear cells. Adenosine plasma levels, B, and K were significantly higher in complicated patients than in uncomplicated patients (APLs: 2.7 +/- 1.0 vs 1.0 +/- 0.5 micromol l, P SIRS after CPB.

  18. Intracellular adenosine formation and release by freshly-isolated vascular endothelial cells from rat skeletal muscle: effects of hypoxia and/or acidosis.

    Science.gov (United States)

    Le, G Y; Essackjee, H C; Ballard, H J

    2014-07-18

    Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5'-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5'nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5'-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Predictors and Diagnostic Significance of the Adenosine Related Side Effects on Myocardial Perfusion SPECT/CT Imaging

    Directory of Open Access Journals (Sweden)

    Nilüfer Yıldırım Poyraz

    2014-10-01

    Full Text Available Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI. The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD, was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10 who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6% experienced adenosine-related side-effects (group 1; flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS test without any side-effects (group 2. Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects.

  20. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  1. Downregulation of adenosine and P2X receptor-mediated cardiovascular responses in heart failure rats

    DEFF Research Database (Denmark)

    Zhao, Xin; Sun, X Y; Erlinge, D;

    2000-01-01

    Neurohormonal changes in congestive heart failure (CHF) include an enhanced peripheral sympathetic nerve activity which results in increased release of noradrenaline, neuropeptide Y and ATP. To examine if such changes in CHF would modulate peripheral pre- and postsynaptic receptors of ATP and its...... effects mediated by the endothelial P2Y receptors are unaffected in CHF. Moreover, the adenosine-mediated inhibitory effects on heart rate and blood pressure were also attenuated in the CHF rats. The most important changes in adenosine and P2-receptor function induced by ischaemic CHF were the reduced...... pressor effect mediated by the P2X receptor and the increased heart rate due to an attenuated inhibitory effect of adenosine....

  2. Role of adenosine in the antiepileptic effects of deep brain stimulation

    Science.gov (United States)

    Miranda, Maisa F.; Hamani, Clement; de Almeida, Antônio-Carlos G.; Amorim, Beatriz O.; Macedo, Carlos E.; Fernandes, Maria José S.; Nobrega, José N.; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Andersen, Monica L.; Tufik, Sergio; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  3. Muscle 3243A -> G mutation load and capacity of the mitochondrial energy-generating system

    NARCIS (Netherlands)

    Janssen, Antoon J. M.; Schuelke, Markus; Smeitink, Jan A. M.; Trijbels, Frans J. M.; Sengers, Rob C. A.; Lucke, Barbara; Wintjes, Liesbeth T. M.; Morava, Eva; van Engelen, Baziel G. M.; Struts, Bart W.; Hol, Frans A.; Siers, Marloes H.; ter Laak, Henk; van der Knaap, Marjo S.; van Spronsen, Francjan J.; Rodenburg, Richard J. T.; van den Heuvel, Lambert P.

    2008-01-01

    Objective: The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate productio

  4. Muscle 3243A-->G mutation load and capacity of the mitochondrial energy-generating system.

    NARCIS (Netherlands)

    Janssen, A.J.; Schuelke, M.; Smeitink, J.A.M.; Trijbels, F.J.; Sengers, R.C.; Lucke, B.; Wintjes, L.T.; Morava, E.; Engelen, B.G.M. van; Smits, B.W.; Hol, F.A.; Siers, M.H.; Laak, H. ter; Knaap, M.S. van der; Spronsen, F.J. van; Rodenburg, R.J.; Heuvel, L.P.v.d.

    2008-01-01

    OBJECTIVE: The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate productio

  5. Development of a human-specific B. thetaiotaomicron IMS/ATP assay for measuring viable human contamination in surface waters in Baja California, Mexico

    Science.gov (United States)

    Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-couple...

  6. Muscle 3243A -> G mutation load and capacity of the mitochondrial energy-generating system

    NARCIS (Netherlands)

    Janssen, Antoon J. M.; Schuelke, Markus; Smeitink, Jan A. M.; Trijbels, Frans J. M.; Sengers, Rob C. A.; Lucke, Barbara; Wintjes, Liesbeth T. M.; Morava, Eva; van Engelen, Baziel G. M.; Struts, Bart W.; Hol, Frans A.; Siers, Marloes H.; ter Laak, Henk; van der Knaap, Marjo S.; van Spronsen, Francjan J.; Rodenburg, Richard J. T.; van den Heuvel, Lambert P.

