WorldWideScience

Sample records for adenoma islet cell

  1. Microcystic adenoma of the pancreas associated with non-functioning islet cell tumor: a case report

    International Nuclear Information System (INIS)

    Among cystic tumors arising in the pancreas, microcystic adenoma is relatively uncommon;it is usually benign, and is comprised of cysts that vary in size from microscopic to 2 cm in diameter. It has recently been reported to be associated with other pancreatic tumors with malignant potential; in particular, microcystic adenoma with coexistent islet cell tumor has been reported in von Hippel-Lindau disease. We report a case of microcystic adenoma of the pancreas associated with coexistent surgically-proven islet cell tumor. On spiral CT, the islet cell tumor was seen as a highly enhanced inhomogeneous solid mass in the pancreatic head, and microcystic adenoma as numerous small cysts throughout the pancreas.=20

  2. A Wolf in Sheep's Clothing: A Non-Functioning Islet Cell Tumor of the Pancreas Masquerading as a Microcystic (Serous Cystic) Adenoma

    OpenAIRE

    Jowell PS; Baillie J; Tyler DS; Paulson EK; Xie HB; Byrne MF; Gerke H

    2004-01-01

    CONTEXT: The endosonographic appearance of a microcystic âhoneycombâ lesion of the pancreas usually indicates a serous cystic adenoma. CASE REPORT: We report a case of a non-functioning islet cell tumor that has the typical microcystic âhoneycombâ appearance of a serous cystic adenoma. The implications for endoscopic ultrasound diagnosis and management of cystic pancreatic lesions are discussed. CONCLUSION: Islet cell tumors are a rare differential diagnosis of microcystic pancreatic lesions....

  3. MedlinePlus: Islet Cell Transplantation

    Science.gov (United States)

    ... Human Islet Transplantation. Islet Cell Transplantation -- see more articles Topic Image MedlinePlus Email Updates Get Islet Cell Transplantation updates by email What's this? GO GO National Institutes of Health The primary NIH organization for research on Islet Cell Transplantation is the ...

  4. What Are Islet Cells?

    Science.gov (United States)

    ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ...

  5. Mesenchymal Stem Cells as Feeder Cells for Pancreatic Islet Transplants

    OpenAIRE

    Sordi, Valeria; Piemonti, Lorenzo

    2010-01-01

    Allogeneic islet transplantation serves as a source of insulin-secreting beta-cells for the maintenance of normal glucose levels and treatment of diabetes. However, limited availability of islets, high rates of islet graft failure, and the need for life-long non-specific immunosuppressive therapy are major obstacles to the widespread application of this therapeutic approach. To overcome these problems, pancreatic islet transplantation was recently suggested as a potential target of the "thera...

  6. Human islets and dendritic cells generate post-translationally modified islet autoantigens.

    Science.gov (United States)

    McLaughlin, R J; de Haan, A; Zaldumbide, A; de Koning, E J; de Ru, A H; van Veelen, P A; van Lummel, M; Roep, B O

    2016-08-01

    The initiation of type 1 diabetes (T1D) requires a break in peripheral tolerance. New insights into neoepitope formation indicate that post-translational modification of islet autoantigens, for example via deamidation, may be an important component of disease initiation or exacerbation. Indeed, deamidation of islet autoantigens increases their binding affinity to the T1D highest-risk human leucocyte antigen (HLA) haplotypes HLA-DR3/DQ2 and -DR4/DQ8, increasing the chance that T cells reactive to deamidated autoantigens can be activated upon T cell receptor ligation. Here we investigated human pancreatic islets and inflammatory and tolerogenic human dendritic cells (DC and tolDC) as potential sources of deamidated islet autoantigens and examined whether deamidation is altered in an inflammatory environment. Islets, DC and tolDC contained tissue transglutaminase, the key enzyme responsible for peptide deamidation, and enzyme activity increased following an inflammatory insult. Islets treated with inflammatory cytokines were found to contain deamidated insulin C-peptide. DC, heterozygous for the T1D highest-risk DQ2/8, pulsed with native islet autoantigens could present naturally processed deamidated neoepitopes. HLA-DQ2 or -DQ8 homozygous DC did not present deamidated islet peptides. This study identifies both human islets and DC as sources of deamidated islet autoantigens and implicates inflammatory activation of tissue transglutaminase as a potential mechanism for islet and DC deamidation. PMID:26861694

  7. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  8. Management of nonfunctioning islet cell tumors

    Institute of Scientific and Technical Information of China (English)

    Han Liang; Pu Wang; Xiao-Na Wang; Jia-Cang Wang; Xi-Shan Hao

    2004-01-01

    AIM: To more clearly define the clinical and pathological characteristics and appropriate diagnosis and treatment of nonfunctioning (NFICTs) islet cell tumors, and to review our institutional experience over the last 30 years.METHODS: The records of 43 patients confirmed to have nonfunctioning islet cell tumors of pancreas were retrospectively reviewed. Survival was estimated by the Kaplan-Meier methods and potential risk factors for survival were compared with the log-rank tests.RESULTS: The mean age was 31.63 years (range, 8 to 67 years). There were 7 men and 36 women. Twentyeight patients had a confirmed diagnosis of nonfunctioning islet cell carcinoma (NFICC) and benign islet cell tumors were found in 15 patients. The most common symptoms in patients with NFICTs were abdominal pain (55.8%),nausea and/or vomiting (32.6%), fatigue (25.6%) and abdominal mass (23.3%). Preoperative ultrasonic and computed tomography localized the tumors in all patients.Forty-three NFICTs were distributed throughout the pancreas, with 21 located to the right of the superior mesenteric vessels, 10 in the body of the pancreas, 6 in the tail of the pancreas, and multiple tumors were found in one patient. Thirty-nine of 43 patients (91%) underwent surgical resection. Surgical treatment was curative in 30patients (70%) and palliative in 9(21%). The resectability and curative resection rate in patients with NFICC of pancreas were 89% and 61%, respectively. The overall cumulative 5- and 10-year survival rates for patients with NFICC were 58.05% and 29.03%, respectively. Radical operation and diameter of cancer small than :10 cm were positive prognostic factors in females younger than 30years old. Multivariate Cox regression analysis indicated that radical operation was the only independent prognostic factor, P=0.007.CONCLUSION: Nonfunctioning islet cell tumors of pancreas are found mainly in young women. The long-term results for patients undergone surgery, especially curative resection are

  9. CT features of nonfunctioning islet cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Eelkema, E.A.; Stephens, D.H.; Ward, E.M.; Sheedy, P.F. II

    1984-11-01

    To determine the computed tomographic (CT) characteristics of nonfunctioning islet cell carcinoma of the pancreas, the CT scans of 27 patients with that disease were reviewed. The pancreatic tumor was identified as a mass in 26 patients (96%) Of the 25 tumors evaluated with contrast enhancement, 20 became partially diffusely hyperdense relative to nearby normal pancreatic tissue. Hepatic metastases were identified in 15 patients (56%), regional lymphadenopathy in 10 (37%), atrophy of the gland proximal to the tumor in six (22%), dilatation of the biliary ducts in five (19%), and dilatation of the pancreatic duct in four (15%). The CT appearances of the nonfunctioning islet cell tumors were compared with those of 100 ordinary (ductal) pancreatic adenocarcinomas. Although the two types of tumors were sometimes indistinguishable, features found to be more characteristic of islet cell carcinoma included a pancreatic mass of unusually large size, calcification within the tumor, and contrast enhancement of either the primary tumor or hepatic metastases. Involvement of the celiac axis or proximal superior mesenteric artery was limited to ductal carcinoma.

  10. Comparison of the Blood and Lymphatic Microvessel Density of Pleomorphic Adenoma and Basal Cell Adenoma

    OpenAIRE

    Andresa Borges Soares; Albina Altemani; Thais Ribeiro de Oliveira; Felipe de Oliveira Fonseca Rodrigues; Alfredo Ribeiro-Silva; Danilo Figueiredo Soave; Fabricio Passador-Santos; Suellen Trentin Brum; Marcelo Henrique Napimoga; Vera Cavalcanti de Araújo

    2015-01-01

    BACKGROUND Pleomorphic adenoma (PA) is the most common tumor of the salivary gland, while basal cell adenoma (BCA) is an uncommon neoplasm. Blood and lymphatic vessels are crucial for tumor metabolism. The aim of this study was to compare the blood and lymphatic vascular density and vascular and endothelial growth factor (VEGF) expression in PA and BCA tumors. In addition, cell proliferation was evaluated in these tumors. METHODS Blood and lymphatic vessel content, VEGF expression, and cell p...

  11. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  12. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  13. Islet Generation from Intra Islet Precursor Cells of Diabetic Pancreas: In Vitro Studies Depicting In Vivo Differentiation

    Directory of Open Access Journals (Sweden)

    Banerjee M

    2003-07-01

    Full Text Available CONTEXT: Beta-cells have a limited replicative capacity; hence, there is always a quest for sources of islet regeneration to compensate for the loss of functional beta-cells in diabetes. OBJECTIVE: To test the hypothesis of whether intra islet precursor cells of islets isolated from a diabetic pancreas and in vitro streptozotocin treated islets are capable of giving rise to neoislets. INTERVENTIONS: Streptozotocin treatment was given to mice and to islets isolated from normal mice. Islets were isolated from diabetic mice, cultured on matrigel coated plates with a well-defined serum free medium containing mitotic (nicotinamide and differentiating (keratinocyte growth factor agents. Initially, islets gave rise to an epithelial-like cell monolayer and, later on, differentiated into islet-like clusters. These were characterized for the ductal epithelial cell specific markers cytokeratin-19 and cytokeratin-7 and for the islet specific markers-insulin and PDX1. Insulin secretion in response to glucose and L-arginine was estimated by ELISA. RESULTS: A cytokeratin-19 and cytokeratin-7 positive precursor cell population was found scattered throughout the epithelial monolayer. Upon addition of the keratinocyte growth factor, these precursor cells gave rise to islet-like clusters which were confirmed to be islets by marker studies. Though streptozotocin treatment on islets of normal mice allowed proliferation of the epithelial monolayer, it did not give rise to neoislets under similar growth conditions. CONCLUSION: The present study reveals that streptozotocin treatment of normal islets in vitro leads to the loss of the potential of intra islet precursor cells to form neoislets; however, in streptozotocin-induced experimental diabetes, they retain their potential to generate new islets opening a novel putative way of treating diabetes.

  14. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets

    NARCIS (Netherlands)

    Hilderink, Janneke; Spijker, Siebe; Carlotti, Françoise; Lange, Lydia; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2015-01-01

    Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell surv

  15. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation

    Directory of Open Access Journals (Sweden)

    Li Xin

    2007-01-01

    Full Text Available Abstract While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM, the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called β cells, or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding β-cell function at the molecular level will likely facilitate the development of techniques to manufacture β-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.

  16. Islet and stem cell encapsulation for clinical transplantation.

    Science.gov (United States)

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster, Clarence E; Lakey, Jonathan R T

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues. PMID:25148368

  17. Proliferating cell nuclear antigen (PCNA expression in pituitary adenomas: relationship to the endocrine phenotype of adenoma.

    Directory of Open Access Journals (Sweden)

    Andrzej Radek

    2006-04-01

    Full Text Available The expression of proliferating cell nuclear antigen (PCNA correlates to cell proliferation and for this reason it is commonly considered as one of proliferation markers. Since proliferation rate is an important factor determining the tumor aggressiveness, the evaluation of PCNA index (the percentage of PCNA-immunopositive nuclei in the investigated tumor sample is suggested as useful in predicting pituitary adenoma outcome. Seventy three unselected, surgically removed pituitary adenomas were immunostained with antibodies against the pituitary hormones or their subunits and against the proliferating cell nuclear antigen (PCNA. The highest PCNA index was found in ACTH-immunopositive tumors without the manifestation of the Cushing's disease ("silent" corticotropinomas. This value was significantly different in comparison to other adenoma subtypes including corticotropinomas manifesting themselves by Cushing's disease. The lowest PCNA index was noticed in monohormonal GH-secreting tumors. The adenomas which express more than one hormone (plurihormonal adenomas seem to have a higher PCNA indices than monohormonal ones; the difference was significant in the case of mono- and plurihormonal prolactinomas. The recurrent tumors presented a higher mean PCNA index as compared to the primary tumors, although the difference was significant only in the case of prolactinomas. These findings suggest that the proliferative potential of pituitary adenomas is related to the tumor recurrence and hormone expression.

  18. The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size.

    Science.gov (United States)

    Rodríguez-Castelán, J; Nicolás, L; Morimoto, S; Cuevas, E

    2015-04-01

    Effects of hypothyroidism on the glucose and insulin levels are controversial, and its impact on the Langerhans islet morphology of adult subjects has been poorly addressed. In spite of hypothyroidism and diabetes mellitus are more frequent in females than in males, most studies using animal models have been done in males. The effect of hypothyroidism on the immunolabeling of thyroid hormone receptors (TRs) and thyrotropin receptor (TSHR) of islet cells is unknown. The aim of this study was to determine the effect of hypothyroidism on the glucose and insulin concentrations, morphometry of islets, and immunostaining of TRs α1-2 and β1 and TSHR of islet cells in female rabbits. Control and hypothyroid (0.02% of methimazole for 30 days) animals were used to quantify blood levels of glucose and insulin, density of islets, cross-sectional area (CSA) of islets, number of cells per islet, cell proliferation, and the immunolabeling of TRs α1-2, TRβ1, and TSHR. Student's t or Mann-Whitney-U tests, two-way ANOVAs, and Fischer's tests were applied. Concentrations of glucose and insulin, as well as the insulin resistance were similar between groups. Hypothyroidism did not affect the density or the CSA of islets. The analysis of islets by size showed that hypothyroidism reduced the cell number in large and medium islets, but not in small ones. In small islets, cell proliferation was increased. The immunoreactivity of TRα1-2, TRβ1, and TSHR was increased by hypothyroidism in all islet sizes. Our results show that hypothyroidism affects differentially the islet cells depending on the size of islets.

  19. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Directory of Open Access Journals (Sweden)

    Volkert A L Huurman

    Full Text Available BACKGROUND: Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome. CONCLUSIONS/SIGNIFICANCE: In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG

  20. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  1. Islet amyloid polypeptide and insulin expression are controlled differently in primary and transformed islet cells

    DEFF Research Database (Denmark)

    Madsen, O D; Michelsen, Bo Thomas; Westermark, P;

    1991-01-01

    the tissue specificity of expressions of IAPP and insulin are controlled differently, and that coexpression of IAPP with hormones different from insulin may be a marker for pluripotent transformed rat islet cell clones, which are able to activate insulin gene transcription during passage in vivo....

  2. Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J;

    1986-01-01

    Supernatants of peripheral blood mononuclear cells from healthy human donors stimulated with recall antigen (purified protein derivative of tuberculin) or lectin (phytohaemagglutinin) markedly inhibited the insulin release from isolated human and rat islets of Langerhans, and decreased rat islet...

  3. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    2015-02-01

    Full Text Available The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  4. Mitochondrial DNA mutations in oxyphilic and chief cell parathyroid adenomas

    Directory of Open Access Journals (Sweden)

    Roth Sanford I

    2007-10-01

    Full Text Available Abstract Background The potential pathogenetic significance of mitochondrial DNA (mtDNA mutations in tumorigenesis is controversial. We hypothesized that benign tumorigenesis of a slowly replicating tissue like the human parathyroid might constitute an especially fertile ground on which a selective advantage conferred by mtDNA mutation could be manifested and might contribute to the oxyphilic phenotype observed in a subset of parathyroid tumors. Methods We sought acquired mitochondrial DNA mutations by sequencing the entire 16.6 kb mitochondrial genome of each of thirty sporadic parathyroid adenomas (18 chief cell and 12 oxyphil cell, eight independent, polyclonal, parathyroid primary chief cell hyperplasias plus corresponding normal control samples, five normal parathyroid glands, and one normal thyroid gland. Results Twenty-seven somatic mutations were identified in 15 of 30 (9 of 12 oxyphil adenomas, 6 of 18 chief cell parathyroid adenomas studied. No somatic mutations were observed in the hyperplastic parathyroid glands. Conclusion Features of the somatic mutations suggest that they may confer a selective advantage and contribute to the molecular pathogenesis of parathyroid adenomas. Importantly, the statistically significant differences in mutation prevalence in oxyphil vs. chief cell adenomas also suggest that mtDNA mutations may contribute to the oxyphil phenotype.

  5. Stress-induced adaptive islet cell identity changes.

    Science.gov (United States)

    Cigliola, V; Thorel, F; Chera, S; Herrera, P L

    2016-09-01

    The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas. PMID:27615136

  6. Functional Characteristics of Multipotent Mesenchymal Stromal Cells from Pituitary Adenomas.

    Science.gov (United States)

    Megnis, Kaspars; Mandrika, Ilona; Petrovska, Ramona; Stukens, Janis; Rovite, Vita; Balcere, Inga; Jansone, Laima Sabine; Peculis, Raitis; Pirags, Valdis; Klovins, Janis

    2016-01-01

    Pituitary adenomas are one of the most common endocrine and intracranial neoplasms. Although they are theoretically monoclonal in origin, several studies have shown that they contain different multipotent cell types that are thought to play an important role in tumor initiation, maintenance, and recurrence after therapy. In the present study, we isolated and characterized cell populations from seven pituitary somatotroph, nonhormonal, and lactotroph adenomas. The obtained cells showed characteristics of multipotent mesenchymal stromal cells as observed by cell morphology, cell surface marker CD90, CD105, CD44, and vimentin expression, as well as differentiation to osteogenic and adipogenic lineages. They are capable of growth and passaging under standard laboratory cell culture conditions and do not manifest any hormonal cell characteristics. Multipotent mesenchymal stromal cells are present in pituitary adenomas regardless of their clinical manifestation and show no considerable expression of somatostatin 1-5 and dopamine 2 receptors. Most likely obtained cells are a part of tissue-supportive cells in pituitary adenoma microenvironment. PMID:27340409

  7. Assessment of pancreatic islet cell function and survival

    OpenAIRE

    Köhler, Martin

    2015-01-01

    Function and survival of pancreatic islet insulin-producing beta-cells (β-cells) and glucagonproducing alpha-cells (α-cells) were studied, and methods for this purpose were developed or refined. Dynamic control of glucose metabolism is essential for β-cell stimulus-secretion coupling. ATP is an important metabolic parameter and therefore we set up a technique to monitor dynamic changes of ATP in insulin-producing cells using luciferase bioluminescence at the level of single...

  8. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: a rat model.

    Directory of Open Access Journals (Sweden)

    Goichi Yanai

    Full Text Available Islet transplantation is a minimally invasive treatment for severe diabetes. However, it often requires multiple donors to accomplish insulin-independence and the long-term results are not yet satisfying. Therefore, novel ways to overcome these problems have been explored. Isolated islets are fragile and susceptible to pro-apoptotic factors and poorly proliferative. In contrast, mesenchymal stem cells (MSCs are highly proliferative, anti-apoptotic and pluripotent to differentiate toward various cell types, promote angiogenesis and modulate inflammation, thereby studied as an enhancer of islet function and engraftment. Electrofusion is an efficient method of cell fusion and nuclear reprogramming occurs in hybrid cells between different cell types. Therefore, we hypothesized that electrofusion between MSC and islet cells may yield robust islet cells for diabetes therapy. We establish a method of electrofusion between dispersed islet cells and MSCs in rats. The fusion cells maintained glucose-responsive insulin release for 20 days in vitro. Renal subcapsular transplantation of fusion cells prepared from suboptimal islet mass (1,000 islets that did not correct hyperglycemia even if co-transplanted with MSCs, caused slow but consistent lowering of blood glucose with significant weight gain within the observation period in streptozotocin-induced diabetic rats. In the fusion cells between rat islet cells and mouse MSCs, RT-PCR showed new expression of both rat MSC-related genes and mouse β-cell-related genes, indicating bidirectional reprogramming of both β-cell and MSCs nuclei. Moreover, decreased caspase3 expression and new expression of Ki-67 in the islet cell nuclei suggested alleviated apoptosis and gain of proliferative capability, respectively. These results show that electrofusion between MSCs and islet cells yield special cells with β-cell function and robustness of MSCs and seems feasible for novel therapeutic strategy for diabetes

  9. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    Science.gov (United States)

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.

  10. Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation

    OpenAIRE

    Cai, Qing; Brissova, Marcela; Reinert, Rachel B.; Pan, Fong Cheng; Brahmachary, Priyanka; Jeansson, Marie; Shostak, Alena; Radhika, Aramandla; Poffenberger, Greg; Quaggin, Susan E; Jerome, W. Gray; Daniel J Dumont; Alvin C Powers

    2012-01-01

    There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a “tet-on” inducible system (mice expressing rat insulin promoter-reverse tetracycline...

  11. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    biological hypotheses. The subjects addressed are: Quasi-steady-state approximations of enzyme reactions, the effect of noise on bursting electrical behavior, exciation wave propagation in pancreatic islets, intra- and inter-islet synchronization and pulsatile insulin secretion, and mitochondrial dynamics.......Pancreatic beta-cells secrete insulin in response to raised glucose levels. Malfunctioning of this system plays an important role in the metabolic disease diabetes. The biological steps from glucose stimulus to the final release of insulin are incompletely understood, and a more complete...

  12. Human islets contain four distinct subtypes of β cells.

    Science.gov (United States)

    Dorrell, Craig; Schug, Jonathan; Canaday, Pamela S; Russ, Holger A; Tarlow, Branden D; Grompe, Maria T; Horton, Tamara; Hebrok, Matthias; Streeter, Philip R; Kaestner, Klaus H; Grompe, Markus

    2016-01-01

    Human pancreatic islets of Langerhans contain five distinct endocrine cell types, each producing a characteristic hormone. The dysfunction or loss of the insulin-producing β cells causes diabetes mellitus, a disease that harms millions. Until now, β cells were generally regarded as a single, homogenous cell population. Here we identify four antigenically distinct subtypes of human β cells, which we refer to as β1-4, and which are distinguished by differential expression of ST8SIA1 and CD9. These subpopulations are always present in normal adult islets and have diverse gene expression profiles and distinct basal and glucose-stimulated insulin secretion. Importantly, the β cell subtype distribution is profoundly altered in type 2 diabetes. These data suggest that this antigenically defined β cell heterogeneity is functionally and likely medically relevant. PMID:27399229

  13. Bone marrow cells produce nerve growth factor and promote angiogenesis around transplanted islets

    Institute of Scientific and Technical Information of China (English)

    Naoaki; Sakata; Nathaniel; K; Chan; John; Chrisler; Andre; Obenaus; Eba; Hathout

    2010-01-01

    AIM:To clarify the mechanism by which bone marrow cells promote angiogenesis around transplanted islets.METHODS: Streptozotocin induced diabetic BALB/ c mice were transplanted syngeneically under the kidney capsule with the following: (1) 200 islets (islet group: n=12), (2) 1-5×106 bone marrow cells (bone marrow group: n=11), (3) 200 islets and 1-5×106 bone marrow cells (islet + bone marrow group: n= 13), or (4) no cells (sham group:n=5). All mice were evaluated for blood glucose, serum insulin, serum nerve...

  14. Prevention of core cell damage in isolated islets of Langerhans by low temperature preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yun-Fu Cui; Ming Ma; Gui-Yu Wang; De-En Han; Brigitte Vollmar; Michael D. Menger

    2005-01-01

    AIM: To study the core cell damage in isolated islets of Langerhans and its prevention by low temperature preconditioning (26 ℃).METHODS: Islets were cultured at 37 ℃ for 7-14 d after isolation, and then at 26 ℃ for 2, 4 and 7 d before additional culture at 37 ℃ for another 7 d. Core cell damage in the isolated islets was monitored by video-microscopy and analyzed quantitatively by use of a computer-assisted image analysis system. The analysis included daily measurement of the diameter and the area of the isolated islets and the area of the core cell damage that developed in those islets over time during culture. Histology and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to characterize the cell damage and to monitor islet function.RESULTS: Microscopic analysis showed that during the 7 to 14 d of culture at 37 ℃, core cell damage occurred in the larger islets with diameters >200 μm, which included both necrotic and apoptotic cell death. Low temperature (26 ℃) culture could prevent core cell damage of isolated islets. The 7-d culture procedure at 26 ℃ could inhibit most of the core cell (excluding diameters>300 μm) damages when the islets were re-warmed at 37 ℃.CONCLUSION: Our results indicate that core cell damage within isolated islets of Langerhans correlates with the size of islets. Low temperature (26 ℃) culture can prevent core cell damage in isolated islets, and successfully precondition these islets for incubation at 37 ℃. These novel findings may help to understand the pathophysiology of early loss of islet tissue after transplantation, and may provide a new strategy to improve graft function in the clinical setting of islet transplantation.

  15. Immunohistochemical Characteristics of Bone Forming Cells in Pleomorphic Adenoma

    Directory of Open Access Journals (Sweden)

    Keisuke Nakano, Takehiro Watanabe, Takako Shimizu, Toshiyuki Kawakami

    2007-01-01

    Full Text Available Histopathological and immunohistochemical examinations were carried out in a case of pleomorphic adenoma with bone formation, occurring in the chin of a 34-year-old Japanese man. Examination results showed the modified neoplastic myoepithelial cells reacted positively to S-100 protein. The S-100-positive modified neoplastic myoepithelial cells were proliferated in the closely related area of the bone tissue. Furthermore, positive reaction was detected in the bone forming cells: osteoblasts and osteocytes. These cells also reacted positively to Runx2 as a marker of bone forming cells. These results suggest that the origin of the bone forming cells in this case of pleomorphic adenoma was modified neoplastic myoepithelial cells.

  16. Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes

    OpenAIRE

    van der Torren, Cornelis R.; Verrijn Stuart, Annemarie A.; Lee, DaHae; Meerding, Jenny; van de Velde, Ursule; Pipeleers, Daniel; Gillard, Pieter; Keymeulen, Bart; de Jager, Wilco; Roep, Bart O.

    2016-01-01

    BACKGROUND: Islet cell transplantation holds a potential cure for type 1 diabetes, but many islet recipients do not reach long-lasting insulin independence. In this exploratory study, we investigated whether serum cytokines, chemokines and adipokines are associated with the clinical outcome of islet transplantation. METHODS: Thirteen islet transplant patients were selected on basis of good graft function (reaching insulin independence) or insufficient engraftment (insulin requiring) from our ...

  17. IN VITRO CELL CULTURE AND HORMONE RADIOIMMUNOASSAY OF HUAMAN PITUITARY ADENOMAS

    Institute of Scientific and Technical Information of China (English)

    陆汉魁; 林祥通; 等

    1994-01-01

    Tissues from 30 human pituitary adenomas are monolayer-cell-cultured in vitro.Hormone secretion of GH,PRL,TSH,LH and FSH by cells into medium is detected by radioimmunoassay .The pattern and amount of hormone(s0 in the medium are used to determine the nature of the cells and thus to establish functional classification of pituitary adenomas.The results show that cell culture technique provides and easy and suitable mode for investigating the nature of pituitary adenomas.Hormone radioimmunoassay of culture medium is precise and reliable and represents the whole adenoma tissue.Further studies can lead to clearer understandngs of the pathology of pituitary adenomas.

  18. Quantitative analysis of cell composition and purity of human pancreatic islet preparations.

    Science.gov (United States)

    Pisania, Anna; Weir, Gordon C; O'Neil, John J; Omer, Abdulkadir; Tchipashvili, Vaja; Lei, Ji; Colton, Clark K; Bonner-Weir, Susan

    2010-11-01

    Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light microscopy (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed an accurate identification and quantification of cell types with measured cell number fractions (mean±s.e.m.) of 35.6±2.1% β-cells, 12.6±1.0% non-β-islet cells (48.3±2.6% total islet cells), 22.7±1.5% duct cells, and 25.3±1.8% acinar cells. Of the islet cells, 73.6±1.7% were β-cells. For comparison with the literature, estimates of cell number fraction, cell volume, and extracellular volume were combined to convert number fraction data to volume fractions applicable to cells, islets, and the entire preparation. The mathematical framework for this conversion was developed. By volume, β-cells were 86.5±1.1% of the total islet cell volume and 61.2±0.8% of intact islets (including the extracellular volume), which is similar to that of islets in the pancreas. Our estimates produced 1560±20 cells in an islet equivalent (volume of 150-μm diameter sphere), of which 1140±15 were β-cells. To test whether LM analysis of the same tissue samples could provide reasonable estimates of purity of the islet preparations, volume fraction of the islet tissue was measured on thin sections available from 27 of the clinical preparations by point counting morphometrics. Islet purity (islet volume fraction) of individual preparations determined by LM and EM analyses correlated linearly with excellent agreement (R²=0.95). However, islet purity by conventional dithizone staining was substantially higher with a 20-30% overestimation. Thus, both EM and LM provide accurate methods to determine the cell composition of human islet preparations and can help us understand many of the discrepancies of islet composition in the literature. PMID:20697378

  19. Octreotide scintigraphy localizes somatostatin receptor-positive islet cell carcinomas

    International Nuclear Information System (INIS)

    Tyr-3-octreotide is a synthetic derivative of somatostatin and a somatostatin-receptor analogue. The iodine-123-labelled compound localizes somatostatin-receptor-positive tumours. In this paper two patients are reported in whom somatostatin receptors were demonstrated in vitro. In a 60-year-old female with an islet cell carcinoma of the pancreas, multiple liver metastases and previously uncrecognized bone metastases in the right acetabulum could be diagnosed as the reason for a persistent hypoglycaemia. In a 60-year-old male an islet cell carcinoma of the pancreas was localized with 123I-Tyr-3-octreotide. The somatostatin receptors were demonstrated in vitro and the tumour was successfully treated with somatostatin. These studies demonstrate that 123I-Tyr-3-octreotide offers the possibility of localizing somatostatin-receptor-positive tumours and their metastases. Moreover the method makes it possible to determine the receptor status of a tumour in vivo. (orig.)

  20. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  1. Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro

    Indian Academy of Sciences (India)

    Maithili P Dalvi; Malati R Umrani; Mugdha V Joglekar; Anandwardhan A Hardikar

    2009-10-01

    Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in diabetes. The phenotypic plasticity exhibited by pancreatic progenitors during reversible epithelial-to-mesenchymal transition (EMT) and possible role of microRNAs in regulation of this process is also presented herein.

  2. Pancreatic islet-specific T-cell clones from nonobese diabetic mice.

    OpenAIRE

    Haskins, K; Portas, M; Bergman, B.; Lafferty, K; Bradley, B

    1989-01-01

    We have produced a panel of islet-specific T-cell clones from nonobese diabetic (NOD) mice. These clones proliferate and make interleukin 2 in an antigen-specific manner in response to NOD antigen-presenting cells and islet cells. Most of the clones respond to islet-cell antigen from different mouse strains but only in the presence of antigen-presenting cells bearing the class II major histocompatibility complex of the NOD mouse. In vivo, the clones mediate the destruction of islet, but not p...

  3. Implantation of bFGF-treated islet progenitor cells ameliorates streptozotocin-induced diabetes in rats

    OpenAIRE

    Li, Ge; Huang, Li-song; Jiang, Ming-hong; Wu, Hui-Ling; Chen, Jing; Huang, Yin; Shen, Yan; He-Xi-Ge, SaiYin; Fan, Wei-wei; Lu, Zhi-qiang; Da-ru LU

    2010-01-01

    Aim: To examine whether implantation of islet preparation-derived proliferating islet cells (PIC) could ameliorate diabetes in rats. Methods: PIC were expanded from rat islet preparation by supplementation of basic fibroblast growth factor (bFGF) and implanted into rats with streptozotocin (STZ)-induced diabetes through the portal vein. Body weight and blood glucose levels were measured. Serum insulin levels were measured by radioimmunoassay. The presence of insulin-positive cells was determi...

  4. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  5. Islet Brain 1 Protects Insulin Producing Cells against Lipotoxicity.

    Science.gov (United States)

    Brajkovic, Saška; Ferdaoussi, Mourad; Pawlowski, Valérie; Ezanno, Hélène; Plaisance, Valérie; Zmuda, Erik; Hai, Tsonwin; Annicotte, Jean-Sébastien; Waeber, Gérard; Abderrahmani, Amar

    2016-01-01

    Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.

  6. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  7. Liver cell adenoma with malignant transformation: A case report

    Institute of Scientific and Technical Information of China (English)

    Masahiro Ito; Makoto Sasaki; Chun-Yang Wen; Masahiro Nakashima; Toshihito Ueki; Hiromi Ishibashi; Michitami Yano; Masayoshi Kage; Masamichi Kojiro

    2003-01-01

    A 57-year-old woman was referred to our hospital because of a liver mass detected by computed tomography. She had taken oral contraceptives for only one month at the age of thirty. Physical examination revealed no abnormalities, and laboratory data, including hepatic function tests, were within the normal range, with the exception of elevated levels of those serum proteins induced by the absence of vitamin K or by raised levels of the antagonist (PIVKA)-Ⅱ (3 502 AU/ml).Abdominal ultrasonography revealed a hyperechoic mass measuring 10x10 cm in the left posterior segment of the liver. Because hepatocellular carcinoma could not be completely excluded, this mass was resected. The tumor consisted of sheets of uniform cells with clear cytoplasm,perinuclear eosinophilic granules and round nuclei. These histological findings were consistent with liver cell adenoma.Background hepatic tissue appeared normal. After resection of the tumor, serum PIVKA-Ⅱ fell to within the normal range.An area of hepatocellular carcinoma (HCC) with a midtrabecular pattern was immunohistochemically found, which was positive for PIVKA-Ⅱ. Sinusoidal endothelial cells were CD34-positive, containing scattered PIVKA-Ⅱ positive cells.This tumor was therefore finally diagnosed as liver cell adenoma with focal malignant transformation to HCC.

  8. Differentiation of marrow-derived islet-like cells and their effects on diabetic rats

    Institute of Scientific and Technical Information of China (English)

    LIU Ge-ling; SHI Yan-ping; LI Sha; LU Yi-fang; LI Wei-juan; XIAO Hong-zhen; SUN Guo-gui; YU Fang; XIANG Xiu-xiu; ZHANG Hui-qin; LIU Xiu-ling

    2010-01-01

    @@ In recent years, islet transplantation for diabetes has shown signs of the treatment efficacy, but its application is limited due to lack of donor organizations,sources and immune rejection. Bone marrow mesenchymal stem cells (BMSCs) have become a new resource of islet cell substitutes.

  9. Islet and Stem Cell Encapsulation for Clinical Transplantation

    OpenAIRE

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster 3rd, Clarence E.; Lakey, Jonathan R T

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating...

  10. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Brotons

    2016-01-01

    Full Text Available In bioartificial pancreases (BP, the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2 in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ/cm2 and cultured in normal atmospheric pressure (160 mmHg as well as hypoxic conditions (15 mmHg for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.

  11. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  12. Utility of co-transplanting mesenchymal stem cells in islet transplantation

    Institute of Scientific and Technical Information of China (English)

    Naoaki Sakata; Masafumi Goto; Gumpei Yoshimatsu; Shinichi Egawa; Michiaki Unno

    2011-01-01

    Islet transplantation is characterized by the transplantation of isolated islets from donor pancreata into a diabetic recipient. Although it is a viable choice in the treatment of insulin dependent diabetes mellitus, most patients (approximately 90%) require insulin five years after transplantation. Recently, the co-transplantation of mesenchymal stem cells (MSCs) and islets in animal studies has revealed the effectiveness of MSCs co-transplantation for improving islet function. The mechanisms underlying the beneficial impact of MSCs include immunomodulation and the promotion of angiogenesis. In this review, we discuss MSCs and how they support improved graft survival and function.

  13. B7-H4 as a protective shield for pancreatic islet beta cells

    Institute of Scientific and Technical Information of China (English)

    Annika; C; Sun; Dawei; Ou; Dan; S; Luciani; Garth; L; Warnock

    2014-01-01

    Auto- and alloreactive T cells are major culprits that damage β-cells in type 1 diabetes(T1D) and islet transplantation. Current immunosuppressive drugs can alleviate immune-mediated attacks on islets. T cell co-stimulation blockade has shown great promise in autoimmunity and transplantation as it solely targets activated T cells, and therefore avoids toxicity of current immunosuppressive drugs. An attractive approach is offered by the newly-identified negative T cell cosignaling molecule B7-H4 which is expressed in normal human islets, and its expression co-localizes with insulin. A concomitant decrease in B7-H4/insulin colocalization is observed in human type 1 diabetic islets. B7-H4 may play protective roles in the pancreatic islets, preserving their function and survival. In this review we outline the protective effect of B7-H4 in the contexts of T1 D, islet cell transplantation, and potentially type 2 diabetes. Current evidence offers encouraging data regarding the role of B7-H4 in reversal of autoimmune diabetes and donor-specific islet allograft tolerance. Additionally, unique expression of B7-H4 may serve as a potential biomarker for the development of T1 D. Futurestudies should continue to focus on the islet-specific effects of B7-H4 with emphasis on mechanistic pathways in order to promote B7-H4 as a potential therapy and cure for T1 D.

  14. Appearance of Hürthle cell carcinoma soon after surgical extirpation of Hürthle cell adenoma and follicular adenoma of the thyroid gland

    International Nuclear Information System (INIS)

    Hürthle cell neoplasms could be benign (Hürthle cell adenoma) or malignant (Hürthle cell carcinoma). Hürthle cell carcinoma is a rare tumour, representing 5% of all differentiated thyroid carcinomas. The cytological evaluation of Hürthle cell neoplasms by fine needle aspiration biopsy (FNAB) is complicated because of the presence of Hürthle cells in both Hürthle cell adenoma and Hürthle cell carcinoma. Thus, the preoperative distinction between these two entities is very difficult and possible only with pathohistological findings of the removed tumour. A 57-year old female patient was admitted at our Department, for investigation of nodular thyroid gland. She was euthyroid and FNAB of the nodules in both thyroid lobes were consistent of Hürthle cell adenoma with cellular atypias. After thyroidectomy the histopathology revealed Hürthle cell adenoma with high cellular content and discrete cellular atypias in the left lobe and follicular thyroid adenoma without cellular atypias in the right lobe. One year after substitution therapy, a palpable tumour on the left side of the remnant tissue was found, significantly growing with time, presented as hot nodule on 99mTc-sestamibi scan and conclusive with Hürthle cell adenoma with marked cellularity on FNAB. Tumorectomy was performed and well-differentiated Hürthle cell carcinoma detected. The patient received ablative dose of 100 mCi 131I. No signs of metastatic disease are present up to date. The differences between Hürthle cell adenomas and Hürthle cell carcinomas could be clearly made only by histopathological evaluation. Patients with cytological diagnosis of Hürthle cell neoplasms should proceed to total thyroidectomy, especially if tumour size is > 1cm, FNAB findings comprise cellular atypias and/or multiple bilateral nodules are detected in the thyroid gland

  15. Functional and immunohistochemical evaluation of porcine neonatal islet-like cell clusters

    DEFF Research Database (Denmark)

    Nielsen, T B; Yderstraede, K B; Schrøder, H D;

    2003-01-01

    Porcine neonatal islet-like cell clusters (NICCs) may be an attractive source of insulin-producing tissue for xenotransplantation in type I diabetic patients. We examined the functional and immunohistochemical outcome of the islet grafts in vitro during long-term culture and in vivo after...

