WorldWideScience

Sample records for adenosine ketogenic diet

  1. Ketogenic diet

    Directory of Open Access Journals (Sweden)

    Tina Bregant

    2009-04-01

    conclusions This review traces a history of ketogenic diet, reviews its uses and side effects, and discusses possible alternatives and the diet’s possible mechanisms of action. We show how to use the diet in practice. Protocol and calculations are presented. We look toward possible future uses of the ketogenic diet, since it is efficient, under doctor’s supervison safe, but very demanding, additional treatment.

  2. Ketogenic Diets and Pain

    Science.gov (United States)

    Masino, Susan A.; Ruskin, David N.

    2014-01-01

    Ketogenic diets are well-established as a successful anticonvulsant therapy. Based on overlap between mechanisms postulated to underlie pain and inflammation, and mechanisms postulated to underlie therapeutic effects of ketogenic diets, recent studies have explored the ability for ketogenic diets to reduce pain. Here we review clinical and basic research thus far exploring the impact of a ketogenic diet on thermal pain, inflammation, and neuropathic pain. PMID:23680946

  3. Ketogenic Diets and Pain

    OpenAIRE

    Masino, Susan A.; Ruskin, David N.

    2013-01-01

    Ketogenic diets are well-established as a successful anticonvulsant therapy. Based on overlap between mechanisms postulated to underlie pain and inflammation, and mechanisms postulated to underlie therapeutic effects of ketogenic diets, recent studies have explored the ability for ketogenic diets to reduce pain. Here we review clinical and basic research thus far exploring the impact of a ketogenic diet on thermal pain, inflammation, and neuropathic pain.

  4. Purines and Neuronal Excitability: Links to the Ketogenic Diet

    Science.gov (United States)

    Masino, SA; Kawamura, M; Ruskin, DN; Geiger, JD; Boison, D

    2011-01-01

    ATP and adenosine are purines that play dual roles in cell metabolism and neuronal signaling. Acting at the A1 receptor (A1R) subtype, adenosine acts directly on neurons to inhibit excitability and is a powerful endogenous neuroprotective and anticonvulsant molecule. Previous research showed an increase in ATP and other cell energy parameters when an animal is administered a ketogenic diet, an established metabolic therapy to reduce epileptic seizures, but the relationship among purines, neuronal excitability and the ketogenic diet was unclear. Recent work in vivo and in vitro tested the specific hypothesis that adenosine acting at A1Rs is a key mechanism underlying the success of ketogenic diet therapy and yielded direct evidence linking A1Rs to the antiepileptic effects of a ketogenic diet. Specifically, an in vitro mimic of a ketogenic diet revealed an A1R-dependent metabolic autocrine hyperpolarization of hippocampal neurons. In parallel, applying the ketogenic diet in vivo to transgenic mouse models with spontaneous electrographic seizures revealed that intact A1Rs are necessary for the seizure-suppressing effects of the diet. This is the first direct in vivo evidence linking A1Rs to the antiepileptic effects of a ketogenic diet. Other predictions of the relationship between purines and the ketogenic diet are discussed. Taken together, recent research on the role of purines may offer new opportunities for metabolic therapy and insight into its underlying mechanisms. PMID:21880467

  5. Metabolic Effects of Ketogenic Diets

    OpenAIRE

    J Gordon Millichap

    1989-01-01

    The results of 24 metabolic profiles performed on 55 epileptic children receiving the classical ketogenic diet, the MCT diet, a modified MCT diet, and normal diets are reported from the University Department of Paediatrics, John Radcliffe Hospital, Oxford, England.

  6. Ketogenic Diet in Epileptic Encephalopathies

    Directory of Open Access Journals (Sweden)

    Suvasini Sharma

    2013-01-01

    Full Text Available The ketogenic diet is a medically supervised high-fat, low-carbohydrate diet that has been found useful in patients with refractory epilepsy. It has been shown to be effective in treating multiple seizure types and epilepsy syndromes. In this paper, we review the use of the ketogenic diet in epileptic encephalopathies such as Ohtahara syndrome, West syndrome, Dravet syndrome, epilepsy with myoclonic atonic seizures, and Lennox-Gastaut syndrome.

  7. Ketogenic Diet in Epileptic Encephalopathies

    OpenAIRE

    Sharma, Suvasini; Tripathi, Manjari

    2013-01-01

    The ketogenic diet is a medically supervised high-fat, low-carbohydrate diet that has been found useful in patients with refractory epilepsy. It has been shown to be effective in treating multiple seizure types and epilepsy syndromes. In this paper, we review the use of the ketogenic diet in epileptic encephalopathies such as Ohtahara syndrome, West syndrome, Dravet syndrome, epilepsy with myoclonic atonic seizures, and Lennox-Gastaut syndrome.

  8. [Epilepsy, cognition and ketogenic diet].

    Science.gov (United States)

    Garcia-Penas, J J

    2018-03-01

    Most individuals with epilepsy will respond to pharmacologic treatment; however, approximately 20-30% will develop medically refractory epilepsy. Cognitive side effects of antiepileptic drugs are common and can negatively affect tolerability, compliance, and long-term retention of the treatment. Ketogenic diet is an effective and well-tolerated treatment for these children with refractory epilepsy without any negative effect on cognition or behavior. To review the current state of experimental and clinical data concerning the neuroprotective and cognitive effects of the ketogenic diet in both humans and animals. In different animal models, with or without epilepsy, the ketogenic diet seems to have neuroprotective and mood-stabilizing effects. In the observational studies in pediatric epilepsy, improvements during treatment with the ketogenic diet are reported in behavior and cognitive function, particularly with respect to attention, alertness, activity level, socialization, and sleep quality. One randomized controlled trial in patients with pediatric refractory epilepsy showed a mood and cognitive activation during ketogenic diet treatment. Ketogenic diet shows a positive impact on behavioral and cognitive functioning in children and adolescents with refractory epilepsy. More specifically, an improvement is observed in mood, sustained attention, and social interaction.

  9. Ketogenic diet for epilepsy treatment.

    Science.gov (United States)

    Sampaio, Letícia Pereira de Brito

    2016-10-01

    The ketogenic diet (KD), a high-fat, low-carbohydrate, and adequate-protein diet is an established, effective nonpharmacologic treatment option for intractable childhood epilepsy. The KD was developed in 1921 and even though it has been increasingly used worldwide in the past decade, many neurologists are not familiar with this therapeutic approach. In the past few years, alternative and more flexible KD variants have been developed to make the treatment easier and more palatable while reducing side effects and making it available to larger group of refractory epilepsy patients. This review summarizes the history of the KD and the principles and efficacy of the classic ketogenic diet, medium-chain triglyceride(s) (MCT) ketogenic diet, modified Atkins diet, and low glycemic index treatment.

  10. Ketogenic diet for epilepsy treatment

    Directory of Open Access Journals (Sweden)

    Letícia Pereira de Brito Sampaio

    Full Text Available ABSTRACT The ketogenic diet (KD, a high-fat, low-carbohydrate, and adequate-protein diet is an established, effective nonpharmacologic treatment option for intractable childhood epilepsy. The KD was developed in 1921 and even though it has been increasingly used worldwide in the past decade, many neurologists are not familiar with this therapeutic approach. In the past few years, alternative and more flexible KD variants have been developed to make the treatment easier and more palatable while reducing side effects and making it available to larger group of refractory epilepsy patients. This review summarizes the history of the KD and the principles and efficacy of the classic ketogenic diet, medium-chain triglyceride(s (MCT ketogenic diet, modified Atkins diet, and low glycemic index treatment.

  11. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    observation is not reversed by the KD which to some extent supports our initial hypothesis. 15. SUBJECT TERMS Epilepsy , Ketogenic Diet , Seizure Disorder... ketogenic diet (KD), which is used to treat epilepsy (primarily in children) exerts a positive effect on seizure activity by regulating neuronal... Epilepsy , Ketogenic Diet , Seizure Disorder, Potassium Channels, Neurophysiology 3. Overall Project Summary: To determine the impact of KD on

  12. Ketogenic Diet: Effects on Growth

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-12-01

    Full Text Available The effects of the ketogenic diet on growth of 237 children (130 males, 107 females treated for intractable epilepsy has been evaluated in a prospective cohort study (average follow-up 308 days at the Johns Hopkins Hospital, Baltimore, MD.

  13. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    OpenAIRE

    Paoli, Antonio; Bianco, Antonino; Damiani, Ernesto; Bosco, Gerardo

    2014-01-01

    An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson’s disease, and some mitochondriopathies. Although these diseases have different pathogenesis and f...

  14. Ketogenic diet and anorexia nervosa.

    Science.gov (United States)

    Scolnick, Barbara

    2017-11-01

    This hypothesis suggest that starvation-induced ketosis, which leads to a fundamental biochemical change in the metabolic fuel supply of the brain, is uniquely anxiolytic and rewarding to patients prone to AN. Ketosis can easily be replicated by a unique diet marked by high fat, moderate protein, and very low carbohydrate. This diet, known as a ketogenic diet (KGD) mimics starvation, thus allowing the patient to experience the anxiolytic state of ketosis, and yet avoid the morbidity of starvation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The ketogenic diet: uses in epilepsy and other neurologic illnesses.

    Science.gov (United States)

    Barañano, Kristin W; Hartman, Adam L

    2008-11-01

    The ketogenic diet is well established as therapy for intractable epilepsy. It should be considered first-line therapy in glucose transporter type 1 and pyruvate dehydrogenase deficiency. It should be considered early in the treatment of Dravet syndrome and myoclonic-astatic epilepsy (Doose syndrome). Initial studies indicate that the ketogenic diet appears effective in other metabolic conditions, including phosphofructokinase deficiency and glycogenosis type V (McArdle disease). It appears to function in these disorders by providing an alternative fuel source. A growing body of literature suggests the ketogenic diet may be beneficial in certain neurodegenerative diseases, including Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these disorders, the ketogenic diet appears to be neuroprotective, promoting enhanced mitochondrial function and rescuing adenosine triphosphate production. Dietary therapy is a promising intervention for cancer, given that it may target the relative inefficiency of tumors in using ketone bodies as an alternative fuel source. The ketogenic diet also may have a role in improving outcomes in trauma and hypoxic injuries.

  16. The ketogenic diet in pharmacoresistant childhood epilepsy.

    Science.gov (United States)

    Winesett, Steven Parrish; Bessone, Stacey Kordecki; Kossoff, Eric H W

    2015-06-01

    Available pharmacologic treatments for seizures are limited in their efficacy. For a patient with seizures, pharmacologic treatment with available anticonvulsant medications leads to seizure control in ketogenic diet and related diets have proven to be useful in pharmacoresistant childhood epilepsy.

  17. Nonfasting Versus Initial Fasting Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-02-01

    Full Text Available A retrospective evaluation of the ketogenic diet (KD was conducted comparing efficacy and tolerability of the diet with or without initial fasting and fluid restriction and involving university centers in Seoul, Korea.

  18. Concurrent Anticonvulsant/Ketogenic Diet Efficacy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-09-01

    Full Text Available Researchers at the Johns Hopkins Hospital, Baltimore, studied retrospectively the comparative efficacy of six most frequently used anticonvulsants when employed in combination with the ketogenic diet (KD for treatment of 115 children with epilepsy.

  19. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2014-01-01

    Full Text Available An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson’s disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review.

  20. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Science.gov (United States)

    Damiani, Ernesto; Bosco, Gerardo

    2014-01-01

    An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson's disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review. PMID:25101284

  1. Ketogenic diet in neuromuscular and neurodegenerative diseases.

    Science.gov (United States)

    Paoli, Antonio; Bianco, Antonino; Damiani, Ernesto; Bosco, Gerardo

    2014-01-01

    An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson's disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review.

  2. [National consensus on the ketogenic diet].

    Science.gov (United States)

    Armeno, Marisa; Caraballo, Roberto; Vaccarezza, María; Alberti, M Julia; Ríos, Viviana; Galicchio, Santiago; de Grandis, Elizabeth S; Mestre, Graciela; Escobal, Nidia; Matarrese, Pablo; Viollaz, Rocío; Agostinho, Ariela; Díez, Cecilia; Cresta, Araceli; Cabrera, Analía; Blanco, Virginia; Ferrero, Hilario; Gambarini, Victoria; Sosa, Patricia; Bouquet, Cecilia; Caramuta, Luciana; Guisande, Silvina; Gamboni, Beatriz; Hassan, Amal; Pesce, Laura; Argumedo, Laura; Dlugoszewski, Corina; DeMartini, Martha G; Panico, Luis

    2014-09-01

    Epilepsy is a chronic disease with onset in infancy affecting 0.5-1% of the population. One third of the patients is refractory to antiepileptic drugs and they pose a challenge for the health care team. The ketogenic diet is an effective, non-pharmacological, alternative treatment for the management of refractory epilepsy. There is a need to establish guidelines for the adequate and increased use of the ketogenic diet in Spanish-speaking countries. The National Committee on the Ketogenic Diet, consisting of paediatric neurologists, clinical nutritionists, and dietitians, of the Argentine Society of Child Neurology has developed this consensus statement to standardize the use of the ketogenic diet based on the literature and clinical experience. Patient selection, pre-treatment family counseling, drug interactions, micronutrient supplementation, adverse effects, and discontinuation of the diet are discussed. The ketogenic diet is an effective treatment for children with refractory epilepsy. Education and collaboration of the patient and their family is essential. The patient should be managed by an experienced multidisciplinary team using a protocol. The formation of a national multidisciplinary team and the publication of this document provide possibilities for new centers to integrate the ketogenic diet into their treatment options.

  3. Rationale, Feasibility and Acceptability of Ketogenic Diet for Cancer Treatment

    OpenAIRE

    Chung, Hae-Yun; Park, Yoo Kyoung

    2017-01-01

    Ketogenic diet has been used for more than 80 years as a successful dietary regimen for epilepsy. Recently, dietary modulation by carbohydrate depletion via ketogenic diet has been suggested as an important therapeutic strategy to selectively kill cancer cells and as adjuvant therapy for cancer treatment. However, some researchers insist ketogenic diet to be highly undesirable as ketogenic diet may trigger and/or exacerbate cachexia development and usually result in significant weight loss. T...

  4. The Ketogenic Diet: Making a Comeback.

    Science.gov (United States)

    Walczyk, Thomas; Wick, Jeannette Y

    2017-07-01

    Americans have embraced a large number of diets in an attempt to manage obesity, improve quality of life, and address specific health problems. Among diets developed to address health problems, the ketogenic diet has had a long and variable history. Developed in the 1920s by a faith healer to help children with epilepsy, this diet induces a state that mimics carbohydrate starvation. As medications became available and effectively addressed seizures, the diet fell out of favor. During the last few decades, researchers and clinicians have learned that it can be useful in children and adults with refractory epilepsy and a variety of other conditions. Once again, pharmacists may encounter patients who are employing dietary management of serious health problems. This very high-fat diet almost eliminates carbohydrates from the patient's food selection. The result is the substitution of ketone bodies as a source of energy. Today's ketogenic diet has been modified with scientifically proven adjustments to increase palatability and help with adherence. Effective for some forms of epilepsy, the ketogenic diet also seems to have some utility in Alzheimer's disease, Parkinson's disease, and glaucoma, and many Americans are using it to lose weight. Consultant pharmacists may field questions about this diet, its potential to correct or alleviate health conditions, and its limitations. The article discusses the ketogenic diet's strengths, limitations, potential mechanisms, and use in a number of conditions with an emphasis on the elderly.

  5. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet.

    Science.gov (United States)

    Ruskin, David N; Kawamura, Masahito; Masino, Susan A

    2009-12-23

    The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow) or ketogenic diet (79% fat) ad libitum for 3-4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature) as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.

  6. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet.

    Directory of Open Access Journals (Sweden)

    David N Ruskin

    2009-12-01

    Full Text Available The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow or ketogenic diet (79% fat ad libitum for 3-4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.

  7. The Ketogenic Diet Improves Recently Worsened Focal Epilepsy

    Science.gov (United States)

    Villeneuve, Nathalie; Pinton, Florence; Bahi-Buisson, Nadia; Dulac, Olivier; Chiron, Catherine; Nabbout, Rima

    2009-01-01

    Aim: We observed a dramatic response to the ketogenic diet in several patients with highly refractory epilepsy whose seizure frequency had recently worsened. This study aimed to identify whether this characteristic was a useful indication for the ketogenic diet. Method: From the 70 patients who received the ketogenic diet during a 3-year period at…

  8. A bioenergetics systems evaluation of ketogenic diet liver effects.

    Science.gov (United States)

    Hutfles, Lewis J; Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Selfridge, J Eva; Tan, Eephie; Thyfault, John P; Slawson, Chad; Fenton, Aron W; Zhu, Hao; Swerdlow, Russell H

    2017-09-01

    Ketogenic diets induce hepatocyte fatty acid oxidation and ketone body production. To further evaluate how ketogenic diets affect hepatocyte bioenergetic infrastructure, we analyzed livers from C57Bl/6J male mice maintained for 1 month on a ketogenic or standard chow diet. Compared with the standard diet, the ketogenic diet increased cytosolic and mitochondrial protein acetylation and also altered protein succinylation patterns. SIRT3 protein decreased while SIRT5 protein increased, and gluconeogenesis, oxidative phosphorylation, and mitochondrial biogenesis pathway proteins were variably and likely strategically altered. The pattern of changes observed can be used to inform a broader systems overview of how ketogenic diets affect liver bioenergetics.

  9. Carnitine Level Changes with the Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-01-01

    Full Text Available The effects of the ketogenic diet (KD on carnitine levels were determined in 38 consecutive patients with epilepsy treated at Rush-Presbyterian-St Luke’s Medical Center, Chicago, IL Carnitine levels were determined at 0, 1, 6, 12, and 24 months of diet treatment.

  10. The Neuropharmacology of the Ketogenic Diet

    Science.gov (United States)

    Hartman, Adam L.; Gasior, Maciej; Vining, Eileen P. G.; Rogawski, Michael A.

    2007-01-01

    The ketogenic diet is a valuable therapeutic approach for epilepsy, one in which most clinical experience has been with children. Although the mechanism by which the diet protects against seizures is unknown, there is evidence that it causes effects on intermediary metabolism that influence the dynamics of the major inhibitory and excitatory neurotransmitter systems in brain. The pattern of protection of the ketogenic diet in animal models of seizures is distinct from that of other anticonvulsants, suggesting that it has a unique mechanism of action. During consumption of the ketogenic diet, marked alterations in brain energy metabolism occur, with ketone bodies partly replacing glucose as fuel. Whether these metabolic changes contribute to acute seizure protection is unclear; however, the ketone body acetone has anticonvulsant activity and could play a role in the seizure protection afforded by the diet. In addition to acute seizure protection, the ketogenic diet provides protection against the development of spontaneous recurrent seizures in models of chronic epilepsy, and it has neuroprotective properties in diverse models of neurodegenerative disease. PMID:17509459

  11. Ketogenic Diet for Epilepsy and Focal Malformation

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-09-01

    Full Text Available The efficacy and long-term treatment outcome of a classic ketogenic diet (KD addon treatment (4:1 lipid/nonlipid ratio, without initial fasting and fluid restriction were evaluated retrospectively in 47 children with intractable epilepsy and focal malformation of cortical development, in a study at Severance Children’s and Sanggye Park Hospitals, Seoul, Korea.

  12. Ketogenic diets and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Klaus W. Lange

    2017-03-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder characterized by decline in cognitive functions and associated with the neuropathological hallmarks of amyloid β-peptide plaques and neurofibrillary tangles. Cerebral glucose uptake and metabolism deteriorate in AD and this hypometabolism precedes the onset of clinical signs in AD. The early decline in brain glucose metabolism in AD has become a potential target for therapeutic intervention. This has led to investigations assessing the supplementation of the normal glucose supply with ketone bodies which are produced by the body during glucose deprivation and can be metabolized by the brain when glucose utilization is impaired. The present review provides a synopsis of preclinical studies and clinical trials assessing the efficacy of ketogenic diets in the treatment of AD. Both the direct administration of ketone bodies and the use of high-fat, low-carbohydrate ketogenic diets have been shown to be efficacious in animal models of AD and clinical trials with AD patients. The mechanism underlying the efficacy of ketogenic diets remains unclear, but some evidence points to the normalization of aberrant energy metabolism. At present there is only limited evidence of the usefulness of ketogenic diets in AD. However, this dietary approach seems to be promising and deserves further clinical investigations.

  13. Ketogenic Diet and The Treatment of Cancer

    OpenAIRE

    Somayeh Zaminpira; Sorush Niknamian

    2017-01-01

    Cancer is the second leading cause of death in the United States. Researchers estimate that 595,690 Americans will die from cancer in 2017. That means approximately 1,600 deaths per day on average.39 Cancer is most commonly treated with a combination of surgery, chemotherapy and radiation. Many different diet strategies have been studied, but none have been particularly effective. Interestingly, there is some applied research suggesting that a very low-carb ketogenic diet may help.40, 41, 42 ...

  14. Ketogenic diet in endocrine disorders: Current perspectives

    OpenAIRE

    L Gupta; D Khandelwal; S Kalra; P Gupta; D Dutta; S Aggarwal

    2017-01-01

    Ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis, long known for antiepileptic effects and has been used therapeutically to treat refractory epilepsy. This review attempts to summarize the evidence and clinical application of KD in diabetes, obesity, and other endocrine disorders. KD is usually animal protein based. An empiric vegetarian Indian variant of KD has been provided keeping in mind the Indian food habits. KD has benefic...

  15. Ketogenic diet: Predictors of seizure control

    Science.gov (United States)

    Agarwal, Nitin; Arkilo, Dimitrios; Farooq, Osman; Gillogly, Cynthia; Kavak, Katelyn S; Weinstock, Arie

    2017-01-01

    Background: The ketogenic diet is an effective non-pharmacologic treatment for medically resistant epilepsy. The aim of this study was to identify any predictors that may influence the response of ketogenic diet. Methods: A retrospective chart review for all patients with medically resistant epilepsy was performed at a tertiary care epilepsy center from 1996 to 2012. Patient- and diet-related variables were evaluated with respect to seizure reduction at 1, 3, 6, 9 and 12-month intervals and divided into four possible outcome classes. Results: Sixty-three patients met inclusion. Thirty-seven (59%) reported >50% seizure reduction at 3 months with 44% and 37% patients benefiting at 6-month and 12-month follow up, respectively. A trend toward significant seizure improvement was noted in 48% patients with seizure onset >1 year at 12-month (p = 0.09) interval and in 62% patients with >10 seizure/day at 6-month interval (p = 0.054). An ordinal logistic regression showed later age of seizure to have higher odds of favorable response at 1-month (p = 0.005) and 3-month (p = 0.013) follow up. Patients with non-fasting diet induction were more likely to have a favorable outcome at 6 months (p = 0.008) as do females (p = 0.037) and those treated with higher fat ratio diet (p = 0.034). Conclusion: Our study reports the effectiveness of ketogenic diet in children with medically resistant epilepsy. Later age of seizure onset, female gender, higher ketogenic diet ratio and non-fasting induction were associated with better odds of improved seizure outcome. A larger cohort is required to confirm these findings. PMID:28620490

  16. Ketogenic diet: Predictors of seizure control.

    Science.gov (United States)

    Agarwal, Nitin; Arkilo, Dimitrios; Farooq, Osman; Gillogly, Cynthia; Kavak, Katelyn S; Weinstock, Arie

    2017-01-01

    The ketogenic diet is an effective non-pharmacologic treatment for medically resistant epilepsy. The aim of this study was to identify any predictors that may influence the response of ketogenic diet. A retrospective chart review for all patients with medically resistant epilepsy was performed at a tertiary care epilepsy center from 1996 to 2012. Patient- and diet-related variables were evaluated with respect to seizure reduction at 1, 3, 6, 9 and 12-month intervals and divided into four possible outcome classes. Sixty-three patients met inclusion. Thirty-seven (59%) reported >50% seizure reduction at 3 months with 44% and 37% patients benefiting at 6-month and 12-month follow up, respectively. A trend toward significant seizure improvement was noted in 48% patients with seizure onset >1 year at 12-month (p = 0.09) interval and in 62% patients with >10 seizure/day at 6-month interval (p = 0.054). An ordinal logistic regression showed later age of seizure to have higher odds of favorable response at 1-month (p = 0.005) and 3-month (p = 0.013) follow up. Patients with non-fasting diet induction were more likely to have a favorable outcome at 6 months (p = 0.008) as do females (p = 0.037) and those treated with higher fat ratio diet (p = 0.034). Our study reports the effectiveness of ketogenic diet in children with medically resistant epilepsy. Later age of seizure onset, female gender, higher ketogenic diet ratio and non-fasting induction were associated with better odds of improved seizure outcome. A larger cohort is required to confirm these findings.

  17. Ketogenic Diet suppresses Alcohol Withdrawal Syndrome in Rats

    DEFF Research Database (Denmark)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane

    2018-01-01

    , we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. METHODS: Male Sprague Dawley rats fed either ketogenic or regular diets were administered ethanol or water orally, twice daily for 6 days while the diet conditions were...... maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. RESULTS: Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms 'rigidity' and 'irritability'. CONCLUSION: Our preclinical pilot study suggests that a ketogenic...... diet may be a novel approach for treating alcohol withdrawal symptoms in humans. This article is protected by copyright. All rights reserved....

  18. Ketogenic diets: from cancer to mitochondrial diseases and beyond.

    Science.gov (United States)

    Branco, Ana F; Ferreira, André; Simões, Rui F; Magalhães-Novais, Sílvia; Zehowski, Cheryl; Cope, Elisabeth; Silva, Ana Marta; Pereira, Daniela; Sardão, Vilma A; Cunha-Oliveira, Teresa

    2016-03-01

    The employment of dietary strategies such as ketogenic diets, which force cells to alter their energy source, has shown efficacy in the treatment of several diseases. Ketogenic diets are composed of high fat, moderate protein and low carbohydrates, which favour mitochondrial respiration rather than glycolysis for energy metabolism. This review focuses on how oncological, neurological and mitochondrial disorders have been targeted by ketogenic diets, their metabolic effects, and the possible mechanisms of action on mitochondrial energy homeostasis. The beneficial and adverse effects of the ketogenic diets are also highlighted. Although the full mechanism by which ketogenic diets improve oncological and neurological conditions still remains to be elucidated, their clinical efficacy has attracted many new followers, and ketogenic diets can be a good option as a co-adjuvant therapy, depending on the situation and the extent of the disease. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  19. The Ketogenic Diet: A Practical Guide for Pediatricians.

    Science.gov (United States)

    Luat, Aimee F; Coyle, Leigh; Kamat, Deepak

    2016-12-01

    The ketogenic diet is an effective treatment for drug-resistant epilepsies in children. In addition, it is the first-line treatment for some metabolic disorders, such as glucose transporter 1 deficiency syndrome. This article discusses the proposed mechanisms of a ketogenic diet's antiseizure action, its clinical indications, and its contraindications. The steps involved in ketogenic diet initiation, monitoring, and management of its side effects are also discussed. This review provides general pediatricians with the necessary skills to provide comprehensive care of children using the ketogenic diet and counsel their families and caregivers. [Pediatr Ann. 2016;45(12):e446-e450.]. Copyright 2016, SLACK Incorporated.

  20. Ketogenic Diets for Adults With Highly Refractory Epilepsy

    Science.gov (United States)

    McDonald, Tanya J. W.

    2017-01-01

    The current review highlights the evidence supporting the use of ketogenic diets in the management of drug-resistant epilepsy and status epilepticus in adults. Ketogenic diet variants are compared and advantages and potential side effects of diet therapy are discussed. PMID:29217974

  1. Ketogenic Diets for Adults With Highly Refractory Epilepsy

    OpenAIRE

    McDonald, Tanya J. W.; Cervenka, Mackenzie C.

    2017-01-01

    The current review highlights the evidence supporting the use of ketogenic diets in the management of drug-resistant epilepsy and status epilepticus in adults. Ketogenic diet variants are compared and advantages and potential side effects of diet therapy are discussed.

  2. The nervous system and metabolic dysregulation: emerging evidence converges on ketogenic diet therapy

    Directory of Open Access Journals (Sweden)

    David N. Ruskin

    2012-03-01

    Full Text Available A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high-fat, low-carbohydrate ketogenic diet debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, ketogenic diet therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. More recently, cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders - although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a ketogenic diet and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a ketogenic diet on cognition and recent data on the effects of a ketogenic diet on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system.

  3. Childhood Absence Epilepsy Successfully Treated with the Paleolithic Ketogenic Diet

    OpenAIRE

    Clemens, Zs?fia; Kelemen, Anna; Fogarasi, Andr?s; T?th, Csaba

    2013-01-01

    Introduction Childhood absence epilepsy is an epilepsy syndrome responding relatively well to the ketogenic diet with one-third of patients becoming seizure-free. Less restrictive variants of the classical ketogenic diet, however, have been shown to confer similar benefits. Beneficial effects of high fat, low-carbohydrate diets are often explained in evolutionary terms. However, the paleolithic diet itself which advocates a return to the human evolutionary diet has not yet been studied in epi...

  4. Ketogenic Diet for Obesity: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2014-02-01

    Full Text Available Obesity is reaching epidemic proportions and is a strong risk factor for a number of cardiovascular and metabolic disorders such as hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, and also certain types of cancers. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Genetic predisposition in combination with inactive lifestyles and high caloric intake leads to excessive weight gain. Even though there may be agreement about the concept that lifestyle changes affecting dietary habits and physical activity are essential to promote weight loss and weight control, the ideal amount and type of exercise and also the ideal diet are still under debate. For many years, nutritional intervention studies have been focused on reducing dietary fat with little positive results over the long-term. One of the most studied strategies in the recent years for weight loss is the ketogenic diet. Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis and is able to induce effective weight loss along with improvement in several cardiovascular risk parameters. This review discusses the physiological basis of ketogenic diets and the rationale for their use in obesity, discussing the strengths and the weaknesses of these diets together with cautions that should be used in obese patients.

  5. Ketogenic Diet for Obesity: Friend or Foe?

    Science.gov (United States)

    Paoli, Antonio

    2014-01-01

    Obesity is reaching epidemic proportions and is a strong risk factor for a number of cardiovascular and metabolic disorders such as hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, and also certain types of cancers. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Genetic predisposition in combination with inactive lifestyles and high caloric intake leads to excessive weight gain. Even though there may be agreement about the concept that lifestyle changes affecting dietary habits and physical activity are essential to promote weight loss and weight control, the ideal amount and type of exercise and also the ideal diet are still under debate. For many years, nutritional intervention studies have been focused on reducing dietary fat with little positive results over the long-term. One of the most studied strategies in the recent years for weight loss is the ketogenic diet. Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis and is able to induce effective weight loss along with improvement in several cardiovascular risk parameters. This review discusses the physiological basis of ketogenic diets and the rationale for their use in obesity, discussing the strengths and the weaknesses of these diets together with cautions that should be used in obese patients. PMID:24557522

  6. Ketogenic diet for obesity: friend or foe?

    Science.gov (United States)

    Paoli, Antonio

    2014-02-19

    Obesity is reaching epidemic proportions and is a strong risk factor for a number of cardiovascular and metabolic disorders such as hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, and also certain types of cancers. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Genetic predisposition in combination with inactive lifestyles and high caloric intake leads to excessive weight gain. Even though there may be agreement about the concept that lifestyle changes affecting dietary habits and physical activity are essential to promote weight loss and weight control, the ideal amount and type of exercise and also the ideal diet are still under debate. For many years, nutritional intervention studies have been focused on reducing dietary fat with little positive results over the long-term. One of the most studied strategies in the recent years for weight loss is the ketogenic diet. Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis and is able to induce effective weight loss along with improvement in several cardiovascular risk parameters. This review discusses the physiological basis of ketogenic diets and the rationale for their use in obesity, discussing the strengths and the weaknesses of these diets together with cautions that should be used in obese patients.

  7. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders.

    Science.gov (United States)

    Augustin, Katrin; Khabbush, Aziza; Williams, Sophie; Eaton, Simon; Orford, Michael; Cross, J Helen; Heales, Simon J R; Walker, Matthew C; Williams, Robin S B

    2018-01-01

    High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Childhood absence epilepsy successfully treated with the paleolithic ketogenic diet.

    Science.gov (United States)

    Clemens, Zsófia; Kelemen, Anna; Fogarasi, András; Tóth, Csaba

    2013-12-01

    Childhood absence epilepsy is an epilepsy syndrome responding relatively well to the ketogenic diet with one-third of patients becoming seizure-free. Less restrictive variants of the classical ketogenic diet, however, have been shown to confer similar benefits. Beneficial effects of high fat, low-carbohydrate diets are often explained in evolutionary terms. However, the paleolithic diet itself which advocates a return to the human evolutionary diet has not yet been studied in epilepsy. Here, we present a case of a 7-year-old child with absence epilepsy successfully treated with the paleolithic ketogenic diet alone. In addition to seizure freedom achieved within 6 weeks, developmental and behavioral improvements were noted. The child remained seizure-free when subsequently shifted toward a paleolithic diet. It is concluded that the paleolithic ketogenic diet was effective, safe and feasible in the treatment of this case of childhood absence epilepsy.

  9. Effects of ketogenic diet on vascular function.

    Science.gov (United States)

    Kapetanakis, M; Liuba, P; Odermarsky, M; Lundgren, J; Hallböök, T

    2014-07-01

    Ketogenic diet is a well-established treatment in children with difficult to treat epilepsy. Very little is known about the long-term effects on vascular atherogenic and biochemical processes of this high-fat and low carbohydrate and protein diet. We evaluated 26 children after one year and 13 children after two years of ketogenic diet. High resolution ultrasound-based assessment was used for carotid artery intima-media thickness (cIMT), carotid artery distensibility and carotid artery compliance. Blood lipids including high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol, (LDL-C), total cholesterol (TC), apolipoprotein A (apoA), apolipoprotein B (apoB) and high-sensitivity C-reactive protein (hsCRP) were analysed. A gradual decrease in carotid distensibility and an increase in LDL-C, apoB and the TC:LDL-C and LDL-C:HDL-C ratios were seen at three and 12 months of KD-treatment. These differences were not significant at 24 months. cIMT, BMI and hsCRP did not show any significant changes. The initial alterations in lipids, apoB and arterial function observed within the first year of KD-treatment appear to be reversible and not significant after 24 months of treatment. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  10. Effects of a ketogenic diet on brain metabolism in epilepsy.

    Science.gov (United States)

    Korsholm, Kirsten; Law, Ian

    2013-01-01

    For a subpopulation of drug-resistant epilepsies, a ketogenic diet constitutes the treatment of choice. A ketogenic diet is a high-fat, low-protein, and low-carbohydrate diet, which induces ketosis. Despite the use in treatment of epilepsy since 1924, the clinical efficacy was not demonstrated in a controlled, randomized trial until 2008, showing its capability of reducing seizure frequency with more than 50%. However, the exact mechanism of this form of treatment is still unknown. We report here a patient with drug-resistant epilepsy on a ketogenic diet, where a brain 18F-FDG PET examination demonstrated a severely decreased uptake in the cerebral cortex bilaterally.

  11. Effects of a ketogenic diet on brain metabolism in epilepsy

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Law, Ian

    2013-01-01

    For a subpopulation of drug-resistant epilepsies, a ketogenic diet constitutes the treatment of choice. A ketogenic diet is a high-fat, low-protein, and low-carbohydrate diet, which induces ketosis. Despite the use in treatment of epilepsy since 1924, the clinical efficacy was not demonstrated...... in a controlled, randomized trial until 2008, showing its capability of reducing seizure frequency with more than 50%. However, the exact mechanism of this form of treatment is still unknown. We report here a patient with drug-resistant epilepsy on a ketogenic diet, where a brain 18F-FDG PET examination...

  12. Ketogenic diet improves core symptoms of autism in BTBR mice.

    Directory of Open Access Journals (Sweden)

    David N Ruskin

    Full Text Available Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920's a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole were compared between BTBR and control (C57Bl/6 mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.

  13. New insights into the mechanisms of the ketogenic diet.

    Science.gov (United States)

    Boison, Detlev

    2017-04-01

    High-fat, low-carbohydrate ketogenic diets have been used for almost a century for the treatment of epilepsy. Used traditionally for the treatment of refractory pediatric epilepsies, in recent years the use of ketogenic diets has experienced a revival to include the treatment of adulthood epilepsies as well as conditions ranging from autism to chronic pain and cancer. Despite the ability of ketogenic diet therapy to suppress seizures refractory to antiepileptic drugs and reports of lasting seizure freedom, the underlying mechanisms are poorly understood. This review explores new insights into mechanisms mobilized by ketogenic diet therapies. Ketogenic diets act through a combination of mechanisms, which are linked to the effects of ketones and glucose restriction, and to interactions with receptors, channels, and metabolic enzymes. Decanoic acid, a component of medium-chain triclycerides, contributes to seizure control through direct α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition, whereas drugs targeting lactate dehydrogenase reduce seizures through inhibition of a metabolic pathway. Ketogenic diet therapy also affects DNA methylation, a novel epigenetic mechanism of the diet. Ketogenic diet therapy combines several beneficial mechanisms that provide broad benefits for the treatment of epilepsy with the potential to not only suppress seizures but also to modify the course of the epilepsy.

  14. An Update on the Ketogenic Diet, 2012

    Directory of Open Access Journals (Sweden)

    Ayelet Halevy

    2012-01-01

    Full Text Available The ketogenic diet has been in use for the last 90 years, and its role in the treatment of epilepsy in the pediatric population has been gaining recognition. It can be helpful in many types of epilepsies, even the more severe ones, and has a beneficial effect on the child’s alertness and cognition, which can be impaired by both the condition and the medications needed for controlling it. Parental compliance is good in spite of the inconveniences inherent in following the diet. The significant advancements in understanding the nature of the diet are in better defining when its use is contraindicated and in validating its application in severe epilepsies in infancy, such as infantile spasms. Although most neurologists do not consider it as being the preferred first-line therapy, it is often a reasonable option when two medications have already failed.

  15. Ketogenic diets and physical performance

    Directory of Open Access Journals (Sweden)

    Phinney SD

    2004-08-01

    Full Text Available Impaired physical performance is a common but not obligate result of a low carbohydrate diet. Lessons from traditional Inuit culture indicate that time for adaptation, optimized sodium and potassium nutriture, and constraint of protein to 15-25 % of daily energy expenditure allow unimpaired endurance performance despite nutritional ketosis.

  16. Ketogenic diets and physical performance

    Directory of Open Access Journals (Sweden)

    Phinney Stephen D

    2004-08-01

    Full Text Available Abstract Impaired physical performance is a common but not obligate result of a low carbohydrate diet. Lessons from traditional Inuit culture indicate that time for adaptation, optimized sodium and potassium nutriture, and constraint of protein to 15–25 % of daily energy expenditure allow unimpaired endurance performance despite nutritional ketosis.

  17. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices.

    Science.gov (United States)

    Kawamura, Masahito Jr; Ruskin, David N; Masino, Susan A

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet-fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (K ATP ) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.

  18. Rationale, Feasibility and Acceptability of Ketogenic Diet for Cancer Treatment.

    Science.gov (United States)

    Chung, Hae-Yun; Park, Yoo Kyoung

    2017-09-01

    Ketogenic diet has been used for more than 80 years as a successful dietary regimen for epilepsy. Recently, dietary modulation by carbohydrate depletion via ketogenic diet has been suggested as an important therapeutic strategy to selectively kill cancer cells and as adjuvant therapy for cancer treatment. However, some researchers insist ketogenic diet to be highly undesirable as ketogenic diet may trigger and/or exacerbate cachexia development and usually result in significant weight loss. This review revisits the meaning of physiological ketosis in the light of this evidence and considers possibility of the use of ketogenic diet for oncology patients. Article search was performed from 1985 through 2017 and finally 10 articles were analyzed. The review focused on the results of human trials for cancer patients and checked the feasibility of using ketogenic diet for cancer patients as adjuvant therapy. The main outcomes showed improvement of body weight changes, anthropometric changes, serum blood profiles, and reduction in novel marker for tumor progression, TKTL1, and increase of ketone body. Lactate concentration was reduced, and no significant changes were reported in the measurements of quality of life. Ketogenic diet may be efficacious in certain cancer subtypes whose outcomes appear to correlate with metabolic status, but the results are not yet supportive and inconsistent. Therefore, it warrants further studies.

  19. Ketogenic diet in endocrine disorders: Current perspectives

    Science.gov (United States)

    Gupta, L; Khandelwal, D; Kalra, S; Gupta, P; Dutta, D; Aggarwal, S

    2017-01-01

    Ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis, long known for antiepileptic effects and has been used therapeutically to treat refractory epilepsy. This review attempts to summarize the evidence and clinical application of KD in diabetes, obesity, and other endocrine disorders. KD is usually animal protein based. An empiric vegetarian Indian variant of KD has been provided keeping in mind the Indian food habits. KD has beneficial effects on cardiac ischemic preconditioning, improves oxygenation in patients with respiratory failure, improves glycemic control in diabetics, is associated with significant weight loss, and has a beneficial impact on polycystic ovarian syndrome. Multivitamin supplementations are recommended with KD. Recently, ketones are being proposed as super-metabolic fuel; and KD is currently regarded as apt dietary therapy for “diabesity.” PMID:29022562

  20. Ketogenic diet in endocrine disorders: Current perspectives.

    Science.gov (United States)

    Gupta, L; Khandelwal, D; Kalra, S; Gupta, P; Dutta, D; Aggarwal, S

    2017-01-01

    Ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis, long known for antiepileptic effects and has been used therapeutically to treat refractory epilepsy. This review attempts to summarize the evidence and clinical application of KD in diabetes, obesity, and other endocrine disorders. KD is usually animal protein based. An empiric vegetarian Indian variant of KD has been provided keeping in mind the Indian food habits. KD has beneficial effects on cardiac ischemic preconditioning, improves oxygenation in patients with respiratory failure, improves glycemic control in diabetics, is associated with significant weight loss, and has a beneficial impact on polycystic ovarian syndrome. Multivitamin supplementations are recommended with KD. Recently, ketones are being proposed as super-metabolic fuel; and KD is currently regarded as apt dietary therapy for "diabesity."

  1. Ketogenic diet in endocrine disorders: Current perspectives

    Directory of Open Access Journals (Sweden)

    L Gupta

    2017-01-01

    Full Text Available Ketogenic diet (KD is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis, long known for antiepileptic effects and has been used therapeutically to treat refractory epilepsy. This review attempts to summarize the evidence and clinical application of KD in diabetes, obesity, and other endocrine disorders. KD is usually animal protein based. An empiric vegetarian Indian variant of KD has been provided keeping in mind the Indian food habits. KD has beneficial effects on cardiac ischemic preconditioning, improves oxygenation in patients with respiratory failure, improves glycemic control in diabetics, is associated with significant weight loss, and has a beneficial impact on polycystic ovarian syndrome. Multivitamin supplementations are recommended with KD. Recently, ketones are being proposed as super-metabolic fuel; and KD is currently regarded as apt dietary therapy for “diabesity.”

  2. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices

    Science.gov (United States)

    Kawamura, Masahito Jr.; Ruskin, David N.; Masino, Susan A.

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy. PMID:27847463

  3. Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy.

    Science.gov (United States)

    Lima, Patricia Azevedo de; Sampaio, Leticia Pereira de Brito; Damasceno, Nágila Raquel Teixeira

    2014-12-01

    A ketogenic diet is an important therapy used in the control of drug-refractory seizures. Many studies have shown that children and adolescents following ketogenic diets exhibit an over 50% reduction in seizure frequency, which is considered to be clinically relevant. These benefits are based on a diet containing high fat (approximately 90% fat) for 24 months. This dietary model was proposed in the 1920s and has produced variable clinical responses. Previous studies have shown that the mechanisms underlying seizure control involve ketone bodies, which are produced by fatty acid oxidation. Although the pathways involved in the ketogenic diet are not entirely clear, the main effects of the production of ketone bodies appear to be neurotransmitter modulation and antioxidant effects on the brain. This review highlights the impacts of the ketogenic diet on the modulation of neurotransmitters, levels of biogenic monoamines and protective antioxidant mechanisms of neurons. In addition, future perspectives are proposed.

  4. Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy

    Directory of Open Access Journals (Sweden)

    Patricia Azevedo de Lima

    2014-12-01

    Full Text Available A ketogenic diet is an important therapy used in the control of drug-refractory seizures. Many studies have shown that children and adolescents following ketogenic diets exhibit an over 50% reduction in seizure frequency, which is considered to be clinically relevant. These benefits are based on a diet containing high fat (approximately 90% fat for 24 months. This dietary model was proposed in the 1920s and has produced variable clinical responses. Previous studies have shown that the mechanisms underlying seizure control involve ketone bodies, which are produced by fatty acid oxidation. Although the pathways involved in the ketogenic diet are not entirely clear, the main effects of the production of ketone bodies appear to be neurotransmitter modulation and antioxidant effects on the brain. This review highlights the impacts of the ketogenic diet on the modulation of neurotransmitters, levels of biogenic monoamines and protective antioxidant mechanisms of neurons. In addition, future perspectives are proposed.

  5. Epilepsy characteristics and psychosocial factors associated with ketogenic diet success.

    Science.gov (United States)

    McNamara, Nancy A; Carbone, Loretta A; Shellhaas, Renée A

    2013-10-01

    The ketogenic diet is an effective therapy for childhood epilepsy, but its important impacts on families could affect successful treatment. We assessed medical and psychosocial factors associated with successful ketogenic diet treatment. A total of 23 families of patients treated with ketogenic diet completed questionnaires (30% response), including inquiries about challenges to successful dietary treatments and validated family functioning scales. Of these, 14 were considered successful (diet discontinued once the child was seizure-free or continued as clinically indicated). Family-identified challenges were food preparation time (n = 11) and that the diet was too restrictive (n = 9). Neither Medicaid insurance nor family functioning scale scores were significantly associated with successful treatment. Lower seizure frequency prior to ketogenic diet initiation (P = .02) and postdiet seizure improvement (P = .01) were associated with increased odds of success. Effective ketogenic diet treatment is dictated both by psychosocial and epilepsy-related influences. A focus on understanding the psychosocial issues may help to improve families' experiences and success with the ketogenic diet.

  6. Ketogenic Diet in Super-Refractory Status Epilepticus

    OpenAIRE

    Smith, Garnett; Press, Craig A.

    2017-01-01

    Researchers from the Children’s National Health System in Washington, D.C. studied the feasibility, rate of complications, and effect on seizures of initiating the Ketogenic Diet (KD) in pediatric patients with Super-Refractory Status Epilepticus (SRSE).

  7. Ketogenic Diet for Epilepsy with Type 1 Diabetes

    OpenAIRE

    J Gordon Millichap

    2010-01-01

    Researchers at Medical University Vienna, Austria, report the efficacy and safety of the ketogenic diet (KD) in treatment of epilepsy in a 3-year 6 month-old girl with diabetes type 1 followed for 15 months.

  8. Levels of Antiepileptic Drugs and the Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-08-01

    Full Text Available Introduction of the ketogenic diet did not change the plasma levels of antiepileptic drugs in an open study of 51 children (mean age 6.6 years with refractory epilepsy studied at Karolinska University Hospital, Stockholm, Sweden.

  9. Mitochondrial Profiles and the Anticonvulsant Effect of the Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-09-01

    Full Text Available A study of the anticonvulsant effect of the ketogenic diet (KD in adolescent rats, at Emory University and other centers, found that the hippocampus responds by inducing mitochondrial biogenesis, enhancing metabolic gene expression, and increasing energy reserves.

  10. Seizure tests distinguish intermittent fasting from the ketogenic diet.

    Science.gov (United States)

    Hartman, Adam L; Zheng, Xiangrong; Bergbower, Emily; Kennedy, Michiko; Hardwick, J Marie

    2010-08-01

    Calorie restriction can be anticonvulsant in animal models. The ketogenic diet was designed to mimic calorie restriction and has been assumed to work by the same mechanisms. We challenged this assumption by profiling the effects of these dietary regimens in mice subjected to a battery of acute seizure tests. Juvenile male NIH Swiss mice received ketogenic diet or a normal diet fed in restricted quantities (continuously or intermittently) for ∼12 days, starting at 3-4 weeks of age. Seizures were induced by the 6 Hz test, kainic acid, maximal electroshock, or pentylenetetrazol. The ketogenic and calorie-restricted diets often had opposite effects depending on the seizure test. The ketogenic diet protected from 6 Hz-induced seizures, whereas calorie restriction (daily and intermittent) increased seizure activity. Conversely, calorie restriction protected juvenile mice against seizures induced by kainic acid, whereas the ketogenic diet failed to protect. Intermittent caloric restriction worsened seizures induced by maximal electroshock but had no effect on those induced by pentylenetetrazol. In contrast to a longstanding hypothesis, calorie restriction and the ketogenic diet differ in their acute seizure test profiles, suggesting that they have different underlying anticonvulsant mechanisms. These findings highlight the importance of the 6 Hz test and its ability to reflect the benefits of ketosis and fat consumption. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  11. Ketogenic Diet Prevents Epileptogenesis and Disease Progression in Adult Mice and Rats

    Science.gov (United States)

    Lusardi, Theresa A.; Akula, Kiran K.; Coffman, Shayla Q.; Ruskin, David; Masino, Susan A.; Boison, Detlev

    2015-01-01

    Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects. PMID:26256422

  12. Ketogenic diets, mitochondria, and neurological diseases

    Science.gov (United States)

    Gano, Lindsey B.; Patel, Manisha; Rho, Jong M.

    2014-01-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate “classic KD”, as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102

  13. A model for determining total ketogenic ratio (TKR) for evaluating the ketogenic property of a weight-reduction diet.

    Science.gov (United States)

    Cohen, I A

    2009-09-01

    Ketogenic weight-reduction dieting methods have existed since antiquity. Recent research has demonstrated their value in controlling type 2 diabetes. Although research done in the 1920s provided a mathematical model of non-weight-reduction ketogenic clinical diets using the concept of a ketogenic ratio (KR), little has been done to evaluate the ketogenic nature of purported ketogenic weight-reduction diets. The mathematical model of Woodyatt is valid only under isocaloric conditions where dietary energy intake is balanced by energy use. It is hypothesised that under certain conditions of weight loss, energy deficit can predict utilization of stored lipid so that a modified formula for total ketogenic ratio (TKR) may be derived. Such a predictive mathematical model may be a useful tool in predicting the efficacy of weight-reduction diets and adapting such diets to individual patient needs.

  14. Ketogenic diet in adolescents and adults with epilepsy.

    Science.gov (United States)

    Nei, Maromi; Ngo, Ly; Sirven, Joseph I; Sperling, Michael R

    2014-06-01

    The ketogenic diet is an alternative treatment for patients with refractory epilepsy. Most studies to date report dietary response in children. There are limited data evaluating the efficacy of the ketogenic diet in adults. This is a report of the long-term outcome in a largely adult population of patients treated with the ketogenic diet for epilepsy. Twenty-nine adult and adolescent patients (mean age 32 years, range 11-51) were initiated on the ketogenic diet and followed until diet discontinuation. Clinical response and adverse effects were noted during the duration of the diet. Fifty-two percent of patients had a significant reduction in seizure frequency on the ketogenic diet, including 45% with ≥50% reduction in seizure frequency. Thirty-one percent had no improvement, seven percent were unable to successfully initiate the diet, and 10% had a >50% increase in seizure frequency. The diet was continued for a mean of 9 months (range 0.13-35 months), with five patients completing ≥23 months. There was a trend toward better response and better tolerability/longer duration in patients with symptomatic generalized epilepsy. The diet was generally well-tolerated, but undesired weight loss and constipation were the most frequent adverse effects. The ketogenic diet can be used safely in the adult and adolescent population, with a response rate similar to those seen in children. Patient with symptomatic generalized epilepsy may be particularly good candidates for this type of dietary treatment. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  15. Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet.

    Science.gov (United States)

    Kim, Dong Wook; Kang, Hoon Chul; Park, Jung Chae; Kim, Heung Dong

    2004-12-01

    The ketogenic diet (KD) is traditionally introduced with an initial period of fasting and fluid restriction that is difficult and sometimes complicated by moderate dehydration. This investigation compares the efficacy and tolerability of the nonfasting ketogenic diet (NFKD) and the conventional initial-fasting ketogenic diet (IFKD). Forty-one children with intractable epilepsy were treated with the NFKD, beginning with a gradual increase in calories with no initial fasting or fluid restriction. This NFKD population was compared retrospectively with 83 recent historical control subjects who were treated with the IFKD. Efficacy, tolerability, time until strong ketosis, and occurrence of complications were compared. Fourteen (34.1%) patients became seizure-free for at least 3 months after the NFKD, compared with 29 (34.9%) after the IFKD. There was no significant difference in days until strong urinary ketosis between the 2 groups. The incidence of hypoglycemia was also not significantly different between the groups as most other laboratory findings, although the blood urea nitrogen was elevated in 24.1% of the IFKD group and in only 12.2% of the NFKD patients without statistical significance. Conversely, moderate dehydration was significantly less frequent in the NFKD group (12.2%) than in the IFKD group (62.7%). Finally, these results were reflected to the shortening of the hospitalization period in the NFKD group. These observations suggest that initial fasting and fluid restriction are not essential for the KD and that the tolerability of this treatment may be improved. These data support our intention to conduct a formal, prospective, randomized trial comparing 2 forms of the KD.

  16. Reversal of Diabetic Nephropathy by a Ketogenic Diet

    Science.gov (United States)

    Poplawski, Michal M.; Mastaitis, Jason W.; Isoda, Fumiko; Grosjean, Fabrizio; Zheng, Feng; Mobbs, Charles V.

    2011-01-01

    Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB) reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a ketogenic diet would reverse nephropathy produced by diabetes. In mouse models for both Type 1 (Akita) and Type 2 (db/db) diabetes, diabetic nephropathy (as indicated by albuminuria) was allowed to develop, then half the mice were switched to a ketogenic diet. After 8 weeks on the diet, mice were sacrificed to assess gene expression and histology. Diabetic nephropathy, as indicated by albumin/creatinine ratios as well as expression of stress-induced genes, was completely reversed by 2 months maintenance on a ketogenic diet. However, histological evidence of nephropathy was only partly reversed. These studies demonstrate that diabetic nephropathy can be reversed by a relatively simple dietary intervention. Whether reduced glucose metabolism mediates the protective effects of the ketogenic diet remains to be determined. PMID:21533091

  17. Valproate effect on ketosis in children under ketogenic diet.

    Science.gov (United States)

    Spilioti, Martha; Pavlou, Evangelos; Gogou, Maria; Katsanika, Irene; Papadopoulou-Alataki, Efimia; Grafakou, Olga; Gkampeta, Anastasia; Dinopoulos, Argyrios; Evangeliou, Athanasios

    2016-07-01

    Although ketogenic diet has been proven useful in the management of intractable seizures, interactions with other medicines have been reported. This study reports two patients on co-administration with ketogenic diet and valproate appearing undesirable side effects after increase or decrease of valproate pharmaceutical levels. Totally 75 patients suffering from drug-resistant epilepsy were treated with ketogenic diet in our departments. Their age varied from 6 months to 9 years. All patients were followed for at least 12 months and up to five years. Clinical and laboratory variables have been regularly assessed. In 75 patients treated with ketogenic diet and valproate at the same time treatment was well tolerated. Two patients presented mild to moderate undesirable effects. In these patients the removal of valproate treatment resulted in an increase of ketosis with respective clinical signs. The conversion of the diet from 4:1 to 1:1 and 2,5:1 respectively resulted in reduction of ketosis and clinical improvement. In the majority of cases co-administration of valproate and ketogenic diet seems to be safe. In two cases, valproate appeared to have a negative effect on ketosis (and weaning it led to over-ketosis). This interaction is worthy of future study. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Reversal of diabetic nephropathy by a ketogenic diet.

    Science.gov (United States)

    Poplawski, Michal M; Mastaitis, Jason W; Isoda, Fumiko; Grosjean, Fabrizio; Zheng, Feng; Mobbs, Charles V

    2011-04-20

    Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB) reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a ketogenic diet would reverse nephropathy produced by diabetes. In mouse models for both Type 1 (Akita) and Type 2 (db/db) diabetes, diabetic nephropathy (as indicated by albuminuria) was allowed to develop, then half the mice were switched to a ketogenic diet. After 8 weeks on the diet, mice were sacrificed to assess gene expression and histology. Diabetic nephropathy, as indicated by albumin/creatinine ratios as well as expression of stress-induced genes, was completely reversed by 2 months maintenance on a ketogenic diet. However, histological evidence of nephropathy was only partly reversed. These studies demonstrate that diabetic nephropathy can be reversed by a relatively simple dietary intervention. Whether reduced glucose metabolism mediates the protective effects of the ketogenic diet remains to be determined.

  19. Reversal of diabetic nephropathy by a ketogenic diet.

    Directory of Open Access Journals (Sweden)

    Michal M Poplawski

    Full Text Available Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a ketogenic diet would reverse nephropathy produced by diabetes. In mouse models for both Type 1 (Akita and Type 2 (db/db diabetes, diabetic nephropathy (as indicated by albuminuria was allowed to develop, then half the mice were switched to a ketogenic diet. After 8 weeks on the diet, mice were sacrificed to assess gene expression and histology. Diabetic nephropathy, as indicated by albumin/creatinine ratios as well as expression of stress-induced genes, was completely reversed by 2 months maintenance on a ketogenic diet. However, histological evidence of nephropathy was only partly reversed. These studies demonstrate that diabetic nephropathy can be reversed by a relatively simple dietary intervention. Whether reduced glucose metabolism mediates the protective effects of the ketogenic diet remains to be determined.

  20. Metabolic therapy for temporal lobe epilepsy in a dish: investigating mechanisms of ketogenic diet using electrophysiological recordings in hippocampal slices

    Directory of Open Access Journals (Sweden)

    Masahito Kawamura

    2016-11-01

    Full Text Available The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1 direct application of ketone bodies, (2 mimicking the ketogenic diet condition during a whole-cell patch-clamp technique, and (3 reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including ATP-sensitive potassium channels, vesicular glutamate transporter, pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.

  1. The Use of Ketogenic Diet in Pediatric Patients with Epilepsy

    Science.gov (United States)

    Misiewicz Runyon, Amanda; So, Tsz-Yin

    2012-01-01

    A ketogenic diet is a nonpharmacologic treatment strategy to control refractory epilepsy in children. Although this diet has been used successfully to reduce seizures since the 1920s, the anticonvulsant mechanism of ketosis remains unknown. The initiation of the diet requires an average four-day hospitalization to achieve ketosis in the patient as well as to provide thorough education on diet maintenance for both the patient and the caregivers. A ketogenic diet, consisting of low carbohydrate and high fat intake, leaves little room for additional carbohydrates supplied by medications. Patients on ketogenic diets who exceed their daily carbohydrate limit have the risk of seizure relapse, necessitating hospital readmission to repeat the diet initiation process. These patients are at a high risk for diversion from the diet. Patients admitted to the hospital setting are often initiated on multiple medications, and many hospital systems are not equipped with appropriate monitoring systems to prevent clinicians from introducing medications with high carbohydrate contents. Pharmacists have the resources and the expertise to help identify and prevent the initiation of medications with high carbohydrate content in patients on ketogenic diets. PMID:22970384

  2. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  3. Ketogenic Diet and Cancer-a Perspective.

    Science.gov (United States)

    Smyl, Christopher

    Research of the last two decades showed that chronic low-grade inflammation, elevated blood glucose and insulin levels may play role in the onset of a number of non-communicable diseases such as type 2 diabetes and some forms of cancer. Regular exercise and fasting can ameliorate high blood glucose and insulin levels as well as increase the concentration of plasma ketone bodies. These, in consequence, may lead to reduction of inflammation. Exercise or severe restriction of caloric intake is not always advisable for patients, in particular those suffering from cancer. The ketogenic diet (KD), characterized by high fat, moderate protein and very low carbohydrate composition can evoke a physiological state similar to that triggered by exercise or fasting. These attributes of KD prompted its possible use in treatment of a number of metabolic diseases, including several types of malignancies. Although results from clinical studies employing KD in the treatment of cancer are still limited, the results obtained from animal models are encouraging and show that KD presents a viable option as an adjunct therapy for cancer.

  4. Reduced Pain and Inflammation in Juvenile and Adult Rats Fed a Ketogenic Diet

    OpenAIRE

    Ruskin, David N.; Kawamura, Masahito; Masino, Susan A.

    2009-01-01

    The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as r...