    Objective: The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate

  7. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    Science.gov (United States)

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

  8. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  9. Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfonamide groups and their polymerase incorporation into DNA.

    Science.gov (United States)

    Hollenstein, Marcel

    2012-10-15

    To expand the chemical array available for DNA sequences in the context of in vitro selection, I present herein the synthesis of five nucleoside triphosphate analogues containing side chains capable of organocatalysis. The synthesis involved the coupling of L-proline-containing residues (dU(tP)TP and dU(cP)TP), a dipeptide (dU(FP)TP), a urea derivative (dU(Bpu)TP), and a sulfamide residue (dU(Bs)TP) to a suitably protected common intermediate, followed by triphosphorylation. These modified dNTPs were shown to be excellent substrates for the Vent (exo(-)) and Pwo DNA polymerases, as well as the Klenow fragment of E. coli DNA polymerase I, although they were only acceptable substrates for the 9°N(m) polymerase. All of the modified dNTPs, with the exception of dU(Bpu)TP, were readily incorporated into DNA by the polymerase chain reaction (PCR). Modified oligonucleotides efficiently served as templates for PCR for the regeneration of unmodified DNA. Thermal denaturation experiments showed that these modifications are tolerated in the major groove. Overall, these heavily modified dNTPs are excellent candidates for SELEX.

  10. The crystal structure of the Leishmania major deoxyuridine triphosphate nucleotidohydrolase in complex with nucleotide analogues, dUMP, and deoxyuridine.

    Science.gov (United States)

    Hemsworth, Glyn R; Moroz, Olga V; Fogg, Mark J; Scott, Benjamin; Bosch-Navarrete, Cristina; González-Pacanowska, Dolores; Wilson, Keith S

    2011-05-06

    Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds.

  11. Peroxynitrite-dependent zinc release and inactivation of guanosine 5'-triphosphate cyclohydrolase 1 instigate its ubiquitination in diabetes.

    Science.gov (United States)

    Zhao, Yu; Wu, Jiliang; Zhu, Huaiping; Song, Ping; Zou, Ming-Hui

    2013-12-01

    Aberrant degradation of guanosine 5'-triphosphate cyclohydrolase 1 (GTPCH1) with consequent deficiency of tetrahydrobiopterin is considered the primary cause for endothelial dysfunction in diabetes. How GTPCH1 becomes susceptible to the degradation remains unknown. We hypothesized that oxidation and release of the zinc ion by peroxynitrite (ONOO(-)), a potent oxidant generated by nitric oxide and superoxide anions, instigates GTPCH1 ubiquitination and degradation. Zinc contents, GTPCH1 ubiquitination, and GTPCH1 activity were assayed in purified GTPCH1, endothelial cells, and hearts from diabetic mice. Exogenous ONOO(-) dose-dependently released zinc, inhibited its activity, and increased the ubiquitin binding affinity of GTPCH1 in vitro and in endothelial cells. Consistently, high glucose (30 mmol/L) inhibited GTPCH1 activity with increased ubiquitination, which was inhibited by antioxidants. Furthermore, mutation of the zinc-binding cysteine (141) (C141R or C141A) significantly reduced GTPCH1 activity and reduced its half-life but increased GTPCH1 ubiquitination, indicating an essential role of the zinc ion in maintaining the catalytic activity and stability of GTPCH1. Finally, GTPCH1 ubiquitination and degradation markedly increased in parallel with decreased GTPCH1 activity in the aortas and hearts of diabetic mice, both of which were attenuated by the inhibitors of ONOO(-) in mice in vivo. Taken together, we conclude that ONOO(-) releases zinc and inhibits GTPCH1, resulting in its ubiquitination and degradation of the enzyme.