  16. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue

    International Nuclear Information System (INIS)

    Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients

  17. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction.

    Science.gov (United States)

    Tennant, B R; Vanderkruk, B; Dhillon, J; Dai, D; Verchere, C B; Hoffman, B G

    2016-01-01

    Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the development of therapeutic strategies that target β-cells for diabetes. To this end, we previously identified the transcription factor Myt3 as a pro-survival factor in islets following acute suppression of Myt3 in vitro. To determine the effects of Myt3 suppression on islet-cell survival in vivo, we used an adenovirus to express an shRNA targeting Myt3 in syngeneic optimal and marginal mass islet transplants, and demonstrate that suppression of Myt3 impairs the function of marginal mass grafts. Analysis of grafts 5 weeks post-transplant revealed that grafts transduced with the shMyt3 adenovirus contained ~20% the number of transduced cells as grafts transduced with a control adenovirus. In fact, increased apoptosis and significant cell loss in the shMyt3-transduced grafts was evident after only 5 days, suggesting that Myt3 suppression sensitizes islet cells to stresses present in the early post-transplant period. Specifically, we find that Myt3 suppression sensitizes islet cells to high glucose-induced cell death via upregulation of the pro-apoptotic Bcl2 family member Bim. Taken together these data suggest that Myt3 may be an important link between glucotoxic and immune signalling pathways. PMID:27195679

  18. Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart

    International Nuclear Information System (INIS)

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1+) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1+ cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine (3H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of 3H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1+ cells. Whereas Islet− non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1+ cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes

  19. Ultrastructural Islet Study of Early Fibrosis in the Ren2 Rat Model of Hypertension. Emerging Role of the Islet Pancreatic Pericyte-Stellate Cell

    Directory of Open Access Journals (Sweden)

    Melvin R Hayden

    2007-11-01

    Full Text Available Context Type 2 diabetes mellitus is a multifactorial disease with polygenic and environmental stressors resulting in multiple metabolic toxicities and islet oxidative stress. We have integrated the role of the islet reninangiotensin system (RAS in the pathogenesis of early islet fibrosis utilizing the transgenic (mRen227 rodent model of hypertension and tissue RAS overexpression. Objective The Ren2 pancreatic islet tissue was evaluated with transmission electron microscopy to study both early cellular and extracellular matrix remodeling. Animals Four 9- to 10-week-old male Ren2 untreated models and four Sprague Dawley sex and age matched controls were used. Design Ultrastructural study to compare pancreatic islet tissue. Main outcome measures Only qualitative and observational transmission electron microscopy findings are reported. Results Major remodeling differences in the Ren2 model were found to be located within the islet exocrine interface, including deposition of early fibrillar-banded collagen (fibrosis and cellular remodeling of the pericyte suggesting proliferation, migration, hypertrophy and activation as compared to the Sprague Dawley controls. Conclusion This study points to the possibility of the pericyte cell being one of many contributors to the fibrogenic pool of cells important for peri-islet fibrosis as a result of excess angiotensin II at the local tissue level in the Ren2 model. These findings suggest that the pericyte may be capable of differentiating into the pancreatic stellate cell. This islet ultrastructure study supports the notion that pericyte cells could be the link between islet vascular oxidative stress and peri-islet fibrosis. Pericyte-endothelialpancreatic stellate cell associations and morphology are discussed.

  20. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.

    Science.gov (United States)

    Lumelsky, N; Blondel, O; Laeng, P; Velasco, I; Ravin, R; McKay, R

    2001-05-18

    Although the source of embryonic stem (ES) cells presents ethical concerns, their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas, insulin is produced and secreted by specialized structures, islets of Langerhans. Diabetes, which affects 16 million people in the United States, results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice, the insulin-producing cells undergo rapid vascularization and maintain a clustered, islet-like organization. PMID:11326082

  1. A double mechanism for the mesenchymal stem cells' positive effect on pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Arianna Scuteri

    Full Text Available The clinical usability of pancreatic islet transplantation for the treatment of type I diabetes, despite some encouraging results, is currently hampered by the short lifespan of the transplanted tissue. In vivo studies have demonstrated that co-transplantation of Mesenchymal Stem Cells (MSCs with transplanted pancreatic islets is more effective with respect to pancreatic islets alone in ensuring glycemia control in diabetic rats, but the molecular mechanisms of this action are still unclear. The aim of this study was to elucidate the molecular mechanisms of the positive effect of MSCs on pancreatic islet functionality by setting up direct, indirect and mixed co-cultures. MSCs were both able to prolong the survival of pancreatic islets, and to directly differentiate into an "insulin-releasing" phenotype. Two distinct mechanisms mediated these effects: i the survival increase was observed in pancreatic islets indirectly co-cultured with MSCs, probably mediated by the trophic factors released by MSCs; ii MSCs in direct contact with pancreatic islets started to express Pdx1, a pivotal gene of insulin production, and then differentiated into insulin releasing cells. These results demonstrate that MSCs may be useful for potentiating pancreatic islets' functionality and feasibility.

  2. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells

    Institute of Scientific and Technical Information of China (English)

    Li-Bo Chen; Xiao-Bing Jiang; Lian Yang

    2004-01-01

    AIM: To explore the possibility of marrow mesenchymal stem cells (MSC)in vitro differentiating into functional isletlike cells and to test the diabetes therapeutic potency of Islet-like cells.METHODS: Rat MSCs were isolated from Wistar rats and cultured. Passaged MSCs were induced to differentiate into islet-like cells under following conditions: pre-induction with L-DMEM including 10 mmol/L nicotinamide+1 mmol/L β-mercaptoethanol+200 mL/L fetal calf serum (FSC) for 24 h,followed by induction with serum free H-DMEM solution including 10 mmol/L nicotinamide+ 1 mmol/L,β-mercaptoethanol for 10 h. Differentiated cells were observed under inverse microscopy, insulin and nestin expressed in differentiated cells were detected with immunocytochemistry. Insulin excreted from differentiated cells was tested with radioimmunoassay. Rat diabetic models were made to test in vivo function of differentiated MSCs.RESULTS: Typical islet -like clustered cells were observed.Insulin mRNA and protein expressions were positive in differentiated cells, and nestin could be detected in predifferentiated cells. Insulin excreted from differentiated MSCs (446.93±102.28 IU/L) was much higher than that from pre-differentiated MSCs (2.45±0.81 IU/L (P<0.01).Injected differentiated MSCs cells could down-regulate glucose level in diabetic rats.CONCLUSION: Islet-like functional cells can be differentiated from marrow mesenchymal stem cells, which may be a new procedure for clinical diabetes stem -cell therapy, these cells can control blood glucose level in diabetic rats. MSCs may play an important role in diabetes therapy by islet differentiation and transplantation.

  3. TFF3 knockout in human pituitary adenoma cell HP75 facilitates cell apoptosis via mitochondrial pathway.

    Science.gov (United States)

    Gao, Feng; Pan, Suxia; Liu, Bing; Zhang, Huanzhi

    2015-01-01

    Trefoil factor 3 (TFF3), a regulatory protein composed of 59 amino acids, has been suggested to be involved in pathogenesis, proliferation, differentiation, invasion, migration and apoptosis in multiple malignant tumors. This study thus investigated the effect of TFF3 knockout in human pituitary adenoma cell line HP75 on cell apoptosis and related pathways. RNA interference approach was used to knock down the expression of TFF3 protein. The gene silencing was validated by RNA denaturing gel electrophoresis and Western blotting. The effect of TFF3 knockout on cell apoptosis was analyzed by Western blotting and flow cytometry. TFF3 protein level in pituitary adenoma was about 3.61 ± 0.48 folds of that in normal tissues (P TFF3, the apoptotic ration was significantly elevated (P TFF3 protein knockout can facilitate apoptosis of human pituitary adenoma HP75 cells via mitochondrial pathway.

  4. TFF3 knockout in human pituitary adenoma cell HP75 facilitates cell apoptosis via mitochondrial pathway

    Science.gov (United States)

    Gao, Feng; Pan, Suxia; Liu, Bing; Zhang, Huanzhi

    2015-01-01

    Trefoil factor 3 (TFF3), a regulatory protein composed of 59 amino acids, has been suggested to be involved in pathogenesis, proliferation, differentiation, invasion, migration and apoptosis in multiple malignant tumors. This study thus investigated the effect of TFF3 knockout in human pituitary adenoma cell line HP75 on cell apoptosis and related pathways. RNA interference approach was used to knock down the expression of TFF3 protein. The gene silencing was validated by RNA denaturing gel electrophoresis and Western blotting. The effect of TFF3 knockout on cell apoptosis was analyzed by Western blotting and flow cytometry. TFF3 protein level in pituitary adenoma was about 3.61 ± 0.48 folds of that in normal tissues (P TFF3, the apoptotic ration was significantly elevated (P TFF3 protein knockout can facilitate apoptosis of human pituitary adenoma HP75 cells via mitochondrial pathway. PMID:26823779

  5. Antigen-Encoding Bone Marrow Terminates Islet-Directed Memory CD8+ T-Cell Responses to Alleviate Islet Transplant Rejection

    DEFF Research Database (Denmark)

    Coleman, Miranda; Jessup, Claire F.; Bridge, Jennifer A.;

    2016-01-01

    graft rejection alleviated. The immunological mechanisms of protection are mediated through deletion and induction of unresponsiveness in targeted memory T-cell populations. The data demonstrate that hematopoietic stem cell–mediated gene therapy effectively terminates antigen-specific memory T...... in islet transplantation, and this will extend to application of personalized approaches using stem cell–derived replacement β-cells. New approaches are required to limit memory autoimmune attack of transplanted islets or replacement β-cells. Here, we show that transfer of bone marrow encoding cognate......-cell responses, and this can alleviate destruction of antigen-expressing islets. This addresses a key challenge facing islet transplantation and, importantly, the clinical application of personalized β-cell replacement therapies using patient-derived stem cells....

  6. Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion

    OpenAIRE

    Ilegems, E.; van Krieken, P. P.; Edlund, P. K.; Dicker, A.; Alanentalo, T.; Eriksson, Maria; Mandic, S.; Ahlgren, Ulf; Berggren, P.-O.

    2015-01-01

    The pancreatic islet of Langerhans is composed of endocrine cells producing and releasing hormones from secretory granules in response to various stimuli for maintenance of blood glucose homeostasis. In order to adapt to a variation in functional demands, these islets are capable of modulating their hormone secretion by increasing the number of endocrine cells as well as the functional response of individual cells. A failure in adaptive mechanisms will lead to inadequate blood glucose regulat...

  7. Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion.

    Science.gov (United States)

    Ilegems, E; van Krieken, P P; Edlund, P K; Dicker, A; Alanentalo, T; Eriksson, M; Mandic, S; Ahlgren, U; Berggren, P-O

    2015-01-01

    The pancreatic islet of Langerhans is composed of endocrine cells producing and releasing hormones from secretory granules in response to various stimuli for maintenance of blood glucose homeostasis. In order to adapt to a variation in functional demands, these islets are capable of modulating their hormone secretion by increasing the number of endocrine cells as well as the functional response of individual cells. A failure in adaptive mechanisms will lead to inadequate blood glucose regulation and thereby to the development of diabetes. It is therefore necessary to develop tools for the assessment of both pancreatic islet mass and function, with the aim of understanding cellular regulatory mechanisms and factors guiding islet plasticity. Although most of the existing techniques rely on the use of artificial indicators, we present an imaging methodology based on intrinsic optical properties originating from mature insulin secretory granules within endocrine cells that reveals both pancreatic islet mass and function. We demonstrate the advantage of using this imaging strategy by monitoring in vivo scattering signal from pancreatic islets engrafted into the anterior chamber of the mouse eye, and how this versatile and noninvasive methodology permits the characterization of islet morphology and plasticity as well as hormone secretory status. PMID:26030284

  8. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  9. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    Science.gov (United States)

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p methods showed good correlations between mean values of IEQ number (r(2) = 0.91) and total islet number (r(2) = 0.88) and thus increased to r(2) = 0.93 when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intraobserver reproducibility compared to the standard manual method (p method versus the ADIA method (p method also detected small islets between 10 and 50 µm in size. Automated digital image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this technology to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers. PMID:23683575

  10. Culturing pancreatic islets in microfluidic flow enhances morphology of the associated endothelial cells.

    Directory of Open Access Journals (Sweden)

    Krishana S Sankar

    Full Text Available Pancreatic islets are heavily vascularized in vivo with each insulin secreting beta-cell associated with at least one endothelial cell (EC. This structure is maintained immediately post-isolation; however, in culture the ECs slowly deteriorate, losing density and branched morphology. We postulate that this deterioration occurs in the absence of blood flow due to limited diffusion of media inside the tissue. To improve exchange of media inside the tissue, we created a microfluidic device to culture islets in a range of flow-rates. Culturing the islets from C57BL6 mice in this device with media flowing between 1 and 7 ml/24 hr resulted in twice the EC-density and -connected length compared to classically cultured islets. Media containing fluorescent dextran reached the center of islets in the device in a flow-rate-dependant manner consistent with improved penetration. We also observed deterioration of EC morphology using serum free media that was rescued by addition of bovine serum albumin, a known anti-apoptotic signal with limited diffusion in tissue. We further examined the effect of flow on beta-cells showing dampened glucose-stimulated Ca(2+-response from cells at the periphery of the islet where fluid shear-stress is greatest. However, we observed normal two-photon NAD(PH response and insulin secretion from the remainder of the islet. These data reveal the deterioration of islet EC-morphology is in part due to restricted diffusion of serum albumin within the tissue. These data further reveal microfluidic devices as unique platforms to optimize islet culture by introducing intercellular flow to overcome the restricted diffusion of media components.

  11. Basal cell adenoma of the parotid gland. Case report and review of the literature.

    Science.gov (United States)

    González-García, Raúl; Nam-Cha, Syong H; Muñoz-Guerra, Mario F; Gamallo-Amat, C

    2006-03-01

    Basal cell adenoma of the salivary glands is an uncommon type of monomorphous adenoma. Its most frequent location is the parotid gland. It usually appears as a firm and mobile slow-growing mass. Histologically, isomorphic cells in nests and interlaced trabecules with a prominent basal membrane are observed. It is also characterized by the presence of a slack and hyaline stroma and the absence of myxoid or condroid stroma. In contrast to pleomorphic adenoma, it tends to be multiple and its recurrence rate after surgical excision is high. Due to prognostic implications, differential diagnosis with basal cell adenocarcinoma, adenoid cystic carcinoma and basaloid squamous cell carcinoma is mandatory. We describe a case of basal cell adenoma of the parotid gland. We also review the literature and discuss the diagnosis and management of this rare entity.

  12. Islet Cell Response to High Fat Programming in Neonate, Weanling and Adolescent Wistar Rats

    OpenAIRE

    Cerf, Marlon E.; Johan Louw

    2014-01-01

    Context High fat programming, by exposure to a high saturated fat diet during fetal and/or lactational life induces metabolic derangements and alters islet cell architecture in neonate and weanling rats. Objective The present study assessed metabolic hanges and islet cell dynamics in response to high fat maintenance during specific developmental periods in adolescent rats, with some parameters also studied in neonate and weanling rats. Methods The experimental groups comprised neonates, weanl...

  13. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence.

    Science.gov (United States)

    de Vos, Paul; Smink, Alexandra M; Paredes, Genaro; Lakey, Jonathan R T; Kuipers, Jeroen; Giepmans, Ben N G; de Haan, Bart J; Faas, Marijke M

    2016-01-01

    The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet

  14. Neurotransmitters and Neuropeptides: New Players in the Control of Islet of Langerhans' Cell Mass and Function.

    Science.gov (United States)

    Di Cairano, Eliana S; Moretti, Stefania; Marciani, Paola; Sacchi, Vellea Franca; Castagna, Michela; Davalli, Alberto; Folli, Franco; Perego, Carla

    2016-04-01

    Islets of Langerhans control whole body glucose homeostasis, as they respond, releasing hormones, to changes in nutrient concentrations in the blood stream. The regulation of hormone secretion has been the focus of attention for a long time because it is related to many metabolic disorders, including diabetes mellitus. Endocrine cells of the islet use a sophisticate system of endocrine, paracrine and autocrine signals to synchronize their activities. These signals provide a fast and accurate control not only for hormone release but also for cell differentiation and survival, key aspects in islet physiology and pathology. Among the different categories of paracrine/autocrine signals, this review highlights the role of neurotransmitters and neuropeptides. In a manner similar to neurons, endocrine cells synthesize, accumulate, release neurotransmitters in the islet milieu, and possess receptors able to decode these signals. In this review, we provide a comprehensive description of neurotransmitter/neuropetide signaling pathways present within the islet. Then, we focus on evidence supporting the concept that neurotransmitters/neuropeptides and their receptors are interesting new targets to preserve β-cell function and mass. A greater understanding of how this network of signals works in physiological and pathological conditions would advance our knowledge of islet biology and physiology and uncover potentially new areas of pharmacological intervention. J. Cell. Physiol. 231: 756-767, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332080

  15. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits

    Science.gov (United States)

    Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas, Estela

    2015-01-01

    Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis. PMID:26175757

  16. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges

    Directory of Open Access Journals (Sweden)

    Bruni A

    2014-06-01

    Full Text Available Anthony Bruni, Boris Gala-Lopez, Andrew R Pepper, Nasser S Abualhassan, AM James Shapiro Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada Abstract: Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all. Keywords: islet transplantation, type I diabetes mellitus, Edmonton Protocol, engraftment, immunosuppression

  17. Islet cell xenotransplantation: a serious look toward the clinic.

    Science.gov (United States)

    Samy, Kannan P; Martin, Benjamin M; Turgeon, Nicole A; Kirk, Allan D

    2014-01-01

    Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.

  18. Quantification of β-Cell Mass in Intramuscular Islet Grafts Using Radiolabeled Exendin-4

    Science.gov (United States)

    Espes, Daniel; Selvaraju, Ramkumar; Velikyan, Irina; Krajcovic, Martin; Carlsson, Per-Ola; Eriksson, Olof

    2016-01-01

    Background There is an increasing interest in alternative implantation sites to the liver for islet transplantation. Intramuscular implantation has even been tested clinically. Possibilities to monitor β-cell mass would be of huge importance not only for the understanding of islet engraftment but also for the decision of changing the immunosuppressive regime. We have therefore evaluated the feasibility of quantifying intramuscular β-cell mass using the radiolabeled glucagon like peptide-1 receptor agonist DO3A-VS-Cys40-Exendin-4. Methods One hundred to 400 islets were transplanted to the abdominal muscle of nondiabetic mice. After 3 to 4 weeks, 0.2 to 0.5 MBq [177Lu]DO3A-VS-Cys40-Exendin-4 was administered intravenously. Sixty minutes postinjection abdominal organs and graft bearing muscle were retrieved, and the radioactive uptake measured in a well counter within 10 minutes. The specific uptake in native and transplanted islets was assessed by autoradiography. The total insulin-positive area of the islet grafts was determined by immunohistochemistry. Results Intramuscular islet grafts could easily be visualized by this tracer, and the background uptake was very low. There was a linear correlation between the radioactivity uptake and the number of transplanted islets, both for standardized uptake values and the total radiotracer uptake in each graft (percentage of injected dose). The quantified total insulin area of surviving β cells showed an even stronger correlation to both standardized uptake values (R = 0.96, P = 0.0002) and percentage of injected dose (R = 0.88, P = 0.0095). There was no correlation to estimated α cell mass. Conclusions [177Lu]DO3A-VS-Cys40-Exendin-4 could be used to quantify β-cell mass after experimental intramuscular islet transplantation. This technique may well be transferred to the clinical setting by exchanging Lutetium-177 radionuclide to a positron emitting Gallium-68.

  19. Nitric oxide-induced expression of C-reactive protein in islet cells as a very early marker for islet stress in the rat pancreas.

    Science.gov (United States)

    Fehsel, K; Plewe, D; Kolb-Bachofen, V

    1997-06-01

    In searches for marker molecules specifically expressed in nitric oxide-treated islet cells as a means to recognize early events in islet destruction, we now establish the presence of neo-C-reactive protein (neoCRP) in rat islet cells as early as 2 hr after treatment. We detected this altered molecular form of the acute-phase-reactant C-reactive protein (CRP) using immunocytochemistry with an anti-neoCRP-specific monoclonal antibody as well as reverse transcription-polymerase chain reaction with CRP-specific primers and in situ hybridization to demonstrate the presence of CRP-specific mRNA. After induction of a generalized inflammatory reaction in rats with heat-inactivated Corynebacterium parvum in vivo, neoCRP expression in islets is also found and within the pancreas restricted to pancreatic islet cells only. Our findings suggest an early heat-shock-like expression of this molecule in response to local nitrite oxide production or to exogeneously added nitric oxide in islet cells. PMID:9704587

  20. Pretargeting vs. direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody

    International Nuclear Information System (INIS)

    Introduction: We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Methods: Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111In-labeled cMORF to direct targeting by 111In-labeled HPi1. Results: HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Conclusions: Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ.

  1. FEATURES OF ISLET-LIKE CLUSTERS GENERATION IN PANCREATIC DUCTAL CELL MOLOLAYER CULTURING

    Directory of Open Access Journals (Sweden)

    L. A. Kirsanova

    2012-01-01

    Full Text Available Newborn rabbit pancreatic cell monolayer was obtained as we described earlier.The cultivated epithelial cells were shown by immunofluorescence to express special ductal marker CK19 and were insulin-and glucagon- negative for 10–15 days. A few fusiforms of nestin-positive cells were found in monolayer. Over 2 weeks in serum-free medium the plaques of epithelial cells became crowded and formed 3-dimentional structures – islet- like clusters. Islet-like clusters contain some insulin- and glucagon-positive cells recognized by immunohysto- chemistry staining. Pancreatic endocrine cell generation in 3-dimentional structures is discussed. 

  2. Beta-cell function in isolated human pancreatic islets in long-term tissue culture

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1981-01-01

    Human pancreatic islets were isolated by collagenase treatment of pancreatic tissue obtained from 27 individuals aged 12 to 69 years. The islets were maintained free floating in tissue culture medium RPMI 1640 supplemented with calf or human serum. In two cases the insulin production was followed...... adult human pancreatic tissue and that their beta-cell function can be maintained for up to two years. The variation in insulin production rate could not be ascribed to age or sex and may reflect both physiological and methodological factors....... up to nearly two years. The insulin production rate of the individual islet preparations varied between 0.2 and 8 ng per islet per day. No significant correlation with donor age or sex was found. The glucose concentration in the medium influenced the insulin release in a dose dependent manner. The...

  3. Effects of mature Sertoli cells on allogeneic islets cocultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Heli Xiang; Wujun Xue; Yan Teng; Xinshun Feng; Puxun Tian; Xiaoming Ding

    2006-01-01

    Objective: To set up a method for isolation and culture of mature Sertoli cells and to estimate their effects on allogeneic islets cocultured in vitro. Methods: Adult SD rat testicular Sertoli cells were prepared successfully by three-step enzyme digestion. Then they were cocultured respectively with allogeneic islets and activated Wistar rat splenocytes. 24-hour cumulative insulin release and glucose-stimulated insulin secretion test were performed to detect islet function between pure islets culture group and coculture group. Splenocyte proliferation activity was determined by MTT colorimetry assay to observe the inhibition effect of Sertoli cells in different densities. Result: Firstly, in pure islet culture group, the 24-hour cumulative insulin release was gradually decreased in 21-day culture time. Compared to day 3, this change was significant on day 7 (P < 0.05) and on day 10,14,21 (P < 0.01). In contrast, in coculture group, compared to day 3, the 24-hour cumulative insulin release was increased significantly on day 7 (P < 0.01 ), and then gradually decreased on day 10 and 14, but still higher than that of day 3. It was on day 21 that it began to decrease compared to day 3 (P < 0.05). During the culture time in vitro, the 24-hour cumulative insulin release of islet coculture group was significantly higher than that of pure islets culture group (P < 0.01). In the case of stimulation index(SI), there was a similar tendency as insulin release in the two groups. Secondly, mature Sertoli cells(1×106/mL)pretreated by 15 grays irradiation could decrease proliferation activity of activated splenocytes compared to that of control group (P < 0.01 ). This inhibition effect was dose-dependent. Conclusion: Mature Sertoli cells can improve the function and prolong the survival of islet cells cultured in vitro. They can also provide an immune protection to islet cells. The approach described above might be applicable to human islet transplantation as soon as

  4. SPECTRUM OF FUNCTIONING ISLET CELL TUMOR ON MULTISLICE COMPUTED TOMOGRAPHY: EXPERIENCE ON 70 PATIENTS

    Institute of Scientific and Technical Information of China (English)

    Hua-dan Xue; Zheng-yu Jin; Wei Liu; Hao Sun; Reto Merges; Xuan Wang; Xiao-na Zhang; Yun Wang; Wen-min Zhao; Jiu-hong Chen

    2008-01-01

    Objective To review experience in preoperative detection of islet cell tumors using multislice computed tomo-graphy (MSCT) and summarize various imaging features of functioning islet cell tumors on enhanced MSCT.Methods Seventy patients with clinical or pathological diagnosis of functioning pancreatic islet cell tumor between October 2003 and February 2007 were included in this retrospective study. Seventy-four enhanced MSCT scans in these patients were identified. All MSCT scans were interpreted by two experienced radiologists by consensus interpretation.Surgery and pathology reports were used to confirm the diagnosis, localization, and size of tumors.Results Totally, 73 functioning islet cell tumors including 65 benign insulinomas, 2 benign giucagnnomas, 3 ma-lignant insulinomas, and 3 malignant glucagonomas were pathologically diagnosed. Tumors in only two cases were not found by MSCT. In 67 benign lesions, 32 showed typical enhancement style, 21 showed prolonged enhancement in por-tal venous phase, 4 showed delayed enhancement, 4 had iso-dense enhancement with normal pancreatic parenchyma, 2 had no enhancement at all in arterial phase and portal venous phase, and 4 had inhomogeneous enhancement with necro-sis or cyst-formation. Patchy or spotty calcifications were found in 3 of the 67 tumors. In 6 malignant islet cell tumors,vessel invasion (2/6) and bowel invasion (1/6) were seen. Different enhancement patterns were shown. All hepatic metastases showed hyper-enhancement during their arterial phase.Conelusions Pancreatic islet cell tumor may display a wide spectrum of presentations in MSCT. Umors with unu-sual appearances often present as diagunstie challenges. Non-contrast and post-contrast multiphase scans are recommen-ded for the localization of functioning islet cell tumors.

  5. Basal cell adenoma in the parotid: a bizarre myoepithelial-derived stroma rich variant

    OpenAIRE

    Huang, Yong

    2014-01-01

    Basal cell adenoma (BCA) is a specific entity that lacks the myxochondroid stromal component of a pleomorphic adenoma. There are six histopathological types of BCA: solid, tubular, trabecular, membranous, cribriform, and myoepithelial-derived stroma rich. Myoepithelial-derived stroma rich variant is so rare, especially with cellular atypia. Herin we describe a rare case of BCA arising in the parotid on a 25-year-old man. A well-demarcated nodule arising in the parotid that was composed of bas...

  6. Establishment and characterization of pleomorphic adenoma cell systems: an in-vitro demonstration of carcinomas arising secondarily from adenomas in the salivary gland

    International Nuclear Information System (INIS)

    Among the salivary gland carcinomas, carcinoma in pleomorphic adenoma has been regarded as a representative carcinoma type which arises secondarily in the background of a pre-existent benign pleomorphic adenoma. It is still poorly understood how and which benign pleomorphic adenoma cells transform into its malignant form, carcinoma ex pleomorphic adenoma. We have established five cell systems from a benign pleomorphic adenoma of the parotid gland of a 61-year-old woman. They were characterized by immunofluorescence, classical cytogenetics, p53 gene mutational analysis, fluorescence in-situ hybridization, and histopathological and immunohistochemical examinations of their xenografts, to demonstrate their potency of secondary transformation. We established and characterized five cell systems (designated as SM-AP1 to SM-AP5) from a benign pleomorphic adenoma of the parotid gland. SM-AP1 to SM-AP3 showed polygonal cell shapes while SM-AP4 and SM-AP5 were spindle-shaped. SM-AP1-3 cells were immunopositive for keratin only, indicating their duct-epithelial or squamous cell differentiation, while SM-AP4/5 cells were positive for both keratin and S-100 protein, indicating their myoepithelial cell differentiation. Chromosome analyses showed numeral abnormalities such as 5n ploidies and various kinds of structural abnormalities, such as deletions, translocations, derivatives and isodicentric chromosomes. Among them, der(9)t(9;13)(p13.3;q12.3) was shared by all five of the cell systems. In addition, they all had a common deletion of the last base G of codon 249 (AGG to AG-) of the p53 gene, which resulted in generation of its nonsense gene product. Transplanted cells in nude mice formed subcutaneous tumors, which had histological features of squamous cell carcinoma with apparent keratinizing tendencies. In addition, they had ductal arrangements or plasmacytoid appearances of tumor cells and myxoid or hyaline stromata, indicating some characteristics of pleomorphic adenoma

  7. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU+ insulin- PDX-1+ cells, Ngn3+ cells and insulin+ glucagon+ cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34+ cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  8. Involvement of gene methylation changes in the differentiation of human amniotic epithelial cells into islet-like cell clusters.

    Science.gov (United States)

    Peng, Lin; Wang, Jian; Lu, Guangxiu

    2014-09-01

    Insulin-dependent diabetes results from destruction of the insulin-producing β-cells of the pancreas. Islet cell transplantation is a promising cure for diabetes. Here, we induced human amniotic epithelial cells (hAECs) to differentiate into islet-like cell clusters by nicotinamide plus betacellulin in vitro, and further investigated the DNA methylation status by a Nimble MeDIP microarray before and after cell differentiation to shed light on the molecular mechanisms of this differentiation. In addition, 5-Aza-2'-deoxycytidine was used to investigate whether the differentiation of hAECs into islet-like cells occurred through demethylation. Purified hAECs (CK18(+)/E-cadherin(+)/CD29(+)/CD90(-)/CD34(-)/CD45(-)) were isolated from human amnia. After induction, hAECs were found to be insulin positive and sensitive to glucose, indicating successful induction to islet-like cells. The methylation status of cell cytoskeleton-related genes was down-regulated and that of negative regulation of cell adhesion-related genes was up-regulated. The methylation status of pancreas development-related genes such as HNF1α and DGAT1 was decreased in hAECs after induction. After brief demethylation, INS gene expression was up-regulated in islet-like cell clusters, suggesting that DNA methylation changes were associated with the differentiation of hAECs into islet-like cell clusters. PMID:24945458

  9. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells.

    Science.gov (United States)

    Xin, Yurong; Kim, Jinrang; Ni, Min; Wei, Yi; Okamoto, Haruka; Lee, Joseph; Adler, Christina; Cavino, Katie; Murphy, Andrew J; Yancopoulos, George D; Lin, Hsin Chieh; Gromada, Jesper

    2016-03-22

    This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of α-cells (5%), β-cells (92%), δ-cells (1%), and pancreatic polypeptide cells (2%). We identified cell-type-specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability, low sequencing quality, or contamination resulting in the detection of more than one islet hormone. Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system. PMID:26951663

  10. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    Directory of Open Access Journals (Sweden)

    Buchwald Peter

    2009-04-01

    Full Text Available Abstract Background The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Methods Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. Results Partial differential equation (PDE based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. Conclusion Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for

  11. Characterization of human pituitary adenomas in cell cultures by light and electron microscopic morphology and immunolabeling

    Directory of Open Access Journals (Sweden)

    Emil Pásztor

    2011-08-01

    Full Text Available The morphology and hormone production of pituitary adenoma cell cultures were compared in order to highlight their characteristic in vitro features. Cell suspensions were prepared from 494 surgical specimens. The 319 viable monolayer cultures were analyzed in detail by light microscopy and immunocytochemistry within two weeks of cultivation. Some cultures were further characterized by scanning, transmission and immunogold electron microscopy. The viability and detailed in vitro morphology of adenoma cells were found to be characteristic for the various types of pituitary tumors. The sparsely granulated growth hormone, the corticotroph and the acidophil stem cell adenomas provided the highest ratio of viable cultures. Occasionally, prolonged maintenance of cells resulted in long-term cultures. Furthermore, a variety of particular distributions of different hormone-containing granules were found in several cases. Both light microscopic and ultrastructural analyses proved that the primary cultures of adenoma cells retain their physiological features during in vitro cultivations. Our in vitro findings correlated with the routine histopathological examination. These results prove that monolayer cultures of pituitary adenoma cells can contribute to the correct diagnosis and are valid model systems for various oncological and neuroendocrinological studies.

  12. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells.

    Science.gov (United States)

    Kadam, Sachin S; Bhonde, Ramesh R

    2010-01-01

    The scarcity of islets for transplantation calls for an alternative sources of islets. The human umbilical cord has been shown to be a reservoir of multipotent stem cells with capacity to differentiate into ectodermal, mesodermal and endodermal lineages. The present investigation deals with isolation and characterization of mesenchymal stem sells (MSC) derived from human umbilical cord and their differentiation into functional islets. Since these MSCs were found to constitutively express nestin we hypothesized that these would be ideal candidates for islet neogenesis without any further manipulation. Human umbilical cord matrix stem cells (hUCMSCs) were found to express CD29, CD44, CD73, CD90, CD105, smooth muscle actin, nestin, vimentin, proliferation marker Ki67 and embryonic markers Oct4, SSEA4. These were found to be negative for CD33, CD34, CD45 and HLA DR. Human UCMSCs exhibited high proliferating capacity for extended period indicating potential for scaling up. When subjected to a cocktail of specific differentiating factors, these cells differentiated into fat, cartilage, bone, neurons and islet like clusters (ILCs). These ILCs stained positive for diphenylthiocarbazone (DTZ) and expressed human C-peptide, insulin and glucagon. Real time qPCR analysis of newly generated islets further demonstrated abundance of Pdx-1, Ngn3, insulin, glucagon and somatostatin transcripts. On transplantation in experimental diabetic mice these ILCs restored normoglycemia, body weight and exhibited normal glucose tolerance test indicating their functional status. Thus, the present study demonstrates potential of constitutively expressing nestin positive progenitor from umbilical cord as a novel source for islet neogenesis and their usage in cell replacement therapy for diabetes.

  13. Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells

    DEFF Research Database (Denmark)

    Poulsen, Mona Dam; Hansen, Gert Helge; Dabelsteen, Erik;

    1993-01-01

    labeling using a monoclonal glucagon antibody as the second primary antibody. These results show that DP IV is sorted to secretory granules in the pig pancreatic islet A-cells. Furthermore, this secretory granule enzyme, as opposed to intestinal brush border DP IV, is suggested to be a soluble protein......Dipeptidyl peptidase IV (DP IV:EC 3.4.14.5) was localized in endocrine cells of pig pancreas by immunohistochemical and enzyme histochemical methods. Immunolight microscopy with both monoclonal and polyclonal antibodies demonstrated DP IV immunoreactivity in cells located in the peripheral part...... of the islets of Langerhans. The antigen is enzymatically active, as shown by enzyme histochemical analysis with a synthetic DP IV substrate. By immunoelectron microscopy (immunogold labeling), the labeling of DP IV in the islets was associated with the secretory granules of the A-cells, as identified by double...

  14. Islet endocrine-cell behavior from birth onward in mice with the nonobese diabetic genetic background

    NARCIS (Netherlands)

    Pelegri, C; Rosmalen, J G; Durant, S; Throsby, M; Alvès, V; Coulaud, J; Esling, A; Pléau, J M; Drexhage, H A; Homo-Delarche, F

    2001-01-01

    BACKGROUND: Glucagon-producing alpha cells play a crucial role during the perinatal period. Because of their peri-islet localization near the early dendritic and macrophage cell infiltration, we thought it pertinent to investigate alpha cells in greater depth in nonobese diabetic (NOD) mice, a well-

  15. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  16. Stem Cells as a Tool to Improve Outcomes of Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Emily Sims

    2012-01-01

    Full Text Available The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation.

  17. The role of interventional radiology and imaging in pancreatic islet cell transplantation

    International Nuclear Information System (INIS)

    Pancreatic islet cell transplantation (PICT) is a novel treatment for patients with insulin-dependent diabetes who have inadequate glycaemic control or hypoglycaemic unawareness, and who suffer from the microvascular/macrovascular complications of diabetes despite aggressive medical management. Islet transplantation primarily aims to improve the quality of life for type 1 diabetic patients by achieving insulin independence, preventing hypoglycaemic episodes, and reversing hypoglycaemic unawareness. The islet cells for transplantation are extracted and purified from the pancreas of brain-stem dead, heart-beating donors. They are infused into the recipient's portal vein, where they engraft into the liver to release insulin in order to restore euglycaemia. Initial strategies using surgical access to the portal vein have been superseded by percutaneous access using interventional radiology techniques, which are relatively straightforward to perform. It is important to be vigilant during the procedure in order to prevent major complications, such as haemorrhage, which can be potentially life-threatening. In this article we review the history of islet cell transplantation, present an illustrated review of our experience with islet cell transplantation by describing the role of imaging and interventional radiology, and discuss current research into imaging techniques for monitoring graft function.

  18. Effects of thioacetamide on pancreatic islet B-cell function

    NARCIS (Netherlands)

    Malaisse, WJ; Lebrun, P; Sener, A; Wolters, GHJ; Ravazzola, M

    2004-01-01

    Thioacetamide (0.01-1.3 mM) fails to exert any significant immediate effect upon insulin release from rat isolated islets. However, when administered (4 mumol/g body wt) intraperitoneally 24 h before sacrifice, it reduced food intake and body weight and affected the secretory response of isolated is

  19. Distinctive Patterns of CTNNB1 (β-Catenin) Alterations in Salivary Gland Basal Cell Adenoma and Basal Cell Adenocarcinoma.

    Science.gov (United States)

    Jo, Vickie Y; Sholl, Lynette M; Krane, Jeffrey F

    2016-08-01

    Salivary gland basaloid neoplasms are diagnostically challenging. Limited publications report that some basal cell adenomas harbor CTNNB1 mutations, and nuclear β-catenin expression is prevalent. We evaluated β-catenin expression in basal cell adenomas and adenocarcinomas in comparison with salivary tumors in the differential diagnosis and performed targeted genetic analysis on a subset of cases. β-catenin immunohistochemistry was performed on formalin-fixed, paraffin-embedded whole sections from 73 tumors. Nuclear staining was scored semiquantitatively by extent and intensity. DNA was extracted from 6 formalin-fixed, paraffin-embedded samples (5 basal cell adenomas, 1 basal cell adenocarcinoma) for next-generation sequencing. Nuclear β-catenin staining was present in 18/22 (82%) basal cell adenomas; most were diffuse and strong and predominant in the basal component. Two of 3 basal cell adenocarcinomas were positive (1 moderate focal; 1 moderate multifocal). All adenoid cystic carcinomas (0/20) and pleomorphic adenomas (0/20) were negative; 2/8 epithelial-myoepithelial carcinomas showed focal nuclear staining. Most β-catenin-negative tumors showed diffuse membranous staining in the absence of nuclear staining. Four of 5 basal cell adenomas had exon 3 CTNNB1 mutations, all c.104T>C (p.I35T). Basal cell adenocarcinoma showed a more complex genomic profile, with activating mutations in PIK3CA, biallelic inactivation of NFKBIA, focal CYLD deletion, and without CTNNB1 mutation despite focal β-catenin expression. Nuclear β-catenin expression has moderate sensitivity (82%) for basal cell adenoma but high specificity (96%) in comparison with its morphologic mimics. CTNNB1 mutation was confirmed in most basal cell adenomas tested, and findings in basal cell adenocarcinoma suggest possible tumorigenic mechanisms, including alterations in PI3K and NF-κB pathways and transcriptional regulation. PMID:27259009

  20. Commercially Available Gas-Permeable Cell Culture Bags May Not Prevent Anoxia in Cultured or Shipped Islets

    OpenAIRE

    Avgoustiniatos, E.S.; Hering, B.J.; Rozak, P.R.; Wilson, J.R.; Tempelman, L.A.; Balamurugan, A.N.; Welch, D.P.; Weegman, B. P.; Suszynski, T.M.; Papas, K.K.