  5. Mitochondria: The ketogenic diet--A metabolism-based therapy.

    Science.gov (United States)

    Vidali, Silvia; Aminzadeh, Sepideh; Lambert, Bridget; Rutherford, Tricia; Sperl, Wolfgang; Kofler, Barbara; Feichtinger, René G

    2015-06-01

    Mitochondria are the energy-producing organelles of the cell, generating ATP via oxidative phosphorylation mainly by using pyruvate derived from glycolytic processing of glucose. Ketone bodies generated by fatty acid oxidation can serve as alternative metabolites for aerobic energy production. The ketogenic diet, which is high in fat and low in carbohydrates, mimics the metabolic state of starvation, forcing the body to utilize fat as its primary source of energy. The ketogenic diet is used therapeutically for pharmacoresistant epilepsy and for "rare diseases" of glucose metabolism (glucose transporter type 1 and pyruvate dehydrogenase deficiency). As metabolic reprogramming from oxidative phosphorylation toward increased glycolysis is a hallmark of cancer cells; there is increasing evidence that the ketogenic diet may also be beneficial as an adjuvant cancer therapy by potentiating the antitumor effect of chemotherapy and radiation treatment. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Management of symptomatic cholelithiasis while on ketogenic diet: a case report.

    Science.gov (United States)

    Desai, Amita A; Thompson, Lindsey M; Abdelmoity, Ahmed T; Kayyali, Husam; St Peter, Shawn D

    2014-09-01

    The ketogenic diet is a treatment modality used for patients with refractory epilepsy. Development of cholelithiasis while on the ketogenic diet is a potential side effect that has been described in the literature. There however have not been any reports on the outcomes of continuing the diet after cholecystectomy. We present a 5-year-old boy with history of pharmacologically intractable epilepsy that was well controlled on the ketogenic diet. He underwent laparoscopic cholecystectomy for the development of symptomatic cholelithiasis 12 months after the initiation of ketogenic diet for seizure control. Patient tolerated the surgery well and was able to continue the ketogenic diet postoperatively. There have been no reports describing the continuation of ketogenic diet after cholecystectomy. This child demonstrates the safety of the procedure and the ability to continue the ketogenic diet without further biliary or surgical complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma.

    Science.gov (United States)

    Rieger, Johannes; Bähr, Oliver; Maurer, Gabriele D; Hattingen, Elke; Franz, Kea; Brucker, Daniel; Walenta, Stefan; Kämmerer, Ulrike; Coy, Johannes F; Weller, Michael; Steinbach, Joachim P

    2014-06-01

    Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3-13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12-124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (pketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet.

  8. The ketogenic diet: metabolic influences on brain excitability and epilepsy

    Science.gov (United States)

    Lutas, Andrew; Yellen, Gary

    2012-01-01

    A dietary therapy for pediatric epilepsy known as the ketogenic diet has seen a revival in its clinical use in the past decade. Though the diet’s underlying mechanism remains unknown, modern scientific approaches like genetic disruption of glucose metabolism are allowing for more detailed questions to be addressed. Recent work indicates that several mechanisms may exist for the ketogenic diet including disruption of glutamatergic synaptic transmission, inhibition of glycolysis, and activation of ATP-sensitive potassium channels. Here we describe on-going work in these areas that is providing a better understanding of metabolic influences on brain excitability and epilepsy. PMID:23228828

  9. Ketogenic Diet Provides Neuroprotective Effects against Ischemic Stroke Neuronal Damages

    Directory of Open Access Journals (Sweden)

    Sheida Shaafi

    2014-12-01

    Full Text Available Ischemic stroke is a leading cause of death and disability in the world. Many mechanisms contribute in cell death in ischemic stroke. Ketogenic diet which has been successfully used in the drug-resistant epilepsy has been shown to be effective in many other neurologic disorders. The mechanisms underlying of its effects are not well studied, but it seems that its neuroprotective ability is mediated at least through alleviation of excitotoxicity, oxidative stress and apoptosis events. On the basis of these mechanisms, it is postulated that ketogenic diet could provide benefits to treatment of cerebral ischemic injuries.

  10. Ketogenic Diet Therapy in Infants: Efficacy and Tolerability.

    Science.gov (United States)

    Wirrell, Elaine; Eckert, Susan; Wong-Kisiel, Lily; Payne, Eric; Nickels, Katherine

    2018-01-31

    This study evaluated tolerability and efficacy of the ketogenic diet in infants less than 12 months of age. Infants ketogenic diet between September 2007 and July 2016 were identified. Records were reviewed for epilepsy details, diet initiation details, efficacy and tolerability. Twenty-seven infants commenced the ketogenic diet (56% male, median age seven months). Median age at seizure onset was 1.9 months and 92% had daily seizures. An epilepsy syndrome was noted in 19 (West-11, Epilepsy in Infancy with Migrating Focal Seizures-5, Early Myoclonic Encephalopathy-1, Ohtahara-1, Dravet-1). Infants were on a median of two and had failed a median of one medications for lack of efficacy. All initiated a traditional ketogenic diet at full calories without fasting, and all but one started the diet in hospital. Significant hypoglycemia during initiation was seen in two - both had emesis +/- decreased oral intake. Eighty-eight percent developed urinary ketosis by 48 hours and all were successfully discharged on the diet (median ratio 3:1). Of those continuing dietary therapy, responder rates at one, six and 12 months were 68%, 82% and 91%, with 20%, 29% and 27% achieving seizure freedom. By 12 months, two stopped the diet for serious adverse effects, five discontinued for lack of efficacy, six were lost to follow-up and two died of unrelated causes. The ketogenic diet is an effective and well-tolerated treatment for infants with intractable epilepsy. In-hospital initiation is strongly recommended due to risk of hypoglycemia with emesis or reduced intake. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Modified Atkins diet vs classic ketogenic formula in intractable epilepsy.

    Science.gov (United States)

    El-Rashidy, O F; Nassar, M F; Abdel-Hamid, I A; Shatla, R H; Abdel-Hamid, M H; Gabr, S S; Mohamed, S G; El-Sayed, W S; Shaaban, S Y

    2013-12-01

    The study was designed to evaluate the efficacy, safety, and tolerability of the ketogenic diet (KD) whether classic 4:1 formula or the modified Atkins diet (MAD) in intractable childhood epilepsy. Anthropometric measurements and serum lipid profile were measured upon enrollment and after 3 and 6 months in 40 patients with symptomatic intractable epilepsy. Fifteen were given MAD diet, ten were kept on classic 4:1 ketogenic liquid formula, and the rest were allowed to eat as desired. The liquid ketogenic formula group showed significantly higher body mass index compared with those who did not receive KD after 6 months. The lipid profile of KD patients was within normal limits for age and sex during the study period. The rate of change of frequency and severity of seizures showed best improvement in ketogenic liquid formula patients followed by the MAD group than the patients on anti-epileptic medications alone. The KD whether classic 4:1 or MAD is a tolerable, safe, and effective adjuvant therapy for intractable symptomatic childhood epilepsy with limited adverse effects on the growth parameters and accepted changes in the lipid profile. The liquid ketogenic formula patients showed better growth pattern and significantly more seizure control. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Beneficial effects of ketogenic diet in obese diabetic subjects.

    Science.gov (United States)

    Dashti, Hussein M; Mathew, Thazhumpal C; Khadada, Mousa; Al-Mousawi, Mahdi; Talib, Husain; Asfar, Sami K; Behbahani, Abdulla I; Al-Zaid, Naji S

    2007-08-01

    Obesity is closely linked to the incidence of type II diabetes. It is found that effective management of body weight and changes to nutritional habits especially with regard to the carbohydrate content and glycemic index of the diet have beneficial effects in obese subjects with glucose intolerance. Previously we have shown that ketogenic diet is quite effective in reducing body weight. Furthermore, it favorably alters the cardiac risk factors even in hyperlipidemic obese subjects. In this study the effect of ketogenic diet in obese subjects with high blood glucose level is compared to those with normal blood glucose level for a period of 56 weeks. A total of 64 healthy obese subjects with body mass index (BMI) greater than 30, having high blood glucose level and those subjects with normal blood glucose level were selected in this study. The body weight, body mass index, blood glucose level, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, urea and creatinine were determined before and at 8, 16, 24, 48, and 56 weeks after the administration of the ketogenic diet. The body weight, body mass index, the level of blood glucose, total cholesterol, LDL-cholesterol, triglycerides, and urea showed a significant decrease from week 1 to week 56 (P ketogenic diet in obese diabetic subjects following its long-term administration. Furthermore, it demonstrates that in addition to its therapeutic value, low carbohydrate diet is safe to use for a longer period of time in obese diabetic subjects.

  14. Ketogenic diet and epilepsy: an up-date review

    Directory of Open Access Journals (Sweden)

    Alberto VERROTTI

    2009-12-01

    Full Text Available Background and Aims: Ketogenic diet is currently a therapeutic option for the treatment of epilepsy other than anticonvulsant drugs, for which there is a growing interest in Europe and worldwide, mainly due to the persisting number of refractory patients and the adverse side effects of antiepileptic old and new drugs. Aim of the present article is to review literature data regarding the use of the diet in the different types of epilepsies and epilepsy syndromes, trying to better understand the main evidence-based indications for its use.Material and Methods: A literature search was based on a Medline search of published retrospective, not-controlled prospective and randomized controlled trials on the use of the ketogenic diet for the treatment of epilepsies and antiepileptic encephalopathies. In some instances, case reports were also included. A search on standard textbooks and review articles on the use of the ketogenic diet was considered as well. A summary and a critical appraisal of what emerged from the literature for each epileptic syndrome will be discussed in this review.Conclusions: Ketogenic diet is considered as the primary treatment of GLUT-1 deficiency syndrome and pyruvate-dehydrogenase deficiency. It is so far included as secondary option for the so called “catastrophic epileptic encephalopaties of childhood”, and should be a potential treatment against a wide variety of other seizure types and epilepsy syndromes as well as many symptomatic localization-related epilepsies. The best evidence of its efficacy regards refractory infantile spasms, Dravet syndrome and myoclonic-astatic epilepsy as well as epileptic encephalopathies due to cortical migration disorders. There is also a growing interest for dietary treatments for epilepsy other than ketogenic diet, such as the modified Atkins diet and the low glicemic index diet , both providing a daily amount of fat less than the ketogenic diet. Presently, some authors prefer to use

  15. Hepatic Dysfunction as a Complication of Combined Valproate and Ketogenic Diet.

    Science.gov (United States)

    Stevens, Clare E; Turner, Zahava; Kossoff, Eric H

    2016-01-01

    The ketogenic diet has long been shown to be an effective therapy for children with medication-refractory seizures. Most complications of the ketogenic diet include short-lived gastrointestinal disturbances, acidosis, and dyslipidemia. Hepatic dysfunction and pancreatitis are among the less common but more serious complications of the ketogenic diet. Many patients on the ketogenic diet receive adjunct treatment with an anticonvulsant drug, and valproate is frequently used. We describe a child who developed hepatic dysfunction in association with the combined use of valproate and the ketogenic diet. After stopping the valproate and then restarting the ketogenic diet, her liver enzymes normalized, and she was able to achieve markedly improved seizure control and quality of life. Although caution should be advised when using both treatments simultaneously, the development of hepatic dysfunction should not preclude continuation of the ketogenic diet, as the hepatotoxic effects may be completely reversed once the valproate is stopped. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ketogenic diet using a Japanese ketogenic milk for patients with epilepsy: A multi-institutional study.

    Science.gov (United States)

    Kumada, Tomohiro; Imai, Katsumi; Takahashi, Yukitoshi; Nabatame, Shin; Oguni, Hirokazu

    2018-03-01

    In Japan, Meiji 817-B (M817-B), a powdered ketogenic milk, has been available since the ketogenic diet was introduced to infants and tube-fed children with medication-resistant epilepsy in the 1980s. We retrospectively evaluated the efficacy, tolerability, and side effects of the ketogenic diet using M817-B as the main source of daily food intake for patients with epilepsy by sending questionnaires to the members of a subcommittee of the Japan Epilepsy Society that focuses on the proper use of M817-B. A total of 42 patients were enrolled. Age at the initiation of the diet therapy ranged from 3 to 244 months (median, 32.5 months). Thirty-four patients were fed via tube, and the remaining 8 were fed orally. About 93% of patients were able to continue the diet for 1 month, 74% for 3 months, and 64% for 6 months. The median period of continuation was 16 months. One patient was able to continue as long as 7 years. The ketogenic ratio was maintained at about 3.0. The seizure-free rate and responder (>50% seizure reduction) rate were about 10% and 30-40%, respectively during the 12 months on the diet. Mean serum beta-hydroxybutyrate increased to almost 4 mM at 1 month and was maintained during the diet period. Side effects, which required discontinuation of the diet therapy, occurred in 11 of 42 patients and included hypertonia, weight loss, vomiting, hypoglycemia, metabolic acidosis, and hypokalemia. M817-B could be used long-term with demonstrated efficacy in seizure reduction, although there are some side effects that may require cessation of the diet therapy. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets

    Directory of Open Access Journals (Sweden)

    Carmela eGiordano

    2014-04-01

    Full Text Available Various ketogenic diet (KD therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs. In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the

  18. Ketogenic Diet Suppresses Alcohol Withdrawal Syndrome in Rats.

    Science.gov (United States)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane; Schlumberger, Chantal; Wortwein, Gitta; Weikop, Pia; Benveniste, Helene; Volkow, Nora D; Fink-Jensen, Anders

    2018-02-01

    Alcohol use disorder is underdiagnosed and undertreated, and up to 50% of alcohol-abstinent patients diagnosed with alcohol dependence relapse within the first year of treatment. Current treatments for the maintenance of alcohol abstinence in patients with alcohol use disorder have limited efficacy, and there is an urgent need for novel treatment strategies. Decreased cerebral glucose metabolism and increased brain uptake of acetate were recently reported in heavy drinkers, relative to controls. Given the switch of metabolic fuel from glucose to acetate in the alcohol-dependent brain, we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. Male Sprague Dawley rats fed either ketogenic or regular diet were administered ethanol or water orally, twice daily for 6 days while the diet conditions were maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms' "rigidity" and "irritability." Our preclinical pilot study suggests that a ketogenic diet may be a novel approach for treating alcohol withdrawal symptoms in humans. Copyright © 2017 by the Research Society on Alcoholism.

  19. The ketogenic diet and other dietary treatments for refractory epilepsy in children.

    Science.gov (United States)

    Sharma, Suvasini; Jain, Puneet

    2014-07-01

    The ketogenic diet is a high-fat, low-carbohydrate, and restricted protein diet that is useful in patients with refractory epilepsy. The efficacy of the ketogenic diet is better than most of the new antiepileptic drugs. Other modifications of the diet are also beneficial, such as the modified Atkins diet and the low glycemic index treatment. There is a lack of awareness of the ketogenic diet as a treatment modality for epilepsy amongst pediatricians and neurologists. In this review, the use of the ketogenic diet and other dietary treatments in refractory epilepsy is discussed. The Indian experience with the use of these dietary treatments is also briefly reviewed.

  20. The ketogenic diet and other dietary treatments for refractory epilepsy in children

    Science.gov (United States)

    Sharma, Suvasini; Jain, Puneet

    2014-01-01

    The ketogenic diet is a high-fat, low-carbohydrate, and restricted protein diet that is useful in patients with refractory epilepsy. The efficacy of the ketogenic diet is better than most of the new antiepileptic drugs. Other modifications of the diet are also beneficial, such as the modified Atkins diet and the low glycemic index treatment. There is a lack of awareness of the ketogenic diet as a treatment modality for epilepsy amongst pediatricians and neurologists. In this review, the use of the ketogenic diet and other dietary treatments in refractory epilepsy is discussed. The Indian experience with the use of these dietary treatments is also briefly reviewed. PMID:25221391

  1. The ketogenic diet and other dietary treatments for refractory epilepsy in children

    Directory of Open Access Journals (Sweden)

    Suvasini Sharma

    2014-01-01

    Full Text Available The ketogenic diet is a high-fat, low-carbohydrate, and restricted protein diet that is useful in patients with refractory epilepsy. The efficacy of the ketogenic diet is better than most of the new antiepileptic drugs. Other modifications of the diet are also beneficial, such as the modified Atkins diet and the low glycemic index treatment. There is a lack of awareness of the ketogenic diet as a treatment modality for epilepsy amongst pediatricians and neurologists. In this review, the use of the ketogenic diet and other dietary treatments in refractory epilepsy is discussed. The Indian experience with the use of these dietary treatments is also briefly reviewed.

  2. Treatment of diabetes and diabetic complications with a ketogenic diet.

    Science.gov (United States)

    Mobbs, Charles V; Mastaitis, Jason; Isoda, Fumiko; Poplawski, Michal

    2013-08-01

    Accumulating evidence suggests that low-carbohydrate, high-fat diets are safe and effective to reduce glycemia in diabetic patients without producing significant cardiovascular risks. Most of these studies have been carried out specifically restricting carbohydrates, which tends to lead to increased protein intake, thus reducing the ketosis. However, diets that limit protein as well as carbohydrates, entailing a composition very high in fat, appear even more effective to reduce glucose and whole-body glucose metabolism in humans. In animal models, low-carbohydrate, high-protein diets do not produce ketosis or reduce glycemia but rather cause obesity. However, limiting both protein and carbohydrates as in a classic ketogenic diet remarkably reduces blood glucose in animal models of type 1 and type 2 diabetes and reverses diabetic nephropathy. Future studies should assess if ketogenic diets would be effective to reverse diabetic complications in humans.

  3. Ketogenic diet guidelines for infants with refractory epilepsy

    NARCIS (Netherlands)

    van der Louw, Elles; van den Hurk, Dorine; Neal, Elizabeth; Leiendecker, Bärbel; Fitzsimmon, Georgiana; Dority, Laura; Thompson, Lindsey; Marchió, Maddelena; Dudzińska, Magdalena; Dressler, Anastasia; Klepper, Joerg; Auvin, Stéphane; Cross, J. Helen

    2016-01-01

    Background The ketogenic diet (KD) is an established, effective non-pharmacologic treatment for drug resistant childhood epilepsy. For a long time, the KD was not recommended for use in infancy (under the age of 2 years) because this is such a crucial period in development and the perceived high

  4. The Ketogenic Diet and Sport: A Possible Marriage?

    Science.gov (United States)

    Paoli, Antonio; Bianco, Antonino; Grimaldi, Keith A

    2015-07-01

    The ketogenic diet (KD) is used widely as a weight loss strategy and, more rarely, as therapy for some diseases. In many sports, weight control is often necessary (boxing, weightlifting, wrestling, etc.), but the KD usually is not considered. Our hypothesis is that KD might be used to achieve fat loss without affecting strength/power performance negatively.

  5. Antiseizure effects of ketogenic diet on seizures induced with ...

    African Journals Online (AJOL)

    Antiseizure effects of ketogenic diet on seizures induced with pentylenetetrazole, 4-aminopyridine and strychnine in wistar rats. E.O. Sanya, A.O. Soladoye, O.O. Desalu, P.M. Kolo, L. A. Olatunji, J.K. Olarinoye ...

  6. GLUT1 deficiency with delayed myelination responding to ketogenic diet

    NARCIS (Netherlands)

    Klepper, Jörg; Engelbrecht, Volkher; Scheffer, Hans; van der Knaap, Marjo S.; Fiedler, Andreas

    2007-01-01

    Monitoring effects of a ketogenic diet in GLUT1 deficiency syndrome without seizures is difficult. Neuroimaging is considered uninformative. We report the case of a boy with neurodevelopmental delay, severe ataxia, an E54X-mutation in the SLC2A1 gene (previously GLUT1), and neuroimaging

  7. CSF Amino Acids, Pterins and Mechanism of the Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2015-11-01

    Full Text Available Investigators from Hospital Sant Joan de Deu, Barcelona, Spain, studied the relationship between the etiology of refractory childhood epilepsy, CSF neurotransmitters, pterins, and amino acids, and response to a ketogenic diet in 60 patients with refractory epilepsy, 83% focal and 52% idiopathic.

  8. Ketogenic diet in 3 cases of childhood refractory status epilepticus

    DEFF Research Database (Denmark)

    Sort, Rune; Born, Alfred P; Pedersen, Karen N.

    2013-01-01

    Refractory status epilepticus (RSE) in children is associated with a significant risk of death or neurological morbidity. Recently attention has been drawn to the ketogenic diet (KD) as an acute treatment, as it has shown promise in controlling seizures in otherwise refractory status epilepticus...

  9. GLUT1 deficiency with delayed myelination responding to ketogenic diet.

    NARCIS (Netherlands)

    Klepper, J.; Engelbrecht, V.; Scheffer, H.; Knaap, M.S. van der; Fiedler, A.

    2007-01-01

    Monitoring effects of a ketogenic diet in GLUT1 deficiency syndrome without seizures is difficult. Neuroimaging is considered uninformative. We report the case of a boy with neurodevelopmental delay, severe ataxia, an E54X-mutation in the SLC2A1 gene (previously GLUT1), and neuroimaging

  10. Protein-Losing Enteropathy as a Complication of the Ketogenic Diet

    OpenAIRE

    Ahn, Won Kee; Park, Soyoung; Kim, Heung Dong

    2017-01-01

    The ketogenic diet is an effective treatment for the patients with intractable epilepsy, however, the diet therapy can sometimes be discontinued by complications. Protein?losing enteropathy is a rarely reported serious complication of the ketogenic diet. We present a 16-month-old Down syndrome baby with protein-losing enteropathy during the ketogenic diet as a treatment for West syndrome. He suffered from diarrhea, general edema and hypoalbuminemia which were not controlled by conservative ca...

  11. Neuroactive Peptides as Putative Mediators of Antiepileptic Ketogenic Diets

    Science.gov (United States)

    Giordano, Carmela; Marchiò, Maddalena; Timofeeva, Elena; Biagini, Giuseppe

    2014-01-01

    Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal

  12. Ketogenic Diets: New Advances for Metabolism-Based Therapies

    Science.gov (United States)

    Kossoff, Eric H.; Hartman, Adam L.

    2014-01-01

    Purpose of review Despite myriad anticonvulsants available and in various stages of development, there are thousands of children and adults with epilepsy worldwide still refractory to treatment and not candidates for epilepsy surgery. Many of these patients will now turn to dietary therapies such as the ketogenic diet, medium-chain triglyceride (MCT) diet, modified Atkins diet, and low glycemic index treatment. Recent Findings In the past several years, neurologists are finding new indications to use these dietary treatments, perhaps even as first-line therapy, including infantile spasms, myoclonic-astatic epilepsy (Doose syndrome), Dravet syndrome, and status epilepticus (including FIRES syndrome). Adults are also one of the most rapidly growing populations being treated nowadays; a group of patients previously not typically offered these treatments. In 2009, two controlled trials of the ketogenic diet were published as well as an International Expert Consensus Statement on dietary treatment of epilepsy. Ketogenic diets are also now being increasingly studied for neurologic conditions other than epilepsy, including Alzheimer disease and cancer. Insights from basic science research have helped elucidate the mechanisms by which metabolism-based therapy may be helpful, both in terms of an anticonvulsant and possibly neuroprotective effect. Summary Dietary therapy for epilepsy continues to grow in popularity worldwide, with expanding use for adults and conditions other than epilepsy. PMID:22322415

  13. Ketogenic diets: new advances for metabolism-based therapies.

    Science.gov (United States)

    Kossoff, Eric H; Hartman, Adam L

    2012-04-01

    Despite myriad anticonvulsants available and in various stages of development, there are thousands of children and adults with epilepsy worldwide still refractory to treatment and not candidates for epilepsy surgery. Many of these patients will now turn to dietary therapies such as the ketogenic diet, medium-chain triglyceride diet, modified Atkins diet, and low glycemic index treatment. In the past several years, neurologists are finding new indications to use these dietary treatments, perhaps even as first-line therapy, including infantile spasms, myoclonic-astatic epilepsy (Doose syndrome), Dravet syndrome, and status epilepticus (including FIRES syndrome). Adults are also one of the most rapidly growing populations being treated nowadays; this group of patients previously was not typically offered these treatments. In 2009, two controlled trials of the ketogenic diet were published, as well as an International Expert Consensus Statement on dietary treatment of epilepsy. Ketogenic diets are also now being increasingly studied for neurological conditions other than epilepsy, including Alzheimer's disease and cancer. Insights from basic science research have helped elucidate the mechanisms by which metabolism-based therapy may be helpful, in terms of both an anticonvulsant and possibly a neuroprotective effect. Dietary therapy for epilepsy continues to grow in popularity worldwide, with expanding use for adults and conditions other than epilepsy.

  14. What is the Lipid Raising Cost of Ketogenic Diets in Epileptic Children?

    OpenAIRE

    Frazier, Michael

    2009-01-01

    The use of a ketogenic diet to treat epilepsy is commonly used to treat intractable pediatric epilepsy. Several studies have assessed the efficacy of treating epilepsy in pediatric patients through a ketogenic diet and shown it effective in reducing seizures. Less attention has been given to the effects of the ketogenic diet on lipid levels in children. The purpose of this review is to compile evidence relating to increased lipid levels to make physicians aware of those risks when treating ep...

  15. Ketogenic diet efficacy in the treatment of intractable epileptic spasms.

    Science.gov (United States)

    Kayyali, Husam R; Gustafson, Megan; Myers, Tara; Thompson, Lindsey; Williams, Michelle; Abdelmoity, Ahmad

    2014-03-01

    To determine the efficacy of the ketogenic diet in controlling epileptic spasms after failing traditional antiepileptic medication therapy. This is a prospective, case-based study of all infants with epileptic spasms who were referred for treatment with the ketogenic diet at our hospital between 2009 and 2012. All subjects continued to have epileptic spasms with evidence of hypsarrhythmia or severe epileptic encephalopathy on electroencephalography despite appropriate medication treatments. The diet efficacy was assessed through clinic visits, phone communications, and electroencephalography. Quality of life improvement was charted based on the caregiver's perspective. Twenty infants (15 males) were included in the study. The mean age at seizure onset was 4.5 months. Age at ketogenic diet initiation was 0.3 to 2.9 years (mean 1.20, standard deviation 0.78). Fifteen patients had epileptic spasms of unknown etiology; three had perinatal hypoxic ischemic encephalopathy, one had lissencephaly, and one had STXBP1 mutation. Fifteen infants failed to respond to adrenocorticotropin hormone and/or vigabatrin before going on the ketogenic diet. Three months after starting the diet, >50% seizure reduction was achieved in 70% of patients (95% CI 48-86). These results were maintained at 6- and 12-month intervals. All eight of the patients followed for 24 months had >50% seizure reduction (95% CI 63-100). At least 90% seizure reduction was reported in 20% of patients at 3 months (95% CI 7-42), 22% (95% CI 8-46) at 6 months, and 35% (95% CI 17-59) at 12 months. The majority of patients (63%) achieved improvement of their spasms within 1 month after starting the diet. Sixty percent of patients had electroencephalographic improvement. All caregivers reported improvement of the quality of life at the 3-month visit (95% confidence interval 81-100). This ratio was 94% at 6 months (95% CI 72-99) and 82% at 12 months (95% CI 58-95). The ketogenic diet is a safe and potentially

  16. Ketosis, ketogenic diet and food intake control: a complex relationship

    Science.gov (United States)

    Paoli, Antonio; Bosco, Gerardo; Camporesi, Enrico M.; Mangar, Devanand

    2015-01-01

    Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture. PMID:25698989

  17. Reversal of Diabetic Nephropathy by a Ketogenic Diet

    OpenAIRE

    Poplawski, Michal M.; Mastaitis, Jason W.; Isoda, Fumiko; Grosjean, Fabrizio; Zheng, Feng; Mobbs, Charles V.

    2011-01-01

    Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB) reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a k...

  18. [Experience with ketogenic diet as treatment for refractory epilepsy].

    Science.gov (United States)

    Ramírez-Camacho, Alia; Meavilla, Silvia; Catalán, Natalia; Gutiérrez, Alejandra; Campistol, Jaume

    2011-11-01

    Epilepsy is a disease where most patients have a good control with pharmacological antiepileptic treatment. Nevertheless, 25% of the patients have a refractory epilepsy to usual antiepileptic drugs. Ketogenic diet is one of the treatment options for this type of epilepsy. In spite of the increased popularity of it as an antiepileptic treatment, it does not exist an international consensus of its indications and management. To evaluate the response, tolerance and adverse effects of the patients with refractory epilepsy at our hospital during the last 20 years. We reviewed the data of 30 patients with ketogenic diet and the follow-up at the Neurology and Nutrition Services in our Hospital. Ten patients (35.7%) had a positive response with reduction of their seizures for more than six months; five of them had a 50-75% decrease in seizures and five of them had more than 75% of seizure reduction. The most common short term adverse effects were diarrhea, vomiting and hypoglicemia whereas long term adverse effects were constipation and weight gain. We recommend to use ketogenic diet as treatment in refractory epilepsy since there is a positive response in seizure control in some cases. The adverse effects seen could be prevented or treated without complications. It is a preferable treatment option before using other aggressive therapeutical measures or when surgery is not feasible.

  19. Ketogenic diet treatment for pediatric super-refractory status epilepticus.

    Science.gov (United States)

    Appavu, Brian; Vanatta, Lisa; Condie, John; Kerrigan, John F; Jarrar, Randa

    2016-10-01

    We aimed to study whether ketogenic diet (KD) therapy leads to resolution of super-refractory status epilepticus in pediatric patients without significant harm. A retrospective review was performed at Phoenix Children's Hospital on patients with super-refractory status epilepticus undergoing ketogenic diet therapy from 2011 to 2015. Ten children with super-refractory status epilepticus, ages 2-16 years, were identified. 4/10 patients had immune mediated encephalitis, including Rasmussen encephalitis, anti-N-methyl-d-aspartate receptor encephalitis, and post-infectious mycoplasma encephalitis. Other etiologies included Lennox Gastaut Syndrome, non-ketotic hyperglycinemia, PCDH19 and GABRG2 genetic epilepsy, New Onset Refractory Status Epilepticus, and Febrile Infection-Related Epilepsy Syndrome. 4/10 patients' EEG features suggested focal with status epilepticus, and 6/10 suggested generalized with status epilepticus. Median hospital length was 61days and median ICU length was 27days. The median number of antiepileptic medications prior to diet initiation was 3.0 drugs, and the median after ketogenic diet treatment was 3.5 drugs. Median duration of status epilepticus prior to KD was 18days. 9/10 patients had resolution of super-refractory status epilepticus in a median of 7days after diet initiation. 8/9 patients were weaned off anesthesia within 15days of diet initiation, and within 1day of achieving ketonuria. 1/10 patients experienced side effects on the diet requiring supplementation. Most patients achieved resolution of status epilepticus on KD therapy, suggesting it could be an effective therapy that can be utilized early in the treatment of children with super refractory status epilepticus. Copyright © 2016. Published by Elsevier Ltd.

  20. Effect of One Month Duration Ketogenic and non-Ketogenic High Fat Diets on Mouse Brain Bioenergetic Infrastructure

    Science.gov (United States)

    Selfridge, J. Eva; Wilkins, Heather M.; Lezi, E; Carl, Steven M.; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H.

    2014-01-01

    Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated. PMID:25104046

  1. Is the ketogenic diet effective in specific epilepsy syndromes?

    Science.gov (United States)

    Nangia, Srishti; Caraballo, Roberto H; Kang, Hoon-Chul; Nordli, Douglas R; Scheffer, Ingrid E

    2012-07-01

    Is the ketogenic diet (KD) more effective in certain epilepsy syndromes? The KD has been shown to be effective in treating multiple seizure types and epilepsy syndromes. We review the effectiveness of the KD in Dravet syndrome, epilepsy with myoclonic-atonic seizures, mitochondrial disease, tuberous sclerosis, late infantile and juvenile neuronal ceroid lipofuscinosis, and febrile infection-related epilepsy syndrome. In certain epilepsy syndromes, like epilepsy with myoclonic-atonic seizures, the diet should be considered early in the course of treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Will seizure control improve by switching from the modified Atkins diet to the traditional ketogenic diet?

    DEFF Research Database (Denmark)

    Kossoff, Eric H; Bosarge, Jennifer L; Miranda, Maria J

    2010-01-01

    It has been reported that children can maintain seizure control when the ketogenic diet (KD) is transitioned to the less-restrictive modified Atkins diet (MAD). What is unknown, however, is the likelihood of additional seizure control from a switch from the MAD to the KD. Retrospective information...

  3. To treat or not to treat drug-refractory epilepsy by the ketogenic diet? That is the question

    Directory of Open Access Journals (Sweden)

    Marzena Ułamek-Kozioł

    2016-09-01

    Full Text Available Epilepsy is a serious neurologic disorder worldwide which affects about 1% of the population (ca. 50 million people, the highest prevalence occurring in both children and elderly. Apart from idiopathic forms, etiology of the disease involves multiple brain risk factors – the most frequent being cerebrovascular diseases, tumours and traumatic injuries. Several treatment options exist, including, for instance, pharmacotherapy, vagal nerve stimulation or epilepsy surgery. In spite of treatment, about 30% of patients with epilepsy still have seizures and become drug-refractory. This is why other treatment options may be recommended, and ketogenic diet seems a last-chance method, especially in children and adolescents with epilepsy. The diet contains high amounts of fat and low carbohydrates with vitamin supplementation. The elevated concentrations of ketones induced by the diet may result in inhibition of the synaptic activity of glutamate, the mammalian target of the rapamycin pathway, and activation of adenosine triphosphate-sensitive potassium channels. One of the main ketones is acetone, shown to increase the seizure threshold and potentiate the anticonvulsant activity of some antiepileptic drugs. The clinical effectiveness of the ketogenic diet has been confirmed in a number of clinical trials carried out mainly on children. A wider use of the ketogenic diet may be limited by the number of early adverse effects (gastrointestinal distress, acidosis, hypoglycaemia, dehydration and lethargy, and late adverse effects (hyperuricaemia, hyperlipidaemia, kidney stones, easy bruising, and decreases in height and weight. Recently, data are available on the negative impact of the ketogenic diet on the qualitative characteristics of lipoprotein subfractions which points to the atherogenic fenotype as a new side-effect. In conclusion, future research directed to the proper identification of patients (in terms of age, epilepsy type and duration

  4. To treat or not to treat drug-refractory epilepsy by the ketogenic diet? That is the question.

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-12-23

    Epilepsy is a serious neurologic disorder worldwide which affects about 1% of the population (ca. 50 million people), the highest prevalence occurring in both children and elderly. Apart from idiopathic forms, etiology of the disease involves multiple brain risk factors - the most frequent being cerebrovascular diseases, tumours and traumatic injuries. Several treatment options exist, including, for instance, pharmacotherapy, vagal nerve stimulation or epilepsy surgery. In spite of treatment, about 30% of patients with epilepsy still have seizures and become drug-refractory. This is why other treatment options may be recommended, and ketogenic diet seems a last-chance method, especially in children and adolescents with epilepsy. The diet contains high amounts of fat and low carbohydrates with vitamin supplementation. The elevated concentrations of ketones induced by the diet may result in inhibition of the synaptic activity of glutamate, the mammalian target of the rapamycin pathway, and activation of adenosine triphosphate-sensitive potassium channels. One of the main ketones is acetone, shown to increase the seizure threshold and potentiate the anticonvulsant activity of some antiepileptic drugs. The clinical effectiveness of the ketogenic diet has been confirmed in a number of clinical trials carried out mainly on children. A wider use of the ketogenic diet may be limited by the number of early adverse effects (gastrointestinal distress, acidosis, hypoglycaemia, dehydration and lethargy), and late adverse effects (hyperuricaemia, hyperlipidaemia, kidney stones, easy bruising, and decreases in height and weight). Recently, data are available on the negative impact of the ketogenic diet on the qualitative characteristics of lipoprotein subfractions which points to the atherogenic fenotype as a new side-effect. In conclusion, future research directed to the proper identification of patients (in terms of age, epilepsy type and duration, recommended antiepileptic

  5. Protein-Losing Enteropathy as a Complication of the Ketogenic Diet.

    Science.gov (United States)

    Ahn, Won Kee; Park, Soyoung; Kim, Heung Dong

    2017-07-01

    The ketogenic diet is an effective treatment for the patients with intractable epilepsy, however, the diet therapy can sometimes be discontinued by complications. Protein-losing enteropathy is a rarely reported serious complication of the ketogenic diet. We present a 16-month-old Down syndrome baby with protein-losing enteropathy during the ketogenic diet as a treatment for West syndrome. He suffered from diarrhea, general edema and hypoalbuminemia which were not controlled by conservative care for over 1 month. Esophagogastroduodenoscopy and stool alpha-1 antitrypsin indicated protein-losing enteropathy. Related symptoms were relieved after cessation of the ketogenic diet. Unexplained hypoalbuminemia combined with edema and diarrhea during ketogenic suggests the possibility of protein-losing enteropathy, and proper evaluation is recommended in order to expeditiously detect it and to act accordingly. © Copyright: Yonsei University College of Medicine 2017.

  6. Is ketogenic diet treatment hepatotoxic for children with intractable epilepsy?

    Science.gov (United States)

    Arslan, Nur; Guzel, Orkide; Kose, Engin; Yılmaz, Unsal; Kuyum, Pınar; Aksoy, Betül; Çalık, Tansel

    2016-12-01

    Long-term ketogenic diet (KD) treatment has been shown to induce liver steatosis and gallstone formation in some in vivo and clinical studies. The aim of this retrospective study was to evaluate the hepatic side effects of KD in epileptic children. A total of 141 patients (mean age: 7.1±4.1years [2-18 years], 45.4% girls), receiving KD at least one year for intractable epilepsy due to different diagnoses (congenital brain defects, GLUT-1 deficiency, West syndrome, tuberous sclerosis, hypoxic brain injury, etc.) were included in the study. Serum triglyceride, cholesterol, aminotransferase, bilirubin, protein and albumin levels and abdominal ultrasonography were recorded before and at 1, 3, 6, and 12 months following after diet initiation. The mean duration of KD was 15.9±4.3months. At one month of therapy, three patients had elevated alanine and aspartate aminotransferase levels. These patients were receiving ketogenic diet for Doose syndrome, idiopathic epilepsy and GLUT-1 deficiency. Hepatosteatosis was detected in three patients at 6 months of treatment. Two of these patients were treated with KD for the primary diagnosis of tuberous sclerosis and one for Landau Kleffner syndrome. Cholelithiasis was detected in two patients at 12 months of treatment. They were receiving treatment for West syndrome and hypoxic brain injury sequelae. Long-term ketogenic diet treatment stimulates liver parenchymal injury, hepatic steatosis and gallstone formation. Patients should be monitored by screening liver enzymes and abdominal ultrasonography in order to detect these side effects. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  7. [Ketogenic diet for intractable childhood epilepsy; as an early option as well as a last resort].

    Science.gov (United States)

    Ito, Susumu; Oguni, Hirokazu

    2011-04-01

    Since the 1920s, a ketogenic diet, of low-carbohydrate, adequate-protein and high-fat content, has been used for the treatment of intractable childhood epilepsy. A decade ago this diet was tried as a last resort in the treatment of intractable epilepsy. However, recent advances in ketogenic diet have enabled it to become more commonly used worldwide even early in the course of epilepsy. Two less-restrictive ketogenic diets, namely, the modified Atkins diet and low-glycemic-index treatment, have been developed. These diets allow the patients and their families to choose a more liberal menu. Furthermore, a randomized controlled trial found that the ketogenic diet has a significant benefit, which strengthens the supportive evidence. Recently, an international consensus statement guiding optimal clinical management has been published, allowing clinicians to provide standardized treatment. There has also been increased interest in investigating the mechanisms of action of ketogenic diet using various experimental models. The authors review the history, efficacy, side effects, and possible mechanisms underlying the ketogenic diet, as well as the experience with the ketogenic diet at Tokyo Women's Medical University.

  8. The ketogenic diet is effective for refractory epilepsy associated with acquired structural epileptic encephalopathy.

    Science.gov (United States)

    Villaluz, Mel Michel; Lomax, Lysa Boissé; Jadhav, Trupti; Cross, J Helen; Scheffer, Ingrid E

    2018-02-16

    Ketogenic diet therapies have proven efficacy for refractory epilepsy. There are many reports of their use in the genetic developmental and epileptic encephalopathies; however, little attention has been paid as to whether the diet is also effective in individuals with an acquired structural aetiology. We observed remarkable efficacy of the diet in two patients with hypoxic-ischaemic encephalopathy. We then analysed our cases with refractory structural epilepsies of acquired origin to characterize their response to the ketogenic diet. The classical ketogenic diet was implemented with dietary ratios of 3:1 to 4.4:1. Seizure frequency at 1 month, 3 months, 6 months, 1 year, and 2 years was ascertained. A responder was defined as greater than 50% seizure reduction compared to baseline. Seven of the nine patients were responders at 3 months. Somewhat surprisingly we found that the ketogenic diet was effective in patients with a developmental and epileptic encephalopathy due to an acquired structural aetiology. This cohort may not be routinely considered for the ketogenic diet because of their structural and acquired, rather than genetic, basis. The ketogenic diet should be considered early in the management of patients with acquired structural encephalopathies as it can improve seizure control with the potential to improve developmental outcome. The ketogenic diet was effective in children with epilepsy associated with an acquired structural aetiology. © 2018 Mac Keith Press.

  9. Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.

    Science.gov (United States)

    Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo

    2015-10-05

    A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ketogenic diet versus gluten free casein free diet in autistic children: a case-control study.

    Science.gov (United States)

    El-Rashidy, Omnia; El-Baz, Farida; El-Gendy, Yasmin; Khalaf, Randa; Reda, Dina; Saad, Khaled

    2017-12-01

    Many diet regimens were studied for patients with autism spectrum disorder (ASD) over the past few years. Ketogenic diet is gaining attention due to its proven effect on neurological conditions like epilepsy in children. Forty-five children aged 3-8 years diagnosed with ASD based on DSM-5 criteria were enrolled in this study. Patients were equally divided into 3 groups, first group received ketogenic diet as modified Atkins diet (MAD), second group received gluten free casein free (GFCF) diet and the third group received balanced nutrition and served as a control group. All patients were assessed in terms of neurological examination, anthropometric measures, as well as Childhood Autism Rating Scale (CARS), Autism Treatment Evaluation Test (ATEC) scales before and 6 months after starting diet. Both diet groups showed significant improvement in ATEC and CARS scores in comparison to control group, yet ketogenic scored better results in cognition and sociability compared to GFCF diet group. Depending on the parameters measured in our study, modified Atkins diet and gluten free casein free diet regimens may safely improve autistic manifestations and could be recommended for children with ASD. At this stage, this study is a single center study with a small number of patients and a great deal of additional wide-scale prospective studies are however needed to confirm these results. UMIN-CTR Study Design: trial Number UMIN000021433.

  11. [Effectiveness of a ketogenic diet in children with refractory epilepsy: a systematic review].

    Science.gov (United States)

    Araya-Quintanilla, F; Celis-Rosati, A; Rodriguez-Leiva, C; Silva-Navarro, C; Silva-Pinto, Y; Toro-Jeria, B

    2016-05-16

    Epilepsy is a brain disorder that affects both children and adults. From the 1920s the ketogenic diet has gained prestige as another treatment option for patients with refractory epilepsy. A summary of the evidence will be made through a systematic review of randomized clinical trials that have compared a single ketogenic diet with other diet for the management of these patients. To determine the effectiveness of the ketogenic diet in reducing episodes of seizures in patients with refractory epilepsy. The search strategy included randomized controlled trials and controlled clinical trials. Databases used were Medline, LILACS, Central and CINAHL. Six articles that met our elegibility criteria. There is limited evidence that the ketogenic diet compared to the medium-chain triglyceride diet is more effective in reducing the frequency of seizures. There is also moderate evidence that classical ketogenic diet compared to the gradual diet (2.5:1 and 3:1) is more effective in reducing seizures. There is moderate evidence that classical ketogenic diet compared to Atkins diet is more effective in reducing the frequency of seizure. The decision to apply this type of diet should also be based on costs, preferences and safety of treatment. It should also take into account the likelihood that studies have indexing problems have been left out of the review.

  12. Kynurenic Acid and Neuroprotective Activity of the Ketogenic Diet in the Eye.

    Science.gov (United States)

    Zarnowski, Tomasz; Tulidowicz-Bielak, Maria; Zarnowska, Iwona; Mitosek-Szewczyk, Krystyna; Wnorowski, Artur; Jozwiak, Krzysztof; Gasior, Maciej; Turski, Waldemar A

    2017-01-01

    There is growing evidence of the involvement of the kynurenine metabolic pathway and the enhancement of kynurenic acid production in the neuroprotective effects of the ketogenic diet. Here, we review evidence implicating kynurenic acid in the efficacy of ketogenic diet in eye diseases associated with neurodegeneration. Ketogenic diet and ketone bodies that are elevated during exposure to the ketogenic diet each have a neuroprotective effect on retinal ganglion cells in a rat model of Nmethyl- D-aspartate induced neuronal damage. Chronic exposure to ketogenic diet also increases kynurenic acid concentrations in discrete rat brain structures. A non-selective glutamate receptor agonist, glutamate, also decreases the production of kynurenic acid in bovine retinal slices; this effect is attenuated by acetoacetate and β-hydroxybutyrate, two of three ketone bodies overproduced during ketogenic diet. Whether ketogenic diet induced enhancement of kynurenic acid production would translate into a clinically significant improvement in certain eye diseases like glaucoma and retinal neurodegenerations awaits further experimental and clinical verification. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes.

    Science.gov (United States)

    Rhyu, Hyun-Seung; Cho, Su-Youn; Roh, Hee-Tae

    2014-12-01

    The purpose of this study was to investigate the effects of the ketogenic diet through 3 weeks on oxidative stress and antioxidative capacity markers in Taekwondo athletes. The participants selected for this research were 18 high school taekwondo contestants aged 15-18 who had at least 5 yr of career as contestant. The subjects were randomly assigned to the ketogenic diet (KD) group and the Non ketogenic diet (NDK) group. Body composition and oxidative stress and antioxidative capacity markers (LDH, MDA, ROS, HDL, and SOD) were analysed before and after 3 weeks of ketogenic diet. No significant difference was found between the groups in body composition, ROS and SOD level. The KD group showed an elevated HDL level and NKD group showed an elevated LDH and MDA level after ketogenic diet by 3 weeks. This result suggests that weight loss by 3 weeks of calorie restriction and exercise can cause oxidative stress, and that ketogenic diet can be effective for preventing it. It could also be inferred that ketogenic diet can be effective for increasing blood antioxidative capacity.

  14. Spanish Ketogenic Mediterranean diet: a healthy cardiovascular diet for weight loss

    Directory of Open Access Journals (Sweden)

    Alonso-Moraga Ángeles

    2008-10-01

    Full Text Available Abstract Background Ketogenic diets are an effective healthy way of losing weight since they promote a non-atherogenic lipid profile, lower blood pressure and decrease resistance to insulin with an improvement in blood levels of glucose and insulin. On the other hand, Mediterranean diet is well known to be one of the healthiest diets, being the basic ingredients of such diet the olive oil, red wine and vegetables. In Spain the fish is an important component of such diet. The objective of this study was to determine the dietary effects of a protein ketogenic diet rich in olive oil, salad, fish and red wine. Methods A prospective study was carried out in 31 obese subjects (22 male and 19 female with the inclusion criteria whose body mass index and age was 36.46 ± 2.22 and 38.48 ± 2.27, respectively. This Ketogenic diet was called "Spanish Ketogenic Mediterranean Diet" (SKMD due to the incorporation of virgin olive oil as the principal source of fat (≥30 ml/day, moderate red wine intake (200–400 ml/day, green vegetables and salads as the main source of carbohydrates and fish as the main source of proteins. It was an unlimited calorie diet. Statistical differences between the parameters studied before and after the administration of the "Spanish Ketogenic Mediterranean diet" (week 0 and 12 were analyzed by paired Student's t test. Results There was an extremely significant (p 2→31.76 kg/m2, systolic blood pressure (125.71 mmHg→109.05 mmHg, diastolic blood pressure (84.52 mmHg→ 75.24 mmHg, total cholesterol (208.24 mg/dl→186.62 mg/dl, triacylglicerols (218.67 mg/dl→113.90 mg/dl and glucose (109.81 mg/dl→ 93.33 mg/dl. There was a significant (p = 0.0167 reduction in LDLc (114.52 mg/dl→105.95 mg/dl and an extremely significant increase in HDLc (50.10 mg/dl→54.57 mg/dl. The most affected parameter was the triacylglicerols (47.91% of reduction. Conclusion The SKMD is safe, an effective way of losing weight, promoting non

  15. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets

    OpenAIRE

    Paoli, A; Rubini, A; Volek, J S; Grimaldi, K A

    2013-01-01

    Very-low-carbohydrate diets or ketogenic diets have been in use since the 1920s as a therapy for epilepsy and can, in some cases, completely remove the need for medication. From the 1960s onwards they have become widely known as one of the most common methods for obesity treatment. Recent work over the last decade or so has provided evidence of the therapeutic potential of ketogenic diets in many pathological conditions, such as diabetes, polycystic ovary syndrome, acne, neurological diseases...

  16. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Limited efficacy of the ketogenic diet in the treatment of highly refractory epileptic spasms.

    Science.gov (United States)

    Hussain, Shaun A; Shin, Ji Hyun; Shih, Evan J; Murata, Kristina K; Sewak, Sarika; Kezele, Michele E; Sankar, Raman; Matsumoto, Joyce H

    2016-02-01

    Numerous studies have suggested that the ketogenic diet is effective in the treatment of epileptic spasms, even in refractory cases. However, there has been very limited demonstration of prompt and complete (video-EEG confirmed) response. We set out to describe our center's experience with the ketogenic diet in the treatment of children with highly refractory epileptic spasms, with rigorous seizure outcome assessment. Children treated with the ketogenic diet for epileptic spasms between April, 2010 and June, 2014 were retrospectively identified. Seizure burden was tabulated at baseline and after 1, 3, 6, and 12-months of ketogenic diet exposure. Adverse events were similarly ascertained. We identified a cohort of 22 consecutive patients who received ketogenic diet therapy, with median age of onset of epileptic spasms of 5.2 (IQR 2.0-9.0) months, with diet initiation beginning a median of 26.4 (12.5-38.7) months after onset, and following a median of 7 (IQR 5-7) treatment failures. Only 2 patients exhibited a complete response during ketogenic diet exposure, and response was more reasonably attributed to alternative therapies in both cases. A modest early reduction in seizure frequency was not sustained beyond 1 month of diet exposure. The diet was well tolerated, and continued in 6 patients with subjective and/or partial response. In contrast to prior studies reporting substantial efficacy of the ketogenic diet, our findings suggest limited efficacy, albeit in a highly refractory cohort. Prospective studies in both refractory and new-onset populations, with both video-EEG confirmation of response and rigorous cognitive outcome assessment, would be of great value to more clearly define the utility of the ketogenic diet in the treatment of epileptic spasms. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  18. Reversible white matter lesions during ketogenic diet therapy in glucose transporter 1 deficiency syndrome.

    Science.gov (United States)

    Shiohama, Tadashi; Fujii, Katsunori; Takahashi, Satoru; Nakamura, Fumito; Kohno, Yoichi

    2013-12-01

    Glucose transporter type 1 deficiency syndrome is caused by brain energy failure resulting from a disturbance in glucose transport. We describe a 4-year-old boy with classical type glucose transporter type 1 deficiency syndrome with a heterozygous splice acceptor site mutation (c.517-2A>G) in the SLCA2A1 gene. We initiated a ketogenic diet at 4 months of age. However, even though his condition was good during ketogenic diet therapy, multiple cerebral white matter and right cerebellum lesions appeared at 9 months of age. The lesions in the cerebral white matter subsequently disappeared, indicating that white matter lesions during diet therapy may be reversible and independent of the ketogenic diet. This is the first report of reversible white matter lesions during ketogenic diet therapy in glucose transporter type 1 deficiency syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Alternative diets to the classical ketogenic diet-Can we be more liberal?

    DEFF Research Database (Denmark)

    Miranda, Maria J; Turner, Zahava; Magrath, Gwyneth

    2012-01-01

    The ketogenic diet (KD), a high-fat, adequate protein, low-carbohydrate diet has been used since 1921 for the treatment of severe medically refractory epilepsy. In the past 15 years, the use of the KD has expanded enormously and a huge amount of clinical evidence of its efficacy is available....... The classical KD is however restrictive and therefore alternative more liberal varieties of the classical KD have been developed within the last 8 years. The purpose of this report is to summarise the principles and evidence of effectiveness of the alternative ketogenic diets: Medium Chain Triglyceride (MCT......)-KD, modified Atkins diet (MAD) and low glycaemic index treatment (LGIT), compared to the classical KD. The clinical evidence to date suggests that the more liberal versions of the classical KD such as MCT KD, MAD and LGIT have an efficacy close to the classical KD; however, no RCT data are available for MAD...

  20. HEPATIC FATTY ACID PROFILE OF RATS FED A TRIHEPTANOIN-BASED KETOGENIC DIET.

    Science.gov (United States)

    Vieira de Melo, Ingrid Sofia; Da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant'Ana, Antônio Euzébio

    2015-07-01

    the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methyl esters, which were subjected to gas chromatography- mass spectrometry. compared to the rats fed the control diet, those fed ketogenic diets showed a significant reduction in the concentrations of 9-hexadecenoic and 9-octadecenoic acids, whereas those fed triheptanoin showed increased levels of octadecanoic acid. changes in the liver fatty acid profiles of the rats fed a triheptanoin-based or a soybean oil-based ketogenic diet did not seem to be related to the dietary fat source, but rather to the characteristics of the ketogenic diets themselves. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. Protein-losing enteropathy as a rare complication of the ketogenic diet.

    Science.gov (United States)

    Moriyama, Kengo; Watanabe, Mio; Yamada, Yoshiyuki; Shiihara, Takashi

    2015-05-01

    The ketogenic diet is a valuable therapy for patients with intractable epilepsy, but it can result in a variety of complications that sometimes limits its usefulness. Hypoproteinemia is one of the common adverse effects of this diet, although the underling mechanism is largely unknown except for the diet's reduced protein intake. Only one case of protein-losing enteropathy during the ketogenic diet has been reported. A previously healthy 9-year-old girl experienced fever for 5 days then suddenly developed convulsive seizures that subsequently evolved to severe refractory status epilepticus. After multiple antiepileptic drugs failed to improve the patient's condition, we introduced the ketogenic diet. Although her seizures diminished, her course was complicated by hypoproteinemia. An abdominal dynamic scintigraphy and colonoscopy findings indicated protein-losing enteropathy with nonspecific mucosal inflammation. Her nutritional status deteriorated; thus, we discontinued the ketogenic diet. Her nutritional status gradually improved, whereas her seizures increased. Hypoproteinemia during the ketogenic diet is common, but the underlying etiologies are not well understood. Abdominal dynamic scintigraphy could be valuable for clarifying the etiology of hypoproteinemia during the ketogenic diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Efficacy of and patient compliance with a ketogenic diet in adults with intractable epilepsy: a meta-analysis.

    Science.gov (United States)

    Ye, Fang; Li, Xiao-Jia; Jiang, Wan-Lin; Sun, Hong-Bin; Liu, Jie

    2015-01-01

    Despite the successful use of a ketogenic diet in pediatric epilepsy, its application in adults has been limited. The aim of this meta-analysis was to summarize the findings of relevant published studies in order to identify the efficacy of and compliance with a ketogenic diet and its main subtypes (i.e., classic ketogenic diet and modified Atkins diet) in adults with intractable epilepsy, and to provide useful information for clinical practice. Electronic searches of PubMed, EMBASE, Google Scholar, and the ISI Web of Science were conducted to identify studies of the efficacy of and patient compliance with a ketogenic diet in adults with intractable epilepsy; the included studies were reviewed. Meta-analyses were performed using STATA to determine combined efficacy rates and combined rates of compliance with the ketogenic diet and its main subtypes. In total, 12 studies qualified for inclusion, and data from 270 patients were evaluated.The results of the meta-analysis revealed combined efficacy rates of all types of ketogenic diet, a classical ketogenic diet, and a modified Atkins diet were 42%, 52%, and 34%, respectively; the corresponding combined compliance rates were 45%, 38%, and 56%. The results indicate that a ketogenic diet is a promising complementary therapy in adult intractable epilepsy, and that while a classical ketogenic diet may be more effective, adult patients are likely to be less compliant with it than with a modified Atkins diet.

  3. Regulation of Kynurenine Metabolism by a Ketogenic Diet.

    Science.gov (United States)

    Heischmann, Svenja; Gano, Lindsey B; Quinn, Kevin; Liang, Li-Ping; Klepacki, Jacek; Christians, Uwe; Reisdorph, Nichole; Patel, Manisha

    2018-03-31

    Ketogenic diets (KDs) are increasingly utilized as treatments for epilepsy, other neurological diseases, and cancer. Despite their long history in suppressing seizures, the distinct molecular mechanisms of action of KDs are still largely unknown. The goal of this study was to identify key metabolites and pathways altered in hippocampus and plasma of rats fed a KD vs. control diet either ad libitum or calorically restricted to 90% of the recommended intake. This was accomplished using a combination of targeted methods and untargeted mass spectrometry-based metabolomics analyses. Various metabolites of and related to the tryptophan degradation pathway, such as kynurenine and kynurenic acid, as well as enzyme cofactors showed significant changes between groups fed different diets and/or calorie amounts in plasma and/or the hippocampus. Kynurenine was significantly downregulated in both matrices in animals of the control diet-calorically restricted, KD-ad libitum, and KD-calorically restricted groups compared to the control diet-ad libitum group. Our data suggest that the tryptophan degradation pathway is a key target of the KD. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain

    DEFF Research Database (Denmark)

    Lauritzen, Knut H.; Hasan-Olive, Md Mahdi; Regnell, Christine E.

    2016-01-01

    microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial...

  5. Recommendations for the clinical management of children with refractory epilepsy receiving the ketogenic diet.

    Science.gov (United States)

    Alberti, María J; Agustinho, Ariela; Argumedo, Laura; Armeno, Marisa; Blanco, Virginia; Bouquet, Cecilia; Cabrera, Analía; Caraballo, Roberto; Caramuta, Luciana; Cresta, Araceli; de Grandis, Elizabeth S; De Martini, Martha G; Diez, Cecilia; Dlugoszewski, Corina; Escobal, Nidia; Ferrero, Hilario; Galicchio, Santiago; Gambarini, Victoria; Gamboni, Beatriz; Guisande, Silvina; Hassan, Amal; Matarrese, Pablo; Mestre, Graciela; Pesce, Laura; Ríos, Viviana; Sosa, Patricia; Vaccarezza, María; Viollaz, Rocío; Panico, Luis

    2016-02-01

    The ketogenic diet, a non-drug treatment with proven effectiveness, has been the most commonly used therapy in the past decade for the management of refractory epilepsy in the pediatric population. Compared to adding a new drug to a pre-existing treatment, the ketogenic diet is highly effective and reduces the number of seizures by 50-90% in approximately 45-60% of children after six months of treatment. For this reason, the Argentine Society of Pediatric Neurology established the Ketogenic Diet Working Group. It is integrated by pediatric dietitians, pediatricians, pediatric neurologists and B.S. in Nutrition, who developed recommendations for the optimal management of patients receiving the classical ketogenic diet based on expert consensus and scientific publications in this field. Sociedad Argentina de Pediatría.

  6. Reconciling diabetes management and the ketogenic diet in a child with pyruvate dehydrogenase deficiency.

    Science.gov (United States)

    Henwood, Maria J; Thornton, Paul S; Preis, Christina M; Chee, Clare; Grimberg, Adda

    2006-05-01

    A 4-year-old girl with pyruvate dehydrogenase deficiency, static encephalopathy, and seizure disorder treated with the ketogenic diet presented in severe diabetic ketoacidosis. Pyruvate dehydrogenase deficiency is a rare genetic defect of mitochondrial energy metabolism that leads to inefficient glucose use and lactic acidosis. The ketogenic diet provides the brain with an alternate fuel source, but its implementation opposes traditional diabetes management. Faced with this therapeutic dilemma, we aimed to maintain ketosis without compromising safety to optimize neurologic function and quality of life. This is the first report, to our knowledge, of a child simultaneously treated with the ketogenic diet and exogenous insulin. A 28-month follow-up revealed excellent glycemic control, improved activity level, significant developmental achievements, and, perhaps most striking, catch-up linear growth from diabetes does not preclude use of the ketogenic diet.

  7. Effect of Combined Ketogenic Diet and Valproate Treatment for Intractable Seizures

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-09-01

    Full Text Available The safety and tolerability of ketogenic diet (KGD and valproate (VPA cotherapy in the treatment of intractable seizures were evaluated retrospectively at the Massachusetts General Hospital, Boston.