  12. Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer's disease cells

    Science.gov (United States)

    Wei, Fang; Li, Xiang; Cai, Meichun; Liu, Yanping; Jung, Peter; Shuai, Jianwei

    2017-06-01

    In neurons of patients with Alzheimer's disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer's disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.

  13. Synthesis and properties of mRNA cap analogs containing phosphorothioate moiety in 5',5'-triphosphate chain.

    Science.gov (United States)

    Kowalska, Joanna; Lewdorowicz, Magdalena; Zuberek, Joanna; Bojarska, Elzbieta; Wojcik, Jacek; Cohen, Lean S; Davis, Richard E; Stepinski, Janusz; Stolarski, Ryszard; Darzynkiewicz, Edward; Jemielity, Jacek

    2005-01-01

    Nucleosides and oligonucleotides with an oxygen replaced by sulfur atom are an interesting class of compounds because of their improved stability toward enzymatic cleavage by nucleases. We have synthesized several dinucleotide mRNA cap analogs containing a phosphorothioate moiety in the alpha, beta, or gamma position of 5',5'-triphosphate chain [m7Gp(s)ppG, m7Gpp(s)pG, and m7Gppp(s)G]. These are the first examples of the biologically important 5'mRNA cap analogs containing a phosphorothioate moiety, and these compounds may be useful in a variety of biochemical and biotechnological applications. Incorporation of a sulfur atom in the alpha or gamma position within the dinucleotide cap analog was achieved using PSCl3 in a nucleoside phosphorylation reaction followed by coupling the phosphorothioate of nucleoside with a second nucleotide. Synthesis of cap analogs with the phosphorothioate moiety in beta position was performed using an organic phosphorothioate salt in a coupling reaction with an activated nucleotide. The structures of newly synthesized compounds was confirmed using MS and 1H and 31P NMR spectroscopy. We present here the results of preliminary studies on their interaction with translation initiation factor eIF4E and enzymatic hydrolysis with human and nematode DcpS scavengers.

  14. Magnetically assisted fluorescence ratiometric assays for adenosine deaminase using water-soluble conjusated polymers

    Institute of Scientific and Technical Information of China (English)

    HE Fang; YU MingHui; WANG Shu

    2009-01-01

    A magnetically assisted fluorescence ratiometric technique has been developed for adenosine deami-nase assays with high sensitivity using water-soluble cationic conjugated polymers (CCPs).The assay contains three elements:a biotin-labeled aptamer of adenosine (biotin-aptamer),a signaling probe single-stranded DNA-tagged fiuorescein at terminus (ssDNA-FI) and a CCP.The specific binding of adenosine to biotin-aptamer makes biotin-aptamer and ssDNA-FI unhybridized,and the ssDNA-FI is washed out after streptavidin-coated magnetic beads are added and separated from the assay solution under magnetic field.In this case,after the addition of CCP to the magnetic beads solution,the fluo-rescence resonance energy transfer (FRET) from CCP to fluorescein is inefficient.Upon adding adenosine deaminase,the adenosine is converted into inosine,and the biotin-aptamer is hybridized with ssDNA-FI to form doubled stranded DNA (biotin-dsDNA-FI).The ssONA-FI is attached to the mag-netic beads at the separation step,and the addition of CCP to the magnetic beads solution leads to efficient FRET from CCP to fluorescein.Thus the adenosine deaminase activity can be monitored by fluorescence spectra in view of the intensity decrease of CCP emission or the increase of fluorescein emission in aqueous solutions.The assay integrates surface-functionalized magnetic particles with significant amplification of detection signal of water-soluble cationic conjugated polymers.

  15. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    Science.gov (United States)

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  16. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

    Directory of Open Access Journals (Sweden)

    Hongping Dong

    Full Text Available RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7GpppAm of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4 specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N⁶-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of

  17. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.E.; Geiger, J.D. (Univ. of Manitoba, Winnipeg (Canada))

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  18. Plasma concentrations of the cyclic nucleotides, adenosine 3',5'-monophosphate and guanosine 3'.5'-monophosphate, in healthy adults treated with theophylline

    DEFF Research Database (Denmark)

    Fenger, M; Eriksen, P B; Andersen, O;

    1982-01-01

    Plasma concentrations of cyclic adenosine monophosphate and cyclic guanosine monophosphate were measured in 10 health adults before, during and after periods of theophylline administration. Cyclic adenosine monophosphate concentrations did not change significantly, but cyclic guanosine monophosph...