    2008-01-01

    Prolonged anoxia has deleterious effects on islets. Gas-permeable cell culture devices can be used to minimize anoxia during islet culture and especially during shipment when elimination of gas-liquid interfaces is required to prevent the formation of damaging gas bubbles. Gas-permeable bags may have several drawbacks, such as propensity for puncture and contamination, difficult islet retrieval, and significantly lower oxygen permeability than silicone rubber membranes (SRM). We hypothesized ...

  1. Fentanyl inhibits glucose-stimulated insulin release from β-cells in rat pancreatic islets

    Institute of Scientific and Technical Information of China (English)

    Tao-Lai Qian; Xin-Hua Wang; Sheng Liu; Liang Ma; Ying Lu

    2009-01-01

    AIM:To explore the effects of fentanyl on insulin release from freshly isolated rat pancreatic islets in static culture.METHODS: Islets were isolated from the pancreas of mature Sprague Dawley rats by common bile duct intraductal collagenase V digestion and were purified by discontinuous Ficoll density gradient centrifugation.The islets were divided into four groups according to the fentanyl concentration: control group (0 ng/mL),group Ⅰ (0.3 ng/mL), group Ⅱ (3.0 ng/mL), and group Ⅲ (30 ng/mL). In each group, the islets were co-cultured for 48 h with drugs under static conditions with fentanyl alone, fentanyl + 0.1 μg/mL naloxone or fentanyl + 1.0 μg/mL naloxone. Cell viability was assessed by the MTT assay. Insulin release in response to low and high concentrations (2.8 mmol/L and 16.7 mmol/L,respectively) of glucose was investigated and electron microscopy morphological assessment was performed.RESULTS: Low- and high-glucose-stimulated insulin release in the control group was significantly higher than in groups Ⅱ and Ⅲ (62.33 ±9.67 μIU vs 47.75 ±96.17 ± 14.17 μIU, 75.17 ± 13.57 μIU, respectively, P <0.01) and was lowest in group Ⅲ ( P < 0.01). After adding 1 μg/mL naloxone, insulin release in groups Ⅱ and Ⅲ was not different from the control group. Electron microscopy studies showed that the islets were damaged by 30 ng/mL fentanyl.CONCLUSION: Fentanyl inhibited glucose-stimulated insulin release from rat islets, which could be prevented by naloxone. Higher concentrations of fentanyl significantly damaged β-cells of rat islets.howed that the isl

  2. Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons

    Science.gov (United States)

    Guardado-Mendoza, Rodolfo; Davalli, Alberto M.; Chavez, Alberto O.; Hubbard, Gene B.; Dick, Edward J.; Majluf-Cruz, Abraham; Tene-Perez, Carlos E.; Goldschmidt, Lukasz; Hart, John; Perego, Carla; Comuzzie, Anthony G.; Tejero, Maria Elizabeth; Finzi, Giovanna; Placidi, Claudia; La Rosa, Stefano; Capella, Carlo; Halff, Glenn; Gastaldelli, Amalia; DeFronzo, Ralph A.; Folli, Franco

    2009-01-01

    β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables. PMID:19666551

  3. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction

    OpenAIRE

    Tennant, B. R.; Vanderkruk, B; Dhillon, J; Dai, D.; Verchere, C B; Hoffman, B G

    2016-01-01

    Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the ...

  4. Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells

    Directory of Open Access Journals (Sweden)

    YH Huang

    2009-08-01

    Full Text Available We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells and PP-cells (PPsecreting cells were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells.

  5. The hyperbolic effect of density and strength of inter beta-cell coupling on islet bursting: a theoretical investigation

    Directory of Open Access Journals (Sweden)

    Wang Xujing

    2008-08-01

    Full Text Available Abstract Background Insulin, the principal regulating hormone of blood glucose, is released through the bursting of the pancreatic islets. Increasing evidence indicates the importance of islet morphostructure in its function, and the need of a quantitative investigation. Recently we have studied this problem from the perspective of islet bursting of insulin, utilizing a new 3D hexagonal closest packing (HCP model of islet structure that we have developed. Quantitative non-linear dependence of islet function on its structure was found. In this study, we further investigate two key structural measures: the number of neighboring cells that each β-cell is coupled to, nc, and the coupling strength, gc. Results β-cell clusters of different sizes with number of β-cells nβ ranging from 1–343, nc from 0–12, and gc from 0–1000 pS, were simulated. Three functional measures of islet bursting characteristics – fraction of bursting β-cells fb, synchronization index λ, and bursting period Tb, were quantified. The results revealed a hyperbolic dependence on the combined effect of nc and gc. From this we propose to define a dimensionless cluster coupling index or CCI, as a composite measure for islet morphostructural integrity. We show that the robustness of islet oscillatory bursting depends on CCI, with all three functional measures fb, λ and Tb increasing monotonically with CCI when it is small, and plateau around CCI = 1. Conclusion CCI is a good islet function predictor. It has the potential of linking islet structure and function, and providing insight to identify therapeutic targets for the preservation and restoration of islet β-cell mass and function.

  6. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M;

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  7. Profile of blood glucose and ultrastucture of beta cells pancreatic islet in alloxan compound induced rats

    Directory of Open Access Journals (Sweden)

    I Nyoman Suarsana

    2010-06-01

    Full Text Available Diabetes is marked by elevated levels of blood glucose, and progressive changes of the structure of pancreatic islet histopathology. The objective of this research was to analyse the glucose level and histophatological feature in pancreatic islet in alloxan compound induced rats. A total of ten male Spraque Dawley rats of 2 months old were used in this study. The rats were divided into two groups: (1 negative control group (K-, and (2 positif induced alloxan group (diabetic group =DM. The rats were induced by a single dose intraperitonial injection of alloxan compound 120 mg/kg of body weight. The treatment was conducted for 28 days. Blood glucose levels of rats were analysed at 0, 4, 7, 14, 21, and 28 days following treatment. At the end of the experiment, rats were sacrificed by cervical dislocation. Pancreas was collected for analysis of histopathological study by Immunohistochemical technique, and ultrastructural study using transmission electron microscope (TEM. The result showed that Langerhans islet of diabetic rat (rat of DM group showed a marked reduction of size, number of Langerhans islet of diabetic rat decrease, and characterized by hyperglycemic condition. By using TEM, beta cells of DM group showed the rupture of mitochondrial membrane, the lost of cisternal structure of inner membrane of mitocondria, reduction of insulin secretory granules, linkage between cells acinar with free Langerhans islet, and the caryopicnotic of nucleus.

  8. Adenoma

    Science.gov (United States)

    Well circumscribed areas consisting of cuboidal to columnar cells lining alveoli. The size is usually less than 5 mm in diameter. These lesions retain preexisting alveolar structure and tend to be multiple in existing mouse models. Absence of pronounced fibrovascular stroma, as well as more "plump" shape of epithelial cells, may be the reason for different appearance of mouse adenomas, as compared to their human counterparts. Differentiation between a small adenoma and focal hyperplasia can be very difficult. At the same time, no absolute criteria exist for distinguishing a large adenoma from a well-differentiated adenocarcinoma. Among features indicating benign character are a small size, and absence of vascular invasion. Well delineated demarcation and absence of lepidic growth are considered by some as indicators of a benign character. Bland character of nuclei is a main feature of human adenomas. By this criterion many mouse adenomas could be assigned to adenocarcinomas. However, unlike in humans, mouse tumors rarely metastasize during the time of their observation.

  9. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro.

    Directory of Open Access Journals (Sweden)

    Hiroki Saito

    Full Text Available Islets of Langerhans are a pancreatic endocrine compartment consisting of insulin-producing β cells together with several other hormone-producing cells. While some insulin-producing cells or immature pancreatic cells have been generated in vitro from ES and iPS cells, islets with proper functions and a three-dimensional (3D structure have never been successfully produced. To test whether islets can be formed in vitro, we first examined the potential of mouse fetal pancreatic cells. We found that E16.5 pancreatic cells, just before forming islets, were able to develop cell aggregates consisting of β cells surrounded by glucagon-producing α cells, a structure similar to murine adult islets. Moreover, the transplantation of these cells improved blood glucose levels in hyperglycemic mice. These results indicate that functional islets are formed in vitro from fetal pancreatic cells at a specific developmental stage. By adopting these culture conditions to the differentiation of mouse iPS cells, we developed a two-step system to generate islets, i.e. immature pancreatic cells were first produced from iPS cells, and then transferred to culture conditions that allowed the formation of islets from fetal pancreatic cells. The islets exhibited distinct 3D structural features similar to adult pancreatic islets and secreted insulin in response to glucose concentrations. Transplantation of the islets improved blood glucose levels in hyperglycemic mice. In conclusion, the two-step culture system allows the generation of functional islets with a 3D structure from iPS cells.

  10. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    ChunSONG; Xiu-QingDUAN; XiLI; Li-OuHAN; PingXU; Chun-FangSONG:; Lian-HongJIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3,7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured underthe microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group (P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  11. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    Chun SONG; Xiu-Qing DUAN; Xi LI; Li-Ou HAN; Ping XU; Chun-Fang SONG; Lian-Hong JIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3, 7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured under the microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group(P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  12. Somatomammotrophic cells in GH-secreting and PRL-secreting human pituitary adenomas.

    Science.gov (United States)

    Bassetti, M; Brina, M; Spada, A; Giannattasio, G

    1989-11-01

    A morphological study has been carried out on 20 GH-secreting adenomas removed from acromegalic normoprolactinemic patients, on 29 PRL-secreting adenomas removed from hyperprolactinemic patients without signs of acromegaly and on one normal human anterior pituitary gland collected at autopsy. The protein A-gold immunoelectron microscopic technique has been utilized in order to verify the presence of mixed cells producing both GH and PRL (somatomammotrophs) in these pituitary tissues. In the normal pituitary a considerable number of somatomammotrophs (15-20%) was found, thus supporting the idea that these cells are normal components of the human anterior pituitary gland. In 10 GH-secreting adenomas and in 10 PRL-secreting adenomas somatomammotrophs were present in a variable number (from 4 to 20% of the whole cell population in GH adenomas and from 1 to 47% in PRL tumors). It can be concluded therefore that these cells, largely present in all GH/PRL-secreting adenomas, can also be found in GH-secreting and PRL-secreting tumors without clinical evidence of a mixed secretion. Adenomatous somatomammotrophs displayed ultrastructural features of adenomatous somatotrophs and mammotrophs (prominent Golgi complexes, abundant rough endoplasmic reticulum, irregular nuclei). The size and the number of granules were variable. In some cells GH and PRL were stored in distinct secretory granules, in others in mixed granules or both in mixed and distinct granules, thus suggesting that in adenomatous somatomammotrophs the efficiency of the mechanisms of sorting of the two hormones varies from one cell to another.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. In vitro formation of β cell pseudoislets using islet-derived endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael G Spelios

    Full Text Available β cell pseudoislets (PIs are used for the in vitro study of β-cells in a three-dimensional (3-D configuration. Current methods of PI induction require unique culture conditions and extensive mechanical manipulations. Here we report a novel co-culture system consisting of high passage β-cells and islet-derived endothelial cells (iECs that results in a rapid and spontaneous formation of free-floating PIs. PI structures were formed as early as 72 h following co-culture setup and were preserved for more than 14 d. These PIs, composed solely of β-cells, were similar in size to that of native islets and showed an increased percentage of proinsulin-positive cells, increased insulin gene expression in response to glucose stimulation, and restored glucose-stimulated insulin secretion when compared to β-cells cultured as monolayers. Key extracellular matrix proteins that were absent in β-cells cultured alone were deposited by iECs on PIs and were found in and around the PIs. iEC-induced PIs are a readily available tool for examining β cell function in a native 3-D configuration and can be used for examining β-cell/iEC interactions in vitro.

  14. Production of islet-like insulin-producing cell clusters in vitro from adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Loan Thi-Tung Dang

    2015-01-01

    Full Text Available Diabetes mellitus is a high incidence disease that has increased rapidly in recent years. Many new therapies are being studied and developed in order to find an effective treatment. An ideal candidate is stem cell therapy. In this study, we investigated the differentiation of adipose derived stem cells (ADSCs into pseudo-islets in defined medium in vitro, to produce large quantities of insulin-producing cells (IPCs for transplantation. ADSCs isolated from adipose tissue were induced to differentiate into islet-like insulin-producing cell clusters in vitro by inducing medium DMEM/F12 containing nicotinamide, N2, B27, bFGF, and insulin-transferrin-selenite (ITS. Differentiated cells were analyzed for properties of IPCs, including storage of Zn2+ by dithizone staining, insulin production by ELISA and immunochemistry, and beta cell-related gene expression by reverse transcriptase PCR. The results showed that after 2 weeks of differentiation, the ADSCs aggregated into cell clusters, and after 4 weeks they formed islets, 50 and ndash;400 micrometers in diameter. These islet cells exhibited characteristics of pancreatic beta cells as they were positive for dithizone staining, expressed insulin in vitro and C-peptide in the cytoplasm, and expressed pancreatic beta cell-specific genes, including Pdx-1, NeuroD, and Ngn3. These results demonstrate that ADSCs can be used to produce a large number of functional islets for research as well as application. [Biomed Res Ther 2015; 2(1.000: 184-192

  15. Coexistence of small cell neuroendocrine carcinoma and villous adenoma in the ampulla of Vater

    Institute of Scientific and Technical Information of China (English)

    Ji-Hong Sun; Ming Chao; Shi-Zheng Zhang; Guang-Qiang Zhang; Bin Li; Jian-Jun Wu

    2008-01-01

    Small cell neuroendocrine carcinoma of the ampulla of Vater is extremely rare and different from the common ampullary adenocarcinoma. The ampullary adenoma is also a rare neoplasm and has the potential to develop an adenocarcinoma. Their coexistence has been rarely reported in the literature. We herein describe an unusual case of a small cell neuroendocrine carcinoma associated with a villous adenoma in the ampulla of Vater with emphasis on computed tomography (CT)and histopathological findings. We also discuss their clinical, histopathological and radiological features as well as possible histogenesis.

  16. A Case of Congenital Hypothyroidism Due to Organification Defect Associated wth Huerthle Cell Adenoma

    International Nuclear Information System (INIS)

    Congenital hypothyroidism due to organification defect was first reported by Haddad and Sidbury in 1959. The organification defect is easily proved by perchlorate discharge test. We experienced a patient who had large goiter, growth and mental retardation, and revealed positive response to perchlorate discharges test, and the surgical biopsied specimen showed Huerthle cell adenoma, which was probably due to chronic stimulation of thyroid stimulating hormone, or coexisted incidentally. Described here a case of congenital hypothyroidism due to organification defect associated with Huerthle cell adenoma, with review of some literatures.

  17. Differentiation of fetal pancreatic stem cells into neuron-like and islet-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Hua; Yanwei Wang; Peiwen Lian; Shouxin Zhang; Jianyuan Li; Haiyan Wang; Shulin Chen; Wei Gao

    2012-01-01

    Pancreatic stem cells were isolated and cultured from aborted human fetal pancreases of gestational age 14-20 weeks.They were seeded at a density of 1 × 104 in serum-free media for differentiation into neuron-like cells, expressing β-tubulin III and glial fibrillary acidic protein.These neuron-like cells displayed a synapse-like morphology and appeared to form a neuronal network.Pancreatic stem cells were also seeded at a density of 1 × 105 for differentiation into islet-like cells, expressing insulin and glucagon, with an islet-like morphology.These cells had glucose-stimulated secretion of human insulin and C-peptide.Results suggest that pancreatic stem cells can be differentiated into neuron-like and islet-like cells.

  18. Regulation of islet beta-cell pyruvate metabolism: interactions of prolactin, glucose, and dexamethasone.

    Science.gov (United States)

    Arumugam, Ramamani; Horowitz, Eric; Noland, Robert C; Lu, Danhong; Fleenor, Donald; Freemark, Michael

    2010-07-01

    Prolactin (PRL) induces beta-cell proliferation and glucose-stimulated insulin secretion (GSIS) and counteracts the effects of glucocorticoids on insulin production. The mechanisms by which PRL up-regulates GSIS are unknown. We used rat islets and insulinoma (INS-1) cells to explore the interactions of PRL, glucose, and dexamethasone (DEX) in the regulation of beta-cell pyruvate carboxylase (PC), pyruvate dehydrogenase (PDH), and the pyruvate dehydrogenase kinases (PDKs), which catalyze the phosphorylation and inactivation of PDH. PRL increased GSIS by 37% (P PDK2 mRNA and protein levels in rat islets and INS-1 cells and PDK4 mRNA in islets; DEX increased PDK2 mRNA in islets and INS-1 cells; this effect was reversed by PRL. Our findings suggest that PRL induction of GSIS is mediated by increases in beta-cell PDH activity; this is facilitated by suppression of PDKs. PRL counteracts the effects of DEX on PDH and PDK expression, suggesting novel roles for the lactogens in the defense against diabetes. PMID:20484462

  19. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Antoine, M.H.; Hermann, M.; Herchuelz, A.; Lebrun, P. (Laboratory of Pharmacology, Brussels Free University School of Medicine (Belgium))

    1991-07-01

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise in 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry.

  20. Systemic AA amyloidosis induced by liver cell adenoma.

    OpenAIRE

    Fievet, P; Sevestre, H; Boudjelal, M; Noel, L H; Kemeny, F; D. Franco; Delamarre, J; Capron, J.P.

    1990-01-01

    Systemic AA amyloidosis is a rare complication of benign tumours. This report describes a patient with hepatocellular adenoma associated with reactive AA amyloidosis. He had a nephrotic syndrome with deteriorating renal function and an increase of serum concentrations of acute phase proteins, mainly C-reactive protein. Resection of the tumour was followed by improvement in renal function and a marked decrease of the serum concentrations of acute phase proteins.

  1. Effects of Fungal Pancreatic Enzymes on the Function of Islet Cells in Syrian Golden Hamsters

    Directory of Open Access Journals (Sweden)

    Fumiaki Nozawa

    2013-05-01

    Full Text Available Context Our previous studies showed that porcine pancreatic enzymes in Syrian golden hamsters with peripheral insulin resistance normalizes the plasma insulin level, reduces the size of enlarged islets and inhibits the increased DNA synthesis in the beta-cell of islets. Objective In order to exclude the possibility that these effects was attributed to some contaminants of this crude material, we tested the effect of purified fungal pancreatic enzyme (FPE that contains primarily amylase and lipase without (FPE and with addition of chymotrypsin (FPE+chy. Material and methods In a pilot study we tested the effect of different doses of FPE given in drinking water on insulin level, islet size and DNA synthesis of islet cells in hamsters with induced peripheral insulin resistance by a high fat diet. The most effective dose of FPE on these parameters was used in a long-term experiment with FPE and FPE+chy in hamsters fed a high-fat diet for 36 or 40 weeks. Results In the pilot study a dose of 2 g/kg body weight was found to be optimal for controlling the body weight, normalizing plasma insulin level, the size of islets, the DNA synthesis and the number of insulin cells in the islets. These data were produced in the long-term study, where steatorrhea was also inhibited. Addition of chymotrypsin had no effects on these parameters. Conclusion Pancreatic lipase and amylase appear to be responsible for the observed effects and offer a safe and effective natural product for the treatment of pancreatic diseases, including acute pancreatitis, chronic pancreatic, cystic fibrosis and any conditions associated with peripheral insulin resistance, including obesity and type 2 diabetes. The possible mechanism of the action is discussed.

  2. Peptide micelle-mediated curcumin delivery for protection of islet β-cells under hypoxia.

    Science.gov (United States)

    Han, Jaesik; Oh, Jungju; Ihm, Sung-Hee; Lee, Minhyung

    2016-08-01

    Islet transplantation is one of many therapeutic approaches for the treatment of diabetes. During transplant procedures, the isolated islets are subjected to hypoxic conditions, and undergo the apoptotic process. Curcumin has a cytoprotective effect, and may therefore be useful for the protection of islets under hypoxia. However, curcumin is hydrophobic, and an efficient curcumin carrier is required for effective treatment. In this study, R3V6 peptide micelles, composed of a 3-arginine stretch and 6-valine stretch, were evaluated as a curcumin carrier to INS-1 insulinoma cells. Curcumin was loaded into R3V6 micelles at a weight ratio of 10:3 (R3V6:curcumin). The size and surface charge of the curcumin-loaded R3V6 micelles (R3V6-curcumin) were approximately 250 nm and 17.49 mV, respectively. R3V6-curcumin delivered curcumin to the INS-1 cells more efficiently than either curcumin alone or a simple mixture of R3V6 and curcumin. MTT assay indicated that under hypoxia, R3V6-curcumin protected INS-1 cells more efficiently than curcumin alone. TUNEL and reactive oxygen species (ROS) assays suggested that R3V6-curcumin reduced INS-1 cell apoptosis under hypoxia. These results demonstrate that R3V6 peptide micelles are an effective carrier of curcumin, and that R3V6-curcumin may improve the viability of pancreatic β-cells in islet transplantation. PMID:26768151

  3. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Wan-Shun Liu; Bao-Qin Han; Yu-Ying Sun

    2007-01-01

    AIM: To investigate the effect of chitooligosaccharides on proliferation of pancreatic islet cells, release of insulin and 2 h plasma glucose in streptozotocin-induced diabetic rats.METHODS: In vitro, the effect of chitooligosaccharides on proliferation of pancreatic islet cells and release of insulin was detected with optical microscopy, colorimetric assay, and radioimmunoassay respectively. In vivo, the general clinical symptoms, 2 h plasma glucose, urine glucose, oral glucose tolerance were examined after sixty days of feeding study to determine the effect of chitooligosaccharides in streptozotocin-induced diabetic rats.RESULTS: Chitooligosaccharides could effectively accelerate the proliferation of pancreatic islet cells. Chitooligosaccharides (100 mg/L) had direct and prominent effect on pancreastic β cells and insulin release from islet cells. All concentrations of chitooligosaccharides could improve the general clinical symptoms of diabetic rats, decrease the 2 h plasma glucose and urine glucose, and normalize the disorders of glucose tolerance.CONCLUSION: Chitooligosaccharides possess various biological activities and can be used in the treatment of diabetes mellitus.

  4. Transport of ascorbic acid and dehydroascorbic acid by pancreatic islet cells from neonatal rats

    DEFF Research Database (Denmark)

    Zhou, A; Farver, O; Thorn, N A;

    1991-01-01

    Several amidated biologically active peptides such as pancreastatin, thyrotropin-releasing hormone, pancreatic polypeptide and amylin are produced in endocrine pancreatic tissue which contains the enzyme necessary for their final processing, i.e. peptidylglycine alpha-amidating mono-oxygenase (EC 1.......14.17.3). The enzyme needs ascorbic acid for activity as well as copper and molecular oxygen. The present work shows that pancreatic islet cells prepared from overnight cultures of isolated islets from 5-7-day-old rats accumulate 14C-labelled ascorbic acid by a Na(+)-dependent active transport mechanism which involves...

  5. Composite Epstein-Barr Virus-Associated B-Cell Lymphoproliferative Disorder and Tubular Adenoma in a Rectal Polyp.

    Science.gov (United States)

    Lo, Amy A; Gao, Juehua; Rao, M Sambasivia; Yang, Guang-Yu

    2016-02-01

    Composite tumors are formed when there is intermingling between two components of separate tumors seen histologically. Cases demonstrating composite tubular adenoma with other types of tumors in the colon are rare. Composite tubular adenomas with nonlymphoid tumors including carcinoids, microcarcinoids, and small cell undifferentiated carcinoma have been reported in the literature. The occurrence of composite lymphoma and tubular adenoma within the colorectal tract is extremely rare. Only three cases have been reported and include one case of mantle cell lymphoma and two cases of diffuse large B-cell lymphoma arising in composite tubular adenomas. We present the first case of composite Epstein-Barr virus-associated B-cell lymphoproliferative disorder and tubular adenoma in a rectal polyp with a benign endoscopic appearance.

  6. Cytokines inducing bone marrow SCA+ cells migration into pancreatic islet and conversion into insulin-positive cells in vivo.

    Directory of Open Access Journals (Sweden)

    LuGuang Luo

    Full Text Available We hypothesize that specific bone marrow lineages and cytokine treatment may facilitate bone marrow migration into islets, leading to a conversion into insulin producing cells in vivo. In this study we focused on identifying which bone marrow subpopulations and cytokine treatments play a role in bone marrow supporting islet function in vivo by evaluating whether bone marrow is capable of migrating into islets as well as converting into insulin positive cells. We approached this aim by utilizing several bone marrow lineages and cytokine-treated bone marrow from green fluorescent protein (GFP positive bone marrow donors. Sorted lineages of Mac-1(+, Mac-1(-, Sca(+, Sca(-, Sca(-/Mac-1(+ and Sca(+/Mac-1(- from GFP positive mice were transplanted to irradiated C57BL6 GFP negative mice. Bone marrow from transgenic human ubiquitin C promoter GFP (uGFP, with strong signal C57BL6 mice was transplanted into GFP negative C57BL6 recipients. After eight weeks, migration of GFP positive donor' bone marrow to the recipient's pancreatic islets was evaluated as the percentage of positive GFP islets/total islets. The results show that the most effective migration comes from the Sca(+/Mac(- lineage and these cells, treated with cytokines for 48 hours, were found to have converted into insulin positive cells in pancreatic islets in vivo. This study suggests that bone marrow lineage positive cells and cytokine treatments are critical factors in determining whether bone marrow is able to migrate and form insulin producing cells in vivo. The mechanisms causing this facilitation as well as bone marrow converting to pancreatic beta cells still need to be investigated.

  7. Induction of beta-cell resistance to hypoxia and technologies for oxygen delivery to transplanted pancreatic islets.

    Science.gov (United States)

    Lazard, Daniel; Vardi, Pnina; Bloch, Konstantin

    2012-09-01

    Hypoxia is believed to be a crucial factor involved in cell adaptation to environmental stress. Islet transplantation, especially with immunoisolated islets, interrupts vascular connections, resulting in the substantially decreased delivery of oxygen and nutrients to islet cells. Insulin-producing pancreatic beta cells are known to be highly susceptible to oxygen deficiency. Such susceptibility to hypoxia is believed to be one of the main causes of beta-cell death in the post-transplantation period. Different strategies have been developed for the protection of beta cells against hypoxic injury and for oxygen delivery to transplanted islets. The enhancement of beta-cell defense properties against hypoxia has been achieved using various techniques such as gene transfection, drug supplementation, co-culturing with stem cells and cell selection. Technologies for oxygen delivery to transplanted islets include local neovascularization of subcutaneous sites, electrochemical and photosynthetic oxygen generation, oxygen refuelling of bio-artificial pancreas and whole body oxygenation by using hyperbaric therapy. Progress in the field of oxygen technologies for islet transplantation requires a multidisciplinary approach to explore and optimize the interaction between components of the biological system and different technological processes. This review article focuses mainly on the recently developed strategies for oxygenation and protection from hypoxic injury - to achieve stable and long-term normoglycaemia in diabetic patients with transplanted pancreatic islets. PMID:22389124

  8. Characteristics of dysfunction of islet β-cell in newly diagnosed type 2 diabetic patients

    Institute of Scientific and Technical Information of China (English)

    李延兵

    2006-01-01

    Objective To investigate the characteristics of the dysfunction of isletβ-cell in newly diagnosed type 2 diabetic patients. Methods Intravenous glucose tolerance test (IVGTT) was carried out on 352 newly diagnosed type 2 diabetic patients and 48 subjects with normal glucose tolerance (NGT) and then blood samples were collected 1, 2, 4, 6, and 10 minutes later to measure the

  9. Characterization of a pancreatic islet cell tumor in a polar bear (Ursus maritimus).

    Science.gov (United States)

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2014-01-01

    Herein, we report a 25-year-old male polar bear suffering from a pancreatic islet cell tumor. The aim of this report is to present a case of this rare tumor in a captive polar bear. The implication of potential risk factors such as high carbohydrate diet or the presence of amyloid fibril deposits was assessed. Necropsy examination revealed several other changes, including nodules observed in the liver, spleen, pancreas, intestine, and thyroid glands that were submitted for histopathologic analysis. Interestingly, the multiple neoplastic nodules were unrelated and included a pancreatic islet cell tumor. Immunohistochemistry of the pancreas confirmed the presence of insulin and islet amyloid polypeptide (IAPP) within the pancreatic islet cells. The IAPP gene was extracted from the paraffin-embedded liver tissue and sequenced. IAPP cDNA from the polar bear exhibits some differences as compared to the sequence published for several other species. Different factors responsible for neoplasms in bears such as diet, infectious agents, and industrial chemical exposure are reviewed. This case report raised several issues that further studies may address by evaluating the prevalence of cancers in captive or wild animals. PMID:25273481

  10. Chaotic electrical activity of living β-cells in the mouse pancreatic islet

    Science.gov (United States)

    Kanno, Takahiro; Miyano, Takaya; Tokuda, Isao; Galvanovskis, Juris; Wakui, Makoto

    2007-02-01

    To test for chaotic dynamics of the insulin producing β-cell and explore its biological role, we observed the action potentials with the perforated patch clamp technique, for isolated cells as well as for intact cells of the mouse pancreatic islet. The time series obtained were analyzed using nonlinear diagnostic algorithms associated with the surrogate method. The isolated cells exhibited short-term predictability and visible determinism, in the steady state response to 10 mM glucose, while the intact cells did not. In the latter case, determinism became visible after the application of a gap junction inhibitor. This tendency was enhanced by the stimulation with tolbutamide. Our observations suggest that, thanks to the integration of individual chaotic dynamics via gap junction coupling, the β-cells will lose memory of fluctuations occurring at any instant in their electrical activity more rapidly with time. This is likely to contribute to the functional stability of the islet against uncertain perturbations.

  11. Long-Term Survival of Neonatal Porcine Islets Without Sertoli Cells in Rabbits

    OpenAIRE

    Rafael Vald and eacute;s-Gonz and aacute;lez; Ana L. Rodriguez-Ventura; Briceyda Gonz and aacute;lez-Ram and iacute;rez; Benjam and iacute;n Le and oacute;n-Mancilla; Pedro Valencia; Mar and iacute;a del Carmen Garc and iacute;a de Le and oacute;n; Ruy P and eacute;rez-Tamayo

    2013-01-01

    Cell-based therapy is a promising treatment for metabolic disorders such as type-1 diabetes. Transplantation protocols have investigated several anatomical sites for cell implantation; however, some of these procedures, such as intraportal infusion, can cause organ failure or thrombosis secondarily. Bio-artificial organs could be the choice, although concerns still remain. Using a subcutaneous device, we are able to preserve neonatal porcine islets without sertoli cells in healthy New Zealand...

  12. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hong Wu; Chao Liu; Cui-Ping Liu; Kuan-Feng Xu; Xiao-Dong Mao; Jian Zhu; Jing-Jing Jiang; Dai Cui; Mei Zhang; Yu Xu

    2007-01-01

    AIM: To study the capacity of bone marrow mesenchymal stem cells (BM-MSCs) trans-differentiating into islet-like cells and to observe the effect of portal vein transplantation of islet-like cells in the treatment of streptozotocin-induced diabetic rat.METHODS: BM-MSCs were isolated from SD rats and induced to differentiate into islet-like cells under defined conditions. Differentiation was evaluated with electron microscopy, RT-PCR, immunofluorescence and flow cytometry. Insulin release after glucose challenge was tested with ELISA. Then allogeneic islet-like cells were transplanted into diabetic rats via portal vein. Blood glucose levels were monitored and islet hormones were detected in the liver and pancreas of the recipient by immunohistochemistry.RESULTS: BM-MSCs were spheroid adherent monolayers with high CD90, CD29 and very low CD45 expression.Typical islet-like cells clusters were formed after induction. Electron microscopy revealed that secretory granules were densely packed within the cytoplasm of the differentiated cells. The spheroid cells expressed islet related genes and hormones. The insulin-positive cells accounted for 19.8% and mean fluorescence intensity increased by 2.6 fold after induction. The cells secreted a small amount of insulin that was increased 1.5 fold after glucose challenge. After transplantation, islet-like cells could locate in the liver expressing islet hormones and lower the glucose levels of diabetic rats during d 6 to d 20.CONCLUSION: Rat BM-MSCs could be transdifferentiated into islet-like cells in vitro. Portal vein transplantation of islet-like cells could alleviate the hyperglycemia of diabetic rats.

  13. Functional and immunohistochemical evaluation of porcine neonatal islet-like cell clusters

    DEFF Research Database (Denmark)

    Nielsen, T B; Yderstraede, K B; Schrøder, H D;

    2003-01-01

    and IP glucose tolerance tests revealed a normal or even faster clearance of a glucose load compared with normal controls. Immunohistochemical examination of the grafts revealed primarily insulin-positive cells. In summary, in vitro, NICCs responded to a challenge including glucose and arginine......Porcine neonatal islet-like cell clusters (NICCs) may be an attractive source of insulin-producing tissue for xenotransplantation in type I diabetic patients. We examined the functional and immunohistochemical outcome of the islet grafts in vitro during long-term culture and in vivo after...... increase in insulin section indicating some sensitivity towards glucose. Hormone content as well as the number of hormone-containing cells increased for the first 14 days of culture. When NICCs were stained for hormones, proliferation (Ki67), and duct cells (CK7), some insulin- and glucagon-positive cells...

  14. The Edges of Pancreatic Islet β Cells Constitute Adhesive and Signaling Microdomains

    Directory of Open Access Journals (Sweden)

    Erez Geron

    2015-01-01

    Full Text Available Pancreatic islet β cells are organized in rosette-like structures around blood vessels and exhibit an artery-to-vein orientation, but they do not display the typical epithelial polarity. It is unclear whether these cells present a functional asymmetry related to their spatial organization. Here, we identify murine β cell edges, the sites at which adjacent cell faces meet at a sharp angle, as surface microdomains of cell-cell adhesion and signaling. The edges are marked by enrichment of F-actin and E-cadherin and are aligned between neighboring cells. The edge organization is E-cadherin contact dependent and correlates with insulin secretion capacity. Edges display elevated levels of glucose transporters and SNAP25 and extend numerous F-actin-rich filopodia. A similar β cell edge organization was observed in human islets. When stimulated, β cell edges exhibit high calcium levels. In view of the functional importance of intra-islet communication, the spatial architecture of their edges may prove fundamental for coordinating physiological insulin secretion.

  15. Histomorphology of the bottlenose dolphin (Tursiops truncatus) pancreas and association of increasing islet β-cell size with chronic hypercholesterolemia.

    Science.gov (United States)

    Colegrove, Kathleen M; Venn-Watson, Stephanie

    2015-04-01

    Bottlenose dolphins (Tursiops truncatus) can develop metabolic states mimicking prediabetes, including hyperinsulinemia, hyperlipidemia, elevated glucose, and fatty liver disease. Little is known, however, about dolphin pancreatic histomorphology. Distribution and area of islets, α, β, and δ cells were evaluated in pancreatic tissue from 22 dolphins (mean age 25.7years, range 0-51). Associations of these measurements were evaluated by sex, age, percent high glucose and lipids during the last year of life, and presence or absence of fatty liver disease and islet cell vacuolation. The most common pancreatic lesions identified were exocrine pancreas fibrosis (63.6%) and mild islet cell vacuolation (47.4%); there was no evidence of insulitis or amyloid deposition, changes commonly associated with type 2 diabetes. Dolphin islet architecture appears to be most similar to the pig, where α and β cells are localized to the central or periphery of the islet, respectively, or are well dispersed throughout the islet. Unlike pigs, large islets (greater than 10,000μm(2)) were common in dolphins, similar to that found in humans. A positive linear association was identified between dolphin age and islet area average, supporting a compensatory response similar to other species. The strongest finding in this study was a positive linear association between islet size, specifically β-cells, and percent blood samples with high cholesterol (greater than 280mg/dl, R(2)=0.57). This study is the most comprehensive assessment of the dolphin pancreas to date and may help direct future studies, including associations between chronic hypercholesterolemia and β-cell size.

  16. Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival.

    Science.gov (United States)

    Khan, Dawood; Vasu, Srividya; Moffett, R Charlotte; Irwin, Nigel; Flatt, Peter R

    2016-11-15

    Recent evidence suggests that the classic gut peptide, Peptide YY (PYY), could play a fundamental role in endocrine pancreatic function. In the present study expression of PYY and its NPY receptors on mouse islets and immortalised rodent and human beta-cells was examined together with the effects of both major circulating forms of PYY, namely PYY(1-36) and PYY(3-36), on beta-cell function, murine islet adaptions to insulin deficiency/resistance, as well as direct effects on cultured beta-cell proliferation and apoptosis. In vivo administration of PYY(3-36), but not PYY(1-36), markedly (p food intake in overnight fasted mice. Neither form of PYY affected glucose disposal or insulin secretion following an i.p. glucose challenge. However, in vitro, PYY(1-36) and PYY(3-36) inhibited (p preservation of beta-cell mass in diabetes. PMID:27465830

  17. Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    Wen-Peng Yuan; Bing Liu; Chang-Heng Liu; Xiao-Jun Wang; Mian-Song Zhang; Xiu-Mei Meng; Xue-Kui Xia

    2009-01-01

    AIM: To investigate the antioxidant activity of chitooligosaccharides (COSs) on pancreatic islet cells in diabetic rats induced by streptozotocin.METHODS: The antioxidant effect of COSs on pancreatic islet cells was detected under optical microscopy and with colorimetric assay and gel electrophoresis. The activities of glutathione peroxidase and superoxide dismutase, total antioxidant capacity, and content of malondialdehyde in serum and tissue slices of pancreas were examined after 60 d to determine the effect of COSs in streptozotocin-induced diabetes in rats.RESULTS: COSs can prohibit the apoptosis of pancreatic islet cells. All concentrations of COSs can improve the capability of total antioxidant capacity and activity of superoxide dismutase and decrease the content of malondialdehyde drastically. Morphological investigation in the pancreas showed that COSs have resulted in the reduction of islets, loss of pancreatic cells, and nuclear pyknosis of pancreatic cells.CONCLUSION: COSs possess various biological activities and can be used in the treatment of diabetes mellitus.