  8. Tumor growth in patients with tuberous sclerosis complex on the ketogenic diet.

    Science.gov (United States)

    Chu-Shore, Catherine J; Thiele, Elizabeth A

    2010-04-01

    New evidence is emerging that the availability of nutrients plays a key role in regulating the mammalian target of rapamycin complex-1 (mTORC1) signaling pathway in human cancers. Tuberous sclerosis complex (TSC) is a genetic disorder which results in the growth of hamartomatous lesions in multiple organs due to insufficient suppression of the mTORC1 pathway. A minority of patients with TSC who develop epilepsy which is intractable to standard anticonvulsant medical and/or surgical treatments are treated with the ketogenic diet. To provide insight into the effects of nutrient manipulation on tumor growth in this condition, we describe our experience in a unique group of patients with known tuberous sclerosis complex who are on the ketogenic diet for seizure control. A retrospective chart review was performed of patients with TSC treated with the ketogenic diet between January 2002 and May 2007 at Massachusetts General Hospital. Five patients with definite TSC underwent serial imaging for tumor growth while on the ketogenic diet or had unchanged imaging prior to the onset of the diet and after termination. Three out of five patients, all children, had progression of a known tumor or tumors or the development of a new tumor while on the ketogenic diet. In this limited case series of five TSC patients, the ketogenic diet did not induce tumor regression or suppress the growth of TSC-related tumors. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms.

    Science.gov (United States)

    Zhang, Yifan; Xu, Jingwei; Zhang, Kun; Yang, Wei; Li, Bingjin

    2018-01-01

    Epilepsy is a syndrome of brain dysfunction induced by the aberrant excitability of certain neurons. Despite advances in surgical technique and anti-epileptic drug in recent years, recurrent epileptic seizures remain intractable and lead to a serious morbidity in the world. The ketogenic diet refers to a high-fat, low-carbohydrate and adequate-protein diet. Currently, its beneficial effects on epileptic seizure reduction have been well established. However, the detailed mechanisms underlying the anti-epileptic effects of ketogenic diet are still poorly understood. In this article, the possible roles of ketogenic diet on epilepsy were discussed. Data was obtained from the websites including Web of Science, Medline, Pubmed, Scopus, based on these keywords: "Ketogenic diet" and "epilepsy". As shown in both clinical and basic studies, the therapeutic effects of ketogenic diet might involve neuronal metabolism, neurotransmitter function, neuronal membrane potential and neuron protection against ROS. In this review, we systematically reviewed the effects and possible mechanisms of ketogenic diet on epilepsy, which may optimize the therapeutic strategies against epilepsy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes

    OpenAIRE

    Sofou, Kalliopi; Dahlin, Maria; Hallb??k, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-01-01

    Objectives Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Methods Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developme...

  11. Dispersion durations of P-wave and QT interval in children treated with a ketogenic diet.

    Science.gov (United States)

    Doksöz, Önder; Güzel, Orkide; Yılmaz, Ünsal; Işgüder, Rana; Çeleğen, Kübra; Meşe, Timur

    2014-04-01

    Limited data are available on the effects of a ketogenic diet on dispersion duration of P-wave and QT-interval measures in children. We searched for the changes in these measures with serial electrocardiograms in patients treated with a ketogenic diet. Twenty-five drug-resistant patients with epilepsy treated with a ketogenic diet were enrolled in this study. Electrocardiography was performed in all patients before the beginning and at the sixth month after implementation of the ketogenic diet. Heart rate, maximum and minimum P-wave duration, P-wave dispersion, and maximum and minimum corrected QT interval and QT dispersion were manually measured from the 12-lead surface electrocardiogram. Minimum and maximum corrected QT and QT dispersion measurements showed nonsignificant increase at month 6 compared with baseline values. Other previously mentioned electrocardiogram parameters also showed no significant changes. A ketogenic diet of 6 months' duration has no significant effect on electrocardiogram parameters in children. Further studies with larger samples and longer duration of follow-up are needed to clarify the effects of ketogenic diet on P-wave dispersion and corrected QT and QT dispersion. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Therapeutic role of low-carbohydrate ketogenic diet in diabetes.

    Science.gov (United States)

    Al-Khalifa, Alaa; Mathew, Thazhumpal Chacko; Al-Zaid, Naji S; Mathew, Elizabeth; Dashti, Hussein M

    2009-01-01

    Changes in dietary habits influence the glycemic level. Preliminary studies using the low-carbohydrate ketogenic diet (LCKD) were found to be quite promising in controlling diabetes mellitus. Therefore, the objectives of this study are to investigate the therapeutic effects of LCKD in experimental diabetic rats following the administration of streptozotocin (STZ). Adult rats were divided into three groups: normal diet, LCKD, and high-carbohydrate diet. Each group was subdivided into normal, sham, and diabetic groups. Diabetes was induced by a single intraperitoneal injection of STZ (55mg/kg). Specific diets were given to each group of animals for a period of 8 wk and then the animals were sacrificed. The rats were monitored daily for food and water intake, whereas body weight, urine output, and blood glucose levels were monitored weekly. The histology of the islets of Langerhans was studied by histochemical methods. The results showed that LCKD was effective in bringing blood glucose level close to normal (Pdiabetic animals except in the LCKD group (Pdiabetic groups. This study indicates that LCKD has a significant beneficial effect in ameliorating the diabetic state and helping to stabilize hyperglycemia.

  13. Intravenous ketogenic diet therapy for treatment of the acute stage of super-refractory status epilepticus in a pediatric patient.

    Science.gov (United States)

    Lin, Jainn-Jim; Lin, Kuang-Lin; Chan, Oi-Wa; Hsia, Shao-Hsuan; Wang, Huei-Shyong

    2015-04-01

    A ketogenic diet has been used successfully to treat intractable epilepsy. However, the role of early intravenous initiation of ketogenic diet in the acute phase of super-refractory status epilepticus is not well-described. An intravenous ketogenic diet was administered to a boy with super-refractory status epilepticus. At 24 hours after intravenous ketogenic diet, moderate ketosis appeared, and thiamylal was successfully weaned at 70 hours after admission. An intravenous ketogenic regimen led to subsequent ketosis and seizure control in a child with super-refractory status epilepticus. Early induction of ketosis may be a novel strategy to effectively treat super-refractory status epilepticus. Although there are few data regarding the early use of intravenous ketogenic diet in the treatment of super-refractory status epilepticus, it may be considered an alternative option. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy

    Science.gov (United States)

    Ruskin, David N.; Masino, Susan A.

    2012-01-01

    A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system. PMID:22470316

  15. The ketogenic diet for the treatment of myoclonic astatic epilepsy in a child with type 1 diabetes mellitus.

    Science.gov (United States)

    Aylward, Nicole M; Shah, Namrata; Sellers, Elizabeth A

    2014-08-01

    Initiation of the ketogenic diet in a child with epilepsy and type 1 diabetes mellitus presents a challenge because the distinction between diet-induced ketosis and diabetic ketoacidosis is difficult to discern. We report the successful use of the ketogenic diet in a child with myoclonic astatic epilepsy and type 1 diabetes. Published by Elsevier Inc.

  16. Application of a ketogenic diet in children with autistic behavior: pilot study.

    NARCIS (Netherlands)

    Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; Sbyrakis, S.; Smeitink, J.A.M.

    2003-01-01

    A pilot prospective follow-up study of the role of the ketogenic diet was carried out on 30 children, aged between 4 and 10 years, with autistic behavior. The diet was applied for 6 months, with continuous administration for 4 weeks, interrupted by 2-week diet-free intervals. Seven patients could

  17. Treatment of Diabetic Mice with a Combination of Ketogenic Diet and Aerobic Exercise via Modulations of PPARs Gene Programs

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2018-01-01

    Full Text Available Type 2 diabetes is a prevalent chronic disease arising as a serious public health problem worldwide. Diet intervention is considered to be a critical strategy in glycemic control of diabetic patients. Recently, the low-carbohydrate ketogenic diet is shown to be effective in glycemic control and weight loss. However, hepatic lipid accumulation could be observed in mice treated with ketogenic diet. On the other hand, exercise is a well-known approach for treating nonalcoholic fatty liver disease. We thus hypothesize that the combination of ketogenic diet and exercise could improve insulin sensitivity, while minimizing adverse effect of hepatic steatosis. In order to test this hypothesis, we established diabetic mice model with streptozotocin (STZ and divided them into control group, ketogenic diet group, and ketogenic diet with aerobic exercise group. We found that after six weeks of intervention, mice treated with ketogenic diet and ketogenic diet combined with exercise both have lower body weights, HbAlc level, HOMA index, and improvements in insulin sensitivity, compared with diabetes group. In addition, mice in ketogenic diet intervention exhibited hepatic steatosis shown by serum and hepatic parameters, as well as histochemistry staining in the liver, which could be largely relieved by exercise. Furthermore, gene analysis revealed that ketogenic diet in combination with exercise reduced PPARγ and lipid synthetic genes, as well as enhancing PPARα and lipid β-oxidation gene program in the liver compared to those in ketogenic diet without exercise. Overall, the present study demonstrated that the combination of ketogenic diet and a moderate-intensity aerobic exercise intervention improved insulin sensitivity in diabetic mice, while avoiding hepatic steatosis, which provided a novel strategy in the combat of diabetes.

  18. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts.

    Science.gov (United States)

    Allen, Bryan G; Bhatia, Sudershan K; Buatti, John M; Brandt, Kristin E; Lindholm, Kaleigh E; Button, Anna M; Szweda, Luke I; Smith, Brian J; Spitz, Douglas R; Fath, Melissa A

    2013-07-15

    Ketogenic diets are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that ketogenic diets enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a ketogenic diet (KetoCal 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8-2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modified proteins as a marker of oxidative stress as well as proliferating cell nuclear antigen (PCNA) and γH2AX as indices of proliferation and DNA damage, respectively. The ketogenic diets combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (P ketogenic diet also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a ketogenic diet in combination with radiation showed increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA. These results show that a ketogenic diet enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress.

  19. Ketogenic diet guidelines for infants with refractory epilepsy.

    Science.gov (United States)

    van der Louw, Elles; van den Hurk, Dorine; Neal, Elizabeth; Leiendecker, Bärbel; Fitzsimmon, Georgiana; Dority, Laura; Thompson, Lindsey; Marchió, Maddelena; Dudzińska, Magdalena; Dressler, Anastasia; Klepper, Joerg; Auvin, Stéphane; Cross, J Helen

    2016-11-01

    The ketogenic diet (KD) is an established, effective non-pharmacologic treatment for drug resistant childhood epilepsy. For a long time, the KD was not recommended for use in infancy (under the age of 2 years) because this is such a crucial period in development and the perceived high risk of nutritional inadequacies. Indeed, infants are a vulnerable population with specific nutritional requirements. But current research shows that the KD is highly effective and well tolerated in infants with epilepsy. Seizure freedom is often achieved and maintained in this specific patient group. There is a need for standardised protocols and management recommendations for clinical use. In April 2015, a project group of 5 experts was established in order to create a consensus statement regarding the clinical management of the KD in infants. The manuscript was reviewed and amended by a larger group of 10 international experts in the KD field. Consensus was reached with regard to guidance on how the diet should be administered and in whom. The resulting recommendations include patient selection, pre-KD counseling and evaluation, specific nutritional requirements, preferred initiation, monitoring of adverse effects at initiation and follow-up, evaluation and KD discontinuation. This paper highlights recommendations based on best evidence, combined with expert opinions and gives directions for future research. Copyright © 2016 European Paediatric Neurology Society. All rights reserved.

  20. Ketogenic diet and other dietary treatments for epilepsy.

    Science.gov (United States)

    Martin, Kirsty; Jackson, Cerian F; Levy, Robert G; Cooper, Paul N

    2016-02-09

    The ketogenic diet (KD), being high in fat and low in carbohydrates, has been suggested to reduce seizure frequency. It is currently used mainly for children who continue to have seizures despite treatment with antiepileptic drugs. Recently, there has been interest in less restrictive KDs including the modified Atkins diet (MAD) and the use of these diets has extended into adult practice. To review the evidence for efficacy and tolerability from randomised controlled trials regarding the effects of KD and similar diets. We searched the Cochrane Epilepsy Group's Specialized Register (30 March 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO, 30 March 2015), MEDLINE (Ovid, 30 March 2015), ClinicalTrials.gov (30 March 2015) and the WHO International Clinical Trials Registry Platform (ICTRP, 30 March 2015). We imposed no language restrictions. We checked the reference lists of retrieved studies for additional reports of relevant studies. Studies of KDs and similar diets for people with epilepsy. Two review authors independently applied pre-defined criteria to extract data and assessed study quality. We identified seven randomised controlled trials that generated eight publications.All trials applied an intention-to-treat analysis with varied randomisation methods. The seven studies recruited 427 children and adolescents and no adults. We could not conduct a meta-analysis due to the heterogeneity of the studies.Reported rates of seizure freedom reached as high as 55% in a 4 : 1 KD group after three months and reported rates of seizure reduction reached as high as 85% in a 4 : 1 KD group after three months.One trial found no significant difference between the fasting-onset and gradual-onset KD for rates of seizure freedom and reported a greater rate of seizure reduction in the gradual-onset KD group.Studies assessing the efficacy of the MAD reported seizure freedom rates of up to 10% and seizure

  1. Epilepsy of infancy with migrating focal seizures: three patients treated with the ketogenic diet.

    Science.gov (United States)

    Caraballo, Roberto; Noli, Daniel; Cachia, Pedro

    2015-06-01

    We present three patients with epilepsy of infancy with migrating focal seizures treated with the ketogenic diet. Between February 1, 2012 and January 31, 2014, three patients who met the diagnostic criteria for migrating focal seizures in infancy at our department were placed on the ketogenic diet and followed for a minimum of seven months. Two of the three children responded well to the ketogenic diet. One of these patients became seizure-free and his neuropsychological performance also significantly improved. The other child had a seizure reduction of 75% to 99% with only weekly seizures and moderate psychomotor improvement. For these two patients who responded well to the ketogenic diet, hospital admission was not required. The remaining patient had a seizure reduction of less than 50%. Tolerability of the diet was good in all three patients. Early treatment with the ketogenic diet should be considered for epilepsy of infancy with migrating focal seizures to control seizures and status epilepticus, and avoid progressive cognitive impairment.

  2. The role for ketogenic diets in epilepsy and status epilepticus in adults

    Directory of Open Access Journals (Sweden)

    Tanya J. Williams

    Full Text Available Ketogenic diet (KD therapies are high fat, low carbohydrate diets designed to mimic a fasting state. Although studies demonstrate KD’s success in reducing seizures stretching back nearly a century, the last 25 years have seen a resurgence in diet therapy for the management of drug-resistant epilepsy in children as well as adults. With ≥50% seizure reduction efficacy rates in adults of 22–55% for the classic KD and 12–67% for the modified Atkins diet, diet therapy may be in many instances comparable to a trial of an additional anti-epileptic medication and potentially with fewer side effects and other health benefits. Moreover, ketogenic diets offer promising new adjunctive strategies for the treatment of acute status epilepticus in the intensive care setting. Here, we review the efficacy and utility of ketogenic diets for the management of chronic epilepsy and refractory status epilepticus in adults and offer practical guidelines for diet implementation and maintenance. Keywords: Ketogenic diet, Modified Atkins diet, Epilepsy, Drug-resistant epilepsy, Refractory status epilepticus

  3. Efficacy of the ketogenic diet in the 6-Hz seizure test

    Science.gov (United States)

    Hartman, Adam L.; Lyle, Megan; Rogawski, Michael A.; Gasior, Maciej

    2008-01-01

    SUMMARY Purpose Since the ketogenic diet is effective in drug-resistant epilepsies, we sought to determine whether it is active in the 6-Hz seizure test, which identifies agents with a broader spectrum of activity than conventional antiepileptic screening tests. Methods Male (3–4 week old) NIH Swiss mice were fed a normal or ketogenic diet ad libitum for 2–21 days. The intensity of the corneal stimulation current required to elicit seizures in the 6-Hz test was measured. Blood glucose and β-hydroxybutyrate were measured on the day of seizure testing. Results CC50 (current intensity producing seizures in 50% of mice tested) was 50.6 mA and 15 mA in mice fed for 12 days with a ketogenic or normal diet, respectively (p ketogenic diet exposure. CC50 values of growing mice fed the normal diet does not differ, indicating CC50 does not vary with mouse weight during a rapid growth phase. β-Hydroxybutyrate was significantly higher, and glucose was significantly lower in mice fed the ketogenic diet than those fed the normal diet. Blood glucose and β-hydroxybutyrate levels did not correlate with CC50. Discussion The ketogenic diet significantly elevates the seizure threshold in the 6-Hz test in a time-specific manner. Protection from seizures in this model was not related to level of ketosis. CC50 was insensitive to body weight in mice fed the normal diet, demonstrating that the 6-Hz model can assess anticonvulsant regimens where weight is a confounding factor. PMID:18070095

  4. Ketogenic diet prevents neuronal firing increase within the substantia nigra during pentylenetetrazole-induced seizure in rats.

    Science.gov (United States)

    Viggiano, Andrea; Stoddard, Madison; Pisano, Simone; Operto, Francesca Felicia; Iovane, Valentina; Monda, Marcellino; Coppola, Giangennaro

    2016-07-01

    The mechanism responsible for the anti-seizure effect of ketogenic diets is poorly understood. Because the substantia nigra pars reticulata (SNr) is a "gate" center for seizures, the aim of the present experiment was to evaluate if a ketogenic diet modifies the neuronal response of this nucleus when a seizure-inducing drug is administered in rats. Two groups of rats were given a standard diet (group 1) or a ketogenic diet (group 2) for four weeks, then the threshold for seizure induction and the firing rate of putative GABAergic neurons within the SNr were evaluated with progressive infusion of pentylenetetrazole under general anesthesia. The results demonstrated that the ketogenic diet abolished the correlation between the firing rate response of SNr-neurons and the seizure-threshold. This result suggests that the anti-seizure effect of ketogenic diets can be due to a decrease in reactivity of GABAergic SNr-neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. How Can a Ketogenic Diet Improve Motor Function?

    Directory of Open Access Journals (Sweden)

    Charlotte Veyrat-Durebex

    2018-01-01

    Full Text Available A ketogenic diet (KD is a normocaloric diet composed by high fat (80–90%, low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.

  6. How do you keto? Survey of North American pediatric ketogenic diet centers.

    Science.gov (United States)

    Jung, Da Eun; Joshi, Sucheta M; Berg, Anne T

    2015-06-01

    We surveyed ketogenic diet centers in North America about their practices surrounding the ketogenic diet. An internet survey was disseminated via REDCap(©) to North American ketogenic diet centers identified from the Charlie Foundation and Ketocal(©) websites. Fifty-six centers responded. In addition to physicians, nurses and dieticians, ketogenic teams included social workers (39%), feeding specialists (14%), educational liaisons (4%), psychologists (5%), and pharmacists (36%). A child attending school (2%), non-English speaking family (19%), single-parent family (0%), and oral feeding (6%) were rarely considered barriers. Overall, the diet was considered the first or second (0%), third or fourth (67%), fifth or sixth (29%), and last resort treatment (4%) by centers. It was considered the first or second treatment for GLUT1 disease (86%) and third or fourth for Dravet (63%), West (71%), and Doose (65%) syndromes. Ketogenic diet is no longer a last resort option. Traditional barriers do not influence its use. © The Author(s) 2014.

  7. [Efficacy of a ketogenic diet in urological cancers patients : A systematic review].

    Science.gov (United States)

    Maisch, P; Gschwend, J E; Retz, M

    2018-03-01

    Beside the classical anticancer treatment tumor patients try to find proactive alternative therapies to fight their disease. Lifestyle changes such as introducing a ketogenic diet is one of the most popular among them. The German Association of Urological Oncology (AUO, Arbeitsgemeinschaft Urologische Onkologie) presents a systematic review investigating the evidence of ketogenic diet in cancer patients. A systematic literature research was conducted in the databases Medline, Livivo, and the Cochrane Library. Only clinical studies of tumor patients receiving chemotherapy while on a ketogenic diet were included. The assessment of the results was performed according to the predefined primary endpoints overall survival and progression-free survival and secondary endpoints quality of life and reduction of adverse effects induced by cytostatics. Nine studies met the inclusion criteria: eight prospective and one retrospective study case series respectively cohort-studies, with a total of 107 patients. Currently there is no evidence of a therapeutic effect of a ketogenic diet in patients with malignant tumors regarding the clinical outcome or quality of life. Based on the current data, a ketogenic diet can not be recommended to cancer patients because prospective, randomized trials are missing.

  8. The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones.

    Science.gov (United States)

    Gilbert, D L; Pyzik, P L; Freeman, J M

    2000-12-01

    The objective of this study was to determine the relationship between beta-hydroxybutyrate levels and seizure control in children on the ketogenic diet. Seventy-four children on the ketogenic diet presenting for routine follow-up visits had blood levels of beta-hydroxybutyrate correlated with their seizure control. Forty-two children admitted for initiation of the ketogenic diet had urine ketones measured by dipstick and correlated with simultaneous blood levels of beta-hydroxybutyrate. Blood beta-hydroxybutyrate levels statistically correlated with seizure control (P = .003). Children with blood beta-hydroxybutyrate levels greater than 4 mmol/L were significantly more likely to have a decrease in seizure frequency than those with levels less than 4 mmol/L. Urine ketones of 4+ (160 mmol/L) were found on dipstick when blood beta-hydroxybutyrate levels exceeded 2 mmol/L. Seizure control correlates with blood beta-hydroxybutyrate levels and is more likely when blood beta-hydroxybutyrate levels are greater than 4 mmo/L. The traditional measurement of urine ketones by dipsticks in children on the ketogenic diet provides a less than optimal assessment of the degree of blood ketosis. Three to four plus (80-160 mmol/L) urine ketones are necessary, but not necessarily sufficient, to achieve optimal seizure control in children on the ketogenic diet. At present, however, urine ketones are the only readily available inexpensive approach to ketone assessment.

  9. The use of a formula-based ketogenic diet in children with refractory epilepsy.

    Science.gov (United States)

    Sampaio, Letícia Pereira de Brito; Takakura, Cristina; Manreza, Maria Luiza Giraldes de

    2017-04-01

    The ketogenic diet (KD) is a nonpharmacologic treatment that has been used for refractory epilepsy since 1921. The KD is a high-fat, low-carbohydrate, and restricted protein diet, which is calculated and weighed for each individual patient. Introducing and maintaining the diet for a long time remains a challenge. In this study, we evaluated the acceptability, tolerance, and efficacy of a formula-based KD in 10 children with refractory epilepsy. The ketogenic formula tested herein caused only mild KD-related adverse events and adequate adherence. Moreover, 60% of patients had more than 50% seizure frequency reduction and 10% were seizure-free.

  10. The use of a formula-based ketogenic diet in children with refractory epilepsy

    Directory of Open Access Journals (Sweden)

    Letícia Pereira de Brito Sampaio

    Full Text Available ABSTRACT The ketogenic diet (KD is a nonpharmacologic treatment that has been used for refractory epilepsy since 1921. The KD is a high-fat, low-carbohydrate, and restricted protein diet, which is calculated and weighed for each individual patient. Introducing and maintaining the diet for a long time remains a challenge. In this study, we evaluated the acceptability, tolerance, and efficacy of a formula-based KD in 10 children with refractory epilepsy. The ketogenic formula tested herein caused only mild KD-related adverse events and adequate adherence. Moreover, 60% of patients had more than 50% seizure frequency reduction and 10% were seizure-free.

  11. Use of the Ketogenic Diet to Treat Intractable Epilepsy in Mitochondrial Disorders

    Science.gov (United States)

    Paleologou, Eleni; Ismayilova, Naila; Kinali, Maria

    2017-01-01

    Mitochondrial disorders are a clinically heterogeneous group of disorders that are caused by defects in the respiratory chain, the metabolic pathway of the adenosine tri-phosphate (ATP) production system. Epilepsy is a common and important feature of these disorders and its management can be challenging. Epileptic seizures in the context of mitochondrial disease are usually treated with conventional anti-epileptic medication, apart from valproic acid. However, in accordance with the treatment of intractable epilepsy where there are limited treatment options, the ketogenic diet (KD) has been considered as an alternative therapy. The use of the KD and its more palatable formulations has shown promising results. It is especially indicated and effective in the treatment of mitochondrial disorders due to complex I deficiency. Further research into the mechanism of action and the neuroprotective properties of the KD will allow more targeted therapeutic strategies and thus optimize the treatment of both epilepsy in the context of mitochondrial disorders but also in other neurodegenerative disorders. PMID:28587136

  12. Efficacy of the Ketogenic Diet for the Treatment of Refractory Childhood Epilepsy: Cerebrospinal Fluid Neurotransmitters and Amino Acid Levels.

    Science.gov (United States)

    Sariego-Jamardo, Andrea; García-Cazorla, Angels; Artuch, Rafael; Castejón, Esperanza; García-Arenas, Dolores; Molero-Luis, Marta; Ormazábal, Aida; Sanmartí, Francesc Xavier

    2015-11-01

    The mechanisms of the ketogenic diet remain unclear, but several predictors of response have been proposed. We aimed is to study the relationship between the etiology of epilepsy, cerebrospinal fluid neurotransmitters, pterins, and amino acids, and response to a ketogenic diet. We studied 60 patients who began classic ketogenic diet treatment for refractory epilepsy. In 24 of 60 individuals, we analyzed cerebrospinal fluid neurotransmitters, pterins, and amino acids in baseline conditions. Mean age at epilepsy onset was 24 months, 83.3% were focal epilepsies, and in 51.7% the etiology of the epilepsy was unknown. Six months after initiating the ketogenic diet, it was effective (greater than a 50% reduction in seizure frequency) in 31.6% of patients. We did not find a link between rate of efficacy for the ketogenic diet and etiologies of epilepsy, nor did we find a link between the rate of efficacy for the ketogenic diet and cerebrospinal fluid pterins and biogenic amines concentrations. However, we found statistically significant differences for lysine and arginine values in the cerebrospinal fluid between ketogenic diet responders and nonresponders, but not for the other amino acids analyzed. The values of some amino acids were significantly different in relationship with the ketogenic diet efficacy; however, the epilepsy etiology and the cerebrospinal fluid biogenic amine and pterin values were not. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report

    Directory of Open Access Journals (Sweden)

    Servadei Franco

    2010-04-01

    Full Text Available Abstract Background Management of glioblastoma multiforme (GBM has been difficult using standard therapy (radiation with temozolomide chemotherapy. The ketogenic diet is used commonly to treat refractory epilepsy in children and, when administered in restricted amounts, can also target energy metabolism in brain tumors. We report the case of a 65-year-old woman who presented with progressive memory loss, chronic headaches, nausea, and a right hemisphere multi-centric tumor seen with magnetic resonance imaging (MRI. Following incomplete surgical resection, the patient was diagnosed with glioblastoma multiforme expressing hypermethylation of the MGMT gene promoter. Methods Prior to initiation of the standard therapy, the patient conducted water-only therapeutic fasting and a restricted 4:1 (fat: carbohydrate + protein ketogenic diet that delivered about 600 kcal/day. The patient also received the restricted ketogenic diet concomitantly during the standard treatment period. The diet was supplemented with vitamins and minerals. Steroid medication (dexamethasone was removed during the course of the treatment. The patient was followed using MRI and positron emission tomography with fluoro-deoxy-glucose (FDG-PET. Results After two months treatment, the patient's body weight was reduced by about 20% and no discernable brain tumor tissue was detected using either FDG-PET or MRI imaging. Biomarker changes showed reduced levels of blood glucose and elevated levels of urinary ketones. MRI evidence of tumor recurrence was found 10 weeks after suspension of strict diet therapy. Conclusion This is the first report of confirmed GBM treated with standard therapy together with a restricted ketogenic diet. As rapid regression of GBM is rare in older patients following incomplete surgical resection and standard therapy alone, the response observed in this case could result in part from the action of the calorie restricted ketogenic diet. Further studies are needed

  14. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer's pathology.

    Directory of Open Access Journals (Sweden)

    Milene L Brownlow

    Full Text Available Dietary manipulations are increasingly viewed as possible approaches to treating neurodegenerative diseases. Previous studies suggest that Alzheimer's disease (AD patients present an energy imbalance with brain hypometabolism and mitochondrial deficits. Ketogenic diets (KDs, widely investigated in the treatment and prevention of seizures, have been suggested to bypass metabolic deficits present in AD brain by providing ketone bodies as an alternative fuel to neurons. We investigated the effects of a ketogenic diet in two transgenic mouse lines. Five months old APP/PS1 (a model of amyloid deposition and Tg4510 (a model of tau deposition mice were offered either a ketogenic or a control (NIH-31 diet for 3 months. Body weight and food intake were monitored throughout the experiment, and blood was collected at 4 weeks and 4 months for ketone and glucose assessments. Both lines of transgenic mice weighed less than nontransgenic mice, yet, surprisingly, had elevated food intake. The ketogenic diet did not affect these differences in body weight or food consumption. Behavioral testing during the last two weeks of treatment found that mice offered KD performed significantly better on the rotarod compared to mice on the control diet independent of genotype. In the open field test, both transgenic mouse lines presented increased locomotor activity compared to nontransgenic, age-matched controls, and this effect was not influenced by KD. The radial arm water maze identified learning deficits in both transgenic lines with no significant differences between diets. Tissue measures of amyloid, tau, astroglial and microglial markers in transgenic lines showed no differences between animals fed the control or the ketogenic diet. These data suggest that ketogenic diets may play an important role in enhancing motor performance in mice, but have minimal impact on the phenotype of murine models of amyloid or tau deposition.

  15. [Autism spectrum disorder and epilepsy: the role of ketogenic diet].

    Science.gov (United States)

    Garcia-Penas, J J

    2016-01-01

    Between 5-40% of autistic patients will develop epilepsy. Most individuals with autism and epilepsy will respond to pharmacologic treatment; however, approximately 20-30% will develop medically refractory epilepsy. For this population, alternative treatments such as ketogenic diet (KD) can be highly efficacious and should be seriously considered. To discuss the use of the KD in refractory pediatric epilepsy and its role in patients with autism and epilepsy. KD is an effective and well-tolerated treatment for refractory childhood epilepsy, including those patients who associate autism and epilepsy. Accurate characterization of the electroclinical epilepsy syndrome is the key to deciding when to consider the KD. Otherwise, the positive effect of KD for treating mitochondrial oxidative disorders and different models of autistic animals suggest that KD could be a good alternative treatment for autistic patients. Based on the demonstrated efficacy of KD in patients who associate both epilepsy and autism, KD treatment has been recently used in the treatment of autism spectrum disorders; however, there is lacking of controlled studies to define the real efficacy of this therapy. A well designed randomized controlled study is needed to determine whether KD is really efficacious for these patients.

  16. Electrographic Changes Accompanying Recurrent Seizures under Ketogenic Diet Treatment

    Directory of Open Access Journals (Sweden)

    Chiara Lucchi

    2017-10-01

    Full Text Available The ketogenic diet (KD is increasingly used to treat epilepsy refractory to antiepileptic drugs and other neurological disorders. In animal models, the KD was found to increase the threshold to seizures induced by different convulsive stimulations. However, in models in which suprathreshold stimuli were used, a paradoxical seizure worsening was consistently observed in KD-fed animals. To better define this phenomenon, we characterized the electrographic response to seizures induced in mice which were treated with the KD, and then corneally stimulated at 6-Hz in four different sessions. We also evaluated the electroencephalogram (EEG in three patients in which the KD was associated with a paradoxical worsening of epileptic seizures. Although seizures were initially less severe, a remarkable prolongation of the electrographic response was observed in mice receiving the KD from the second session of 6-Hz corneal stimulation and onwards. The EEG was also markedly altered in the presence of progressive seizure aggravation observed in children treated with the KD, specifically one affected by Lennox–Gastaut syndrome and two by type I lissencephaly. These results suggest that when seizures are induced or recur because of resistance to therapeutic interventions, the KD may change the EEG by potentiating the electrographic epileptic activity.

  17. The ketogenic diet for the treatment of malignant glioma.

    Science.gov (United States)

    Woolf, Eric C; Scheck, Adrienne C

    2015-01-01

    Advances in our understanding of glioma biology has led to an increase in targeted therapies in preclinical and clinical trials; however, cellular heterogeneity often precludes the targeted molecules from being found on all glioma cells, thus reducing the efficacy of these treatments. In contrast, one trait shared by virtually all tumor cells is altered (dysregulated) metabolism. Tumor cells have an increased reliance on glucose, suggesting that treatments affecting cellular metabolism may be an effective method to improve current therapies. Indeed, metabolism has been a focus of cancer research in the last few years, as many pathways long associated with tumor growth have been found to intersect metabolic pathways in the cell. The ketogenic diet (high fat, low carbohydrate and protein), caloric restriction, and fasting all cause a metabolic change, specifically, a reduction in blood glucose and an increase in blood ketones. We, and others, have demonstrated that these metabolic changes improve survival in animal models of malignant gliomas and can potentiate the anti-tumor effect of chemotherapies and radiation treatment. In this review we discuss the use of metabolic alteration for the treatment of malignant brain tumors. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Restricted calorie ketogenic diet for the treatment of glioblastoma multiforme.

    Science.gov (United States)

    Maroon, Joseph; Bost, Jeffrey; Amos, Austin; Zuccoli, Giulio

    2013-08-01

    Glioblastoma multiforme is the most common malignant primary brain tumor in adults and generally considered to be universally fatal. Glioblastoma multiforme accounts for 12% to 15% of all intracranial neoplasms and affects 2 to 3 adults per every 100,000 in the United States annually. In children glioblastoma multiforme accounts for only approximately 7% to 9% of central nervous system tumors. The mean survival rate in adults after diagnosis ranges from 12 to 18 months with standard therapy and 3 to 6 months without therapy. The prognosis in children is better compared to adult tumor onset with a mean survival of approximately 4 years following gross total surgical resection and chemotherapy. There have been few advances in the treatment of glioblastoma multiforme in the past 40 years beyond surgery, radiotherapy, chemotherapy, and corticosteroids. For this reason a restrictive calorie ketogenic diet, similar to that used in children to control drug resistant seizure activity, has been advanced as an alternative adjunctive treatment to help prolonged survival. This article reviews the science of tumor metabolism and discusses the mechanism of calorie restriction, cellular energy metabolism, and how dietary induced ketosis can inhibit cancer cell's energy supply to slow tumor growth.

  19. Dietary guidelines in type 2 diabetes: the Nordic diet or the ketogenic diet?

    Science.gov (United States)

    Magnusdottir, Ola K; Gunnarsdottir, Ingibjorg; Birgisdóttir, Bryndís E

    2017-10-01

    To highlight recent developments in research regarding nutrition therapies for type 2 diabetes mellitus (T2DM) with a focus on the different approaches of the Nordic diet and the ketogenic diet. Recent short-term studies have revealed that similar beneficial outcomes are seen after different dietary treatments for T2DM, with different approaches resulting in comparable weight loss and impacts on metabolic factors. More individualized approaches in nutrition therapy should be considered for T2DM patients and clinical guidelines should reflect this. More studies, especially long-term studies, are urgently needed on the impacts of the diets on different health parameters. Such studies should be prioritized because of the high and increasing prevalence of T2DM and because dietary changes may have greater benefits than previously thought. Furthermore, studies that focus on patient compliance to different types of diets, and personal and environmental factors that may affect compliance, are needed.

  20. Ketogenic diet therapy for epilepsy during pregnancy: A case series.

    Science.gov (United States)

    van der Louw, Elles J T M; Williams, Tanya J; Henry-Barron, Bobbie J; Olieman, Joanne F; Duvekot, Johannes J; Vermeulen, Marijn J; Bannink, Natalja; Williams, Monique; Neuteboom, Rinze F; Kossoff, Eric H; Catsman-Berrevoets, Coriene E; Cervenka, Mackenzie C

    2017-02-01

    Evaluation of ketogenic diet (KD) therapies for seizure control during pregnancy when safety and appropriate management become considerations. Until now, no information has been available on seizure reduction and human pregnancy related outcomes in women treated with KD therapies. We describe two cases of pregnant women with epilepsy treated with KD therapy either as monotherapy (Case 1) or as adjunctive therapy (Case 2). Case 1: A 27 year old woman, gravida1, started the classic KD with medium chain triglyceride (MCT) emulsion and 75g carbohydrate-restriction, later reduced to 47g. Glucose levels were 4-6mmol/L and blood ketone levels ranged from 0.2 to 1.4mmol/L. Seizure frequency decreased and seizure-free days increased. Mild side effects included intolerance to MCT, reduced serum carnitine and vitamin levels, and mild hyperlipidemia. Fetal and neonatal growth was normal as was growth and development at 12 months. Case 2: A 36 year-old nulliparous woman was treated with a 20 gram carbohydrate-restricted Modified Atkins Diet (MAD) and lamotrigine, resulting in reduction of seizure frequency to once per month prior to pregnancy. Once pregnant, carbohydrates were increased to 30g. When seizures increased, lamotrigine dose was doubled. Urine ketones trended down during second trimester. A male was born with bilateral ear deformities of unknown significance. The child had a normal neurodevelopment at eight months. Non-pharmacological epilepsy therapies like KD and MAD may be effective during human pregnancy. However, safety still has to be established. Further monitoring to identify potential long term side effects is warranted. Copyright © 2017 British Epilepsy Association. All rights reserved.

  1. Substantial and sustained seizure reduction with ketogenic diet in a patient with Ohtahara syndrome

    Directory of Open Access Journals (Sweden)

    Adithya Sivaraju

    2015-01-01

    Full Text Available Ketogenic diet has been shown to be efficacious in some epileptic encephalopathies but rarely reported as being useful in children with Ohtahara syndrome. This could possibly be attributed to the rarity of the disease and associated short survival period. We report on a 5-year-old child with Ohtahara syndrome, whose seizures failed to improve with all known medications, continued to show persistent suppression-burst pattern on the electroencephalography (EEG and had substantial reduction in seizure frequency for one year post-initiation of ketogenic diet. He has not had a single visit to the emergency room because of seizures in the last one year, and more importantly, there has been a clear improvement noted in his level of interaction and temperament. Patients with Ohtahara syndrome invariably have medically intractable seizures and catastrophic neurodevelopmental outcome. Ketogenic diet is a treatment modality that might be worth considering even in this group of patients.

  2. Early efficacy of the ketogenic diet is not affected by initial body mass index percentile.

    Science.gov (United States)

    Shull, Shastin; Diaz-Medina, Gloria; Wong-Kisiel, Lily; Nickels, Katherine; Eckert, Susan; Wirrell, Elaine

    2014-05-01

    Predictors of the ketogenic diet's success in treating pediatric intractable epilepsy are not well understood. The aim of this study was to determine whether initial body mass index and weight percentile impact early efficacy of the traditional ketogenic diet in children initiating therapy for intractable epilepsy. This retrospective study included all children initiating the ketogenic diet at Mayo Clinic, Rochester from January 2001 to December 2010 who had body mass index (children ≥2 years of age) or weight percentile (those diet initiation and seizure frequency recorded at diet initiation and one month. Responders were defined as achieving a >50% seizure reduction from baseline. Our cohort consisted of 48 patients (20 male) with a median age of 3.1 years. There was no significant correlation between initial body mass index or weight percentile and seizure frequency reduction at one month (P = 0.72, r = 0.26 and P = 0.91, r = 0.03). There was no significant association between body mass index or weight percentile quartile and responder rates (P = 0.21 and P = 0.57). Children considered overweight or obese at diet initiation (body mass index or weight percentile ≥85) did not have lower responder rates than those with body mass index or weight percentiles ketogenic diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Mithu Storoni

    2015-01-01

    Full Text Available Until recently, multiple sclerosis has been viewed as an entirely inflammatory disease without acknowledgment of the significant neurodegenerative component responsible for disease progression and disability. This perspective is being challenged by observations of a dissociation between inflammation and neurodegeneration where the neurodegenerative component may play a more significant role in disease progression. In this review, we explore the relationship between mitochondrial dysfunction and neurodegeneration in multiple sclerosis. We review evidence that the ketogenic diet can improve mitochondrial function and discuss the potential of the ketogenic diet in treating progressive multiple sclerosis for which no treatment currently exists.

  4. Ketogenic diet - A novel treatment for early epileptic encephalopathy due to PIGA deficiency.

    Science.gov (United States)

    Joshi, Charuta; Kolbe, Diana L; Mansilla, M Adela; Mason, Sara; Smith, Richard J H; Campbell, Colleen A

    2016-10-01

    We describe the presentation and workup of two brothers with early-onset epileptic encephalopathy who became seizure-free on a ketogenic diet. Extensive testing culminated in whole exome sequencing, which led to the diagnosis of phosphatidyl inositol glycan biosynthesis class A protein (PIGA) deficiency. This familial case highlights the importance of genetic testing for early-onset epileptic encephalopathies and underscores the potential value of a ketogenic diet in the treatment of this condition. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. The modification of the ketogenic diet mitigates its stunting effects in rodents.

    Science.gov (United States)

    Liśkiewicz, Arkadiusz Damian; Kasprowska-Liśkiewicz, Daniela; Sługocka, Anna; Nowacka-Chmielewska, Marta Maria; Wiaderkiewicz, Jan; Jędrzejowska-Szypułka, Halina; Barski, Jarosław Jerzy; Lewin-Kowalik, Joanna

    2018-02-01

    The high-fat and low-carbohydrate ketogenic diet (HFKD) is extensively studied within the fields of numerous diseases, including cancer and neurological disorders. Since most studies incorporate animal models, ensuring the quality of ketogenic rodent diets is important, both in the context of laboratory animal welfare as well as for the accuracy of the obtained results. In this study we implemented a modification to a commonly used ketogenic rodent chow by replacing non-resorbable cellulose with wheat bran. We assessed the effects of month-long treatment with either the unmodified or the modified HFKD on the growth and development of young male rats. Daily body weight, functional performance, and brain morphometric parameters were assessed to evaluate the influence of both applied diets on rodent development. Our results revealed that the unmodified ketogenic chow induced strong side effects that included weakness, emaciation, and brain undergrowth concomitant to growth inhibition. However, application of the ketogenic chow supplemented with wheat bran suppressed these adverse side effects, which was associated with the restoration of insulin-like growth factor 1 and a decrease in corticosterone levels. We have also shown that the advantageous results of the modified HFKD are not species- or sex-specific. Our data indicate that the proposed HFKD modification even allows for its application in young animals, without causing detrimental side effects.

  6. Efficacy of ketogenic diet for infantile spasms: A systematic review.

    Science.gov (United States)

    Prezioso, G; Carlone, G; Zaccara, G; Verrotti, A

    2018-01-01

    The aim of this systematic review was to collect and analyze all the RCTs and observational studies investigating the efficacy of ketogenic diet (KD) in infantile spasms (IS) patients after a 1- to 6-month follow-up period, in terms of decrease in seizure frequency of >50% or a seizure-free interval. Moreover, the potential effect of gender, IS etiology, age at onset of IS, and age at start of KD have been investigated. Finally, we evaluated the seizure-free rate at 12 and 24 months of follow-up. In June 2016, a computer search was performed on MedLine (PubMed), EMBASE, and the Cochrane Library. Only, English language studies conducted after 1980 and those reporting in detail the variation in seizure frequency have been selected. Thirteen observational studies (341 patients) were included in the final analysis. A median rate of 64.7% of patients experienced a spasm reduction >50% (IQR: 38.94%). The median spasm-free rate was 34.61% (IQR: 37.94%). IS of unknown etiology seemed to have an increased probability of achieving freedom from seizures (RR: 1.72, 95%CI: 1.18-2.53). Long-time follow-up data revealed a median seizure-free rate of 9.54% (IQR: 18.23%). Although the literature is still lacking in high-quality studies, which could provide a stronger level evidence, our findings suggest a potential benefit of KD for drug-resistant IS patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Sex-Specific Life Course Changes in the Neuro-Metabolic Phenotype of Glut3 Null Heterozygous Mice: Ketogenic Diet Ameliorates Electroencephalographic Seizures and Improves Sociability.

    Science.gov (United States)

    Dai, Yun; Zhao, Yuanzi; Tomi, Masatoshi; Shin, Bo-Chul; Thamotharan, Shanthie; Mazarati, Andrey; Sankar, Raman; Wang, Elizabeth A; Cepeda, Carlos; Levine, Michael S; Zhang, Jingjing; Frew, Andrew; Alger, Jeffry R; Clark, Peter M; Sondhi, Monica; Kositamongkol, Sudatip; Leibovitch, Leah; Devaskar, Sherin U

    2017-04-01

    We tested the hypothesis that exposure of glut3+/- mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma-cerebrospinal fluid (CSF)-brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/- male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/- males alone. Higher plasma-CSF ketones (β-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid β1-40 deposition in an age-dependent manner in glut3+/- males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/- mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/- male mice. Copyright © 2017 Endocrine Society.

  8. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets

    Science.gov (United States)

    Paoli, A; Rubini, A; Volek, J S; Grimaldi, K A

    2013-01-01

    Very-low-carbohydrate diets or ketogenic diets have been in use since the 1920s as a therapy for epilepsy and can, in some cases, completely remove the need for medication. From the 1960s onwards they have become widely known as one of the most common methods for obesity treatment. Recent work over the last decade or so has provided evidence of the therapeutic potential of ketogenic diets in many pathological conditions, such as diabetes, polycystic ovary syndrome, acne, neurological diseases, cancer and the amelioration of respiratory and cardiovascular disease risk factors. The possibility that modifying food intake can be useful for reducing or eliminating pharmaceutical methods of treatment, which are often lifelong with significant side effects, calls for serious investigation. This review revisits the meaning of physiological ketosis in the light of this evidence and considers possible mechanisms for the therapeutic actions of the ketogenic diet on different diseases. The present review also questions whether there are still some preconceived ideas about ketogenic diets, which may be presenting unnecessary barriers to their use as therapeutic tools in the physician's hand. PMID:23801097

  9. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets.

    Science.gov (United States)

    Paoli, A; Rubini, A; Volek, J S; Grimaldi, K A

    2013-08-01

    Very-low-carbohydrate diets or ketogenic diets have been in use since the 1920s as a therapy for epilepsy and can, in some cases, completely remove the need for medication. From the 1960s onwards they have become widely known as one of the most common methods for obesity treatment. Recent work over the last decade or so has provided evidence of the therapeutic potential of ketogenic diets in many pathological conditions, such as diabetes, polycystic ovary syndrome, acne, neurological diseases, cancer and the amelioration of respiratory and cardiovascular disease risk factors. The possibility that modifying food intake can be useful for reducing or eliminating pharmaceutical methods of treatment, which are often lifelong with significant side effects, calls for serious investigation. This review revisits the meaning of physiological ketosis in the light of this evidence and considers possible mechanisms for the therapeutic actions of the ketogenic diet on different diseases. The present review also questions whether there are still some preconceived ideas about ketogenic diets, which may be presenting unnecessary barriers to their use as therapeutic tools in the physician's hand.

  10. Ten-year single-center experience of the ketogenic diet: factors influencing efficacy, tolerability, and compliance.

    Science.gov (United States)

    Wibisono, Cinthya; Rowe, Natalie; Beavis, Erin; Kepreotes, Helen; Mackie, Fiona E; Lawson, John A; Cardamone, Michael

    2015-04-01

    To evaluate the efficacy, tolerability, and compliance of 3 ketogenic diets, the classical ketogenic diet, medium-chain triglyceride (MCT), and modified Atkins diet. A single-center, retrospective study of 48 children with intractable epilepsy receiving ketogenic diets from 2003 to 2012. Patient demographics, epilepsy history, nutritional management, and side effects were collated. Compliance and tolerability were assessed by recording reasons for diet modification and cessation. The value of potassium citrate supplementation for preventing nephrolithiasis was reviewed. Median age at ketogenic diet initiation was 3.8 years (IQR: 2.3-7 years). The majority had intractable epilepsy, and 33 of the 48 children (69%) had epileptic encephalopathies. Three (6%) patients became seizure free, 35 (73%) reported Diet duration or ketogenic diet type did not predict reduction in seizures (P = .381; P = .272). Constipation (n = 31, 65%) was very common. Food refusal (n = 3, 6%) and poor parental compliance (n = 5, 10%) were common reasons cited for cessation. There were lower rates of side effects for modified Atkins diet. Diet cessation was greatest for MCT; however, 3 patients on MCT ceased therapy because adequate seizure control was achieved. Nephrolithiasis was reported in 1 patient before potassium citrate was used and 2 patients noncompliant with potassium citrate supplementation developed hypercalciuria. The 3 ketogenic diets were comparably effective in seizure control and generally well-tolerated. Potassium citrate supplementation is an effective prophylactic supplement for the prevention of nephrolithiasis. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    Directory of Open Access Journals (Sweden)

    Gerarda Cappuccio

    Full Text Available Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  12. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    Science.gov (United States)

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D; Elsea, Sarah H

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  13. Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies.

    Science.gov (United States)

    Kosinski, Christophe; Jornayvaz, François R

    2017-05-19

    The treatment of obesity and cardiovascular diseases is one of the most difficult and important challenges nowadays. Weight loss is frequently offered as a therapy and is aimed at improving some of the components of the metabolic syndrome. Among various diets, ketogenic diets, which are very low in carbohydrates and usually high in fats and/or proteins, have gained in popularity. Results regarding the impact of such diets on cardiovascular risk factors are controversial, both in animals and humans, but some improvements notably in obesity and type 2 diabetes have been described. Unfortunately, these effects seem to be limited in time. Moreover, these diets are not totally safe and can be associated with some adverse events. Notably, in rodents, development of nonalcoholic fatty liver disease (NAFLD) and insulin resistance have been described. The aim of this review is to discuss the role of ketogenic diets on different cardiovascular risk factors in both animals and humans based on available evidence.

  14. Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies

    Science.gov (United States)

    Kosinski, Christophe; Jornayvaz, François R.

    2017-01-01

    The treatment of obesity and cardiovascular diseases is one of the most difficult and important challenges nowadays. Weight loss is frequently offered as a therapy and is aimed at improving some of the components of the metabolic syndrome. Among various diets, ketogenic diets, which are very low in carbohydrates and usually high in fats and/or proteins, have gained in popularity. Results regarding the impact of such diets on cardiovascular risk factors are controversial, both in animals and humans, but some improvements notably in obesity and type 2 diabetes have been described. Unfortunately, these effects seem to be limited in time. Moreover, these diets are not totally safe and can be associated with some adverse events. Notably, in rodents, development of nonalcoholic fatty liver disease (NAFLD) and insulin resistance have been described. The aim of this review is to discuss the role of ketogenic diets on different cardiovascular risk factors in both animals and humans based on available evidence. PMID:28534852

  15. Treatment of Diabetic Mice with a Combination of Ketogenic Diet and Aerobic Exercise via Modulations of PPARs Gene Programs

    OpenAIRE

    Zhang, Qiang; Xu, Lingyan; Xia, Jie; Wang, Dongmei; Qian, Min; Ding, Shuzhe

    2018-01-01

    Type 2 diabetes is a prevalent chronic disease arising as a serious public health problem worldwide. Diet intervention is considered to be a critical strategy in glycemic control of diabetic patients. Recently, the low-carbohydrate ketogenic diet is shown to be effective in glycemic control and weight loss. However, hepatic lipid accumulation could be observed in mice treated with ketogenic diet. On the other hand, exercise is a well-known approach for treating nonalcoholic fatty liver diseas...

  16. First Application of Ketogenic Diet on a Child With Intractable Epilepsy in Ghana.

    Science.gov (United States)

    Cao, Dezhi; Badoe, Eben; Zhu, Yanwei; Zhao, Xia; Hu, Yan; Liao, Jianxiang

    2015-01-01

    The prevalence of epilepsy in sub-Saharan Africa is higher than in other parts of the world, but it is short of the effective measure on treating intractable epilepsy. Epilepsy surgery is not easy to be performed due to the high cost and demand of operational skills. The authors planned to perform ketogenic diet therapy for the children with intractable epilepsy in Ghana with regard to its low cost and simple procedure. The candidate is a 10-month-old girl with epilepsy with unknown etiology. Her seizures couldn't be controlled by more than 3 antiepileptic drugs. Her development delayed severely due to frequent seizures. The authors successfully applied ketogenic diet for her. Her seizures were completely controlled after 2 weeks' therapy. Her mental condition was improved after that. The authors get much experience from this case for further developing ketogenic diet in Africa. This is the first report that ketogenic diet was applied to control intractable epilepsy in West Africa.

  17. First Application of Ketogenic Diet on a Child With Intractable Epilepsy in Ghana

    Directory of Open Access Journals (Sweden)

    Dezhi Cao MD

    2015-09-01

    Full Text Available The prevalence of epilepsy in sub-Saharan Africa is higher than in other parts of the world, but it is short of the effective measure on treating intractable epilepsy. Epilepsy surgery is not easy to be performed due to the high cost and demand of operational skills. The authors planned to perform ketogenic diet therapy for the children with intractable epilepsy in Ghana with regard to its low cost and simple procedure. The candidate is a 10-month-old girl with epilepsy with unknown etiology. Her seizures couldn’t be controlled by more than 3 antiepileptic drugs. Her development delayed severely due to frequent seizures. The authors successfully applied ketogenic diet for her. Her seizures were completely controlled after 2 weeks’ therapy. Her mental condition was improved after that. The authors get much experience from this case for further developing ketogenic diet in Africa. This is the first report that ketogenic diet was applied to control intractable epilepsy in West Africa.

  18. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice.

    Science.gov (United States)

    Dang, Mai T; Wehrli, Suzanne; Dang, Chi V; Curran, Tom

    2015-01-01

    The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH) pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet would suppress tumor growth in a genetically engineered mouse model of medulloblastoma. However, we found that the ketogenic diet did not slow the growth of spontaneous tumors or allograft flank tumors, and it did not exhibit synergy with a small molecule inhibitor of Smoothened. Serum insulin was significantly reduced in mice fed the ketogenic diet, but no alteration in PI3 kinase activity was observed. These findings indicate that while the ketogenic diet may be effective in inhibiting growth of other tumor types, it does not slow the growth of HH-medulloblastoma in mice.

  19. The Short-Term Effects of Ketogenic Diet on Cardiac Ventricular Functions in Epileptic Children.

    Science.gov (United States)

    Doksöz, Önder; Çeleğen, Kübra; Güzel, Orkide; Yılmaz, Ünsal; Uysal, Utku; İşgüder, Rana; Çeleğen, Mehmet; Meşe, Timur

    2015-09-01

    Our primary aim was to determine the short-term effects of a ketogenic diet on cardiac ventricular function in patients with refractory epilepsy. Thirty-eight drug-resistant epileptic patients who were treated with a ketogenic diet were enrolled in this prospective study. Echocardiography was performed on all patients before beginning the ketogenic diet and after the sixth month of therapy. Two-dimensional, M-mode, color flow, spectral Doppler, and pulsed-wave tissue Doppler imaging measurements were performed on all patients. The median age of the 32 patients was 45.5 months, and 22 (57.8%) of them were male. Body weight, height, and body mass index increased significantly at the sixth month of therapy when compared with baseline values (P 0.05). Doppler flow indices of mitral annulus and tricuspid annulus velocity of patients at baseline and month 6 showed no significant differences (P > 0.05). Tricuspid annular E/A ratio was lower at month 6 (P 0.05), there was a decrease in Ea velocity and Ea/Aa ratio gathered from tricuspid annulus at month 6 compared with baseline (P ketogenic diet does not impair left ventricular functions in children with refractory epilepsy; however, it may be associated with a right ventricular diastolic dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.

    Science.gov (United States)

    Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-03-01

    Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.

  1. The ketogenic diet can be used successfully in combination with corticosteroids for epileptic encephalopathies.

    Science.gov (United States)

    Ville, Dorothée; Chiron, Catherine; Laschet, Jacques; Dulac, Olivier

    2015-07-01

    Hormonal therapy or ketogenic diet often permits overcoming the challenging periods of many epileptic encephalopathies (West and Lennox-Gastaut syndromes and encephalopathy with continuous spike-waves in slow sleep), but relapse affects over 20% of patients. We report here a monocenter pilot series of 42 consecutive patients in whom we combined oral steroids with the ketogenic diet for corticosteroid-resistant or -dependent epileptic encephalopathy. We retrospectively evaluated the effect on seizure frequency, interictal spike activity, neuropsychological course, and steroid treatment course. Twenty-three patients had West syndrome (WS), 13 had encephalopathy with continuous spike-waves in slow sleep (CSWS), and six others had miscellaneous epileptic encephalopathies. All patients succeeded to reach 0.8 to 1.6g/l ketone bodies in the urine following the usual KD regimen. For at least 6 months, 14/42 responded to the addition of the ketogenic diet: 4/23 with WS, 8/13 with CSWS, and 2/6 with miscellaneous epileptic encephalopathies. The addition of the KD allowed withdrawing steroids in all responders. Among them, 10/15 had been patients with steroid-dependent epileptic encephalopathy and 4/27 patients with steroid-resistant epileptic encephalopathy. Therefore, the ketogenic diet can be used successfully in combination with corticosteroids for epileptic encephalopathies. Patients presenting with steroid-dependent CSWS seem to be the best candidates. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Therapeutic Success of the Ketogenic Diet as a Treatment Option for Epilepsy: a Meta-analysis

    Science.gov (United States)

    Li, Hai-feng; Zou, Yan; Ding, Gangqiang

    2013-01-01

    Objective To systematically evaluate therapeutic success of the ketogenic diet (KD) as a treatment option for epilepsy. Methods Using MEDLINE and Google Scholar search, we searched for studies investigating the therapeutic success of ketogenic diet for epilepsy. We estimated therapeutic success rate for ketogenic diet as a treatment option for epilepsy and its 95% CIs using generic inverse variance method. Findings A total of 38 studies met the inclusion criteria. In retrospective studies, the weighted success rate of the patients who take the KD as a treatment option for epilepsy was 58.4% (95% confidence interval (95%CI)=48.7% – 69.9%) at 3 months (n=336); 42.8% (95%CI =36.3% – 50.3%) at 6 months (n=492), and 30.1% (95%CI =24.3% – 37.2%) at 12 months (n=387); in prospective studies, weighted success rate was 53.9% (95%CI 45.5% – 63.8%) at 3 months (n=474); 53.2% (95%CI =44.0% – 64.2%) at 6 months (n=321), and 55.0% (95%CI =45.9% – 65.9%) at 12 months (n=347). Conclusion This meta-analysis provides formal statistical support for the efficacy of the ketogenic diet in the treatment of epileptic patients. PMID:24910737

  3. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice

    Science.gov (United States)

    Dang, Mai T.; Wehrli, Suzanne; Dang, Chi V.; Curran, Tom

    2015-01-01

    The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH) pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet would suppress tumor growth in a genetically engineered mouse model of medulloblastoma. However, we found that the ketogenic diet did not slow the growth of spontaneous tumors or allograft flank tumors, and it did not exhibit synergy with a small molecule inhibitor of Smoothened. Serum insulin was significantly reduced in mice fed the ketogenic diet, but no alteration in PI3 kinase activity was observed. These findings indicate that while the ketogenic diet may be effective in inhibiting growth of other tumor types, it does not slow the growth of HH-medulloblastoma in mice. PMID:26192445

  4. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice.

    Directory of Open Access Journals (Sweden)

    Mai T Dang

    Full Text Available The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet would suppress tumor growth in a genetically engineered mouse model of medulloblastoma. However, we found that the ketogenic diet did not slow the growth of spontaneous tumors or allograft flank tumors, and it did not exhibit synergy with a small molecule inhibitor of Smoothened. Serum insulin was significantly reduced in mice fed the ketogenic diet, but no alteration in PI3 kinase activity was observed. These findings indicate that while the ketogenic diet may be effective in inhibiting growth of other tumor types, it does not slow the growth of HH-medulloblastoma in mice.

  5. Concomitant lamotrigine use is associated with decreased efficacy of the ketogenic diet in childhood refractory epilepsy

    NARCIS (Netherlands)

    E.J.T.M. van der Louw (Elles); Desadien, R. (Raakhee); F.O.L. Vehmeijer (Florianne O.L.); I.H. van der Sijs (Heleen); C.E. Catsman-Berrevoets (Coriene); R.F. Neuteboom (Rinze)

    2015-01-01

    textabstractPurpose Anti-epileptic drugs (AEDs) and the ketogenic diet (KD) are often used concomitantly in children with refractory epilepsy. It has been hypothesised that certain AEDs may interfere with KD. The purpose of this study was to elucidate relationships between efficacy of KD and use of

  6. Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse.