  19. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  20. Performance of adenosine "stress-only" perfusion MRI in patients without a history of myocardial infarction : a clinical outcome study

    NARCIS (Netherlands)

    Lubbers, Daniel D.; Rijlaarsdam-Hermsen, Dorine; Kuijpers, Dirkjan; Kerkhof, Marjan; Sijens, Paul E.; van Dijkman, Paul R. M.; Oudkerk, Matthijs

    To assess the diagnostic value of adenosine "stress-only" myocardial perfusion MR for ischemia detection as an indicator for coronary angiography in patients without a prior myocardial infarction and a necessity to exclude ischemia. Adenosine perfusion MRI was performed at 1.5 T in 139 patients with

  1. Real time adenosine fluctuations detected with fast-scan cyclic voltammetry in the rat striatum and motor cortex.

    Science.gov (United States)

    Adamah-Biassi, Ekue B; Almonte, Antoine G; Blagovechtchenski, Evgeny; Grinevich, Valentina P; Weiner, Jeff L; Bonin, Keith D; Budygin, Evgeny A

    2015-12-30

    Adenosine serves many functions within the CNS, including inhibitory and excitatory control of neurotransmission. The understanding of adenosine dynamics in the brain is of fundamental importance. The goal of the present study was to explore subsecond adenosine fluctuations in the rat brain in vivo. Long Evans rats were anesthetized and a carbon fiber electrode was positioned in the motor cortex or dorsal striatum. Real time electrochemical recordings were made at the carbon fiber electrodes every 100ms by applying a triangular waveform (-0.4 to +1.5V, 400V/s). Adenosine spikes were identified by the background-subtracted cyclic voltammogram. The frequency of detected adenosine spikes was relatively stable in both tested regions, and the time intervals between spikes were regular and lasted from 1 to 5s within an animal. Spike frequency ranged from 0.5 to 1.5Hz in both the motor cortex and the dorsal striatum. Average spike amplitudes were 85±11 and 66±7nM for the motor cortex and the dorsal striatum, respectively. The current study established that adenosine signaling can operate on a fast time scale (within seconds) to modulate brain functions. This finding suggests that spontaneous adenosine release may play a fast, dynamic role in regulating an organism's response to external events. Therefore, adenosine transmission in the brain may have characteristics similar to those of classical neurotransmitters, such as dopamine and norepinephrine. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping

    NARCIS (Netherlands)

    Kuijpers, Dirkjan; Prakken, Niek H.; Vliegenthart, Rozemarijn; van Dijkman, Paul R. M.; van der Harst, Pim; Oudkerk, Matthijs

    2016-01-01

    Caffeine intake before adenosine stress myocardial perfusion imaging may cause false negative findings. We hypothesized that the antagonistic effect of caffeine can be measured by T1 relaxation times in rest and adenosine stress cardiac magnetic resonance imaging (CMR), as T1 mapping techniques are

  3. Isoform-specific regulation of the Na+-K+ pump by adenosine in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Zhe ZHANG; Hui-cai GUO; Li-nan ZHANG; Yong-li WANG

    2009-01-01

    Aim: The present study investigated the effect of adenosine on Na+-K+ pumps in acutely isolated guinea pig (C, avia sp.) ven-tricular myocytes.Methods: The whole-cell, patch-damp technique was used to record the Na+-K+ pump current (Ip) in acutely isolated guinea pig ventricular myocytes.Results: Adenosine inhibited the high DHO-affinity pump current (Ih) in a concentration-dependent manner, which was blocked by the selective adenosine A1 receptor antagonist DPCPX and the general protein kinase C (PKC) antagonists stau-rosporine, GF 109203X or the specific δ isoform antagonist rottlerin. In addition, the inhibitory action of adenosine was mimicked by a selective A1 receptor agonist CCPA and a specific activator peptide of PKC-δ, PP114. In contrast, the selec-tive A2A receptor agonist CGS21680 and A3 receptor agonist Cl-IB-MECA did not affect lb. Application of the selective A2A receptor antagonist SCH58261 and A3 receptor antagonist MRS1191 also failed to block the effect of adenosine. Further-more, H89, a selective protein kinase A (PKA) antagonist, did not exert any effect on adenosine-induced Ih inhibition.Conclusion: The present study provides the electrophysiological evidence that adenosine can induce significant inhibition of Ih via adenosine A1 receptors and the PKC-δ isoform.