  18. Impact of Pdx1-associated chromatin modifiers on islet β-cells.

    Science.gov (United States)

    Spaeth, J M; Walker, E M; Stein, R

    2016-09-01

    Diabetes mellitus arises from insufficient insulin secretion from pancreatic islet β-cells. In type 2 diabetes (T2D), β-cell dysfunction is associated with inactivation and/or loss of transcription factor (TF) activity, including Pdx1. Notably, this particular TF is viewed as a master regulator of pancreas development and islet β-cell formation, identity and function. TFs, like Pdx1, recruit coregulators to transduce activating and/or repressing signals to the general transcriptional machinery for controlling gene expression, including modifiers of DNA, histones and nucleosome architecture. These coregulators impart a secondary layer of control that can be exploited to modulate TF activity. In this review, we describe Pdx1-recruited coregulators that impact chromatin structure, consequently influencing normal β-cell function and likely Pdx1 activity in pathophysiological settings. PMID:27615141

  19. A mouse model for monitoring islet cell genesis and developing therapies for diabetes

    Directory of Open Access Journals (Sweden)

    Yoshinori Shimajiri

    2011-03-01

    Transient expression of the transcription factor neurogenin-3 marks progenitor cells in the pancreas as they differentiate into islet cells. We developed a transgenic mouse line in which the surrogate markers secreted alkaline phosphatase (SeAP and enhanced green florescent protein (EGFP can be used to monitor neurogenin-3 expression, and thus islet cell genesis. In transgenic embryos, cells expressing EGFP lined the pancreatic ducts. SeAP was readily detectable in embryos, in the media of cultured embryonic pancreases and in the serum of adult animals. Treatment with the γ-secretase inhibitor DAPT, which blocks Notch signaling, enhanced SeAP secretion rates and increased the number of EGFP-expressing cells as assayed by fluorescence-activated cell sorting (FACS and immunohistochemistry in cultured pancreases from embryos at embryonic day 11.5, but not in pancreases harvested 1 day later. By contrast, treatment with growth differentiation factor 11 (GDF11 reduced SeAP secretion rates. In adult mice, partial pancreatectomy decreased, whereas duct ligation increased, circulating SeAP levels. This model will be useful for studying signals involved in islet cell genesis in vivo and developing therapies that induce this process.

  20. Long-Term Survival of Neonatal Porcine Islets Without Sertoli Cells in Rabbits

    Directory of Open Access Journals (Sweden)

    Rafael Vald and eacute;s-Gonz and aacute;lez

    2013-04-01

    Full Text Available Cell-based therapy is a promising treatment for metabolic disorders such as type-1 diabetes. Transplantation protocols have investigated several anatomical sites for cell implantation; however, some of these procedures, such as intraportal infusion, can cause organ failure or thrombosis secondarily. Bio-artificial organs could be the choice, although concerns still remain. Using a subcutaneous device, we are able to preserve neonatal porcine islets without sertoli cells in healthy New Zealand rabbits. Devices were implanted in the back of the animals underneath the skin, and after 3 months the islets were transplanted. Histology showed the presence of inflammatory cells, predominantly eosinophils; however, insulin- and glucagon-positive cell clusters were identified inside the device at different time points for at least 90 days, and porcine C-peptide was also detected during the follow-up, indicating graft functionality. We have found that our device induces the deposition of a fibrous matrix enriched in blood vessels, which forms a good place for cell grafting, and this model is probably able to induce an immunoprivileged site. Under these conditions, transplanted porcine islet cells have the capability of producing insulin and glucagon for at least three months. [Arch Clin Exp Surg 2013; 2(2.000: 101-108

  1. Comparison of therapeutic characteristics of islet cell transplantation simultaneous with pancreatic mesenchymal stem cell transplantation in rats with Type 1 diabetes mellitus.

    Science.gov (United States)

    Unsal, Ilknur Ozturk; Ginis, Zeynep; Pinarli, Ferda Alparslan; Albayrak, Aynur; Cakal, Erman; Sahin, Mustafa; Delibasi, Tuncay

    2015-06-01

    Although, pancreas islet call transplantation is a new, promising method for type 1 diabetic patients, it remains as an experimental procedure applied in selected patients. The present study aimed to investigate effect of pancreatic mesenchymal stem cell transplantation simultaneous with islet cell transplantation on islet liveliness and thus on the treatment of diabetes in type 1 diabetic rats. The study used Wistar Albino Rats and was performed in a total of four groups [control (G1), mesenchymal stem cell (G2), islet (G3) and islet + mesencymal stem cell (G4)] each including 8 rats. Blood glucose level of the rats, in which diabetes model has been created using streptozotocin, was measured after 72 h. Blood samples were obtained from the rats 30 days after transplantation and then, their livers and pancreases were kept in 10% formaldehyde and the experiment was ended. Following staining with H&E, they were morphologically evaluated under a light microscope. Change in mean blood glucose level was statistically significant in G3 and G4 versus G1 and G2 (p = 0.001, p cells in the pancreases of the rats was higher in G4; difference between the groups was statistically significant (p cells together with mesenchymal stem cells showed beneficial effects in terms of prolonging survival of islet grafts suggesting that transplantation of mesenchymal stem cells together with islet cells during clinical islet transplantation may be beneficial in increasing the number of noninsulin-dependent patients in Type 1 diabetes.

  2. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity

    Directory of Open Access Journals (Sweden)

    Wu QiNan

    2016-01-01

    Full Text Available Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes.

  3. B7-H4 Pathway in Islet Transplantation and β-Cell Replacement Therapies

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Type 1 diabetes (T1D is a chronic autoimmune disease and characterized by absolute insulin deficiency. β-cell replacement by islet cell transplantation has been established as a feasible treatment option for T1D. The two main obstacles after islet transplantation are alloreactive T-cell-mediated graft rejection and recurrence of autoimmune diabetes mellitus in recipients. T cells play a central role in determining the outcome of both autoimmune responses and allograft survival. B7-H4, a newly identified B7 homolog, plays a key role in maintaining T-cell homeostasis by reducing T-cell proliferation and cytokine production. The relationship between B7-H4 and allograft survival/autoimmunity has been investigated recently in both islet transplantation and the nonobese diabetic (NOD mouse models. B7-H4 protects allograft survival and generates donor-specific tolerance. It also prevents the development of autoimmune diabetes. More importantly, B7-H4 plays an indispensable role in alloimmunity in the absence of the classic CD28/CTLA-4 : B7 pathway, suggesting a synergistic/additive effect with other agents such as CTLA-4 on inhibition of unwanted immune responses.

  4. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  5. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo.

  6. Basal cell adenoma of the parotid gland: Cytological diagnosis of an uncommon tumor.

    Science.gov (United States)

    Bhat, Amoolya; Rao, Madhuri; Geethamani, V; Shetty, Archana C

    2015-01-01

    Basal cell adenoma (BCA) is a rare benign epithelial tumor of the salivary gland, displaying monomorphic basaloid cells without a myxochondroid component, representing 1-3% of all salivary gland neoplasms seen predominantly in women over 50 years of age. It is uncommon in young adults. Cytodiagnosis of basaloid tumors chiefly basal cell adenoma of the salivary gland, is extremely challenging. The cytological differential diagnoses range from benign to malignant, neoplastic to non- neoplastic lesions. Histopathological examination is a must for definitive diagnosis, as these entities differ in prognosis and therapeutic aspects. We present a 22-years-old male with this uncommon diagnosis with a discussion on the role of cytological diagnosis. Fine needle aspiration cytology is a simple, minimally invasive method for the preoperative diagnosis of various types of neoplastic and non-neoplastic lesions. The knowledge of its pitfalls and limitations contributes to a more effective approach to treatment. PMID:26097318

  7. Basal cell adenoma of the parotid gland: Cytological diagnosis of an uncommon tumor

    Directory of Open Access Journals (Sweden)

    Amoolya Bhat

    2015-01-01

    Full Text Available Basal cell adenoma (BCA is a rare benign epithelial tumor of the salivary gland, displaying monomorphic basaloid cells without a myxochondroid component, representing 1-3% of all salivary gland neoplasms seen predominantly in women over 50 years of age. It is uncommon in young adults. Cytodiagnosis of basaloid tumors chiefly basal cell adenoma of the salivary gland, is extremely challenging. The cytological differential diagnoses range from benign to malignant, neoplastic to non- neoplastic lesions. Histopathological examination is a must for definitive diagnosis, as these entities differ in prognosis and therapeutic aspects. We present a 22-years-old male with this uncommon diagnosis with a discussion on the role of cytological diagnosis. Fine needle aspiration cytology is a simple, minimally invasive method for the preoperative diagnosis of various types of neoplastic and non-neoplastic lesions. The knowledge of its pitfalls and limitations contributes to a more effective approach to treatment.

  8. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro.

    Directory of Open Access Journals (Sweden)

    Ginat Toren-Haritan

    Full Text Available In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT. Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA against TGFβ Receptor 1 (TGFBR1, ALK5 transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.

  9. Malignant nonfunctioning islet cell tumor of the pancreas with intrasplenic growth:a case report

    Institute of Scientific and Technical Information of China (English)

    Hong-Jiang Wang; Zuo-Wei Zhao; Hai-Feng Luo; Zhong-Yu Wang

    2006-01-01

    BACKGROUND: We reported a case of malignant nonfunction islet cell tumor (10.0 cm in diameter) of the pancreas, with malignant histological features and splenic inifltration. The case is rare, and few reports have been published. METHODS: A 46-year-old woman with a vague pain in the left upper quadrant for 3 months was found to have a tumor in the spleen. Ultrasonography and computed tomography demonstrated a well-deifned pancreatic tumor of 8.2×10.0 cm in size, her serum levels of pancreatic hormones were within normal limits. RESULTS: Splenectomy combined with pancreatectomy was performed for the tail of the pancreas. Resected specimens showed a malignant nonfunctioning islet cell tumor invading the spleen. CONCLUSIONS:The growth pattern of the tumor causes malignant features. Resection of the tumor should be performed by enucleation, pancreaticoduodenectomy or distal pancreatectomy.

  10. Metastatic Insulinoma Following Resection of Nonsecreting Pancreatic Islet Cell Tumor

    Directory of Open Access Journals (Sweden)

    Anoopa A. Koshy MD

    2013-01-01

    Full Text Available A 56-year-old woman presented to our clinic for recurrent hypoglycemia after undergoing resection of an incidentally discovered nonfunctional pancreatic endocrine tumor 6 years ago. She underwent a distal pancreatectomy and splenectomy, after which she developed diabetes and was placed on an insulin pump. Pathology showed a pancreatic endocrine neoplasm with negative islet hormone immunostains. Two years later, computed tomography scan of the abdomen showed multiple liver lesions. Biopsy of a liver lesion showed a well-differentiated neuroendocrine neoplasm, consistent with pancreatic origin. Six years later, she presented to clinic with 1.5 years of recurrent hypoglycemia. Laboratory results showed elevated proinsulin, insulin levels, and c-peptide levels during a hypoglycemic episode. Computed tomography scan of the abdomen redemonstrated multiple liver lesions. Repeated transarterial catheter chemoembolization and microwave thermal ablation controlled hypoglycemia. The unusual features of interest of this case include the transformation of nonfunctioning pancreatic endocrine tumor to a metastatic insulinoma and the occurrence of atrial flutter after octreotide for treatment.

  11. Effects of hyperprolactinemia on toxicological parameters and proliferation of islet cells in male rats.

    Science.gov (United States)

    Ose, Keiko; Miyata, Kaori; Yoshioka, Kaoru; Okuno, Yasuyoshi

    2009-04-01

    Prolactin has a wide variety of biological effects. Consequences of hyperprolactinemia on islet B cell proliferation as well as general toxicological parameters were here examined using anterior pituitary-grafted rats. Three or six anterior pituitary glands were implanted under single renal capsules of F344 male rats and left there for 13 weeks afterward. Clinical observation along with measurement of body weight and food consumption was conducted during the observation period, and subsequently hematology, blood biochemistry, gross pathology, organ weights and histopathology were examined. In addition, the proliferation rate of islet B cells was measured by a 5-bromo-2'-deoxy-uridine (BrdU) labeling technique. Serum prolactin concentrations at week 13 were 36, 70, 75 and 105 ng/ml in the sham-operated, 3-pituitary-grafted groups from male or female donors, and 6-pituitary-grafted group from male donors, respectively. Higher cholinesterase and total cholesterol values, lower trigriceride and leutenizing hormones (LH) values, and higher adrenal weights compared to those in the sham-operated group were apparent in the 3- and/or 6-pituitary-grafted groups. Also, the study revealed that mammary gland structure was transformed with change of differentiation from a male to a female acinar pattern. Furthermore a specific increase of islet cell proliferation rate was found, positively correlated with serum prolactin concentration. These findings suggest that elevation of serum prolactin level over 13 weeks induces islet cell proliferation and changes in toxicological parameters, including cholinesterase activity, elements of lipid metabolism and histopathology/morphology of the adrenals and mammary glands in male rats. PMID:19336972

  12. Pancreatic hormones are expressed on the surfaces of human and rat islet cells through exocytotic sites

    DEFF Research Database (Denmark)

    Larsson, L I; Hutton, J C; Madsen, O D;

    1989-01-01

    . Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were...... for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release....

  13. Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Francesca Mancuso

    2010-01-01

    Full Text Available The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM. Starting from isolated neonatal porcine pancreatic islets (NPIs, we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs for different time periods (7, 14, 21 days. To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM.

  14. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure.

    Science.gov (United States)

    Sun, Bo; Roh, Kyung-Hwan; Lee, Sae-Rom; Lee, Yong-Soon; Kang, Kyung-Sun

    2007-03-23

    Success in islet-transplantation-based therapies for type I diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Embryonic stem cells (ESCs) have been successfully induced into insulin producing islet-like structure in several studies. However, the source of the ESCs has presented ethical and technical concerns. Here, we isolated a population of stem cells from human cord blood (UCB), which expressed embryo stage specific maker, SSEA-4, and the multi-potential stem cell marker, Oct4. Subsequently, we successfully induced them into insulin-producing islet-like structures, which co-express insulin and C-peptide. These findings might have a significant potential to advance human UCB derived stem-cell-based therapeutics for diabetes.

  15. Pancreatic and peri-pancreatic lesions mimic pancreatic islet cell tumor in multidetector computed tomography

    Institute of Scientific and Technical Information of China (English)

    XUE Hua-dan; LIU Wei; XIAO Yu; SUN Hao; WANG Xuan; LEI Jing; JIN Zheng-yu

    2011-01-01

    Objective This pictorial review aimed to summarize the most possible differential diagnosis of pancreatic islet cell tumor (PICT).Data sources Data used in this review were mainly from Medline and Pubmed in English. And all clinical images in this review were from Department of Radiology, Peking Union Medical College Hospital, Beijing, China.Study selection Cases of pancreatic cystadenoma, solid pseudo-papillary tumor of the pancreas, pancreatic metastasis, pancreatic adenocarcinoma, para-pancreatic neuroendocrine tumors, Castleman disease, gastrointestinal stromal tumor, splenic artery aneurysm and accessory spleen were selected in this pictorial review for differential diagnosis of PICT.Results Careful analysis of imaging features and correlation with the clinical manifestations may allow a more specific diagnosis. It is also important that the radiologist is familiar with the anatomic variants and disease entities which mimic pancreatic islet cell tumor in order to avoid an improper treatment protocol.Conclusions Many congenital anatomic variants or other pancreatic and peri-pancreatic diseases may mimic MDCT appearance of pancreatic islet cell tumor. Radiological, clinical and pathological characteristics should be considered for the final diagnosis.

  16. In vitro impact of pegvisomant on growth hormone-secreting pituitary adenoma cells.

    Science.gov (United States)

    Cuny, Thomas; Zeiller, Caroline; Bidlingmaier, Martin; Défilles, Céline; Roche, Catherine; Blanchard, Marie-Pierre; Theodoropoulou, Marily; Graillon, Thomas; Pertuit, Morgane; Figarella-Branger, Dominique; Enjalbert, Alain; Brue, Thierry; Barlier, Anne

    2016-07-01

    Pegvisomant (PEG), an antagonist of growth hormone (GH)-receptor (GHR), normalizes insulin-like growth factor 1 (IGF1) oversecretion in most acromegalic patients unresponsive to somatostatin analogs (SSAs) and/or uncontrolled by transsphenoidal surgery. The residual GH-secreting tumor is therefore exposed to the action of circulating PEG. However, the biological effect of PEG at the pituitary level remains unknown. To assess the impact of PEG in vitro on the hormonal secretion (GH and prolactin (PRL)), proliferation and cellular viability of eight human GH-secreting tumors in primary cultures and of the rat somatolactotroph cell line GH4C1. We found that the mRNA expression levels of GHR were characterized in 31 human GH-secreting adenomas (0.086 copy/copy β-Gus) and the GHR was identified by immunocytochemistry staining. In 5/8 adenomas, a dose-dependent inhibition of GH secretion was observed under PEG with a maximum of 38.2±17% at 1μg/mL (Phuman primary tumors or GH4C1 cell line was observed. We conclude that PEG inhibits the secretion of GH and PRL in primary cultures of human GH(/PRL)-secreting pituitary adenomas without effect on cell viability or cell proliferation. PMID:27267119

  17. An unusual case report of basal cell adenoma: A Diagnostic Enchanter

    Science.gov (United States)

    Rehani, Shweta; Mehendiratta, Monica; Kumra, Madhumani; Gupta, Ramakant; Jain, Kanu

    2014-01-01

    Oral lesions show a wide range of biologic behaviours. There are various lesions which may mimic others and present in such an unusual manner thus making them very difficult to diagnose clinico-pathologically. An accurate diagnosis is not only important for correct treatment planning but also for determination of prognosis. Thus, it is very important for a surgical pathologist to be aware of the various atypical presentations of the lesions. The present unusual case report of basal cell adenoma occurring on upper lip with frank areas of calcifications and abundant inspissated mucoid secretions is an example of one such case. BCA is an uncommon benign epithelial salivary gland neoplasm. It is one of the nine subcategories of salivary gland epithelial tumours according to WHO 2005 classification of salivary gland tumors. It is composed of basaloid cells organized with a prominent basal cell layer and distinct basement membrane-like structure and no myxochondroid stromal component as seen in pleomorphic adenomas. To our best knowledge, no case in English literature has been reported BCA with exuberant inspissated mucoid secretions and frank areas of calcifications to such a large extent and this is the first case to report the same. Key words: Basal cell adenoma, calcifications, diagnosis, inspissated mucoid secretions, surgical pathologist. PMID:25674334

  18. Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Nancy Du

    2007-10-01

    Full Text Available Tumors develop through multiple stages, implicating multiple effectors, but the tools to assess how candidate genes contribute to stepwise tumor progression have been limited. We have developed a novel system in which progression of phenotypes in a mouse model of pancreatic islet cell tumorigenesis can be used to measure the effects of genes introduced by cell-type-specific infection with retroviral vectors. In this system, bitransgenic mice, in which the rat insulin promoter (RIP drives expression of both the SV40 T antigen (RIP-Tag and the receptor for subgroup A avian leukosis virus (RIP-tva, are infected with avian viral vectors carrying cDNAs encoding candidate progression factors. Like RIP-Tag mice, RIP-Tag; RIP-tva bitransgenic mice develop isolated carcinomas by approximately 14 wk of age, after progression through well-defined stages that are similar to aspects of human tumor progression, including hyperplasia, angiogenesis, adenoma, and invasive carcinoma. When avian retroviral vectors carrying a green fluorescent protein marker were introduced into RIP-Tag; RIP-tva mice by intra-cardiac injection at the hyperplastic or early dysplastic stage of tumorigenesis, approximately 20% of the TVA-positive cells were infected and expressed green fluorescent proteins as measured by flow cytometry. Similar infection with vectors carrying cDNA encoding either of two progression factors, a dominant-negative version of cadherin 1 (dnE-cad or Bcl-xL, accelerated the formation of islet tumors with invasive properties and pancreatic lymph node metastasis. To begin studying the mechanism by which Bcl-xL, an anti-apoptotic protein, promotes invasion and metastasis, RIP-Tag; RIP-tva pancreatic islet tumor cells were infected in vitro with RCASBP-Bcl-xL. Although no changes were observed in rates of proliferation or apoptosis, Bcl-xL altered cell morphology, remodeled the actin cytoskeleton, and down-regulated cadherin 1; it also induced cell migration and

  19. Loss of β-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits

    NARCIS (Netherlands)

    Spijker, H Siebe; Song, Heein; Ellenbroek, Johanne H; Roefs, Maaike M; Engelse, Marten A; Bos, Erik; Koster, Abraham J; Rabelink, Ton J; Hansen, Barbara C; Clark, Anne; Carlotti, Françoise; de Koning, Eelco J P

    2015-01-01

    Loss of pancreatic islet β-cell mass and β-cell dysfunction are central in the development of type 2 diabetes (T2DM). We recently showed that mature human insulin-containing β-cells can convert into glucagon-containing α-cells ex vivo. This loss of β-cell identity was characterized by the presence o

  20. Quantitative Raman spectral changes of the differentiation of mesenchymal stem cells into islet-like cells by biochemical component analysis and multiple peak fitting

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; He, Yingtian; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-12-01

    Mesenchymal stem cells (MSCs) differentiate into islet-like cells, providing a possible solution for type I diabetes treatment. To search for the precise molecular mechanism of the directional differentiation of MSC-derived islet-like cells, biomolecular composition, and structural conformation information during MSC differentiation, is required. Because islet-like cells lack specific surface markers, the commonly employed immunostaining technique is not suitable for their identification, physical separation, and enrichment. Combining Raman spectroscopic data, a fitting accuracy-improved biochemical component analysis, and multiple peaks fitting approach, we identified the quantitative biochemical and intensity change of Raman peaks that show the differentiation of MSCs into islet-like cells. Along with increases in protein and glycogen content, and decreases in deoxyribonucleic acid and ribonucleic acid content, in islet-like cells relative to MSCs, it was found that a characteristic peak of insulin (665 cm-1) has twice the intensity in islet-like cells relative to MSCs, indicating differentiation of MSCs into islet-like cells was successful. Importantly, these Raman signatures provide useful information on the structural and pathological states during MSC differentiation and help to develop noninvasive and label-free Raman sorting methods for stem cells and their lineages.

  1. Experimental study of piperlongumine inducing apoptosis of human breast adenoma MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Yao; Jianxin Yao; Xia He; Zhanfeng Li; Yongbiao Liu

    2013-01-01

    Objective: The aim of the study was to investigate the apoptosis induced by piperlongumine on human breast adenoma MDA-MB-231 cells and the mechanism involved. Methods: Human breast adenoma MDA-MB-231 cells line was cultured in vitro. The inhibitory effect of piperlongumine on the proliferation of human breast adenoma MDA-MB-231 cells was measured by CCK-8 assay. Distribution of cell cycle was analyzed by flow cytometry. The apoptosis rates of MDA-MB- 231 cells were measured using Annexin V/PI staining. The flow cytometry with the probe of DCFH-DA was used to detect the intracellular reactive oxygen species levels. Western blot was used to explore the protein expression of Bcl-2 and Bax. Results: The CCK-8 assay showed that piperlongumine had an inhibiting effect on the proliferation of MDA-MB-231 cells in a concentration- and time-dependent manner. MDA-MB-231 cells were markedly arrested at G0/G1 phase after treatment of piperlongumine. Piperlongumine induced apoptosis of MDA-MB-231 cells obviously. The level of intracellular reactive oxygen species was increased in a dose-dependent manner. The antioxidant N-acetyl-L-cystein inhibited the apoptosis of cells and the level of intracellular reactive oxygen species was also decreased. By Western blot analysis, we found the expression of Bax was up-regulated whereas that of Bcl-2 was down-regulated in a concentration-dependent manner. Conclusion: Piperlongumine possesses a significant function for inhibiting proliferation, arresting cells at G0/G1 phase and inducing apoptosis of MDA-MB-231 cells, which seems to be associated with the increased generation of intracellular reactive oxygen species as well as the down-regulation of Bcl-2 and up-regulation of Bax.

  2. The Ultrastructure of Secretory Cells of the Islets of Langerhans in South American Catfish Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Laura Luchini

    2015-01-01

    Full Text Available The present work shows that a detailed description of the ultrastructure of the secretory cells of the South American catfish Rhamdia quelen pancreatic islets is presented. Evidence is offered to support the contention that the α-granules consist of a central and an outer portion of different electron densities and solubilities, that the δ-cells are most probably morphologically altered but viable α-cells, and that the β-granules possibly possess a repeating substructure and may therefore represent an intracellular crystalline storage form of insulin.

  3. Islet neogenesis potential of human adult stem cells and its applications in cell replacement therapy for diabetes

    Directory of Open Access Journals (Sweden)

    Bhonde RR

    2008-11-01

    Full Text Available In recent years regenerative biology has reached to greater heights due to its therapeutic potential in treating degenerative diseases; as they are not curable by modern medicine. With the advent of research in stem cells and developmental biology the regenerative potential of adult resident stem cells is becoming clearer. The long term objective of regenerative medicine or cell therapy is to treat patients with their own stem cells. These stem cells could be derived from the diseased organs such as skin, liver, pancreas etc. or from reservoirs of multipotent stem cells such as bone marrow or cord blood.Manipulating the ability of tissue resident stem cells as well as from multipotent reservoirs such as bone marrow, umbilical cord and cord blood to give rise to endocrine cells may open new avenues in the treatment of diabetes. A better understanding of stem cell biology would almost certainly allow for the establishment of efficient and reliable cell transplantation experimental programs in the clinic. We show here that multipotent mesenchymal stem cells can be isolated from various sources such as the bone marrow, placenta, umbilical cord. Upon stimulation with specific growth factors they differentiate into islet like clusters (ILCs. When ILCs obtained from the above mentioned sources were transplanted in experimental diabetic mice, restoration of normoglycemia was observed within three weeks of transplantation with concomitant increase in the body weight. These euglycemic mice exhibited normal glucose tolerance test indicating normal utilization of glucose. Allthough the MSCs isolated from all the sources had the same characteristics; they showed significant differences in their islet differentiation potential. ILCs isolated for the human bone marrow did not show any pancreatic hormones in vitro, but upon transplantation they matured into insulin and somatostatin producing hormones. Placental MSCs as well as ILCs showed insulin trascripts

  4. DEVELOPMENT OF METHODOLOGICAL APPROACHES TO OBTAINING ISLET CELLS BASED ON THE RESULTS OF THE MORPHOLOGICAL ANALYSIS OF THE PANCREAS OF RABBITS OF DIFFERENT AGES

    Directory of Open Access Journals (Sweden)

    N. N. Skaletskiy

    2013-01-01

    Full Text Available Purpose. A comparative morphological analysis of adult pancreas and newborn rabbits as acceptable model for obtaining of islet cell cultures having a low immunogenicity was agoal of this study. Materials and methods. Pancreas from adult and newborn rabbits and islet cell culture was examined by histological and immunohistochemical techniques. Results. Shown, the pancreas of adult rabbits contains great amount of exocrine tissue and culturing it does not allow to obtain the purified islets of impurities. By contrast, pancreas of newborn rabbits in which the ratio of the islets and the exocrine tissue is much higher, it is possible to obtain highly purified cultures of islet cells. Conclusion. Morphological features of newborn rabbit pancreas can use it as a model for obtaining cultures of islet cells having low immunogenicity. 

  5. IDO-Expressing Fibroblasts Protect Islet Beta Cells From Immunological Attack and Reverse Hyperglycemia in Non-Obese Diabetic Mice.

    Science.gov (United States)

    Zhang, Yun; Jalili, Reza B; Kilani, Ruhangiz T; Elizei, Sanam Salimi; Farrokhi, Ali; Khosravi-Maharlooei, Mohsen; Warnock, Garth L; Ao, Ziliang; Marzban, Lucy; Ghahary, Aziz

    2016-09-01

    Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1β and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1β levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc. PMID:26743772

  6. Application of Rotating Wall Vessel (RWV) Cell Culture for Pancreas Islet Cell Transplantation

    Science.gov (United States)

    Rutzky, Lynne P.

    1998-01-01

    Type I insulin-dependent diabetes mellitus (IDDM) remains a major cause of morbidity and mortality in both pediatric and adult populations, despite significant advances in medical management. While insulin therapy treats symptoms of acute diabetes, it fails to prevent chronic complications such as microvascular disease, blindness, neuropathy, and chronic renal failure. Strict control of blood glucose concentrations delays but does not prevent the onset and progression of secondary complications. Although, whole pancreas transplantation restores physiological blood glucose levels, a continuous process of allograft rejection causes vascular and exocrine-related complications. Recent advances in methods for isolation and purification of pancreatic islets make transplantation of islet allografts an attractive alternative to whole pancreas transplantation. However, immunosuppressive drugs are necessary to prevent rejection of islet allografts and many of these drugs are known to be toxic to the islets. Since auto-transplants of isolated islets following total pancreatectomy survive and function in vivo, it is apparent that a major obstacle to successful clinical islet transplantation is the immunogenicity of the islet allografts.

  7. Basal Cell Adenoma with Perplexity in Diagnosis – A Case Report

    Science.gov (United States)

    Rehani, Shweta; Mathias, Yulia; Wadhwa, Manish

    2016-01-01

    Every salivary gland tumour irrespective of its benign or malignant nature or occurrence, exhibits certain unique and overlapping histopathologic features. Basal Cell Adenoma (BCA) is a rare salivary gland tumour and hence it becomes our responsibility to report every case with unique histopathologic features so that it can add to our present knowledge of this lesion. Often, the pathologists experience difficulty while diagnosing lesions like BCA which contain basaloid cells due to its similarity with other lesions of similar histological appearance. Hence, this paper discusses a case of BCA with rare histopathologic features along with the possible differential diagnosis. PMID:27135016

  8. Molecular Characterization of an Endometrial Endometrioid Adenocarcinoma Metastatic to a Thyroid Hürthle Cell Adenoma Showing Cancerization of Follicles.

    Science.gov (United States)

    Afrogheh, Amir H; Meserve, Emily; Sadow, Peter M; Stephen, Antonia E; Nosé, Vânia; Berlin, Suzanne; Faquin, William C

    2016-09-01

    Tumor-to-tumor metastasis is rare. Herein, we present a unique case of endometrial endometrioid adenocarcinoma metastatic to a thyroid Hürthle cell adenoma 9 years after initial diagnosis. On histologic examination of the thyroid, the malignant endometrioid glands and single cells (donor tumor) were dispersed within the Hürthle cell adenoma (recipient tumor). In several sections of the adenoma with still preserved microfollicular architecture, malignant endometrial adenocarcinoma cells were admixed within oncocytic adenomatous epithelium (so-called "cancerization of the follicles"). This unusual phenomenon, to our knowledge, is a novel finding in the thyroid gland. Immunohistochemistry, subsequently elicited clinical history, and morphologic comparison of the tumor in the thyroid to the primary endometrial tumor confirmed the origin of the donor tumor cells. Molecular analysis of both the metastatic and primary endometrial tumors demonstrated PIK3CA and PTEN mutations in both tumors, as is characteristic of well-differentiated endometrioid tumors of the endometrium. Amplification of chromosome 1q was detected in both sites; however, only the metastatic tumor showed loss of chromosomes 2, 9, and 22. The morphologic differential diagnosis of metastatic endometrioid adenocarcinoma in the thyroid includes columnar cell variant of papillary thyroid carcinoma (CCVPTC) arising in a preexisting adenoma, endocrine glandular atypia within an adenoma, and metastasis from other anatomic sites. Histomorphologic differences among these entities may be subtle; therefore, knowledge of and morphologic comparison with prior malignancies and immunohistochemistry can be helpful in rendering the correct diagnosis. PMID:26687112

  9. Isolation, Culture and Induced Differentiation of Fetal Porcine Islet Derived Pancreatic Stem Cell

    Institute of Scientific and Technical Information of China (English)

    FENG Ruo-peng; ZHANG Hui-ru; WANG Yun; QIAO Hai; ZHAO Ting; SHEN Wen-zheng; DOU Zhong-ying

    2007-01-01

    To isolate and culture the porcine pancreatic stem cells and investigate their function, the fetal porcine pancreatic stem cells were isolated by the method of suspending plus adhering culture. The isolated cells were then identified by irnmunohistochemical staining, and their culture viability measured through the MTT method in vitro. This induced them to differentiate into endocrine cells and detect their function. The isolated IPSCS did not express nestin, but expressed CK-19, a marker of ductal epithelia cells and oc-actin, a smooth muscle marker, demonstrating the growth characteristics of ES-like cells, and strong proliferative ability, after 18 passages. They could excrete insulin, and showed ultrastructure changes after being induced. Porcine pancreatic stem cells can be isolated by this method, induced to form islet-like clusters, and can secret insulin.

  10. {sup 99m}Tc-MIBI scintigraphy of parathyroid adenomas and its relation to tumour size and oxyphil cell abundance

    Energy Technology Data Exchange (ETDEWEB)

    Melloul, M.; Paz, A.; Cytron, S. [Dept. of Nuclear Medicine, Hasharon Hospital, Rabin Medical Center, Petah Tikva (Israel); Koren, R.; Gal, R. [Dept. of Pathology, Hasharon Hospital, Rabin Medical Center, Petah Tikva (Israel); Feinmesser, R. [Dept. of Oto-Rhino-Laryngology, Hasharon Hospital, Rabin Medical Center, Petah Tikva (Israel)

    2001-02-01

    The aim of this study was to assess the correlation between technetium-99m methoxyisobutylisonitrile (MIBI) uptake by parathyroid adenomas, oxyphil cell content and volume of the lesions. Thirty-one patients with parathyroid adenomas were evaluated prospectively. Preoperative double-phase {sup 99m}Tc-MIBI scintigraphy was performed in all patients and tracer uptake by parathyroid lesions was assessed semi-quantitatively employing region of interest ratios to normal adjacent neck areas. Surgical specimens underwent histological evaluation and oxyphil cell content was determined. The intensity of tracer uptake was compared with oxyphil cell content, volume of the lesions and serum levels of calcium and parathormone. {sup 99m}Tc-MIBI tracer uptake was correlated with oxyphil cell content, volume of parathyroid lesions and the functional status of the parathyroid adenomas. Tracer accumulation in oxyphil cells might partially explain the preferential {sup 99m}Tc-MIBI retention in parathyroid lesions. (orig.)

  11. 99mTc-MIBI scintigraphy of parathyroid adenomas and its relation to tumour size and oxyphil cell abundance

    International Nuclear Information System (INIS)

    The aim of this study was to assess the correlation between technetium-99m methoxyisobutylisonitrile (MIBI) uptake by parathyroid adenomas, oxyphil cell content and volume of the lesions. Thirty-one patients with parathyroid adenomas were evaluated prospectively. Preoperative double-phase 99mTc-MIBI scintigraphy was performed in all patients and tracer uptake by parathyroid lesions was assessed semi-quantitatively employing region of interest ratios to normal adjacent neck areas. Surgical specimens underwent histological evaluation and oxyphil cell content was determined. The intensity of tracer uptake was compared with oxyphil cell content, volume of the lesions and serum levels of calcium and parathormone. 99mTc-MIBI tracer uptake was correlated with oxyphil cell content, volume of parathyroid lesions and the functional status of the parathyroid adenomas. Tracer accumulation in oxyphil cells might partially explain the preferential 99mTc-MIBI retention in parathyroid lesions. (orig.)

  12. Nonenzymatic cryogenic isolation of therapeutic cells: novel approach for enzyme-free isolation of pancreatic islets using in situ cryopreservation of islets and concurrent selective freeze destruction of acinar tissue.

    Science.gov (United States)

    Taylor, Michael J; Baicu, Simona C

    2014-01-01

    Cell-based therapies, which all involve processes for procurement and reimplantation of living cells, currently rely upon expensive, inconsistent, and even toxic enzyme digestion processes. A prime example is the preparation of isolated pancreatic islets for the treatment of type 1 diabetes by transplantation. To avoid the inherent pitfalls of these enzymatic methods, we have conceptualized an alternative approach based on the hypothesis that cryobiological techniques can be used for differential freeze destruction of the pancreas (Px) to release islets that are selectively cryopreserved in situ. Pancreata were procured from juvenile pigs using approved procedures. The concept of cryoisolation is based on differential processing of the pancreas in five stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water to distend the acinar; 3) freezing the entire Px solid to dithizone for identification of intact islets and with Syto 13/PI for fluorescence viability testing and glucose-stimulated insulin release assessment. As predicted, the cryoisolate contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact and viable (>90%) embedded islets. Islets were typically larger (range 50-500 µm diameter) than their counterparts isolated from juvenile pigs using conventional enzyme digestion techniques. Functionally, the islets from replicate cryoisolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7. An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze destruction of acinar tissue is feasible and proposed as a new and novel method that avoids the problems associated with conventional collagenase digestion methods. PMID:23992741

  13. A Case of Cushing's Syndrome with Multiple Adrenocortical Adenomas Composed of Compact Cells and Clear Cells.

    Science.gov (United States)

    Asakawa, Masahiro; Yoshimoto, Takanobu; Ota, Mitsutane; Numasawa, Mitsuyuki; Sasahara, Yuriko; Takeuchi, Takato; Nakano, Yujiro; Oohara, Norihiko; Murakami, Masanori; Bouchi, Ryotaro; Minami, Isao; Tsuchiya, Kyoichiro; Hashimoto, Koshi; Izumiyama, Hajime; Kawamura, Naoko; Kihara, Kazunori; Negi, Mariko; Akashi, Takumi; Eishi, Yoshinobu; Sasano, Hironobu; Ogawa, Yoshihiro

    2016-06-01

    A 58-year-old woman was referred to our hospital for Cushingoid features and diagnosed as adrenal Cushing's syndrome due to a right adrenocortical mass (60 × 55 mm). The mass was composed of three different tumors; the first one was homogeneously lipid-poor neoplasm measuring 20 × 13 mm located at the most dorsal region, the second one was heterogeneous and lipid-rich tumor containing multiple foci of calcification measuring 50 × 32 mm located at the central region, and the last one was heterogeneous harboring dilated and tortuous vessels and lipid-poor one measuring 35 × 18 mm at the most ventral region of the adrenal gland. A right adrenalectomy was subsequently performed by open surgery. Macroscopic and microscopic analyses revealed that all three tumors were adrenocortical adenomas; the first one represents a pigmented adrenocortical adenoma, the second one adrenocortical adenoma associated with degeneration, and the third one adrenocortical adenoma harboring extensive degeneration. Immunohistochemical analysis of the steroidogenic enzymes also revealed that all of the tumors had the capacity of synthesizing cortisol. This is a very rare case of Cushing's syndrome caused by multiple adrenocortical adenomas including a pigmented adenoma. Immunohistochemical analysis of steroidogenic enzymes contributed to understanding of steroidogenesis in each of these three different adrenocortical adenomas in this case.

  14. Parathyroid adenoma

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001188.htm Parathyroid adenoma To use the sharing features on this page, please enable JavaScript. A parathyroid adenoma is a noncancerous (benign) tumor of the parathyroid ...