    Science.gov (United States)

    Ruskin, David N; Fortin, Jessica A; Bisnauth, Subrina N; Masino, Susan A

    2017-01-01

    The core symptoms of autism spectrum disorder are poorly treated with current medications. Symptoms of autism spectrum disorder are frequently comorbid with a diagnosis of epilepsy and vice versa. Medically-supervised ketogenic diets are remarkably effective nonpharmacological treatments for epilepsy, even in drug-refractory cases. There is accumulating evidence that supports the efficacy of ketogenic diets in treating the core symptoms of autism spectrum disorders in animal models as well as limited reports of benefits in patients. This study tests the behavioral effects of ketogenic diet feeding in the EL mouse, a model with behavioral characteristics of autism spectrum disorder and comorbid epilepsy. Male and female EL mice were fed control diet or one of two ketogenic diet formulas ad libitum starting at 5weeks of age. Beginning at 8weeks of age, diet protocols continued and performance of each group on tests of sociability and repetitive behavior was assessed. A ketogenic diet improved behavioral characteristics of autism spectrum disorder in a sex- and test-specific manner; ketogenic diet never worsened relevant behaviors. Ketogenic diet feeding improved multiple measures of sociability and reduced repetitive behavior in female mice, with limited effects in males. Additional experiments in female mice showed that a less strict, more clinically-relevant diet formula was equally effective in improving sociability and reducing repetitive behavior. Taken together these results add to the growing number of studies suggesting that ketogenic and related diets may provide significant relief from the core symptoms of autism spectrum disorder, and suggest that in some cases there may be increased efficacy in females. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Very low-carbohydrate ketogenic diet before bariatric surgery: prospective evaluation of a sequential diet.

    Science.gov (United States)

    Leonetti, Frida; Campanile, Fabio Cesare; Coccia, Federica; Capoccia, Danila; Alessandroni, Laura; Puzziello, Alessandro; Coluzzi, Ilenia; Silecchia, Gianfranco

    2015-01-01

    We evaluated the effectiveness of a sequential diet regimen termed the obese preoperative diet (OPOD) in morbidly obese patients with and without type 2 diabetes mellitus (T2DM) scheduled for laparoscopic bariatric surgery. Fifty patients (body mass index 53.5 ± 8.4 kg/m(2)) scheduled for bariatric surgery, including 14 with T2DM, were prospectively enrolled and followed the OPOD regimen: a very low-calorie ketogenic diet for 10 days, followed by a very low-calorie diet for 10 days, and then a low-calorie diet for 10 days. Patients were evaluated at baseline (T0) and after 10 days (T1), 20 days (T2), and 30 days (T3). Body weight, body mass index, waist circumference, and neck circumference were significantly lower at T1, T2, and T3 than at T0 in the 48 patients who completed the OPOD. Two patients discontinued the OPOD after 4-7 days. In patients with T2DM, fasting plasma glucose levels decreased significantly, enabling reduction of diabetic medications. Plasma and urine ketone levels increased at T1 but were all diet period. OPOD, including 10 days of a VLCKD, was safe and effective in morbidly obese patients, and it seems to be promising in morbidly obese patients with and without T2DM scheduled for laparoscopic bariatric surgery.

  8. Effect of the classic ketogenic diet on the treatment of refractory epileptic seizures

    Directory of Open Access Journals (Sweden)

    Luciana Duarte Martins

    2012-10-01

    Full Text Available OBJECTIVE:The ketogenic diet is used as a therapeutic alternative for the treatment of epilepsy in patients with refractory epilepsy. It simulates biochemical changes typical of fasting. The present study verified the nutritional impact of the ketogenic diet on children with refractory epilepsy. METHODS: Nutritional status data (dietary, biochemical and anthropometric measurements, seizure frequency, and adverse events were collected from the medical records and during outpatient clinic visits of children over a period of 36 months. RESULTS: Of the 29 children who initiated the ketogenic diet, 75.8% presented fewer seizures after one month of treatment. After six months, 48.3% of the patients had at least a 90.0% decrease in seizure frequency, and 50.0% of these patients presented total seizure remission. At 12 months, eight patients continued to show positive results, and seven of these children remained on the ketogenic diet for 24 months. There was an improvement of the nutritional status at 24 months, especially in terms of weight, which culminated with the recovery of proper weightforheight. There were no significant changes in biochemical indices (total cholesterol and components, triglycerides, albumin, total protein, creatinine, glycemia, serum aspartate transaminase and serum alanine transaminase. Serum cholesterol levels increased significantly in the first month, fell in the following six months, and remained within the normal limits thereafter. CONCLUSION: In conclusion, patients on the classic ketogenic diet for at least 24 months gained weight. Moreover, approximately one third of the patients achieved significant reduction in seizure frequency, and some patients achieved total remission.

  9. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets.

    Science.gov (United States)

    Liu, Yeou-mei Christiana; Wang, Huei-Shyong

    2013-01-01

    The ketogenic diet (KD) is one of the most effective therapies for drug-resistant epilepsy. The efficacy of the medium-chain triglyceride KD (MCTKD) is as excellent as the classic KD (CKD), which has been documented in several subsequent retrospective, prospective, and randomized studies. MCT oil is more ketogenic than long-chain triglycerides. Therefore, the MCTKD allows more carbohydrate and protein food, which makes the diet more palatable than the CKD. The MCTKD is not based on diet ratios as is the CKD, but uses a percentage of calories from MCT oil to create ketones. There has also been literature which documents the associated gastrointestinal side effects from the MCTKD, such as diarrhea, vomiting, bloating, and cramps. Therefore, the MCTKD has been an underutilized diet therapy for intractable epilepsy among children.The author has used up to >70% MCTKD diet to maximize seizure control with gastrointestinal side effects optimally controlled. As long as health care professionals carefully manage MCTKD, many more patients with epilepsy who are not appropriate for CKD or modified Atkins diet or low glycemic index treatment will benefit from this treatment. A comparison between the MCTKD and other KDs is also discussed.

  10. Medium-chain Triglyceride Ketogenic Diet, An Effective Treatment for Drug-resistant Epilepsy and A Comparison with Other Ketogenic Diets

    Directory of Open Access Journals (Sweden)

    Yeou-mei Christiana Liu

    2013-02-01

    Full Text Available The ketogenic diet (KD is one of the most effective therapies for drug-resistant epilepsy. The efficacy of the medium-chain triglyceride KD (MCTKD is as excellent as the classic KD (CKD, which has been documented in several subsequent retrospective, prospective, and randomized studies. MCT oil is more ketogenic than long-chain triglycerides. Therefore, the MCTKD allows more carbohydrate and protein food, which makes the diet more palatable than the CKD. The MCTKD is not based on diet ratios as is the CKD, but uses a percentage of calories from MCT oil to create ketones. There has also been literature which documents the associated gastrointestinal side effects from the MCTKD, such as diarrhea, vomiting, bloating, and cramps. Therefore, the MCTKD has been an underutilized diet therapy for intractable epilepsy among children.The author has used up to >70% MCTKD diet to maximize seizure control with gastrointestinal side effects optimally controlled. As long as health care professionals carefully manage MCTKD, many more patients with epilepsy who are not appropriate for CKD or modified Atkins diet or low glycemic index treatment will benefit from this treatment. A comparison between the MCTKD and other KDs is also discussed.

  11. Ketogenic Diet and Other Dietary Intervention Strategies in the Treatment of Cancer.

    Science.gov (United States)

    Vergati, Matteo; Krasniqi, Eriseld; Monte, Girolamo D; Riondino, Silvia; Vallone, Doriana; Guadagni, Fiorella; Ferroni, Patrizia; Roselli, Mario

    2017-01-01

    Pre-clinical and clinical studies have investigated the role of a dysregulated metabolism in the sustainability of tumor initiation and progression. One of the most familiar metabolic alterations encountered in several types of cancers is the upregulation of glycolysis, which is also maintained in conditions of normal oxygen tension (aerobic glycolysis, Warburg effect) while oxidative phosphorylation is apparently reduced. As a result, cancer cells convert most incoming glucose to lactate. Although more rapid, adenosine triphosphate (ATP) production by glycolysis is less efficient in terms of ATP generated per unit of glucose consumed than oxidative phosphorylation. The consequence is that tumor cells require an abnormally higher rate of glucose compared to the normal counterpart. New evidence shows that other metabolic substrates such as glutamine may also have an important role in cancer metabolism. Ketogenic diet (KD) replaces all but non-starchy vegetable carbohydrates with low to moderate amounts of proteins and high amounts of monounsaturated and polyunsaturated fats. The rationale of KD is valid both because it lowers carbohydrate uptake possibly leading to cancer cell starvation and apoptosis and, at the same time, increases the levels of ketone bodies available for energy production in normal cells but not in cancer cells which have an allegedly downregulated oxidative phosphorylation. For this reason, several authors speculate on the possibility to evaluate KD as a novel approach in the treatment of cancer. In this review we will assess the data supporting the use of such alimentary regimen and its impact on tumor development and progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Effects of Twenty Days of the Ketogenic Diet on Metabolic and Respiratory Parameters in Healthy Subjects.

    Science.gov (United States)

    Alessandro, Rubini; Gerardo, Bosco; Alessandra, Lodi; Lorenzo, Cenci; Andrea, Parmagnani; Keith, Grimaldi; Yang, Zhongjin; Antonio, Paoli

    2015-12-01

    The effects of the ketogenic diet (KD) on weight loss, metabolic, and respiratory parameters were investigated in healthy subjects. Thirty-two healthy subjects were randomized into two groups. The KD group followed a ketogenic diet for 20 days (KD t 0-t 20), then switched to a low-carbohydrate, no-ketogenic diet for 20 days (KD t 20-t 40), and finally was on a Mediterranean diet (MD) for 2 more months (KD t 40-t 2m). The MD group followed a MD for 20 days (MD t 0-t 20), then followed a MD of 1400 kcal over the next 20 days (MD t 20-t 40), and completed the study with the MD for 2 months (MD t 40-t 2m). Body weight, body fat, respiratory rate, and respiratory gas parameters (including respiratory exchange ratio (RER) and carbon dioxide end-tidal partial pressure (PETCO2), oxygen uptake (VO2), carbon dioxide production (VCO2), and resting energy expenditure (REE)) were measured at each point. A significant decrease (p diets significantly decreased body fat mass, the KD diet overall proved to have a higher percentage of fat loss versus the MD diet. The KD may significantly decrease carbon dioxide body stores, which may theoretically be beneficial for patients with increased carbon dioxide arterial partial pressure due to respiratory insufficiency or failure.

  13. The effects of classic ketogenic diet on serum lipid profile in children with refractory seizures.

    Science.gov (United States)

    Zamani, Gholam Reza; Mohammadi, Mahmoud; Ashrafi, Mahmoud Reza; Karimi, Parviz; Mahmoudi, Maryam; Badv, Reza Shervin; Tavassoli, Ali Reza; Azizi Malamiri, Reza

    2016-12-01

    More than 25 % of children with epilepsy develop refractory seizures unresponsive to both old and new generation anticonvulsants. Since such seizures have a serious negative impact on the quality of life, other treatment options are considered. The ketogenic diet is a well-known treatment for managing refractory seizures, although its mechanism of action is unknown. Studies have shown that this diet is as good as, or better than, any of the newer medications in reducing seizure frequency. However, concerns about adverse effects have been raised. We conducted an open label trial to show the effects of this diet on serum lipid profile. Thirty-three children with refractory epilepsy were treated with the ketogenic diet and were followed for 6 months. Their serum lipid profile was assessed at baseline, and at 3 and 6 months after initiating the diet. Seizure frequency was reduced in 63 % of children (no seizures in 2/33 and reduced >50 % in 19/33). However, after 6 months of administering the diet, median triglyceride was significantly increased (from 84 to 180 mg/dl, P ketogenic diet in children with refractory seizures is effective in seizure reduction, but leads to development of hypercholesterolemia and hypertriglyceridemia.

  14. Refractory epilepsy and the ketogenic diet: Pathophysiological aspects and possible implications in dental practice

    Directory of Open Access Journals (Sweden)

    A Sharma

    2011-01-01

    Full Text Available Epilepsy denotes any disorder characterized by recurrent seizures due to abnormal paroxysmal neuronal discharge in the brain. Symptoms range from sensory absences to convulsive movements and loss of consciousness. Antiepileptic drugs are the first line of treatment. However, 20% individuals with epilepsy have drug-resistant seizures despite optimal treatment. For those with refractory epilepsy, the ketogenic diet is an effective alternative therapeutic approach. The ketogenic diet is a high-fat, low-carbohydrate, and adequate-protein diet that mimics the biochemical effects of fasting. There are many disparate mechanistic theories of how this diet protects against seizures. Key insights indicate that it has effects on intermediary metabolism that influence the dynamics of the major inhibitory and excitatory neurotransmitter systems in brain. This paper discusses the implicitly significant and diverse biochemical changes affected by this unique therapeutic approach that may have a bearing on oral health and the delivery of dental care to individuals with refractory epilepsy.

  15. Timeline of changes in appetite during weight loss with a ketogenic diet

    DEFF Research Database (Denmark)

    Nymo, S; Coutinho, S R; Jørgensen, J

    2017-01-01

    BACKGROUND/OBJECTIVE: Diet-induced weight loss (WL) leads to increased hunger and reduced fullness feelings, increased ghrelin and reduced satiety peptides concentration (glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY)). Ketogenic diets seem to minimise or supress some...... of these responses. The aim of this study was to determine the timeline over which changes in appetite occur during progressive WL with a ketogenic very-low-energy diet (VLED). SUBJECTS/METHODS: Thirty-one sedentary adults (18 men), with obesity (body mass index: 37±4.5 kg m-2) underwent 8 weeks (wks) of a VLED...... followed by 4 wks of weight maintenance. Body weight and composition, subjective feelings of appetite and appetite-related hormones (insulin, active ghrelin (AG), active GLP-1, total PYY and CCK) were measured in fasting and postprandially, at baseline, on day 3 of the diet, 5 and 10% WL, and at wks 9...

  16. Timeline of changes in appetite during weight loss with a ketogenic diet

    DEFF Research Database (Denmark)

    Nymo, S; Coutinho, S R; Jørgensen, J

    2017-01-01

    BACKGROUND/OBJECTIVE: Diet-induced weight loss (WL) leads to increased hunger and reduced fullness feelings, increased ghrelin and reduced satiety peptides concentration (glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY)). Ketogenic diets seem to minimise or supress some...... of these responses. The aim of this study was to determine the timeline over which changes in appetite occur during progressive WL with a ketogenic very-low-energy diet (VLED). SUBJECTS/METHODS: Thirty-one sedentary adults (18 men), with obesity (body mass index: 37±4.5 kg m(-2)) underwent 8 weeks (wks) of a VLED...... followed by 4 wks of weight maintenance. Body weight and composition, subjective feelings of appetite and appetite-related hormones (insulin, active ghrelin (AG), active GLP-1, total PYY and CCK) were measured in fasting and postprandially, at baseline, on day 3 of the diet, 5 and 10% WL, and at wks 9...

  17. Use of the ketogenic diet in the neonatal intensive care unit-Safety and tolerability.

    Science.gov (United States)

    Thompson, Lindsey; Fecske, Erin; Salim, Mohammad; Hall, Ara

    2017-02-01

    Drug-resistant epilepsy poses a challenge in neonatal patients, especially those in the neonatal intensive care unit (NICU), who have various secondary comorbidities. We present results of four children with a history of drug-resistant epilepsy for whom a ketogenic diet was initiated and used in the NICU. A nonfasting induction into ketosis over 1-2 weeks was utilized, with gradual increases in the ketogenic ratio every 2-3 days. Data were collected retrospectively from a database, which included medical history, daily progress notes, relevant laboratory data, and imaging and diagnostic information. The ketogenic diet was well tolerated in all cases. The most common side effects observed were constipation, hypoglycemia, and weight loss. Serum β-hydroxybutyrate levels demonstrated improved reliability as a marker of ketosis when compared to urine ketones in this population. Perceived benefits to the infants included improved seizure control, increased alertness, and decreased need for invasive respiratory support. These cases demonstrate that the use of the ketogenic diet for treatment of neonatal encephalopathy and refractory epilepsy can be undertaken safely in the NICU and is well tolerated by carefully screened neonates and infants. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  18. [The use of the ketogenic diet as treatment for refractory epilepsy in the paediatric age].

    Science.gov (United States)

    Pablos-Sánchez, Tamara; Oliveros-Leal, Liliana; Núñez-Enamorado, Noemí; Camacho-Salas, Ana; Moreno-Villares, José Manuel; Simón-De las Heras, Rogelio

    2014-01-16

    Between 23% and 25% of epileptic children are refractory to antiepileptic drugs. In recent times there has been a renewed interest in the ketogenic diet as treatment in these patients who are not candidates for other therapeutic options. AIMS. To evaluate the effectiveness and safety of treatment with the ketogenic diet in an important number of paediatric patients with refractory epilepsy in our centre and to determine whether the results obtained are consistent with others recently reported in the literature. A retrospective review was conducted of the medical records of 41 children with refractory epilepsy treated with the ketogenic diet, mostly the Radcliffe II-type diet, between 1998 and 2011. Their median age on starting the diet was 3.92 years old. At six months after beginning the diet, the number of crises was reduced by at least 50% in 36.84% of the sample (10.53% of the children reached a 90% reduction and 5.26% no longer suffered crises). Around 50% of those in the youngest age group responded positively. Some tolerable, transient side effects were experienced by 58.54% of the patients, consisting mainly in high levels of cholesterol and constipation; no variations in the anthropomorphic parameters were observed. The ketogenic diet is a good therapeutic alternative in cases of refractory epilepsy in the paediatric age. Moreover, the younger the child is on starting on the diet, the more likely he or she is to gain benefits from it. In general it is well tolerated. Regular check-ups with supervision of these patients' nutrition are of great importance.

  19. Investigating the Ketogenic Diet As Treatment for Primary Aggressive Brain Cancer: Challenges and Lessons Learned

    OpenAIRE

    Kenneth A. Schwartz; Mary Noel; Michele Nikolai; Howard T. Chang; Howard T. Chang

    2018-01-01

    Survival of glioblastoma multiforme (GBM) with the current recommended treatment is poor. Reported median survivals are approximately 8–15 months. Based on recent publications from animal models, combining cancer drugs, radiation, and diet-metabolic treatments may be a new route to better survivals. To investigate this possibility, we have begun a clinical trial that has enrolled 15 subjects using a ketogenic diet (KD) as an addition to current standard treatments that include surgery, radiat...

  20. The modified ketogenic diet for adults with refractory epilepsy: An evaluation of a set up service.

    Science.gov (United States)

    Martin-McGill, Kirsty J; Jenkinson, Michael D; Tudur Smith, Catrin; Marson, Anthony G

    2017-11-01

    The ketogenic diet (KD) has been proven to be effective in children with refractory epilepsy and is recommended by the National Institute of Health and Care Excellence (NICE). There is no randomised control trial (RCT) evidence for the clinical or cost effectiveness of KD in adults, for whom the KD is not currently recommended. We assessed the feasibility of the modified ketogenic diet (MKD) in adults with refractory epilepsy along with the willingness of patients to participate in a future RCT. The service evaluation was undertaken in two parts; questionnaire and diet evaluation. 102 patients completed a questionnaire, of which 51 patients were willing to try the MKD for 3 months to assess effect on seizures. Forty three patients were willing to participate in a clinical trial to investigate deliverability, efficacy and tolerability. Thirty seven of which would still be willing to participate if the trial were randomised. Of the 17 patients who commenced the diet, 9 completed the 12 week period, 7 of which stayed on the diet for the longer term. Constipation (n=6) and loose stools (n=3) were the only reported adverse effects. Our results indicate that there is demand for a ketogenic diet service in adults. The MKD is well tolerated, feasible and financially viable to deliver to adults with epilepsy in the NHS. There is also interest in and willingness to participate in a UK based RCT that would ultimately inform decisions about commissioning appropriate services. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  1. The ketogenic diet: initiation at goal calories versus gradual caloric advancement.

    Science.gov (United States)

    Bansal, Seema; Cramp, Laura; Blalock, Dan; Zelleke, Tesfaye; Carpenter, Jessica; Kao, Amy

    2014-01-01

    Inpatient initiation of the ketogenic diet has historically involved fasting followed by gradual advancement of calories and/or diet ratio. Complications during this initiation period are common. We sought to determine if the initiation of the diet at goal calories would reduce these complications while maintaining efficacy. Sixty patients were admitted to a tertiary care hospital for elective initiation of the ketogenic diet between October 2007 and January 2013. All patients were placed on a ketogenic diet initiation pathway. In 2010, the pathway was modified from gradual caloric advancement to initiation at goal calories. We selected 30 consecutive patients before and after the change for comparison. Each child's record was reviewed for the occurrence of hypoglycemia, number of days to reach full ketosis (defined as 4 + urine ketones), acidosis requiring commencement of sodium citrate, length of admission, and long-term efficacy. Both methods of initiation had similar rates of dehydration, vomiting, lethargy, and irritability. More patients initiated at goal received sodium citrate (P = 0.005); however, mean daily values of carbon dioxide were not significantly different. Onset of ketosis was slightly delayed (P = 0.009) in patients initiated at goal, but length of stay was not affected (P > 0.1). Hypoglycemia was uncommon and rates were similar between the groups. Efficacy at 3 months was better in patients initiated at full calories (P calories is a reasonable alternative to the current standard practice of gradual advancement of calories and/or diet ratio. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Diet and identity: being a good parent in the face of contradictions presented by the ketogenic diet.

    Science.gov (United States)

    Webster, Michelle; Gabe, Jonathan

    2016-01-01

    The ketogenic diet is a high-fat diet used to treat drug-resistant childhood epilepsy. Given that negative meanings tend to be attached to fatty foods and children's food consumption is seen to be the responsibility of parents, the ketogenic diet may be problematic for parenting identity. This article draws upon in-depth semi-structured interviews with 12 parents from 10 families that have a child whose epilepsy is being treated with the ketogenic diet. The main focus of the article is the meanings these parents attached to foods and how they were drawn upon or altered to overcome some of the contradictions presented by the diet. It will be argued that the diet was medicalised and parents came to view food as medicine. When viewing food in this way, negative associations with fat were reversed. Furthermore, parents also used food as a symbol of inclusion and prioritised portion size or the child's enjoyment of food in order to use food as a symbol of love. In turn this enabled parents to feel they were being good parents. Overall, it seems that diet can be medicalised and the identity of the good parent maintained if dietary treatment is successful. © 2015 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.

  3. The Effect of the Ketogenic Diet on the Vascular Structure and Functions in Children With Intractable Epilepsy.

    Science.gov (United States)

    Özdemir, Rahmi; Güzel, Orkide; Küçük, Mehmet; Karadeniz, Cem; Katipoglu, Nagehan; Yılmaz, Ünsal; Yılmazer, Murat Muhtar; Meşe, Timur

    2016-03-01

    We aimed to determine the midterm effect of a ketogenic diet on serum lipid levels, carotid intima-media thickness, and the elastic properties of the carotid artery and the aorta in patients with intractable epilepsy. A total of 52 children aged between 12 months and 18 years with intractable epilepsy who started the ketogenic diet from September 2014 to September 2015 were included into this prospective study. Carotid intima-media thickness and the elastic properties of the carotid artery and the aorta were assessed by echocardiography in all cases before beginning of the ketogenic diet and after at least 12 months on the ketogenic diet. Twenty-one patients at the third month and 25 patients at the first year of the ketogenic diet were seizure free. A reduction of greater than 90% in the seizure frequency was achieved in three patients at the sixth month and in five patients at the first year of the treatment. The serum levels of total cholesterol, low-density lipoprotein, and triglyceride were increased significantly at a median of 12.6 months (range: 12 to 13.5 months) of the ketogenic diet treatment, whereas serum levels of high-density lipoprotein did not change. Carotid intima-media thickness, aortic and carotid strain, the stiffness index, distensibility, and elastic modulus did not change after 12 months of the ketogenic diet therapy. Olive oil-based ketogenic diet appears to have no disturbing effect on the carotid intima-media thickness and the elastic properties of the aorta and the carotid artery in epileptic children, although it may be associated with increased concentrations of serum lipids. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Dietary and medication adjustments to improve seizure control in patients treated with the ketogenic diet

    Science.gov (United States)

    Selter, Jessica H.; Turner, Zahava; Doerrer, Sarah C.; Kossoff, Eric H.

    2014-01-01

    Unlike anticonvulsant drugs and vagus nerve stimulation, there are no guidelines regarding adjustments to ketogenic diet regimens to improve seizure efficacy once the diet has been started. A retrospective chart review was performed of 200 consecutive patients treated with the ketogenic diet at Johns Hopkins Hospital from 2007-2013. Ten dietary and supplement changes were identified, along with anticonvulsant adjustments. A total of 391 distinct interventions occurred, of which 265 were made specifically to improve seizure control. Adjustments lead to >50% further seizure reduction in-18%, but only 3% became seizure-free. The benefits of interventions did not decrease over time. There was a trend towards medication adjustments being more successful than dietary modifications (24% vs. 15%, p = 0.08). No single dietary change stood out as the most effective, but calorie changes were largely unhelpful (10% with additional benefit). PMID:24859788

  5. Can children with hyperlipidemia receive ketogenic diet for medication-resistant epilepsy?

    Science.gov (United States)

    Liu, Yeou-Mei Christiana; Lowe, Helen; Zak, Maria M; Kobayashi, Jeff; Chan, Valerie W; Donner, Elizabeth J

    2013-04-01

    The very-high-fat ketogenic diet can worsen lipid levels in children with pre-existing hyperlipidemia by increasing serum lipoproteins and reducing antiatherogenic high-density lipoproteins. A retrospective chart review of 160 children treated with the ketogenic diet from September 2000 to May 2011 was performed. Twelve children with pre-existing hyperlipidemia were identified. Lipid levels including total cholesterol, low-density lipoprotein, triglycerides, high-density lipoprotein, and total cholesterol/high-density lipoprotein were measured pre-diet and at 3, 6, and 12 months of treatment. During treatment, there was a significant reduction in mean total cholesterol, low-density lipoprotein, and total cholesterol/high-density lipoprotein. Total cholesterol and low-density lipoprotein were normalized in 8 and 7 children at 6 months; and 9 and 9 children at 12 months respectively. At 6 and 12 months, tot cholesterol/HDL ratio was normalized in 5 and 7 children respectively. Diet modifications were made to achieve healthy lipid levels. By extrapolating the data, it suggests lipid levels can be controlled in children and adults with ketogenic diet treatment.

  6. Long-term High Fat Ketogenic Diet Promotes Renal Tumor Growth in a Rat Model of Tuberous Sclerosis.

    Science.gov (United States)

    Liśkiewicz, Arkadiusz D; Kasprowska, Daniela; Wojakowska, Anna; Polański, Krzysztof; Lewin-Kowalik, Joanna; Kotulska, Katarzyna; Jędrzejowska-Szypułka, Halina

    2016-02-19

    Nutritional imbalance underlies many disease processes but can be very beneficial in certain cases; for instance, the antiepileptic action of a high fat and low carbohydrate ketogenic diet. Besides this therapeutic feature it is not clear how this abundant fat supply may affect homeostasis, leading to side effects. A ketogenic diet is used as anti-seizure therapy i.a. in tuberous sclerosis patients, but its impact on concomitant tumor growth is not known. To examine this we have evaluated the growth of renal lesions in Eker rats (Tsc2+/-) subjected to a ketogenic diet for 4, 6 and 8 months. In spite of existing opinions about the anticancer actions of a ketogenic diet, we have shown that this anti-seizure therapy, especially in its long term usage, leads to excessive tumor growth. Prolonged feeding of a ketogenic diet promotes the growth of renal tumors by recruiting ERK1/2 and mTOR which are associated with the accumulation of oleic acid and the overproduction of growth hormone. Simultaneously, we observed that Nrf2, p53 and 8-oxoguanine glycosylase α dependent antitumor mechanisms were launched by the ketogenic diet. However, the pro-cancerous mechanisms finally took the ascendency by boosting tumor growth.

  7. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Linear growth of children on a ketogenic diet: does the protein-to-energy ratio matter?

    Science.gov (United States)

    Nation, Judy; Humphrey, Maureen; MacKay, Mark; Boneh, Avihu

    2014-11-01

    Ketogenic diet is a structured effective treatment for children with intractable epilepsy. Several reports have indicated poor linear growth in children on the diet but the mechanism of poor growth has not been elucidated. We aimed to explore whether the protein to energy ratio plays a role in linear growth of children on ketogenic diet. Data regarding growth and nutrition were, retrospectively, collected from the clinical histories of 35 children who were treated with ketogenic diet for at least 6 months between 2002 and 2010. Patients were stratified into groups according to periods of satisfactory or poor linear growth. Poor linear growth was associated with protein or caloric intake of <80% recommended daily intake, and with a protein-to-energy ratio consistently ≤1.4 g protein/100 kcal even when protein and caloric intakes were adequate. We recommend a protein-to-energy ratio of 1.5 g protein/100 kcal be prescribed to prevent growth retardation. © The Author(s) 2013.

  9. The ketogenic diet in two paediatric patients with refractory myoclonic status epilepticus.

    Science.gov (United States)

    Caraballo, Roberto Horacio; Valenzuela, Gabriela Reyes; Armeno, Marisa; Fortini, Sebastian; Mestre, Graciela; Cresta, Araceli

    2015-12-01

    We describe two patients with refractory myoclonic status epilepticus treated with the ketogenic diet. Between May 1, 2014 and January 1, 2015, two patients who met the diagnostic criteria for refractory myoclonic status epilepticus, seen at our department, were placed on the ketogenic diet and followed for a minimum of six months. One patient with myoclonic epilepsy of unknown aetiology had a 75-90% seizure reduction, and the other with progressive encephalopathy associated with myoclonic epilepsy had a 50% seizure reduction. Both patients retained good tolerability for the diet. At the last control, one patient had isolated myoclonias and EEG showed occasional generalized spike-and-polyspike waves; the patient is now successfully attending kindergarten. The quality of life of the second patient improved significantly. In both cases, the number of antiepileptic drugs was reduced. The ketogenic diet is an effective and well-tolerated treatment option for patients with refractory myoclonic status epilepticus and should be considered earlier in the course of treatment.

  10. Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet.

    Science.gov (United States)

    Marchiò, Maddalena; Roli, Laura; Giordano, Carmela; Trenti, Tommaso; Guerra, Azzurra; Biagini, Giuseppe

    2018-03-23

    The gastric hormones ghrelin and des-acyl ghrelin have been found to be altered in patients treated with antiepileptic drugs. However, it is unknown if these hormones could be modified by other antiepileptic treatments, such as the ketogenic diet. Especially, a reduction in ghrelin levels could be relevant in view of the growth retardation observed under ketogenic diet treatment. For this reason we aimed to determine the changes in ghrelin and des-acyl ghrelin plasma levels in children affected by refractory epilepsy and treated with the ketogenic diet up to 90 days. Both peptides were measured by immunoassays in plasma obtained from 16 children. Ghrelin plasma levels were progressively reduced by the ketogenic diet, reaching a minimum corresponding to 42% of basal levels after 90 days of ketogenic diet (P ketogenic diet (P ketogenic diet administration. Ghrelin and des-acyl ghrelin are downregulated by the ketogenic diet in children affected by refractory epilepsy. Although no significant changes in growth were observed during the short time period of our investigation, the reduction in ghrelin availability may explain the reported growth retardation found in children treated with the ketogenic diet in the long-term. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. The Effect of Ketogenic Diet on Serum Selenium Levels in Patients with Intractable Epilepsy.

    Science.gov (United States)

    Arslan, Nur; Kose, Engin; Guzel, Orkide

    2017-07-01

    The aim of the present study was to evaluate serum selenium levels in children receiving olive oil-based ketogenic diet (KD) for intractable seizures for at least 1 year. Out of 320 patients who were initiated on KD, patients who continued receiving KD for at least 12 months were enrolled. Sixteen patients who had selenium deficiency at the time of starting KD were excluded. Finally, a total of 110 patients (mean age 7.3 ± 4.2 years) were included. Serum selenium levels were measured at baseline and at 3, 6, and 12 months after treatment initiation by using atomic absorption spectroscopy. Selenium deficiency was defined as a serum selenium level ketogenic diet suggests that patients on this highly prescriptive dietary treatment need close monitoring of this trace element.

  12. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice

    OpenAIRE

    Dang, Mai T.; Wehrli, Suzanne; Dang, Chi V.; Curran, Tom

    2015-01-01

    The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH) pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet...

  13. Calorie or Carbohydrate Restriction? The Ketogenic Diet as Another Option for Supportive Cancer Treatment

    OpenAIRE

    Klement, Rainer J.

    2013-01-01

    The author agrees with Champ et al. that calorie reduction (CR) is a good supportive intervention for patients undergoing radiotherapy or chemotherapy. However, for those with cachexia or for those who are at risk for cachexia, CR may be problematic. Additionally, less food consumed means fewer nutrients. For these patients, the author suggests the addition of the ketogenic diet, which could be designed to include high-quality foods and could be combined with anticancer neutraceuticals.

  14. Prognostic factors of infantile spasms: role of treatment options including a ketogenic diet.

    Science.gov (United States)

    Lee, Jeehun; Lee, Jun Hwa; Yu, Hee Jun; Lee, Munhyang

    2013-09-01

    The aim of this study was to provide additional evidences on prognostic factors for infantile spasms and the possible role of a ketogenic diet. A retrospective analysis was performed for patients with infantile spasms who had been followed up for more than 6months between January 2000 and July 2012 at Samsung Medical Center (Seoul, Republic of Korea). We analyzed the association between possible prognostic factors and seizure/developmental outcomes. Sixty-nine patients were included in this study and their mean follow-up duration was 52.5 (9-147) months. In the patients who had been followed up for more than 2years, 53.6% (n=30/57) remained seizure-free at the last visit. Sixty patients (86.9%) showed developmental delay at last follow-up. Forty-two patients (60.9%) became spasm-free with one or two antiepileptic drugs, one patient with epilepsy surgery for a tumor, and seven patients with a ketogenic diet after the failure of two or more antiepileptic drugs. The etiology and age of seizure onset were the significant prognostic factors. In this study, about 60% of the patients became spasm-free with vigabatrin and topiramate. Ketogenic diet increased the rate by 10% in the remaining antiepileptic drug resistant patients. However, 86.9% of the patients showed developmental delay, mostly a severe degree. Early diagnosis and prompt application of treatment options such as antiepileptic drugs, a ketogenic diet or epilepsy surgery can improve outcomes in patients with infantile spasms. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Ketogenic diet-fed rats have increased fat mass and phosphoenolpyruvate carboxykinase activity.

    Science.gov (United States)

    Ribeiro, Letícia C; Chittó, Ana L; Müller, Alexandre P; Rocha, Juliana K; Castro da Silva, Mariane; Quincozes-Santos, André; Nardin, Patrícia; Rotta, Liane N; Ziegler, Denize R; Gonçalves, Carlos-Alberto; Da Silva, Roselis S M; Perry, Marcos L S; Gottfried, Carmem

    2008-11-01

    The ketogenic diet (KD), characterized by high fat and low carbohydrate and protein contents, has been proposed to be beneficial in children with epilepsy disorders not helped by conventional anti-epileptic drug treatment. Weight loss and inadequate growth is an important drawback of this diet and metabolic causes are not well characterized. The aim of this study was to examine body weight variation during KD feeding for 6 wk of Wistar rats; fat mass and adipocyte cytosolic phosphoenolpyruvate carboxykinase (PEPCK) activity were also observed. PEPCK activity was determined based on the [H(14)CO(3) (-)]-oxaloacetate exchange reaction. KD-fed rats gained weight at a less rapid rate than normal-fed rats, but with a significant increment in fat mass. The fat mass/body weight ratio already differed between ketogenic and control rats after the first week of treatment, and was 2.4 x higher in ketogenic rats. The visceral lipogenesis was supported by an increment in adipocyte PEPCK, aiming to provide glycerol 3-phosphate to triacylglycerol synthesis and this fat accumulation was accompanied by glucose intolerance. These data contribute to our understanding of the metabolic effects of the KD in adipose tissue and liver and suggest some potential risks of this diet, particularly visceral fat accumulation.

  16. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism

    Science.gov (United States)

    Allen, Bryan G.; Bhatia, Sudershan K.; Anderson, Carryn M.; Eichenberger-Gilmore, Julie M.; Sibenaller, Zita A.; Mapuskar, Kranti A.; Schoenfeld, Joshua D.; Buatti, John M.; Spitz, Douglas R.; Fath, Melissa A.

    2014-01-01

    Cancer cells, relative to normal cells, demonstrate significant alterations in metabolism that are proposed to result in increased steady-state levels of mitochondrial-derived reactive oxygen species (ROS) such as O2•−and H2O2. It has also been proposed that cancer cells increase glucose and hydroperoxide metabolism to compensate for increased levels of ROS. Given this theoretical construct, it is reasonable to propose that forcing cancer cells to use mitochondrial oxidative metabolism by feeding ketogenic diets that are high in fats and low in glucose and other carbohydrates, would selectively cause metabolic oxidative stress in cancer versus normal cells. Increased metabolic oxidative stress in cancer cells would in turn be predicted to selectively sensitize cancer cells to conventional radiation and chemotherapies. This review summarizes the evidence supporting the hypothesis that ketogenic diets may be safely used as an adjuvant therapy to conventional radiation and chemotherapies and discusses the proposed mechanisms by which ketogenic diets may enhance cancer cell therapeutic responses. PMID:25460731

  17. Impact of Child Life Services on Children and Families Admitted to Start the Ketogenic Diet.

    Science.gov (United States)

    Kossoff, Eric H; Sutter, Lindsay; Doerrer, Sarah C; Haney, Courtney A; Turner, Zahava

    2017-08-01

    Traditionally the ketogenic diet is started as an inpatient admission to the hospital. Starting in January 2015, child life services were made formally available during ketogenic diet admissions to help families cope. One-page surveys were then provided to 15 parents on the day of discharge and again after 3 months. Every family believed that the child life services were helpful. Children who were developmentally appropriate/mildly delayed had higher parent-reported anxiety scores than those who were moderate to severely delayed (4.4 vs 1.0, P = .02). At 3 months, child life services were deemed very helpful for the parents (mean score: 8.9, range: 5-10), and were more helpful for the parent than the child (mean 6.2, range 1-10, P = .047). One of the most helpful services was a prior phone call to parents 1 week prior. In this small pilot study, child life involvement during the start of the ketogenic diet was highly useful.

  18. Usefulness of ketogenic diet in a girl with migrating partial seizures in infancy.

    Science.gov (United States)

    Mori, Tatsuo; Imai, Katsumi; Oboshi, Taikan; Fujiwara, Yuh; Takeshita, Saoko; Saitsu, Hirotomo; Matsumoto, Naomichi; Takahashi, Yukitoshi; Inoue, Yushi

    2016-06-01

    Migrating partial seizures in infancy (MPSI) are an age-specific epilepsy syndrome characterized by migrating focal seizures, which are intractable to various antiepileptic drugs and cause severe developmental delay. We report a case of MPSI with heterozygous missense mutation in KCNT1, which was successfully managed by ketogenic diet. At age 2months, the patient developed epilepsy initially manifesting focal seizures with eye deviation and apnea, then evolving to secondarily generalized clonic convulsion. Various antiepileptic drugs including phenytoin, valproic acid, zonisamide, clobazam, levetiracetam, vitamin B6, and carbamazepine were not effective, but high-dose phenobarbital allowed discontinuation of midazolam infusion. Ictal scalp electroencephalogram showed migrating focal seizures. MPSI was suspected and she was transferred to our hospital for further treatment. Potassium bromide (KBr) was partially effective, but the effect was transient. High-dose KBr caused severe adverse effects such as over-sedation and hypercapnia, with no further effects on the seizures. At age 9months, we started a ketogenic diet, which improved seizure frequency and severity without obvious adverse effects, allowing her to be discharged from hospital. Ketogenic diet should be tried in patients with MPSI unresponsive to antiepileptic drugs. In MPSI, the difference in treatment response in patients with and those without KCNT1 mutation remains unknown. Accumulation of case reports would contribute to establish effective treatment options for MPSI. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism.

    Science.gov (United States)

    Allen, Bryan G; Bhatia, Sudershan K; Anderson, Carryn M; Eichenberger-Gilmore, Julie M; Sibenaller, Zita A; Mapuskar, Kranti A; Schoenfeld, Joshua D; Buatti, John M; Spitz, Douglas R; Fath, Melissa A

    2014-01-01

    Cancer cells, relative to normal cells, demonstrate significant alterations in metabolism that are proposed to result in increased steady-state levels of mitochondrial-derived reactive oxygen species (ROS) such as O2(•-)and H2O2. It has also been proposed that cancer cells increase glucose and hydroperoxide metabolism to compensate for increased levels of ROS. Given this theoretical construct, it is reasonable to propose that forcing cancer cells to use mitochondrial oxidative metabolism by feeding ketogenic diets that are high in fats and low in glucose and other carbohydrates, would selectively cause metabolic oxidative stress in cancer versus normal cells. Increased metabolic oxidative stress in cancer cells would in turn be predicted to selectively sensitize cancer cells to conventional radiation and chemotherapies. This review summarizes the evidence supporting the hypothesis that ketogenic diets may be safely used as an adjuvant therapy to conventional radiation and chemotherapies and discusses the proposed mechanisms by which ketogenic diets may enhance cancer cell therapeutic responses. © 2014 Published by Elsevier Ltd.

  20. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism

    Directory of Open Access Journals (Sweden)

    Bryan G. Allen

    2014-01-01

    Full Text Available Cancer cells, relative to normal cells, demonstrate significant alterations in metabolism that are proposed to result in increased steady-state levels of mitochondrial-derived reactive oxygen species (ROS such as O2•−and H2O2. It has also been proposed that cancer cells increase glucose and hydroperoxide metabolism to compensate for increased levels of ROS. Given this theoretical construct, it is reasonable to propose that forcing cancer cells to use mitochondrial oxidative metabolism by feeding ketogenic diets that are high in fats and low in glucose and other carbohydrates, would selectively cause metabolic oxidative stress in cancer versus normal cells. Increased metabolic oxidative stress in cancer cells would in turn be predicted to selectively sensitize cancer cells to conventional radiation and chemotherapies. This review summarizes the evidence supporting the hypothesis that ketogenic diets may be safely used as an adjuvant therapy to conventional radiation and chemotherapies and discusses the proposed mechanisms by which ketogenic diets may enhance cancer cell therapeutic responses.

  1. Long-term impact of the ketogenic diet on growth and resting energy expenditure in children with intractable epilepsy.

    Science.gov (United States)

    Groleau, Veronique; Schall, Joan I; Stallings, Virginia A; Bergqvist, Christina A

    2014-09-01

    The long-term effects of the ketogenic diet, a high fat diet for treating intractable epilepsy, on resting energy expenditure (REE) are unknown. The aim of this study was to evaluate the impact of 15 months of ketogenic diet treatment on growth and REE in children with intractable epilepsy. Growth, body composition, and REE were assessed at baseline, 3 months and 15 months in 24 children (14 males, 10 females; mean age 5 y 6 mo [SD 26 mo], range 7 mo-6 y 5 mo), 10 with cerebral palsy [CP]). Fifteen were identified as ketogenic diet responders at 3 months and continued on the ketogenic diet until 15 months. These were compared to 75 healthy children (43 males, 32 females; mean age 6 y 3 mo [SD 21 mo] age range 2-9 y). REE was expressed as percentage predicted, growth as height (HAz) and weight (WAz) z-scores, and body composition as fat and fat free mass (FFM). HAz declined -0.2 and -0.6 from baseline to 3 months and 15 months respectively (p = 0.001), while WAz was unchanged. In ketogenic diet responders, FFM, age and CP diagnosis predicted REE (overall R(2) = 0.76, pketogenic diet, linear growth status declined while weight status and REE were unchanged. REE remained reduced in children with CP. © 2014 Mac Keith Press.

  2. SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures.

    Science.gov (United States)

    Palmer, Samantha; Towne, Meghan C; Pearl, Phillip L; Pelletier, Renee C; Genetti, Casie A; Shi, Jiahai; Beggs, Alan H; Agrawal, Pankaj B; Brownstein, Catherine A

    2016-11-01

    Epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy or Doose syndrome, has been recently linked to variants in the SLC6A1 gene. Epilepsy with myoclonic-atonic seizures is often refractory to antiepileptic drugs, and the ketogenic diet is known for treating medically intractable seizures, although the mechanism of action is largely unknown. We report a novel SLC6A1 variant in a patient with epilepsy with myoclonic-atonic seizures, analyze its effects, and suggest a mechanism of action for the ketogenic diet. We describe a ten-year-old girl with epilepsy with myoclonic-atonic seizures and a de novo SLC6A1 mutation who responded well to the ketogenic diet. She carried a c.491G>A mutation predicted to cause p.Cys164Tyr amino acid change, which was identified using whole exome sequencing and confirmed by Sanger sequencing. High-resolution structural modeling was used to analyze the likely effects of the mutation. The SLC6A1 gene encodes a transporter that removes gamma-aminobutyric acid from the synaptic cleft. Mutations in SLC6A1 are known to disrupt the gamma-aminobutyric acid transporter protein 1, affecting gamma-aminobutyric acid levels and causing seizures. The p.Cys164Tyr variant found in our study has not been previously reported, expanding on the variants linked to epilepsy with myoclonic-atonic seizures. A 10-year-old girl with a novel SLC6A1 mutation and epilepsy with myoclonic-atonic seizures had an excellent clinical response to the ketogenic diet. An effect of the diet on gamma-aminobutyric acid reuptake mediated by gamma-aminobutyric acid transporter protein 1 is suggested. A personalized approach to epilepsy with myoclonic-atonic seizures patients carrying SLC6A1 mutation and a relationship between epilepsy with myoclonic-atonic seizures due to SLC6A1 mutations, GABAergic drugs, and the ketogenic diet warrants further exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

    Directory of Open Access Journals (Sweden)

    Munhyang Lee

    2012-09-01

    Full Text Available The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its antiepileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage.

  4. The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

    Science.gov (United States)

    2012-01-01

    The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its anti-epileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage. PMID:23049588

  5. An acidosis-sparing ketogenic (ASK) diet to improve efficacy and reduce adverse effects in the treatment of refractory epilepsy.

    Science.gov (United States)

    Yuen, Alan W C; Walcutt, Isabel A; Sander, Josemir W

    2017-09-01

    Diets that increase production of ketone bodies to provide alternative fuel for the brain are evolving from the classic ketogenic diet for epilepsy devised nearly a century ago. The classic ketogenic diet and its more recent variants all appear to have similar efficacy with approximately 50% of users showing a greater than 50% seizure reduction. They all require significant medical and dietetic support, and there are tolerability issues. A review suggests that low-grade chronic metabolic acidosis associated with ketosis is likely to be an important contributor to the short term and long term adverse effects of ketogenic diets. Recent studies, particularly with the characterization of the acid sensing ion channels, suggest that chronic metabolic acidosis may increase the propensity for seizures. It is also known that low-grade chronic metabolic acidosis has a broad range of negative health effects and an increased risk of early mortality in the general population. The modified ketogenic dietary treatment we propose is formulated to limit acidosis by measures that include monitoring protein intake and maximizing consumption of alkaline mineral-rich, low carbohydrate green vegetables. We hypothesize that this acidosis-sparing ketogenic diet is expected to be associated with less adverse effects and improved efficacy. A case history of life-long intractable epilepsy shows this diet to be a successful long-term strategy but, clearly, clinical studies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Janeczko, Krzysztof; Kutorasinska, Justyna; Matusiak, Katarzyna; Figiel, Henryk; Dumas, Paul; Sandt, Christophe; Setkowicz, Zuzanna

    2015-04-07

    In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.

  7. Effects of a ketogenic diet on auditory gating in DBA/2 mice: A proof-of-concept study.

    Science.gov (United States)

    Tregellas, Jason R; Smucny, Jason; Legget, Kristina T; Stevens, Karen E

    2015-12-01

    Although the ketogenic diet has shown promise in a pilot study and case report in schizophrenia, its effects in animal models of hypothesized disease mechanisms are unknown. This study examined effects of treatment with the ketogenic diet on hippocampal P20/N40 gating in DBA/2 mice, a translational endophenotype that mirrors inhibitory deficits in P50 sensory gating in schizophrenia patients. As expected, the diet increased blood ketone levels. Animals with the highest ketone levels showed the lowest P20/N40 gating ratios. These preliminary results suggest that the ketogenic diet may effectively target sensory gating deficits and is a promising area for additional research in schizophrenia. Published by Elsevier B.V.

  8. An unfortunate challenge: Ketogenic diet for the treatment of Lennox-Gastaut syndrome in tyrosinemia type 1.

    Science.gov (United States)

    De Lucia, Silvana; Pichard, Samia; Ilea, Adina; Greneche, Marie-Odile; François, Laurent; Delanoë, Catherine; Schiff, Manuel; Auvin, Stéphane

    2016-07-01

    The ketogenic diet is an evidence-based treatment for resistant epilepsy including Lennox-Gastaut syndrome. This diet is based on low carbohydrate-high fat intakes. Dietary treatment is also therapeutic for inborn errors of metabolism such as aminoacdiopathies. We report a child with both Lennox-Gastaut syndrome and tyrosinemia type 1. This epilepsy syndrome resulted form a porencephalic cyst secondary to brain abscesses that occurred during the management of malnutrition due to untreated tyrosinemia type 1. We used a ketogenic diet as treatment for Lennox-Gastaut syndrome taking into account dietary requirements for tyrosinemia type 1. The patient was transiently responder during a 6-month period. This report illustrates that ketogenic diet remains a therapeutic option even when additional dietary requirements are needed. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer’s Pathology

    Science.gov (United States)

    Brownlow, Milene L.; Benner, Leif; D’Agostino, Dominic; Gordon, Marcia N.; Morgan, Dave

    2013-01-01

    Dietary manipulations are increasingly viewed as possible approaches to treating neurodegenerative diseases. Previous studies suggest that Alzheimer’s disease (AD) patients present an energy imbalance with brain hypometabolism and mitochondrial deficits. Ketogenic diets (KDs), widely investigated in the treatment and prevention of seizures, have been suggested to bypass metabolic deficits present in AD brain by providing ketone bodies as an alternative fuel to neurons. We investigated the effects of a ketogenic diet in two transgenic mouse lines. Five months old APP/PS1 (a model of amyloid deposition) and Tg4510 (a model of tau deposition) mice were offered either a ketogenic or a control (NIH-31) diet for 3 months. Body weight and food intake were monitored throughout the experiment, and blood was collected at 4 weeks and 4 months for ketone and glucose assessments. Both lines of transgenic mice weighed less than nontransgenic mice, yet, surprisingly, had elevated food intake. The ketogenic diet did not affect these differences in body weight or food consumption. Behavioral testing during the last two weeks of treatment found that mice offered KD performed significantly better on the rotarod compared to mice on the control diet independent of genotype. In the open field test, both transgenic mouse lines presented increased locomotor activity compared to nontransgenic, age-matched controls, and this effect was not influenced by KD. The radial arm water maze identified learning deficits in both transgenic lines with no significant differences between diets. Tissue measures of amyloid, tau, astroglial and microglial markers in transgenic lines showed no differences between animals fed the control or the ketogenic diet. These data suggest that ketogenic diets may play an important role in enhancing motor performance in mice, but have minimal impact on the phenotype of murine models of amyloid or tau deposition. PMID:24069439

  10. The influence of the ketogenic diet on the elemental and biochemical compositions of the hippocampal formation.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Matusiak, Katarzyna; Janeczko, Krzysztof; Patulska, Agnieszka; Sandt, Christophe; Simon, Rolf; Ciarach, Malgorzata; Setkowicz, Zuzanna

    2015-08-01

    A growing body of evidence demonstrates that dietary therapies, mainly the ketogenic diet, may be highly effective in the reduction of epileptic seizures. All of them share the common characteristic of restricting carbohydrate intake to shift the predominant caloric source of the diet to fat. Catabolism of fats results in the production of ketone bodies which become alternate energy substrates to glucose. Although many mechanisms by which ketone bodies yield its anticonvulsant effect are proposed, the relationships between the brain metabolism of the ketone bodies and their neuroprotective and antiepileptogenic action still remain to be discerned. In the study, X-ray fluorescence microscopy and FTIR microspectroscopy were used to follow ketogenic diet-induced changes in the elemental and biochemical compositions of rat hippocampal formation tissue. The use of synchrotron sources of X-rays and infrared allowed us to examine changes in the accumulation and distribution of selected elements (P, S, K, Ca, Fe, Cu, Zn, and Se) and biomolecules (proteins, lipids, ketone bodies, etc.) with the micrometer spatial resolution. The comparison of rats fed with the ketogenic diet and rats fed with the standard laboratory diet showed changes in the hippocampal accumulation of P, K, Ca, and Zn. The relations obtained for Ca (increased level in CA3, DG, and its internal area) and Zn (decreased areal density in CA3 and DG) were analogous to those that we previously observed for rats in the acute phase of pilocarpine-induced seizures. Biochemical analysis of tissues taken from ketogenic diet-fed rats demonstrated increased intensity of absorption band occurring at 1740 cm(-1), which was probably the result of elevated accumulation of ketone bodies. Moreover, higher absolute and relative (3012 cm(-1)/2924 cm(-1), 3012 cm(-1)/lipid massif, and 3012 cm(-1)/amide I) intensity of the 3012-cm(-1) band resulting from increased unsaturated fatty acids content was found after the treatment

  11. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes.

    Science.gov (United States)

    Hussain, Talib A; Mathew, Thazhumpal C; Dashti, Ali A; Asfar, Sami; Al-Zaid, Naji; Dashti, Hussein M

    2012-10-01

    Effective diabetic management requires reasonable weight control. Previous studies from our laboratory have shown the beneficial effects of a low-carbohydrate ketogenic diet (LCKD) in patients with type 2 diabetes after its long term administration. Furthermore, it favorably alters the cardiac risk factors even in hyperlipidemic obese subjects. These studies have indicated that, in addition to decreasing body weight and improving glycemia, LCKD can be effective in decreasing antidiabetic medication dosage. Similar to the LCKD, the conventional low-calorie, high nutritional value diet is also used for weight loss. The purpose of this study was to understand the beneficial effects of LCKD compared with the low-calorie diet (LCD) in improving glycemia. Three hundred and sixty-three overweight and obese participants were recruited from the Al-Shaab Clinic for a 24-wk diet intervention trial; 102 of them had type 2 diabetes. The participants were advised to choose LCD or LDKD, depending on their preference. Body weight, body mass index, changes in waist circumference, blood glucose level, changes in hemoglobin and glycosylated hemoglobin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, uric acid, urea and creatinine were determined before and at 4, 8, 12, 16, 20, and 24 wk after the administration of the LCD or LCKD. The initial dose of some antidiabetic medications was decreased to half and some were discontinued at the beginning of the dietary program in the LCKD group. Dietary counseling and further medication adjustment were done on a biweekly basis. The LCD and LCKD had beneficial effects on all the parameters examined. Interestingly, these changes were more significant in subjects who were on the LCKD as compared with those on the LCD. Changes in the level of creatinine were not statistically significant. This study shows the beneficial effects of a ketogenic diet over the conventional LCD in obese

  12. Danish study of a Modified Atkins diet for medically intractable epilepsy in children: Can we achieve the same results as with the classical ketogenic diet?

    DEFF Research Database (Denmark)

    Miranda, M. J.; Mortensen, M.; Povlsen, J. H.

    2011-01-01

    Modified Atkins diet (MAD) is a less restrictive variety of the classical ketogenic diet (KD), used for treating patients with medically resistant epilepsy. There are only few reports comparing the two types of diets in terms of seizure reduction and tolerability. We compared the effect of a MAD...

  13. The ketogenic diet as broad-spectrum treatment for super-refractory pediatric status epilepticus: challenges in implementation in the pediatric and neonatal intensive care units.

    Science.gov (United States)

    Cobo, Nicole H; Sankar, Raman; Murata, Kristina K; Sewak, Sarika L; Kezele, Michele A; Matsumoto, Joyce H

    2015-02-01

    Refractory status epilepticus carries significant morbidity and mortality. Recent reports have promoted the use of the ketogenic diet as an effective treatment for refractory status epilepticus. We describe our recent experience with instituting the ketogenic diet for 4 critically ill children in refractory status epilepticus, ranging in age from 9 weeks to 13.5 years after failure of traditional treatment. The ketogenic diet allowed these patients to be weaned off continuous infusions of anesthetics without recurrence of status epilepticus, though delayed ketosis and persistently elevated glucose measurements posed special challenges to effective initiation, and none experienced complete seizure cessation. The ease of sustaining myocardial function with fatty acid energy substrates compares favorably over the myocardial toxicity posed by anesthetic doses of barbiturates and contributes to the safety profile of the ketogenic diet. The ketogenic diet can be implemented successfully and safely for the treatment of refractory status epilepticus in pediatric patients. © The Author(s) 2014.

  14. Ketone Bodies as a Possible Adjuvant to Ketogenic Diet in PDHc Deficiency but Not in GLUT1 Deficiency.

    Science.gov (United States)

    Habarou, F; Bahi-Buisson, N; Lebigot, E; Pontoizeau, C; Abi-Warde, M T; Brassier, A; Le Quan Sang, K H; Broissand, C; Vuillaumier-Barrot, S; Roubertie, A; Boutron, A; Ottolenghi, C; de Lonlay, P

    2018-01-01

    Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral L,D-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS. We designed a partial or total progressive substitution of KD with L,D-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients. In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r 2  = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO 2 production after 14 C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet. 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

  15. Occurrence of GLUT1 deficiency syndrome in patients treated with ketogenic diet.

    Science.gov (United States)

    Ramm-Pettersen, Anette; Nakken, Karl O; Haavardsholm, Kathrine Cammermeyer; Selmer, Kaja Kristine

    2014-03-01

    Glucose transporter 1 deficiency syndrome (GLUT1-DS) is a treatable metabolic encephalopathy caused by a mutation in the SLC2A1 gene. This mutation causes a compromised transport of glucose across the blood-brain barrier. The treatment of choice is ketogenic diet, with which most patients become seizure-free. At the National Centre for Epilepsy, we have, since 2005, offered treatment with ketogenic diet (KD) and modified Atkins diet (MAD) to children with difficult-to-treat epilepsy. As we believe many children with GLUT1-DS are unrecognized, the aim of this study was to search for patients with GLUT1-DS among those who had been responders (>50% reduction in seizure frequency) to KD or MAD. Of the 130 children included, 58 (44%) were defined as responders. Among these, 11 were already diagnosed with GLUT1-DS. No mutations in the SLC2A1 gene were detected in the remaining patients. However, the clinical features of these patients differed considerably from the patients diagnosed with GLUT1-DS. While 9 out of 10 patients with GLUT1-DS became seizure-free with dietary treatment, only 3 out of the 33 remaining patients were seizure-free with KD or MAD treatment. We therefore conclude that a seizure reduction of >50% following dietary treatment is not a suitable criterion for identifying patients with GLUT1-DS, as these patients generally achieve complete seizure freedom shortly after diet initiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The efficacy of the ketogenic diet in infants and young children with refractory epilepsies using a formula-based powder.

    Science.gov (United States)

    Ashrafi, Mahmoud Reza; Hosseini, Seyed Ahmad; Zamani, Gholam Reza; Mohammadi, Mahmoud; Tavassoli, Alireza; Badv, Reza Shervin; Heidari, Morteza; Karimi, Parviz; Malamiri, Reza Azizi

    2017-03-01

    To evaluate the efficacy, safety, and tolerability of a classic 4:1 ketogenic diet using a formula-based powder in infants and children with refractory seizures who are reluctant to eat homemade foods. We conducted an open label trial and administered a ketogenic diet using formula-based power (Ketocal ® ). Twenty-seven infants and children aged between 12 months and 5 years were enrolled who had refractory seizures and were reluctant to eat homemade foods. Of 27 children, 5 were lost to follow-up and 22 were remained at the end of the study. After 4 months, the median frequency of seizures per week was reduced >50% in 68.2% of patients, while 9/22 children (40.9%) showed a 50-90% reduction in seizure frequency per week, and 6/22 children (27.3%) showed more than 90% reduction in seizure frequency per week. Over the study course, 6/22 (27%) children who continued to receive the diet developed constipation, one child developed gastroesophageal reflux, and one child developed hypercholesterolemia. None of these children discontinued the diet because of the complications. Thirteen children and their parents (59%) reported that the diet was palatable and tolerable enough. The ketogenic diet using a formula-based powder (Ketocal ® ) is effective, safe, and tolerable in infants and children with refractory seizures who are reluctant to eat homemade foods according to the rules of the ketogenic diet.