  4. Separation of effects of adenosine on energy metabolism from those on cyclic AMP in rat thymic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nordeen, S.K.; Young, D.A.

    1977-08-10

    In rat thymic lymphocytes incubated for 2 h without exogenous energy-providing substrate, adenosine may be substituted for glucose as a means of maximally restoring energy metabolism and those cellular functions whose rates are sensitive to small changes in the energy balance, such as protein synthesis and uridine utilization for RNA synthesis. Since effects of adenosine in thymocytes and other cells have frequently been attributed to changes in cyclic AMP, this report investigates its possible involvement in these glucose-like restorative actions of adenosine. Although the same range of doses of adenosine effective at raising cyclic AMP also elicit roughly parallel stimulations of protein synthesis and uridine utilization, further results dissociate the restorative actions from those on cyclic AMP. (a) Other purine nucleosides mimic the glucose-like actions of adenosine without increasing cyclic AMP; (b) conversely, prostaglandin E/sub 1/ mimics the cyclic AMP response without restoring energy metabolism or energy-dependent functions; and (c) potentiation of the cyclic AMP response, either by inhibiting phosphodiesterase or adenosine deaminase, does not enhance the restorative response to a range of doses of adenosine. Finally, cyclic AMP-mediated glycogenolysis cannot account for the glucose-like effects since addition of adenosine increases, not decreases, levels of glycogen.

  5. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.

  6. Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells

    OpenAIRE

    Kurtz, Courtney C.; Drygiannakis, Ioannis; Naganuma, Makoto; Feldman, Sanford; Bekiaris, Vasileios; Linden, Joel; Ware, Carl F.; Ernst, Peter B.

    2014-01-01

    Adenosine is a purine metabolite that can mediate anti-inflammatory responses in the digestive tract through the A2A adenosine receptor (A2AAR). We examined the role of this receptor in the control of inflammation in the adoptive transfer model of colitis. Infection of A2AAR−/− mice with Helicobacter hepaticus increased colonic inflammation scores compared with uninfected A2AAR controls. Comparison of T cell subsets in wild-type and A2AAR−/− mice revealed differences in markers associated wit...

  7. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    Directory of Open Access Journals (Sweden)

    ROBERTO PAES-DE-CARVALHO

    2002-09-01

    Full Text Available The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation.O nucleosídeo adenosina apresenta um importante papel como neurotransmissor ou neuromodulador no sistema nervoso central, inclusive na retina. Neste artigo apresentamos uma revisão das evidências que mostram que a adenosina é uma molécula sinalizadora na retina em desenvolvimento. Na retina de pinto, transportadores de adenosina estão presentes desde estágios precoces do desenvolvimento, antes do aparecimento dos receptores A1 que modulam a atividade adenilato ciclase dependente de dopamina ou dos receptores A2 que ativam diretamente a enzima. Experimentos usando culturas de células de retina revelaram que a adenosina é captada por populações celulares específicas que, quando estimuladas por despolarização ou por

  8. Investigation of the Interaction between Adenosine and Human Serum Albumin by Fluorescent Spectroscopy and Molecular Modeling

    Institute of Scientific and Technical Information of China (English)

    CUI Feng-Ling; WANG Jun-Li; LI Fang; FAN Jing; QU Gui-Rong; YAO Xiao-Jun; LEI Bei-Lei

    2008-01-01

    The binding interaction of adenosine with human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectroscopy in combination with a molecular modeling method. A strong fluorescence quenching reaction of adenosine to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to relevant fluorescent data and Vant'Hoff equation. The hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the results of molecular modeling study.