  15. ISLET FORMATION AND REGENERATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration. Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collected. Diabetes mellitus rat model was induced with 65 mg/kg of streptozotocin. Insulin, glucagon, somatostatin, nestin, and cytokeratin 19 (CK19)of pancreatic tissues were observed by immunohistochemistry. Results At 9 weeks of gestation, pancreatic epithelial cells began to co-express insulin, glucagon, somatostatin, and CK19 before migration. Islet cells gradually congregated along with the increase of aging, and at 14 weeks of gestation histological examination showed islet formation. At 12 weeks of gestation, nestin-positive cells could be seen in the pancreatic mesenchyme. During early embryogenesis, islet cells of pancreatic ducts co-expressed insulin, glucagon, and somatostatin. During pancreatic regeneration after damage, nestin expression of islet cells increased. Conclusion In the early stage of embryogenesis, islet cells of primary pancreatic ducts can be differentiated to multipotential endocrine cells before migration. During tissue regeneration, pancreatic stem cells may differentiate and proliferate to form pancreatic islet.

  16. Immunoisolated transplantation of purified langerhans islet cells in testis cortex of male rats for treatment of streptozotocin induced diabetes mellitus.

    Science.gov (United States)

    Farhangi, Ali; Norouzian, Dariush; Mehrabi, Mohammad Reza; Chiani, Mohsen; Saffari, Zahra; Farahnak, Maryam; Akbarzadeh, Azim

    2014-10-01

    The objective of this study is to induce experimental diabetes mellitus by streptozotocin in normal adult Wistar rats via comparison of changes in body weight, consumption of food, volume of water, urine and levels of glucose, insulin and C-peptide in serum, between normal and diabetic rats. Intra-venous injection of 60 mg/kg dose of streptozotocin in 250-300 g (75-90 days) adult Wistar rats makes pancreas swell and causes degeneration in Langerhans islet β-cells and induces experimental diabetes mellitus in 2-4 days. For a microscopic study of degeneration of Langerhans islet β-cells of diabetic rats, biopsy from pancreas tissue of diabetic and normal rats, staining and comparison between them, were done. In this process, after collagenase digestion of pancreas, islets were isolated, dissociated and identified by dithizone method and then with enzymatic procedure by DNase and trypsin, the islet cells changed into single cells and β-cells were identified by immune fluorescence method and then assayed by flow-cytometer. Donor tissue in each step of work was prepared from 38 adult male Wistar rats weighted 250-300 g (75-90 days). Transplantation was performed in rats after 2-4 weeks of diabetes induction. In this study, the levels of insulin, C-peptide and glucose in diabetic rats reached to normal range as compared to un-diabetic rats in 20 days after transplantation of islet cells. Transplantation was performed under the cortex of testis as immunoisolated place for islet cells transplantation. PMID:25298622

  17. Oxyphil Cell Parathyroid Adenomas Causing Primary Hyperparathyroidism: a Clinico-Pathological Correlation.

    Science.gov (United States)

    Howson, Pamela; Kruijff, Schelto; Aniss, Ahmad; Pennington, Thomas; Gill, Anthony J; Dodds, Tristan; Delbridge, Leigh W; Sidhu, Stan B; Sywak, Mark S

    2015-09-01

    Oxyphil cell parathyroid adenomas (OPA) are considered to be an uncommon cause of primary hyperparathyroidism (PHPT), and were historically thought to be clinically silent. It has been our clinical impression that these adenomas present more often than previously thought and may manifest a more severe form of primary hyperparathyroidism than classical adenoma. The aim of this study was to describe the incidence and clinical presentation of OPA. An observational case-control study was undertaken. The study group comprised patients undergoing parathyroidectomy for PHPT where the final pathology confirmed OPA. The controls were made up of an age- and sex-matched group of patients having parathyroidectomy in the same time period where the final pathology confirmed a classical or non-oxyphil adenoma. OPA were defined as parathyroid tumours containing >75% oxyphilic cells. The OPA cases were obtained by reviewing all histopathology slides over an 11-year period (2002-12) where the reports contained the words 'oxyphil' or 'oxyphilic' parathyroid adenomas. These were then reviewed by two independent pathologists to confirm a diagnosis of OPA. The primary outcome measures were preoperative serum calcium and parathyroid hormone (PTH) levels. Secondary outcome measures were symptoms at presentation, accuracy of preoperative localization studies, parathyroid gland weight following surgery, and type of surgery undertaken. In the period 2002-2012, 2739 patients underwent surgery for PHPT. Following pathological review, 91 cases were confirmed as being OPA and formed the study group. A control group (n = 91) from the same period was selected following matching on the basis of age at presentation and sex. OPA were associated with higher preoperative serum calcium (10.84 versus 10.48 mg/dL, p < 0.001) and parathyroid hormone (139 versus 64 ng/L, p < 0.001). At presentation, a lower proportion of OPA cases had asymptomatic disease (15 versus 29%, p = 0.03). There was

  18. Total Pancreatectomy and Islet Cell Autotransplantation: Outcomes, Controversies and New Techniques

    Directory of Open Access Journals (Sweden)

    Michal Radomski

    2015-01-01

    Full Text Available Chronic pancreatitis is a challenging disease; the constellation of chronic abdominal pain and metabolic derangements present unique difficulties to the treating physician. Initial treatment revolves around lifestyle modification, pain control, and management of exocrine insufficiency. In refractory cases, total pancreatectomy with islet cell auto transplantation (TP-IAT is an option for patients with diffuse disease not amenable to subtotal pancreatectomy or a decompressive (drainage operation. This procedure aspires to alleviate pain and avoid surgically induced brittle diabetes, a morbid complication of total pancreatectomy alone. Herein, we review the indications, optimal timing, surgical outcomes and controversies for TP-IAT, focusing on recently published reports.

  19. Relationship between islet α-cell function and glomerular filtration rate in type 2 diabetic patients

    Institute of Scientific and Technical Information of China (English)

    王晓宇

    2013-01-01

    Objective To analyze the isletα-cell function in type 2 diabetic patients with different levels of glomerular filtration rate (eGFR) .Methods Three hundred and eighty-eight cases of type 2 diabetic patients were classified into four groups according to eGFR:glomerular hyperfiltration group,normal renal function group,mild renal dysfunction group and moderate-severe renal dysfunction group.Oral glucose tolerance test,insulin releasing test and glucagon releasing test were conducted to compare

  20. Preganglionic innervation of the pancreas islet cells in the rat

    NARCIS (Netherlands)

    LUITEN, PGM; TERHORST, GJ; KOOPMANS, SJ; RIETBERG, M; STEFFENS, AB

    1984-01-01

    The position and number of preganglionic somata innervating the insulin-secreting β-cells of the endocrine pancreas were investigated in Wistar rats. This question was approached by comparing the innervation of the pancreas of normal rats with the innervation of the pancreas in alloxan-induced diabe

  1. Inherent ER stress in pancreatic islet β cells causes self-recognition by autoreactive T cells in type 1 diabetes.

    Science.gov (United States)

    Marré, Meghan L; Profozich, Jennifer L; Coneybeer, Jorge T; Geng, Xuehui; Bertera, Suzanne; Ford, Michael J; Trucco, Massimo; Piganelli, Jon D

    2016-08-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by pancreatic β cell destruction induced by islet reactive T cells that have escaped central tolerance. Many physiological and environmental triggers associated with T1D result in β cell endoplasmic reticulum (ER) stress and dysfunction, increasing the potential for abnormal post-translational modification (PTM) of proteins. We hypothesized that β cell ER stress induced by environmental and physiological conditions generates abnormally-modified proteins for the T1D autoimmune response. To test this hypothesis we exposed the murine CD4(+) diabetogenic BDC2.5 T cell clone to murine islets in which ER stress had been induced chemically (Thapsigargin). The BDC2.5 T cell IFNγ response to these cells was significantly increased compared to non-treated islets. This β cell ER stress increased activity of the calcium (Ca(2+))-dependent PTM enzyme tissue transglutaminase 2 (Tgase2), which was necessary for full stress-dependent immunogenicity. Indeed, BDC2.5 T cells responded more strongly to their antigen after its modification by Tgase2. Finally, exposure of non-antigenic murine insulinomas to chemical ER stress in vitro or physiological ER stress in vivo caused increased ER stress and Tgase2 activity, culminating in higher BDC2.5 responses. Thus, β cell ER stress induced by chemical and physiological triggers leads to β cell immunogenicity through Ca(2+)-dependent PTM. These findings elucidate a mechanism of how β cell proteins are modified and become immunogenic, and reveal a novel opportunity for preventing β cell recognition by autoreactive T cells. PMID:27173406

  2. Differentiation of fetal pancreatic stem cells into neuron-like and islet-like cells in vitro ★

    OpenAIRE

    Hua, Xiufeng; Wang, Yanwei; Lian, Peiwen; Zhang, Shouxin; Li, Jianyuan; Wang, Haiyan; Chen, Shulin; Gao, Wei

    2012-01-01

    Pancreatic stem cells were isolated and cultured from aborted human fetal pancreases of gestational age 14–20 weeks. They were seeded at a density of 1 × 104 in serum-free media for differentiation into neuron-like cells, expressing β-tubulin III and glial fibrillary acidic protein. These neuron-like cells displayed a synapse-like morphology and appeared to form a neuronal network. Pancreatic stem cells were also seeded at a density of 1 × 105 for differentiation into islet-like cells, expres...

  3. Gastric hyperplastic polyps coexisting with early gastric cancers, adenoma and neuroendocrine cell hyperplasia.

    Science.gov (United States)

    Karpińska-Kaczmarczyk, K; Lewandowska, M; Białek, A; Ławniczak, M; Urasińska, E

    2016-03-01

    Gastric hyperplastic polyps (GHP) constitute up to 93% of all benign epithelial polyps of the stomach. The average probability of malignant transformation in GHP is 0.6-22% in large series. The aim of the study was to present the coexistence of GHP with early gastric cancer (EGC), gastric adenoma (GA), neuroendocrine cell hyperplasia (NH) and well-differentiated neuroendocrine tumour (NET G1). Three cases were studied to reveal clinical data and morphological changes and to assess the relationship between GHP and accompanying gastric neoplastic lesions. PMID:27179272

  4. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets

    Directory of Open Access Journals (Sweden)

    Michael R. DiGruccio

    2016-07-01

    Conclusions: These results offer a straightforward explanation for the well-known insulinostatic actions of ghrelin. Rather than engaging beta cells directly, ghrelin engages delta cells to promote local inhibitory feedback that attenuates insulin release. These findings illustrate the power of our approach to resolve some of the long-standing conundrums with regard to the rich feedback that occurs within the islet that is integral to islet physiology and therefore highly relevant to diabetes.

  5. Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Vetterli, Laurène; Carobbio, Stefania; Pournourmohammadi, Shirin;

    2012-01-01

    In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell-specific GDH knockout mouse model, called βGlud1(-/-). The absence of GDH in islets isolated ...

  6. Pancreatic islet-cell viability, functionality and oxidative status remain unaffected at pharmacological concentrations of commonly used antibiotics in vitro

    Indian Academy of Sciences (India)

    Yogita Shewade; Suraj Tirth; R R Bhonde

    2001-09-01

    Environmental factors such as diet, physical activity, drugs, pollution and life style play an important role in the progression and/or precipitation of diseases like diabetes, hypertension, obesity and cardiovascular disorders. Indiscriminate use of antibiotics to combat infectious diseases is one of the commonest forms of misuse of drugs. Antibiotics seem to have a correlation with diabetes and pancreatic function. There are controversial reports about the effect of antibiotics on the pancreatic islets; some suggesting their harmless action, some depicting a beneficial role and others indicating deleterious effect. Moreover, use of antibiotics is mandatory during islet isolation and cultivation to reduce incidences of microbial contamination. It is likely that antibiotic treatment may adversely affect islet viability and its functioning leading to failure of islet transplantation. The present in vitro study was undertaken to examine the effect of commonly used antibiotics such as gentamycin, penicillin, streptomycin, tetracycline, neomycin, erythromycin and chloramphenicol on islet viability, its functioning and induction of oxidative stress if any. The viability and insulin production data showed that none of the antibiotics used in the present study affect the viability and the functioning of the islets at their pharmacological concentrations. Free radical levels measured in terms of melonyldialdehyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) reveal that except for a marginal increase in lipid peroxidation with tetracycline and slight increase in NO levels with streptomycin, none of these antibiotics affect the oxidative status of the cells. Antioxidant enzymes such as superoxide dismutase and catalase remain unaffected after this treatment. Our results reveal the innocuous nature of the antibiotics used at pharmacological concentrations, suggesting their safety whenever prescribed to combat infections and also during islet isolation procedures.

  7. Sustained NF-κB activation and inhibition in β-cells have minimal effects on function and islet transplant outcomes.

    Directory of Open Access Journals (Sweden)

    Aileen J F King

    Full Text Available The activation of the transcription factor NF-κB leads to changes in expression of many genes in pancreatic β-cells. However, the role of NF-κB activation in islet transplantation has not been fully elucidated. The aim of the present study was to investigate whether the state of NF-κB activation would influence the outcome of islet transplantation. Transgenic mice expressing a dominant active IKKβ (constitutively active or a non-degradable form of IκBα (constitutive inhibition under control of the rat insulin promoter were generated. Islets from these mice were transplanted into streptozotocin diabetic mice in suboptimal numbers. Further, the effects of salicylate (an inhibitor of NF-κB treatment of normal islets prior to transplantation, and the effects of salicylate administration to mice prior to and after islet implantation were evaluated. Transplantation outcomes were not affected using islets expressing a non-degradable form of IκBα when compared to wild type controls. However, the transplantation outcomes using islets isolated from mice expressing a constitutively active mutant of NF-κB were marginally worse, although no aberrations of islet function in vitro could be detected. Salicylate treatment of normal islets or mice had no effect on transplantation outcome. The current study draws attention to the complexities of NF-κB in pancreatic beta cells by suggesting that they can adapt with normal or near normal function to both chronic activation and inhibition of this important transcription factor.

  8. Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extracts of Annona muricata.

    Science.gov (United States)

    Adeyemi, D O; Komolafe, O A; Adewole, O S; Obuotor, E M; Abiodun, A A; Adenowo, T K

    2010-05-01

    Microanatomical changes in the pancreatic islet cells of streptozotocin induced diabetic Wistar rats were studied after treatment with methanolic extracts of Annona muricata leaves. Thirty adult Wistar rats were randomly assigned into three groups (control, untreated diabetic group, and A. muricata-treated diabetic group) of ten rats each. Diabetes mellitus was experimentally induced in groups B and C by a single intra-peritoneal injection of 80 mg/kg streptozotocin dissolved in 0.1 M citrate buffer. The control rats were intraperitoneally injected with an equivalent volume of citrate buffer. Daily intra peritoneal injections of 100 mg/kg A. muricata were administered to group C rats for two weeks. Post sacrifice the pancreases of the rats were excised and fixed in Bouin's fluid. The tissues were processed for paraffin embedding and sections of 5 mum thickness were produced and stained with H & E, Gomori aldehyde fuchsin, and chrome alum haematoxylin-phloxine for demonstration of the beta-cells of islets of pancreatic islets. Histomorphological and morphometric examination of the stained pancreatic sections showed a significant increase in the number, diameter, and volume of the beta-cells of pancreatic islets of the A. muricata-treated group (5.67 +/- 0.184 N/1000 mum(2), 5.38 +/- 0.093 mum and 85.12 +/- 4.24 mum(3), respectively) when compared to that of the untreated diabetic group of rats (2.85 +/- 0.361 N/1000 mum(2), 2.85 +/- 0.362 mum and 69.56 +/- 5.216 mum(3), respectively). The results revealed regeneration of the beta-cells of islets of pancreatic islet of rats treated with extract of A. muricata.

  9. Isolation and culture of adult Sertoli cells and their effects on the function of co-cultured allogeneic islets in vitro

    Institute of Scientific and Technical Information of China (English)

    TENG Yan; XUE Wu-jun; DING Xiao-ming; FENG Xin-shun; XIANG He-li; JIANG Ya-zhuo; TIAN Pu-xun

    2005-01-01

    Background Globally, 180 million people suffer from diabetes mellitus. Islet transplantation is believed to be an almost ideal therapy for insulin-dependent patients. How to maintain the viability and the function of isolated human islets is a challenge in clinical practice. Sertoli cells are considered ‘nurse cells'in the seminiferous tubules and have been used in cell graft protocols for neurodegenerative diseases and diabetes in many studies. Many researchers have used immature murine testes as the primarily source of Sertoli cells in islet transplantation because they are easily purified. Mature human Sertoli cells have been seldom investigated. In the present study, we developed a method for the isolation and culture of Sertoli cells derived from adult human testes, and investigated their effects on the function of allogeneic islets when they were cultured together in vitro. Methods Adult Sertoli cells were prepared successfully by two-step enzyme digestion with trypsin, collagenase and hyaluronidase. They were identified by morphological characteristics and their activity was determined by MTT colorimetry over a 28-day culture time in vitro. A glucose-stimulated insulin secretion test was performed to detect the effects of Sertoli cells on allogeneic islets' function when they were co-cultured for 21 days in vitro. Results In cultured cells, mature human Sertoli cells accounted for more than 90% of total cells. The activity of Sertoli cells reached 95% and they remained highly cytoactive for a long time in vitro (P>0.05). Compared with the islets cultured alone, the co-cultured islets with allogeneic Sertoli cells maintained higher sensitivity to glucose stimulation for the duration of the experiment (P<0.01). Conclusions A method of isolation and culture of Sertoli cells from adult testes has been established. Sertoli cells could enhance allogeneic islets' function when they were co-cultured in vitro. They could be a helper cell in islet transplantation.

  10. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  11. Optogenetic Control of Pancreatic Islets.

    Science.gov (United States)

    Reinbothe, Thomas M; Mollet, Inês G

    2016-01-01

    In light of the emerging diabetes epidemic, new experimental approaches in islet research are needed to elucidate the mechanisms behind pancreatic islet dysfunction and to facilitate the development of more effective therapies. Optogenetics has created numerous new experimental tools enabling us to gain insights into processes little was known about before. The spatial and temporal precision that it can achieve is also attractive for studying the cells of the pancreatic islet and we set out to explore the possibilities of this technology for our purposes. We here describe how to use the islets of an "optogenetic beta-cell" mouse line in islet batch incubations and Ca(2+) imaging experiments. This protocol enables light-induced insulin release and provides an all-optical solution to control and measure intracellular Ca(2+) levels in pancreatic beta-cells. The technique is easy to set up and provides a useful tool for controlling the activity of distinct islet cell populations. PMID:26965119

  12. Frequency of islet cell autoantibodies (IA-2 and GAD in young Brazilian type 1 diabetes patients

    Directory of Open Access Journals (Sweden)

    V.C. Pardini

    1999-10-01

    Full Text Available Type 1 diabetes, as an autoimmune disease, presents several islet cell-specific autoantibodies such as islet cell antibody (ICA, anti-insulin, anti-glutamic acid decarboxylase (GAD and the antibody (Ab against tyrosine phosphatase (PTP-like protein known as ICA-512 (IA-2. In order to determine the frequency of the anti-GAD and anti-IA-2 autoantibodies in Brazilian type 1 diabetes patients we studied 35 diabetes mellitus (DM type 1 patients with recent-onset disease (£12 months and 37 type 1 diabetes patients with long-duration diabetes (>12 months who were compared to 12 children with normal fasting glucose. Anti-GAD65 and anti-IA-2 autoantibodies were detected with commercial immunoprecipitation assays. The frequency of positive results in recent-onset DM type 1 patients was 80.0% for GADAb, 62.9% for IA-2Ab and 82.9% for GADAb and/or IA-2Ab. The long-duration type 1 diabetes subjects presented frequencies of 54.1% for GADAb and IA-2Ab, and 67.5% for GAD and/or IA-2 antibodies. The control group showed no positive cases. Anti-GAD and IA-2 assays showed a high frequency of positivity in these Brazilian type 1 diabetes patients, who presented the same prevalence as a Caucasian population.

  13. γ-aminobutyric acid secreted from islet β-cells modulates exocrine secretion in rat pancreas

    Institute of Scientific and Technical Information of China (English)

    Yong-Deuk Park; Zheng-Yun Cui; Guang Wu; Hyung-Seo Park; Hyoung-Jin Park

    2006-01-01

    AIM: To investigate the role of endogenous γ-aminobutyric acid (GABA) in pancreatic exocrine secretion.METHODS: The isolated, vascularly perfused rat pancreas was employed in this study to eliminate the possible influences of extrinsic nerves and hormones.Cholecystokinin (CCK; 10 pmol/L) was intra-arterially given to stimulate exocrine secretion of the pancreas.RESULTS: Glutamine, a major precursor of GABA, which was given intra-arterially at concentrations of 1, 4 and 10 mmol/L, dose-dependently elevated the CCK-stimulated secretions of fluid and amylase in the normal pancreas.Bicuculline (10 μmol/L), a GABAA receptor antagonist,blocked the enhancing effect of glutamine (4 mmol/L) on the CCK-stimulated exocrine secretions. Glutamine, at concentrations of 1, 4 and 10 mmol/L, dose-dependently increased the GABA concentration in portal effluent of the normal pancreas. The effects of glutamine on the CCK-stimulated exocrine secretion as well as the GABA secretion were markedly reduced in the streptozotocintreated pancreas.CONCLUSION: GABA could be secreted from β-cells into the islet-acinar portal system after administration of glutainine, and could enhance the CCK-stimulated exocrine secretion through GABAA receptors. Thus,GABA in islet β-cells is a hormone modulating pancreatic exocrine secretion.

  14. Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells.

    Science.gov (United States)

    Zhu, Hong-Yan; Chen, Guang-Tong; Meng, Guo-Liang; Xu, Ji-Liang

    2015-03-01

    The polysaccharides from pumpkin fruit (PP) were obtained and purified by hot-water extraction, anion-exchange chromatography, and gel column chromatography. The physicochemical properties of PP were determined by gel filtration chromatography, gas chromatography, fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the molecular weight of PP was about 23 kDa and PP was composed of D-Arabinose, D-Mannose, D-Glucose, and D-Galactose with a molar ratio of 1 : 7.79 : 70.32 : 7.05. FTIR and NMR spectra indicated that PP was the polysaccharide containing pyranose ring. Additionally, PP protected islets cells from streptozotocin (STZ) injury in vitro via increasing the levels of super-oxide dismutase (SOD) and malondialdehyde (MDA) and reducing the production of NO. The experiment of reverse transcriptase-polymerase chain reaction further proved that PP inhibited apoptosis via modulating the expression of Bax/Bcl-2 in STZ-damaged islet cells. In conclusion, PP could be explored as a novel agent for the treatment of diabetes mellitus. PMID:25835364

  15. Caveolin-1 sensitizes rat pituitary adenoma GH3 cells to bromocriptine induced apoptosis

    Directory of Open Access Journals (Sweden)

    Huang Mu-Chiou

    2007-03-01

    Full Text Available Abstract Background Prolactinoma is the most frequent pituitary tumor in humans. The dopamine D2 receptor agonist bromocriptine has been widely used clinically to treat human breast tumor and prolactinoma through inhibition of hyperprolactinemia and induction of tumor cell apoptosis, respectively, but the molecular mechanism of bromocriptine induction of pituitary tumor apoptosis remains unclear. Caveolin-1 is a membrane-anchored protein enriched on caveolae, inverted flask-shaped invaginations on plasma membranes where signal transduction molecules are concentrated. Currently, caveolin-1 is thought to be a negative regulator of cellular proliferation and an enhancer of apoptosis by blocking signal transduction between cell surface membrane receptors and intracellular signaling protein cascades. Rat pituitary adenoma GH3 cells, which express endogenous caveolin-1, exhibit increased apoptosis and shrinkage after exposure to bromocriptine. Hence, the GH3 cell line is an ideal model for studying the molecular action of bromocriptine on prolactinoma. Results The expression of endogenous caveolin-1 in GH3 cells was elevated after bromocriptine treatment. Transiently expressed mouse recombinant caveolin-1 induced apoptosis in GH3 cells by enhancing the activity of caspase 8. Significantly, caveolin-1 induction of GH3 cell apoptosis was sensitized by the administration of bromocriptine. Phosphorylation of caveolin-1 at tyrosine 14 was enhanced after bromocriptine treatment, suggesting that bromocriptine-induced phosphorylation of caveolin-1 may contribute to sensitization of apoptosis in GH3 cells exposed to bromocriptine. Conclusion Our results reveal that caveolin-1 increases sensitivity for apoptosis induction in pituitary adenoma GH3 cells and may contribute to tumor shrinkage after clinical bromocriptine treatment.

  16. Cyproheptadine-mediated inhibition of growth hormone and prolactin release from pituitary adenoma cells of acromegaly and gigantism in culture.

    Science.gov (United States)

    Ishibashi, M; Fukushima, T; Yamaji, T

    1985-08-01

    The effect of cyproheptadine on growth hormone (GH) and prolactin (Prl) secretion from cultured pituitary adenoma cells of acromegaly and pituitary gigantism was studied. When varying doses of cyproheptadine ranging from 0.01 to 1 microM were added to the incubation media, GH secretion was consistently inhibited and a dose-response relationship was observed between the cyproheptadine concentrations and the amounts of GH released into the media. In pituitary adenomas which concurrently produced and secreted Prl, cyproheptadine likewise suppressed Prl release in a dose-related manner. This effect of cyproheptadine was not blocked by coincubation with serotonin. Similarly, coincubation with a dopaminergic antagonist, haloperidol, failed to reverse the inhibitory action produced by cyproheptadine. When coincubated with dopamine, cyproheptadine further inhibited GH and Prl secretion. These results suggest that cyproheptadine possesses a direct action on human somatotroph adenoma cells to inhibit GH and Prl secretion by an unknown mechanism that is different from serotonergic and dopaminergic systems. PMID:2994332

  17. Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Feng-Cheng Chou

    2012-01-01

    Full Text Available Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1 detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2 inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells.

  18. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation.

    Directory of Open Access Journals (Sweden)

    Vaibhav Mundra

    Full Text Available The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra. Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdc(scid Il2rg(tm1Wjl /SzJ (NSG diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF. hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet

  19. 胰岛分离纯化过程中细胞凋亡发生的分子基础与解析%Study on the Molecular Mechanisms of Islet Cell Apoptosis in Isolation and Purification of Islet

    Institute of Scientific and Technical Information of China (English)

    文宁; 曹嵩; 孙煦勇; 秦科; 农江; 赖彦华; 董建辉; 聂峰; 蔡文娥; 黄莹

    2012-01-01

    目的 观察移植前胰岛提取过程中胰岛细胞凋亡情况,以及细胞因子与氧化-抗氧化因素变化,以阐明胰岛细胞凋亡的分子生物学机制,为胰岛保护策略提供实验基础.方法 选取15例人胰腺,进行胶原酶灌注、消化以及梯度离心分离胰岛,在此过程中取材,采用TUNEL法进行胰岛细胞凋亡检测,胰腺或胰岛组织中TNF -α、IL-8、IL-1等细胞因子采用ELISA法检测,而组织中SOD与MDA水平采用比色法检测,同时进行HE染色、双硫腙染色观察胰岛及胰岛细胞形态改变.结果 在人胰腺灌注与消化过程,形态学观察发现胰岛周围组织疏松以及部分胰岛结构的损害,有TUNEL染色阳性凋亡细胞出现,伴随较高水平的TNF-α、IL-8、IL-1以及MDA出现,在灌注前、灌注后与消化中均显著高于胰岛分离后的水平.结论 移植前胰岛提取过程中胶原酶灌注以及消化可引起胰岛细胞凋亡,可能与细胞因子与氧自由基水平升高有关,提示抑制细胞因子的释放与抗氧化可以作为胰岛保护策略切入点.%Objective To observe the changes of islet cell apoptosis, oxidation - antioxidation system and cytokines in the process of islet isolation and purification before transplantation, so as to elucidate the molecular mechanisms of islet cell apoptosis. Methods Fifteen human pancreases were perfused with Hank's solution containing collagenase and then were subjected to digestion and gradient centrifugation to isolate islets. Samples were collected during this process for detection of islet cell apoptosis by TUNEL method, TNF-α, IL-1, 1L-8 by EL1SA and SOD, MDA by colorimetric method. The morphologic alterations of islets and islet cells were observed after H - E and dithizone staining. Results In the process of pancreases perfusion and digestion, the tissues around the islets were loose and structures of some islets were damaged. Apoptotic islet cells with positive staining by TUNEL and high

  20. Non-islet cell tumour-induced hypoglycaemia: a review of the literature including two new cases.

    NARCIS (Netherlands)

    Groot, J.W. de; Rikhof, B.; Doorn, J. van; Bilo, H.J.; Alleman, M.A.; Honkoop, A.H.; Graaf, W.T.A. van der

    2007-01-01

    This review focuses on the tumour types and symptoms associated with non-islet cell tumour-induced hypoglycaemia (NICTH) as well as the pathogenesis, diagnosis and treatment of this rare paraneoplastic phenomenon. In addition, we report two illustrative cases of patients suffering from NICTH caused

  1. Non-islet cell tumour-induced hypoglycaemia : a review of the literature including two new cases

    NARCIS (Netherlands)

    De Groot, Jan Willem B.; Rikhof, Bart; Van Doom, Jaap; Bilo, Henk J. G.; Alleman, Maarten A.; Honkoop, Aafke H.; Van der Graaf, Winette T. A.

    2007-01-01

    This review focuses on the tumour types and symptoms associated with non-islet cell tumour-induced hypoglycaemia (NICTH) as well as the pathogenesis, diagnosis and treatment of this rare paraneoplastic phenomenon. In addition, we report two illustrative cases of patients suffering from NICTH caused

  2. Assembly of bioactive multilayered nanocoatings on pancreatic islet cells: incorporation of α1-antitrypsin into the coatings.

    Science.gov (United States)

    Zhi, Zheng-Liang; Singh, Jashandeep; Austin, Amazon L F; Hope, David C D; King, Aileen J; Persaud, Shanta J; Jones, Peter M

    2015-07-01

    A spontaneous multilayer deposition approach for presenting therapeutic proteins onto pancreatic islet surfaces, using a heparin polyaldehyde and glycol chitosan alternating layering scheme, has been developed to enable the nanoscale engineering of a microenvironment for transplanted cells. The nanocoating incorporating α1-antitrypsin, an anti-inflammatory protein, exhibited effective anti-coagulant activities in vitro. PMID:26051448

  3. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial

    DEFF Research Database (Denmark)

    Bingley, P J; Gale, E A M; Reimers, Jesper Irving

    2006-01-01

    AIMS/HYPOTHESIS: To examine the role of additional immune, genetic and metabolic risk markers in determining risk of diabetes in islet cell antibody (ICA)-positive individuals with a family history of type 1 diabetes recruited into the European Nicotinamide Diabetes Intervention Trial. METHODS...

  4. Changes and significances of islet β-cell function, oxidative stress and adipocyte factor in gestational diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Guang-Yu Sun

    2016-01-01

    Objective:To investigate the changes and significances of islet β-cell function, oxidative stress and adipocyte factor in gestational diabetes mellitusthe. Methods:A total of 60 cases of gestational diabetes mellitus (GDM) patients were regarded as GDM group, a total of 60 cases of normal pregnant women were regarded as pregnant group, and a total of 60 cases of healthy women were regarded as control group. Isletβ-cell function, oxidative stress and adipocyte factor were measured and compared in the three groups. Results:For isletβ-cell function, the levels of FBG, FINS and HOMA-IR in GDM group significantly increased and the levels of HOMA-β and ISI in GDM group significantly decreased compared with control group and pregnant group. For oxidative stress, the level of MDA in GDM group significantly increased and the levels of SOD, GSH and TAOC in GDM group significantly decreased compared with control group and pregnant group. For adipocyte factor, the levels of adiponectin and visfatin in GDM group significantly decreased and the levels of leptin and resistin in GDM group significantly increased compared with control group and pregnant group. Conclusion:Gestational diabetes mellitus could result in impairment of islet β-cell function, decrease of insulin, oxidative stress and abnormality of adipocyte factor .

  5. Automated assessment of β-cell area and density per islet and patient using TMEM27 and BACE2 immunofluorescence staining in human pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Markus P Rechsteiner

    Full Text Available In this study we aimed to establish an unbiased automatic quantification pipeline to assess islet specific features such as β-cell area and density per islet based on immunofluorescence stainings. To determine these parameters, the in vivo protein expression levels of TMEM27 and BACE2 in pancreatic islets of 32 patients with type 2 diabetes (T2D and in 28 non-diabetic individuals (ND were used as input for the automated pipeline. The output of the automated pipeline was first compared to a previously developed manual area scoring system which takes into account the intensity of the staining as well as the percentage of cells which are stained within an islet. The median TMEM27 and BACE2 area scores of all islets investigated per patient correlated significantly with the manual scoring and with the median area score of insulin. Furthermore, the median area scores of TMEM27, BACE2 and insulin calculated from all T2D were significantly lower compared to the one of all ND. TMEM27, BACE2, and insulin area scores correlated as well in each individual tissue specimen. Moreover, islet size determined by costaining of glucagon and either TMEM27 or BACE2 and β-cell density based either on TMEM27 or BACE2 positive cells correlated significantly. Finally, the TMEM27 area score showed a positive correlation with BMI in ND and an inverse pattern in T2D. In summary, automated quantification outperforms manual scoring by reducing time and individual bias. The simultaneous changes of TMEM27, BACE2, and insulin in the majority of the β-cells suggest that these proteins reflect the total number of functional insulin producing β-cells. Additionally, β-cell subpopulations may be identified which are positive for TMEM27, BACE2 or insulin only. Thus, the cumulative assessment of all three markers may provide further information about the real β-cell number per islet.

  6. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function.

    Science.gov (United States)

    Fueger, Patrick T; Schisler, Jonathan C; Lu, Danhong; Babu, Daniella A; Mirmira, Raghavendra G; Newgard, Christopher B; Hohmeier, Hans E

    2008-05-01

    Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.

  7. [Stem-cell therapy, β-cell- and islet cell-neogenesis: possible treatments of type 1 diabetes in the future?].

    Science.gov (United States)

    Gerő, László

    2016-05-01

    In type 1 diabetic patients perfect normoglycaemia can only be achieved by successful transplantation of the pancreas or Langerhans' islets. Surgical transplantation of the whole pancreas is an invasive operation exerting great burden on the patients. Transplantation of the islets of Langerhans does not burden the patients but the survival of the islet grafts is limited. Both interventions are hampered by the lack of donor organs. However, much of these difficulties could be overcome by the use of "artificial β-cells" which ought to have an ultrastructure identical with that of natural β-cells and produce and secrete insulin in a glucose dependent manner. At present three such methods are at our disposal: transformation of the ductal cells of the exocrine pancreas into β-cells, development of β-cells from stem-cells, and neogenesis of Langerhans' islets induced by viral delivery of transcription factors. The author summarises the experience and experimental results obtained with the use of the three methods.

  8. Experience with a novel efalizumab-based immunosuppressive regimen to facilitate single donor islet cell transplantation

    OpenAIRE

    Turgeon, NA; Avila, JG; Cano, JA; Hutchinson, JJ; Badell, IR; Page, AJ; Adams, AB; Sears, MH; Bowen, PH; Kirk, AD; Pearson, TC; Larsen, CP

    2010-01-01

    Islet transplantation is an experimental therapy for selected patients with type 1-diabetes (T1DM). It remains limited by immunosuppressive drug toxicity, progressive loss of insulin independence, allosensitization, and the need for multiple islet donors. We describe our experience with an efalizumab-based immunosuppressive regimen as compared to the prevailing standard regimen, the Edmonton protocol. Twelve patients with T1DM received islet transplants: 8 were treated with the Edmonton proto...

  9. In CD4+ T-Cell-Induced Diabetes, Macrophages Are the Final Effector Cells that Mediate Islet β-Cell Killing : Studies from an Acute Model

    OpenAIRE

    Calderon, Boris; Suri, Anish; Unanue, Emil R.

    2006-01-01

    To understand better how diabetogenic CD4+ T cells induce islet β-cell death and cause diabetes, a transfer model of acute diabetes using the diabetogenic CD4+ BDC2.5 T-cell clone was established. Transfer of activated BDC T cells into NOD.scid mice resulted in diabetes within a week, characterized by strong inflammatory reaction. Electron micrographs of pancreas depicted macrophages in close contact with β cells that exhibited signs of apoptosis. Transfer into irradiated recipients inhibited...

  10. Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment

    Directory of Open Access Journals (Sweden)

    Omaima M Sabek

    2016-04-01

    Full Text Available Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization. To overcome the limitations of poor islet availability, here, we investigate the potential of bone marrow–derived mesenchymal stem cells differentiated into islet-like insulin-producing aggregates. Islet-like insulin-producing aggregates, characterized by gene expression, are shown to be similar to pancreatic islets and display positive immunostaining for insulin and glucagon. To address the limits of current encapsulation systems, we developed a novel three-dimensional printed, scalable, and potentially refillable polymeric construct (nanogland to support islet-like insulin-producing aggregates’ survival and function in the host body. In vitro studies showed that encapsulated islet-like insulin-producing aggregates maintained viability and function, producing steady levels of insulin for at least 4 weeks. Nanogland—islet-like insulin-producing aggregate technology here investigated as a proof of concept holds potential as an effective and innovative approach for diabetes cell therapy.

  11. Cooperation by Fibroblasts and Bone Marrow-Mesenchymal Stem Cells to Improve Pancreatic Rat-to-Mouse Islet Xenotransplantation

    Science.gov (United States)

    Meana, Alvaro; Otero, Jesus; Esteban, Manuel M.

    2013-01-01

    Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet

  12. Pig islets for islet xenotransplantation: current status and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Hu Qinghua; Liu Zhongwei; Zhu Haitao

    2014-01-01

    Objective To review the current status and progress on pig islet xenotransplantation.Data sources Data used in this review were mainly from English literature of Pubmed database.The search terms were "pig islet" and "xenotransplantation".Study selection The original articles and critical reviews selected were relevant to this review's theme.Results Pigs are suggested to be an ideal candidate for obtaining available islet cells for transplantation.However,the potential clinical application of pig islet is still facing challenges including inadequate yield of high-quality functional islets and xenorejection of the transplants.The former can be overcome mainly by selection of a suitable pathogen-free source herd and the development of isolation and purification technology.While the feasibility of successful preclinical pig islet xenotranplantation provides insights in the possible mechanisms of xenogeneic immune recognition and rejection to overwhelm the latter.In addition,the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies is promising.Conclusions Pig islet xenotransplantation is one of the prospective treatments to bridge the gap between the needs of transplantation in patients with diabetes and available islet cells.Nonetheless,further studies and efforts are needed to translate obtained findings into tangible applications.

  13. Distinct differences in the responses of the human pancreatic β-cell line EndoC-βH1 and human islets to proinflammatory cytokines.