  17. Effect of ketogenic Mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees.

    Science.gov (United States)

    Paoli, Antonio; Cenci, Lorenzo; Grimaldi, Keith A

    2011-10-12

    There has been increased interest in recent years in very low carbohydrate ketogenic diets (VLCKD) that, even though they are much discussed and often opposed, have undoubtedly been shown to be effective, at least in the short to medium term, as a tool to tackle obesity, hyperlipidemia and some cardiovascular risk factors. For this reason the ketogenic diet represents an interesting option but unfortunately suffers from a low compliance. The aim of this pilot study is to ascertain the safety and effects of a modified ketogenic diet that utilizes ingredients which are low in carbohydrates but are formulated to simulate its aspect and taste and also contain phytoextracts to add beneficial effects of important vegetable components. The study group consisted of 106 Rome council employees with a body mass index of ≥ 25, age between 18 and 65 years (19 male and 87 female; mean age 48.49 ± 10.3). We investigated the effects of a modified ketogenic diet based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrate but which mimic their taste, with the addition of some herbal extracts (KEMEPHY ketogenic Mediterranean with phytoextracts). Calories in the diet were unlimited. Measurements were taken before and after 6 weeks of diet. There were no significant changes in BUN, ALT, AST, GGT and blood creatinine. We detected a significant (p good compliance.

  18. From intravenous to enteral ketogenic diet in PICU: A potential treatment strategy for refractory status epilepticus.

    Science.gov (United States)

    Chiusolo, F; Diamanti, A; Bianchi, R; Fusco, L; Elia, M; Capriati, T; Vigevano, F; Picardo, S

    2016-11-01

    Ketogenic diet (KD) has been used to treat refractory status epilepticus (RSE). KD is a high-fat, restricted-carbohydrate regimen that may be administered with different fat to protein and carbohydrate ratios (3:1 and 4:1 fat to protein and carbohydrate ratios). Other ketogenic regimens have a lower fat and higher protein and carbohydrate ratio to improve taste and thus compliance to treatment. We describe a case of RSE treated with intravenous KD in the Pediatric Intensive Care Unit (PICU). An 8-year-old boy was referred to the PICU because of continuous tonic-clonic and myoclonic generalized seizures despite several antiepileptic treatments. After admission he was intubated and treated with intravenous thiopental followed by ketamine. Seizures continued with frequent myoclonic jerks localized on the face and upper arms. EEG showed seizure activity with spikes on rhythmic continuous waves. Thus we decided to begin KD. The concomitant ileus contraindicated KD by the enteral route and we therefore began IV KD. The ketogenic regimen consisted of conventional intravenous fat emulsion, plus dextrose and amino-acid hyperalimentation in a 2:1 then 3:1 fat to protein and carbohydrate ratio. Exclusive IV ketogenic treatment, well tolerated, was maintained for 3 days; peristalsis then reappeared so KD was continued by the enteral route at 3:1 ratio. Finally, after 8 days and no seizure improvement, KD was deemed unsuccessful and was discontinued. Our experience indicates that IV KD may be considered as a temporary "bridge" towards enteral KD in patients with partial or total intestinal failure who need to start KD. It allows a prompt initiation of KD, when indicated for the treatment of severe diseases such as RSE. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  19. Complications During Ketogenic Diet Initiation: Prevalence, Treatment, and Influence on Seizure Outcomes.

    Science.gov (United States)

    Lin, Abigail; Turner, Zahava; Doerrer, Sarah C; Stanfield, Anthony; Kossoff, Eric H

    2017-03-01

    Many centers still admit children for several days to start the ketogenic diet. The exact incidence of adverse effects during the admission and their potential later impact on seizure reduction has not been widely studied. We performed a retrospective study of children with intractable epilepsy electively admitted for ketogenic diet initiation at our institution from 2011 to 2016. Charts were reviewed for adverse effects during the admission period and then examined for seizure reduction and compliance at three months. A rating scale (1 to 4) was created for severity of any adverse events. A total of 158 children were included, with the mean age 4.6 years. Potentially attributable adverse effects occurred in 126 (80%) children, most commonly emesis, food refusal, and hypoglycemia. Seventy-three (46%) children received some form of intervention by the medical team, most commonly the administration of juice (24%). Younger age was correlated with an increased likelihood of moderate to severe adverse effects during admission, often repeated hypoglycemia (3.6 versus 4.9 years, P = 0.04). Fasting was more likely to result in lethargy and a single blood glucose in the 30 to 40 mg/dL range, but it was not correlated with emesis, repeated hypoglycemia, or higher adverse effect scores. There was no statistically significant correlation between the severity of adverse effects and the three-month seizure reduction. Mild easily treated adverse effects occurred in most children admitted for the ketogenic diet. Younger children were at greater risk for significant difficulties and should be monitored closely. Because fasting led to more lethargy and hypoglycemia, it may be prudent to avoid this in younger children. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Science.gov (United States)

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose

  1. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Directory of Open Access Journals (Sweden)

    Raphael Johannes Morscher

    Full Text Available Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system.Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content.Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention.Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens

  2. First Application of Ketogenic Diet on a Child With Intractable Epilepsy in Ghana

    OpenAIRE

    Cao, Dezhi; Badoe, Eben; Zhu, Yanwei; Zhao, Xia; Hu, Yan; Liao, Jianxiang

    2015-01-01

    The prevalence of epilepsy in sub-Saharan Africa is higher than in other parts of the world, but it is short of the effective measure on treating intractable epilepsy. Epilepsy surgery is not easy to be performed due to the high cost and demand of operational skills. The authors planned to perform ketogenic diet therapy for the children with intractable epilepsy in Ghana with regard to its low cost and simple procedure. The candidate is a 10-month-old girl with epilepsy with unknown etiology....

  3. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  4. KETOGENIC DIET – FROM THE IMPLEMENTATION IN CLINICAL PRACTICE TO NOWADAYS

    Directory of Open Access Journals (Sweden)

    Neli M. Ermenlieva

    2018-02-01

    Full Text Available Introduction: The ketogenic diet (KGD is a high-fat, adequate-protein, low-carbohydrate diet. In 1920`s the diet was developed to treat difficult-to-control epilepsy in children. Nowadays its efficacy has been proven in many other diseases, such as metabolic disorders, brain tumours, autism, Rett syndrome, and in other areas, it has been actively studied. Aim: The aim of this article is to represent the historical review of the therapeutic implication of KGD, as well as to reveal the contemporary clinical trends in which it is being used. Material and Methods: A literature review of 96 scientific reports in English has been made. Results and Discussion: The KGD was developed in the early 1920s. In the period 1970-1990, the therapeutic use of the diet was discontinued, due to the breakthrough of the new anticonvulsants for epilepsy. The interest in KGD was recovered after a meeting of the “American Epilepsy Society” in 1996. The diet demonstrates anticonvulsant efficacy in epilepsy therapy. According to a survey in 2013, the incidence of seizures among half of the number of children was reduced by at least a half, and 15% of them were completely discontinued. The diet is also used in the treatment of metabolic diseases, such as GLUT 1-deficiency syndrome, reducing the incidence of seizures, improving muscle coordination and concentration. It is also effective in pyruvate dehydrogenase deficiency syndrome by replacing the major energy source - glucose with ketones. Along with these, it is also used in patients with autism (in approximately 60% of patients it improves learning ability and social skills, Rett syndrome, Alzheimer's disease, Parkinson's disease, and others. Its mechanism of action is not fully clarified, as well as its degree of effectiveness in some areas. Conclusion: The ketogenic diet is widely implemented worldwide. It comprises a tremendous therapeutic potential that has been growing considerably during the past decades.

  5. Ketogenic Diet Decreases Emergency Room Visits and Hospitalizations Related to Epilepsy

    Directory of Open Access Journals (Sweden)

    Husam R. Kayyali

    2016-01-01

    Full Text Available Background. Approximately, one-third of patients with epilepsy are refractory to pharmacological treatment which mandates extensive medical care and imposes significant economic burden on patients and their societies. This study intends to assess the impact of the treatment with ketogenic diet (KD on reducing seizure-related emergency room visits and hospitalizations in children with refractory epilepsy. Methods. This is a retrospective review of children treated with the KD in one tertiary center. We compared a 12 months’ period prior to KD with 12 months after the diet was started in regard to the number of emergency department (ED visits, hospitalizations, and hospital days as well as their associated charges. Results. 37 patients (57% males were included. Their ages at time of KD initiation were (4.0±2.78 years. Twelve months after the KD initiation, the total number of ED visits was reduced by 36% with a significant decrease of associated charges (p=0.038. The number of hospital admissions was reduced by 40% and the number of hospital days was reduced by 39%. The cumulative charges showed net cost savings after 9 months when compared to the prediet baseline. Conclusion. In children with refractory epilepsy, treatment with the ketogenic diet reduces the number of ED visits and hospitalizations and their corresponding costs.

  6. Ketogenic Diet Decreases Emergency Room Visits and Hospitalizations Related to Epilepsy

    Science.gov (United States)

    Luniova, Anastasia; Abdelmoity, Ahmed

    2016-01-01

    Background. Approximately, one-third of patients with epilepsy are refractory to pharmacological treatment which mandates extensive medical care and imposes significant economic burden on patients and their societies. This study intends to assess the impact of the treatment with ketogenic diet (KD) on reducing seizure-related emergency room visits and hospitalizations in children with refractory epilepsy. Methods. This is a retrospective review of children treated with the KD in one tertiary center. We compared a 12 months' period prior to KD with 12 months after the diet was started in regard to the number of emergency department (ED) visits, hospitalizations, and hospital days as well as their associated charges. Results. 37 patients (57% males) were included. Their ages at time of KD initiation were (4.0 ± 2.78) years. Twelve months after the KD initiation, the total number of ED visits was reduced by 36% with a significant decrease of associated charges (p = 0.038). The number of hospital admissions was reduced by 40% and the number of hospital days was reduced by 39%. The cumulative charges showed net cost savings after 9 months when compared to the prediet baseline. Conclusion. In children with refractory epilepsy, treatment with the ketogenic diet reduces the number of ED visits and hospitalizations and their corresponding costs. PMID:27752367

  7. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    Science.gov (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  8. A pilot study of the Spanish Ketogenic Mediterranean Diet: an effective therapy for the metabolic syndrome.

    Science.gov (United States)

    Pérez-Guisado, Joaquín; Muñoz-Serrano, Andrés

    2011-01-01

    The "Spanish Ketogenic Mediterranean Diet" (SKMD) has been shown to promote potential therapeutic properties for the metabolic syndrome. The purpose of this study was to evaluate the potential therapeutic properties under free-living conditions of the SKMD in patients with metabolic syndrome (following the International Diabetes Federation consensus guidelines) over a 12-week period. A prospective study was carried out in 22 obese subjects with metabolic syndrome (12 men and 10 women) with the inclusion criteria whose body mass index of 36.58 ± 0.54 kg/m² and age was 41.18 ± 2.28 years. Statistical differences between the parameters studied before and after the administration of the SKMD (week 0 and 12, respectively) were analyzed by paired Student's t test. There was an extremely significant (P diet all the subjects were free of metabolic syndrome according to the International Diabetes Federation definition, and 100% of them had normal triacylglycerols and high-density lipoprotein cholesterol levels, in spite of the fact that 77.27% of them still had a body mass index of > 30 kg/m². We conclude that the SKMD could be an effective and safe way to cure patients suffering from metabolic syndrome. Future research should include a larger sample size, a longer-term use, and a comparison with other ketogenic diets.

  9. The Effects of a Ketogenic Diet on Exercise Metabolism and Physical Performance in Off-Road Cyclists

    Science.gov (United States)

    Zajac, Adam; Poprzecki, Stanisław; Maszczyk, Adam; Czuba, Miłosz; Michalczyk, Małgorzata; Zydek, Grzegorz

    2014-01-01

    The main objective of this research was to determine the effects of a long-term ketogenic diet, rich in polyunsaturated fatty acids, on aerobic performance and exercise metabolism in off-road cyclists. Additionally, the effects of this diet on body mass and body composition were evaluated, as well as those that occurred in the lipid and lipoprotein profiles due to the dietary intervention. The research material included eight male subjects, aged 28.3 ± 3.9 years, with at least five years of training experience that competed in off-road cycling. Each cyclist performed a continuous exercise protocol on a cycloergometer with varied intensity, after a mixed and ketogenic diet in a crossover design. The ketogenic diet stimulated favorable changes in body mass and body composition, as well as in the lipid and lipoprotein profiles. Important findings of the present study include a significant increase in the relative values of maximal oxygen uptake (VO2max) and oxygen uptake at lactate threshold (VO2 LT) after the ketogenic diet, which can be explained by reductions in body mass and fat mass and/or the greater oxygen uptake necessary to obtain the same energy yield as on a mixed diet, due to increased fat oxidation or by enhanced sympathetic activation. The max work load and the work load at lactate threshold were significantly higher after the mixed diet. The values of the respiratory exchange ratio (RER) were significantly lower at rest and during particular stages of the exercise protocol following the ketogenic diet. The heart rate (HR) and oxygen uptake were significantly higher at rest and during the first three stages of exercise after the ketogenic diet, while the reverse was true during the last stage of the exercise protocol conducted with maximal intensity. Creatine kinase (CK) and lactate dehydrogenase (LDH) activity were significantly lower at rest and during particular stages of the 105-min exercise protocol following the low carbohydrate ketogenic diet

  10. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists.

    Science.gov (United States)

    Zajac, Adam; Poprzecki, Stanisław; Maszczyk, Adam; Czuba, Miłosz; Michalczyk, Małgorzata; Zydek, Grzegorz

    2014-06-27

    The main objective of this research was to determine the effects of a long-term ketogenic diet, rich in polyunsaturated fatty acids, on aerobic performance and exercise metabolism in off-road cyclists. Additionally, the effects of this diet on body mass and body composition were evaluated, as well as those that occurred in the lipid and lipoprotein profiles due to the dietary intervention. The research material included eight male subjects, aged 28.3 ± 3.9 years, with at least five years of training experience that competed in off-road cycling. Each cyclist performed a continuous exercise protocol on a cycloergometer with varied intensity, after a mixed and ketogenic diet in a crossover design. The ketogenic diet stimulated favorable changes in body mass and body composition, as well as in the lipid and lipoprotein profiles. Important findings of the present study include a significant increase in the relative values of maximal oxygen uptake (VO2max) and oxygen uptake at lactate threshold (VO2 LT) after the ketogenic diet, which can be explained by reductions in body mass and fat mass and/or the greater oxygen uptake necessary to obtain the same energy yield as on a mixed diet, due to increased fat oxidation or by enhanced sympathetic activation. The max work load and the work load at lactate threshold were significantly higher after the mixed diet. The values of the respiratory exchange ratio (RER) were significantly lower at rest and during particular stages of the exercise protocol following the ketogenic diet. The heart rate (HR) and oxygen uptake were significantly higher at rest and during the first three stages of exercise after the ketogenic diet, while the reverse was true during the last stage of the exercise protocol conducted with maximal intensity. Creatine kinase (CK) and lactate dehydrogenase (LDH) activity were significantly lower at rest and during particular stages of the 105-min exercise protocol following the low carbohydrate ketogenic diet

  11. Ketogenic diet does not affect strength performance in elite artistic gymnasts

    Science.gov (United States)

    2012-01-01

    Background Despite the increasing use of very low carbohydrate ketogenic diets (VLCKD) in weight control and management of the metabolic syndrome there is a paucity of research about effects of VLCKD on sport performance. Ketogenic diets may be useful in sports that include weight class divisions and the aim of our study was to investigate the influence of VLCKD on explosive strength performance. Methods 8 athletes, elite artistic gymnasts (age 20.9 ± 5.5 yrs) were recruited. We analyzed body composition and various performance aspects (hanging straight leg raise, ground push up, parallel bar dips, pull up, squat jump, countermovement jump, 30 sec continuous jumps) before and after 30 days of a modified ketogenic diet. The diet was based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrates, but which mimicked their taste, with the addition of some herbal extracts. During the VLCKD the athletes performed the normal training program. After three months the same protocol, tests were performed before and after 30 days of the athletes’ usual diet (a typically western diet, WD). A one-way Anova for repeated measurements was used. Results No significant differences were detected between VLCKD and WD in all strength tests. Significant differences were found in body weight and body composition: after VLCKD there was a decrease in body weight (from 69.6 ± 7.3 Kg to 68.0 ± 7.5 Kg) and fat mass (from 5.3 ± 1.3 Kg to 3.4 ± 0.8 Kg p diets on athletic performance and the well known importance of carbohydrates there are no data about VLCKD and strength performance. The undeniable and sudden effect of VLCKD on fat loss may be useful for those athletes who compete in sports based on weight class. We have demonstrated that using VLCKD for a relatively short time period (i.e. 30 days) can decrease body weight and body fat without negative effects on strength performance in

  12. Ketogenic diet does not affect strength performance in elite artistic gymnasts

    Directory of Open Access Journals (Sweden)

    Paoli Antonio

    2012-07-01

    Full Text Available Abstract Background Despite the increasing use of very low carbohydrate ketogenic diets (VLCKD in weight control and management of the metabolic syndrome there is a paucity of research about effects of VLCKD on sport performance. Ketogenic diets may be useful in sports that include weight class divisions and the aim of our study was to investigate the influence of VLCKD on explosive strength performance. Methods 8 athletes, elite artistic gymnasts (age 20.9 ± 5.5 yrs were recruited. We analyzed body composition and various performance aspects (hanging straight leg raise, ground push up, parallel bar dips, pull up, squat jump, countermovement jump, 30 sec continuous jumps before and after 30 days of a modified ketogenic diet. The diet was based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrates, but which mimicked their taste, with the addition of some herbal extracts. During the VLCKD the athletes performed the normal training program. After three months the same protocol, tests were performed before and after 30 days of the athletes’ usual diet (a typically western diet, WD. A one-way Anova for repeated measurements was used. Results No significant differences were detected between VLCKD and WD in all strength tests. Significant differences were found in body weight and body composition: after VLCKD there was a decrease in body weight (from 69.6 ± 7.3 Kg to 68.0 ± 7.5 Kg and fat mass (from 5.3 ± 1.3 Kg to 3.4 ± 0.8 Kg p  Conclusions Despite concerns of coaches and doctors about the possible detrimental effects of low carbohydrate diets on athletic performance and the well known importance of carbohydrates there are no data about VLCKD and strength performance. The undeniable and sudden effect of VLCKD on fat loss may be useful for those athletes who compete in sports based on weight class. We have demonstrated that using VLCKD for a

  13. Ketogenic diet does not affect strength performance in elite artistic gymnasts.

    Science.gov (United States)

    Paoli, Antonio; Grimaldi, Keith; D'Agostino, Dominic; Cenci, Lorenzo; Moro, Tatiana; Bianco, Antonino; Palma, Antonio

    2012-07-26

    Despite the increasing use of very low carbohydrate ketogenic diets (VLCKD) in weight control and management of the metabolic syndrome there is a paucity of research about effects of VLCKD on sport performance. Ketogenic diets may be useful in sports that include weight class divisions and the aim of our study was to investigate the influence of VLCKD on explosive strength performance. 8 athletes, elite artistic gymnasts (age 20.9 ± 5.5 yrs) were recruited. We analyzed body composition and various performance aspects (hanging straight leg raise, ground push up, parallel bar dips, pull up, squat jump, countermovement jump, 30 sec continuous jumps) before and after 30 days of a modified ketogenic diet. The diet was based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrates, but which mimicked their taste, with the addition of some herbal extracts. During the VLCKD the athletes performed the normal training program. After three months the same protocol, tests were performed before and after 30 days of the athletes' usual diet (a typically western diet, WD). A one-way Anova for repeated measurements was used. No significant differences were detected between VLCKD and WD in all strength tests. Significant differences were found in body weight and body composition: after VLCKD there was a decrease in body weight (from 69.6 ± 7.3 Kg to 68.0 ± 7.5 Kg) and fat mass (from 5.3 ± 1.3 Kg to 3.4 ± 0.8 Kg p < 0.001) with a non-significant increase in muscle mass. Despite concerns of coaches and doctors about the possible detrimental effects of low carbohydrate diets on athletic performance and the well known importance of carbohydrates there are no data about VLCKD and strength performance. The undeniable and sudden effect of VLCKD on fat loss may be useful for those athletes who compete in sports based on weight class. We have demonstrated that using VLCKD for a relatively

  14. Environmental Enrichment Mitigates Detrimental Cognitive Effects of Ketogenic Diet in Weanling Rats.

    Science.gov (United States)

    Scichilone, John M; Yarraguntla, Kalyan; Charalambides, Ana; Harney, Jacob P; Butler, David

    2016-09-01

    For decades, the ketogenic diet has been an effective treatment of intractable epilepsy in children. Childhood epilepsy is pharmacoresistant in 25-40 % of patients taking the current prescribed medications. Chronic seizure activity has been linked to deficits in cognitive function and behavioral problems which negatively affect the learning abilities of the child. Recent studies suggest the ketogenic diet (KD), a high fat with low carbohydrate and protein diet, has adverse effects on cognition in weanling rats. The diet reduces circulating glucose levels to where energy metabolism is converted from glycolysis to burning fat and generating ketone bodies which has been suggested as a highly efficient source of energy for the brain. In contrast, when weanling rats are placed in an enriched environment, they exhibit increased spatial learning, memory, and neurogenesis. Thus, this study was done to determine if weanling rats being administered a KD in an environmental enrichment (EE) would still exhibit the negative cognitive effects of the diet previously observed. The present study suggests that an altered environment is capable of reducing the cognitive deficits in weanling rats administered a KD. Learning was improved with an EE. The effect of diet and environment on anxiety and depression suggests a significant reduction in anxiety with enrichment rearing. Interestingly, circulating energy substrate levels were increased in the EE groups along with brain-derived neurotrophic factor despite the least changes in weight gain. In light of numerous studies using KDs that seemingly have adverse effects on cognition, KD-induced reductions in excitotoxic events would not necessarily eliminate that negative aspect of seizures.

  15. Reduced Mass and Diversity of the Colonic Microbiome in Patients with Multiple Sclerosis and Their Improvement with Ketogenic Diet.

    Science.gov (United States)

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Göktas, Önder; Reißhauer, Anne; Neuhaus, Jürgen; Weylandt, Karsten-Henrich; Guschin, Alexander; Bock, Markus

    2017-01-01

    Background: Colonic microbiome is thought to be involved in auto-immune multiple sclerosis (MS). Interactions between diet and the colonic microbiome in MS are unknown. Methods: We compared the composition of the colonic microbiota quantitatively in 25 MS patients and 14 healthy controls.Fluorescence in situ hybridization (FISH) with 162 ribosomal RNA derived bacterial FISH probes was used. Ten of the MS patients received a ketogenic diet for 6 months. Changes in concentrations of 35 numerically substantial bacterial groups were monitored at baseline and at 2, 12, and 23/24 weeks. Results: No MS typical microbiome pattern was apparent.The total concentrations and diversity of substantial bacterial groups were reduced in MS patients ( P < 0.001). Bacterial groups detected with EREC (mainly Roseburia ), Bac303 ( Bacteroides ), and Fprau ( Faecalibacterium prausnitzii ) probes were diminished the most. The individual changes were multidirectional and inconsistent. The effects of a ketogenic diet were biphasic. In the short term, bacterial concentrations and diversity were further reduced. They started to recover at week 12 and exceeded significantly the baseline values after 23-24 weeks on the ketogenic diet. Conclusions: Colonic biofermentative function is markedly impaired in MS patients.The ketogenic diet normalized concentrations of the colonic microbiome after 6 months.

  16. Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer.

    Science.gov (United States)

    Schroeder, U; Himpe, B; Pries, R; Vonthein, R; Nitsch, S; Wollenberg, B

    2013-01-01

    In head and neck squamous cell carcinoma (HNSCC) aerobic glycolysis is the key feature for energy supply of the tumor. Quantitative microdialysis (μD) offers an online method to measure parameters of the carbohydrate metabolism in vivo. The aim was to standardize a quantitative μD-study in patients with HNSCC and to prove if a ketogenic diet would differently influence the carbohydrate metabolism of the tumor tissue. Commercially available 100 kDa-CMA71-μD- catheters were implanted in tumor-free and in tumor tissue in patients with HNSCC for simultaneous measurements up to 5 days. The metabolic pattern and circadian rhythm of urea, glucose, lactate, and pyruvate was monitored during 24 h of western diet and subsequent up to 4 days of ketogenic diet. After 3 days of ketogenic diet the mean lactate concentration declines to a greater extent in the tumor tissue than in the tumor-free mucosa, whereas the mean glucose and pyruvate concentrations rise. The in vivo glucose metabolism of the tumor tissue is clearly influenced by nutrition. The decline of mean lactate concentration in the tumor tissue after ketogenic diet supports the hypothesis that HNSCC tumor cells might use lactate as fuel for oxidative glucose metabolism.

  17. Reduced Mass and Diversity of the Colonic Microbiome in Patients with Multiple Sclerosis and Their Improvement with Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    Alexander Swidsinski

    2017-06-01

    Full Text Available Background: Colonic microbiome is thought to be involved in auto-immune multiple sclerosis (MS. Interactions between diet and the colonic microbiome in MS are unknown.Methods: We compared the composition of the colonic microbiota quantitatively in 25 MS patients and 14 healthy controls.Fluorescence in situ hybridization (FISH with 162 ribosomal RNA derived bacterial FISH probes was used. Ten of the MS patients received a ketogenic diet for 6 months. Changes in concentrations of 35 numerically substantial bacterial groups were monitored at baseline and at 2, 12, and 23/24 weeks.Results: No MS typical microbiome pattern was apparent.The total concentrations and diversity of substantial bacterial groups were reduced in MS patients (P < 0.001. Bacterial groups detected with EREC (mainly Roseburia, Bac303 (Bacteroides, and Fprau (Faecalibacterium prausnitzii probes were diminished the most. The individual changes were multidirectional and inconsistent. The effects of a ketogenic diet were biphasic. In the short term, bacterial concentrations and diversity were further reduced. They started to recover at week 12 and exceeded significantly the baseline values after 23–24 weeks on the ketogenic diet.Conclusions: Colonic biofermentative function is markedly impaired in MS patients.The ketogenic diet normalized concentrations of the colonic microbiome after 6 months.

  18. MED23-associated refractory epilepsy successfully treated with the ketogenic diet.

    Science.gov (United States)

    Lionel, Anath C; Monfared, Nasim; Scherer, Stephen W; Marshall, Christian R; Mercimek-Mahmutoglu, Saadet

    2016-09-01

    We report a new patient with refractory epilepsy associated with a novel pathogenic homozygous MED23 variant. This 7.5-year-old boy from consanguineous parents had infantile onset global developmental delay and refractory epilepsy. He was treated with the ketogenic diet at 2.5 years of age and became seizure free on the first day. He had microcephaly and truncal hypotonia. His brain MRI showed delayed myelination and thin corpus callosum. He was enrolled in a whole exome sequencing research study, which identified a novel, homozygous, likely pathogenic (c.1937A>G; p.Gln646Arg) variant in MED23. MED23 is a regulator of energy homeostasis and glucose production. Liver-specific Med23-knockout mice showed reduced liver gluconeogenesis and lower blood glucose levels compared to control mice. This is the first patient with documented refractory epilepsy caused by a novel homozygous pathogenic variant in MED23 expanding the phenotypic spectrum. Identification of the underlying genetic defect in MED23 sheds light on the possible mechanism of complete response to the ketogenic diet in this child. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Effectiveness of Medium Chain Triglyceride Ketogenic Diet in Thai Children with Intractable Epilepsy.

    Science.gov (United States)

    Chomtho, Krisnachai; Suteerojntrakool, Orapa; Chomtho, Sirinuch

    2016-02-01

    To determine the efficacy, side effects and feasibility of Medium chain triglyceride (MCT) ketogenic diet (KD) in Thai children with intractable epilepsy. Children with intractable epilepsy were recruited. Baseline seizure frequency was recorded over 4 weeks before starting MCT KD. Average seizure frequency was assessed at 1 month and 3 months, compared to the baseline using Wilcoxon Signed Rank Test. Side effects and feasibility were also assessed by blood tests and an interview. Sixteen subjects were recruited with mean seizure frequency of 0.35-52.5 per day. After treatment, there was a significant reduction in seizure frequency, ranging from 12% to 100% (p = 0.002 at 1 month, and 0.001 at 3 months). 64.3% of the subjects achieved more than 50% seizure reduction at 3 months and 28.6% of the patients were seizure-free. Common adverse effects were initial weight loss (37.5%) and nausea (25%). 87.5% of subjects and parents were satisfied with the MCT KD with 2 cases dropping-out due to diarrhea and non-compliance. MCT ketogenic diet is effective and feasible in Thai children with intractable epilepsy. Despite modification against Asian culinary culture, the tolerability and maintenance rate was still satisfactory. A larger study is required.

  20. Lipoid pneumonia--a case of refractory pneumonia in a child treated with ketogenic diet.

    Science.gov (United States)

    Buda, Piotr; Wieteska-Klimczak, Anna; Własienko, Anna; Mazur, Agnieszka; Ziołkowski, Jerzy; Jaworska, Joanna; Kościesza, Andrzej; Dunin-Wąsowicz, Dorota; Książyk, Janusz

    2013-01-01

    Lipoid pneumonia (LP) is a chronic inflammation of the lung parenchyma with interstitial involvement due to the accumulation of endogenous or exogenous lipids. Exogenous LP (ELP) is associated with the aspiration or inhalation of oil present in food, oil-based medications or radiographic contrast media. The clinical manifestations of LP range from asymptomatic cases to severe pulmonary involvement, with respiratory failure and death, according to the quantity and duration of the aspiration. The diagnosis of exogenous lipoid pneumonia is based on a history of exposure to oil and the presence of lipid-laden macrophages on sputum or bronchoalveolar lavage (BAL) analysis. High-resolution computed tomography (HRCT) is the imaging technique of choice for evaluation of patients with suspected LP. The best therapeutic strategy is to remove the oil as early as possible through bronchoscopy with multiple BALs and interruption in the use of mineral oil. Steroid therapy remains controversial, and should be reserved for severe cases. We describe a case of LP due to oil aspiration in 3-year-old girl with intractable epilepsy on ketogenic diet. Diagnostic problems were due to non-specific symptoms that were mimicking serious infectious pneumonia. A high index of suspicion and precise medical history is required in cases of refractory pneumonia and fever unresponsive to conventional therapy. Gastroesophageal reflux and a risk of aspiration may be regarded as relative contraindications to the ketogenic diet. Conservative treatment, based on the use of oral steroids, proved to be an efficient therapeutic approach in this case.

  1. Low carbohydrate ketogenic diet prevents the induction of diabetes using streptozotocin in rats.

    Science.gov (United States)

    Al-Khalifa, A; Mathew, T C; Al-Zaid, N S; Mathew, E; Dashti, H

    2011-11-01

    Diabetes continues to be an overwhelmingly prevalent endocrine disorder that leads to several micro- and macrocomplications. It has been widely accepted that changes in dietary habits could induce or prevent the onset of diabetes. It is shown that low carbohydrate ketogenic diet (LCKD) is effective in the amelioration of many of the deleterious consequences of diabetes. However, its role in preventing the onset of diabetes is not understood. Therefore, this study is focused on the effect of LCKD in preventing the induction of diabetes using streptozotocin (STZ) in rats by biochemical and histological methods. Forty-two Wistar rats weighing 150-250 g were used in this study. The animals were divided into three groups: normal diet (ND), low carbohydrate ketogenic diet (LCKD), and high carbohydrate diet (HCD). Specific diets ad libitum were given to each group of animals for a period of 8 weeks. Each group was further subdivided into normal control, sham control and diabetic groups. Animals in the diabetic group were given a single intraperitoneal injection of STZ (55 mg/kg). All the animals were sacrificed 4 weeks after the injection of STZ. Daily measurements of food and water intake as well as weekly measurement of body weight were taken during the whole 12 weeks of the experiment. After injecting with STZ, the blood glucose level of all the groups increased significantly except for the group fed on LCKD (p valuediabetic rats, there were no change in the number of β cells in the LCKD treated diabetic animals as compared to LCKD control group. The results presented in this study, therefore, suggests that LCKD prevents the development of diabetes using streptozotocin in rats. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Efficacy of the ketogenic diet for the treatment of refractory childhood epilepsy: cerebrospinal fluid neurotransmitters and amino acid levels

    OpenAIRE

    Millichap, J. Gordon

    2015-01-01

    Investigators from Hospital Sant Joan de Deu, Barcelona, Spain, studied the relationship between the etiology of refractory childhood epilepsy, CSF neurotransmitters, pterins, and amino acids, and response to a ketogenic diet in 60 patients with refractory epilepsy, 83% focal and 52% idiopathic.

  3. The ketogenic diet is well tolerated and can be effective in patients with argininosuccinate lyase deficiency and refractory epilepsy

    NARCIS (Netherlands)

    Peuscher, Rosanne; Dijsselhof, Monique E.; Abeling, Nico G.; van Rijn, Margreet; van Spronsen, Francjan J.; Bosch, Annet M.

    2012-01-01

    Argininosuccinate lyase (ASL) deficiency (MIM 608310, McKusick 207900) is a rare disorder of the urea cycle, which leads to a deficiency of arginine and hyperammonemia. Epilepsy is a frequent complication of this disorder. A ketogenic diet (KD) can be a very effective therapy for refractory

  4. Type 1 diabetes and epilepsy: efficacy and safety of the ketogenic diet.

    Science.gov (United States)

    Dressler, Anastasia; Reithofer, Eva; Trimmel-Schwahofer, Petra; Klebermasz, Katrin; Prayer, Daniela; Kasprian, Gregor; Rami, Birgit; Schober, Edith; Feucht, Martha

    2010-06-01

    Diabetes type 1 seems to be more prevalent in epilepsy, and low-carbohydrate diets improve glycemic control in diabetes type 2, but data on the use of the classic ketogenic diet (KD) in epilepsy and diabetes are scarce. We present 15 months of follow-up of a 3 years and 6 months old girl with diabetes type 1 (on the KD), right-sided hemiparesis, and focal epilepsy due to a malformation of cortical development. Although epileptiform activity on electroencephalography (EEG) persisted (especially during sleep), clinically overt seizures have not been reported since the KD. An improved activity level and significant developmental achievements were noticed. Glycosylated hemoglobin (HbA1c) levels improved, and glycemic control was excellent, without severe side effects. Our experience indicates that diabetes does not preclude the use of the KD.

  5. Study on protective effect of ketogenic diet against hippocampal neurons of kainic acid-induced epileptic rats

    Directory of Open Access Journals (Sweden)

    Nan-nan ZHANG

    2015-11-01

    Full Text Available Objective To investigate the protective effects of ketogenic diet on hippocampal neurons of kainic acid (KA-induced epileptic rats.  Methods A total of 40 healthy male specific pathogen free (SPF Sprague-Dawley (SD rats were randomly divided into 4 groups, with each group containing 10 rats. Epileptic rat models were formed by injection of KA through lateral ventricle with brain stereotactic instrument. According to Racine classification, epileptic seizures in rats above grade Ⅳ were defined successful. Then the rats were given different dietary treatment: Group C with normal saline and normal diet, Group K with normal saline and ketogenic diet, Group E with KA and normal diet, Group EK with KA and ketogenic diet. All rats were observed for 21 d, and were recorded each body weight. The epileptic seizure frequency and duration were observed at 12:00-15:00 daily. At the 21st day, all rats were put to death, and the brain hippocampus tissues were separated. Neuron injury of rat hippocampal CA3 region in Group E and EK was observed by HE staining. Normal neuron number of rat hippocampal CA3 region in Group E and EK was counted by Nissl staining. Results Group C and K had no epileptic seizures, and the neuron number in hippocampal CA3 region was normal. Rats in both Group E and EK had grade Ⅳ or Ⅴ seizures. The number of seizures in Group EK [(17.90 ± 4.12 times] after 21-day ketogenic diet was decreased significantly compared to Group E [(30.50 ± 4.40 times] after 21-day normal diet (t = 6.606, P = 0.000. The seizure duration in Group EK [(212.70 ± 17.75 s] after 21-day ketogenic diet was shortened compared to Group E [(335.00 ± 14.21 s] after 21-day normal diet (t = 17.011, P = 0.000. The normal neuron number in hippocampal CA3 region in Group EK (117.67 ± 7.51 was more than those in Group E (71.33 ± 6.11, with statistically significant difference (t = 9.614, P = 0.000.  Conclusions Ketogenic diet has protective effect on hippocampal

  6. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma.

    Directory of Open Access Journals (Sweden)

    Mohammed G Abdelwahab

    Full Text Available INTRODUCTION: The ketogenic diet (KD is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC is a nutritionally complete, commercially available 4:1 (fat:carbohydrate+protein ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas. METHODS: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging. RESULTS: Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173 and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001. Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days. CONCLUSIONS: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas.

  7. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder.

    Science.gov (United States)

    Newell, Christopher; Bomhof, Marc R; Reimer, Raylene A; Hittel, Dustin S; Rho, Jong M; Shearer, Jane

    2016-01-01

    Gastrointestinal dysfunction and gut microbial composition disturbances have been widely reported in autism spectrum disorder (ASD). This study examines whether gut microbiome disturbances are present in the BTBR(T + tf/j) (BTBR) mouse model of ASD and if the ketogenic diet, a diet previously shown to elicit therapeutic benefit in this mouse model, is capable of altering the profile. Juvenile male C57BL/6 (B6) and BTBR mice were fed a standard chow (CH, 13 % kcal fat) or ketogenic diet (KD, 75 % kcal fat) for 10-14 days. Following diets, fecal and cecal samples were collected for analysis. Main findings are as follows: (1) gut microbiota compositions of cecal and fecal samples were altered in BTBR compared to control mice, indicating that this model may be of utility in understanding gut-brain interactions in ASD; (2) KD consumption caused an anti-microbial-like effect by significantly decreasing total host bacterial abundance in cecal and fecal matter; (3) specific to BTBR animals, the KD counteracted the common ASD phenotype of a low Firmicutes to Bacteroidetes ratio in both sample types; and (4) the KD reversed elevated Akkermansia muciniphila content in the cecal and fecal matter of BTBR animals. Results indicate that consumption of a KD likely triggers reductions in total gut microbial counts and compositional remodeling in the BTBR mouse. These findings may explain, in part, the ability of a KD to mitigate some of the neurological symptoms associated with ASD in an animal model.

  8. Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature.

    Science.gov (United States)

    Schwartz, Kenneth; Chang, Howard T; Nikolai, Michele; Pernicone, Joseph; Rhee, Sherman; Olson, Karl; Kurniali, Peter C; Hord, Norman G; Noel, Mary

    2015-01-01

    Based on the hypothesis that cancer cells may not be able to metabolize ketones as efficiently as normal brain cells, the ketogenic diet (KD) has been proposed as a complementary or alternative therapy for treatment of malignant gliomas. We report here our experience in treating two glioma patients with an IRB-approved energy-restricted ketogenic diet (ERKD) protocol as monotherapy and review the literature on KD therapy for human glioma patients. An ERKD protocol was used in this pilot clinical study. In addition to the two patients who enrolled in this study, we also reviewed findings from 30 other patients, including 5 patients from case reports, 19 patients from a clinical trial reported by Rieger and 6 patients described by Champ. A total of 32 glioma patients have been treated using several different KD protocols as adjunctive/complementary therapy. The two patients who enrolled in our ERKD pilot study were monitored with twice daily measurements of blood glucose and ketones and daily weights. However, both patients showed tumor progression while on the ERKD therapy. Immunohistochemistry reactions showed that their tumors had tissue expression of at least one of the two critical mitochondrial ketolytic enzymes (succinyl CoA: 3-oxoacid CoA transferase, beta-3-hydroxybutyrate dehydrogenase 1). The other 30 glioma patients in the literature were treated with several different KD protocols with varying responses. Prolonged remissions ranging from more than 5 years to 4 months were reported in the case reports. Only one of these patients was treated using KD as monotherapy. The best responses reported in the more recent patient series were stable disease for approximately 6 weeks. No major side effects due to KD have been reported in any of these patients. We conclude that 1. KD is safe and without major side effects; 2. ketosis can be induced using customary foods; 3. treatment with KD may be effective in controlling the progression of some gliomas; and 4

  9. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    Science.gov (United States)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  10. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  11. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    International Nuclear Information System (INIS)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-01-01

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

  12. The impact of the ketogenic diet on arterial morphology and endothelial function in children and young adults with epilepsy: a case-control study.

    Science.gov (United States)

    Coppola, Giangennaro; Natale, Francesco; Torino, Annarita; Capasso, Rosanna; D'Aniello, Alfredo; Pironti, Erica; Santoro, Elena; Calabrò, Raffaele; Verrotti, Alberto

    2014-04-01

    The present study aimed to assess the impact of the ketogenic diet on arterial morphology and endothelial function of the big vessels of the neck and on cardiac diastolic function, in a cohort of epileptic children and young adults treated with the ketogenic diet. Patients were recruited based on the following inclusion criteria: (1) patients who were or had been on the ketogenic diet for a time period of at least six months. Each patient underwent measurement of carotid intima media thickness, carotid artery stiffness, echocardiography, and diastolic function assessment. Patients with drug resistant epilepsy, matched for number, age and sex and never treated with ketogenic diet, were recruited as controls. The population study was composed by 43 epilepsy patients (23 males), aged between 19 months and 31 years (mean 11 years). Twenty-three patients were or had been treated with ketogenic diet, and 20 had never been on it (control group). Subjects treated with the ketogenic diet had higher arterial stiffness parameters, including AIx and β-index and higher serum levels of cholesterol or triglycerides compared to those who had never been on the diet (control group) (pketogenic diet, before the increase of the intima media thickness. This supports that arterial stiffness is an early marker of vascular damage. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Urolithiasis on the ketogenic diet with concurrent topiramate or zonisamide therapy

    Science.gov (United States)

    Paul, Elahna; Conant, Kerry D.; Dunne, Irie E.; Pfeifer, Heidi H.; Lyczkowski, David A.; Linshaw, Michael A.; Thiele, Elizabeth A.

    2011-01-01

    Summary Children with refractory epilepsy who are co-treated with the ketogenic diet (KD) and carbonic anhydrase inhibitor (CA-I) anti-epileptic medications including topiramate (TPM) and zonisamide (ZNS) are at risk for urolithiasis. Retrospective chart review of all children treated with ketogenic therapy at our institution was performed in order to estimate the minimal risk of developing signs or symptoms of stone disease. Children (N = 93) were classified into groups according to KD +/− CA-I co-therapy. Fourteen patients had occult hematuria or worse, including 6 with radiologically confirmed stones. Three of 6 calculi developed in the KD + ZNS group of 17 patients who were co-treated for a cumulative total of 97 months (3.1 stones per 100 patient months). One confirmed stone was in the KD + TPM group of 22 children who were co-treated for a cumulative total of 263 months (0.4 stones per 100 patient months). All six patients had at least three of five biochemical risk factors including metabolic acidosis, concentrated urine, acid urine, hypercalciuria and hypocitraturia. Standard of care interventions to minimize hypercalciuria, crystalluria and stone formation used routinely by pediatric nephrologists should also be prescribed by neurologists treating patients with combination anti-epileptic therapy. Non-fasting KD initiation, fluid liberalization, potassium citrate prophylaxis as well as regular laboratory surveillance are indicated in this high risk population. PMID:20466520

  14. Effects of a ketogenic diet on ADHD-like behavior in dogs with idiopathic epilepsy.

    Science.gov (United States)

    Packer, Rowena M A; Law, Tsz Hong; Davies, Emma; Zanghi, Brian; Pan, Yuanlong; Volk, Holger A

    2016-02-01

    Epilepsy in humans and rodent models of epilepsy can be associated with behavioral comorbidities including an increased prevalence of attention-deficit/hyperactivity disorder (ADHD). Attention-deficit/hyperactivity disorder symptoms and seizure frequency have been successfully reduced in humans and rodents using a ketogenic diet (KD). The aims of this study were (i) to describe the behavioral profile of dogs with idiopathic epilepsy (IE) while on a standardized nonketogenic placebo diet, to determine whether ADHD-like behaviors are present, and (ii) to examine the effect of a ketogenic medium chain triglyceride diet (MCTD) on the behavioral profile of dogs with idiopathic epilepsy (IE) compared with the standardized placebo control diet, including ADHD-like behaviors. A 6-month prospective, randomized, double-blinded, placebo-controlled, crossover dietary trial comparing the effects of the MCTD with a standardized placebo diet on canine behavior was carried out. Dogs diagnosed with IE, with a seizure frequency of at least 3 seizures in the past 3months (n=21), were fed the MCTD or placebo diet for 3months and were then switched to the alternative diet for 3months. Owners completed a validated behavioral questionnaire to measure 11 defined behavioral factors at the end of each diet period to report their dogs' behavior, with three specific behaviors hypothesized to be related to ADHD: excitability, chasing, and trainability. The highest scoring behavioral factors in the placebo and MCTD periods were excitability (mean±SE: 1.910±0.127) and chasing (mean±SE: 1.824±0.210). A markedly lower trainability score (mean±SE: 0.437±0.125) than that of previously studied canine populations was observed. The MCTD resulted in a significant improvement in the ADHD-related behavioral factor chasing and a reduction in stranger-directed fear (pdiet. The latter effect may be attributed to previously described anxiolytic effects of a KD. These data support the supposition that

  15. Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    David N Ruskin

    Full Text Available Prenatal factors influence autism spectrum disorder (ASD incidence in children and can increase ASD symptoms in offspring of animal models. These may include maternal immune activation (MIA due to viral or bacterial infection during the first trimesters. Unfortunately, regardless of ASD etiology, existing drugs are poorly effective against core symptoms. For nearly a century a ketogenic diet (KD has been used to treat seizures, and recent insights into mechanisms of ASD and a growing recognition that immune/inflammatory conditions exacerbate ASD risk has increased interest in KD as a treatment for ASD. Here we studied the effects of KD on core ASD symptoms in offspring exposed to MIA. To produce MIA, pregnant C57Bl/6 mice were injected with the viral mimic polyinosinic-polycytidylic acid; after weaning offspring were fed KD or control diet for three weeks. Consistent with an ASD phenotype of a higher incidence in males, control diet-fed MIA male offspring were not social and exhibited high levels of repetitive self-directed behaviors; female offspring were unaffected. However, KD feeding partially or completely reversed all MIA-induced behavioral abnormalities in males; it had no effect on behavior in females. KD-induced metabolic changes of reduced blood glucose and elevated blood ketones were quantified in offspring of both sexes. Prior work from our laboratory and others demonstrate KDs improve relevant behaviors in several ASD models, and here we demonstrate clear benefits of KD in the MIA model of ASD. Together these studies suggest a broad utility for metabolic therapy in improving core ASD symptoms, and support further research to develop and apply ketogenic and/or metabolic strategies in patients with ASD.

  16. Investigating the Ketogenic Diet As Treatment for Primary Aggressive Brain Cancer: Challenges and Lessons Learned.

    Science.gov (United States)

    Schwartz, Kenneth A; Noel, Mary; Nikolai, Michele; Chang, Howard T

    2018-01-01

    Survival of glioblastoma multiforme (GBM) with the current recommended treatment is poor. Reported median survivals are approximately 8-15 months. Based on recent publications from animal models, combining cancer drugs, radiation, and diet-metabolic treatments may be a new route to better survivals. To investigate this possibility, we have begun a clinical trial that has enrolled 15 subjects using a ketogenic diet (KD) as an addition to current standard treatments that include surgery, radiation therapy, and chemotherapy. Of the 15 enrolled, 10 completed the protocol. This perspective describes the challenges and lessons learned during this clinical trial and discusses the critical elements that are essential for investigating treatment with a KD. We also reviewed and compared various types of KDs. We believe that the diet selected should be standardized within individual clinical trials, and more importantly, the patients' blood should be monitored for glucose and ketones twice daily so that the supervising dietitian can work with the patient and their caregivers to make appropriate changes in the diet. Compliance with the diet is best in highly motivated patients who have excellent home support from a family member or a friend who can help to overcome administrative, physical, and cognition deficiencies associated with the disease. Treatment of GBM using a KD represents a reasonable investigative approach. This perspective summarizes the challenges and lessons learned implementing and continuing KD therapy while the patients are concurrently being treated with radiation and chemotherapy.

  17. Investigating the Ketogenic Diet As Treatment for Primary Aggressive Brain Cancer: Challenges and Lessons Learned

    Directory of Open Access Journals (Sweden)

    Kenneth A. Schwartz

    2018-02-01

    Full Text Available Survival of glioblastoma multiforme (GBM with the current recommended treatment is poor. Reported median survivals are approximately 8–15 months. Based on recent publications from animal models, combining cancer drugs, radiation, and diet-metabolic treatments may be a new route to better survivals. To investigate this possibility, we have begun a clinical trial that has enrolled 15 subjects using a ketogenic diet (KD as an addition to current standard treatments that include surgery, radiation therapy, and chemotherapy. Of the 15 enrolled, 10 completed the protocol. This perspective describes the challenges and lessons learned during this clinical trial and discusses the critical elements that are essential for investigating treatment with a KD. We also reviewed and compared various types of KDs. We believe that the diet selected should be standardized within individual clinical trials, and more importantly, the patients’ blood should be monitored for glucose and ketones twice daily so that the supervising dietitian can work with the patient and their caregivers to make appropriate changes in the diet. Compliance with the diet is best in highly motivated patients who have excellent home support from a family member or a friend who can help to overcome administrative, physical, and cognition deficiencies associated with the disease. Treatment of GBM using a KD represents a reasonable investigative approach. This perspective summarizes the challenges and lessons learned implementing and continuing KD therapy while the patients are concurrently being treated with radiation and chemotherapy.

  18. The Short-Term Effect of Ketogenic Diet on Carotid Intima-Media Thickness and Elastic Properties of the Carotid Artery and the Aorta in Epileptic Children.

    Science.gov (United States)

    Doksöz, Önder; Güzel, Orkide; Yılmaz, Ünsal; İşgüder, Rana; Çeleğen, Kübra; Meşe, Timur; Uysal, Utku

    2015-10-01

    The aim of this prospective study is to investigate the effect of a 6-month-long ketogenic diet on carotid intima-media thickness, carotid artery, and aortic vascular functions. Thirty-eight drug-resistant epileptic patients who were being treated with ketogenic diet were enrolled. Fasting total cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides, total cholesterol, and glucose concentrations were measured and echocardiography was performed in all patients before the beginning of ketogenic diet and at the sixth month of treatment. The body weight, height, body mass index, serum levels of triglyceride, total cholesterol, and low-density lipoprotein increased significantly at month 6 when compared to baseline values (P ketogenic diet has no effect on carotid intima-media thickness and elastic properties of the carotid artery and the aorta. © The Author(s) 2015.

  19. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency

    Directory of Open Access Journals (Sweden)

    Lioudmila Pliss

    2016-06-01

    Conclusion: The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  20. Does the effectiveness of the ketogenic diet in different epilepsies yield insights into its mechanisms?

    Science.gov (United States)

    Hartman, Adam L.

    2009-01-01

    Summary The ketogenic diet (KD) has been used successfully in a variety of epilepsy syndromes. This includes syndromes with multiple etiologies, including Lennox-Gastaut syndrome and infantile spasms; developmental syndromes of unknown etiology, such as Landau-Kleffner syndrome; and idiopathic epilepsies, such as myoclonic-astatic (Doose) epilepsy. It also includes syndromes where genetics play a major role, such as Dravet syndrome, tuberous sclerosis, and Rett syndrome. Study of the KD in humans and animals harboring various genetic mutations may yield insights into the diet’s mechanisms. Comparison of the diet’s effectiveness with other treatments in specific syndromes may be another useful tool for mechanistic studies. The diet’s utility in epilepsy syndromes of various etiologies and in some neurodegenerative disorders suggests it may have multiple mechanisms of action. PMID:19049588

  1. Regulation of brain PPARgamma2 contributes to ketogenic diet anti-seizure efficacy.

    Science.gov (United States)

    Simeone, Timothy A; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2017-01-01

    The ketogenic diet (KD) is an effective therapy primarily used in pediatric patients whom are refractory to current anti-seizure medications. The mechanism of the KD is not completely understood, but is thought to involve anti-inflammatory and anti-oxidant processes. The nutritionally-regulated transcription factor peroxisome proliferator activated receptor gamma, PPARγ, regulates genes involved in anti-inflammatory and anti-oxidant pathways. Moreover, endogenous ligands of PPARγ include fatty acids suggesting a potential role in the effects of the KD. Here, we tested the hypothesis that PPARγ contributes to the anti-seizure efficacy of the KD. We found that the KD increased nuclear protein content of the PPARγ2 splice variant by 2-4 fold (Pepilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ketogenic diet and childhood neurological disorders other than epilepsy: an overview.

    Science.gov (United States)

    Verrotti, Alberto; Iapadre, Giulia; Pisano, Simone; Coppola, Giangennaro

    2017-05-01

    In the last years, ketogenic diet (KD) has been experimentally utilized in various childhood neurologic disorders such as mitochondriopathies, alternating hemiplegia of childhood (AHC), brain tumors, migraine, and autism spectrum disorder (ASD). The aim of this review is to analyze how KD can target these different medical conditions, highlighting possible mechanisms involved. Areas covered: We have conducted an analysis on literature concerning KD use in mitochondriopathies, AHC, brain tumors, migraine, and ASD. Expert commentary: The role of KD in reducing seizure activity in some mitochondriopathies and its efficacy in pyruvate dehydrogenase deficiency is known. Recently, few cases suggest the potentiality of KD in decreasing paroxysmal activity in children affected by AHC. A few data support its potential use as co-adjuvant and alternative therapeutic option for brain cancer, while any beneficial effect of KD on migraine remains unclear. KD could improve cognitive and social skills in a subset of children with ASD.

  3. Potential therapeutic use of the ketogenic diet in autistic spectrum disorders

    Directory of Open Access Journals (Sweden)

    Eleonora eNapoli

    2014-06-01

    Full Text Available The ketogenic diet (KGD has been recognized as an effective treatment for individuals with glucose transporter 1 (GLUT1 and pyruvate dehydrogenase (PDH deficiencies as well as with epilepsy. More recently, its use has been advocated in a number of neurological disorders prompting a newfound interest in its possible therapeutic use in Autism Spectrum Disorders (ASD. One study and one case report indicated that children with ASD treated with a KGD showed decreased seizure frequencies and exhibited behavioral improvements (i.e., improved learning abilities and social skills. The KGD could benefit individuals with ASD affected with epileptic episodes as well those with either PDH or mild RC (respiratory chain Complex deficiencies. Given that the mechanism of action of the KGD is not fully understood, caution should be exercised in ASD cases lacking a careful biochemical and metabolic characterization to avoid deleterious side effects or refractory outcomes.

  4. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet.

    Science.gov (United States)

    Moreno, Cesar L; Mobbs, Charles V

    2017-11-05

    Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms. Copyright © 2016. Published by Elsevier B.V.

  5. Ketogenic Diet: An Early Option for Epilepsy Treatment, Instead of A Last Choice Only

    Directory of Open Access Journals (Sweden)

    Huei-Shyong Wang

    2012-02-01

    Full Text Available Ketogenic diet (KD was usually tried as a last resort in the treatment of intractable epilepsy after failure of many antiepileptics and even epilepsy surgery. Glucose transporter-1 deficiency and pyruvate dehydrogenase deficiency must be treated with KD as the first choice because of inborn errors of glucose metabolism. Infantile spasms, tuberous sclerosis complex, Rett syndrome, Doose syndrome, Dravet syndrome, etc., appear to respond to KD, and it has been suggested by the international consensus statement to use KD early. We believe that all patients with epilepsy, except those with contraindicated situations such as pyruvate carboxylase deficiency, porphyria, β-oxidation defects, primary carnitine deficiency, etc., may try KD before trying other regimens.

  6. Practice Paper of the Academy of Nutrition and Dietetics: Classic and Modified Ketogenic Diets for Treatment of Epilepsy.

    Science.gov (United States)

    Roehl, Kelly; Sewak, Sarika L

    2017-08-01

    Ketogenic diet (KD) therapy is an established form of treatment for both pediatric and adult patients with intractable epilepsy. Ketogenic diet is a term that refers to any diet therapy in which dietary composition would be expected to result in a ketogenic state of human metabolism. While historically considered a last-resort therapy, classic KDs and their modified counterparts, including the modified Atkins diet and low glycemic index treatment, are gaining ground for use across the spectrum of seizure disorders. Registered dietitian nutritionists are often the first line and the most influential team members when it comes to treating those on KD therapy. This paper offers registered dietitian nutritionists insight into the history of KD therapy, an overview of the various diets, and a brief review of the literature with regard to efficacy; provides basic guidelines for practical implementation and coordination of care across multiple health care and community settings; and describes the role of registered dietitian nutritionists in achieving successful KD therapy. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

    Directory of Open Access Journals (Sweden)

    Zhou Weihua

    2007-02-01

    Full Text Available Abstract Background Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal®, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A and a human malignant glioma (U87-MG. Methods Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal® was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal® on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. Results KetoCal® administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal® diet reduced plasma glucose levels while elevating plasma ketone body (β-hydroxybutyrate levels. Tumor microvessel density was less in the calorically restricted KetoCal® groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, β-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid Co

  8. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer.

    Science.gov (United States)

    Zhou, Weihua; Mukherjee, Purna; Kiebish, Michael A; Markis, William T; Mantis, John G; Seyfried, Thomas N

    2007-02-21

    Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG). Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. KetoCal administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal diet reduced plasma glucose levels while elevating plasma ketone body (beta-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, beta-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the tumors than in the contralateral normal

  9. Obesity treatment by very low-calorie-ketogenic diet at two years: reduction in visceral fat and on the burden of disease.

    Science.gov (United States)

    Moreno, Basilio; Crujeiras, Ana B; Bellido, Diego; Sajoux, Ignacio; Casanueva, Felipe F

    2016-12-01

    The long-term effect of therapeutic diets in obesity treatment is a challenge at present. The current study aimed to evaluate the long-term effect of a very low-calorie-ketogenic (VLCK) diet on excess adiposity. Especial focus was set on visceral fat mass, and the impact on the individual burden of disease. A group of obese patients (n = 45) were randomly allocated in two groups: either the very low-calorie-ketogenic diet group (n = 22), or a standard low-calorie diet group; (n = 23). Both groups received external support. Adiposity parameters and the cumulative number of months of successful weight loss (5 or 10 %) over a 24-month period were quantified. The very low-calorie-ketogenic diet induced less than 2 months of mild ketosis and significant effects on body weight at 6, 12, and 24 months. At 24 months, a trend to regress to baseline levels was observed; however, the very low-calorie-ketogenic diet induced a greater reduction in body weight (-12.5 kg), waist circumference (-11.6 cm), and body fat mass (-8.8 kg) than the low-calorie diet (-4.4 kg, -4.1 cm, and -3.8 kg, respectively; p ketogenic diet group experienced a reduction in the individual burden of obesity because reduction in disease duration. Very low-calorie-ketogenic diet patients were 500 months with 5 % weight lost vs. the low-calorie diet group (350 months; p ketogenic diet was effective 24 months later, with a decrease in visceral adipose tissue and a reduction in the individual burden of disease.

  10. Ketogenic diet for treatment of intractable epilepsy in adults: A meta-analysis of observational studies.

    Science.gov (United States)

    Liu, Hongyan; Yang, Yi; Wang, Yunbing; Tang, Hong; Zhang, Fan; Zhang, Yong; Zhao, Yong

    2018-03-01

    The ketogenic diet (KD) is an effective treatment for children with drug-resistant epilepsy and has been widely used in young children. Adult patients with intractable epilepsy would also benefit from this dietary treatment. However, only a few studies have been published, and the use of the KD in intractable epilepsy in adults has been limited. This meta-analysis summarized the findings of the relevant published studies to identify the efficacy of the KD for the treatment of intractable epilepsy in adults. In this meta-analysis, PubMed, Embase, and Cochrane Library were used for searching studies concerning the effects of the KD and its major subtypes with intractable epilepsy in adults published up to January 10, 2017. The primary outcomes were seizure freedom, seizure reduction by 50% or more, and seizure reduction by epilepsy were 13%, 53%, and 27%, respectively. The adverse reactions of the KD were mild, whereas low glycemic index diet (LGID) and low-dose fish oil diet (LFOD) may have fewer side effects. Weight loss, high level of low-density lipoprotein, and elevated total cholesterol were most frequent. The meta-analysis indicates that the KD for refractory epilepsy in adults is a well-tolerated treatment and that its side effects are acceptable, which show that the KD is a promising treatment in adult intractable epilepsy. Further research is needed to assess which type of diet or ratio is more effective in the KD treatment.