  9. In Vivo Quantification of Active Decitabine-Triphosphate Metabolite: A Novel Pharmacoanalytical Endpoint for Optimization of Hypomethylating Therapy in Acute Myeloid Leukemia

    OpenAIRE

    Wang, Hongyan; Chen, Ping; Wang, Jiang; Santhanam, Ramasamy; Aimiuwu, Josephine; Saradhi, U. V. Vijaya; Liu, Zhongfa; Schwind, Sebastian; Mims, Alice; Byrd, John C.; Grever, Michael R.; Villalona-Calero, Miguel A.; Klisovic, Rebecca; Walker, Alison; Garzon, Ramiro

    2012-01-01

    Decitabine (DAC) is used for treatment of patients with myelodysplastic syndromes and acute myeloid leukemia (AML). Following cellular uptake, DAC is activated to DAC-triphosphate (TP) and incorporated into DNA. Once incorporated into the DNA, DAC-TP binds and inactivates DNA methyltransferases (DNMTs), thereby leading to hypomethylation and re-expression of epigenetically silenced tumor suppressor genes and ultimately antileukemia activity. However, direct evidence of in vivo DAC-TP occurren...

  10. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    Science.gov (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  11. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine.

    Science.gov (United States)

    Xu, Lei; Shen, Xin; Li, Bingzhi; Zhu, Chunhong; Zhou, Xuemin

    2017-08-08

    Adenosine is an endogenous nucleotide pivotally involved in nucleic acid and energy metabolism. Its excessive existence may indicate tumorigenesis, typically lung cancer. Encouraged by its significance as the clinical biomarker, sensitive assay methods towards adenosine have been popularized, with high cost and tedious procedures as the inevitable defects. Herein, we report a label-free aptamer-based exonuclease III (Exo III) amplification colorimetric aptasensor for the highly sensitive and cost-effective detection of adenosine. The strategy employed two unlabeled hairpin DNA oligonucleotides (HP1 and HP2), where HP1 contained the aptamer towards adenosine and HP2 embedded the guanine-rich sequence (GRS). In the presence of adenosine, hairpin HP1 could form specific binding with adenosine and trigger the unfolding of HP1's hairpin structure. The resulting adenosine-HP1 complex could hybridize with HP2, generating the Exo III recognition site. After Exo III-assisted degradation, the GRS was released from HP2, and the adenosine-HP1 was released back to the solution to combine another HP2, inducing the cycling amplification. After multiple circulations, the released ample GRSs were induced to form G-quadruplex, further catalyzing the oxidation of TMB, yielding a color change which was finally mirrored in the absorbance change. On the contrary, the absence of adenosine failed to unfold HP1, remaining color unchanged eventually. Thanks to the amplification strategy, the limit of detection was lowered to 17 nM with a broad linear range from 50 nM to 6 μM. The proposed method was successfully applied to the detection of adenosine in biological samples and satisfying recoveries were acquired. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Safety of an Adenosine A(1)-Receptor Antagonist, Rolofylline, in Patients with Acute Heart Failure and Renal Impairment Findings from PROTECT

    NARCIS (Netherlands)

    Teerlink, John R.; Iragui, Vicente J.; Mohr, Jay P.; Carson, Peter E.; Hauptman, Paul J.; Lovett, David H.; Miller, Alan B.; Pina, Ileana L.; Thomson, Scott; Varosy, Paul D.; Zile, Michael R.; Cleland, John G. F.; Givertz, Michael M.; Metra, Marco; Ponikowski, Piotr; Voors, Adriaan A.; Davison, Beth A.; Cotter, Gad; Wolko, Denise; DeLucca, Paul; Salerno, Christina M.; Mansoor, George A.; Dittrich, Howard; O'Connor, Christopher M.; Massi, Barry M.

    2012-01-01

    Background: Adenosine exerts actions in multiple organ systems, and adenosine receptors are a therapeutic target in many development programmes. Objective: The aim of this analysis was to evaluate the safety of rolofylline, an adenosine A(1)-receptor antagonist, in patients with acute heart failure.

  13. Adenosine A(1) Receptors in the Central Nervous System : Their Functions in Health and Disease, and Possible Elucidation by PET Imaging