    Science.gov (United States)

    Oleson, Bryndon J; McGraw, Jennifer A; Broniowska, Katarzyna A; Annamalai, Mani; Chen, Jing; Bushkofsky, Justin R; Davis, Dawn B; Corbett, John A; Mathews, Clayton E

    2015-09-01

    While insulinoma cells have been developed and proven to be extremely useful in studies focused on mechanisms controlling β-cell function and viability, translating findings to human β-cells has proven difficult because of the limited access to human islets and the absence of suitable insulinoma cell lines of human origin. Recently, a human β-cell line, EndoC-βH1, has been derived from human fetal pancreatic buds. The purpose of this study was to determine whether human EndoC-βH1 cells respond to cytokines in a fashion comparable to human islets. Unlike most rodent-derived insulinoma cell lines that respond to cytokines in a manner consistent with rodent islets, EndoC-βH1 cells fail to respond to a combination of cytokines (IL-1, IFN-γ, and TNF) in a manner consistent with human islets. Nitric oxide, produced following inducible nitric oxide synthase (iNOS) expression, is a major mediator of cytokine-induced human islet cell damage. We show that EndoC-βH1 cells fail to express iNOS or produce nitric oxide in response to this combination of cytokines. Inhibitors of iNOS prevent cytokine-induced loss of human islet cell viability; however, they do not prevent cytokine-induced EndoC-βH1 cell death. Stressed human islets or human islets expressing heat shock protein 70 (HSP70) are resistant to cytokines, and, much like stressed human islets, EndoC-βH1 cells express HSP70 under basal conditions. Elevated basal expression of HSP70 in EndoC-βH1 cells is consistent with the lack of iNOS expression in response to cytokine treatment. While expressing HSP70, EndoC-βH1 cells fail to respond to endoplasmic reticulum stress activators, such as thapsigargin. These findings indicate that EndoC-βH1 cells do not faithfully recapitulate the response of human islets to cytokines. Therefore, caution should be exercised when making conclusions regarding the actions of cytokines on human islets when using this human-derived insulinoma cell line. PMID:26084699

  14. EFFECTS OF GLUCAGON ON ISLET β CELL FUNCTION IN PATIENTS WITH DIABETES MELLITUS

    Institute of Scientific and Technical Information of China (English)

    Tong Wang; Xin-hua Xiao; Wen-hui Li; Heng Wang; Qi Sun; Tao Yuan; Guo-hua Yang

    2008-01-01

    Objective To evaluate islet β cell response to intravenous glucagon ( a non-glucose secretagogne) stimulation in diabetes mellitus. Methods Nineteen patients with type 1 diabetes (T1D) and 131 patients with type 2 diabetes (T2D) were recruited in this study. T2D patients were divided into two groups according to therapy: 36 cases treated with insulin and 95 cases treated with diet or oral therapy. The serum C-peptide levels were determined at fasting and six minutes after intra-venous injection of 1 mg of glucagon.Results Both fasting and 6-minute post-glucagnn-stimulated C-peptide levels in T1D patients were significantly lower than those of T2D patients (0. 76 ± 0.36 ng/mL vs. 1.81 ± 0. 78 ng/mL, P < 0. 05 ; 0. 88 ± 0. 42 ng/mL vs.3.68 ±0.98 ng/mL, P <0. 05). In T1D patients, the C-peptide level after injection of glucagon was similar to the fast-ing leveL In T2D, patients treated with diet or oral drug had a significantly greater fasting and stimulated C-peptide level than those patients received insulin therapy (2. 45±0. 93 ng/mL vs. 1.61±0. 68 ng/mL, P <0. 05 ; 5.26±1.24 ng/mLvs. 2. 15±0. 76 ng/mL, P < 0. 05 ). The serum C-peptide level after glucagon stimulation was positively correlated with C-peptide levels at fasting in all three groups ( r = 0. 76, P < 0. 05 ).Conclusions The 6-minute glucagon test is valuable in assessing the function of islet β cell in patients with diabetes mellitus. It is helpful for diagnosis and treatment of diabetes mellitus.

  15. Radical-scavenging effects of Aloe arborescens Miller on prevention of pancreatic islet B-cell destruction in rats.

    Science.gov (United States)

    Beppu, Hidehiko; Koike, Takaaki; Shimpo, Kan; Chihara, Takeshi; Hoshino, Motoyuki; Ida, Chikako; Kuzuya, Hiroshi

    2003-11-01

    We evaluated the possible scavenging effects of Aloe arborescens Miller var. natalensis Berger (Kidachi aloe in Japanese) on free radicals generated by streptozotocin (Sz) or alloxan (Ax). The components of Kidachi aloe were added to a reaction system in which .OH radicals derived from Sz or Ax as pancreatic islet B-cell toxins and hypoxanthine-xanthine oxidase (HX-XO)-derived O(2) radicals destroy isolated islet B-cells, and we observed its preventive effects. The Kidachi aloe components inhibited the destruction of rat pancreatic islet B-cells by Sz, Ax or HX-XO. These components were prepared in the form of a freeze-dried powder of the boiled leaf skin of Kidachi aloe, and measurement of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity showed higher radical-scavenging activity in this boiled leaf skin powder than the non-boiled leaf skin powder.Furthermore, HPLC chromatograms of the "Boiled leaf skin powder" were similar to those of commercially available aloin (barbaloin content: approximately 20%). Therefore, the main component may be a phenol compound. In addition, the phenolic fraction of the Boiled leaf skin contained large amounts of 2'-O-p-coumaroylaloesin and 2'-O-feruloylaloesin, which have higher DPPH radical-scavenging activity than barbaloin. These results suggest that the action mechanism of Kidachi aloe Boiled leaf skin components, which prevent destruction of the pancreatic islets by specific pancreatic islet toxins such as Sz, Ax, and HX-XO, involves inhibition of free radical-scavenging effects, and may be associated with a thermostable low molecular component. The co-existence of Kidachi aloe-derived 2'-O-p-coumaroylaloesin, 2'-O-feruloylaloesin, and aloin may result in the potentiation of radical-scavenging activity. PMID:14522430

  16. Improving cellular function and immune protection via layer-by-layer nanocoating of pancreatic islet β-cell spheroids cocultured with mesenchymal stem cells.

    Science.gov (United States)

    Bhaiji, Tasneem; Zhi, Zheng-Liang; Pickup, John C

    2012-06-01

    Islet transplantation as a therapy for type 1 diabetes is currently limited by lack of primary transplant material from human donors and post-transplantation loss of islets caused by adverse immune and nonimmune reactions. This study aimed to develop a novel strategy to create microenvironment for islets via integration of nanoencapsulation with cell cocultures, thereby enhancing their survival and function. The nanoencapsulation was achieved via layer-by-layer deposition of phosphorycholine-modified poly-L-lysine/heparin leading to the formation of nanometer-thick multilayer coating on islets. Spheroids formed by coculturing MIN6 β-cells with mesenchymal stem cells in suspension were used as the tool for testing encapsulation. Coculturing MSCs with MIN6 cells allowed the cell constructs to enhance structural and morphologic stability with improved insulin secretory function and render them less susceptible to inflammatory cytokine-induced apoptosis. Combining nanoencapsulation with coculture of MSCs/MIN6 resulted in higher glucose responsiveness, and lower antibody binding and apoptosis-inducing effects of cytokines. This strategy of nanoencapsulating islet cocultures appears promising to improve cellular delivery of insulin for treating type 1 diabetes. PMID:22447690

  17. Liver cell adenoma showing sequential alteration of radiological findings suggestive of well-differentiated hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Takayuki Kogure; Yoshiyuki Ueno; Satoshi Sekiguchi; Kazuyuki Ishida; Takehiko Igarashi; Yuta Wakui; Takao Iwasaki; Tooru Shimosegawa

    2009-01-01

    A liver tumor 35 mm in diameter was found incidentally in a 40-year-old woman who had no history of liver diseases or the use of oral contraceptives. Radiological diagnostics showed the typical findings of liver cell adenoma (LCA). Dynamic computed tomography revealed that the tumor showed a homogenous enhancement in the arterial phase and almost the same enhancement as the surrounding liver parenchyma in the delayed phase. The tumor was found to contain fat on magnetic resonance imaging. A benign fat containing liver tumor was suggested. However, radiological findings altered, which caused us to suspect that a welldifferentiated hepatocellular carcinoma (HCC) containing fat was becoming dedifferentiated. Partial hepatectomy was performed and the pathological findings showed the typical findings of LCA. This case was an extremely rare LCA, which had no background of risk for LCA and developed the sequential alteration of the radiological findings to suspect well-differentiated HCC.

  18. Islet amyloid polypeptide in pancreatic islets from type 2 diabetic subjects

    OpenAIRE

    Tomita, Tatsuo

    2012-01-01

    Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to...

  19. Pancreatic islet transplantation

    Directory of Open Access Journals (Sweden)

    Corrêa-Giannella Maria

    2009-09-01

    Full Text Available Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of

  20. Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells.

    Directory of Open Access Journals (Sweden)

    Sylvain J Le Marchand

    Full Text Available The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca(2+](i and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca(2+](i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on K(ATP channel activity but not on tetrodotoxin-sensitive Na(+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca(2+](i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by K(ATP channel activity or reduction in α-cell [Ca(2+](i. Our results demonstrate that glucose uncouples the positive relationship between [Ca(2+](i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.

  1. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    International Nuclear Information System (INIS)

    Research highlights: → Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2rγnull mice. → Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. → The islet β cells were selectively destroyed by infiltrated human T cells. → The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing β cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2rγnull mice. The selective destruction of pancreatic islet β cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total β-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the β cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet β cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4+ T cell infiltration and clonal expansion, and the mouse islet β-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet β cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  2. Deletion of ARNT (Aryl hydrocarbon receptor nuclear translocator in β-cells causes islet transplant failure with impaired β-cell function.

    Directory of Open Access Journals (Sweden)

    Amit Lalwani

    Full Text Available BACKGROUND: Replacing β-cells by islet-transplantation can cure type 1 diabetes, but up to 70% of β-cells die within 10 days of transplantation. ARNT (Aryl hydrocarbon Receptor Nuclear Translocator regulates β-cell function, and potentially survival. Lack of ARNT impairs the ability of β-cells to respond to physiological stress and potentiates the onset of diabetes, but the exact role of ARNT in graft outcome is unknown. AIM: To investigate the effect of β-cell deletion of ARNT on graft outcomes. METHODS: Islets were isolated from donor mice which had β-cell specific ARNT-deletion (β-ARNT or littermate floxed controls. The islets were transplanted into diabetic SCID recipients in ratios of (a 3 donors: 1 recipient, (b 1 donor: 1 recipient or (c ½ of the islets from 1 donor: 1 recipient. After 28 days, the kidney containing the graft was removed (nephrectomy to exclude regeneration of the endogenous pancreas. RESULTS: In the supra-physiological-mass model (3:1, both groups achieved reasonable glycaemia, with slightly higher levels in β-ARNT-recipients. In adequate-mass model (1:1, β-ARNT recipients had poor glucose control versus floxed-control recipients and versus the β-ARNT donors. In the low-β-cell-mass model (½:1 β-ARNT transplants completely failed, whereas controls had good outcomes. Unexpectedly, there was no difference in the graft insulin content or β-cell mass between groups indicating that the defect was not due to early altered β-cell survival. CONCLUSION: Outcomes for islet transplants lacking β-cell ARNT were poor, unless markedly supra-physiological masses of islets were transplanted. In the 1:1 transplant model, there was no difference in β-cell volume. This is surprising because transplants of islets lacking one of the ARNT-partners HIF-1α have increased apoptosis and decreased islet volume. ARNT also partners HIF-2α and AhR (aryl hydrocarbon receptor to form active transcriptional complexes, and further work

  3. Liver cell adenoma: A case report with clonal analysis and literature review

    Institute of Scientific and Technical Information of China (English)

    Li Gong; Qin Su; Wei Zhang; Ai-Ning Li; Shao-Jun Zhu; Ying-Ming Feng

    2006-01-01

    We report a case of liver cell adenoma (LCA) in a 33-year-old female patient with special respect to its clonality status, pathogenic factors and differential diagnosis. The case was examined by histopathology,immunohistochemistry and a clonality assay based on X-chromosomal inactivation mosaicism in female somatic tissues and polymorphism at androgen receptor focus. The clinicopathological features of the reported cases from China and other countries were compared.The lesion was spherical, sizing 2 cm in its maximal dimension. Histologically, it was composed of cells arranged in cords, most of which were two-cell-thick and separated by sinusoids. Focal fatty change and excessive glycogen storage were observed. The tumor cells were round or polygonal in shape, resembling the surrounding parenchymal cells. Mitosis was not found. No portal tract, central vein or ductule was found within the lesion. The tumor tissue showed a positive reaction for cytokeratin (CK) 18, but not for CK19, vimentin, estrogen and progesterone receptors. Monodonality was demonstrated for the lesion, confirming the diagnosis of an LCA. Clonality analysis is helpful for its distinction from focal nodular hyperplasia.

  4. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    OpenAIRE

    Natália F Haddad; Anderson J Teodoro; Felipe Leite de Oliveira; Nathália Soares; Rômulo Medina de Mattos; Fábio Hecht; Rômulo Sperduto Dezonne; Leandro Vairo; Regina Coeli Dos Santos Goldenberg; Flávia Carvalho Alcântara Gomes; Denise Pires de Carvalho; Gadelha, Mônica R.; Luiz Eurico Nasciutti; Leandro Miranda-Alves

    2013-01-01

    Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apopto...

  5. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kuo Ching Chao

    Full Text Available BACKGROUND: There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs, which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS: HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2 in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin

  6. Apoptosis in pancreatic β-islet cells in Type 2 diabetes.

    Science.gov (United States)

    Tomita, Tatsuo

    2016-08-01

    Apoptosis plays important roles in the pathophysiology of Type 2 diabetes mellitus (T2DM). The etiology of T2DM is multifactorial, including obesity-associated insulin resistance, defective insulin secretion, and loss of β-cell mass through β-cell apoptosis. β-cell apoptosis is mediated through a milliard of caspase family cascade machinery in T2DM. The glucose-induced insulin secretion is the principle pathophysiology of diabetes and insufficient insulin secretion results in chronic hyperglycemia, diabetes. Recently, hyperglycemia-induced β-cell apoptosis has been extensively studied on the balance of pro-apoptotic Bcl-2 proteins (Bad, Bid, Bik, and Bax) and anti-apoptotic Bcl family (Bcl-2 and Bcl-xL) toward apoptosis in vitro isolated islets and insulinoma cell culture. Apoptosis can only occur when the concentration of pro-apoptotic Bcl-2 exceeds that of anti-apoptotic proteins at the mitochondrial membrane of the intrinsic pathway. A bulk of recent research on hyperglycemia-induced apoptosis on β-cells unveiled complex details on glucose toxicity on β-cells in molecular levels coupled with cell membrane potential by adenosine triphosphate generation through K+ channel closure, opening Ca2+ channel and plasma membrane depolarization. Furthermore, animal models using knockout mice will shed light on the basic understanding of the pathophysiology of diabetes as a glucose metabolic disease complex, on the balance of anti-apoptotic Bcl family and pro-apoptotic genes. The cumulative knowledge will provide a better understanding of glucose metabolism at a molecular level and will lead to eventual prevention and therapeutic application for T2DM with improving medications. PMID:27483174

  7. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.

    Science.gov (United States)

    Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan

    2014-12-01

    Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

  8. Vanadyl Sulfate Treatment Stimulates Proliferation and Regeneration of Beta Cells in Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Samira Missaoui

    2014-01-01

    Full Text Available We examined the effects of vanadium sulfate (VOSO4 treatment at 5 and 10 mg/kg for 30 days on endocrine pancreas activity and histology in nondiabetic and STZ-induced diabetic rats. In diabetic group, blood glucose levels significantly increased while insulinemia level markedly decreased. At the end of treatment, VOSO4 at a dose of 10 mg/Kg normalized blood glucose level in diabetic group, restored insulinemia, and significantly improved insulin sensitivity. VOSO4 also increased in a dose-dependent manner the number of insulin immunopositive beta cells in pancreatic islets of nondiabetic rats. Furthermore, in the STZ-diabetic group, the decrease in the number of insulin immunopositive beta cells was corrected to reach the control level mainly with the higher dose of vanadium. Therefore, VOSO4 treatment normalized plasma glucose and insulin levels and improved insulin sensitivity in STZ-experimental diabetes and induced beta cells proliferation and/or regeneration in normal or diabetic rats.

  9. Organ culture studies for pancreatic islet transplantation

    International Nuclear Information System (INIS)

    Data support the usefulness of tissue culture in isolation and preservation of islets prior to transplantation. Rodent islet viability in culture was demonstrated histologically and by functional analyses of hormone production. For reasons that remain to be defined, acinar cells disappeared rapidly in tissue culture, yielding an implant preparation relatively rich in islets and devoid of pancreatic exocrine elements. Isografts of cultured and noncultured islets were well tolerated intraperitoneally and intramuscularly; and prompt and lasting reversal of short- and long-standing experimental diabetes was observed regularly. In vitro studies of rodent islet viability after immunosuppressive treatment of donors or islet cultures showed insulin production comparable to that of control experiments, suggesting that immunologic modification of donors or islets might be feasible in eventual human islet allotransplantation

  10. B islet cells of pancreas are the site of expression of the human insulin gene in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Bucchini, D.; Desbois, P.; Pictet, R.; Jami, J. (Univ. Paris 7 (France)); Madsen, O. (Hagedorn Research Lab., Gentofte (Denmark))

    1989-02-01

    Transgenic mouse lines carrying the human insulin gene were previously shown to express it in pancreas but not in other tissues. The present study reports evidence that the expression of the transgene is restricted to a single category of cells. Immunofluorescence staining of frozen pancreas sections showed that the human C-peptide was present in pancreatic islets only, and more precisely in the B cells of the islets. Human insulin transcripts were initiated correctly in mouse pancreas at the same site as in human pancreas. Three different transgenic lines with different insertion sites and various copy numbers of the human insulin transgene had the same high levels of the transgene transcripts corresponding to a well-balanced contribution in insulin gene expression.

  11. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    Science.gov (United States)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  12. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    Science.gov (United States)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg‑1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg‑1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  13. Islet transplantation in rodents: do encapsulated islets really work?

    Directory of Open Access Journals (Sweden)

    Yngrid Ellyn Dias Maciel de Souza

    2011-06-01

    Full Text Available CONTEXT: Diabetes mellitus type I affects around 240 million people in the world and only in the USA 7.8% of the population. It has been estimated that the costs of its complications account for 5% to 10% of the total healthcare spending around the world. According to World Health Organization, 300 million people are expected to develop diabetes mellitus by the year 2025. The pancreatic islet transplantation is expected to be less invasive than a pancreas transplant, which is currently the most commonly used approach. OBJECTIVES: To compare the encapsulated and free islet transplantation in rodents looking at sites of islet implantation, number of injected islets, viability and immunosuppression. METHODS: A literature search was conducted using MEDLINE/PUBMED and SCIELO with terms about islet transplantation in the rodent from 2000 to 2010. We found 2,636 articles but only 56 articles from 2000 to 2010 were selected. RESULTS: In these 56 articles used, 34% were encapsulated and 66% were nonencapsulated islets. Analyzing both types of islets transplantation, the majority of the encapsulated islets were implanted into the peritoneal cavity and the nonencapsulated islets into the liver, through the portal vein. In addition, the great advantage of the peritoneal cavity as the site of islet transplantation is its blood supply. Both vascular endothelial cells and vascular endothelial growth factor were used to stimulate angiogenesis of the islet grafts, increasing the vascularization rapidly after implantation. It also has been proven that there is influence of the capsules, since the larger the capsule more chances there are of central necrosis. In some articles, the use of immunosuppression demonstrated to increase the life expectancy of the graft. CONCLUSION: While significant progress has been made in the islets transplantation field, many obstacles remain to be overcome. Microencapsulation provides a means to transplant islets without

  14. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters.

    Science.gov (United States)

    Beamish, Christine A; Strutt, Brenda J; Arany, Edith J; Hill, David J

    2016-04-18

    Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive, glucose-transporter-2-low (Ins(+)Glut2(LO)) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future. PMID:27010375

  15. Glucagon-Like Peptide-1 Protects Human Islets against Cytokine-Mediated β-Cell Dysfunction and Death: A Proteomic Study of the Pathways Involved

    DEFF Research Database (Denmark)

    Rondas, Dieter; Bugliani, Marco; D’Hertog, Wannes;

    2013-01-01

    profile of cytokine-treated human islets, illustrating a counteracting effect on proteins from different functional classes such as actin cytoskeleton, chaperones, metabolic proteins, and islet regenerating proteins. In summary, GLP-1 alters in an integrated manner protein networks in cytokine...... of human islets of Langerhans treated with cytokines (IL-1β and IFN-γ) in the presence or absence of GLP-1 by 2D difference gel electrophoresis and subsequent protein interaction network analysis to understand the molecular pathways involved in GLP-1-mediated β-cell protection. Co-incubation of cytokine......-treated human islets with GLP-1 resulted in a marked protection of β-cells against cytokine-induced apoptosis and significantly attenuated cytokine-mediated inhibition of glucose-stimulated insulin secretion. The cytoprotective effects of GLP-1 coincided with substantial alterations in the protein expression...

  16. Profile of blood glucose and ultrastucture of beta cells pancreatic islet in alloxan compound induced rats

    OpenAIRE

    I Nyoman Suarsana; Priosoeryanto, B P; M. Bintang; T. Wresdiyati

    2010-01-01

    Diabetes is marked by elevated levels of blood glucose, and progressive changes of the structure of pancreatic islet histopathology. The objective of this research was to analyse the glucose level and histophatological feature in pancreatic islet in alloxan compound induced rats. A total of ten male Spraque Dawley rats of 2 months old were used in this study. The rats were divided into two groups: (1) negative control group (K-), and (2) positif induced alloxan group (diabetic group =DM). The...

  17. Colonic Crypt Changes during Adenoma Development in Familial Adenomatous Polyposis : Immunohistochemical Evidence for Expansion of the Crypt Base Cell Population

    OpenAIRE

    Boman, Bruce M; Walters, Rhonda; Fields, Jeremy Z.; Kovatich, Albert J.; Zhang, Tao; Isenberg, Gerald A.; Goldstein, Scott D.; Palazzo, Juan P.

    2004-01-01

    Familial adenomatous polyposis patients, who have a germline APC mutation, develop adenomas in normal-appearing colonic mucosa, and in the process usually acquire a mutation in the other APC allele as well. Nonetheless, the cellular mechanisms that link these initiating genetic changes with the earliest tissue changes (upward shift in the labeling index) in colon tumorigenesis are unclear. Based on the tenet that colorectal cancer originates from crypt stem cells (SCs) and on our kinetic mode...

  18. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    Energy Technology Data Exchange (ETDEWEB)

    Cline, Gary W., E-mail: gary.cline@yale.edu [Yale University School of Medicine (United States); Zhao, Xiaojian [Yale University School of Medicine (United States); Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L. [Pfizer Global Research and Development, Pfizer Inc., Groton CT (United States)

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  19. The influence of maternal islet beta-cell autoantibodies in conjunction with gestational hyperglycemia on neonatal outcomes.

    Directory of Open Access Journals (Sweden)

    Zhe Li

    Full Text Available To determine the predictive value of the presence of maternal islet beta-cell autoantibodies with respect to neonatal outcomes.A total of 311 pregnant women with abnormal 75 g oral glucose tolerance test (OGTT results were enrolled in this study. Maternal glutamic acid decarboxylase autoantibodies (GADA, islet cell autoantibodies (ICA and insulin autoantibodies (IAA were tested in fasting blood both on the day following the routine OGTT and before delivery. The birth weight, Apgar score, blood glucose and outcomes of each neonate were later evaluated and recorded.1. In this study, 33.9% of the pregnant women with gestational hyperglycemia had detectable levels of one or more types of anti-islet cell antibodies in the third trimester. The proportion of women who produced GADA and/or ICA was significantly higher in the group of women with gestational hyperglycemia than in the control group (P<0.05. The groups similarly differed in the proportion of women who tested positive for any anti-islet cell antibody (P<0.05. 2. Of the patients in our study, those who produced GADA exhibited an increase in uterine and umbilical arterial pulsatility indexes (PIs during the third trimesters compared with the control group (P˂0.05. Additionally, an increased frequency of fetal growth restriction (FGR was observed in the infants of women who produced IAA during pregnancy compared with those without autoantibodies (P˂0.05. 3. The rate of newborn admission to the neonatal intensive care unit (NICU was significantly associated with the presence of maternal ICA during the third trimester (OR, 6.36; 95% CI, 1.22-33.26. 4. The incidence of neonatal asphyxia was associated with the presence of maternal GADA in both the second (OR, 10.44; 95% CI, 1.46-74.92 and the third (OR, 8.33; 95% CI, 1.45-47.82 trimesters.Approximately one-third of the women with gestational hyperglycemia produced anti-islet cell antibodies. The incidence of FGR was higher in women with

  20. Establishing a human pancreatic stem cell line and transplanting induced pancreatic islets to reverse experimental diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet

  1. Establishing a human pancreatic stem cell line and transplanting induced pancreatic islets to reverse experimental diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    XIAO Mei; DOU ZhongYing; AN LiLong; YANG XueYi; GE Xin; QIAO Hai; ZHAO Ting; MA XiaoFei; FAN JingZhua; ZHU MengYang

    2008-01-01

    The major obstacle in using pancreatic islet transplantation to cure type Ⅰ and some type Ⅱ diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type Ⅳ collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem ceils started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdxl, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet

  2. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Science.gov (United States)

    Cataldo, L. R.; Olmos, P.; Galgani, J. E.; Valenzuela, R.; Aranda, E.; Cortés, V. A.; Santos, J. L.

    2016-01-01

    High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p < 0.0001) and oleate (−43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content. PMID:27366756

  3. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Directory of Open Access Journals (Sweden)

    L. R. Cataldo

    2016-01-01

    Full Text Available High circulating nonesterified fatty acids (NEFAs concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p<0.0001 and oleate (−43%; p<0.0001 were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.

  4. Elimination of islet cell antibodies and glutamic acid decarboxylase antibodies II in a patient with newly diagnosed insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Richter, W O; Donner, M G; Schwandt, P

    1997-01-01

    Islet cell antibodies and glutamic acid decarboxylase II (GAD II) antibodies have been discussed in the autoimmune pathogenesis of insulin-dependent diabetes mellitus (IDDM). Hence, immunosuppressants, intravenous immunoglobulins, and plasmapheresis have been used in an effort to modulate autoimmune activity and thereby prevent the destruction of pancreatic beta-cells. We describe the autoantibody (islet cell antibody and GAD II) kinetics and clinical course in a patient with newly diagnosed IDDM treated with a specific immunoglobulin apheresis technique. Five days after the initial diagnosis a 37-year-old patient with IDDM underwent a series of seven immunoglobulin aphereses. Immunoglobulin (IgG, IgA, IgM), islet cell antibody, GAD II, and C-peptide concentrations were monitored for a time course of 74 days. Daily insulin requirements were recorded. One single immunoglobulin apheresis decreased IgG by 66.2 +/- 9.1%, IgA by 66.8 +/- 8.7%, and IgM by 57.7 +/- 12.9%. GAD II antibodies were reduced by 61.9 +/- 12.4%. The islet cell antibody titer declined from 1:32 to 1:4 after the treatment series. There were no relevant changes in the safety parameters determined nor were there any clinical side effects. The efficient decrease in islet cell antibodies and glutamic acid decarboxylase II antibodies in a patient with IDDM encourages further investigations into the impact of this treatment on the clinical course of this autoimmune disorder.

  5. Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes.

    Science.gov (United States)

    Stiles, Bangyan L; Kuralwalla-Martinez, Christine; Guo, Wei; Gregorian, Caroline; Wang, Ying; Tian, Jide; Magnuson, Mark A; Wu, Hong

    2006-04-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid phosphatase. PTEN inhibits the action of phosphatidylinositol-3-kinase and reduces the levels of phosphatidylinositol triphosphate, a crucial second messenger for cell proliferation and survival, as well as insulin signaling. In this study, we deleted Pten specifically in the insulin producing beta cells during murine pancreatic development. Pten deletion leads to increased cell proliferation and decreased cell death, without significant alteration of beta-cell differentiation. Consequently, the mutant pancreas generates more and larger islets, with a significant increase in total beta-cell mass. PTEN loss also protects animals from developing streptozotocin-induced diabetes. Our data demonstrate that PTEN loss in beta cells is not tumorigenic but beneficial. This suggests that modulating the PTEN-controlled signaling pathway is a potential approach for beta-cell protection and regeneration therapies. PMID:16537919

  6. OctreoScan 111 for imaging of a somatostatin receptor-positive islet cell tumor in rat.

    Science.gov (United States)

    Bruns, C; Stolz, B; Albert, R; Marbach, P; Pless, J

    1993-01-01

    Somatostatin (SRIF) receptors are present in a variety of human tumors such as pituitary and endocrine pancreatic tumors, brain tumors, small cell lung cancers and malignant breast tumors. The 111In-labeled SRIF analog SDZ 215-811 (OctreoScan 111) binds with a high affinity to somatostatin receptors and exhibits SRIF-like biological properties, as demonstrated by the inhibition of growth hormone release from pituitary cells. We report here the in vitro characterization of SDZ 215-811 and the in vivo imaging of an islet cell tumor grown in rats using [111In]SDZ 215-811. In vitro autoradiographies revealed a high density of SRIF receptors on the pancreatic tumor tissue. As early as 5 min after intravenous injection of [111In]SDZ 215-811 into tumor-bearing rats, the tumors were clearly localized by gamma-camera scintigraphy. Even 24 h post injection, the islet cell tumor was still detectable. The radioligand was mainly cleared from the circulation via the kidneys, with a rapid alpha-phase (t1/2 = 5.6 min) and a slow elimination phase (t1/2 = 7.3 h). Biodistribution studies revealed a relatively high accumulation of radioactivity in the kidneys, but low uptake into the liver and the intestine. High uptake of [111In]SDZ 215-811 was observed for the tumor tissue (0.92 +/- 0.07% ID/g; 1 h post injection). Interestingly, a tumor load of 0.14 +/- 0.01% ID/g was still measured after 24 h. The tumor/blood ratio was 4.93 after 24 h, indicating specific accumulation of radioactivity in the islet cell tumor.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8392488

  7. Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats.

    Science.gov (United States)

    Quaranta, Paola; Antonini, Sara; Spiga, Saturnino; Mazzanti, Benedetta; Curcio, Michele; Mulas, Giovanna; Diana, Marco; Marzola, Pasquina; Mosca, Franco; Longoni, Biancamaria

    2014-01-01

    Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs) contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP) transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months) normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3-5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards. PMID:24733186

  8. Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats.

    Directory of Open Access Journals (Sweden)

    Paola Quaranta

    Full Text Available Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3-5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards.

  9. Expression of Pdx-1 in bone marrow mesenchymal stem cells promotes differentiation of islet-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    SUN; Jiping; YANG; Yujia; WANG; Xiaoli; SONG; Jianhui; JIA; Yanjie

    2006-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have the ability of self-renewal and multi-directional differentiation. Recent reports showed that BMSCs could differentiate into endocrine cells of pancreas. However, the differentiation is not efficient enough to produce insulin-producing cells for the future therapeutic use. Pdx-1 is a crucial regulator for pancreatic development. Therefore we constructed a eukaryotic expression vector containing Pdx-1 to determine the effect of Pdx-1 expression on differentiation of BMSCs in vitro. The results showed that BMSCs could self-assemble to form functional pancreatic islet-like structures after differentiation in vitro. The proportion of insulin-producing cells differentiated from Pdx-1+BMSCs was 28.23%±2.56%, higher than that from BMSCs transfected with vacant vector and Pdx-1- BMSCs (7.23%±1.56% and 4.08%±2.69% respectively) by flow cytometry. Immunocytochemical examination also testified the expression of multiple β-cells-specific genes such as insulin, glucagons, somatostatin in differentiated BMSCs. The results also revealed that the expressions of genes mentioned above in Pdx-1+BMSCs were higher than that in Pdx-1-BMSCs, which was confirmed by Western blotting analysis and RT-PCR. Glucose-induced insulin secretion from Pdx-1+BMSCs in 5mmol/L and 25mmol/L glocuse was (56.61±4.82) μU/mLand (115.29±2.56) μU/mL respectively, which were much higher than those from Pdx-1-BMSCs((25.53±6.49) μU/mL and (53.26±7.56) μU/mL respectively). Grafted animals were able to maintain their body weight and survive for relatively longer periods of time than hyperglycemic sham-grafted controls,which demonstrated an overall beneficial effect of the grafted cells on the health of the animals. These findings thus suggested that exogenous expression of Pdx-1 should provide a promising approach for efficiently producing islet-like cells from BMSCs for the future therapeutic use in diabetic patients.

  10. The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas.

    Directory of Open Access Journals (Sweden)

    Alan W Hart

    Full Text Available The transcription factor Pax6 is a developmental regulator with a crucial role in development of the eye, brain, and olfactory system. Pax6 is also required for correct development of the endocrine pancreas and specification of hormone producing endocrine cell types. Glucagon-producing cells are almost completely lost in Pax6-null embryos, and insulin-expressing beta and somatostatin-expressing delta cells are reduced. While the developmental role of Pax6 is well-established, investigation of a further role for Pax6 in the maintenance of adult pancreatic function is normally precluded due to neonatal lethality of Pax6-null mice. Here a tamoxifen-inducible ubiquitous Cre transgene was used to inactivate Pax6 at 6 months of age in a conditional mouse model to assess the effect of losing Pax6 function in adulthood. The effect on glucose homeostasis and the expression of key islet cell markers was measured. Homozygous Pax6 deletion mice, but not controls, presented with all the symptoms of classical diabetes leading to severe weight loss requiring termination of the experiment five weeks after first tamoxifen administration. Immunohistochemical analysis of the pancreata revealed almost complete loss of Pax6 and much reduced expression of insulin, glucagon, and somatostatin. Several other markers of islet cell function were also affected. Notably, strong upregulation in the number of ghrelin-expressing endocrine cells was observed. These findings demonstrate that Pax6 is essential for adult maintenance of glucose homeostasis and function of the endocrine pancreas.

  11. [Prognostic implications of folliculo-stellate cells in pituitary adenomas: relationship with tumoral behavior].

    Science.gov (United States)

    Tortosa, F; Pires, M; Ortiz, S

    2016-10-01

    Introduccion. A pesar del progreso en la comprension de su patogenia, no se ha encontrado ningun marcador predictivo independiente del comportamiento agresivo de los adenomas hipofisarios que facilite el tratamiento y seguimiento de pacientes afectados. Objetivo. Analizar la expresion de celulas foliculo-estrelladas, mediante inmunomarcacion con proteina S-100, en una serie de pacientes con adenomas hipofisarios seguidos durante al menos siete años. Pacientes y metodos. Estudio retrospectivo de 51 pacientes diagnosticados de adenoma hipofisario entre 2006 y 2008, segun los criterios vigentes de la Organizacion Mundial de la Salud. Se evaluo inmunohistoquimicamente la expresion de S-100 en celulas foliculo-estrelladas, y se correlaciono con parametros clinicorradiologicos e histopatologicos del tumor y la progresion/recurrencia postoperatoria. Resultados. De 51 tumores, 40 se clasificaron como adenomas hipofisarios tipicos y 11 como atipicos. La mayoria de los tipicos mostro celulas foliculo-estrelladas positivas para S-100 (media: 3,93%); los atipicos tenian pocas o ninguna celula S-100 positivas (media: 0,83%). No hubo diferencias significativas en la expresion de S-100 con respecto a la edad o sexo del paciente, tamaño, invasividad o recidiva tumoral posquirurgica. Conclusiones. En el grupo de estudio, a excepcion de los adenomas no funcionantes inmunopositivos para prolactina, con la media mas baja y mas alta de todos los subtipos en ambos grupos (tipicos, 0,25%, frente a atipicos, 9,24%; p = 0,0028), el factor predictivo de agresividad tumoral para los adenomas hipofisarios no esta representado por un bajo valor de S-100 en las celulas foliculo-estrelladas, lo que no permite seleccionar a pacientes para un tratamiento postoperatorio intensivo.

  12. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  13. Inhibition of nuclear factor-κB activation in pancreatic β-cells has a protective effect on allogeneic pancreatic islet graft survival.

    Directory of Open Access Journals (Sweden)

    Roy Eldor

    Full Text Available Pancreatic islet transplantation, a treatment for type 1 diabetes, has met significant challenges, as a substantial fraction of the islet mass fails to engraft, partly due to death by apoptosis in the peri- and post-transplantation periods. Previous evidence has suggested that NF-κB activation is involved in cytokine-mediated β-cell apoptosis and regulates the expression of pro-inflammatory and chemokine genes. We therefore sought to explore the effects of β-cell-specific inhibition of NF-κB activation as a means of cytoprotection in an allogeneic model of islet transplantation. To this end, we used islets isolated from the ToI-β transgenic mouse, where NF-κB signalling can specifically and conditionally be inhibited in β-cells by expressing an inducible and non-degradable form of IκBα regulated by the tet-on system. Our results show that β-cell-specific blockade of NF-κB led to a prolonged islet graft survival, with a relative higher preservation of the engrafted endocrine tissue and reduced inflammation. Importantly, a longer delay in allograft rejection was achieved when mice were systemically treated with the proteasome inhibitor, Bortezomib. Our findings emphasize the contribution of NF-κB activation in the allograft rejection process, and suggest an involvement of the CXCL10/IP-10 chemokine. Furthermore, we suggest a potential, readily available therapeutic agent that may temper this process.

  14. Nonfunctional Islet Cell Tumor of the Pancreas in a Patient with Tuberous Sclerosis: A Case Report with Literature Review

    Directory of Open Access Journals (Sweden)

    Aysegul Cansu

    2014-01-01

    Full Text Available Islet cell tumors (ICTs are rare tumors of the pancreas. Association of this type of tumor with tuberous sclerosis is extremely rare. Only 13 cases of pancreatic ICT with tuberous sclerosis have so far been documented in the literature. However, awareness of the association of tuberous sclerosis and ICT is important for early diagnosis and appropriate treatment of this condition. This article presents the case of a 63-year-old female with angiomyolipoma (AML of the kidney and liver, calcified subependymal nodules and a large mass in the pancreas, which was proven to be an ICT on histopathological examination.

  15. Oreocnide integrifolia Flavonoids Augment Reprogramming for Islet Neogenesis and β-Cell Regeneration in Pancreatectomized BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Ansarullah

    2012-01-01

    Full Text Available Agents which can either trigger proliferation of β-cells or induce neogenesis of β-cells from precursors would be of pivotal role in reversing diabetic manifestations. We examined the role of flavonoid rich fraction (FRF of Oreocnide integrifolia leaves using a mice model of experimental regeneration. BALB/c mice were subjected to ~70% pancreatectomy (Px and supplemented with FRF for 7, 14, and 21 days after pancreatectomy. Px animals displayed increased blood glucose levels and decreased insulin titres which were ameliorated by FRF supplementation. FRF-treated mice demonstrated prominent newly formed islets budding off from ducts and depicting increased BrdU incorporation. Additionally, transcripts levels of Ins1/2, Reg-3α/γ, Ngn-3, and Pdx-1 were upregulated during the initial 1 week. The present study provides evidence of a nutraceutical contributing to islet neogenesis from ductal cells as the mode of β-cell regeneration and a potential therapeutic for clinical trials in management of diabetic manifestations.