  11. Can we predict efficacy of the ketogenic diet in children with refractory epilepsy?

    Science.gov (United States)

    Vehmeijer, Florianne O L; van der Louw, Elles J T M; Arts, Willem F M; Catsman-Berrevoets, Coriene E; Neuteboom, Rinze F

    2015-11-01

    The ketogenic diet (KD) can be effective in reducing seizures in children. Predictors of success have not been identified yet. To evaluate efficacy of KD treatment and to search for child- or diet-related factors that can predict its efficacy at 12 months follow-up. In addition we wish to determine the usefulness of a 3-month KD trial period. Single center retrospective study in a university paediatric hospital of children with refractory epilepsy in which the KD had been initiated. Patient and diet characteristics as well as seizure reduction data were obtained from medical records and parental review. Efficacy of the KD was defined as ≥ 50% seizure reduction. Variables were evaluated in their relation to a successful treatment at three and 12 months after diet initiation. During a 9.5-year period, the KD was initiated in 59 children with refractory epilepsy. Twenty-four children were still on the KD after 12 months, and 21 experienced ≥50% seizure reduction. Success of the KD at three months was significantly related to a successful response to KD treatment at 12 months (p epilepsy. No significant relationships between variables and efficacy at 12 months were revealed. Children with a successful response at 3 months were significantly more likely to achieve success at 12 months of KD treatment. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  12. A low-carbohydrate, ketogenic diet to treat type 2 diabetes.

    Science.gov (United States)

    Yancy, William S; Foy, Marjorie; Chalecki, Allison M; Vernon, Mary C; Westman, Eric C

    2005-12-01

    The low-carbohydrate, ketogenic diet (LCKD) may be effective for improving glycemia and reducing medications in patients with type 2 diabetes. From an outpatient clinic, we recruited 28 overweight participants with type 2 diabetes for a 16-week single-arm pilot diet intervention trial. We provided LCKD counseling, with an initial goal of diabetes medication dosages at diet initiation. Participants returned every other week for measurements, counseling, and further medication adjustment. The primary outcome was hemoglobin A1c. Twenty-one of the 28 participants who were enrolled completed the study. Twenty participants were men; 13 were White, 8 were African-American. The mean [+/- SD] age was 56.0 +/- 7.9 years and BMI was 42.2 +/- 5.8 kg/m2. Hemoglobin A1c decreased by 16% from 7.5 +/- 1.4% to 6.3 +/- 1.0% (p Diabetes medications were discontinued in 7 participants, reduced in 10 participants, and unchanged in 4 participants. The mean body weight decreased by 6.6% from 131.4 +/- 18.3 kg to 122.7 +/- 18.9 kg (p diabetes such that diabetes medications were discontinued or reduced in most participants. Because the LCKD can be very effective at lowering blood glucose, patients on diabetes medication who use this diet should be under close medical supervision or capable of adjusting their medication.

  13. Ketogenic diet effects on neurobehavioral development of children with intractable epilepsy: A prospective study.

    Science.gov (United States)

    Zhu, Dengna; Wang, Mingmei; Wang, Jun; Yuan, Junying; Niu, Guohui; Zhang, Guangyu; Sun, Li; Xiong, Huachun; Xie, Mengmeng; Zhao, Yunxia

    2016-02-01

    This study aimed to determine the impact of a ketogenic diet (KD) on neurobehavioral development when used to treat children with intractable epilepsy, confirming the efficacy of the KD, as well as the correlation between early electroencephalography (EEG) changes in the early stage with treatment efficacy. We enrolled 42 children who were starting treatment for intractable epilepsy with the classic KD protocol. The total development quotient as well as the development quotients for adaptability, gross motor movements, fine motor movements, language, and individual-social interaction on the Gesell developmental scales were assessed before and after 3, 6, 12, and 18 months of KD treatment. The efficacy assessment was based on changes in seizure frequency after KD as recorded by the parents. We conducted 24-h video-EEG before and after 1 month of KD treatment. Developmental quotients of five energy regions in the Gesell developmental scales assessment were used to compare adaptability (P1=0.000), gross motor movements (P2=0.010), and fine motor movements (P3=0.000); the results showed significant differences. After KD treatment at different time points, 69.0%, 54.8%, 40.5%, and 33.3% patients, respectively, achieved a ≥50% reduction in seizure frequency. The reduction of epileptiform discharges in the awake state after 1 month of KD treatment correlated with the efficacy after 3 months of KD treatment. Ketogenic diet treatment tends to be associated with improved neurobehavioral development, and more significant improvement can be obtained with prolonged treatment. The KD is safe and effective in treating children with intractable epilepsy. Early EEG changes correlate with clinical efficacy, to a certain degree. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Van Leuven Fred

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results Starting at three months of age, two groups of female transgenic mice carrying the "London" APP mutation (APP/V717I were fed either, a standard diet (SD composed of high carbohydrate/low fat chow, or a ketogenic diet (KD composed of very low carbohydrate/high saturated fat chow for 43 days. Animals fed the KD exhibited greatly elevated serum ketone body levels, as measured by β-hydroxybutyrate (3.85 ± 2.6 mM, compared to SD fed animals (0.29 ± 0.06 mM. In addition, animals fed the KD lost body weight (SD 22.2 ± 0.6 g vs. KD 17.5 ± 1.4 g, p = 0.0067. In contrast to earlier studies, the brief KD feeding regime significantly reduced total brain Aβ levels by approximately 25%. Despite changes in ketone levels, body weight, and Aβ levels, the KD diet did not alter behavioral measures. Conclusion Previous studies have suggested that diets rich in cholesterol and saturated fats increased the deposition of Aβ and the risk of developing AD. Here we demonstrate that a diet rich in saturated fats and low in carbohydrates can actually reduce levels of Aβ. Therefore, dietary strategies aimed at reducing Aβ levels should take into account interactions of dietary components and the metabolic outcomes, in particular, levels of carbohydrates, total calories, and presence of ketone bodies should be considered.

  15. Very low-calorie ketogenic diet may allow restoring response to systemic therapy in relapsing plaque psoriasis.

    Science.gov (United States)

    Castaldo, Giuseppe; Galdo, Giovanna; Rotondi Aufiero, Felice; Cereda, Emanuele

    2016-01-01

    Psoriasis is a chronic disease associated with overweight/obesity and related cardiometabolic complications. The link between these diseases is likely the inflammatory background associated with adipose tissue, particularly the visceral one. Accordingly, previous studies have demonstrated that in the long-term weight loss may improve the response to systemic therapies. We report a case report of a woman in her 40s suffering from relapsing moderate-to-severe plaque psoriasis and obesity-related metabolic syndrome, in whom adequate response to ongoing treatment with biological therapy (adalimumab) was restored after only 4 weeks of very low-calorie, carbohydrate-free (ketogenic), protein-based diet. Accordingly, through rapid and consistent weight loss, very low calorie ketogenic diet may allow restoring a quick response to systemic therapy in a patient suffering from relapsing psoriasis. This intervention should be considered in overweight/obese patients before the rearrangement of systemic therapy. Nonetheless, studies are required to evaluate whether very low calorie ketogenic diets should be preferred to common low-calorie diets to improve the response to systemic therapy at least in patients with moderate-to-severe psoriasis. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  16. Current Insights Into Inositol Isoforms, Mediterranean and Ketogenic Diets for Polycystic Ovary Syndrome: From Bench to Bedside.

    Science.gov (United States)

    Muscogiuri, Giovanna; Palomba, Stefano; Laganà, Antonio Simone; Orio, Francesco

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a complex syndrome characterized by reproductive and metabolic implications. Lifestyle changes, such as diet and exercise, are considered first-line treatment for women affected by PCOS. Pharmacologic treatments target the hormonal and metabolic dysregulations associated to the disease such as insulin resistance, anovulation, hirsutism and menstrual irregularities. To focus on the role of inositol isoforms, as well as Mediterranean and ketogenic diets, as possible therapeutic strategies in PCOS women. Narrative overview, synthesizing the findings of literature retrieved from searches of computerized databases. Accumulating evidence suggests that two inositol isoforms, myo- and D-chiro-, may play a pivotal role in re-addressing both hormonal and metabolic parameters toward homeostasis, counteracting the symptoms and signs typical of this syndrome. In addition, studies focused on Mediterranean and ketogenic diet provided positive results in patients affected by obesity and type 2 diabetes, so these dietetic regimens could represent a fascinating dietetic treatment for the management of PCOS. Both the isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS. In spite of accumulating evidence, it is currently not possible to draw firm conclusion(s) about the efficacy of these interventions considering the severe bias due to different samples size, dose, and duration of intervention among the published studies on this topic. Furthermore, future longitudinal cohort studies along with prospective interventional trials may contribute to better clarify the role of Mediterranean and ketogenic diets in the treatment of PCOS.

  17. Acid-base safety during the course of a very low-calorie-ketogenic diet.

    Science.gov (United States)

    Gomez-Arbelaez, Diego; Crujeiras, Ana B; Castro, Ana I; Goday, Albert; Mas-Lorenzo, Antonio; Bellon, Ana; Tejera, Cristina; Bellido, Diego; Galban, Cristobal; Sajoux, Ignacio; Lopez-Jaramillo, Patricio; Casanueva, Felipe F

    2017-10-01

    Very low-calorie ketogenic (VLCK) diets have been consistently shown to be an effective obesity treatment, but the current evidence for its acid-base safety is limited. The aim of the current work was to evaluate the acid-base status of obese patients during the course of a VLCK diet. Twenty obese participants undertook a VLCK diet for 4 months. Anthropometric and biochemical parameters, and venous blood gases were obtained on four subsequent visits: visit C-1 (baseline); visit C-2, (1-2 months); maximum ketosis; visit C-3 (2-3 months), ketosis declining; and visit C-4 at 4 months, no ketosis. Results were compared with 51 patients that had an episode of diabetic ketoacidosis as well as with a group that underwent a similar VLCK diet in real life conditions of treatment. Visit C1 blood pH (7.37 ± 0.03); plasma bicarbonate (24.7 ± 2.5 mmol/l); plasma glucose (96.0 ± 11.7 mg/l) as well as anion gap or osmolarity were not statistically modified at four months after a total weight reduction of 20.7 kg in average and were within the normal range throughout the study. Even at the point of maximum ketosis all variables measured were always far from the cut-off points established to diabetic ketoacidosis. During the course of a VLCK diet there were no clinically or statistically significant changes in glucose, blood pH, anion gap and plasma bicarbonate. Hence the VLCK diet can be considered as a safe nutritional intervention for the treatment of obesity in terms of acid-base equilibrium.

  18. Eucaloric Ketogenic Diet Reduces Hypoglycemia and Inflammation in Mice with Endotoxemia.

    Science.gov (United States)

    Nandivada, Prathima; Fell, Gillian L; Pan, Amy H; Nose, Vania; Ling, Pei-Ra; Bistrian, Bruce R; Puder, Mark

    2016-06-01

    Dietary strategies to alter the immune response to acute inflammation have the potential to improve outcomes in critically ill patients. A eucaloric ketogenic diet (EKD), composed predominantly of fat with very small amounts of carbohydrate, can provide adequate caloric support while minimizing spikes in blood glucose and reducing oxidative stress. The purpose of this study was to evaluate the effects of an EKD on glycemic control and the inflammatory response after acute endotoxemia in mice. Mice received either an EKD or a carbohydrate-based control diet (CD) for 4 weeks. Animals subsequently underwent either a 2-h fast (postprandial) or an overnight fast (postabsorptive), and half of the animals in each diet group were randomized to receive either intraperitoneal lipopolysaccharide (1 mg/kg) or an equivalent volume of saline. Glycemic response, insulin resistance, inflammatory cytokine levels, and the expression of key inflammatory and metabolic genes were measured. After endotoxin challenge, hypoglycemia was more frequent in mice fed a CD than an EKD in the postprandial period. This was due in part to the preservation of hepatic glycogen stores despite endotoxin exposure and prolonged fasting in mice fed an EKD. Furthermore, mice fed the CD had higher levels of IL-6 and TNF-α in the postabsorptive period, with a fivefold higher expression of hepatic NFκB compared to mice fed the EKD in both fasting periods. These results suggest that the unique metabolic state induced by an EKD can alter the response to acute inflammation in mice.

  19. Concomitant lamotrigine use is associated with decreased efficacy of the ketogenic diet in childhood refractory epilepsy.

    Science.gov (United States)

    van der Louw, Elles J T M; Desadien, Raakhee; Vehmeijer, Florianne O L; van der Sijs, Heleen; Catsman-Berrevoets, Coriene E; Neuteboom, Rinze F

    2015-11-01

    Anti-epileptic drugs (AEDs) and the ketogenic diet (KD) are often used concomitantly in children with refractory epilepsy. It has been hypothesised that certain AEDs may interfere with KD. The purpose of this study was to elucidate relationships between efficacy of KD and use of specific AEDs. A retrospective study was performed in 71 children with refractory epilepsy starting the KD between 2008 and 2014 in Erasmus University Hospital Sophia Children's Hospital. Efficacy of the KD (defined as 50% seizure reduction) was evaluated after three months of treatment and related to the AEDs used. The KD was successful after three months in 61% of the children (N=71). Efficacy was significantly reduced if children (n=16) used lamotrigine (31%) at diet initiation or in the course of the diet, compared to other antiepileptic drugs (69%) (p=0.006). In comparison to children using other antiepileptic drugs, the percentage of children that had adequate ketosis was significantly reduced in case of lamotrigine use (p=0.049). Lamotrigine treatment during KD is associated with a decreased efficacy of the KD. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. A low-carbohydrate, ketogenic diet to treat type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Chalecki Allison M

    2005-12-01

    Full Text Available Abstract Background The low-carbohydrate, ketogenic diet (LCKD may be effective for improving glycemia and reducing medications in patients with type 2 diabetes. Methods From an outpatient clinic, we recruited 28 overweight participants with type 2 diabetes for a 16-week single-arm pilot diet intervention trial. We provided LCKD counseling, with an initial goal of 1c. Results Twenty-one of the 28 participants who were enrolled completed the study. Twenty participants were men; 13 were White, 8 were African-American. The mean [± SD] age was 56.0 ± 7.9 years and BMI was 42.2 ± 5.8 kg/m2. Hemoglobin A1c decreased by 16% from 7.5 ± 1.4% to 6.3 ± 1.0% (p 1c. Fasting serum triglyceride decreased 42% from 2.69 ± 2.87 mmol/L to 1.57 ± 1.38 mmol/L (p = 0.001 while other serum lipid measurements did not change significantly. Conclusion The LCKD improved glycemic control in patients with type 2 diabetes such that diabetes medications were discontinued or reduced in most participants. Because the LCKD can be very effective at lowering blood glucose, patients on diabetes medication who use this diet should be under close medical supervision or capable of adjusting their medication.

  1. An observational study of sequential protein-sparing, very low-calorie ketogenic diet (Oloproteic diet) and hypocaloric Mediterranean-like diet for the treatment of obesity.

    Science.gov (United States)

    Castaldo, Giuseppe; Monaco, Luigi; Castaldo, Laura; Galdo, Giovanna; Cereda, Emanuele

    2016-09-01

    The impact of a rehabilitative multi-step dietary program consisting in different diets has been scantily investigated. In an open-label study, 73 obese patients underwent a two-phase weight loss (WL) program: a 3-week protein-sparing, very low-calorie, ketogenic diet (Diet) and a 6-week hypocaloric (25-30 kcal/kg of ideal body weight/day), low glycemic index, Mediterranean-like diet (hypo-MD). Both phases improved visceral adiposity, liver enzymes, GH levels, blood pressure and glucose and lipid metabolism. However, the hypo-MD was responsible for a re-increase in blood lipids and glucose tolerance parameters. Changes in visceral adiposity and glucose control-related variables were more consistent in patients with metabolic syndrome. However, in these patients the hypo-MD did not result in a consistent re-increase in glucose control-related variables. A dietary program consisting in a ketogenic regimen followed by a balanced MD appeared to be feasible and efficacious in reducing cardiovascular risk, particularly in patients with metabolic syndrome.

  2. Pediatric patients on ketogenic diet undergoing general anesthesia-a medical record review.

    Science.gov (United States)

    Soysal, Elif; Gries, Heike; Wray, Carter

    2016-12-01

    To identify guidelines for anesthesia management and determine whether general anesthesia is safe for pediatric patients on ketogenic diet (KD). Retrospective medical record review. Postoperative recovery area. All pediatric patients who underwent general anesthesia while on KD between 2009 and 2014 were reviewed. We identified 24 patients who underwent a total of 33 procedures. All children were on KD due to intractable epilepsy. The age of patients ranged from 1 to 15 years. General anesthesia for the scheduled procedures. Patients' demographics, seizure history, type of procedure; perioperative blood chemistry, medications including the anesthesia administered, and postoperative complications. Twenty-four patients underwent a total of 33 procedures. The duration of KD treatment at the time of general anesthesia ranged from 4 days to 8 years. Among the 33 procedures, 3 patients had complications that could be attributable to KD and general anesthesia. A 9-year-old patient experienced increased seizures on postoperative day 0. An 8-year-old patient with hydropcephalus developed metabolic acidosis on postoperative day 1, and a 7-year-old patient's procedure was complicated by respiratory distress and increased seizure activity in the postanesthesia care unit. This study showed that it is relatively safe for children on KD to undergo general anesthesia. The 3 complications attributable to general anesthesia were mild, and the increased seizure frequencies in 2 patients returned back to baseline in 24 hours. Although normal saline is considered more beneficial than lactated Ringer's solution in patients on KD, normal saline should also be administered carefully because of the risk of exacerbating patients' metabolic acidosis. One should be aware of the potential change of the ketogenic status due to drugs given intraoperatively. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats

    OpenAIRE

    Zhao, Ming; Huang, Xin; Cheng, Xiang; Lin, Xiao; Zhao, Tong; Wu, Liying; Yu, Xiaodan; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2017-01-01

    Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD) has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypo...

  4. Effects of n-3 Polyunsaturated Fatty Acids (ω-3 Supplementation on Some Cardiovascular Risk Factors with a Ketogenic Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2015-02-01

    Full Text Available Background: the ketogenic diet (KD has become a widely used nutritional approach for weight loss. Some of the KD’s positive effects on metabolism and cardiovascular risk factors are similar to those seen after n-3 polyunsaturated fatty acids (ω-3 supplementation. We hypothesized that a ketogenic Mediterranean diet with phytoextracts combined with ω-3 supplementation may have increased positive effects on cardiovascular risk factors and inflammation. Methods: We analyzed 34 male overweight subjects; aged between 25 and 65 years who were overall healthy apart from overweight. The subjects followed a ketogenic diet protocol for four weeks; with (KDO3 or without (KD ω-3 supplementation. Results: All subjects experienced a significant loss of body weight and body fat and there was no significant differences between treatment (body weight: KD—4.7 kg, KDO3—4.03 kg, body fat KD—5.41 kg, KDO3—5.86 kg. There were also significant decreases in total cholesterol, LDL-c, and glucose levels. Triglycerides and insulin levels decreased more in KDO3 vs. KD subjects, with a significant difference. All the investigated inflammatory cytokines (IL-1β, IL-6, TNF-α decreased significantly in KDO3 subjects whilst only TNF-α showed a significant decrease in KD subjects over the 12 month study period. No significant changes were observed in anti-inflammatory cytokines (IL-10 and IL-1Ra, creatinine, urea and uric acid. Adiponectin increased significantly only in the KDO3 group. Conclusions: ω-3 supplementation improved the positive effects of a ketogenic Mediterranean diet with phytoextracts on some cardiovascular/metabolic risk factors and inflammatory state.

  5. [Changes in serum levels of selenium, zinc and copper in patients on a ketogenic diet using Ketonformula].

    Science.gov (United States)

    Hayashi, Anri; Kumada, Tomohiro; Nozaki, Fumihito; Hiejima, Ikuko; Miyajima, Tomoko; Fujii, Tatsuya

    2013-07-01

    Ketogenic diets tend to cause trace mineral deficiencies. Ketonformula is a foumula for a ketogenic diet developed by Meiji Co Ltd in Japan. No reports are available on the trace mineral deficiencies associated with a use of Ketonformula. We monitored the serum levels of selenium, zinc and copper as well as the amount of the daily intake of these minerals before and at 6 months after the initiation of the ketogenic diet with Ketonformula in six patients with intractable epilepsy associated with severe motor and intellectual disabilities. The median serum selenium concentration decreased from 7.0 (range, 6.5-12.3) microg/dl to 6.2 (5.4-10.9) microg/dl as a result of the 6-month-treatment with Ketonformula (p selenium intake decreased from 17.8 (15.0-27.0) microg/day at the baseline to 5.5 (5.0-22.0) microg/day after 6 months on the diet (p zinc concentration increased slightly (from 66.0 (46.0-84.0) microg/dl to 68.0 (46.0-71.0) microg/dl), but the difference was not significant. The median daily zinc intake, however, significantly decreased from 4.2 (3.7-6.0) mg/day to 2.2 (2.0-3.0) mg/day (p selenium concentrations and daily enteral intakes of selenium, zinc, and copper after 6 months on Ketonformula suggested that patients on this ketogenic formula needs close monitoring as well as supplementation of these trace minerals.

  6. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model

    OpenAIRE

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, Ren? Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Introduction Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer?s oxidative phosphorylation system. Methods Xenografts were established in CD-1 nude mice by subcutaneous injection of two ne...

  7. Combination treatment of epilepsy with ketogenic diet and concurrent pharmacological inhibition of cytochrome P450 2E1.

    Science.gov (United States)

    Palmer, Michael

    2013-04-01

    While most epileptic patients respond to treatment with existing antiepileptic drugs, there remains a considerable number of patients in whom these drugs do not suffice. Such patients, particularly children, are often treated using the ketogenic diet. This diet imposes a strict limit on carbohydrates; while providing for adequate protein, most of the calories are supplied as triacylglycerol, much of which is metabolized to ketone bodies. Animal experiments have provided evidence that the anticonvulsant effect of the ketogenic diet is mediated by acetone and correlates with blood acetone levels. Acetone can be converted in vivo to glucose via acetol and pyruvate; the initial conversion to acetol is catalyzed by cytochrome P450 2E1 (CYP2E1). When CYP2E1 knockout mice are subjected to starvation to induce ketogenesis, they develop blood acetone levels much higher than those observed in wild-type mice. Similarly, pharmacological inhibition of CYP2E1 significantly increases blood acetone levels in rat and man. Taken together, these observations suggest that pharmacological inhibition of CYP2E1 has the potential to significantly increase the antiepileptic effect of the ketogenic diet. With patients that respond insufficiently to the diet alone, increased acetone levels may improve response. With patients who respond sufficiently to the diet, CYP2E1 inhibitors might allow a relaxation of the fairly severe diet regimen and so improve compliance and quality of life. An existing inhibitor of CYP2E1 is the drug disulfiram. This drug also inhibits the enzyme aldehyde dehydrogenase, which functions in alcohol degradation, and in this capacity has long been used in the treatment of alcohol addiction. Disulfiram inhibits CYP2E1 at conventional therapeutic dosages and increases blood acetone levels in humans and animals. It should therefore be a viable candidate for the proposed drug/diet combination treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet.

    Science.gov (United States)

    Steriade, Claude; Andrade, Danielle M; Faghfoury, Hanna; Tarnopolsky, Mark A; Tai, Peter

    2014-05-01

    Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome can present management challenges. Refractory seizures and stroke-like episodes leading to disability are common. We analyzed the clinical, electrophysiologic, and radiologic data of a 22-year-old woman with multiple episodes of generalized and focal status epilepticus and migratory cortical stroke-like lesions who underwent muscle biopsy for mitochondrial genome sequencing. Although initial mitochondrial genetic testing was negative, muscle biopsy demonstrated a mitochondrial DNA disease-causing mutation (m.3260A > G). New antiepileptic medications were added with each episode of focal status epilepticus with only temporary improvement, until a modified ketogenic diet and magnesium were introduced, leading to seizure freedom despite development of a new stroke-like lesion, and subsequent decrease in frequency of stroke-like episodes. We propose a metabolic model in which the ketogenic diet may lead to improvement of the function of respiratory chain complexes. The ketogenic diet may lead to improvement of mitochondrial dysfunction in MELAS, which in turn may promote better seizure control and less frequent stroke-like episodes. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  9. The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: A case series in general practice.

    Science.gov (United States)

    Jansen, Natalie; Walach, Harald

    2016-01-01

    Since the initial observations by Warburg in 1924, it has become clear in recent years that tumour cells require a high level of glucose to proliferate. Therefore, a ketogenic diet that provides the body with energy mainly through fat and proteins, but contains a reduced amount of carbohydrates, has become a dietary option for supporting tumour treatment and has exhibited promising results. In the present study, the first case series of such a treatment in general practice is presented, in which 78 patients with tumours were treated within a time window of 10 months. The patients were monitored regarding their levels of transketolase-like-1 (TKTL1), a novel tumour marker associated with aerobic glycolysis of tumour cells, and the patients' degree of adherence to a ketogenic diet. Tumour progression was documented according to oncologists' reports. Tumour status was correlated with TKTL1 expression (Kruskal-Wallis test, Pketogenic diet, with one patient experiencing a stagnation in tumour progression and others an improvement in their condition. The adoption of a ketogenic diet was also observed to affect the levels of TKTL1 in those patients. In conclusion, the results from the present case series in general practice suggest that it may be beneficial to advise tumour patients to adopt a ketogenic diet, and that those who adhere to it may have positive results from this type of diet. Thus, the use of a ketogenic diet as a complementary treatment to tumour therapy must be further studied in rigorously controlled trials.

  10. The Antiepileptic Ketogenic Diet Alters Hippocampal Transporter Levels and Reduces Adiposity in Aged Rats.

    Science.gov (United States)

    Hernandez, Abbi R; Hernandez, Caesar M; Campos, Keila T; Truckenbrod, Leah M; Sakarya, Yasemin; McQuail, Joseph A; Carter, Christy S; Bizon, Jennifer L; Maurer, Andrew P; Burke, Sara N

    2018-03-14

    Nutritional ketosis is induced by high fat/low carbohydrate dietary regimens, which produce high levels of circulating ketone bodies, shifting metabolism away from glucose utilization. While ketogenic diets (KD) were initially introduced to suppress seizures, they are garnering attention for their potential to treat a myriad of neurodegenerative and metabolic disorders that are associated with advanced age. The feasibility and physiological impact of implementing a long-term KD in old animals, however, has not been systematically examined. In this study, young and aged rats consumed a calorically- and nutritionally-matched KD or control diet for 12 weeks. All KD-fed rats maintained higher levels of BHB and lower levels of glucose relative to controls. However, it took the aged rats longer to reach asymptotic levels of BHB compared to young animals. Moreover, KD-fed rats had significantly less visceral white and brown adipose tissue than controls without a loss of lean mass. Interestingly, the KD led to significant alterations in protein levels of hippocampal transporters for monocarboxylates, glucose, and vesicular glutamate and gamma-aminobutyric acid. Most notably, the age-related decline in vesicular glutamate transporter expression was reversed by the KD. These data demonstrate the feasibility and potential benefits of KDs for treating age-associated neural dysfunction.

  11. [Prospective study of ketogenic diet in treatment of children with global developmental delay].

    Science.gov (United States)

    Zhu, Deng-Na; Li, Ping; Wang, Jun; Yuan, Jun-Ying; Zhang, Guang-Yu; Liang, Jiang-Fang; Wang, Ming-Mei; Zhao, Yun-Xia; An, Shuang; Ma, Na; Ma, Dan-Dan

    2017-10-01

    To study the effect of ketogenic diet (KD) on neurobehavioral development, emotional and social behaviors, and life ability in children with global developmental delay (GDD). A prospective case-control study was performed for hospitalized children with GDD, who were randomly divided into KD treatment group (n=40) and conventional treatment group (n=37). The children in both groups were given comprehensive rehabilitation training, and those in the KD treatment group were given modified Atkins diet in addition to the comprehensive rehabilitation training. The children in both groups were assessed with the Gesell Developmental Scale, Chinese version of Urban Infant-Toddler Social and Emotional Assessment (CITSEA)/Achenbach Child Behavior Checklist (CBCL), and Infants-Junior High School Students' Social Life Abilities Scale (S-M scale) before treatment and after 3, 6, and 9 months of treatment. The two groups were compared in terms of the improvements in neurobehavioral development, emotional and social behaviors, and social life ability. After 3, 6, and 9 months of treatment, the KD treatment group had significantly greater improvements in the scores of the adaptive, fine motor, and language quotients of the Gesell Developmental Scale compared with the conventional treatment group (Pemotional behaviors in children with GDD, and it has few adverse effects.

  12. Obesity and tumor growth: inflammation, immunity, and the role of a ketogenic diet.

    Science.gov (United States)

    Wright, Christopher; Simone, Nicole L

    2016-07-01

    This article reviews the impact the obese state has on malignancy through inflammation and immune dysregulation using recent excerpts from the medical literature. The obese state creates a proinflammatory endocrinologic milieu altering cellular signaling between adipocytes, immunologic cells, and epithelial cells, leading to the over-activation of adipose tissue macrophages and the upregulation of compounds associated with carcinogenesis. Obesity correlates with a deficiency in numerous immunologic cells, including dendritic cells, natural killer cells, and T cells. In part, this can be attributed to a recent finding of leptin receptor expression on these immune cells and the upregulation of leptin signaling in the obese state. A number of clinical trials have demonstrated the feasibility of a high-fat, low-carbohydrate diet as an adjuvant treatment for cancer, and current trials are investigating the impact of this intervention on disease outcomes. In preclinical trials, a ketogenic diet has been shown to impede tumor growth in a variety of cancers through anti-angiogenic, anti-inflammatory, and proapoptotic mechanisms. Obesity is becoming more prevalent and its link to cancer is clearly established providing a rationale for the implementation of dietary interventions as an adjuvant therapeutic strategy for malignancy.

  13. Do ketone bodies mediate the anti-seizure effects of the ketogenic diet?

    Science.gov (United States)

    Simeone, Timothy A; Simeone, Kristina A; Stafstrom, Carl E; Rho, Jong M

    2018-05-01

    Although the mechanisms underlying the anti-seizure effects of the high-fat ketogenic diet (KD) remain unclear, a long-standing question has been whether ketone bodies (i.e., β-hydroxybutyrate, acetoacetate and acetone), either alone or in combination, contribute mechanistically. The traditional belief has been that while ketone bodies reflect enhanced fatty acid oxidation and a general shift toward intermediary metabolism, they are not likely to be the key mediators of the KD's clinical effects, as blood levels of β-hydroxybutyrate do not correlate consistently with improved seizure control. Against this unresolved backdrop, new data support ketone bodies as having anti-seizure actions. Specifically, β-hydroxybutyrate has been shown to interact with multiple novel molecular targets such as histone deacetylases, hydroxycarboxylic acid receptors on immune cells, and the NLRP3 inflammasome. Clearly, as a diet-based therapy is expected to render a broad array of biochemical, molecular, and cellular changes, no single mechanism can explain how the KD works. Specific metabolic substrates or enzymes are only a few of many important factors influenced by the KD that can collectively influence brain hyperexcitability and hypersynchrony. This review summarizes recent novel experimental findings supporting the anti-seizure and neuroprotective properties of ketone bodies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The ketogenic diet in patients with myoclonic status in non-progressive encephalopathy.

    Science.gov (United States)

    Caraballo, Roberto; Darra, Francesca; Reyes, Gabriela; Armeno, Marisa; Cresta, Araceli; Mestre, Graciela; Bernardina, Bernardo Dalla

    2017-10-01

    Myoclonic status in non-progressive encephalopathy (MSNPE) is characterized by the recurrence of long-lasting atypical status epilepticus associated with attention impairment and continuous polymorphous jerks, mixed with other complex abnormal movements, in infants suffering from a non-progressive encephalopathy. The ketogenic diet (KD) has been used as an alternative to antiepileptic drugs (AEDs) for patients with refractory epileptic encephalopathies. In this study we assess the efficacy and tolerability of the KD in patients with MSNPE. Between March 1, 1980 and August 31, 2013, 99 patients who met the diagnostic criteria of MSNPE were seen (58 patients in Verona and 41 patients in Buenos Aires). Six of these 99 patients were placed on the KD using the Hopkins protocol and followed for a minimum period of 24 months. Twelve months after initiating the diet, three patients had a 75%-99% decrease in seizures, two had a 50%-74% decrease in seizures, and the remaining child had a less than 50% seizure reduction. In five patients with a seizure reduction of more than 50%, the myoclonic status epilepticus disappeared within 6 months after starting the diet. All patients had very good tolerability and no adverse events were identified. In most of the patients AEDs were reduced. The KD is a promising therapy for MSNPE, with most of our patients showing a more than 50% seizure reduction. In patients that responded well to the diet cognitive performance and quality of life also improved. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  15. PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARγ activation in the liver

    International Nuclear Information System (INIS)

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-01-01

    Research highlights: → PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression. → Hepatic expressions of PPARγ and PCG-1α are induced by a ketogenic diet. → PPARγ antagonist attenuates a ketogenic diet-induced PAI-1 expression. → Ketogenic diet advances the phase of circadian clock in a PPARα-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor α (PPARα) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPARα-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPARα-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPARα target genes such as Cyp4A10 and FGF21 was damped in PPARα-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPARα-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPARα activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPARγ and its coactivator PCG-1α were more effectively induced in PPARα-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPARγ antagonist, in both WT and PPARα-null mice. PPARγ activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression

  16. Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus

    DEFF Research Database (Denmark)

    Hansen, Suzanne L; Nielsen, Ane H; Knudsen, Katrine E

    2009-01-01

    The ketogenic diet (KD) is used for the treatment of refractory epilepsy in children, however, the mechanism(s) remains largely unknown. Also, the antiepileptogenic potential in animal models of epilepsy has been poorly addressed. Activation of cannabinoid type-1 receptor (CB(1)-R) upon seizure...... activity or type of diet. The level of oleoylethanolamide as well as the sum of N-acylethanolamines were significantly decreased by the KD, but were unaffected by seizure activity. The study shows that the KD had clear antiepileptogenic properties in the pentylenetetrazole kindling model and does...

  17. Effect of ketogenic diets on leukocyte counts in patients with epilepsy.

    Science.gov (United States)

    Schreck, Karisa C; Lwin, MonYi; Strowd, Roy E; Henry-Barron, Bobbie J; Blakeley, Jaishri O; Cervenka, Mackenzie C

    2017-12-18

    Ketogenic diets (KDs) have long been used to treat epilepsy and are being explored in a variety of diseases. Preclinical data suggest KDs affect inflammation and cytokine release. It is unknown whether KDs affect white blood cell (WBC) counts over time. This is particularly important in clinical populations who may be immune-suppressed at baseline, such as those with cancer or autoimmune disorders. A retrospective review of 125 consecutive adults seen at the Adult Epilepsy Diet Center (AEDC) was conducted. Clinical data regarding compliance, laboratory data, weights, and diet records were collected. A control cohort consisted of patients evaluated at the AEDC who elected not to complete a prescribed KD. In 52 adults on KDs, there was a small but statistically significant decrease in WBC and absolute neutrophil counts at 6 and 12 months into KD therapy. There was no effect on lymphocyte counts. This pattern was also seen in a small population of patients with gliomas (n = 10) on KDs, most (n = 8) of whom had also received chemotherapy and radiation, putting them at risk for bone marrow suppression. Across both glioma and non-glioma groups, patients with pre-existing lymphopenia did not have further worsening of their counts on the KD. In this retrospective case-control study, a small but significant decrease in total WBC and neutrophil counts was observed in patients with epilepsy treated with the KDs. These patterns are similar in patients with and without gliomas suggesting baseline immunosuppression does not worsen with KD. These findings provide data for prospective confirmatory studies.

  18. A Nutritional Perspective of Ketogenic Diet in Cancer: A Narrative Review.

    Science.gov (United States)

    Oliveira, Camila L P; Mattingly, Stephanie; Schirrmacher, Ralf; Sawyer, Michael B; Fine, Eugene J; Prado, Carla M

    2017-03-30

    The predominant use of glucose anaerobically by cancer cells (Warburg effect) may be the most important characteristic the majority of these cells have in common and, therefore, a potential metabolic pathway to be targeted during cancer treatment. Because this effect relates to fuel oxidation, dietary manipulation has been hypothesized as an important strategy during cancer treatment. As such, the concept of a ketogenic diet (KD) in cancer emerged as a metabolic therapy (ie, targeting cancer cell metabolism) rather than a dietary approach. The therapeutic mechanisms of action of this high-fat, moderate-to-low protein, and very-low-carbohydrate diet may potentially influence cancer treatment and prognosis. Considering the lack of a dietetics-focused narrative review on this topic, we compiled the evidence related to the use of this diet in humans with diverse cancer types and stages, also focusing on the nutrition and health perspective. The use of KD in cancer shows potentially promising, but inconsistent, results. The limited number of studies and differences in study design and characteristics contribute to overall poor quality evidence, limiting the ability to draw evidence-based conclusions. However, the potential positive influences a KD may have on cancer treatment justify the need for well-designed clinical trials to better elucidate the mechanisms by which this dietary approach affects nutritional status, cancer prognosis, and overall health. The role of registered dietitian nutritionists is demonstrated to be crucial in planning and implementing KD protocols in oncology research settings, while also ensuring patients' adherence and optimal nutritional status. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  19. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Humala Nelson

    2006-04-01

    Full Text Available Abstract Background The cause of neuronal death in amyotrophic lateral sclerosis (ALS is uncertain but mitochondrial dysfunction may play an important role. Ketones promote mitochondrial energy production and membrane stabilization. Results SOD1-G93A transgenic ALS mice were fed a ketogenic diet (KD based on known formulations for humans. Motor performance, longevity, and motor neuron counts were measured in treated and disease controls. Because mitochondrial dysfunction plays a central role in neuronal cell death in ALS, we also studied the effect that the principal ketone body, D-β-3 hydroxybutyrate (DBH, has on mitochondrial ATP generation and neuroprotection. Blood ketones were > 3.5 times higher in KD fed animals compared to controls. KD fed mice lost 50% of baseline motor performance 25 days later than disease controls. KD animals weighed 4.6 g more than disease control animals at study endpoint; the interaction between diet and change in weight was significant (p = 0.047. In spinal cord sections obtained at the study endpoint, there were more motor neurons in KD fed animals (p = 0.030. DBH prevented rotenone mediated inhibition of mitochondrial complex I but not malonate inhibition of complex II. Rotenone neurotoxicity in SMI-32 immunopositive motor neurons was also inhibited by DBH. Conclusion This is the first study showing that diet, specifically a KD, alters the progression of the clinical and biological manifestations of the G93A SOD1 transgenic mouse model of ALS. These effects may be due to the ability of ketone bodies to promote ATP synthesis and bypass inhibition of complex I in the mitochondrial respiratory chain.

  20. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents.

    Directory of Open Access Journals (Sweden)

    Femke Streijger

    Full Text Available High fat, low carbohydrate ketogenic diets (KD are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1 expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited.

  1. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Castro, Kamila; Baronio, Diego; Perry, Ingrid Schweigert; Riesgo, Rudimar Dos Santos; Gottfried, Carmem

    2017-07-01

    Autism spectrum disorder (ASD) is characterized by impairments in social interaction and communication, and by restricted repetitive behaviors and interests. Its etiology is still unknown, but different environmental factors during pregnancy, such as exposure to valproic acid (VPA), are associated with high incidence of ASD in children. In this context, prenatal exposure to VPA in rodents has been used as a reliable model of ASD. Ketogenic diet (KD) is an alternative therapeutic option for refractory epilepsy; however, the effects of this approach in ASD-like behavior need to be evaluated. We conducted a behavioral assessment of the effects of KD in the VPA model of autism. Pregnant animals received a single-intraperitoneal injection of 600 mg/kg VPA, and their offspring were separated into four groups: (1) control group with standard diet (C-SD), (2) control group with ketogenic diet (C-KD), (3) VPA group with standard diet (VPA-SD), and (4) VPA group with ketogenic diet (VPA-KD). When compared with the control group, VPA animals presented increased social impairment, repetitive behavior and higher nociceptive threshold. Interestingly, the VPA group fed with KD presented improvements in social behavior. These mice displayed higher scores in sociability index and social novelty index when compared with the SD-fed VPA mice. VPA mice chronically exposed to a KD presented behavioral improvements; however, the mechanism by which KD improves ASD-like features needs to be further investigated. In conclusion, the present study reinforces the potential use of KD as a treatment for the core deficits of ASD.

  2. Is the interaction between fatty acids and tryptophan responsible for the efficacy of a ketogenic diet in epilepsy? The new hypothesis of action.

    Science.gov (United States)

    Maciejak, P; Szyndler, J; Turzyńska, D; Sobolewska, A; Kołosowska, K; Krząścik, P; Płaźnik, A

    2016-01-28

    The effects of a ketogenic diet in controlling seizure activity have been proven in many studies, although its mechanism of action remains elusive in many regards. We hypothesize that the ketogenic diet may exert its antiepileptic effects by influencing tryptophan (TRP) metabolism. The aim of this study was to investigate the influence of octanoic and decanoic fatty acids (FAs), the main components in the MCT diet (medium-chain triglyceride diet, a subtype of the ketogenic diet), on the metabolism of TRP, the activity of the kynurenic pathway and the concentrations of monoamines and amino acids, including branched-chain amino acids (BCAA) and aromatic amino acids (AAA) in rats. The acute effects of FA on the sedation index and hippocampal electrical after-discharge threshold were also assessed. We observed that intragastric administration of FA increased the brain levels of TRP and the central and peripheral concentrations of kynurenic acid (KYNA), as well as caused significant changes in the brain and plasma concentrations of BCAA and AAA. We found that the administration of FA clearly increased the seizure threshold and induced sedation. Furthermore, we have demonstrated that blocking TRP passage into the brain abolished these effects of FA but had no similar effect on the formation of ketone bodies. Given that FAs are major components of a ketogenic diet, it is suggested that the anticonvulsant effects of a ketogenic diet may be at least partly dependent on changes in TRP metabolism. We also propose a more general hypothesis concerning the intracellular mechanism of the ketogenic diet. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees

    Directory of Open Access Journals (Sweden)

    Grimaldi Keith A

    2011-10-01

    Full Text Available Abstract Background There has been increased interest in recent years in very low carbohydrate ketogenic diets (VLCKD that, even though they are much discussed and often opposed, have undoubtedly been shown to be effective, at least in the short to medium term, as a tool to tackle obesity, hyperlipidemia and some cardiovascular risk factors. For this reason the ketogenic diet represents an interesting option but unfortunately suffers from a low compliance. The aim of this pilot study is to ascertain the safety and effects of a modified ketogenic diet that utilizes ingredients which are low in carbohydrates but are formulated to simulate its aspect and taste and also contain phytoextracts to add beneficial effects of important vegetable components. Methods The study group consisted of 106 Rome council employees with a body mass index of ≥ 25, age between 18 and 65 years (19 male and 87 female; mean age 48.49 ± 10.3. We investigated the effects of a modified ketogenic diet based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrate but which mimic their taste, with the addition of some herbal extracts (KEMEPHY ketogenic Mediterranean with phytoextracts. Calories in the diet were unlimited. Measurements were taken before and after 6 weeks of diet. Results There were no significant changes in BUN, ALT, AST, GGT and blood creatinine. We detected a significant (p 2 to 29.01 Kg/m2, body weight (86.15 kg to 79.43 Kg, percentage of fat mass (41.24% to 34.99%, waist circumference (106.56 cm to 97.10 cm, total cholesterol (204 mg/dl to 181 mg/dl, LDLc (150 mg/dl to 136 mg/dl, triglycerides (119 mg/dl to 93 mg/dl and blood glucose (96 mg/dl to 91 mg/dl. There was a significant (p Conclusions The KEMEPHY diet lead to weight reduction, improvements in cardiovascular risk markers, reduction in waist circumference and showed good compliance.

  4. Control of seizures by ketogenic diet-induced modulation of metabolic pathways.

    Science.gov (United States)

    Clanton, Ryan M; Wu, Guoyao; Akabani, Gamal; Aramayo, Rodolfo

    2017-01-01

    Epilepsy is too complex to be considered as a disease; it is more of a syndrome, characterized by seizures, which can be caused by a diverse array of afflictions. As such, drug interventions that target a single biological pathway will only help the specific individuals where that drug's mechanism of action is relevant to their disorder. Most likely, this will not alleviate all forms of epilepsy nor the potential biological pathways causing the seizures, such as glucose/amino acid transport, mitochondrial dysfunction, or neuronal myelination. Considering our current inability to test every individual effectively for the true causes of their epilepsy and the alarming number of misdiagnoses observed, we propose the use of the ketogenic diet (KD) as an effective and efficient preliminary/long-term treatment. The KD mimics fasting by altering substrate metabolism from carbohydrates to fatty acids and ketone bodies (KBs). Here, we underscore the need to understand the underlying cellular mechanisms governing the KD's modulation of various forms of epilepsy and how a diverse array of metabolites including soluble fibers, specific fatty acids, and functional amino acids (e.g., leucine, D-serine, glycine, arginine metabolites, and N-acetyl-cysteine) may potentially enhance the KD's ability to treat and reverse, not mask, these neurological disorders that lead to epilepsy.

  5. [Therapeutic effect of ketogenic diet for refractory epilepsy in children: a prospective observational study].

    Science.gov (United States)

    Zhu, Deng-Na; Xie, Meng-Meng; Wang, Jun-Hui; Wang, Jun; Ma, De-You; Sun, Li; Li, Lin-Chen; Wang, Ming-Mei

    2014-05-01

    To study the clinical efficiency, electroencephalogram (EEG) changes and cognitive improvements of ketogenic diet (KD) in children with refractory epilepsy. Twenty pediatric patients (7-61 months in age) with refractory epilepsy were recruited between August 2012 and August 2013. KD therapy was performed on all participants for at least 3 months based on a fasting initiation protocol with the lipid-to-nonlipid ratio being gradually increased to 4 : 1. Seizure frequency, type and degree were recorded before and during KD therapy. A 24 hours video-electroencephalogram (V-EEG) examination and Gesell Developmental Scale assessment were performed prior to KD therapy, and 3, 6, 9 months after KD therapy. Six patients became seizure free after KD therapy, with a complete control rate of 30%. Seizure frequency reduction occurred in 13 (65%) patients, EEG improvement in 8 (40%) patients, and improvement in Gesell Developmental Scales (gross motor and adaptability in particular) in 6 (30%) patients. The KD therapy-related side effects were mild. KD therapy is safety and effective in reducing seizure frequency and improving EEG and cognitive function in children with refractory epilepsy.

  6. Tumor cells growth and survival time with the ketogenic diet in animal models: A systematic review

    Directory of Open Access Journals (Sweden)

    Soheila Khodadadi

    2017-01-01

    Full Text Available Recently, interest in targeted cancer therapies via metabolic pathways has been renewed with the discovery that many tumors become dependent on glucose uptake during anaerobic glycolysis. Also the inability of ketone bodies metabolization due to various deficiencies in mitochondrial enzymes is the major metabolic changes discovered in malignant cells. Therefore, administration of a ketogenic diet (KD which is based on high in fat and low in carbohydrates might inhibit tumor growth and provide a rationale for therapeutic strategies. So, we conducted this systematic review to assess the effects of KD on the tumor cells growth and survival time in animal studies. All databases were searched from inception to November 2015. We systematically searched the PubMed, Scopus, Google Scholars, Science Direct and Cochrane Library according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. To assess the quality of included studies we used SYRCLE's RoB tool. 268 articles were obtained from databases by primary search. Only 13 studies were eligible according to inclusion criteria. From included studies, 9 articles indicate that KD had a beneficial effect on tumor growth and survival time. Tumor types were included pancreatic, prostate, gastric, colon, brain, neuroblastoma and lung cancers. In conclusions, although studies in this field are rare and inconsistence, recent findings have demonstrated that KD can potentially inhibit the malignant cell growth and increase the survival time. Because of differences physiology between animals and humans, future studies in cancer patients treated with a KD are needed.

  7. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet.

    Science.gov (United States)

    Seyfried, B Thomas N; Kiebish, Michael; Marsh, Jeremy; Mukherjee, Purna

    2009-09-01

    Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect), malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (beta-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  8. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet

    Directory of Open Access Journals (Sweden)

    Seyfried B

    2009-09-01

    Full Text Available Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect, malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  9. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester.

    Science.gov (United States)

    Hashim, Sami A; VanItallie, Theodore B

    2014-09-01

    Ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (βHB), were considered harmful metabolic by-products when discovered in the mid-19th century in the urine of patients with diabetic ketoacidosis. It took physicians many years to realize that KBs are normal metabolites synthesized by the liver and exported into the systemic circulation to serve as an energy source for most extrahepatic tissues. Studies have shown that the brain (which normally uses glucose for energy) can readily utilize KBs as an alternative fuel. Even when there is diminished glucose utilization in cognition-critical brain areas, as may occur early in Alzheimer's disease (AD), there is preliminary evidence that these same areas remain capable of metabolizing KBs. Because the ketogenic diet (KD) is difficult to prepare and follow, and effectiveness of KB treatment in certain patients may be enhanced by raising plasma KB levels to ≥2 mM, KB esters, such as 1,3-butanediol monoester of βHB and glyceryl-tris-3-hydroxybutyrate, have been devised. When administered orally in controlled dosages, these esters can produce plasma KB levels comparable to those achieved by the most rigorous KD, thus providing a safe, convenient, and versatile new approach to the study and potential treatment of a variety of diseases, including epilepsy, AD, and Parkinson's disease. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    Science.gov (United States)

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  11. Tumor Cells Growth and Survival Time with the Ketogenic Diet in Animal Models: A Systematic Review.

    Science.gov (United States)

    Khodadadi, Soheila; Sobhani, Nafiseh; Mirshekar, Somaye; Ghiasvand, Reza; Pourmasoumi, Makan; Miraghajani, Maryam; Dehsoukhteh, Somayeh Shahraki

    2017-01-01

    Recently, interest in targeted cancer therapies via metabolic pathways has been renewed with the discovery that many tumors become dependent on glucose uptake during anaerobic glycolysis. Also the inability of ketone bodies metabolization due to various deficiencies in mitochondrial enzymes is the major metabolic changes discovered in malignant cells. Therefore, administration of a ketogenic diet (KD) which is based on high in fat and low in carbohydrates might inhibit tumor growth and provide a rationale for therapeutic strategies. So, we conducted this systematic review to assess the effects of KD on the tumor cells growth and survival time in animal studies. All databases were searched from inception to November 2015. We systematically searched the PubMed, Scopus, Google Scholars, Science Direct and Cochrane Library according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. To assess the quality of included studies we used SYRCLE's RoB tool. 268 articles were obtained from databases by primary search. Only 13 studies were eligible according to inclusion criteria. From included studies, 9 articles indicate that KD had a beneficial effect on tumor growth and survival time. Tumor types were included pancreatic, prostate, gastric, colon, brain, neuroblastoma and lung cancers. In conclusions, although studies in this field are rare and inconsistence, recent findings have demonstrated that KD can potentially inhibit the malignant cell growth and increase the survival time. Because of differences physiology between animals and humans, future studies in cancer patients treated with a KD are needed.

  12. Ketogenic diets: an historical antiepileptic therapy with promising potentialities for the aging brain.

    Science.gov (United States)

    Balietti, Marta; Casoli, Tiziana; Di Stefano, Giuseppina; Giorgetti, Belinda; Aicardi, Giorgio; Fattoretti, Patrizia

    2010-07-01

    Ketogenic diets (KDs), successfully used in the therapy of paediatric epilepsy for nearly a century, have recently shown beneficial effects also in cancer, obesity, diabetes, GLUT 1 deficiencies, hypoxia-ischemia, traumatic brain injuries, and neurodegeneration. The latter achievement designates aged individuals as optimal recipients, but concerns derive from possible age-dependent differences in KDs effectiveness. Indeed, the main factors influencing ketone bodies utilization by the brain (blood levels, transport mechanisms, catabolic enzymes) undergo developmental changes, although several reports indicate that KDs maintain some efficacy during adulthood and even during advanced aging. Encouraging results obtained in patients affected by age-related neurodegenerative diseases have prompted new interest on KDs' effect on the aging brain, also considering the poor efficacy of therapies currently used. However, recent morphological evidence in synapses of late-adult rats indicates that KDs consequences may be even opposite in different brain regions, likely depending on neuronal vulnerability to age. Thus, further studies are needed to design KDs specifically indicated for single neurodegenerative diseases, and to ameliorate the balance between beneficial and adverse effects in aged subjects. Here we review clinical and experimental data on KDs treatments, focusing on their possible use during pathological aging. Proposed mechanisms of action are also reported and discussed. 2010 Elsevier Ireland Ltd. All rights reserved.

  13. The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: a pilot study.

    Science.gov (United States)

    Pérez-Guisado, Joaquín; Muñoz-Serrano, Andrés

    2011-01-01

    The "Spanish Ketogenic Mediterranean Diet" (SKMD) has been shown to be an effective and safe way to cure patients suffering from metabolic syndrome (MS). Keeping in mind that nonalcoholic fatty liver disease (NAFLD) is closely associated with MS, the purpose of this study was to evaluate the potential therapeutic properties under free living conditions of the SKMD in patients with MS (following the International Diabetes Federation [IDF] consensus guidelines) and NAFLD (suspected by using a cutoff value of alanine aminotransferase [ALT] levels of >40 U/L and confirmed by abdominal ultrasonography) over a 12-week period. A prospective study was carried out in 14 obese men meeting the inclusion criteria and whose body mass index (BMI) and age were 36.58±0.54 kg/m² and 41.18±2.28 years, respectively. Statistical differences between the parameters studied before and after administration of the SKMD (week 0 and 12) were analyzed by paired Student's t test (continuous variables) and the χ² test (discontinuous variables). Pdiet all the subjects were free of MS according to the IDF definition, and 100% of them had normal triacylglycerols and HDLc levels, in spite of the fact that 100% of them still had a BMI of >30 kg/m². We conclude that the SKMD could be an effective and safe way to treat patients suffering from MS and the associated NAFLD.

  14. Successful treatment of type 1 diabetes and seizures with combined ketogenic diet and insulin.

    Science.gov (United States)

    Aguirre Castaneda, Roxana L; Mack, Kenneth J; Lteif, Aida

    2012-02-01

    Diabetic ketoacidosis (DKA) is a life-threatening condition and a major cause of morbidity and mortality in children with type 1 diabetes mellitus. The deficiency of insulin leads to metabolic decompensation, causing hyperglycemia and ketosis that resolves with the administration of insulin and fluids. However, an induced state of ketosis is the basis for the success of the ketogenic diet (KD), which is an effective therapy for children with intractable epilepsy. We report the case of a 2-year-old girl who presented to the emergency department with 1-week history of decreased activity, polyuria, and decreased oral intake. Her past medical history was remarkable for epilepsy, for which she was started on the KD with a significant improvement. Her laboratory evaluation was compatible with DKA, and fluids and insulin were given until correction. Because of concerns regarding recurrence of her seizures, the KD was resumed along with the simultaneous use of insulin glargine and insulin aspart. Urine ketones were kept in the moderate range to keep the effect of ketosis on seizure control. Under this combined therapy, the patient remained seizure-free with no new episodes of DKA.

  15. Ketogenic diet therapy can improve ACTH-resistant West syndrome in Japan.

    Science.gov (United States)

    Hirano, Yoshiko; Oguni, Hirokazu; Shiota, Mutuko; Nishikawa, Aiko; Osawa, Makiko

    2015-01-01

    Ketogenic diet therapy (KD) has been used to treat children with refractory generalized epilepsy. We herein reported the efficacy of KD for West syndrome (WS) resistant to ACTH therapy. SUBJECTS, consisting of 6 patients (3 boys, 3 girls) with WS who continued to have epileptic spasms (ES) and hypsarrhythmia, received KD because other treatments including ACTH therapy failed to control WS. We retrospectively studied the clinical details of these patients and the efficacy of KD. The mean age at the onset of epilepsy was 4 months (0-15 months). The underlying etiology consisted of lissencephaly, Down's syndrome, and focal cortical dysplasia. Hypsarrhythmia disappeared 1 month after the introduction of KD in 5 patients. The disappearance of ES was achieved in 2 patients, the frequency of ES episodes was 80% less in 3, and no change was observed in 1. Psychomotor development was promoted in 5 patients, along with improvements in ES and EEG. Gastrointestinal complications and lethargy, presumably caused by rapid ketosis, were reported as side effects in 3 patients during the first week of KD. Side effects including lethargy, anorexia, and unfavorable weight gain continued thereafter in these patients in spite of tolerance to KD. KD was effective for WS resistant to ACTH therapy, although gastrointestinal side effects should be considered when introducing KD to milk-fed infants. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. THE KETOGENIC DIET AS A TREATMENT PARADIGM FOR DIVERSE NEUROLOGICAL DISORDERS

    Directory of Open Access Journals (Sweden)

    Jong Min Rho

    2012-04-01

    Full Text Available Dietary and metabolic therapies have been attempted in a wide variety of neurological diseases, including epilepsy, headache, neurotrauma, Alzheimer disease, Parkinson disease, sleep disorders, brain cancer, autism, pain, and multiple sclerosis. The impetus for using various diets to treat – or at least ameliorate symptoms of – these disorders stems from both a lack of effectiveness of pharmacological therapies, and also the intrinsic appeal of implementing a more natural treatment. The enormous spectrum of pathophysiological mechanisms underlying the aforementioned diseases would suggest a degree of complexity that cannot be impacted universally by any single dietary treatment. Yet, it is conceivable that alterations in certain dietary constituents could affect the course and impact the outcome of these brain disorders. Further, it is possible that a final common neurometabolic pathway might be influenced by a variety of dietary interventions. The most notable example of a dietary treatment with proven efficacy against a neurological condition is the high-fat, low-carbohydrate ketogenic diet (KD used in patients with medically intractable epilepsy. While the mechanisms through which the KD works remain unclear, there is now compelling evidence that its efficacy is likely related to the normalization of aberrant energy metabolism. The concept that many neurological conditions are linked pathophysiologically to energy dysregulation could well provide a common research and experimental therapeutics platform, from which the course of several neurological diseases could be favorably influenced by dietary means. Here we provide an overview of studies using the KD in a wide panoply of neurologic disorders in which neuroprotection is an essential component.

  17. Changes of thyroid hormonal status in patients receiving ketogenic diet due to intractable epilepsy.

    Science.gov (United States)

    Kose, Engin; Guzel, Orkide; Demir, Korcan; Arslan, Nur

    2017-04-01

    Ketogenic diet (KD), which is high in fat and low in carbohydrates, mimics the metabolic state of starvation and is used therapeutically for pharmacoresistant epilepsy. It is known that generation of triiodothyronine (T3) from thyroxine (T4) decreases during fasting periods. The aim of this study was to evaluate the thyroid function of children receiving KD for at least 1 year due to drug-resistant epilepsy. A total of 120 patients [63 males, 52.5%; mean age 7.3±4.3 years, median interquartile range (IQR): 7.0 (4-10 years)] treated with KD for at least 1 year were enrolled. Seizure control, side effects, and compliance with the diet were recorded, and free T3, free T4, and thyroid-stimulating hormone (TSH) levels were measured at baseline and at post-treatment months 1, 3, 6, and 12. The Mann-Whitney U-test, repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction, and logistic regression analysis were used for data analysis. Hypothyroidism was diagnosed and L-thyroxine medication was initiated for eight, seven and five patients (20 patients in total, 16.7%) at 1, 3, and 6 months of KD therapy, respectively. Logistic regression analysis showed that baseline TSH elevation [odds ratio (OR): 26.91, 95% confidence interval (CI) 6.48-111.76, p<0.001] and female gender (OR: 3.69, 95% CI 1.05-12.97, p=0.042) were independent risk factors for development of hypothyroidism during KD treatment in epileptic children. KD causes thyroid malfunction and L-thyroxine treatment may be required. This is the first report documenting the effect of KD treatment on thyroid function. Thyroid function should be monitored regularly in epileptic patients treated with KD.

  18. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy.

    Science.gov (United States)

    Woolf, Eric C; Syed, Nelofer; Scheck, Adrienne C

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo . In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  19. The ketogenic diet for the treatment of glioma: insights from genetic profiling.

    Science.gov (United States)

    Scheck, Adrienne C; Abdelwahab, Mohammed G; Fenton, Kathryn E; Stafford, Phillip

    2012-07-01

    Seizures, particularly first onset seizures in adults, are a diagnostic hallmark of brain tumors (Giglio and Villano, 2010). Unfortunately, malignant brain tumors are almost uniformly fatal due, in part, to the limitations of available therapies. Improvement in the survival of brain cancer patients requires the design of new therapeutic modalities including those that enhance currently available therapies. One potential strategy is to exploit differences in metabolic regulation between normal cells and tumor cells through dietary approaches. Previous studies have shown that a high-fat, low-carbohydrate ketogenic diet (KD) extends survival in animal models of glioma; however, the mechanism for this effect is not entirely known. We examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors versus contralateral non-tumor containing brain from animals fed either a KD or a standard diet. We found that the KD reduced reactive oxygen species (ROS) production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens, and a number of genes involved in modulating ROS levels and oxidative stress were altered in tumor cells. In addition, there was reduced expression of genes involved in signal transduction from growth factors known to be involved in glioma growth. These results suggest that the anti-tumor effect of the KD is multifactorial, and elucidation of genes whose expression is altered will help identify mechanisms through which ketones inhibit tumor growth, reduce seizure activity and provide neuroprotection. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    Science.gov (United States)

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  1. Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis

    Science.gov (United States)

    Klement, Rainer J.; Champ, Colin E.; Otto, Christoph; Kämmerer, Ulrike

    2016-01-01

    Background Currently ketogenic diets (KDs) are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice. Methods We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume) of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD). For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR) or hazard ratio (HR) between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ2 were MR = 0.85 (95% highest posterior density interval (HPDI) = [0.73, 0.97]) and HR = 0.55 (95% HPDI = [0.26, 0.87]), indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation) which accounted for 26% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95% HPDI = [0.76, 1.04]). Conclusions There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors. PMID:27159218

  2. Fibrogenic response of hepatic stellate cells in ovariectomised rats exposed to ketogenic diet.

    Science.gov (United States)

    Bobowiec, R; Wojcik, M; Jaworska-Adamu, J; Tusinska, E

    2013-02-01

    The discrepancy about the role of estrogens in hepatic fibrogenesis and lack of studies addressed of ketogenic diet (KD) on hepatic stellate cells (HSC), prompted us to investigate the activity of HSC in control, KD- and thioacetamide (TAA)-administrated rats with different plasma concentration of estradiol (E2). HSC were isolated by the collagenase perfusion methods and separated by the Percoll gradient centrifugation. After the 4(th) and 8(th) day of incubation, lysates of HSC and the media were collected for further analysis. The HSC derived from KD-rats released remarkably more transforming growth factor (TGF)-β1 than cells obtained from animals fed with a standard diet. The ovariectomy of KD-rats markedly intensified the secretion of this fibrogenic cytokine on the 8(th) day of incubation (201.33 ±1 7.15 pg/ml). In HSC of rats exposed to E2, the TGF-β1 concentration did not exceed 157 ± 34.39 pg/ml. In respect to the collagen type I, the HSC obtained from ovariectomised KD-rats released an augmented amount of this ECM protein after the 8(th) day of culture (1.83 ± 0.14 U/ml). In the same time, higher quantities of ASMA appeared in the KD rats (1.41 ± 0.3 pg/mg protein). Exposition of rats to E2 did not markedly decrease the amount of ASMA. In summary, KD was able to induce morphological and functional changes in HSC, especially derived from rats deprived of ovarian estrogens. However, the preservation of E2 in ovariectomised rats didn't substantially alter the activation of HSC.

  3. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer.

    Science.gov (United States)

    Poff, Angela M; Ari, Csilla; Seyfried, Thomas N; D'Agostino, Dominic P

    2013-01-01

    Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO₂T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease. We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO₂T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging. KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO₂T alone did not influence cancer progression, combining the KD with HBO₂T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls. KD and HBO₂T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.

  4. The ketogenic diet as a treatment paradigm for diverse neurological disorders.

    Science.gov (United States)

    Stafstrom, Carl E; Rho, Jong M

    2012-01-01

    Dietary and metabolic therapies have been attempted in a wide variety of neurological diseases, including epilepsy, headache, neurotrauma, Alzheimer disease, Parkinson disease, sleep disorders, brain cancer, autism, pain, and multiple sclerosis. The impetus for using various diets to treat - or at least ameliorate symptoms of - these disorders stems from both a lack of effectiveness of pharmacological therapies, and also the intrinsic appeal of implementing a more "natural" treatment. The enormous spectrum of pathophysiological mechanisms underlying the aforementioned diseases would suggest a degree of complexity that cannot be impacted universally by any single dietary treatment. Yet, it is conceivable that alterations in certain dietary constituents could affect the course and impact the outcome of these brain disorders. Further, it is possible that a final common neurometabolic pathway might be influenced by a variety of dietary interventions. The most notable example of a dietary treatment with proven efficacy against a neurological condition is the high-fat, low-carbohydrate ketogenic diet (KD) used in patients with medically intractable epilepsy. While the mechanisms through which the KD works remain unclear, there is now compelling evidence that its efficacy is likely related to the normalization of aberrant energy metabolism. The concept that many neurological conditions are linked pathophysiologically to energy dysregulation could well provide a common research and experimental therapeutics platform, from which the course of several neurological diseases could be favorably influenced by dietary means. Here we provide an overview of studies using the KD in a wide panoply of neurologic disorders in which neuroprotection is an essential component.

  5. Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis.

    Science.gov (United States)

    Klement, Rainer J; Champ, Colin E; Otto, Christoph; Kämmerer, Ulrike

    2016-01-01

    Currently ketogenic diets (KDs) are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice. We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume) of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD). For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR) or hazard ratio (HR) between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ2 were MR = 0.85 (95% highest posterior density interval (HPDI) = [0.73, 0.97]) and HR = 0.55 (95% HPDI = [0.26, 0.87]), indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation) which accounted for 26% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95% HPDI = [0.76, 1.04]). There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors.

  6. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Woolf

    2016-11-01

    Full Text Available Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD. The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  7. Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Rainer J Klement

    Full Text Available Currently ketogenic diets (KDs are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice.We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD. For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR or hazard ratio (HR between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ2 were MR = 0.85 (95% highest posterior density interval (HPDI = [0.73, 0.97] and HR = 0.55 (95% HPDI = [0.26, 0.87], indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation which accounted for 26% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95% HPDI = [0.76, 1.04].There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors.

  8. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer.

    Directory of Open Access Journals (Sweden)

    Angela M Poff

    Full Text Available INTRODUCTION: Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO₂T saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease. METHODS: We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO₂T (2.5 ATM absolute, 90 min, 3x/week. Tumor growth was monitored by in vivo bioluminescent imaging. RESULTS: KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO₂T alone did not influence cancer progression, combining the KD with HBO₂T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls. CONCLUSIONS: KD and HBO₂T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.

  9. The effect of olive oil-based ketogenic diet on serum lipid levels in epileptic children.

    Science.gov (United States)

    Güzel, Orkide; Yılmaz, Unsal; Uysal, Utku; Arslan, Nur

    2016-03-01

    Ketogenic diet (KD) is one of the most effective therapies for intractable epilepsy. Olive oil is rich in monounsaturated fatty acids and antioxidant molecules and has some beneficial effects on lipid profile, inflammation and oxidant status. The aim of this study was to evaluate the serum lipid levels of children who were receiving olive oil-based KD for intractable seizures at least 1 year. 121 patients (mean age 7.45 ± 4.21 years, 57 girls) were enrolled. At baseline and post-treatment 1, 3, 6, and 12 months body mass index-SDS, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride levels were measured. Repeated measure ANOVA with post hoc Bonferroni correction was used for data analysis. The mean duration of KD was 15.4 ± 4.1 months. Mean total cholesterol, LDL-cholesterol and triglyceride levels were significantly higher at 1st, 3rd, 6th and 12th months of the KD treatment, compared to pre-treatment levels (p = 0.001), but showed no difference among during-treatment measurements. Mean body mass index-SDS and HDL-cholesterol levels were not different among the baseline and follow-up time points (p = 0.113 and p = 0.067, respectively). No child in this study discontinued the KD because of dyslipidemia. Even if rich in olive oil, high-fat KD causes significant increase in LDL-cholesterol and triglyceride levels. More studies are needed to determine the effect of KD on serum lipids in children using different fat sources in the diet.

  10. What are the minimum requirements for ketogenic diet services in resource-limited regions? Recommendations from the International League Against Epilepsy Task Force for Dietary Therapy.

    Science.gov (United States)

    Kossoff, Eric H; Al-Macki, Nabil; Cervenka, Mackenzie C; Kim, Heung D; Liao, Jianxiang; Megaw, Katherine; Nathan, Janak K; Raimann, Ximena; Rivera, Rocio; Wiemer-Kruel, Adelheid; Williams, Emma; Zupec-Kania, Beth A

    2015-09-01

    Despite the increasing use of dietary therapies for children and adults with refractory epilepsy, the availability of these treatments in developing countries with limited resources remains suboptimal. One possible contributory factor may be the costs. There is often reported a significant perceived need for a large ketogenic diet team, supplements, laboratory studies, and follow-up visits to provide this treatment. The 2009 Epilepsia Consensus Statement described ideal requirements for a ketogenic diet center, but in some situations this is not feasible. As a result, the International League Against Epilepsy (ILAE) Task Force on Dietary Therapy was asked to convene and provide practical, cost-effective recommendations for new ketogenic diet centers in resource-limited regions of the world. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  11. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    Science.gov (United States)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  12. Impact of a ketogenic diet intervention during radiotherapy on body composition: II. Protocol of a randomised phase I study (KETOCOMP).

    Science.gov (United States)

    Klement, Rainer J; Sweeney, Reinhart A

    2016-04-01

    We have found that a ketogenic diet (KD) during the course of radiotherapy (RT) was feasible and led to a preservation or favorable changes of body composition. Based on these observations and theoretical considerations, we initiated a study to investigate the impact of a KD or a ketogenic breakfast intervention in patients undergoing RT. All patients presenting for curative RT with age between 18 and 75, body mass index between 18 and 34 kg/m 2 and a histologically confirmed cancer of the breast, colorectum or head and neck region are considered for inclusion. Exclusion criteria are Karnofsky index radiotherapy fraction after an overnight fast and subsequently ingest a ketogenic breakfast consisting of (i) 50-250 ml of a medium-chain triglyceride drink (betaquick ® , vitaflo, Bad Homburg, Germany) plus (ii) 5-15 g amino acids (MAP, dr. reinwald healthcare gmbh+co kg, Schwarzenbruck, Germany). If willing to undertake a complete KD for the duration of RT, patients are entered into intervention group 2. Intervention group 2 does not have to fast prior to RT fractions but will be supplemented with MAP analogous to intervention group 1. The control group will not receive dietary advice to follow a KD or reduce carbohydrate intake. The objective is twofold: (i) to test whether the ketogenic interventions are feasibly, as measured by the number of dropouts; (ii) to see whether intervention groups 1 and 2 attain a better preservation of BIA phase angle than the control group. Primary endpoints are the feasibility of the interventions (measured through dropout rates), and changes in body weight and composition (measured through BIA). Secondary endpoints are changes in quality of life (EORTC questionnaires) and blood parameters as well as the occurrence and grade of toxicities and grade of regression after surgery in case of colorectal carcinomas. Copyright © 2015 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  13. Effectiveness of the ketogenic diet used to treat resistant childhood epilepsy in Scandinavia.

    Science.gov (United States)

    Hallböök, Tove; Sjölander, Arvid; Åmark, Per; Miranda, Maria; Bjurulf, Björn; Dahlin, Maria

    2015-01-01

    This Scandinavian collaborative retrospective study of children treated with ketogenic diet (KD) highlights indications and effectiveness over two years follow-up. Five centres specialised in KD collected data retrospectively on 315 patients started on KD from 1999 to 2009. Twenty-five patients who stopped the diet within four weeks because of compliance-problems and minor side-effects were excluded. Seizure-type(s), seizure-frequency, anti-epileptic drugs and other treatments, mental retardation, autism-spectrum disorder and motor-dysfunction were identified and treatment-response was evaluated. An intention-to-treat analysis was used. Responders (>50% seizure-frequency reduction) at 6, 12 and 24 months were 50%, 46% and 28% respectively, seizure-free were 16%, 13% and 10%. Still on the diet were 80%, 64% and 41% after 6, 12 and 24 months. No child had an increased seizure-frequency. The best seizure outcome was seen in the group with not-daily seizures at baseline (n = 22), where 45%, 41% and 32% became seizure-free at 6, 12 and 24 months A significant improvement in seizure-frequency was seen in atonic seizures at three months and secondary generalised seizures at three and six months. Side-effects were noted in 29 subjects; most could be treated and only two stopped due to hyperlipidaemia and two due to kidney-stones. In 167 patients treated with potassium-citrate, one developed kidney-stones, compared with six of 123 without potassium-citrate treatment (relative risk = 8.1). As the first study of implementing KD in children in the Scandinavian countries, our survey of 290 children showed that KD is effective and well tolerated, even in such severe patients with therapy-resistant epilepsy, more than daily seizures and intellectual disability in the majority of patients. Long-term efficacy of KD was comparable or even better than reported in newer AEDs. Addition of potassium citrate reduced risk of kidney-stones. Our data indicate that the response might be

  14. [Prospective multicenter study on long-term ketogenic diet therapy for intractable childhood epilepsy].

    Science.gov (United States)

    2013-04-01

    To evaluate the efficacy and safety of long-term ketogenic diet (KD) on the children with intractable epilepsy. This was a prospective, open-label study of intractable epilepsy patients treated with the classic KD with a lipid-to-nonlipid ratio 4:1 between October 2004 and July 2011 at five Chinese epilepsy centers. A total of 299 patients were enrolled. The patients were divided into different groups according to age (including the below-1-year-old group, 1-to-3-year-old group, 3-to-6-year-old group, 6-to-10-year-old group, and over-10-year-old group), etiology (cryptogenic epilepsy, symptomatic epilepsy, and idiopathic epilepsy), and the seizure types (included infantile spasm, Lennox-Gastaut syndrome, Ohtahara syndrome, tuberous sclerosis, Dravet syndrome, generalized epilepsy, and partial epilepsy). Parents were assigned to write seizure diaries which recorded the seizure presentations, tolerability, and complications associated with the KD. Patients' weight and height were measured every week. Blood β-hydroxybutyric acid, blood sugar, and urinary ketone bodies were monitored closely. Patients were followed up through telephone calls by the nutritionists every month and regular outpatient visits or hospitalizations were recommended at all time-points which included the third, sixth and twelfth month after initiation. Efficacy was measured through seizure frequency. The variables related to the efficacy were also analyzed. SPSS 17.0 was used for all statistical analysis. At 3, 6, and 12 months after initiation, 65.9%, 44.8%, and 26.4% patients remained on the diet, and 37.4%, 26.1%, and 20.4% had a > 50% reduction in their seizure frequency, including 21.7%, 10.7%, and 11.0% who became seizure free, respectively. At 24 months after initiation, 29 patients remained on the diet, and 28 patients had a > 90% seizure reduction, including five became seizure free. At 36 months after initiation, 7 patients remained on the diet, and all of them had a > 90% seizure

  15. Modulatory role of ketogenic diet on neuroinflammation; a possible drug naïve strategy to treatment of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Sheyda Shaafi

    2015-10-01

    Full Text Available Parkinson’s disease is the second common neurological disease associated with elderly. Neuroinflammation contributes in neuronal death in Parkinson’s disease (PD. The ketogenic diet (KD is low in carbohydrates, adequate in protein, and high in fat, has been used in intractable epilepsy and seems to be effective in neurologic disorders. The implication of Neuroinflammation in PD has been emphasized and there is evidence show that KD may provide advantages to reduce neuroinflammatory adverse effects. Based on this surmise, it seems that KD could reverse some neuronal injuries of PD.   Keywords: Ketogenic diet, Neuroinflammation, Parkinson’s disease

  16. Long-term follow-up of the ketogenic diet for refractory epilepsy: multicenter Argentinean experience in 216 pediatric patients.

    Science.gov (United States)

    Caraballo, Roberto; Vaccarezza, María; Cersósimo, Ricardo; Rios, Viviana; Soraru, Alejandra; Arroyo, Hugo; Agosta, Guillermo; Escobal, Nidia; Demartini, Martha; Maxit, Clarisa; Cresta, Araceli; Marchione, Delfina; Carniello, María; Paníco, Luis

    2011-10-01

    In this Argentinean retrospective, collaborative, multicenter study, we examine the efficacy and tolerability of the ketogenic diet (KD) for different epilepsy syndromes. we evaluated the clinical records of 216 patients started on the KD between March 1, 1990 and December 31, 2010. One hundred forty of the initial patients (65%) remained on the diet at the end of the study period. Twenty-nine patients (20.5%) became seizure free and 50 children (36%) had a 75-99% decrease in seizures. Thus, 56.5% of the patients had a seizure control of more than 75%. The best results were found in patients with epilepsy with myoclonic-astatic seizures, Lennox-Gastaut syndrome, and West syndrome. Good results were also found in patients with Dravet syndrome, in those with symptomatic focal epilepsy secondary to malformations of cortical development, and in patients with tuberous sclerosis. Seizures were significantly reduced in four patients with fever-induced refractory epileptic encephalopathy in school-age children and in two patients with epileptic encephalopathy with continuous spikes and waves during slow sleep. The median period of follow-up after discontinuation of the diet was 6 years. Twenty patients who had become seizure free discontinued the diet, but seizures recurred in five (25%). Of 40 patients with a seizure reduction of more than 50% who discontinued the diet, 10 presented with recurrent seizures. The ketogenic diet is a good option in the treatment of refractory epilepsy. After discontinuing the diet, seizures recurrence occurred in few patients. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. A randomized controlled trial of the ketogenic diet in refractory childhood epilepsy.

    Science.gov (United States)

    Lambrechts, D A J E; de Kinderen, R J A; Vles, J S H; de Louw, A J A; Aldenkamp, A P; Majoie, H J M

    2017-02-01

    To evaluate the efficacy and tolerability of the ketogenic diet (KD) during the first 4 months of a randomized controlled trial (RCT) in refractory epilepsy patients aged 1-18 years. Children and adolescents with refractory epilepsy, not eligible for epilepsy surgery, were included. Following 1 month at baseline, patients were randomized to either the KD or to care as usual (CAU).Primary outcome is the proportion of patients with at least 50% reduction in seizure frequency at 4 months. Secondary outcomes are mean percentage of baseline seizures, seizure severity, and side effects. Fifty-seven patients were randomized; nine dropped out, leaving 48 for analysis (i.e., 26 KD, 22 CAU). In an intention-to-treat analysis, 13 patients (50%) treated with the KD and four patients (18.2%) of the CAU group were responders.Mean seizure frequency at 4 months compared to baseline, after removal of two outliers in the KD group, was significantly lower (P = 0.024) in the KD group (56%) (95% CI: 36-76) than in the CAU group (99%) (95% CI: 65-133%).Twice as many patients in the KD group had a relevant decrease in seizure severity score (P = 0.070).Patients treated with the KD had a significantly higher score for gastrointestinal symptoms (P = 0.021) without an increase in the total score of side effects. This trial provides class I evidence that the KD is an effective therapy in children and adolescents with refractory epilepsy compared with CAU. Most often reported side effects are gastrointestinal symptoms.The study has been registered with the Netherlands Trial Registry (NTR2498). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Effect of classic ketogenic diet treatment on lipoprotein subfractions in children and adolescents with refractory epilepsy.

    Science.gov (United States)

    Azevedo de Lima, Patricia; Baldini Prudêncio, Mariana; Murakami, Daniela Kawamoto; Pereira de Brito Sampaio, Leticia; Figueiredo Neto, Antônio Martins; Teixeira Damasceno, Nágila Raquel

    2017-01-01

    The aim of this study was to evaluate the effects of the classic ketogenic diet (KD) on low-density lipoprotein (LDL) and high-density lipoprotein (HDL) subfractions in children and adolescents with refractory epilepsy. This prospective study recruited children and adolescents of either sex, whose epilepsy was refractory to treatment with multiple drugs. To be included, the patient had to have an indication for treatment with the KD and be treated as an outpatient. At baseline and after 3 and 6 mo of the KD, lipid profile (total cholesterol [TC], triacylglycerols [TG], LDL cholesterol [LDL-C], and HDL cholesterol [HDL-C]), apolipoproteins (apoA-I and apoB), 10 subfractions of HDL, 7 subfractions of LDL, LDL phenotype, and LDL size were analyzed using the Lipoprint system. The lipid profile components (TC, TG, LDL-C, HDL-C, apoA-I, and apoB) increased during the 3-mo follow-up, and remained consistent after 6 mo of treatment. Similarly, non-HDL-C, TC/HDL-C, LDL-C/HDL-C, and apoB/apoA-I ratios, representing atherogenic particles, significantly increased. In contrast, qualitative lipoprotein characteristics progressively changed during the follow-up period. Small LDL subfractions increased, and this profile was related with reduced LDL size (27.3 nm to 26.7 nm). The LDL phenotype became worse; 52.1% of the patients had a non-A phenotype after 6 mo of the KD. Small HDL subfractions decreased only after 6 mo of the KD. KD treatment promotes negative changes in lipoprotein size and phenotype, contributing to atherogenic risk in these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet.

    Science.gov (United States)

    Lussier, Danielle M; Woolf, Eric C; Johnson, John L; Brooks, Kenneth S; Blattman, Joseph N; Scheck, Adrienne C

    2016-05-13

    Glioblastoma multiforme is a highly aggressive brain tumor with a poor prognosis, and advances in treatment have led to only marginal increases in overall survival. We and others have shown previously that the therapeutic ketogenic diet (KD) prolongs survival in mouse models of glioma, explained by both direct tumor growth inhibition and suppression of pro-inflammatory microenvironment conditions. The aim of this study is to assess the effects of the KD on the glioma reactive immune response. The GL261-Luc2 intracranial mouse model of glioma was used to investigate the effects of the KD on the tumor-specific immune response. Tumor-infiltrating CD8+ T cells, CD4+ T cells and natural killer (NK) cells were analyzed by flow cytometry. The expression of immune inhibitory receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) on CD8+ T cells were also analyzed by flow cytometry. Analysis of intracellular cytokine production was used to determine production of IFN, IL-2 and IFN- in tumor-infiltrating CD8+ T and natural killer (NK) cells and IL-10 production by T regulatory cells. We demonstrate that mice fed the KD had increased tumor-reactive innate and adaptive immune responses, including increased cytokine production and cytolysis via tumor-reactive CD8+ T cells. Additionally, we saw that mice maintained on the KD had increased CD4 infiltration, while T regulatory cell numbers stayed consistent. Lastly, mice fed the KD had a significant reduction in immune inhibitory receptor expression as well as decreased inhibitory ligand expression on glioma cells. The KD may work in part as an immune adjuvant, boosting tumor-reactive immune responses in the microenvironment by alleviating immune suppression. This evidence suggests that the KD increases tumor-reactive immune responses, and may have implications in combinational treatment approaches.

  20. Efficacy of a ketogenic diet in resistant myoclono-astatic epilepsy: A French multicenter retrospective study.

    Science.gov (United States)

    Stenger, Elodie; Schaeffer, Mickael; Cances, Claude; Motte, Jacques; Auvin, Stéphane; Ville, Dorothée; Maurey, Hélène; Nabbout, Rima; de Saint-Martin, Anne

    2017-03-01

    Recent studies have suggested that the early introduction of a ketogenic diet (KD) could improve seizure control in myoclono-astatic epilepsy (MAE). This multicenter study sought to identify the benefits of KD use on seizure control and epilepsy and on developmental outcomes in children with resistant MAE. Fifty children who were diagnosed with severe MAE in the French network of Reference Centers for Rare Epilepsies and who were treated with KD between 2000 and 2013 were included in this study. The seizure frequency and EEG recordings were assessed two weeks before KD introduction, 2 and 6 months after, and during the last follow-up, which also included an assessment of developmental outcome. Patients had a median follow up of 52 months (range 13-136) and received 4.3 antiepileptic drugs [2-9] before KD introduction. Fifty-four percent (54%) of our patients were seizure-free after 6 months of KD or more, and 86% experienced more than a 70% seizure reduction after 2 months of KD. Forty-four percent (44%) of them had a clear benefit of early KD treatment (after four AEDs failed). Early KD treatment did not result in a greater seizure reduction (p=0.055), but significantly resulted in remission (p<0.028). Fifty percent of patients with resistant MAE had normal development outcomes. Earlier KD treatment, after three AEDs failed, was correlated with a better cognitive outcome (p<0.01). Early introduction of KD treatment in resistant MAE has a strong, persistent anticonvulsant effect with long-term remission and better cognitive outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ketogenic diet in a patient with congenital hyperinsulinism: a novel approach to prevent brain damage.

    Science.gov (United States)

    Maiorana, Arianna; Manganozzi, Lucilla; Barbetti, Fabrizio; Bernabei, Silvia; Gallo, Giorgia; Cusmai, Raffaella; Caviglia, Stefania; Dionisi-Vici, Carlo

    2015-09-24

    Congenital hyperinsulinism (CHI) is the most frequent cause of hypoglycemia in children. In addition to increased peripheral glucose utilization, dysregulated insulin secretion induces profound hypoglycemia and neuroglycopenia by inhibiting glycogenolysis, gluconeogenesis and lipolysis. This results in the shortage of all cerebral energy substrates (glucose, lactate and ketones), and can lead to severe neurological sequelae. Patients with CHI unresponsive to medical treatment can be subjected to near-total pancreatectomy with increased risk of secondary diabetes. Ketogenic diet (KD), by reproducing a fasting-like condition in which body fuel mainly derives from beta-oxidation, is intended to provide alternative cerebral substrates such ketone bodies. We took advantage of known protective effect of KD on neuronal damage associated with GLUT1 deficiency, a disorder of impaired glucose transport across the blood-brain barrier, and administered KD in a patient with drug-unresponsive CHI, with the aim of providing to neurons an energy source alternative to glucose. A child with drug-resistant, long-standing CHI caused by a spontaneous GCK activating mutation (p.Val455Met) suffered from epilepsy and showed neurodevelopmental abnormalities. After attempting various therapeutic regimes without success, near-total pancreatectomy was suggested to parents, who asked for other options. Therefore, we proposed KD in combination with insulin-suppressing drugs. We administered KD for 2 years. Soon after the first six months, the patient was free of epileptic crises, presented normalization of EEG, and showed a marked recover in psychological development and quality of life. KD could represent an effective treatment to support brain function in selected cases of CHI.

  2. Do Glut1 (glucose transporter type 1) defects exist in epilepsy patients responding to a ketogenic diet?

    Science.gov (United States)

    Becker, Felicitas; Schubert, Julian; Weckhuysen, Sarah; Suls, Arvid; Grüninger, Steffen; Korn-Merker, Elisabeth; Hofmann-Peters, Anne; Sperner, Jürgen; Cross, Helen; Hallmann, Kerstin; Elger, Christian E; Kunz, Wolfram S; Madeleyen, René; Lerche, Holger; Weber, Yvonne G

    2015-08-01

    In the recent years, several neurological syndromes related to defects of the glucose transporter type 1 (Glut1) have been descried. They include the glucose transporter deficiency syndrome (Glut1-DS) as the most severe form, the paroxysmal exertion-induced dyskinesia (PED), a form of spastic paraparesis (CSE) as well as the childhood (CAE) and the early-onset absence epilepsy (EOAE). Glut1, encoded by the gene SLC2A1, is the most relevant glucose transporter in the brain. All Glut1 syndromes respond well to a ketogenic diet (KD) and most of the patients show a rapid seizure control. Ketogenic Diet developed to an established treatment for other forms of pharmaco-resistant epilepsies. Since we were interested in the question if those patients might have an underlying Glut1 defect, we sequenced SLC2A1 in a cohort of 28 patients with different forms of pharmaco-resistant epilepsies responding well to a KD. Unfortunately, we could not detect any mutations in SLC2A1. The exact action mechanisms of KD in pharmaco-resistant epilepsy are not well understood, but bypassing the Glut1 transporter seems not to play an important role. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of Pre-surgical Vitamin D Supplementation and Ketogenic Diet in a Patient with Recurrent Breast Cancer.

    Science.gov (United States)

    Branca, Jacopo J V; Pacini, Stefania; Ruggiero, Marco

    2015-10-01

    A woman, mother of one at the age of 19 years, was diagnosed with mammary adenocarcinoma in the right breast in 1985 at the age of 37 years. The patient underwent surgery (quadrantectomy), lymphadenectomy and radiotherapy. In 1999, an adenocarcinoma was diagnosed in the left breast, followed by adequate resection, radiotherapy and anti-oestrogen receptor treatment for 6 years. In March 2014, an infiltrating adenocarcinoma was diagnosed in the remaining part of the right breast that had been operated on and irradiated in 1985. The pre-surgical biopsy, showed weak positivity for progesterone receptor (PgR) (10%, score 2+), and high positivity for the nuclear protein Ki67 (30%). In the three weeks between diagnosis and operation, when no other treatment had been planned, the patient decided to self-administer high doses of oral vitamin D3 (10,000 IU/day), and to follow a strict ketogenic diet. Following right mastectomy, analysis of the surgical specimen showed no positivity for HER2 expression (negative, score 0), and significant increase in positivity of PgR (20%). Positivity for ER and Ki67 were unaltered. This observation indicates that a combination of high-dose vitamin D3 and ketogenic diet leads to changes in some biological markers of breast cancer, i.e. negativization of HER2 expression and increased expression of PgR. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. [Influence of ketogenic diet on the clinical effects and electroencephalogram features in 31 children with pharmacoresistant epileptic encephalopathy].

    Science.gov (United States)

    Li, Bao-Min; Tong, Li-Li; Jia, Gui-Juan; Wang, Ji-Wen; Lei, Ge-Fei; Yin, Ping; Sun, Ruo-Peng

    2013-05-01

    To investigate the effect of ketogenic diet (KD) on the clinical and electroencephalogram features in children with pharmacoresistant epileptic encephalopathy. Thirty-one children (19 boys, 12 girls) aged 7 months to 7 years (mean 2 years 5 month) with epilepsy refractory to conventional antiepileptic drugs (AEDs) were included in this study. In addition to their original AED treatment, the children were assigned to different ketogenic diets based on their age. The prospective electro-clinical assessment was performed prior to the KD and then one week, one month and again 3 months after the initiation of therapy, respectively. The reduction of seizure frequency in 52%, 68% and 71% of all patients exceeded 50% one week, one month and three months after KD treatment respectively. KD is particularly effective in myoclonic astatic epilepsy (MAE; Doose Syndrome) and West syndrome with 100% and 81.25% of the patients having a greater than 50% seizure reduction, respectively. After 3 months of KD treatment, more than 2/3 patients experienced a reduction in interictal epileptiform discharges (IEDs) and improvement in EEG background. The clinical and electroencephalographic improvement confirms that KD is beneficial in children with refractory epilepsy.

  5. Long-term ketogenic diet causes glucose intolerance and reduced β- and α-cell mass but no weight loss in mice

    NARCIS (Netherlands)

    Ellenbroek, Johanne H; van Dijck, Laura; Töns, Hendrica A; Rabelink, Ton J; Carlotti, Françoise; Ballieux, Bart E P B; de Koning, Eelco J P

    2014-01-01

    High-fat, low-carbohydrate ketogenic diets (KD) are used for weight loss and for treatment of refractory epilepsy. Recently, short-time studies in rodents have shown that, besides their beneficial effect on body weight, KD lead to glucose intolerance and insulin resistance. However, the long-term

  6. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively.

    NARCIS (Netherlands)

    Klepper, J.; Scheffer, H.; Leiendecker, B.; Gertsen, E.; Binder, S.; Leferink, M.; Hertzberg, C.; Nake, A.; Voit, T.; Willemsen, M.A.A.P.

    2005-01-01

    BACKGROUND: GLUT1 deficiency syndrome is caused by impaired glucose transport into the brain resulting in an epileptic encephalopathy, developmental delay, and a complex motor disorder. A ketogenic diet provides an alternative fuel to the brain and effectively restores brain energy metabolism.

  7. Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus

    OpenAIRE

    Goday, A; Bellido, D; Sajoux, I; Crujeiras, A B; Burguera, B; Garc?a-Luna, P P; Oleaga, A; Moreno, B; Casanueva, F F

    2016-01-01

    Brackground:The safety and tolerability of very low-calorie-ketogenic (VLCK) diets are a current concern in the treatment of obese type 2 diabetes mellitus (T2DM) patients.OBJECTIVE: Evaluating the short-term safety and tolerability of a VLCK diet (

  8. Decreased health care utilization and health care costs in the inpatient and emergency department setting following initiation of ketogenic diet in pediatric patients: The experience in Ontario, Canada.

    Science.gov (United States)

    Whiting, Sharon; Donner, Elizabeth; RamachandranNair, Rajesh; Grabowski, Jennifer; Jetté, Nathalie; Duque, Daniel Rodriguez

    2017-03-01

    To assess the change in inpatient and emergency department utilization and health care costs in children on the ketogenic diet for treatment of epilepsy. Data on children with epilepsy initiated on the ketogenic diet (KD) Jan 1, 2000 and Dec 31, 2010 at Ontario pediatric hospitals were linked to province wide inpatient, emergency department (ED) data at the Institute for Clinical Evaluative Sciences. ED and inpatient visits and costs for this cohort were compared for a maximum of 2 years (730days) prior to diet initiation and for a maximum of 2 years (730days) following diet initiation. KD patient were compared to matched group of children with epilepsy who did not receive the ketogenic diet (no KD). Children on the KD experienced a mean decrease in ED visits of 2.5 visits per person per year [95% CI (1.5-3.4)], and a mean decrease of 0.8 inpatient visits per person per year [95% CI (0.3-1.3)], following diet initiation. They had a mean decrease in ED costs of $630 [95% CI (249-1012)] per person per year and a median decrease in inpatient costs of $1059 [IQR: 7890; pdiet experienced a mean reduction of 2.1 ED visits per child per year [95% CI (1.0-3.2)] and a mean decrease of 0.6 [95% CI (0.1-1.1)] inpatient visits per child per year. Patients on the KD experienced a reduction of $442 [95% CI (34.4-850)] per child per year more in ED costs than the matched group. The ketogenic diet group had greater median decrease in inpatient costs per child per year than the matched group [pketogenic diet, experienced decreased ED and inpatient visits as well as costs following diet initiation in Ontario, Canada. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Does ketogenic diet have any negative effect on cardiac systolic and diastolic functions in children with intractable epilepsy?: One-year follow-up results.

    Science.gov (United States)

    Ozdemir, Rahmi; Kucuk, Mehmet; Guzel, Orkide; Karadeniz, Cem; Yilmaz, Unsal; Mese, Timur

    2016-10-01

    The ketogenic diet (KD) has been referred to as an "effective therapy with side effects" for children with intractable epilepsy. Among the most recognized adverse effects, there are cardiac conduction abnormalities, vascular and myocardial dysfunction. However, very limited and controversial data are available regarding the effects of the KD on cardiac functions. We sought to analyze the mid-term effect of ketogenic diet on cardiac functions in patients with intractable epilepsy who received a ketogenic diet for at least 12months using conventional and relatively new imaging techniques. This prospective study included 61 patients with intractable epilepsy who received ketogenic diet for at least 12months. Clinical examinations, serum carnitine and selenium levels as well as electrocardiographic and echocardiographic examinations were scheduled prior to the procedure and at 1, 3, 6 and 12months. We utilized two-dimensional, M-mode, colored Doppler, spectral Doppler and pulsed wave tissue Doppler imaging techniques to investigate ventricular systolic and diastolic functions of this subgroup of patients. In our study, there was no significant difference after 1year of KD therapy compared to baseline values-except a significantly decreased A wave velocity-in terms of pulse wave Doppler echocardiographic measurements of the diastolic function. The tissue Doppler measurements obtained from the lateral wall of tricuspide and mitral annuli were not different at baseline and at month 12 of the treatment, as well. The ketogenic diet appears to have no disturbing effect on ventricular functions in epileptic children in the midterm. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    Science.gov (United States)

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Ketogenic diet change cPLA2/clusterin and autophagy related gene expression and correlate with cognitive deficits and hippocampal MFs sprouting following neonatal seizures.

    Science.gov (United States)

    Ni, Hong; Zhao, Dong-Jing; Tian, Tian

    2016-02-01

    Because the ketogenic diet (KD) was affecting expression of energy metabolism- related genes in hippocampus and because lipid membrane peroxidation and its associated autophagy stress were also found to be involved in energy depletion, we hypothesized that KD might exert its neuroprotective action via lipid membrane peroxidation and autophagic signaling. Here, we tested this hypothesis by examining the long-term expression of lipid membrane peroxidation-related cPLA2 and clusterin, its downstream autophagy marker Beclin-1, LC3 and p62, as well as its execution molecule Cathepsin-E following neonatal seizures and chronic KD treatment. On postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizures group and control group. On P28, they were further randomly divided into the seizure group without ketogenic diet (RS+ND), seizure plus ketogenic diet (RS+KD), the control group without ketogenic diet (NS+ND), and the control plus ketogenic diet (NS+KD). Morris water maze test was performed during P37-P43. Then mossy fiber sprouting and the protein levels were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced RS+ND rats show a long-term lower amount of cPLA2 and LC3II/I, and higher amount of clusterin, Beclin-1, p62 and Cathepsin-E which are in parallel with hippocampal mossy fiber sprouting and cognitive deficits. Furthermore, chronic KD treatment (RS+KD) is effective in restoring these molecular, neuropathological and cognitive changes. The results imply that a lipid membrane peroxidation and autophagy-associated pathway is involved in the aberrant hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures, which might be a potential target of KD for the treatment of neonatal seizure-induced brain damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Revealing the molecular relationship between type 2 diabetes and the metabolic changes induced by a very-low-carbohydrate low-fat ketogenic diet

    Directory of Open Access Journals (Sweden)

    Naval Jordi

    2010-12-01

    Full Text Available Abstract Background The prevalence of type 2 diabetes is increasing worldwide, accounting for 85-95% of all diagnosed cases of diabetes. Clinical trials provide evidence of benefits of low-carbohydrate ketogenic diets in terms of clinical outcomes on type 2 diabetes patients. However, the molecular events responsible for these improvements still remain unclear in spite of the high amount of knowledge on the primary mechanisms of both the diabetes and the metabolic state of ketosis. Molecular network analysis of conditions, diseases and treatments might provide new insights and help build a better understanding of clinical, metabolic and molecular relationships among physiological conditions. Accordingly, our aim is to reveal such a relationship between a ketogenic diet and type 2 diabetes through systems biology approaches. Methods Our systemic approach is based on the creation and analyses of the cell networks representing the metabolic state in a very-low-carbohydrate low-fat ketogenic diet. This global view might help identify unnoticed relationships often overlooked in molecule or process-centered studies. Results A strong relationship between the insulin resistance pathway and the ketosis main pathway was identified, providing a possible explanation for the improvement observed in clinical trials. Moreover, the map analyses permit the formulation of some hypothesis on functional relationships between the molecules involved in type 2 diabetes and induced ketosis, suggesting, for instance, a direct implication of glucose transporters or inflammatory processes. The molecular network analysis performed in the ketogenic-diet map, from the diabetes perspective, has provided insights on the potential mechanism of action, but also has opened new possibilities to study the applications of the ketogenic diet in other situations such as CNS or other metabolic dysfunctions.

  13. Revealing the molecular relationship between type 2 diabetes and the metabolic changes induced by a very-low-carbohydrate low-fat ketogenic diet.

    Science.gov (United States)

    Farrés, Judith; Pujol, Albert; Coma, Mireia; Ruiz, Jose Luis; Naval, Jordi; Mas, José Manuel; Molins, Agustí; Fondevila, Joan; Aloy, Patrick

    2010-12-09

    The prevalence of type 2 diabetes is increasing worldwide, accounting for 85-95% of all diagnosed cases of diabetes. Clinical trials provide evidence of benefits of low-carbohydrate ketogenic diets in terms of clinical outcomes on type 2 diabetes patients. However, the molecular events responsible for these improvements still remain unclear in spite of the high amount of knowledge on the primary mechanisms of both the diabetes and the metabolic state of ketosis. Molecular network analysis of conditions, diseases and treatments might provide new insights and help build a better understanding of clinical, metabolic and molecular relationships among physiological conditions. Accordingly, our aim is to reveal such a relationship between a ketogenic diet and type 2 diabetes through systems biology approaches. Our systemic approach is based on the creation and analyses of the cell networks representing the metabolic state in a very-low-carbohydrate low-fat ketogenic diet. This global view might help identify unnoticed relationships often overlooked in molecule or process-centered studies. A strong relationship between the insulin resistance pathway and the ketosis main pathway was identified, providing a possible explanation for the improvement observed in clinical trials. Moreover, the map analyses permit the formulation of some hypothesis on functional relationships between the molecules involved in type 2 diabetes and induced ketosis, suggesting, for instance, a direct implication of glucose transporters or inflammatory processes. The molecular network analysis performed in the ketogenic-diet map, from the diabetes perspective, has provided insights on the potential mechanism of action, but also has opened new possibilities to study the applications of the ketogenic diet in other situations such as CNS or other metabolic dysfunctions.

  14. Dieta cetogênica no tratamento de epilepsias farmacorresistentes The ketogenic diet on the treatment of drug resistant epilepsies

    Directory of Open Access Journals (Sweden)

    Carla Barbosa Nonino-Borges

    2004-12-01

    Full Text Available A epilepsia é uma condição clínica crônica correspondente a um grupo de doenças que tem em comum crises epilépticas; ela atinge de 0,5% a 1,0% da população dos países desenvolvidos, podendo esta prevalência ser maior nos países em desenvolvimento. Aproximadamente um terço dos pacientes evolui com crises epilépticas intratáveis com medicamentos; em alguns casos, é possível o tratamento cirúrgico. Nos pacientes em que cirurgia não é possível, a dieta cetogênica passa a ser uma opção terapêutica, principalmente em crianças. Espera-se que esta terapia seja eficaz para, pelo menos, um terço dos pacientes, resultando em redução ou controle das crises. No presente trabalho, apresentamos métodos para o preparo e uso a dieta cetogênica. O planejamento da dieta é individualizado, seguindo-se recomendações para o consumo energético e proporções de gorduras, proteínas e carboidratos específicos. Sempre que introduzida a dieta, o paciente deve ser monitorizado, devido à possibilidade de efeitos adversos. A orientação dos pais ou responsáveis sobre a dieta cetogênica, e como ela funciona, proporciona maior aceitação e aderência a esta forma de tratamento da epilepsia.Epilepsy is a chronic condition that affects 0.5% to 1.0% of the population in developed countries. This prevalence may be higher in developing countries. A significant proportion of the patients, nearly one third of them will have their condition evolved into a stage of uncontrolled crises, in some cases, surgical procedure may be indicated. However, for several patients, surgery is not possible. In these cases, ketogenic diet is a therapeutic option, especially for children. It is supposed that nearly one third of the patients that use the ketogenic diet, experience seizure control or reduction in the number of seizures. The current study presents methods of preparing and using ketogenic diet. The diet must be individualized, considering the

  15. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats.

    Science.gov (United States)

    Zhao, Ming; Huang, Xin; Cheng, Xiang; Lin, Xiao; Zhao, Tong; Wu, Liying; Yu, Xiaodan; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2017-01-01

    Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD) has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h). In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role.

  16. Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1.

    Science.gov (United States)

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Doi, Ryosuke; Ishida, Norio; Kadota, Koji; Horie, Shuichi

    2009-10-01

    Metabolic disorders such as diabetes and obesity are considered risk factors for cardiovascular diseases by increasing levels of blood plasminogen activator inhibitor-1 (PAI-1). Ketogenic diets (KDs) have been used as an approach to weight loss in both obese and nonobese individuals. We examined circadian changes in plasma PAI-1 and its mRNA expression levels in tissues from mice fed with a KD (KD mice), to evaluate its effects on fibrinolytic functions. Two weeks on the kDa increased plasma levels of free fatty acids and ketones accompanied by hypoglycemia in mice. Plasma PAI-1 concentrations were extremely elevated in accordance with mRNA expression levels in the heart and liver, but not in the kidneys of KD mice. Circadian expression of PAI-1 mRNA was phase-advanced for 4.7, 7.9, and 7.8 hours in the heart, kidney, and adipose tissues, respectively, as well as that of circadian genes mPer2 and DBP in KD mice, suggesting that peripheral clocks were phase-advanced by ketosis despite feeding ad libitum under a periodic light-dark cycle. The circadian clock that regulates behavioral activity rhythms was also phase-advanced, and its free-running period was significantly shortened in KD mice. Our findings suggest that ketogenic status increases hypofibrinolytic risk by inducing abnormal circadian expression of PAI-1.

  17. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides.

    Science.gov (United States)

    Hao, Guang-Wei; Chen, Yu-Sheng; He, De-Ming; Wang, Hai-Yu; Wu, Guo-Hao; Zhang, Bo

    2015-01-01

    Tumors are largely unable to metabolize ketone bodies for energy due to various deficiencies in one or both of the key mitochondrial enzymes, which may provide a rationale for therapeutic strategies that inhibit tumor growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat. Thirty-six male BALB/C nude mice were injected subcutaneously with tumor cells of the colon cancer cell line HCT116. The animals were then randomly split into three feeding groups and fed either a ketogenic diet rich in omega-3 fatty acids and MCT (MKD group; n=12) or lard only (LKD group; n=12) or a standard diet (SD group; n=12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The three diets were compared for tumor growth and survival time (interval between tumor cell injection and attainment of target tumor volume). The tumor growth in the MKD and LKD groups was significantly delayed compared to that in the SD group. Application of an unrestricted ketogenic diet delayed tumor growth in a mouse xenograft model. Further studies are needed to address the mechanism of this diet intervention and the impact on other tumor-relevant parameters such as invasion and metastasis.

  18. The ketogenic diet as a treatment option in adults with chronic refractory epilepsy: efficacy and tolerability in clinical practice.

    Science.gov (United States)

    Lambrechts, Danielle A J E; Wielders, Laura H P; Aldenkamp, Albert P; Kessels, Fons G H; de Kinderen, Reina J A; Majoie, Marian J M

    2012-03-01

    The ketogenic diet (KD) is a high-fat, low-protein, low-carbohydrate diet that is used as a treatment for patients with difficult-to-control epilepsy. The present study assesses the efficacy and tolerability of the KD as an add-on therapy in adults with chronic refractory epilepsy. 15 adults were treated with the classical diet or MCT diet. During a follow-up period of 1 year we assessed seizure frequency, seizure severity, tolerability, cognitive performance, mood and quality of life (QOL). We found a significant reduction in seizures among the patients who followed the diet at least 1 year (n=5). Of these 5 patients, 2 had a reduction between 50 and 90%. Analyzing the study months separately, we found a seizure reduction of ≥50% in 26.6% of the patients during at least 1 month of treatment. Common side-effects were gastrointestinal disorders, loss of weight and fatigue. There was a considerable, non-significant improvement found in mood and QOL scores. Improvements were independent of reduction in seizure frequency, indicating that the effects of the KD reach further than seizure control. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Efficacy of Modified Atkins Ketogenic Diet in Chronic Cluster Headache: An Open-Label, Single-Arm, Clinical Trial

    Directory of Open Access Journals (Sweden)

    Cherubino Di Lorenzo

    2018-02-01

    Full Text Available IntroductionDrug-resistant cluster headache (CH is still an open clinical challenge. Recently, our group observed the clinical efficacy of a ketogenic diet (KD, usually adopted to treat drug-resistant epilepsies, on migraine.AimHere, we aim to detect the effect of KD in a group of drug-resistant chronic CH (CCH patients.Materials and methodsEighteen drug-resistant CCH patients underwent a 12-week KD (Modified Atkins Diet, MAD, and the clinical response was evaluated in terms of response (≥50% attack reduction.ResultsOf the 18 CCH patients, 15 were considered responders to the diet (11 experienced a full resolution of headache, and 4 had a headache reduction of at least 50% in terms of mean monthly number of attacks during the diet. The mean monthly number of attacks for each patient at the baseline was 108.71 (SD = 81.71; at the end of the third month of diet, it was reduced to 31.44 (SD = 84.61.ConclusionWe observed for the first time that a 3-month ketogenesis ameliorates clinical features of CCH.Clinical Trial Registrationwww.ClinicalTrials.gov, identifier NCT03244735.

  20. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus.

    Science.gov (United States)

    Westman, Eric C; Yancy, William S; Mavropoulos, John C; Marquart, Megan; McDuffie, Jennifer R

    2008-12-19

    Dietary carbohydrate is the major determinant of postprandial glucose levels, and several clinical studies have shown that low-carbohydrate diets improve glycemic control. In this study, we tested the hypothesis that a diet lower in carbohydrate would lead to greater improvement in glycemic control over a 24-week period in patients with obesity and type 2 diabetes mellitus. Eighty-four community volunteers with obesity and type 2 diabetes were randomized to either a low-carbohydrate, ketogenic diet (diet (500 kcal/day deficit from weight maintenance diet; LGID). Both groups received group meetings, nutritional supplementation, and an exercise recommendation. The main outcome was glycemic control, measured by hemoglobin A1c. Forty-nine (58.3%) participants completed the study. Both interventions led to improvements in hemoglobin A1c, fasting glucose, fasting insulin, and weight loss. The LCKD group had greater improvements in hemoglobin A1c (-1.5% vs. -0.5%, p = 0.03), body weight (-11.1 kg vs. -6.9 kg, p = 0.008), and high density lipoprotein cholesterol (+5.6 mg/dL vs. 0 mg/dL, p Diabetes medications were reduced or eliminated in 95.2% of LCKD vs. 62% of LGID participants (p diabetes. The diet lower in carbohydrate led to greater improvements in glycemic control, and more frequent medication reduction/elimination than the low glycemic index diet. Lifestyle modification using low carbohydrate interventions is effective for improving and reversing type 2 diabetes.

  1. The effects of ketogenic diet on the Th17/Treg cells imbalance in patients with intractable childhood epilepsy.

    Science.gov (United States)

    Ni, Fen-Fen; Li, Cheng-Rong; Liao, Jian-Xiang; Wang, Guo-Bing; Lin, Su-Fang; Xia, Yu; Wen, Jia-Lun

    2016-05-01

    The ketogenic diet (KD) is an effective treatment for intractable epilepsy (IE), however the therapeutic mechanism is still unclear. This study was designed to investigate T helper type 17/regulatory T cell (Th17/Treg) levels in children with IE and age-matched healthy controls following KD. Circulating levels of Th17/Treg cells were analyzed by flow cytometry. Plasma concentration of interleukin (IL)-17 was measured by cytometric bead array assay. Real-time PCR was performed to measure mRNA levels of mTOR, HIF1α and Th17/Treg associated factors in purified CD4(+)CD25(+) T and CD4(+)CD25(-) T cells. By one-way ANOVA, the proportion of circulating Th17 cells and expression of IL-17A and RORγt were significantly higher (PEpilepsy Association. Published by Elsevier Ltd. All rights reserved.

  2. A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain.

    Science.gov (United States)

    Jornayvaz, François R; Jurczak, Michael J; Lee, Hui-Young; Birkenfeld, Andreas L; Frederick, David W; Zhang, Dongyang; Zhang, Xian-Man; Samuel, Varman T; Shulman, Gerald I

    2010-11-01

    Low-carbohydrate, high-fat ketogenic diets (KD) have been suggested to be more effective in promoting weight loss than conventional caloric restriction, whereas their effect on hepatic glucose and lipid metabolism and the mechanisms by which they may promote weight loss remain controversial. The aim of this study was to explore the role of KD on liver and muscle insulin sensitivity, hepatic lipid metabolism, energy expenditure, and food intake. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in mice fed a KD or regular chow (RC). Body composition was assessed by ¹H magnetic resonance spectroscopy. Despite being 15% lighter (P diabetes and the widespread use of KD for the treatment of obesity, these results may have potentially important clinical implications.

  3. Research into the (Cost-) effectiveness of the ketogenic diet among children and adolescents with intractable epilepsy: design of a randomized controlled trial.

    Science.gov (United States)

    de Kinderen, Reina J A; Lambrechts, Danielle A J E; Postulart, Debby; Kessels, Alfons G H; Hendriksen, Jos G M; Aldenkamp, Albert P; Evers, Silvia M A A; Majoie, Marian H J M

    2011-01-25

    Epilepsy is a neurological disorder, characterized by recurrent unprovoked seizures which have a high impact on the individual as well as on society as a whole. In addition to the economic burden, epilepsy imposes a substantial burden on the patients and their surroundings. Patients with uncontrolled epilepsy depend heavily on informal care and on health care professionals. About 30% of patients suffer from drug-resistant epilepsy. The ketogenic diet can be a treatment of last resort, especially for children. The beneficial effect of the ketogenic diet has been proven, but information is lacking about its cost-effectiveness. In the current study we will evaluate the (cost-) effectiveness of the ketogenic diet in children and adolescents with intractable epilepsy. In a RCT we will compare the ketogenic diet with usual care. Embedded in this RCT will be a trial-based and model-based economic evaluation, looking from a societal perspective at the cost-effectiveness and cost-utility of the ketogenic diet versus usual care. Fifty children and adolescents (aged 1-18) with intractable epilepsy will be screened for eligibility before randomization into the intervention or the usual care group. The primary outcome measure is the proportion of children with a 50% or more reduction in seizure frequency. Secondary outcomes include seizure severity, side effects/complaints, neurocognitive, socio-emotional functioning, and quality of life. Costs and productivity losses will be assessed continuously by a prospective diary and a retrospective questionnaire. Measurements will take place during consults at baseline, at 6 weeks and at 4 months after the baseline period, and 3, 6, 9 and 12 months follow-up after the 4 months consult. The proposed research project will be the first study to provide data about the cost-effectiveness of the ketogenic diet for children and adolescents with intractable epilepsy, in comparison with usual care. It is anticipated that positive results in

  4. Research into the (Cost- effectiveness of the ketogenic diet among children and adolescents with intractable epilepsy: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Hendriksen Jos GM

    2011-01-01

    Full Text Available Abstract Background Epilepsy is a neurological disorder, characterized by recurrent unprovoked seizures which have a high impact on the individual as well as on society as a whole. In addition to the economic burden, epilepsy imposes a substantial burden on the patients and their surroundings. Patients with uncontrolled epilepsy depend heavily on informal care and on health care professionals. About 30% of patients suffer from drug-resistant epilepsy. The ketogenic diet can be a treatment of last resort, especially for children. The beneficial effect of the ketogenic diet has been proven, but information is lacking about its cost-effectiveness. In the current study we will evaluate the (cost- effectiveness of the ketogenic diet in children and adolescents with intractable epilepsy. Methods/Design In a RCT we will compare the ketogenic diet with usual care. Embedded in this RCT will be a trial-based and model-based economic evaluation, looking from a societal perspective at the cost-effectiveness and cost-utility of the ketogenic diet versus usual care. Fifty children and adolescents (aged 1-18 with intractable epilepsy will be screened for eligibility before randomization into the intervention or the usual care group. The primary outcome measure is the proportion of children with a 50% or more reduction in seizure frequency. Secondary outcomes include seizure severity, side effects/complaints, neurocognitive, socio-emotional functioning, and quality of life. Costs and productivity losses will be assessed continuously by a prospective diary and a retrospective questionnaire. Measurements will take place during consults at baseline, at 6 weeks and at 4 months after the baseline period, and 3, 6, 9 and 12 months follow-up after the 4 months consult. Discussion The proposed research project will be the first study to provide data about the cost-effectiveness of the ketogenic diet for children and adolescents with intractable epilepsy, in comparison

  5. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice

    Science.gov (United States)

    2014-01-01

    Background Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. Methods We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. Results The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. Conclusions These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition. PMID:24910707

  6. Antiseizure Effects of Ketogenic Diet on Seizures Induced with Pentylenetetrazole, 4-Aminopyridine and Strychnine in Wistar Rats.

    Science.gov (United States)

    Sanya, E O; Soladoye, A O; Desalu, O O; Kolo, P M; Olatunji, L A; Olarinoye, J K

    2017-03-06

    The ketogenic diet (KD) is a cheap and effective alternative therapy for most epilepsy. There are paucity of experimental data in Nigeria on the usefulness of KD in epilepsy models. This is likely to be responsible for the poor clinical acceptability of the diet in the country. This study therefore aimed at providing experimental data on usefulness of KD on seizure models.  The study used 64 Wistar rats that were divided into two dietary groups [normal diet (ND) and ketogenic diet (KD)]. Animal in each group were fed for 35days. Medium chain triglyceride ketogenic diet (MCT-KD) was used and it consisted of 15% carbohydrate in normal rat chow long with 5ml sunflower oil (25% (v/w). The normal diet was the usual rat chow. Seizures were induced with one of Pentelyntetrazole (PTZ), 4-Aminopyridine (AP) and Strychnine (STR). Fasting glucose, ketosis level and serum chemistry were determined and seizure parameters recorded. Serum ketosis was significantly higher in MCT-KD-fed rats (12.7 ±2.6) than ND-fed (5.17±0.86) rats. Fasting blood glucose was higher in ND-fed rats (5.3±0.9mMol/l) than in MCT-KD fed rats (5.1±0.5mMol/l) with p=0.9. Seizure latency was significantly prolonged in ND-fed compared with MCT-KD fed rats after PTZ-induced seizures (61±9sec vs 570±34sec) and AP-induced seizures (49±11sec vs 483±41sec). The difference after Str-induced seizure (51±7 vs 62±8 sec) was not significan. The differences in seizure duration between ND-fed and MCT-KD fed rats with PTZ (4296±77sec vs 366±46sec) and with AP (5238±102sec vs 480±67sec) were significant (p<0.05), but not with STR (3841±94sec vs 3510±89sec) respectively. The mean serum Na+ was significantly higher in MCT-KD fed (141.7±2.1mMol/l) than ND-fed rats (137±2.3mMol/l). There was no significant difference in mean values of other serum electrolytes between the MCT-KD fed and ND-fed animals. MCT-KD caused increase resistance to PTZ-and AP-induced seizures, but has no effect on STR-induced seizures

  7. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Mavropoulos John C

    2008-12-01

    Full Text Available Abstract Objective Dietary carbohydrate is the major determinant of postprandial glucose levels, and several clinical studies have shown that low-carbohydrate diets improve glycemic control. In this study, we tested the hypothesis that a diet lower in carbohydrate would lead to greater improvement in glycemic control over a 24-week period in patients with obesity and type 2 diabetes mellitus. Research design and methods Eighty-four community volunteers with obesity and type 2 diabetes were randomized to either a low-carbohydrate, ketogenic diet (1c. Results Forty-nine (58.3% participants completed the study. Both interventions led to improvements in hemoglobin A1c, fasting glucose, fasting insulin, and weight loss. The LCKD group had greater improvements in hemoglobin A1c (-1.5% vs. -0.5%, p = 0.03, body weight (-11.1 kg vs. -6.9 kg, p = 0.008, and high density lipoprotein cholesterol (+5.6 mg/dL vs. 0 mg/dL, p Conclusion Dietary modification led to improvements in glycemic control and medication reduction/elimination in motivated volunteers with type 2 diabetes. The diet lower in carbohydrate led to greater improvements in glycemic control, and more frequent medication reduction/elimination than the low glycemic index diet. Lifestyle modification using low carbohydrate interventions is effective for improving and reversing type 2 diabetes.

  8. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats.

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    Full Text Available Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h. In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role.

  9. Roles of Caloric Restriction, Ketogenic Diet and Intermittent Fasting during Initiation, Progression and Metastasis of Cancer in Animal Models: A Systematic Review and Meta-Analysis

    OpenAIRE

    Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    Background The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Methods Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensivel...

  10. Revealing the molecular relationship between type 2 diabetes and the metabolic changes induced by a very-low-carbohydrate low-fat ketogenic diet

    OpenAIRE

    Farres, Judith; Pujol, Albert; Coma, Mireia; Luis Ruiz, Jose; Naval, Jordi; Manuel Mas, Jose; Molins, Agusti; Fondevila, Joan; Aloy, Patrick

    2010-01-01

    Abstract Background The prevalence of type 2 diabetes is increasing worldwide, accounting for 85-95% of all diagnosed cases of diabetes. Clinical trials provide evidence of benefits of low-carbohydrate ketogenic diets in terms of clinical outcomes on type 2 diabetes patients. However, the molecular events responsible for these improvements still remain unclear in spite of the high amount of knowledge on the primary mechanisms of both the diabetes and the metabolic state of ketosis. Molecular ...