  16. Adenoma de células basales parotídeo: Revisión a propósito de cuatro casos Basal cell adenoma of the parotid: A revision based on four cases

    Directory of Open Access Journals (Sweden)

    M.J. Pastor Fortea

    2005-04-01

    Full Text Available El adenoma de células basales es un tipo específico de adenoma con una apariencia histológica uniforme y monomorfa, en el que predominan las células basaliodes sin el componente mixocondroide del tumor mixto. Atendiendo a su morfología pueden ser divididos en cuatro subtipos: sólido, tubular, trabecular y membranoso. Presentamos cuatro casos de adenoma de células basales localizados en glándula parótida: uno de tipo sólido, uno de tipo trabecular y dos de tipo membranoso, tratados mediante parotidectomía superficial conservadora en todos los casos. Esta división en distintos patrones morfológicos tiene una finalidad descriptiva, salvo en el subtipo membranoso por su mayor tendencia a la multifocalidad y a la recidiva, su ocasional transformación maligna, así como por su posible asociación en un tercio de los casos a tumores ecrinos dermales. Esto implica un seguimiento más estrecho y un despistaje de posibles lesiones cutáneas asociadas.The basal cell adenoma is a specific type of adenoma, with a uniform, monomorphous histologic appearance that is dominated by basaloid cells and that does not have the myxochondroid tissue characteristic of mixed tumors. It may be divided on the basis of its morphologic pattern into four subtypes: solid, tubular, trabecular and membranous. We report four cases of basal cell adenoma subdivided as follows: one solid, one trabecular and two membranous subtypes. In all cases a conservative superficial parotidectomy was the treatment. Morphologic identification of the specific subtype is for descriptive purposes, except in the case of the membranous type, due to its tendency to be multifocal, its high recurrence rate, its occasional malignant transformation and its possible association in about onethird of the reported cases with dermal cylindromas. A close followup and screening of skin lesions is suggested for these tumors.

  17. Gastrointestinal stromal tumor of the pelvic soft tissue presenting with symptomatic hypoglycemia: A case report and brief review of current literature of non-islet cell tumor-induced hypoglycemia

    OpenAIRE

    Dean, Kathleen; Hsieh, Jessica; Morosky, Christopher; Hoffman, James

    2012-01-01

    ► Presentation of a rare case of pelvic gastrointestinal stromal tumor. ► Non-islet cell induced hypoglycemia causing severe hypoglycemia. ► The pathogenesis of non-islet cell induced hypoglycemia due to over-production of precursors of insulin-like growth factor-II. ► Complete resolution of hypoglycemia following resection of the tumor.

  18. Isolation of Pancreatic Islets from Nonhuman Primates.

    Science.gov (United States)

    Berman, Dora M

    2016-01-01

    Nonhuman primates (NHP) constitute a highly relevant pre-clinical animal model to develop strategies for beta cell replacement. The close phylogenetic and immunologic relationship between NHP and humans results in cross-reactivity of various biological agents with NHP cells, as well as a very similar cytoarchitecture between islets from human and NHP that is strikingly different from that observed in rodent islets. The composition and location of endocrine cells in human or NHP islets, randomly distributed and associated with blood vessels, have functional consequences and a predisposition for paracrine interactions. Furthermore, translation of approaches that proved successful in rodent models to the clinic has been limited. Consequently, data collected from NHP studies can form the basis for an IND submission to the FDA. This chapter describes in detail the key aspects for isolation of islets from NHP, from organ procurement up to assessment of islet function, comparing and emphasizing the similarities between isolation procedures for human and NHP islets. PMID:27586422

  19. Stem cells in the canine pituitary gland and in pituitary adenomas

    NARCIS (Netherlands)

    van Rijn, Sarah J; Tryfonidou, Marianna A; Hanson, Jeanette M; Penning, Louis C; Meij, Björn P

    2013-01-01

    Cushing's disease (CD) or pituitary-dependent hypercortisolism is a common endocrinopathy in dogs, with an estimated prevalence of 1 or 2 in 1000 dogs per year. It is caused by an adrenocorticotropic hormone secreting adenoma in the pars distalis or pars intermedia of the pituitary gland. The pituit

  20. Pancreatic Islet Transplantation

    Science.gov (United States)

    ... Diabetes, Gum Disease, and Other Dental Problems Diabetic Eye Disease Diabetes and Pregnancy Financial Help for Diabetes Care Diabetes Statistics Pancreatic Islet Transplantation What are pancreatic islets? Pancreatic islets, also called ...

  1. Sellar gangliocytoma with adrenocorticotropic and prolactin adenoma.

    Science.gov (United States)

    Kissiedu, Juliana O; Prayson, Richard A

    2016-02-01

    We report a case of a 60-year-old man who presented with weight gain, headaches, dizziness, erectile dysfunction and decreased libido. He was found to have elevated adrenocorticotropic hormone (ACTH) and prolactin serum levels. The imaging studies revealed a 1.4 cm sella/suprasellar mass which was compressing the optic chiasm. Histologic slides of the lesion showed a pituitary adenoma, marked by a proliferation of biphenotypic appearing cells, associated with a gangliocytoma, and marked by a proliferation of atypical appearing neuronal cells arranged against a glial-appearing background. Pituitary adenoma-gangliocytomas are benign combination tumors that rarely occur in the sellar region. Adenomas in this setting are sometimes functional, and rare patients with mixed adenomas (adenomas secreting more than one hormone) have been reported. To our knowledge, there has been only one other report of a combined ACTH and prolactin-producing adenoma with gangliocytoma, reported in a patient who also had acromegaly. In our patient, the immunohistochemical stains demonstrated that the bulk of the adenoma cells stained with prolactin antibody, and scattered clusters of cells within the adenoma stained positively for ACTH. The adenoma did not stain with antibodies to any of the other anterior pituitary hormones. Postoperatively, the elevated prolactin and ACTH levels returned to normal levels and there was no evidence of residual tumor. Adequate sampling and immunohistochemistry are important in rendering a correct diagnosis and in identifying the hormone status of mixed adenoma-gangliocytomas. PMID:26314658

  2. Sellar gangliocytoma with adrenocorticotropic and prolactin adenoma.

    Science.gov (United States)

    Kissiedu, Juliana O; Prayson, Richard A

    2016-02-01

    We report a case of a 60-year-old man who presented with weight gain, headaches, dizziness, erectile dysfunction and decreased libido. He was found to have elevated adrenocorticotropic hormone (ACTH) and prolactin serum levels. The imaging studies revealed a 1.4 cm sella/suprasellar mass which was compressing the optic chiasm. Histologic slides of the lesion showed a pituitary adenoma, marked by a proliferation of biphenotypic appearing cells, associated with a gangliocytoma, and marked by a proliferation of atypical appearing neuronal cells arranged against a glial-appearing background. Pituitary adenoma-gangliocytomas are benign combination tumors that rarely occur in the sellar region. Adenomas in this setting are sometimes functional, and rare patients with mixed adenomas (adenomas secreting more than one hormone) have been reported. To our knowledge, there has been only one other report of a combined ACTH and prolactin-producing adenoma with gangliocytoma, reported in a patient who also had acromegaly. In our patient, the immunohistochemical stains demonstrated that the bulk of the adenoma cells stained with prolactin antibody, and scattered clusters of cells within the adenoma stained positively for ACTH. The adenoma did not stain with antibodies to any of the other anterior pituitary hormones. Postoperatively, the elevated prolactin and ACTH levels returned to normal levels and there was no evidence of residual tumor. Adequate sampling and immunohistochemistry are important in rendering a correct diagnosis and in identifying the hormone status of mixed adenoma-gangliocytomas.

  3. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong, E-mail: yongzhao@uic.edu [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Zhang, Yongkang [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Jain, Sumit [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Skidgel, Randal A. [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Prabhakar, Bellur S. [Department of Immunology and Microbiology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Mazzone, Theodore [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Holterman, Mark J. [Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  4. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  5. Clinical features of familial adenomas polyps in Chinese and establishment of its immortal lymphocyte cell lines

    Institute of Scientific and Technical Information of China (English)

    Shan-Rong Cai; Su-Zhang Zhang; Shu Zheng

    2007-01-01

    AIM:To reserve the rare Chinese familial adenomas polyp (FAP) family resource and to investigate the clinical features of FAP in Chinese for its diagnosis.METHODS: Clinical features of patients with FAP were investigated. If there is any question, their medical records were verified. Blood sample was taken and lymphocyte immortal cell lines were established with modified EB-transformation methods. Congenital hypertrophy of retinal pigment epithelium (CHRPE) was checked by an experienced ophthalmologist.RESULTS: Twenty seven families including 21 classical FAP (CFAP) families, 3 attenuated FAP (AFAP) families,and 3 suspected AFAP families were investigated. A total of 116 lymphocyte immortal cell lines were established from 26 families. In all the FAP families, colorectal cancer occurred at the mean age of 42.84 years. Of the 16 families checked, 15 (93.75%) had CHRPE. The mean number of patients suffering from colorectal neoplasm was 3.14 in CFAP families and 2.0 in AFAP families (P < 0.01). The mean oldest age at diagnosis of FAP was 41.75 years in CFAP families, and 58.67 years in AFAP families, respectively (P < 0.01). Mean age of development of colorectal cancer was 42.23 in CFAP and 57.33 years old in AFAP (P < 0.01). Mean of the earliest age at diagnosis of FAP was 29.95 years in the FAP families with a positive family history and 46.80 years in the FAP families with a negative family history (P <0.01). The ratio of extra-intestinal tumors to colorectal neoplasms was different in the two kinds of families with positive and negative family history (P < 0.01).CONCLUSION: Additional use of ciclosporin will effectively improve to establish lymphocyte immortal cell lines with modified EB- transformation methods. In Chinese FAP, there was a high frequency of CHRPE, and a later age at diagnosis and a later age of development of colorectal cancer in AFAP. And earlier age at diagnosis in FAP with positive family history was also found that will help to

  6. Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells.

    Directory of Open Access Journals (Sweden)

    Natália F Haddad

    Full Text Available Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27(kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2 and increased expression of p27(kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27(kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing's disease.

  7. Improved human islet preparations using glucocorticoid and exendin-4

    OpenAIRE

    Miki, A.; Ricordi, C; Yamamoto, T.; Sakuma, Y; Misawa, R.; Mita, A; Inverardi, L; Alejandro, R; Ichii, H.

    2014-01-01

    Copyright © 2014 by Lippincott Williams & Wilkins. Objectives: The effects of glucocorticoid during culture on human islet cells have been controversial. Exendin-4 (EX) enhances the insulin secretion and significantly improves clinical outcomes in islet cell transplantation. In this study, we examined the effects of glucocorticoids and EX on human islet cells during pretransplant culture. Methods: Methylprednisolone (MP) and/or EX were added to the standard culture medium for clinical islet c...

  8. Global gene expression profiling of pancreatic islets in mice during streptozotocin-induced β-cell damage and pancreatic Glp-1 gene therapy

    Directory of Open Access Journals (Sweden)

    Jason M. Tonne

    2013-09-01

    Streptozotocin (STZ, a glucosamine-nitrosourea compound, has potent genotoxic effects on pancreatic β-cells and is frequently used to induce diabetes in experimental animals. Glucagon-like peptide-1 (GLP-1 has β-cell protective effects and is known to preserve β-cells from STZ treatment. In this study, we analyzed the mechanisms of STZ-induced diabetes and GLP-1-mediated β-cell protection in STZ-treated mice. At 1 week after multiple low-dose STZ administrations, pancreatic β-cells showed impaired insulin expression, while maintaining expression of nuclear Nkx6.1. This was accompanied by significant upregulation of p53-responsive genes in islets, including a mediator of cell cycle arrest, p21 (also known as Waf1 and Cip1. STZ treatment also suppressed expression of a wide range of genes linked with key β-cell functions or diabetes development, such as G6pc2, Slc2a2 (Glut2, Slc30a8, Neurod1, Ucn3, Gad1, Isl1, Foxa2, Vdr, Pdx1, Fkbp1b and Abcc8, suggesting global β-cell defects in STZ-treated islets. The Tmem229B, Prss53 and Ttc28 genes were highly expressed in untreated islets and strongly suppressed by STZ, suggesting their potential roles in β-cell function. When a pancreas-targeted adeno-associated virus (AAV vector was employed for long-term Glp-1 gene delivery, pancreatic GLP-1 expression protected mice from STZ-induced diabetes through preservation of the β-cell mass. Despite its potent β-cell protective effects, however, pancreatic GLP-1 overexpression showed limited effects on the global gene expression profiles in the islets. Network analysis identified the programmed-cell-death-associated pathways as the most relevant network in Glp-1 gene therapy. Upon pancreatic GLP-1 expression, upregulation of Cxcl13 and Nptx2 was observed in STZ-damaged islets, but not in untreated normal islets. Given the pro-β-cell-survival effects of Cxcl12 (Sdf-1 in inducing GLP-1 production in α-cells, pancreatic GLP-1-mediated Cxcl13 induction might also play a

  9. Ceruminous gland adenoma

    Directory of Open Access Journals (Sweden)

    Himanshu Varshney

    2014-01-01

    Full Text Available Ceruminous adenoma is a rare neoplasm of the external auditory meatus (EAM with benign clinical behavior. They demonstrate a dual cell population of basal myoepithelial-type cells and luminal ceruminous cells. Cerumen pigment, cytokeratin 7 (CK7 and p63 can help to distinguish this tumor from other neoplasms that occur in the region. Complete surgical excision results in an excellent long-term clinical outcome. We present a case of histologically confirmed ceruminous adenoma of the EAM in a surgically treated 38-year-old female. She presented with recurrent serosanguineous discharge along with flakes from the right ear along with hearing impairment. She is doing well in last 8 months follow-up.

  10. Protein kinase C pathway mediates the protective effects of glucagon-like peptide-1 on the apoptosis of islet β-cells.

    Science.gov (United States)

    Zhang, Lihai; Wang, Yuesheng; Wang, Jiao; Liu, Yinglan; Yin, Yanbin

    2015-11-01

    The incidence of diabetes has been increasing over previous years. It is hypothesized that promoting the survival of islet β-cells is a key direction for the treatment of diabetes. Although gastric bypass surgery improves certain types of diabetes and attenuates its progression, there are certain associated disadvantages (including intestinal obstruction and anastomotic leakage), and quality of life and physical status (such as malnutrition) are significantly affected by gastric bypass surgery. Therefore, it is important to determine the mechanisms underlying the improvement of diabetes by gastric bypass surgery and identify novel gene targets for diabetes therapeutics. In the present study, glucagon‑like peptide‑1 (GLP‑1), whose secretion was markedly increased following gastric bypass surgery, increased the activity of protein kinase C (PKC) in islet β‑cells in a dose‑dependent manner. Additionally, treatment with GLP‑1 boosted cell viability and decreased cell death in starved islet β‑cells, and inhibited mitochondria‑dependent apoptosis by regulating the expression levels of Bcl‑2/Bax. These effects were reversed by inhibiting the PKC pathway using hypericin. Therefore, the present study concluded that GLP‑1 may promote the survival and inhibit the apoptosis of islet β‑cells at least in part by activating the PKC pathway, which is an important underlying mechanism and may be exploited in the treatment of diabetes. PMID:26459881

  11. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets.

    Directory of Open Access Journals (Sweden)

    Jakob D Wikstrom

    Full Text Available BACKGROUND: The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets. METHODOLOGY/PRINCIPAL FINDINGS: The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets. CONCLUSIONS/SIGNIFICANCE: The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells.

  12. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors

    DEFF Research Database (Denmark)

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami;

    2015-01-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have ...

  13. Simultaneous resection of liver cell adenomas and an intrahepatic portosystemic venous shunt with elevation of serum PIVKA-II level.

    Science.gov (United States)

    Seyama, Yasuji; Sano, Keiji; Tang, Wei; Kokudo, Norihiro; Sakamoto, Yoshihiro; Imamura, Hiroshi; Makuuchi, Masatoshi

    2006-09-01

    A 27-year-old woman with no history of liver disease or oral contraceptive use presented with sudden abdominal pain. Laboratory data showed mild liver dysfunction with jaundice. Computed tomography and angiography revealed centrally located large liver cell adenomas (LCAs) and an intrahepatic portosystemic venous shunt (IHPSS) in the left lobe. The serum des-gamma-carboxy prothrombin (known as "protein induced by a lack of vitamin K or antagonist II," PIVKA-II) level was extremely high (6,647 mAU/ml), indicating malignant transformation of the tumors. Under the diagnosis of LCAs and IHPSS, the patient underwent simultaneous resection of the four liver tumors and portovenous shunt, and the hepatic vascular abnormality was resolved. The pathological diagnosis was LCAs without hepatocellular carcinoma. Immunohistochemical analysis with an anti-PIVKA-II monoclonal antibody showed positive staining of the adenoma cells. This case shows that LCA without malignant transformation can produce PIVKA-II, leading to high serum levels of PIVKA-II. Simultaneous resection of multiple tumors and closure of the portosystemic shunt are strongly recommended in a patient with LCA associated with IHPSS.

  14. Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells.

    Science.gov (United States)

    Banerjee, Ronadip R; Cyphert, Holly A; Walker, Emily M; Chakravarthy, Harini; Peiris, Heshan; Gu, Xueying; Liu, Yinghua; Conrad, Elizabeth; Goodrich, Lisa; Stein, Roland W; Kim, Seung K

    2016-08-01

    β-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive β-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal β-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in β-cells. In this study, we show that loss of PRLR signaling in β-cells results in gestational diabetes mellitus (GDM), reduced β-cell proliferation, and failure to expand β-cell mass during pregnancy. Targeted PRLR loss in maternal β-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of β-cells during pregnancy. MafB deletion in maternal β-cells also produced GDM, with inadequate β-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating β-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal β-cells during pregnancy. PMID:27217483

  15. Pituitary adenomas in childhood and adolescence.

    Science.gov (United States)

    Jackman, Suzanne; Diamond, Frank

    2013-07-01

    Scientific advances are revealing the complexity of pituitary development, which is controlled by multiple transcription factors and signaling molecules. Unregulated pituitary cell growth, resulting in pituitary adenoma, is usually sporadic and results from monoclonal expansion of a single mutated cell. However, some adenomas develop as part of a genetic syndrome. Prolactinoma is the most common hormonally active pituitary adenoma in children. The non-functioning (non-secreting) pituitary adenoma is the second most common and often stains positive for GH, PRL, and/or TSH. While Cushing disease, resulting from an ACTH-secreting adenoma, commonly manifests as weight gain with growth deceleration in children, GH excess causes gigantism with rapid, accelerated growth inappropriate for the height of the family. TSH secreting pituitary adenomas are rare, and biochemical analysis will show an elevated thyroxine level with a non-suppressed or high TSH. Though the natural history of pituitary incidentalomas in children is unknown, adult practice guidelines are established. PMID:23957196

  16. Enumeration of islets by nuclei counting and light microscopic analysis.

    Science.gov (United States)

    Pisania, Anna; Papas, Klearchos K; Powers, Daryl E; Rappel, Michael J; Omer, Abdulkadir; Bonner-Weir, Susan; Weir, Gordon C; Colton, Clark K

    2010-11-01

    Islet enumeration in impure preparations by conventional dithizone staining and visual counting is inaccurate and operator dependent. We examined nuclei counting for measuring the total number of cells in islet preparations, and we combined it with morphological analysis by light microscopy (LM) for estimating the volume fraction of islets in impure preparations. Cells and islets were disrupted with lysis solution and shear, and accuracy of counting successively diluted nuclei suspensions was verified with (1) visual counting in a hemocytometer after staining with crystal violet, and automatic counting by (2) aperture electrical resistance measurement and (3) flow cytometer measurement after staining with 7-aminoactinomycin-D. DNA content averaged 6.5 and 6.9 pg of DNA per cell for rat and human islets, respectively, in agreement with literature estimates. With pure rat islet preparations, precision improved with increasing counts, and samples with about ≥160 islets provided a coefficient of variation of about 6%. Aliquots of human islet preparations were processed for LM analysis by stereological point counting. Total nuclei counts and islet volume fraction from LM analysis were combined to obtain the number of islet equivalents (IEs). Total number of IE by the standard method of dithizone staining/manual counting was overestimated by about 90% compared with LM/nuclei counting for 12 freshly isolated human islet research preparations. Nuclei counting combined with islet volume fraction measurements from LM is a novel method for achieving accurate islet enumeration. PMID:20697375

  17. Cocaine- and amphetamine-regulated transcript: a novel regulator of energy homeostasis expressed in a subpopulation of pancreatic islet cells.

    Science.gov (United States)

    Gilon, Patrick

    2016-09-01

    Type 2 diabetes is characterised by chronic hyperglycaemia and its incidence is highly increased by exaggerated food consumption. It results from a lack of insulin action/production, but growing evidence suggests that it might also involve hyperglucagonaemia and impaired control of glucose homeostasis by the brain. In recent years, the cocaine and amphetamine-regulated transcript (CART) peptides have generated a lot of interest in the battle against obesity because, via the brain, they exert anorexic effects and they increase energy expenditure. They are also localised, outside the brain, in discrete regions of the body and play a hormonal role in controlling various functions. In this issue of Diabetologia, the Wierup group (doi: 10.1007/s00125-016-4020-6 ) shows that CART peptides are expressed heterogeneously in islet cells of various species, including humans, and that their expression is upregulated in diabetes. The authors also shine a spotlight on some interesting effects of CART peptides on islet function, including stimulation of insulin secretion and inhibition of glucagon release. CART peptides would thus be at the centre of a cooperation between the brain and the endocrine pancreas to control glucose homeostasis. Although the mechanisms of action of CART peptides remain enigmatic because no specific receptor for these peptides has so far been discovered, their potential therapeutic use is evident and represents a new challenge for future research. PMID:27421727

  18. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide.

    Science.gov (United States)

    Cardinale, Vincenzo; Puca, Rosa; Carpino, Guido; Scafetta, Gaia; Renzi, Anastasia; De Canio, Michele; Sicilia, Francesca; Nevi, Lorenzo; Casa, Domenico; Panetta, Rocco; Berloco, Pasquale Bartolomeo; Reid, Lola M; Federici, Giorgio; Gaudio, Eugenio; Maroder, Marella; Alvaro, Domenico

    2015-01-01

    Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs) towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1) has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells. PMID:26252949

  19. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide.

    Directory of Open Access Journals (Sweden)

    Vincenzo Cardinale

    Full Text Available Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1 has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells.

  20. Improving Islet Engraftment by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Islet cell transplantation is currently the only feasible long-term treatment option for patients with type 1 diabetes. However, the majority of transplanted islets experience damage and apoptosis during the isolation process, a blood-mediated inflammatory microenvironment in the portal vein upon islet infusion, hypoxia induced by the low oxygenated milieu, and poor-revascularization-mediated lack of nutrients, and impaired hormone modulation in the local transplanted site. Strategies using genetic modification methods through overexpression or silencing of those proteins involved in promoting new formation of blood vessels or inhibition of apoptosis may overcome these hurdles and improve islet engraftment outcomes.

  1. A Novel Efficient Technique of Pancreatic Islet Cell Isolation and Purification%一种高效的小鼠胰岛分离纯化新技术

    Institute of Scientific and Technical Information of China (English)

    李敏; 宋陆军; 高晓东; 常文举; 秦新裕

    2011-01-01

    Objective:To explore the method of obtaining enough mouse islets with high purity in order to set up an animal model for clinical islet transplantation.Methods: The 6~8 weeks male C57BL/6 mice weighing 25~30 g were intraperitoneal anesthetized before the operation of common bile duct ligation.Then we isolated and purified mice islets by adopting collagenV retro perfusion,situ digestion,gradient centrifugation in Ficoll-400 solution and sorted islets using sterile capillary pipettes in the phase contrast microscope.Islets purity was assessed by dithizone staining.Eventually, we cultured islet cells and observed the shape of islets on day 3, 8 and 24 separately.Results:From this way, we could obtain 390± 20 islets in each mouse.The isolated islets were round or mass, 50- 150 μm in diameter, complete and bright.The purity of the islets was more than 85%.Conclusions: We improve the method of isolating islets including retro perfusion,situ digestion and gradient centrifugation in Ficoll-400 solution, which is timesaving and effective.The cultured islet cells had high activity and formed single cells in petri dishes within 24 days, which is suitable for further study.%目的:探讨获得足够数量和较高纯度小鼠胰岛的分离及纯化方法,为进行小鼠的胰岛移植提供实验条件.方法:将6~8周,体质量25~30 g的雄性C57BL/6 小鼠腹腔麻醉后结扎胆总管,采用胶原酶Ⅴ逆行灌注、原位消化、Ficoll-400梯度离心并用无菌的毛细吸管在相差显微镜下观察并分选胰岛,双硫腙(DTZ)染色鉴定胰岛细胞.体外培养胰岛单细胞,并于第3、8、24天观察胰岛形态.结果:采用该法分离纯化后,每只小鼠可得到390±20个胰岛,胰岛呈圆形或团块状,直径50~150 μm,形态完整,折光性好,纯度达85%以上,24 d后在培养皿内铺成单个细胞.结论:本研究所用逆行灌注、原位消化及Ficoll-400梯度离心分离、纯化胰岛细胞的方法省时、高效,培养

  2. ALDH maintains the stemness of lung adenoma stem cells by suppressing the Notch/CDK2/CCNE pathway.

    Directory of Open Access Journals (Sweden)

    Zhongjun Li

    Full Text Available To evaluate the expression of ALDH1A1 in lung adenoma stem cells (LASCs and maintenance of their stemness through the Notch pathway.LASCs (A549s were isolated from lung adenoma cells (A549 and identified by their coexpression of CD133 and CD326 and their capacity formulti-directional differentiation. Expression of ALDH1A1 in A549 and A549s cells were evaluated by Real-time PCR. Effects of ALDH1A1 upregulation in A549 cells and its downregulation in A549s cells on the clonogenicity and cell cycle were assessed by colony-forming unit assay. Moreover, the effects of ALDH1A1 on the Notch pathway, and thus on the cell cycle, were studied.A549s cells were successfully isolated and identified.ALDH1A1expression was significantly higher in A549s than in A549 cells. Clonogenicity was significantly decreased in A549s cells treated with ALDH1A1 siRNA. Duration of the G1 stage of the cell cycle increased after ALDH1A1 was overexpressed, or decreased with ALDH1A1 siRNA. ALDH1A1, Notch1, -2, and -3, CDK2, and CCNE1 expression levels were higher in A549s cells than in A549 cells. Expression of Notch1, -2, and -3, CDK2, and CCNE1 was significantly decreased by upregulation of ALDH1A1 in A549 cells, but increased by its interruption in A549s cells. When Notch3 or CDK2 expression was downregulated, the expression levels of ALDH1A1, Notch1, -2, and -3, CDK2, and CCNE1 were reduced in all cell types.ALDH1A1 expression improved clonogenicity and inhibited the cell cycle, maintaining the stemness of the A549s cells; this may involve suppression of the Notch/CDK2/Cyclin pathway.

  3. Gliadin Fragments and a Specific Gliadin 33-mer Peptide Close KATP Channels and Induce Insulin Secretion in INS-1E Cells and Rat Islets of Langerhans

    DEFF Research Database (Denmark)

    Dall, Morten; Calloe, Kirstine; Haupt-Jorgensen, Martin;

    2013-01-01

    . A similar effect was observed in isolated rat islets (1.6-fold increase). In INS-1E cells, diazoxide reduced the stimulatory effect of gliadin digest. Additionally, gliadin digest was shown to decrease current through KATP-channels. A specific gliadin 33-mer had a similar effect, both on current and insulin...

  4. Small Islets Transplantation Superiority to Large Ones: Implications from Islet Microcirculation and Revascularization

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2014-01-01

    Full Text Available Pancreatic islet transplantation is a promising therapy to regain glycemic control in diabetic patients. The selection of ideal grafts is the basis to guarantee short-term effectivity and longevity of the transplanted islets. Contradictory to the traditional notion, recent findings implied the superiority of small islets for better transplantation outcomes rather than the large and intact ones. However, the mechanisms remain to be elucidated. Recent evidences emphasized the major impact of microcirculation on islet β-cell mass and function. And potentials in islet graft revascularization are crucial for their survival and preserved function in the recipient. In this study, we verified the distinct histological phenotype and functionality of small islets versus large ones both in vitro and in vivo. With efforts to exploring the differences in microcirculation and revascularization of islet grafts, we further evaluated local expressions of angiotensin and vascular endothelial growth factor A (VEGF-A at different levels. Our findings reveal that, apart from the higher density of insulin-producing β-cells, small islets express less angiotensin and more angiotrophic VEGF-A. We therefore hypothesized a logical explanation of the small islet superiority for transplantation outcome from the aspects of facilitated microcirculation and revascularization intrinsically in small islets.

  5. Mutation Analysis of the LH Receptor Gene in Leydig Cell Adenoma and Hyperplasia and Functional and Biochemical Studies of Activating Mutations of the LH Receptor Gene

    NARCIS (Netherlands)

    Boot, Annemieke M.; Lumbroso, Serge; Verhoef-Post, Miriam; Richter-Unruh, Annette; Looijenga, Leendert H. J.; Funaro, Ada; Beishuizen, Auke; van Marle, Andre; Drop, Stenvert L. S.; Themmen, Axel P. N.

    2011-01-01

    Context: Germline and somatic activating mutations in the LH receptor (LHR) gene have been reported. Objective: Our objective was to perform mutation analysis of the LHR gene of patients with Leydig cell adenoma or hyperplasia. Functional studies were conducted to compare the D578H-LHR mutant with t

  6. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells.

    Science.gov (United States)

    Pinton, Paolo; Tsuboi, Takashi; Ainscow, Edward K; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A

    2002-10-01

    The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.

  7. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets

    DEFF Research Database (Denmark)

    Adriaenssens, Alice E; Svendsen, Berit; Lam, Brian Y H;

    2016-01-01

    and delta cells. METHODS: Sst-Cre mice crossed with fluorescent reporters were used to identify delta cells, while Glu-Venus (with Venus reported under the control of the Glu [also known as Gcg] promoter) mice were used to identify alpha and beta cells. Alpha, beta and delta cells were purified using flow...... cytometry and analysed by RNA sequencing. The role of the ghrelin receptor was validated by imaging delta cell calcium concentrations using islets with delta cell restricted expression of the calcium reporter GCaMP3, and in perfused mouse pancreases. RESULTS: A database was constructed of all genes...... expressed in alpha, beta and delta cells. The gene encoding the ghrelin receptor, Ghsr, was highlighted as being highly expressed and enriched in delta cells. Activation of the ghrelin receptor raised cytosolic calcium levels in primary pancreatic delta cells and enhanced somatostatin secretion in perfused...

  8. Autologous CD4 T-cell responses to ectopic class II major histocompatibility complex antigen-expressing single-cell islet cells: an in vitro insight into the pathogenesis of lymphocytic insulitis in nonobese diabetic mice.

    OpenAIRE

    Formby, B; Miller, N.

    1990-01-01

    We investigated by flow cytometric analysis the expression of class II major histocompatibility complex (MHC) molecules by viable single-cell islet cells (SCICs) prepared from male and female 4- and 10-week-old nonobese diabetic (NOD) mouse islets. With anti-I-Ak monoclonal antibody (specific for I-Ak,f,r,s beta and produced by clone 11-5-2), and fluorescein isothiocyanate-conjugated goat anti-mouse IgG as second-step antibody, we found that SCICs from both sexes aberrantly expressed class II...

  9. Islet formation during the neonatal development in mice.

    Directory of Open Access Journals (Sweden)

    Kevin Miller

    Full Text Available The islet of Langerhans is a unique micro-organ within the exocrine pancreas, which is composed of insulin-secreting beta-cells, glucagon-secreting alpha-cells, somatostatin-secreting delta-cells, pancreatic polypeptide-secreting PP cells and ghrelin-secreting epsilon-cells. Islets also contain non-endocrine cell types such as endothelial cells. However, the mechanism(s of islet formation is poorly understood due to technical difficulties in capturing this dynamic event in situ. We have developed a method to monitor beta-cell proliferation and islet formation in the intact pancreas using transgenic mice in which the beta-cells are specifically tagged with a fluorescent protein. Endocrine cells proliferate contiguously, forming branched cord-like structures in both embryos and neonates. Our study has revealed long stretches of interconnected islets located along large blood vessels in the neonatal pancreas. Alpha-cells span the elongated islet-like structures, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. We propose that islet formation occurs by a process of fission following contiguous endocrine cell proliferation, rather than by local aggregation or fusion of isolated beta-cells and islets. Mathematical modeling of the fission process in the neonatal islet formation is also presented.

  10. Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-κB-activated cyclooxygenase-2/prostaglandin E2 up-regulation.

    Directory of Open Access Journals (Sweden)

    Kuo-Cheng Lan

    Full Text Available Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF-κB-p65 phosphorylation and cyclooxygenase (COX-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor to inhibit prostaglandin E2 (PGE2 production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.

  11. Abnormal anxiety- and depression-like behaviors in mice lacking both central serotonergic neurons and pancreatic islet cells.

    Science.gov (United States)

    Jia, Yun-Fang; Song, Ning-Ning; Mao, Rong-Rong; Li, Jin-Nan; Zhang, Qiong; Huang, Ying; Zhang, Lei; Han, Hui-Li; Ding, Yu-Qiang; Xu, Lin

    2014-01-01

    Dysfunction of central serotonin (5-HT) system has been proposed to be one of the underlying mechanisms for anxiety and depression, and the association of diabetes mellitus and psychiatric disorders has been noticed by the high prevalence of anxiety/depression in patients with diabetes mellitus. This promoted us to examine these behaviors in central 5-HT-deficient mice and those also suffering with diabetes mellitus. Mice lacking either 5-HT or central serotonergic neurons were generated by conditional deletion of Tph2 or Lmx1b respectively. Simultaneous depletion of both central serotonergic neurons and pancreatic islet cells was achieved by administration of diphtheria toxin (DT) in Pet1-Cre;Rosa26-DT receptor (DTR) mice. The central 5-HT-deficient mice showed reduced anxiety-like behaviors as they spent more time in and entered more often into the light box in the light/dark box test compared with controls; similar results were observed in the elevated plus maze test. However, they displayed no differences in the immobility time of the forced swimming and tail suspension tests suggesting normal depression-like behaviors in central 5-HT-deficient mice. As expected, DT-treated Pet1-Cre;Rosa26-DTR mice lacking both central serotonergic neurons and pancreatic islet endocrine cells exhibited several classic diabetic symptoms. Interestingly, they displayed increased anxiety-like behaviors but reduced immobility time in the forced swimming and tail suspension tests. Furthermore, the hippocampal neurogenesis was dramatically enhanced in these mice. These results suggest that the deficiency of central 5-HT may not be sufficient to induce anxiety/depression-like behaviors in mice, and the enhanced hippocampal neurogenesis may contribute to the altered depression-like behaviors in the 5-HT-deficient mice with diabetes. Our current investigation provides understanding the relationship between diabetes mellitus and psychiatric disorders.

  12. Abnormal anxiety- and depression-like behaviors in mice lacking both central serotonergic neurons and pancreatic islet cells

    Directory of Open Access Journals (Sweden)

    Yun-Fang eJia

    2014-09-01

    Full Text Available Dysfunction of central serotonin (5-HT system has been proposed to be one of the underlying mechanisms for anxiety and depression, and the association of diabetes mellitus and psychiatric disorders has been noticed by the high prevalence of anxiety/depression in patients with diabetes mellitus. This promoted us to examine these behaviors in central 5-HT-deficient mice and those also suffering with diabetes mellitus. Mice lacking either 5-HT or central serotonergic neurons were generated by conditional deletion of Tph2 or Lmx1b respectively. Simultaneous depletion of both central serotonergic neurons and pancreatic islet cells was achieved by administration of diphtheria toxin (DT in Pet1-Cre;Rosa26-DT receptor (DTR mice. The central 5-HT-deficient mice showed reduced anxiety-like behaviors as they spent more time in and entered more often into the light box in the light/dark box test compared with controls; similar results were observed in the elevated plus maze test. However, they displayed no differences in the immobility time of the forced swimming and tail suspension tests suggesting normal depression-like behaviors in central 5-HT-deficient mice. As expected, DT-treated Pet1-Cre;Rosa26-DTR mice lacking both central serotonergic neurons and pancreatic islet endocrine cells exhibited several classic diabetic symptoms. Interestingly, they displayed increased anxiety-like behaviors but reduced immobility time in the forced swimming and tail suspension tests. Furthermore, the hippocampal neurogenesis was dramatically enhanced in these mice. These results suggest that the deficiency of central 5-HT may not be sufficient to induce anxiety/depression-like behaviors in mice, and the enhanced hippocampal neurogenesis may contribute to the altered depression-like behaviors in the 5-HT-deficient mice with diabetes. Our current investigation provides a novel insight into understanding the relationship between diabetes mellitus and psychiatric disorders.

  13. PANCREATIC BETA-CELL FUNCTION AND ISLET-CELL PROLIFERATION - EFFECT OF HYPERINSULINEMIA

    NARCIS (Netherlands)

    KOITER, TR; WIJKSTRA, S; VANDERSCHAAFVERDONK, GCJ; MOES, H; SCHUILING, GA

    1995-01-01

    Pancreatic beta-cell function was studied in adult female rats, in which endogenous insulin demand was fully met by SC infusion of human insulin (4.8 IU/24 h) for 6 days, resulting in hyperinsulinaemia and severe hypoglycaemia. The amount of pancreatic endocrine tissue declined by 40%, (pro)insulin

  14. Current status and outlook of pancreatic islets transplantation research

    International Nuclear Information System (INIS)

    Diabetes is a common disease, severely harmful to the human's health and life quality. The pancreatic islets transplantation can correct the patient's hyperglycemia, stop or even reverse the progress of the complication and thus decrease the mortality of diabetic patients. It is the most safe and efficient therapy for diabetes. Since the Edmonton Protocol got success in pancreatic islet transplantation in 2000, it has been more and more interested because of its great clinical curative effect. Research strategy of islet transplantation is now focussed on increasing the acquired islets with normal viability, selecting the best transplantation pathway, and improving the immunosuppression protocol. The shortage of human pancreatic donor is an ever unsolved problem in clinical application. The potential resolutions may include acquisition from xenogenic-islets; islets originated from stem cells, and islets from the living-donor human pancreas. The islets transplantation will open a new application field for interventional radiology. (authors)

  15. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells.

    Directory of Open Access Journals (Sweden)

    Jody Ye

    Full Text Available Maternal microchimeric cells (MMc transfer across the placenta during pregnancy. Increased levels of MMc have been observed in several autoimmune diseases including type 1 diabetes but their role is unknown. It has been suggested that MMc are 1 effector cells of the immune response, 2 targets of the autoimmune response or 3 play a role in tissue repair. The aim of this study was to define the cellular phenotype of MMc in control (n = 14 and type 1 diabetes pancreas (n = 8.Using sex chromosome-based fluorescence in-situ hybridization, MMc were identified in male pancreas and their phenotype determined by concomitant immunofluorescence.In normal pancreas, MMc positive for endocrine, exocrine, duct and acinar markers were identified suggesting that these cells are derived from maternal progenitors. Increased frequencies of MMc were observed in type 1 diabetes pancreas (p = 0.03 with particular enrichment in the insulin positive fraction (p = 0.01. MMc did not contribute to infiltrating immune cells or Ki67+ islet cell populations in type 1 diabetes.These studies provide support for the hypothesis that MMc in human pancreas are derived from pancreatic precursors. Increased frequencies of MMc beta cells may contribute to the initiation of autoimmunity or to tissue repair but do not infiltrate islets in type 1 diabetes.