  11. Body Composition Changes After Very-Low-Calorie Ketogenic Diet in Obesity Evaluated by 3 Standardized Methods.

    Science.gov (United States)

    Gomez-Arbelaez, Diego; Bellido, Diego; Castro, Ana I; Ordoñez-Mayan, Lucia; Carreira, Jose; Galban, Cristobal; Martinez-Olmos, Miguel A; Crujeiras, Ana B; Sajoux, Ignacio; Casanueva, Felipe F

    2017-02-01

    Common concerns when using low-calorie diets as a treatment for obesity are the reduction in fat-free mass, mostly muscular mass, that occurs together with the fat mass (FM) loss, and determining the best methodologies to evaluate body composition changes. This study aimed to evaluate the very-low-calorie ketogenic (VLCK) diet-induced changes in body composition of obese patients and to compare 3 different methodologies used to evaluate those changes. Twenty obese patients followed a VLCK diet for 4 months. Body composition assessment was performed by dual-energy X-ray absorptiometry (DXA), multifrequency bioelectrical impedance (MF-BIA), and air displacement plethysmography (ADP) techniques. Muscular strength was also assessed. Measurements were performed at 4 points matched with the ketotic phases (basal, maximum ketosis, ketosis declining, and out of ketosis). After 4 months the VLCK diet induced a -20.2 ± 4.5 kg weight loss, at expenses of reductions in fat mass (FM) of -16.5 ± 5.1 kg (DXA), -18.2 ± 5.8 kg (MF-BIA), and -17.7 ± 9.9 kg (ADP). A substantial decrease was also observed in the visceral FM. The mild but marked reduction in fat-free mass occurred at maximum ketosis, primarily as a result of changes in total body water, and was recovered thereafter. No changes in muscle strength were observed. A strong correlation was evidenced between the 3 methods of assessing body composition. The VLCK diet-induced weight loss was mainly at the expense of FM and visceral mass; muscle mass and strength were preserved. Of the 3 body composition techniques used, the MF-BIA method seems more convenient in the clinical setting. Copyright © 2017 by the Endocrine Society

  12. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mengmeng Lv

    Full Text Available The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies.Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction.Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI of 0.20 (0.12, 0.34 relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer.Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  13. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Science.gov (United States)

    Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction. Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI) of 0.20 (0.12, 0.34) relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer. Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  14. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: A pilot study

    Directory of Open Access Journals (Sweden)

    Hepburn Juanita

    2005-12-01

    Full Text Available Abstract Background Polycystic ovary syndrome (PCOS is the most common endocrine disorder affecting women of reproductive age and is associated with obesity, hyperinsulinemia, and insulin resistance. Because low carbohydrate diets have been shown to reduce insulin resistance, this pilot study investigated the six-month metabolic and endocrine effects of a low-carbohydrate, ketogenic diet (LCKD on overweight and obese women with PCOS. Results Eleven women with a body mass index >27 kg/m2 and a clinical diagnosis of PCOS were recruited from the community. They were instructed to limit their carbohydrate intake to 20 grams or less per day for 24 weeks. Participants returned every two weeks to an outpatient research clinic for measurements and reinforcement of dietary instruction. In the 5 women who completed the study, there were significant reductions from baseline to 24 weeks in body weight (-12%, percent free testosterone (-22%, LH/FSH ratio (-36%, and fasting insulin (-54%. There were non-significant decreases in insulin, glucose, testosterone, HgbA1c, triglyceride, and perceived body hair. Two women became pregnant despite previous infertility problems. Conclusion In this pilot study, a LCKD led to significant improvement in weight, percent free testosterone, LH/FSH ratio, and fasting insulin in women with obesity and PCOS over a 24 week period.

  15. Ketogenic Diet Based on Extra Virgin Coconut Oil Has No Effects in Young Wistar Rats With Pilocarpine-Induced Epilepsy.

    Science.gov (United States)

    Melo, Isabelle T; M Rêgo, Elisabete; Bueno, Nassib B; Gomes, Tâmara C; Oliveira, Suzana L; Trindade-Filho, Euclides M; Cabral, Cyro R; Machado, Tacy S; Galvão, Jaqueline A; R Ataide, Terezinha

    2018-02-01

    This study evaluated the effects of a ketogenic diet (KD) based on extra virgin coconut oil (Cocos nucifera L., VCO), on the treatment of epileptic rats. Two sets of experiments were conducted. First, male Wistar rats underwent induction of status epilepticus (SE) with the administration of pilocarpine intraperitoneally 21 animals reached spontaneous recurrent seizures (SRS) and were randomly allocated to the dietary regimens and video-monitored for 19 days. In the second experiment, 24 animals were randomized immediately after the induction of SE and followed for 67 days. Diets were as follows: Control (AIN-93G; 7% lipid), KetoTAGsoya (KD based on soybean oil; 69.79% lipid), and KetoTAGcoco (KD based on VCO; 69.79% lipid). There were no differences in the latency to the first crisis, total frequency, and duration of the SRS between groups in 2 experiments. The data suggest no effects of KD, with or without VCO, in rats with pilocarpine-induced epilepsy. © 2018 AOCS.

  16. Low ketolytic enzyme levels in tumors predict ketogenic diet responses in cancer cell lines in vitro and in vivo.

    Science.gov (United States)

    Zhang, Jie; Jia, Ping-Ping; Liu, Qing-Le; Cong, Ming-Hua; Gao, Yun; Shi, Han-Ping; Yu, Wei-Nan; Miao, Ming-Yong

    2018-02-05

    The ketogenic diet (KD) is a high-fat, very-low-carbohydrate diet that triggers a fasting state by decreasing glucose and increasing ketone bodies, such as β-hydroxybutyrate (βHB). In experimental models and clinical trials, the KD has shown anti-tumor effects, possibly by reducing energy supplies to cells, which damages the tumor microenvironment and inhibits tumor growth. Here, we determined expression levels of genes encoding the ketolytic enzymes 3-hydroxybutyrate dehydrogenase 1 (BDH1) and succinyl-CoA: 3-oxoacid CoA transferase 1 (OXCT1) in 33 human cancer cell lines. We then selected two representative lines - HeLa and PANC-1 - for in vivo examination of KD sensitivity in tumors with high or low expression, respectively, of these two enzymes. In mice with HeLa xenografts, the KD increased tumor growth and mouse survival decreased, possibly because these tumors actively consumed ketone bodies as an energy source. Conversely, the KD significantly inhibited growth of PANC-1 xenograft tumors. βHB added to each cell culture significantly increased proliferation of HeLa cells, but not PANCI-1 cells. Downregulation of both BDH1 and OXCT1 rendered HeLa cells sensitive to the KD in vitro and in vivo. Tumors with low ketolytic enzyme expression may be unable to metabolize ketone bodies, thus predicting a better response to KD therapy. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Use of the ketogenic diet to manage refractory epilepsy in CDKL5 disorder: Experience of >100 patients.

    Science.gov (United States)

    Lim, Zhan; Wong, Kingsley; Olson, Heather E; Bergin, Ann M; Downs, Jenny; Leonard, Helen

    2017-08-01

    Pathogenic variants involving the CDKL5 gene result in a severe epileptic encephalopathy, often later presenting with features similar to Rett syndrome. Cardinal features of epilepsy in the CDKL5 disorder include early onset at a median age of 6 weeks and poor response to antiepileptic drugs. The ketogenic diet (KD) was first introduced in the 1920s as a treatment option for refractory epilepsy in children. This study investigated use of the KD in the CDKL5 disorder and its influences on seizures. The International CDKL5 Disorder Database, established in 2012, collects information on individuals with the CDKL5 disorder. Families have provided information regarding seizure characteristics, use, and side effects of the KD treatment. Descriptive statistics and time to event analyses were performed. Clinical vignettes were also provided on patients attending Boston Children's Hospital. Data regarding KD use were available for 204 individuals with a pathogenic CDKL5 variant. Median age of inclusion in the database was 4.8 years (range = 0.3-33.9 years), with median age of 6 weeks (range = 1 day-65 weeks) at seizure onset. History of KD use was reported for 51% (104 of 204) of individuals, with a median duration of use of 17 months (95% confidence interval = 9-24). Changes in seizure activity after commencing KD were reported for two-thirds (69 of 104), with improvements in 88% (61 of 69). Nearly one-third (31.7%) experienced side effects during the diet. At ascertainment, only one-third (32%) remained on the diet, with lack of long-term efficacy as the main reason for diet cessation (51%, 36 of 70). Benefits of KD in the CDKL5 disorder are in keeping with previous trials on refractory epilepsies. However, poor long-term efficacy remains as a significant barrier. In view of its side effect profile, KD administration should be supervised by a pediatric neurologist and specialist dietician. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  18. Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients.

    Science.gov (United States)

    Klement, Rainer J; Sweeney, Reinhart A

    2016-03-05

    Based on promising preclinical data, ketogenic diets (KDs) have been proposed as supplementary measures for cancer patients undergoing standard-of-care therapy. However, data is still scarce on the tolerability and effects of KDs on cancer patients undergoing radiotherapy (RT). Here we present six cases of patients who underwent RT and concurrently consumed a self-administered KD in our clinic within a busy community hospital setting. All patients were followed prospectively with measurements of blood parameters, quality of life and body weight and composition using bioelectrical impedance analysis. No adverse diet-related side effects occurred. Two patients had no elevated ketone body levels in serum despite self-reporting compliance to the diet. There was consensus that the KD was satiating and weight loss occurred in all patients, although this was only significant in two patients. Our data indicate that weight loss was mainly due to fat mass loss with concurrent preservation of muscle mass. Overall quality of life remained fairly stable, and all subjects reported feeling good on the diet. Tumor regression occurred as expected in five patients with early stage disease; however one subject with metastatic small cell lung cancer experienced slight progression during three cycles of combined chemotherapy + KD and progressed rapidly after ending the KD. Our data lend support to the hypothesis that KDs administered as supportive measures during standard therapy are safe and might be helpful in preservation of muscle mass. Further studies with control groups are needed to confirm these findings and address questions regarding any putative anti-tumor effects. Based on the experience with these six cases we implemented further steps to improve issues with KD compliance and initiated a clinical study that is described in a companion paper.

  19. A ketogenic diet in rodents elicits improved mitochondrial adaptations in response to resistance exercise training compared to an isocaloric Western diet

    Directory of Open Access Journals (Sweden)

    Hayden W Hyatt

    2016-11-01

    Full Text Available Purpose: Ketogenic diets (KD can facilitate weight loss, but their effects on skeletal muscle remain equivocal. In this experiment we investigated the effects of two diets on skeletal muscle mitochondrial coupling, mitochondrial complex activity, markers of oxidative stress, and gene expression in sedentary and resistance exercised rats. Methods: Male Sprague-Dawley rats (9-10 weeks of age, 300-325 g were fed isocaloric amounts of either a KD (17 g/day, 5.2 kcal/g, 20.2% protein, 10.3% CHO, 69.5% fat, n=16 or a Western diet (WD (20 g/day, 4.5 kcal/g, 15.2% protein, 42.7% CHO, 42.0% fat, n=16 for 6 weeks. During these six weeks animals were either sedentary (SED, n=8 per diet group or voluntarily exercised using resistance-loaded running wheels (EXE, n=8 per diet group. Gastrocnemius was excised and used for mitochondrial isolation and biochemical analyses. RESULTS: In the presence of a complex II substrate, the respiratory control ratio (RCR of isolated gastrocnemius mitochondria was higher (p<0.05 in animals fed the KD compared to animals fed the WD. Complex I and IV enzyme activity was higher (p<0.05 in EXE animals regardless of diet. SOD2 protein levels and GLUT4 and PGC1α mRNA expression were higher (p<0.05 in EXE animals regardless of diet. CONCLUSION: Our data indicate that skeletal muscle mitochondrial coupling of complex II substrates is more efficient in chronically resistance trained rodents fed a KD. These findings may provide merit for further investigation, perhaps on humans.

  20. Neurobehavioral Deficits in a Rat Model of Recurrent Neonatal Seizures Are Prevented by a Ketogenic Diet and Correlate with Hippocampal Zinc/Lipid Transporter Signals.

    Science.gov (United States)

    Tian, Tian; Ni, Hong; Sun, Bao-liang

    2015-10-01

    The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy in adults, but it has not been extensively tested for its efficacy in neonatal seizure-induced brain damage. We have previously shown altered expression of zinc/lipid metabolism-related genes in hippocampus following penicillin-induced developmental model of epilepsy. In this study, we further investigated the effect of KD on the neurobehavioral and cognitive deficits, as well as if KD has any influence in the activity of zinc/lipid transporters such as zinc transporter 3 (ZnT-3), MT-3, ApoE, ApoJ (clusterin), and ACAT-1 activities in neonatal rats submitted to flurothyl-induced recurrent seizures. Postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizure group (EXP) and control group (CONT). On P28, they were further randomly divided into the seizure group without ketogenic diet (EXP1), seizure plus ketogenic diet (EXP2), the control group without ketogenic diet (CONT1), and the control plus ketogenic diet (CONT2). Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed from P35 to P49. Morris water maze test was performed during P51-P57. Then hippocampal mossy fiber sprouting and the protein levels of ZnT3, MT3, ApoE, CLU, and ACAT-1 were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced neurobehavioral toxicology and aberrant mossy fiber sprouting were blocked by KD. In parallel with these behavioral changes, rats treated with KD (EXP2) showed a significant down-regulated expression of ZnT-3, MT-3, ApoE, clusterin, and ACAT-1 in hippocampus when compared with the non-KD-treated EXP1 group. Our findings provide support for zinc/lipid transporter signals being potential targets for the treatment of neonatal seizure-induced brain damage by KD.

  1. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Uchida, Daisuke [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ohkura, Naoki [Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa (Japan); Horie, Shuichi [Department of Clinical Biochemistry, Kagawa Nutrition University, Sakado, Saitama (Japan)

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  2. Can an early 24-hour EEG predict the response to the ketogenic diet? A prospective study in 34 children and adults with refractory epilepsy treated with the ketogenic diet.

    Science.gov (United States)

    Ebus, Saskia C M; Lambrechts, Danielle A J E; Herraets, Ingrid J T; Majoie, Marian J M; de Louw, Anton J; Boon, Paul J; Aldenkamp, Albert P; Arends, Johan B

    2014-06-01

    We examined whether early EEG changes in a 24-h EEG at 6 weeks of treatment were related to the later clinical response to the ketogenic diet (KD) in a 6-month period of treatment. We examined 34 patients with heterogeneous epilepsy syndromes (21 children, 13 adults) and found 9 clinical responders (≥50% seizure reduction); this is a responder rate of 26%. We visually counted the interictal epileptic discharge index (IED index) in % during 2h of wakefulness and in the first hour of sleep (method 1), and also globally reviewed EEG changes (method 2), while blinded to the effect of the KD. At group level we saw a correlation between nocturnal reduction of IED-index at 6 weeks and seizure reduction in the follow-up period. A proportional reduction in IED index of 30% from baseline in the sleep EEG, was associated with being a responder to the diet (Pearson Chi-square p=0.04). EEG scoring method 2 observed a significantly larger proportion of patients with EEG-improvement in sleep in KD responders than in non-responders (p=0.03). At individual level, however, EEG changes did not correlate very strongly to the response to the diet, as IED reduction in sleep was also seen in 15% (method 1) to 26% (method 2) of the non-responders. Nocturnal reduction of IEDs is related to the response to the KD, however in daily clinical practice, an early EEG to predict seizure reduction should not be advised for individual patients. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. Changes in cerebral metabolism during ketogenic diet in patients with primary brain tumors:1H-MRS study.

    Science.gov (United States)

    Artzi, Moran; Liberman, Gilad; Vaisman, Nachum; Bokstein, Felix; Vitinshtein, Faina; Aizenstein, Orna; Ben Bashat, Dafna

    2017-04-01

    Normal brain cells depend on glucose metabolism, yet they have the flexibility to switch to the usage of ketone bodies during caloric restriction. In contrast, tumor cells lack genomic and metabolic flexibility and are largely dependent on glucose. Ketogenic-diet (KD) was suggested as a therapeutic option for malignant brain cancer. This study aimed to detect metabolic brain changes in patients with malignant brain gliomas on KD using proton magnetic-resonance-spectroscopy ( 1 H-MRS). Fifty MR scans were performed longitudinally in nine patients: four patients with recurrent glioblastoma (GB) treated with KD in addition to bevacizumab; one patient with gliomatosis-cerebri treated with KD only; and four patients with recurrent GB who did not receive KD. MR scans included conventional imaging and 1 H-MRS acquired from normal appearing-white-matter (NAWM) and lesion. High adherence to KD was obtained only in two patients, based on high urine ketones; in these two patients ketone bodies, Acetone and Acetoacetate were detected in four MR spectra-three within the NAWM and one in the lesion area -4 and 25 months following initiation of the diet. No ketone-bodies were detected in the control group. In one patient with gliomatosis-cerebri, who adhered to the diet for 3 years and showed stable disease, an increase in glutamin + glutamate and reduction in N-Acetyl-Aspartate and myo-inositol were detected during KD. 1 H-MRS was able to detect ketone-bodies in patients with brain tumors who adhered to KD. Yet it remains unclear whether accumulation of ketone bodies is due to increased brain uptake or decreased utilization of ketone bodies within the brain.

  4. Chronic Ketogenic Low Carbohydrate High Fat Diet Has Minimal Effects on Acid–Base Status in Elite Athletes

    Directory of Open Access Journals (Sweden)

    Amelia J. Carr

    2018-02-01

    Full Text Available Although short (up to 3 days exposure to major shifts in macronutrient intake appears to alter acid–base status, the effects of sustained (>1 week interventions in elite athletes has not been determined. Using a non-randomized, parallel design, we examined the effect of adaptations to 21 days of a ketogenic low carbohydrate high fat (LCHF or periodized carbohydrate (PCHO diet on pre- and post-exercise blood pH, and concentrations of bicarbonate [HCO3−] and lactate [La−] in comparison to a high carbohydrate (HCHO control. Twenty-four (17 male and 7 female elite-level race walkers completed 21 days of either LCHF (n = 9, PCHO (n = 7, or HCHO (n = 8 under controlled diet and training conditions. At baseline and post-intervention, blood pH, blood [HCO3−], and blood [La−] were measured before and after a graded exercise test. Net endogenous acid production (NEAP over the previous 48–72 h was also calculated from monitored dietary intake. LCHF was not associated with significant differences in blood pH, [HCO3−], or [La−], compared with the HCHO diet pre- or post-exercise, despite a significantly higher NEAP (mEq·day−1 (95% CI = (10.44; 36.04. Our results indicate that chronic dietary interventions are unlikely to influence acid–base status in elite athletes, which may be due to pre-existing training adaptations, such as an enhanced buffering capacity, or the actions of respiratory and renal pathways, which have a greater influence on regulation of acid–base status than nutritional intake.

  5. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides

    Directory of Open Access Journals (Sweden)

    Voelker Hans

    2008-04-01

    Full Text Available Abstract Background Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT. Methods Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12 or a standard diet (SD group; n = 12 ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume. Results The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 ± 8.5 days versus only 23.3 ± 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Conclusion Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT

  6. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides.

    Science.gov (United States)

    Otto, Christoph; Kaemmerer, Ulrike; Illert, Bertram; Muehling, Bettina; Pfetzer, Nadja; Wittig, Rainer; Voelker, Hans Ullrich; Thiede, Arnulf; Coy, Johannes F

    2008-04-30

    Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT). Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n = 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume). The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 +/- 8.5 days versus only 23.3 +/- 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT delayed tumour growth in a mouse xenograft model. Further

  7. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides

    International Nuclear Information System (INIS)

    Otto, Christoph; Kaemmerer, Ulrike; Illert, Bertram; Muehling, Bettina; Pfetzer, Nadja; Wittig, Rainer; Voelker, Hans Ullrich; Thiede, Arnulf; Coy, Johannes F

    2008-01-01

    Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT). Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n = 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm 3 to 700 mm 3 . The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume). The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 ± 8.5 days versus only 23.3 ± 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT delayed tumour growth in a mouse xenograft model. Further

  8. Ketogenic diet treatment increases longevity in Kcna1-null mice, a model of sudden unexpected death in epilepsy.

    Science.gov (United States)

    Simeone, Kristina A; Matthews, Stephanie A; Rho, Jong M; Simeone, Timothy A

    2016-08-01

    Individuals with poorly controlled epilepsy have a higher risk for sudden unexpected death in epilepsy (SUDEP). With approximately one third of people with epilepsy not achieving adequate seizure control with current antiseizure drugs, there is a critical need to identify treatments that reduce risk factors for SUDEP. The Kcna1-null mutant mouse models risk factors and terminal events associated with SUDEP. In the current study, we demonstrate the progressive nature of epilepsy and sudden death in this model (mean age of mortality (± SEM), postnatal day [P] 42.8 ± 1.3) and tested the hypothesis that long-term treatment with the ketogenic diet (KD) will prolong the life of Kcna1-null mice. We found that the KD postpones disease progression by delaying the onset of severe seizures and increases the lifespan of these mutant mice by 47%. Future studies are needed to determine the mechanisms underlying the KD effects on longevity. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  9. Cognitive and behavioral impact of the ketogenic diet in children and adolescents with refractory epilepsy: A randomized controlled trial.

    Science.gov (United States)

    IJff, Dominique M; Postulart, Debby; Lambrechts, Danielle A J E; Majoie, Marian H J M; de Kinderen, Reina J A; Hendriksen, Jos G M; Evers, Silvia M A A; Aldenkamp, Albert P

    2016-07-01

    The ketogenic diet (KD) is increasingly used for the treatment of refractory epilepsy in childhood because of the beneficial effect on seizure reduction. The aim of the current study was to objectively assess cognition and aspects of behavior during the first 4months of a randomized controlled study in children and adolescents. Participants from a tertiary epilepsy center were randomized to a KD group (intervention) or a care-as-usual (CAU) group (control). Follow-up assessments on cognition and behavior were performed approximately 4months after initiation of the KD with a combination of parent report questionnaires and individually administered psychological tests for the children. A total of 50 patients were enrolled in this study, 28 patients from the KD group and 22 patients from the CAU group. The KD group showed lower levels of anxious and mood-disturbed behavior and was rated as more productive. Cognitive test results showed an improvement of activation in the KD group. This study showed a positive impact of the KD on behavioral and cognitive functioning in children and adolescents with refractory epilepsy. More specifically, an activated mood and cognitive activation were observed in patients treated with the KD. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?

    Science.gov (United States)

    Seyfried, Thomas N; Marsh, Jeremy; Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna

    2012-07-01

    Malignant brain cancer persists as a major disease of morbidity and mortality. The failure to recognize brain cancer as a disease of energy metabolism has contributed in large part to the failure in management. As long as brain tumor cells have access to glucose and glutamine, the disease will progress. The current standard of care provides brain tumors with access to glucose and glutamine. The high fat low carbohydrate ketogenic diet (KD) will target glucose availability and possibly that of glutamine when administered in carefully restricted amounts to reduce total caloric intake and circulating levels of glucose. The restricted KD (RKD) targets major signaling pathways associated with glucose and glutamine metabolism including the IGF-1/PI3K/Akt/Hif pathway. The RKD is anti-angiogenic, anti-invasive, anti-inflammatory, and pro-apoptotic when evaluated in mice with malignant brain cancer. The therapeutic efficacy of the restricted KD can be enhanced when combined with drugs that also target glucose and glutamine. Therapeutic efficacy of the RKD was also seen against malignant gliomas in human case reports. Hence, the RKD can be an effective non-toxic therapeutic option to the current standard of care for inhibiting the growth and invasive properties of malignant brain cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation.

    Science.gov (United States)

    Klement, Rainer J

    2017-08-01

    Ketogenic diets (KDs) have gained popularity among patients and researchers alike due to their putative anti-tumor mechanisms. However, the question remains which conclusions can be drawn from the available human data thus far concerning the safety and efficacy of KDs for cancer patients. A realist review utilizing a matrix analytical approach was conducted according to the RAMESES publication standards. All available human studies were systematically analyzed and supplemented with results from animal studies. Evidence and confirmation were treated as separate concepts. In total, 29 animal and 24 human studies were included in the analysis. The majority of animal studies (72%) yielded evidence for an anti-tumor effect of KDs. Evidential support for such effects in humans was weak and limited to individual cases, but a probabilistic argument shows that the available data strengthen the belief in the anti-tumor effect hypothesis at least for some individuals. Evidence for pro-tumor effects was lacking completely. Feasibility of KDs for cancer patients has been shown in various contexts. The probability of achieving an anti-tumor effect seems greater than that of causing serious side effects when offering KDs to cancer patients. Future controlled trials would provide stronger evidence for or against the anti-tumor effect hypothesis.

  12. Ketogenic diet use in children with intractable epilepsy secondary to malformations of cortical development: A two- centre experience.

    Science.gov (United States)

    Pasca, Ludovica; Caraballo, Roberto H; De Giorgis, Valentina; Reyes, J Gabriela; Macasaet, Joyce A; Masnada, Silvia; Armeno, Marisa; Musicco, Massimo; Tagliabue, Anna; Veggiotti, Pierangelo

    2018-03-08

    To evaluate the efficacy and tolerability of the ketogenic diet (KD) as a treatment for drug-resistant epilepsy secondary to malformations of cortical development. A two-centre retrospective analysis of 45 paediatric patients with refractory epilepsy due to malformation of cortical development was carried out. Patients were divided into three groups based on malformation type: abnormal neural proliferation (Group 1); abnormal neural migration (Group 2) and abnormal post-migrational development (Group 3). The efficacy of the KD was assessed in terms of seizure frequency reduction. We identified the proportion of patients achieving > 50% seizure frequency reduction overall and in the three subgroups. The adherence to KD was variable. KD was pursued from a minimum of 4 months to a maximum of 96 months. 20 patients (44%) obtained a seizure reduction of > 50% and 2 patients became seizure free. >50% seizure reduction was most commonly achieved by patients in group 3 (64.7%) than in groups 2 (31.8%) and 1 (33.3%). The best response was observed in patients with malformations of post migrational development. Considering its tolerability, the use of KD should be considered in patients with drug-resistant epilepsy secondary to malformations of cortical development when surgery is not a viable option. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Do Young Kim

    Full Text Available A prominent clinical symptom in multiple sclerosis (MS, a progressive disorder of the central nervous system (CNS due to heightened neuro-inflammation, is learning and memory dysfunction. Here, we investigated the effects of a ketogenic diet (KD on memory impairment and CNS-inflammation in a murine model of experimental autoimmune encephalomyelitis (EAE, using electrophysiological, behavioral, biochemical and in vivo imaging approaches. Behavioral spatial learning deficits were associated with motor disability in EAE mice, and were observed concurrently with brain inflammation. The KD improved motor disability in the EAE model, as well as CA1 hippocampal synaptic plasticity (long-term potentiation and spatial learning and memory (assessed with the Morris Water Maze. Moreover, hippocampal atrophy and periventricular lesions in EAE mice were reversed in KD-treated EAE mice. Finally, we found that the increased expression of inflammatory cytokines and chemokines, as well as the production of reactive oxygen species (ROS, in our EAE model were both suppressed by the KD. Collectively, our findings indicate that brain inflammation in EAE mice is associated with impaired spatial learning and memory function, and that KD treatment can exert protective effects, likely via attenuation of the robust immune response and increased oxidative stress seen in these animals.

  14. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial.

    Science.gov (United States)

    Schmidt, Melanie; Pfetzer, Nadja; Schwab, Micheal; Strauss, Ingrid; Kämmerer, Ulrike

    2011-07-27

    Tumor patients exhibit an increased peripheral demand of fatty acids and protein. Contrarily, tumors utilize glucose as their main source of energy supply. Thus, a diet supplying the cancer patient with sufficient fat and protein for his demands while restricting the carbohydrates (CHO) tumors thrive on, could be a helpful strategy in improving the patients' situation. A ketogenic diet (KD) fulfills these requirements. Therefore, we performed a pilot study to investigate the feasibility of a KD and its influence on the quality of life of patients with advanced metastatic tumors. Sixteen patients with advanced metastatic tumors and no conventional therapeutic options participated in the study. The patients were instructed to follow a KD (less than 70 g CHO per day) with normal groceries and were provided with a supply of food additives to mix a protein/fat shake to simplify the 3-month intervention period. Quality of life [assessed by EORTC QLQ-C30 (version 2)], serum and general health parameters were determined at baseline, after every two weeks of follow-up, or after drop out. The effect of dietary change on metabolism was monitored daily by measuring urinary ketone bodies. One patient did not tolerate the diet and dropped out within 3 days. Among those who tolerated the diet, two patients died early, one stopped after 2 weeks due to personal reasons, one felt unable to stick to the diet after 4 weeks, one stopped after 6 and two stopped after 7 and 8 weeks due to progress of the disease, one had to discontinue after 6 weeks to resume chemotherapy and five completed the 3 month intervention period. These five and the one who resumed chemotherapy after 6 weeks report an improved emotional functioning and less insomnia, while several other parameters of quality of life remained stable or worsened, reflecting their very advanced disease. Except for temporary constipation and fatigue, we found no severe adverse side effects, especially no changes in cholesterol or

  15. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial

    Directory of Open Access Journals (Sweden)

    Strauss Ingrid

    2011-07-01

    Full Text Available Abstract Background Tumor patients exhibit an increased peripheral demand of fatty acids and protein. Contrarily, tumors utilize glucose as their main source of energy supply. Thus, a diet supplying the cancer patient with sufficient fat and protein for his demands while restricting the carbohydrates (CHO tumors thrive on, could be a helpful strategy in improving the patients' situation. A ketogenic diet (KD fulfills these requirements. Therefore, we performed a pilot study to investigate the feasibility of a KD and its influence on the quality of life of patients with advanced metastatic tumors. Methods Sixteen patients with advanced metastatic tumors and no conventional therapeutic options participated in the study. The patients were instructed to follow a KD (less than 70 g CHO per day with normal groceries and were provided with a supply of food additives to mix a protein/fat shake to simplify the 3-month intervention period. Quality of life [assessed by EORTC QLQ-C30 (version 2], serum and general health parameters were determined at baseline, after every two weeks of follow-up, or after drop out. The effect of dietary change on metabolism was monitored daily by measuring urinary ketone bodies. Results One patient did not tolerate the diet and dropped out within 3 days. Among those who tolerated the diet, two patients died early, one stopped after 2 weeks due to personal reasons, one felt unable to stick to the diet after 4 weeks, one stopped after 6 and two stopped after 7 and 8 weeks due to progress of the disease, one had to discontinue after 6 weeks to resume chemotherapy and five completed the 3 month intervention period. These five and the one who resumed chemotherapy after 6 weeks report an improved emotional functioning and less insomnia, while several other parameters of quality of life remained stable or worsened, reflecting their very advanced disease. Except for temporary constipation and fatigue, we found no severe adverse side

  16. Fibroblast growth factor 21 is not required for glucose homeostasis, ketosis and tumour suppression associated to ketogenic diets in mice

    Science.gov (United States)

    Stemmer, Kerstin; Zani, Fabio; Habegger, Kirk M.; Neff, Christina; Kotzbeck, Petra; Bauer, Michaela; Yalamanchilli, Suma; Azad, Ali; Lehti, Maarit; Martins, Paulo J.F.; Müller, Timo D.; Pfluger, Paul T.; Seeley, Randy J.

    2016-01-01

    AIMS/HYPOTHESIS Ketogenic diets (KDs) increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. Metabolic benefits of KDs are regularly ascribed towards enhanced hepatic secretion of fibroblast growth factor (FGF) 21, and its systemic effects on fatty acid oxidation, energy expenditure and body weight. Ambiguous data from Fgf21 knockout strains and low FGF21 concentrations reported for humans in ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating therapeutic benefits of KDs on metabolism and cancer. METHODS We established a dietary model of increased vs. decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted or enriched with protein, respectively. We furthermore used wild type and Fgf21 knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumor growth after transplantation of Lewis-Lung-Carcinoma cells. RESULTS Hepatic and circulating but not adipose tissue FGF21 levels were profoundly increased by protein starvation and independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycemia upon protein and carbohydrate starvation and is dispensable for the effects of KDs on energy expenditure. Furthermore, the tumor-suppressing effects of KDs were independent from FGF21, and rather driven by concomitant protein and carbohydrate starvation. CONCLUSION/INTERPRETATION Our data indicate that multiple systemic effects of KDs exposure in mice that were previously ascribed towards increased FGF21 secretion are rather a consequence of protein malnutrition. PMID:26099854

  17. FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice.

    Science.gov (United States)

    Stemmer, Kerstin; Zani, Fabio; Habegger, Kirk M; Neff, Christina; Kotzbeck, Petra; Bauer, Michaela; Yalamanchilli, Suma; Azad, Ali; Lehti, Maarit; Martins, Paulo J F; Müller, Timo D; Pfluger, Paul T; Seeley, Randy J

    2015-10-01

    Ketogenic diets (KDs) have increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. The metabolic benefits of KDs are regularly ascribed to enhanced hepatic secretion of fibroblast growth factor 21 (FGF21) and its systemic effects on fatty-acid oxidation, energy expenditure (EE) and body weight. Ambiguous data from Fgf21-knockout animal strains and low FGF21 concentrations reported in humans with ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating the therapeutic benefits of KDs on metabolism and cancer. We established a dietary model of increased vs decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted of protein or enriched with protein. We furthermore used wild-type and Fgf21-knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumour growth after transplantation of Lewis lung carcinoma cells. Hepatic and circulating, but not adipose tissue, FGF21 levels were profoundly increased by protein starvation, independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycaemia upon protein and carbohydrate starvation and is therefore not needed for the effects of KDs on EE. Furthermore, the tumour-suppressing effects of KDs were independent of FGF21 and, rather, driven by concomitant protein and carbohydrate starvation. Our data indicate that the multiple systemic effects of KD exposure in mice, previously ascribed to increased FGF21 secretion, are rather a consequence of protein malnutrition.

  18. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d’Amati, Giulia

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/−) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2−/− mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration. PMID:24316510

  19. Monitoring for compliance with a ketogenic diet: what is the best time of day to test for urinary ketosis?

    Science.gov (United States)

    Urbain, Paul; Bertz, Hartmut

    2016-01-01

    The ketogenic diet (KD) is a very low-carbohydrate, high-fat and adequate-protein diet with no calorie limit that induces a metabolic condition called "physiological ketosis". It was first introduced to treat epilepsy in the 1920s and has become quite popular recently as weight-loss and performance-enhancing diet. Its therapeutic use in a range of diseases is under investigation. During KD interventions people are supposed to monitor compliance with the dietary regimen by daily urine testing for ketosis. However, there are no studies investigating the best time for testing. Twelve healthy subjects (37 ± 11 years; BMI = 23.0 ± 2.5 kg/m 2 ) were instructed to, during the sixth week of a KD and with stable ketosis, measure their urine (8×) and blood (18×) ketone concentration at regular intervals during a 24-h period. According to their 1-day food record, the subjects consumed on average a diet with 74.3 ± 4.0 %, 19.5 ± 3.5 %, and 6.2 ± 2.0 % of total energy intake from fat, protein and carbohydrate, respectively. The lowest blood ß-hydroxybutyrate (BHB) (0.33 ± 0.17 mmol/l) and urine acetoacetate (AA) (0.46 ± 0.54 mmol/l) concentrations were measured at 10:00, respectively. The highest BHB (0.70 ± 0.62 mmol/l) and AA concentrations were noted at 03:00, respectively. Via urine testing the highest levels of ketosis were found at 22:00 and 03:00 and the highest detection rates (>90 %) for ketosis were at 07:00, 22:00 and 03:00, respectively. These results indicate that ketonuria in subjects with stable ketosis is highest and can be most reliably detected in the early morning and post-dinner urine. Recommendations can be given regarding precise time of the day for measuring ketone bodies in urine in future studies with KDs.

  20. The complete control of glucose level utilizing the composition of ketogenic diet with the gluconeogenesis inhibitor, the anti-diabetic drug metformin, as a potential anti-cancer therapy.

    Science.gov (United States)

    Oleksyszyn, Józef

    2011-08-01

    In the animal models of glucose dependent cancer growth, the growth is decreased 15-30% through the use of low-carbohydrate, calorically restricted and/or ketogenic diet. The remaining growth depends on glucose formed by the liver-kidney gluconeogenesis as is the case in the cancer cachexia. It is hypothesized that a new treatment for cancer diseases should be explored which includes the ketogenic diet combined with the inhibition of gluconeogenesis by the anti-diabetic drug metformin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. High salt diet exacerbates vascular contraction in the absence of adenosine A₂A receptor.

    Science.gov (United States)

    Pradhan, Isha; Zeldin, Darryl C; Ledent, Catherine; Mustafa, Jamal S; Falck, John R; Nayeem, Mohammed A

    2014-05-01

    High salt (4% NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A(2A) receptor (A(2A)AR). Evidence suggests that A(2A)AR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A(2A)AR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A(2A)AR⁺/⁺, but exaggerates contraction in A(2A)AR⁻/⁻. Organ bath and Western blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A(2A)AR⁺/⁺ and A(2A)AR⁻/⁻ mice aorta. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A(2A)AR⁺/⁺, whereas contraction was observed in A(2A)AR⁻/⁻ mice and this was attenuated by A₁AR antagonist (DPCPX). CGS 21680 (selective A(2A)AR agonist) enhanced relaxation in HS-A(2A)AR⁺/⁺ versus NS-A(2A)AR⁺/⁺, which was blocked by EETs antagonist (14,15-EEZE). Compared with NS, HS significantly upregulated the expression of vasodilators A(2A)AR and cyp2c29, whereas vasoconstrictors A₁AR and cyp4a in A(2A)AR⁺/⁺ were downregulated. In A(2A)AR⁻/⁻ mice, however, HS significantly downregulated the expression of cyp2c29, whereas A₁AR and cyp4a were upregulated compared with A(2A)AR⁺/⁺ mice. Hence, our data suggest that in A(2A)AR⁺/⁺, HS enhances A(2A)AR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A₁AR levels, whereas in A(2A)AR⁻/⁻, HS exaggerates contraction through decreased cyp-epoxygenases and increased A₁AR levels.

  2. A ketogenic diet impairs energy and glucose homeostasis by the attenuation of hypothalamic leptin signaling and hepatic insulin signaling in a rat model of non-obese type 2 diabetes.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Sunna; Daily, James W

    2011-02-01

    Ketogenic diets (KTD) are reported to have beneficial effects on the regulation of energy and glucose homeostasis, but remain controversial. We investigated the effects of KTD and ketones on insulin resistance and secretion in non-obese type 2 diabetic rats and their mechanism. KTD (82% energy as fat), intraperitoneal injection of β-hydroxybutyrate (IHB; 150 mg/kg bw/12 h) with a control diet (COD; 20% energy as fat) or saline injection with COD was given to 90% pancreatectomized (Px) diabetic rats for five weeks. KTD increased epididymal fat pads and serum leptin levels without increasing energy intake, but IHB decreased them. KTD, but not IHB, attenuated hypothalamic signal transducer and activator of transcription 3 and 5'-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in KTD. Serum glucagon levels were markedly higher in the KTD group than in other groups. During an oral glucose tolerance test, serum glucose levels slowly increased until 80 min in the KTD group and then decreased very slowly. Insulin secretion capacity during a hyperglycemic clamp was significantly lower in the IHB group than in other groups. However, a euglycemic hyperinsulinemic clamp revealed that KTD decreased glucose infusion rates and increased hepatic glucose output in hyperinsulinemic states while IHB had opposite effects to KTD. The increased hepatic glucose output in KTD was associated with increased hepatic phosphoenolpyruvate carboxykinase expression through attenuated tyrosine phosphorylation of IRS2 and phosphorylation of Akt(Ser473). Hepatic AMPK(Thr172) phosphorylation was reduced in KTD. In conclusion, KTD impairs energy and glucose homeostasis by exacerbating insulin resistance and attenuating hypothalamic leptin signaling in non-obese type 2 diabetic rats. These changes are not associated with increased serum ketone levels.

  3. Ketogenic Diet Impairs FGF21 Signaling and Promotes Differential Inflammatory Responses in the Liver and White Adipose Tissue.

    Directory of Open Access Journals (Sweden)

    Mohamed Asrih

    Full Text Available Beside its beneficial effects on weight loss, ketogenic diet (KD causes dyslipidemia, a pro-inflammatory state involved in the development of hepatic steatosis, glucose intolerance and insulin resistance, although the latter is still being debated. Additionally, KD is known to increase fibroblast growth factor 21 (FGF21 plasma levels. However, FGF21 cannot initiate its beneficial actions on metabolism in these conditions. We therefore hypothesized and tested in the present study that KD may impair FGF21 signaling.Using indirect calorimetry, we found that KD-fed mice exhibited higher energy expenditure than regular chow (RC-fed mice associated with increased Ucp1 levels in white adipose tissue (WAT, along with increased plasma FGF21 levels. We then assessed the effect of KD on FGF21 signaling in both the liver and WAT. We found that Fgfr4 and Klb (β-klotho were downregulated in the liver, while Fgfr1 was downregulated in WAT of KD-fed mice. Because inflammation could be one of the mechanisms linking KD to impaired FGF21 signaling, we measured the expression levels of inflammatory markers and macrophage accumulation in WAT and liver and found an increased inflammation and macrophage accumulation in the liver, but surprisingly, a reduction of inflammation in WAT.We also showed that KD enhances lipid accumulation in the liver, which may explain hepatic inflammation and impaired Fgfr4 and Klb expression. In contrast, import of lipids from the circulation was significantly reduced in WAT of KD-fed mice, as suggested by a downregulation of Lpl and Cd36. This was further associated with reduced inflammation in WAT.Altogether, these results indicate that KD could be beneficial for a given tissue but deleterious for another.

  4. Metabolic syndrome and low-carbohydrate ketogenic diets in the medical school biochemistry curriculum.

    Science.gov (United States)

    Feinman, Richard D; Makowske, Mary

    2003-09-01

    One of Robert Atkins contributions was to define a diet strategy in terms of an underlying metabolic principle ("the science behind Atkins"). The essential feature is that, by reducing insulin fluxes, lipids are funnelled away from storage and oxidized. Ketosis can be used as an indicator of lipolysis. A metabolic advantage is also proposed: controlled carbohydrates leads to greater weight loss per calorie than other diets. Although the Atkins diet and its scientific rationale are intended for a popular audience, the overall features are consistent with current metabolic ideas. We have used the Atkins controlled-carbohydrate diet as a focal point for teaching nutrition and metabolism in the first-year medical school curriculum. By presenting metabolism in the context of the current epidemic of obesity and of metabolic syndrome and related disorders, we provide direct application of the study of metabolic pathways, a subject not traditionally considered by medical students to be highly relevant to medical practice. We present here a summary of the metabolic basis of the Atkins diet as we teach it to medical students. We also discuss a proposed mechanism for metabolic advantage that is consistent with current ideas and that further brings out ideas in metabolism for students. The topics that are developed include the role of insulin and glucagon in lipolysis, control of lipoprotein lipase, the glucose-glycogen-gluconeogenesis interrelations, carbohydrate-protein interactions and ketosis. In essence, the approach is to expand the traditional feed-fast (post-absorptive) cycles to include the effect of low-carbohydrate meals: the disease states studied are generalized from traditional study of diabetes to include obesity and metabolic syndrome. The ideal diet for weight loss and treatment of metabolic syndrome, if it exists, remains to be determined, but presenting metabolism in the context of questions raised by the Atkins regimen prepares future physicians for

  5. Improvement in age-related cognitive functions and life expectancy by ketogenic diets

    DEFF Research Database (Denmark)

    Astrup, Arne; Hjorth, Mads Fiil

    2017-01-01

    Rodent studies have indicated that low-carbohydrate diets prevent age-related cognitive decline and extend lifespan due to increased circulating levels of ketone bodies. A possible physiological mechanism for how ketone bodies exert this effect might be by improving central nervous system insulin...

  6. Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes.

    Science.gov (United States)

    Zinn, Caryn; Wood, Matthew; Williden, Mikki; Chatterton, Simon; Maunder, Ed

    2017-01-01

    Low-carbohydrate, high-fat and ketogenic diets are increasingly adopted by athletes for body composition and sports performance enhancements. However, as yet, there is no consensus on their efficacy in improving performance. There is also no comprehensive literature on athletes' experiences while undertaking this diet. The purpose of this pilot work was two-fold: i. to examine the effects of a non-calorie controlled ketogenic diet on body composition and performance outcomes of endurance athletes, and ii. to evaluate the athletes' experiences of the ketogenic diet during the 10-week intervention. Using a case study design, five New Zealand endurance athletes (4 females, 1 male) underwent a 10-week ketogenic dietary intervention. Body composition (sum of 8 skinfolds), performance indicators (time to exhaustion, VO 2 max, peak power and ventilatory threshold), and gas exchange thresholds were measured at baseline and at 10 weeks. Mean change scores were calculated, and analysed using t-tests; Cohen's effect sizes and 90% confidence limits were applied to quantify change. Individual interviews conducted at 5 weeks and a focus group at 10 weeks assessed athletes' ketogenic diet experiences. Data was transcribed and analysed using thematic analysis. All athletes increased their ability to utilise fat as a fuel source, including at higher exercise intensities. Mean body weight was reduced by 4 kg ± SD 3.1 ( p  = 0.046; effect size (ES):0.62), and sum of 8 skinfolds by 25.9 mm ± SD 6.9; ES: 1.27; p  = 0.001). Mean time to exhaustion dropped by ~2 min (±SD 0.7; p  = 0.004; ES: 0.53). Other performance outcomes showed mean reductions, with some increases or unchanged results in two individuals (VO2 Max: -1.69 ml.kg.min ± SD 3.4 ( p  = 0.63); peak power: -18 W ± SD 16.4 ( p  = 0.07), and VT2: -6 W ± SD 44.5 ( p  = 0.77). Athletes reported experiencing reduced energy levels initially, followed by a return of high levels thereafter

  7. The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Wesley C. Kephart

    2018-01-01

    Full Text Available Adopting low carbohydrate, ketogenic diets remains a controversial issue for individuals who resistance train given that this form of dieting has been speculated to reduce skeletal muscle glycogen levels and stifle muscle anabolism. We sought to characterize the effects of a 12-week ketogenic diet (KD on body composition, metabolic, and performance parameters in participants who trained recreationally at a local CrossFit facility. Twelve participants (nine males and three females, 31 ± 2 years of age, 80.3 ± 5.1 kg body mass, 22.9 ± 2.3% body fat, 1.37 back squat: body mass ratio were divided into a control group (CTL; n = 5 and a KD group (n = 7. KD participants were given dietary guidelines to follow over 12 weeks while CTL participants were instructed to continue their normal diet throughout the study, and all participants continued their CrossFit training routine for 12 weeks. Pre, 2.5-week, and 12-week anaerobic performance tests were conducted, and pre- and 12-week tests were performed for body composition using dual X-ray absorptiometry (DXA and ultrasound, resting energy expenditure (REE, blood-serum health markers, and aerobic capacity. Additionally, blood beta hydroxybutyrate (BHB levels were measured weekly. Blood BHB levels were 2.8- to 9.5-fold higher in KD versus CTL throughout confirming a state of nutritional ketosis. DXA fat mass decreased by 12.4% in KD (p = 0.053. DXA total lean body mass changes were not different between groups, although DXA dual-leg lean mass decreased in the KD group by 1.4% (p = 0.068, and vastus lateralis thickness values decreased in the KD group by ~8% (p = 0.065. Changes in fasting glucose, HDL cholesterol, and triglycerides were similar between groups, although LDL cholesterol increased ~35% in KD (p = 0.048. Between-group changes in REE, one-repetition maximum (1-RM back squat, 400 m run times, and VO2peak were similar between groups. While our n-sizes were limited, these preliminary data suggest

  8. Changes in quality of life as a result of ketogenic diet therapy: A new approach to assessment with the potential for positive therapeutic effects.

    Science.gov (United States)

    Bruce, Susan; Devlin, Anita; Air, Linda; Cook, Lucy

    2017-01-01

    There are difficulties inherent in measuring Quality of life (QoL) in patients with chronic illness, including agreement on definitions of quality of life and the type of measure used, disease specific or generic. Well validated QoL instruments for epilepsy exist but focus on capturing common themes pertinent to children and families as a group instead of focusing on themes important to individual patients and their families/carers. In addition, it is common for numerous items on these inventories to be left incomplete or responded to with "not applicable" since many of the items are not suitable for children with disabilities and their families. This led us to devise a way to capture individual quality-of-life measures that are linked to parental/carer expectations in families of children undergoing ketogenic diet therapy for epilepsy. As part of our routine clinical assessment, parents/carers were asked to describe what they would like to see happen or change as a result of their child being on ketogenic diet therapy. A simple unstructured form was designed to facilitate the assessment process. Parents were then asked to rate their own QoL against these criteria on a Likert scale of 0-10 prior to commencement of the diet. This assessment was repeated at subsequent visits with parents/carers initially blinded to their original responses. Our assessments indicated that ketogenic diet therapy improves quality of life over a twelve-month period when measured against parental expectations. This ideographic approach has demonstrated changes in parental Qol and parental perceptions of their child's quality of life that would not have been captured by other validated measures. A lengthy questionnaire is avoided and is replaced by a skilled supportive conversation that identifies goals for treatment that are important to parents. This helps parents to reflect on the progress their child makes on the diet by revisiting their previously stated aspirations, and assessing

  9. Very low calorie ketogenic weight reduction diet in patients with cirrhosis: a case series.

    Science.gov (United States)

    Temmerman, J C; Friedman, A N

    2013-11-18

    Weight reduction may be necessary in patients with end-stage liver disease (ESLD) before liver transplantation. Although very low calorie diets (VLCDs) are a highly effective weight loss strategy, they risk inducing protein-calorie malnutrition, sarcopenia and hepatic encephalopathy in ESLD patients. We report for the first time on the use of VCLDs in ESLD. Two severely obese individuals with ESLD underwent a modified VLCD to become eligible for liver transplantation. Patients consumed four protein supplements and one lean meal daily, equivalent to 800 kilocalories (kcal) and were closely monitored during the diet period. Subject 1, a 46-year-old male with alcoholic cirrhosis, lost 44.1 kg after 28 weeks on a modified VLCD. Liver function and MELD (model for end-stage liver disease) scores improved and he currently does not require listing for transplantation. Subject 2, a 64-year-old female with non-alcoholic steatohepatitis, lost 39.7 kg after a 30-week modified VLCD. She is awaiting liver transplantation listing with a stable MELD score. VLCDs were well tolerated by both patients without adverse effects. In conclusion, under close medical supervision VLCDs in patients with ESLD can be safe and effective in reducing weight, facilitating liver transplantation listing, and possibly improving liver damage.

  10. Cost-effectiveness of the ketogenic diet and vagus nerve stimulation for the treatment of children with intractable epilepsy.

    Science.gov (United States)

    de Kinderen, Reina J A; Postulart, Debby; Aldenkamp, Albert P; Evers, Silvia M A A; Lambrechts, Danielle A J E; Louw, Anton J A de; Majoie, Marian H J M; Grutters, Janneke P C

    2015-02-01

    The objective of this study was to estimate the expected cost-utility and cost-effectiveness of the ketogenic diet (KD), vague nerve stimulation (VNS) and care as usual (CAU), using a decision analytic model with a 5-year time horizon. A Markov decision analytical model was constructed to estimate the incremental costs, quality-adjusted life years (QALYs) and successfully treated patient (i.e. 50% or more seizure reduction) of the treatment strategies KD, VNS and CAU, from a health care perspective. The base case considered children with intractable epilepsy (i.e. two or more antiepileptic drugs had failed) aged between 1 and 18 years. Data were derived from literature and expert meetings. Deterministic and probabilistic sensitivity analyses were performed. Our results suggest that KD is more effective and less costly, and thus cost-effective compared with VNS, after 12 months. However, compared to CAU, neither KD nor VNS are cost-effective options, they are both more effective but also more expensive (€346,899 and €641,068 per QALY, respectively). At 5 years, VNS is cost-effective compared with KD and CAU (€11,378 and €68,489 per QALY, respectively) and has a 51% probability of being cost-effective at a ceiling ratio of €80,000 per QALY. Our results suggest that on average the benefits of KD and VNS fail to outweigh the costs of the therapies. However, these treatment options should not be ignored in the treatment for intractable epilepsy in individual or specific groups of patients. There is a great need for high quality comparative studies with large patient samples which allow for subgroup analyses, long-term follow-up periods and outcome measures that measure effects beyond seizure frequency (e.g. quality of life). When this new evidence becomes available, reassessment of the cost-effectiveness of KD and VNS in children with intractable epilepsy should be carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet.

    Directory of Open Access Journals (Sweden)

    Yusuke Murata

    Full Text Available BACKGROUND: A low-carbohydrate, high-fat ketogenic diet (KD induces hepatic ketogenesis and is believed to affect energy metabolism in mice. As hepatic Fgf21 expression was markedly induced in mice fed KD, we examined the effects of KD feeding on metabolism and the roles of Fgf21 in metabolism in mice fed KD using Fgf21 knockout mice. METHODOLOGY/PRINCIPAL FINDINGS: We examined C57BL/6 mice fed KD for 6 or 14 days. Blood β-hydroxybutyrate levels were greatly increased at 6 days, indicating that hepatic ketogenesis was induced effectively by KD feeding for 6 days. KD feeding for 6 and 14 days impaired glucose tolerance and insulin sensitivity, although it did not affect body weight, blood NEFA, and triglyceride levels. Hepatic Fgf21 expression and blood Fgf21 levels were markedly increased in mice fed KD for 6 days. Blood β-hydroxybutyrate levels in the knockout mice fed KD for 6 days were comparable to those in wild-type mice fed KD, indicating that Fgf21 is not required for ketogenesis. However, the impaired glucose tolerance and insulin sensitivity caused by KD feeding were improved in the knockout mice. Insulin-stimulated Akt phosphorylation was significantly decreased in the white adipose tissue in wild-type mice fed KD compared with those fed normal chow, but not in the muscle and liver. Its phosphorylation in the white adipose tissue was significantly increased in the knockout mice fed KD compared with wild-type mice fed KD. In contrast, hepatic gluconeogenic gene expression in Fgf21 knockout mice fed KD was comparable to those in the wild-type mice fed KD. CONCLUSIONS/SIGNIFICANCE: The present findings indicate that KD feeding impairs insulin sensitivity in mice due to insulin resistance in white adipose tissue. In addition, our findings indicate that Fgf21 induced to express by KD is a negative regulator of adipocyte insulin sensitivity in adaptation to a low-carbohydrate malnutritional state.

  12. Fgf21 Impairs Adipocyte Insulin Sensitivity in Mice Fed a Low-Carbohydrate, High-Fat Ketogenic Diet

    Science.gov (United States)

    Murata, Yusuke; Nishio, Kyoji; Mochiyama, Takayuki; Konishi, Morichika; Shimada, Masaya; Ohta, Hiroya; Itoh, Nobuyuki

    2013-01-01

    Background A low-carbohydrate, high-fat ketogenic diet (KD) induces hepatic ketogenesis and is believed to affect energy metabolism in mice. As hepatic Fgf21 expression was markedly induced in mice fed KD, we examined the effects of KD feeding on metabolism and the roles of Fgf21 in metabolism in mice fed KD using Fgf21 knockout mice. Methodology/Principal Findings We examined C57BL/6 mice fed KD for 6 or 14 days. Blood β-hydroxybutyrate levels were greatly increased at 6 days, indicating that hepatic ketogenesis was induced effectively by KD feeding for 6 days. KD feeding for 6 and 14 days impaired glucose tolerance and insulin sensitivity, although it did not affect body weight, blood NEFA, and triglyceride levels. Hepatic Fgf21 expression and blood Fgf21 levels were markedly increased in mice fed KD for 6 days. Blood β-hydroxybutyrate levels in the knockout mice fed KD for 6 days were comparable to those in wild-type mice fed KD, indicating that Fgf21 is not required for ketogenesis. However, the impaired glucose tolerance and insulin sensitivity caused by KD feeding were improved in the knockout mice. Insulin-stimulated Akt phosphorylation was significantly decreased in the white adipose tissue in wild-type mice fed KD compared with those fed normal chow, but not in the muscle and liver. Its phosphorylation in the white adipose tissue was significantly increased in the knockout mice fed KD compared with wild-type mice fed KD. In contrast, hepatic gluconeogenic gene expression in Fgf21 knockout mice fed KD was comparable to those in the wild-type mice fed KD. Conclusions/Significance The present findings indicate that KD feeding impairs insulin sensitivity in mice due to insulin resistance in white adipose tissue. In addition, our findings indicate that Fgf21 induced to express by KD is a negative regulator of adipocyte insulin sensitivity in adaptation to a low-carbohydrate malnutritional state. PMID:23874946

  13. Longitudinal Change in Thyroid Hormone Levels in Children with Epilepsy on a Ketogenic Diet: Prevalence and Risk Factors.

    Science.gov (United States)

    Lee, Yun-Jin; Nam, Sang Ook; Kim, Kyung-Min; Kim, Young Mi; Yeon, Gyu Min

    2017-12-01

    The aim of this study is to evaluate the prevalence of hypothyroidism and the change of thyroid hormone level in the children with epilepsy on a ketogenic diet (KD). The levels of serum free thyroxine (fT4) and thyroid-stimulation hormone (TSH) were measured at the start of the KD and at 6- to 12-month intervals in children with intractable epilepsy. Hypothyroidism was defined as fT4 level 6.0 μIU/mL. A total of 28 children (17 boys and 11 girls) were enrolled in the study. The mean age of onset of seizure was 1.4 ± 1.6 years, the mean age of the start of the KD was 3.2 ± 2.4 years, and the mean duration of KD was 1.9 ± 1.5 years. Overall, there was no significant longitudinal change in the mean fT4 (0.99 ± 0.25 vs. 0.94 ± 0.71 ng/dL, p = 0.28) and TSH (2.94 ± 1.32 vs. 3.18 ± 1.21 μIU/mL, p = 0.44) levels from the start of the KD to last follow-up. The patients with a younger age of seizure onset, earlier initiation of KD, and higher serum levels of cholesterol and triglyceride had a significant decrease in fT4 levels and increase in TSH levels during the KD. Sex, duration of the seizure or KD therapy, seizure types, seizure frequency, seizure outcomes, brain lesion, ratio of KD, and being overweight did not affect the longitudinal change of fT4 and TSH levels during KD. Thyroid function had no significant longitudinal decrease in pediatric epilepsy during KD therapy. However, careful monitoring of the serum levels of fT4/TSH should be recommended in children on KDs, especially in those with earlier seizure onset, earlier start of KD, and higher levels of lipid profiles.

  14. Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet.

    Science.gov (United States)

    Terrone, Gaetano; Pauletti, Alberto; Salamone, Alessia; Rizzi, Massimo; Villa, Bianca R; Porcu, Luca; Sheehan, Mark J; Guilmette, Edward; Butler, Christopher R; Piro, Justin R; Samad, Tarek A; Vezzani, Annamaria

    2018-01-01

    Status epilepticus (SE) is a life-threatening and commonly drug-refractory condition. Novel therapies are needed to rapidly terminate seizures to prevent mortality and morbidity. Monoacylglycerol lipase (MAGL) is the key enzyme responsible for the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) and a major contributor to the brain pool of arachidonic acid (AA). Inhibiting of monoacylglycerol lipase modulates synaptic activity and neuroinflammation, 2 mediators of excessive neuronal activation underlying seizures. We studied the effect of a potent and selective irreversible MAGL inhibitor, CPD-4645, on SE that was refractory to diazepam, its neuropathologic sequelae, and the mechanism underlying the drug's effects. Diazepam-resistant SE was induced in adult mice fed with standard or ketogenic diet or in cannabinoid receptor type 1 (CB1) receptor knock-out mice. CPD-4645 (10 mg/kg, subcutaneously) or vehicle was dosed 1 and 7 h after status epilepticus onset in video-electroencephalography (EEG) recorded mice. At the end of SE, mice were examined in the novel object recognition test followed by neuronal cellloss analysis. CPD-4645 maximal plasma and brain concentrations were attained 0.5 h postinjection (half-life = 3.7 h) and elevated brain 2-AG levels by approximately 4-fold. CPD-4645 administered to standard diet-fed mice progressively reduced spike frequency during 3 h postinjection, thereby shortening SE duration by 47%. The drug immediately abrogated SE in ketogenic diet-fed mice. CPD-4645 rescued neuronal cell loss and cognitive deficit and reduced interleukin (IL)-1β and cyclooxygenase 2 (COX-2) brain expression resulting from SE. The CPD-4645 effect on SE was similar in mice lacking CB1 receptors. MAGL represents a novel therapeutic target for treating status epilepticus and improving its sequelae. CPD-4645 therapeutic effects appear to be predominantly mediated by modulation of neuroinflammation. Wiley Periodicals, Inc. © 2017

  15. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    Science.gov (United States)

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Goday, A; Bellido, D; Sajoux, I; Crujeiras, A B; Burguera, B; García-Luna, P P; Oleaga, A; Moreno, B; Casanueva, F F

    2016-09-19

    Brackground:The safety and tolerability of very low-calorie-ketogenic (VLCK) diets