  16. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Heumen, Bjorn W.H. van, E-mail: b.vanheumen@mdl.umcn.nl [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Roelofs, Hennie M.J.; Morsche, Rene H.M. te [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marian, Brigitte [Institute of Cancer Research, Wien University, Vienna (Austria); Nagengast, Fokko M.; Peters, Wilbert H.M. [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-04-15

    Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p < 0.01). A more pronounced decrease (23-27%, p < 0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p < 0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p < 0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired. -- Highlights: Black-Right-Pointing-Pointer Celecoxib and UDCA acid co-treatment decreases cell growth in colon tumor cells. Black-Right-Pointing-Pointer UDCA enriched 'artificial bile' decreases LT-97 cell growth only in presence of celecoxib. Black-Right-Pointing-Pointer PCNA, caspase-3, nor COX-2 seem to be involved in the observed changes in cell growth.

  17. The first case of pediatric bile duct adenoma

    OpenAIRE

    Zhi Li; Xiaoyi Sun; Jiexiong Feng

    2015-01-01

    Intrahepatic bile duct adenoma (BDA) is a rare benign epithelial liver tumor derived from bile duct cells. We report the first case of pediatric bile duct adenoma in the world. Furthermore, we review the diagnosis, pathology, treatment and prognosis of bile duct adenoma.

  18. Contrasting Roles of Islet Resident Immunoregulatory Macrophages and Dendritic Cells in Experimental Autoimmune Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Thomas B Thornley

    Full Text Available The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D.

  19. Islet-activating protein inhibits leukotriene D4- and leukotriene C4- but not bradykinin- or calcium ionophore-induced prostacyclin synthesis in bovine endothelial cells.

    OpenAIRE

    Clark, M. A.; Conway, T.M.; Bennett, C F; Crooke, S T; Stadel, J M

    1986-01-01

    Incubation of the bovine endothelial cell line, CPAE, with leukotriene D4, leukotriene C4, bradykinin, or the calcium ionophore A23187 results in the release of arachidonic acid metabolites including 6-keto-prostaglandin F1 alpha, the stable metabolite of prostacyclin. Pretreatment of these cells with the pertussis toxin islet-activating protein (IAP) results in a dose-dependent inhibition of the release of arachidonic acid metabolites and prostacyclin in response to leukotriene D4 and leukot...

  20. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells

    Directory of Open Access Journals (Sweden)

    Zhao Yong

    2012-01-01

    Full Text Available Abstract Background Inability to control autoimmunity is the primary barrier to developing a cure for type 1 diabetes (T1D. Evidence that human cord blood-derived multipotent stem cells (CB-SCs can control autoimmune responses by altering regulatory T cells (Tregs and human islet β cell-specific T cell clones offers promise for a new approach to overcome the autoimmunity underlying T1D. Methods We developed a procedure for Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates lymphocytes from the whole blood and briefly co-cultures them with adherent CB-SCs before returning them to the patient's circulation. In an open-label, phase1/phase 2 study, patients (n = 15 with T1D received one treatment with the Stem Cell Educator. Median age was 29 years (range: 15 to 41, and median diabetic history was 8 years (range: 1 to 21. Results Stem Cell Educator therapy was well tolerated in all participants with minimal pain from two venipunctures and no adverse events. Stem Cell Educator therapy can markedly improve C-peptide levels, reduce the median glycated hemoglobin A1C (HbA1C values, and decrease the median daily dose of insulin in patients with some residual β cell function (n = 6 and patients with no residual pancreatic islet β cell function (n = 6. Treatment also produced an increase in basal and glucose-stimulated C-peptide levels through 40 weeks. However, participants in the Control Group (n = 3 did not exhibit significant change at any follow-up. Individuals who received Stem Cell Educator therapy exhibited increased expression of co-stimulating molecules (specifically, CD28 and ICOS, increases in the number of CD4+CD25+Foxp3+ Tregs, and restoration of Th1/Th2/Th3 cytokine balance. Conclusions Stem Cell Educator therapy is safe, and in individuals with moderate or severe T1D, a single treatment produces lasting improvement in metabolic control. Initial results indicate Stem Cell

  1. Increased secretion of insulin and proliferation of islet β-cells in rats with mesenteric lymph duct ligation

    International Nuclear Information System (INIS)

    Highlights: ► Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. ► Proliferation of islet β-cells was upregulated in lymph duct-ligated rats. ► Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats. Methods: Male Sprague–Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of β-cell

  2. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    Energy Technology Data Exchange (ETDEWEB)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Kawata, Sumio, E-mail: Sumio_Kawata@pref.hyogo.lg.jp [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya 662-0918 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2

  3. Analysis of the treatment of 9 patients with islet cell tumor%9例胰岛细胞瘤诊治分析

    Institute of Scientific and Technical Information of China (English)

    张妲; 杜昕; 王晨蕊; 杨彩哲; 关小宏

    2015-01-01

    Objective Analysis the treatment of 9 patients with islet cell tumor.Methods Those 9 patients diagnosed as islet cell tumor, who were hospitalized in Air Force General Hospital from May 1999 to June 2014, were retrospectively analyzed in terms of clinical manifestation, pre-op diagnosis, treatment protocol and outcome, pathology feature, and immunohistochemistry. Moreover, all these patients were follow-up studied.Results Among all these patients, 5 cases were tested with blood glucose and insulin pre-operation, yet only 2 patients were investigated with other hormone level. All patients accepted imaging examination before surgery. So far no discomfort symptom emerged among 6 cases of benign islet cell tumor or islet cell hyperplasia ones during post-op period. Among the malignant islet cell tumor patients who were operated on or assisted with combination therapy after surgery, 1 patient died, while 2 cases are alive till now without recurrence sign.Conclusion The endocrinologic evaluation of islet cell tumor and screen of multiple endocrine neoplasm is still expected to be consummated.%目的 对9例胰岛细胞瘤患者的诊治情况进行分析.方法 回顾性分析1999年5月—2014年6月空军总医院收治的9例胰岛细胞瘤患者的临床表现、术前诊断、治疗方案及结局、病理特点和免疫组化并进行随访.结果 功能性胰岛细胞瘤5例患者术前进行了血糖和胰岛素水平的测定,但仅2例检测了其他内分泌激素水平.全部患者术前均进行了影像学检查及手术治疗.良性胰岛细胞瘤或胰岛细胞增生6例术后随访至今未出现不适症状.恶性胰岛细胞瘤3例经手术或辅以术后联合治疗,2例生存至今未复发,1例死亡.结论 胰岛细胞瘤的内分泌评估及多发性内分泌腺瘤病的筛查尚有待完善.

  4. Heterogeneity of secretory granules of silent pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1988-01-01

    Silent pituitary adenomas were compared with hormonally active tumors taking into account the size, number, and ultrastructural characteristics of secretory granules (SG). The study group (a total of 79 primary pituitary adenomas) comprised 27 silent, 21 growth hormone (GH)-producing-, 16 prolactin...... (PRL)-producing-, 5 GH-PRL-producing- and 10 adrenocorticotropic hormone (ACTH)-producing adenomas. The SG of silent adenomas were significantly smaller than SG in endocrine active adenomas. All hormonally inactive tumors also contained small (mean, 94 nm) specific cytoplasmic granules, designated...... "silent adenoma granules" (SIG). The fine structural features of the SIG included: a flocculent, granular material occupying an eccentric position in a larger vesicle limited by a double membrane. In the silent adenomas this particular granule was present in up to 90% of the adenoma cells and constituted...

  5. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio, E-mail: tanizawa@yamaguchi-u.ac.jp

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  6. Identifying type 1 diabetes candidate genes by DNA microarray analysis of islet-specific CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Gregory J. Berry

    2015-09-01

    Full Text Available Type 1 diabetes (T1D is a T cell-mediated autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells and is fatal unless treated with insulin. During the last four decades, multiple insulin-dependent diabetes (Idd susceptibility/resistance loci that regulate T1D development have been identified in humans and non-obese diabetic (NOD mice, an established animal model for T1D. However, the exact mechanisms by which these loci confer diabetes risk and the identity of the causative genes remain largely elusive. To identify genes and molecular mechanisms that control the function of diabetogenic T cells, we conducted DNA microarray analysis in islet-specific CD4+ T cells from BDC2.5 TCR transgenic NOD mice that contain the Idd9 locus from T1D-susceptible NOD mice or T1D-resistant C57BL/10 mice. Here we describe in detail the contents and analyses for these gene expression data associated with our previous study [1]. Gene expression data are available at the Gene Expression Omnibus (GEO repository from the National Center for Biotechnology Information (accession number GSE64674.

  7. The B55α-containing PP2A holoenzyme dephosphorylates FOXO1 in islet β-cells under oxidative stress

    Science.gov (United States)

    Yan, Ling; Guo, Shuangli; Brault, Marie; Harmon, Jamie; Robertson, R. Paul; Hamid, Rizwan; Stein, Roland; Yang, Elizabeth

    2016-01-01

    The FOXO1 (forkhead box O1) transcription factor influences many key cellular processes, including those important in metabolism, proliferation and cell death. Reversible phosphorylation of FOXO1 at Thr24 and Ser256 regulates its subcellular localization, with phosphorylation promoting cytoplasmic localization, whereas dephosphorylation triggers nuclear import and transcriptional activation. In the present study, we used biochemical and molecular approaches to isolate and link the serine/threonine PP2A (protein phosphatase 2A) holoenzyme containing the B55α regulatory subunit, with nuclear import of FOXO1 in pancreatic islet β-cells under oxidative stress, a condition associated with cellular dysfunction in Type 2 diabetes. The mechanism of FOXO1 dephosphorylation and nuclear translocation was investigated in pancreatic islet INS-1 and βTC-3 cell lines subjected to oxidative stress. A combined chemical cross-linking and MS strategy revealed the association of FOXO1 with a PP2A holoenzyme composed of the catalytic C, structural A and B55α regulatory subunits. Knockdown of B55α in INS-1 cells reduced FOXO1 dephosphorylation, inhibited FOXO1 nuclear translocation and attenuated oxidative stress-induced cell death. Furthermore, both B55α and nuclear FOXO1 levels were increased under hyperglycaemic conditions in db/db mouse islets, an animal model of Type 2 diabetes. We conclude that B55α-containing PP2A is a key regulator of FOXO1 activity in vivo. PMID:22417654

  8. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...

  9. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells.

    Science.gov (United States)

    Klenow, S; Glei, M; Haber, B; Owen, R; Pool-Zobel, B L

    2008-04-01

    An extract of the Mediterranean carob (Ceratonia siliqua L.) pod (carob fibre extract), products formed after its fermentation by the gut flora and the major phenolic ingredient gallic acid (GA), were comparatively investigated for their influence on survival and growth parameters of colon adenocarcinoma HT29 cells and adenoma LT97 cells. Hydrogen peroxide (H2O2) formation in the cell culture media was quantified. After 1h 97+/-4 microM or 70+/-15 microM were found in HT29 medium and 6+/-1 microM or 3+/-3 microM in LT97 medium for carob fibre extract or GA, respectively. After 72 h carob fibre extract reduced survival of rapidly proliferating HT29 cells (by 76.4+/-12.9%) whereas metabolic activity and DNA-synthesis were only transiently impaired. Survival of slower growing LT97 cells was less decreased (by 21.5+/-12.9%), but there were marked effects on DNA-synthesis (reduction by 95.6+/-7%, 72 h). GA and fermented carob fibre did not have comparable effects. Thus, carob fibre extract resulted in H2O2 formation, which, however, could not explain impairment of cell growth. The differently modulated growth of human colon cell lines was more related to proliferation rates and impairment of DNA-synthesis than to H2O2 formation.

  10. Pig islets xenotransplantation: recent progress and current perspectives

    Directory of Open Access Journals (Sweden)

    Haitao eZhu

    2014-03-01

    Full Text Available Islet xenotransplantation is a prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig is the ideal candidate to obtain such available islet cells. However, potential clinical application of pig islet transplantation still faces obstacles such as inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained based on selection of a suitable pathogen-free source herd and the development of isolation and purification methods. Several studies demonstrated feasibility of successful pre-clinical pig islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more data on safety and efficacy to translate these findings into clinical practice

  11. Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role in β-Cell Death in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Lucie Khemtémourian

    2008-01-01

    Full Text Available The presence of fibrillar protein deposits (amyloid of human islet amyloid polypeptide (hIAPP in the pancreatic islets of Langerhans is thought to be related to death of the insulin-producing islet β-cells in type 2 diabetes mellitus (DM2. The mechanism of hIAPP-induced β-cell death is not understood. However, there is growing evidence that hIAPP-induced disruption of β-cell membranes is the cause of hIAPP cytotoxicity. Amyloid cytotoxicity by membrane damage has not only been suggested for hIAPP, but also for peptides and proteins related to other misfolding diseases, like Alzheimer’s disease, Parkinson’s disease, and prion diseases. Here we review the interaction of hIAPP with membranes, and discuss recent progress in the field, with a focus on hIAPP structure and on the proposed mechanisms of hIAPP-induced membrane damage in relation to β-cell death in DM2.

  12. Relation of red blood cell\\\\\\'s folate and methylenetetrahedrofolate reductase C677T polymorphism to colorectal adenoma

    Directory of Open Access Journals (Sweden)

    Zohreh Mazloom

    2014-11-01

    Methods: In a case-control study conducted from January to October 2007 in Endoscopy-Colonoscopy ward of Shahid Faghihi Hospital, Shiraz. Participants were 177 case of colorectal adenoma who had pathologic-confirmed adenomatous polyps in full colonoscopy examination and 366 controls without polyps in full colonoscopy. Fasting venous blood were drawn from patients in order to determine RBC’s folate and to identify the MTHFR polymorphism by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP technique. Results: Gender Distribution in the patient group were 57.6% male and 42.3% female and control group consisted of 55.1% male and 43.9% female. 50.2% of cases and 49.2% of controls were in the age group “45 years and above”. The T allele frequency was 56.6% in control group and 34.4% in colorectal adenoma patients. There was a significant association between T allele in -677 position of MTHFR gene and colorectal adenoma susceptibility (OR: 1.85, 95% CI: 0.76-4.24, P0.05 but mean concentration of RBC’s folate was the lowest in TT genotype compare with two other genotype. Odd's Ratio for low (<140ng/ml versus high level of RBC’s folate in participants with TT genotype was (OR: 2.08, 95% CI: 0.10-2.19, P<0.05 as compare with the CC ones. Conclusion: The result of this study suggested an inverse association between RBC's folate concentration and colorectal adenomas risk, which may be more relevant for those with the MTHFR TT genotype.

  13. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    Energy Technology Data Exchange (ETDEWEB)

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-03-15

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  14. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    International Nuclear Information System (INIS)

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 (14C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). 14C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA 14C content relative to a well-established 14C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA 14C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  15. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apc(min/+) mice through altered Wnt receptor signaling.

    Science.gov (United States)

    Guo, Huabei; Nagy, Tamas; Pierce, Michael

    2014-11-01

    Deletion of GnT-V (MGAT5), which synthesizes N-glycans with β(1,6)-branched glycans, reduced the compartment of cancer stem cells (CSC) in the her-2 mouse model of breast cancer, leading to delay of tumor onset. Because GnT-V levels are also commonly up-regulated in colon cancer, we investigated their regulation of colon CSC and adenoma development. Anchorage-independent cell growth and tumor formation induced by injection of colon tumor cells into NOD/SCID mice were positively associated with GnT-V levels, indicating regulation of proliferation and tumorigenicity. Using Apc(min/+) mice with different GnT-V backgrounds, knock-out of GnT-V had no significant effect on the number of adenoma/mouse, but adenoma size was significantly reduced and accompanied increased survival of Apc(min/+) mice with GnT-V deletion (p cells, we found that FZD-7 receptors expressed N-linked β(1,6) branching, indicating that FZD-7 can be modified by GnT-V. The aberrant Wnt signaling observed after modulating GnT-V levels is likely to result from altered N-linked β(1,6) branching on FZD-7, thereby affecting Wnt signaling, the compartment of CSC, and tumor progression.

  16. Striated Muscle as Implantation Site for Transplanted Pancreatic Islets

    Science.gov (United States)

    Espes, Daniel; Eriksson, Olof; Lau, Joey; Carlsson, Per-Ola

    2011-01-01

    Islet transplantation is an attractive treatment for selected patients with brittle type 1 diabetes. In the clinical setting, intraportal transplantation predominates. However, due to extensive early islet cell death, the quantity of islets needed to restore glucose homeostasis requires in general a minimum of two donors. Moreover, the deterioration of islet function over time results in few insulin-independent patients after five-year followup. Specific obstacles to the success of islet transplantation include site-specific concerns for the liver such as the instant blood mediated inflammatory reaction, islet lipotoxicity, low oxygen tension, and poor revascularization, impediments that have led to the developing interest for alternative implantation sites over recent years. Within preclinical settings, several alternative sites have now been investigated and proven favorable in various aspects. Muscle is considered a very promising site and has physiologically properties and technical advantages that could make it optimal for islet transplantation. PMID:22174984

  17. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.

    Directory of Open Access Journals (Sweden)

    Aline Semblano Carreira Falcão

    Full Text Available Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1 derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1. Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG. Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

  18. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.

    Science.gov (United States)

    Falcão, Aline Semblano Carreira; Kataoka, Maria Sueli da Silva; Ribeiro, Nélson Antonio Bailão; Diniz, José Antonio Picanço; Alves, Sérgio Melo; Ribeiro, André L Ribeiro; de Siqueira, Adriane Sousa; da Silva, Artur Luiz; Ramos, Rommel Thiago Jucá; Freitas, Vanessa M; Jaeger, Ruy G; Pinheiro, João J V

    2014-01-01

    Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1) derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1). Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG). Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

  19. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas

    DEFF Research Database (Denmark)

    Møller, C J; Christgau, S; Williamson, M R;

    1992-01-01

    The endocrine cells of the pancreas develop from the endoderm and yet display several characteristics of a neuronal phenotype. During embryonic life, ductal epithelial cells give rise to first the glugagon-producing cells (alpha-cells) and then cells that express insulin (beta-cells), somatostati...

  20. Islet transplantation: the quest for an ideal source

    International Nuclear Information System (INIS)

    The progress of islet transplantation as a new therapy for patients with diabetes mellitus depends directly upon the development of efficient and practical immunoisolation methods for the supply of sufficient quantities of islet cells. Without these methods, large scale clinical application of this therapy would be impossible. Two eras of advances can be identified in the development of islet transplantation. The first was an era of experimental animal and human research that centered on islet isolation procedures and transplantation in different species as evidence that transplanted islets have the capability to reverse diabetes. The second was the era of Edmonton protocol, when the focus became the standardization of isolation procedures and introduction of new immunosuppressive drugs to maintain human allograft transplantation. The quest for an alternative source for islets (xenographs, stem cells and cell cultures) to overcome the shortage of human islets was an important issue during these eras. This paper reviews the history of islet transplantation and the current procedures in human allotransplantation, as well as different types of immunoisolation methods. It explores novel approaches to enhancing transplantation site vascularity and islet cell function, whereby future immunoisolation technology could offer additional therapeutic advantages to human islet allotransplantation. (author)

  1. 体外诱导胰腺干细胞向胰岛样细胞团的分化%In vitro induced differentiation of pancreatic stem cells into islet-like cell clusters

    Institute of Scientific and Technical Information of China (English)

    岑妍慧; 谢小薰; 陈维平; 何国珍; 黄波; 郭文文; 肖燕子

    2012-01-01

    BACKGROUND: Because of lacking of islet sources, the islet cells transplantation for the treatment of diabetes can not meet the clinical demand, so the differentiation of pancreas stem cells into islets in vitro has become a focus of the research. OBJECTIVE: To in vitro induce the mice pancreas stem cells into the islet-like cell clusters and to perform the relate measurement; to investigate the techniques and methods to differentiate the pancreas stem cells into the islets as well as the detection method. METHODS: The mice pancreas stem cells were obtained in vi tro, and then the joint inducer was used to induce the pancreas stem cells to differentiate into islets. The islet- like cell clusters were preformed with morphological observation, dithizone dyeing, RT-PCR and Western blot detection. RESULTS AND CONCLUSION: Through the observation of cell morphology and cell growth characteristics and immunocytochemistry staining, we obtained mice pancreas stem cells in vitro. The joint inducer was used to induce the mice pancreas stem cells to differentiate into islet-like cells, the cells were spherical with a more slender pedicle connected with the bottom, and the cells was stained iron red by dithizone dyeing. The results of RT-PCR and Western blot determined the expression of insulin mRNA and insulin protein of islet-like cells respectively. It confirms that the mice pancreas stem cells can be induced in vitro to differentiate into beta containing islet- like cell clusters.%背景:目前由于胰岛来源匮乏,使得胰岛细胞移植治疗糖尿病无法满足临床需求,故体外将胰腺干细胞诱导分化为胰岛成为研究焦点.目的:于体外将小鼠胰腺干细胞诱导成胰岛样细胞团并对其进行相关检测,探寻一种胰腺干细胞体外诱导分化成胰岛及鉴定的技术和方法.方法:体外获得纯化的小鼠胰腺干细胞,采用联合诱导剂对其进行成胰岛方向的诱导分化,并对诱导

  2. A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice.

    Science.gov (United States)

    Dadheech, Nidheesh; Soni, Sanket; Srivastava, Abhay; Dadheech, Sucheta; Gupta, Shivika; Gopurappilly, Renjitha; Bhonde, Ramesh R; Gupta, Sarita

    2013-01-01

    Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes. PMID:23662125

  3. A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Nidheesh Dadheech

    2013-01-01

    Full Text Available Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC. Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro and decreased fasting blood glucose (FBG (in vivo in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes.

  4. Response of Chick B Islets to Insulin Secretagogues is Comparable to those of Human Islet Equivalents

    Directory of Open Access Journals (Sweden)

    Bhawna Chandravanshi

    2015-05-01

    Full Text Available Context The B islets isolated from 3-5 day old chick respond well to glucose challenge in a similar fashion to those isolated from mouse pancreas. Objective To compare insulin secretory response of chick B islets with that of human Islet Equivalents (hIEqs generated from stem cells. Methods Human Umbilical Cord Mesenchymal Stem Cells (UC-MSCs were differentiated into hIEqs employing three step sequential serum free protocols. Results Immunofluorescence staining demonstrated Insulin, C peptide and Glut 2 positivity of both these islets. Static insulin stimulation of these islets in response to glucose, metformin and Gama Amino Butyric Acid (GABA resulted in increased insulin secretion as compared to basal glucose stimulation. Our results demonstrate that insulin secretory response of Chick B islets to Metformin and GABA is comparable to those of hIEqs. Moreover, both chick and hIEqs could be successfully cryopreserved and revived in a commercially available cryomix - Cryostore 5, indicating resemblance in their behaviour at sub-zero temperatures. Inference Present study advocates Chick islets as an alternative source for diabetes research and islet banking.

  5. Serum Islet Cell Autoantibodies During Interferon α Treatment in Patients With HCV-Genotype 4 Chronic Hepatitis

    Directory of Open Access Journals (Sweden)

    Gamal Badra

    2006-01-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a leading cause of end-stage liver disease worldwide and HCV genotype 4 (HCV4 is predominant in African and Middle Eastern countries. It is well established that interferon-α (IFNa treatment for HCV may trigger serum autoantibodies against pancreatic islet cells (ICA in a subgroup of patients. Available data on the incidence of ICA during IFNa therapy for chronic HCV4 infection are not conclusive. We investigated the appearance of ICA in 40 naïve Egyptian patients (38 males, 32 ± 6 years with histologically defined chronic HCV4 infection undergoing IFNa treatment at a dose of 9-million U/week for 24 weeks. Serum samples were collected at baseline and following IFNa therapy and ICA were detected using indirect immunofluorescence. Baseline evaluation indicated that 2/40 (5% patients had detectable serum ICA. After the completion of the treatment scheme, 12/38 (32% previously ICA negative patients became ICA positive; however, no patient developed impaired glucose tolerance (IGT or diabetes during follow-up. In conclusion, we submit that IFNa treatment for chronic hepatitis C (CHC may induce serum ICA in one-third of Egyptian patients with HCV4. These autoantibodies, however, do not lead to alterations in glucose metabolism.

  6. miR-145 modulates lncRNA-ROR and Sox2 expression to maintain human amniotic epithelial stem cell pluripotency and β islet-like cell differentiation efficiency.

    Science.gov (United States)

    Zou, Gang; Liu, Te; Guo, Lihe; Huang, Yongyi; Feng, Ya; Huang, Qin; Duan, Tao

    2016-10-10

    In this study, we observed a great reduction in the expression of the endogenous long noncoding RNA ROR (lncRNA-ROR) and the stem cell transcription factor Sox2, in contrast to a marked increase in miR-145 expression, during the course of in vitro induced differentiation of human amniotic epithelial stem cells (HuAECs). Bioinformatics analysis and the luciferase reporter assay revealed binding of miR-145 to specific sites in lncRNA-ROR and Sox2, silencing their expression. Overexpression of a lncRNA-ROR-specific siRNA effectively downregulated the expression levels of Sox2 and other stem cell markers in HuAECs while weakening the efficiency of HuAEC differentiation into β islet-like cells. Moreover, the in vitro response of HuAEC-derived β islet-like cells to extracellular stimuli and C-peptide release by these cells were markedly weakened in the siRNA-ROR transfection group. Furthermore, the in vivo expression of β islet-like cell biomarkers was substantially reduced in HuAECs in the siRNA-ROR transfection group, and their in vivo β islet-like cell differentiation and insulin release capacities were reduced in a streptozocin-induced diabetic rat model. The experimental results indicate that lncRNA-ROR effectively maintains Sox2 gene expression through competitive binding to miR-145, achieving pluripotency maintenance in HuAECs and regulation of their directed β islet-like cell differentiation efficiency. PMID:27346547

  7. Hyperpolarization of the Membrane Potential Caused by Somatostatin in Dissociated Human Pituitary Adenoma Cells that Secrete Growth Hormone

    Science.gov (United States)

    Yamashita, Naohide; Shibuya, Naohiko; Ogata, Etsuro

    1986-08-01

    Membrane electrical properties and the response to somatostatin were examined in dissociated human pituitary adenoma cells that secrete growth hormone (GH). Under current clamp condition with a patch electrode, the resting potential was -52.4 ± 8.0 mV, and spontaneous action potentials were observed in 58% of the cells. Under voltage clamp condition an outward K+ current, a tetrodotoxin-sensitive Na+ current, and a Ca2+ current were observed. Cobalt ions suppressed the Ca2+ current. The threshold of Ca2+ current activation was about -60 mV. Somatostatin elicited a membrane hyperpolarization associated with increased membrane permeability in these cells. The reversal potential of somatostatin-induced hyperpolarization was -78.4 ± 4.3 mV in 6 mM K+ medium and -97.2 ± 6.4 mV in 3 mM K+ medium. These reversal potential values and a shift with the external K+ concentration indicated that membrane hyperpolarization was caused by increased permeability to K+. The hyperpolarized membrane potential induced by somatostatin was -63.6 ± 5.9 mV in the standard medium. This level was subthreshold for Ca2+ and Na+ currents and was sufficient to inhibit spontaneous action potentials. Hormone secretion was significantly suppressed by somatostatin and cobalt ions. Therefore, we suggest that Ca2+ entering the cell through voltage-dependent channels are playing an important role for GH secretion and that somatostatin suppresses GH secretion by blocking Ca2+ currents. Finally, we discuss other possibilities for the inhibitory effect of somatostatin on GH secretion.

  8. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    OpenAIRE

    Revital Sharivkin; Walker, Michael D.; Yoav Soen

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates sp...

  9. Basal cell adenoma-clinicopathological, immunohistochemical analysis and surgical considerations of a rare salivary gland tumor with review of literature

    Directory of Open Access Journals (Sweden)

    A D Bhagat Singh

    2015-01-01

    Full Text Available Introduction: Basal cell adenoma (BCA of the salivary glands is a rare benign salivary gland tumour. Differentiation of BCA from varied entities involving maxillofacial area is mandatory. Aim: To analyze the clinicopathological, histopathologic features, immunohistochemcal analysis and surgical considerations of this rare entity. Materials and Methods: This study included 12 cases of BCA from archives of department reported over the period of 13 years. All the pertaining clinicopathologic features such as incidence, age, sex and site of lesions were assessed. Tissue sections were stained by using panel of immunohistochemical markers, i.e. Pan CK, CK 5/6 and S100, Calponin, p63, CD 117 and smooth muscle actin. Results: BCA was observed in 26-52 years age group (mean age, 38.75 years with female propensity of 7:5 male to female ratio. It is seen more commonly in parotid gland, followed by upper lip, buccal mucosa and palate. Solid type is the most common histopathologic type followed by tubular, membranous and trabecular. Only one case of membranous type of BCA showed recurrence. Pan CK, CK 5/6 showed strong immunoreactivity, calponin showed moderate staining, p63 and Ki-67 mild staining, whereas CD 117 and SMA showed negative immunostaining. Conclusion: Vigilant comprehensive analysis of all the pertaining clinicopathologic and histopathologic features and immunohistochemical analysis are required for differentiating from other lesions with basaloid differentiation having varying prognosis.

  10. Passage from normal mucosa to adenoma and colon cancer: alteration of normal sCD30 mechanisms regulating TH1/TH2 cell functions.

    Science.gov (United States)

    Contasta, Ida; Berghella, Anna Maria; Pellegrini, Patrizia; Adorno, Domenico

    2003-08-01

    The pathogenesis of cancer is currently under intensive investigation to identify reliable prognostic indices for the early detection of disease. Adenomas have been identified as precursors of colorectal cancer and tumor establishment, and disease progression has been found to reflect a malfunction of the immune system. On the basis of the role of the CD30 molecule in the regulation of TH1/TH2 functions and our previous results, strongly suggesting the validity of serum TH1/TH2 cytokines in the study of tumor progression, we studied network interaction between the production of soluble (s) CD30/sBCl2 in whole blood culture [in basic conditions and after PHA, LPS, and anti-CD3 monoclonal antibody (mAb) stimulation] and levels of TH1/TH2 cytokines (IL2, IFN gamma, IL12, IL4, IL5, IL10). Peripheral blood from a group of healthy subjects, as well as from patients with adenoma and colorectal cancer was used. Our objective was to gain a better insight into the role of the CD30 molecule in the passage from normal mucosa to adenoma and tumor and identify specific disease markers. Our results suggest that the decrease in CD30 expression and the abnormal increase in Bcl2 expression, observed in the peripheral cells of both adenoma and tumor groups determine an imbalance between TH1/TH2 functions. Consequently, changes in sCD30/sBcl2 culture production and TH1/TH2 cytokine serum levels may be reliable markers for tumor progression. In fact, our overall data show that a decrease of sCD30 levels in basic and PHA conditions and an increase of IFN gamma, IL4, IL5, and IL12 serum levels and sBcl2 in all activation condition are indicative of the passage from normal mucosa to adenoma; whilst a decrease of sBcl2 level in basic, LPS and anti-CD3 conditions and of IL2, IFN gamma serum levels, together with an increase of IL5 are indicative of the passage from adenoma to tumor.

  11. Ketosis Onset Type 2 Diabetes Had Better Islet β-Cell Function and More Serious Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hongyun Lu

    2014-01-01

    Full Text Available Diabetic ketosis had been identified as a characteristic of type 1 diabetes mellitus (T1DM, but now emerging evidence has identified that they were diagnosed as T2DM after long time follow up. This case control study was aimed at comparing the clinical characteristic, β-cell function, and insulin resistance of ketosis and nonketotic onset T2DM and providing evidence for treatment selection. 140 cases of newly diagnosed T2DM patients were divided into ketosis (62 cases and nonketotic onset group (78 cases. After correction of hyperglycemia and ketosis with insulin therapy, plasma C-peptide concentrations were measured at 0, 0.5, 1, 2, and 3 hours after 75 g glucose oral administration. Area under the curve (AUC of C-peptide was calculated. Homoeostasis model assessment was used to estimate basal β-cell function (HOMA-β and insulin resistance (HOMA-IR. Our results showed that ketosis onset group had higher prevalence of nonalcoholic fatty liver disease (NAFLD than nonketotic group (P=0.04. Ketosis onset group had increased plasma C-peptide levels at 0 h, 0.5 h, and 3 h and higher AUC0–0.5, AUC0–1, AUC0–3 (P<0.05. Moreover, this group also had higher HOMA-β and HOMA-IR than nonketotic group (P<0.05. From these data, we concluded that ketosis onset T2DM had better islet β-cell function and more serious insulin resistance than nonketotic onset T2DM.

  12. Molecular Imaging: A Promising Tool to Monitor Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-01-01

    Full Text Available Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.

  13. Anti-CD154 mAb and rapamycin induce T regulatory cell mediated tolerance in rat-to-mouse islet transplantation.

    Directory of Open Access Journals (Sweden)

    Yannick D Muller

    Full Text Available BACKGROUND: Anti-CD154 (MR1 monoclonal antibody (mAb and rapamycin (RAPA treatment both improve survival of rat-to-mouse islet xenograft. The present study investigated the effect of combined RAPA/MR1 treatment on rat-to-mouse islet xenograft survival and analyzed the role of CD4(+CD25(+Foxp3(+ T regulatory cells (Treg in the induction and maintenance of the ensuing tolerance. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 mice were treated with MR1/RAPA and received additional monoclonal anti-IL2 mAb or anti CD25 mAb either early (0-28 d or late (100-128 d post-transplantation. Treg were characterised in the blood, spleen, draining lymph nodes and within the graft of tolerant and rejecting mice by flow cytometry and immunohistochemistry. Fourteen days of RAPA/MR1 combination therapy allowed indefinite islet graft survival in >80% of the mice. Additional administration of anti-IL-2 mAb or depleting anti-CD25 mAb at the time of transplantation resulted in rejection (100% and 89% respectively, whereas administration at 100 days post transplantation lead to lower rejection rates (25% and 40% respectively. Tolerant mice showed an increase of Treg within the graft and in draining lymph nodes early post transplantation, whereas 100 days post transplantation no significant increase of Treg was observed. Rejecting mice showed a transient increase of Treg in the xenograft and secondary lymphoid organs, which disappeared within 7 days after rejection. CONCLUSIONS/SIGNIFICANCES: These results suggest a critical role for Treg in the induction phase of tolerance early after islet xenotransplantation. These encouraging data support the need of developing further Treg therapy for overcoming the species barrier in xenotransplantation.

  14. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.

    Science.gov (United States)

    Ye, Lihua; Robertson, Morgan A; Mastracci, Teresa L; Anderson, Ryan M

    2016-01-15

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  15. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.

    Science.gov (United States)

    Ye, Lihua; Robertson, Morgan A; Mastracci, Teresa L; Anderson, Ryan M

    2016-01-15

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation.

  16. The Pancreas as an Islet Transplantation Site. Confirmation in a Syngeneic Rodent and Canine Autotransplant Model

    Directory of Open Access Journals (Sweden)

    John I Stagner

    2007-09-01

    Full Text Available Context The availability of islet transplantation is limited by both the number of donor pancreata and the number of islets required for successful transplantation. There is evidence that the liver presents a less than optimal environment for islets that contributes to short- and long-term beta cell destruction or failure. Objective It is our hypothesis that the pancreas is a suitable transplant site and may require fewer islets than standard sites such as the liver or kidney, and could lead to improvements in transplantation outcomes. Methods To test this hypothesis both a rodent and a canine model were used. Syngeneic rat islets were transplanted to the pancreas, liver, or kidney of Lewis rats. Fasting blood glucose levels were compared for three months as an index of islet function. Dogs received an islet autotransplant to a pancreatic remnant. Insulin and glucose concentrations were followed for six months. Results In the rat, normoglycemia was maintained with 600 islets transplanted in the pancreas in contrast to the liver (3,200 islets or kidney (1,000-2,000 islets. Dogs remained normoglycemic after receiving an intrapancreatic islet transplant (mean 7,640±3,600 islets. There was no evidence of pancreatitis or nutritional deficiency in either species. Conclusions The pancreas should be considered as an islet transplant site. The pancreas is the native milieu for islets, and offers the advantage of requiring fewer islets than other conventional sites, thereby increasing the possibility that one donor pancreas may serve one or more recipients.

  17. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans.

  18. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria.

    Science.gov (United States)

    Kennedy, H J; Pouli, A E; Ainscow, E K; Jouaville, L S; Rizzuto, R; Rutter, G A

    1999-05-01

    Increases in the concentration of free ATP within the islet beta-cell may couple elevations in blood glucose to insulin release by closing ATP-sensitive K+ (KATP) channels and activating Ca2+ influx. Here, we use recombinant targeted luciferases and photon counting imaging to monitor changes in free [ATP] in subdomains of single living MIN6 and primary beta-cells. Resting [ATP] in the cytosol ([ATP]c), in the mitochondrial matrix ([ATP]m), and beneath the plasma membrane ([ATP]pm) were similar ( approximately 1 mM). Elevations in extracellular glucose concentration (3-30 mM) increased free [ATP] in each domain with distinct kinetics. Thus, sustained increases in [ATP]m and [ATP]pm were observed, but only a transient increase in [ATP]c. However, detectable increases in [ATP]c and [ATP]pm, but not [ATP]m, required extracellular Ca2+. Enhancement of glucose-induced Ca2+ influx with high [K+] had little effect on the apparent [ATP]c and [ATP]m increases but augmented the [ATP]pm increase. Underlying these changes, glucose increased the mitochondrial proton motive force, an effect mimicked by high [K+]. These data support a model in which glucose increases [ATP]m both through enhanced substrate supply and by progressive Ca2+-dependent activation of mitochondrial enzymes. This may then lead to a privileged elevation of [ATP]pm, which may be essential for the sustained closure of KATP channels. Luciferase imaging would appear to be a useful new tool for dynamic in vivo imaging of free ATP concentration.

  19. Islet Oxygen Consumption Rate (OCR Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Directory of Open Access Journals (Sweden)

    Klearchos K Papas

    Full Text Available Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR in predicting clinical islet autotransplant (IAT insulin independence (II. IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.Membrane integrity staining (FDA/PI, OCR normalized to DNA (OCR/DNA, islet equivalent (IE and OCR (viable IE normalized to recipient body weight (IE dose and OCR dose, and OCR/DNA normalized to islet size index (ISI were used to characterize autoislet preparations (n = 35. Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis.Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001. These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC = 0.94 for IE dose and 0.96 for OCR dose. FDA/PI (AUC = 0.49 and OCR/DNA (AUC = 0.58 did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72.Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  20. Hair Cell Overexpression of Islet1 Reduces Age-Related and Noise-Induced Hearing Loss

    OpenAIRE

    Huang, Mingqian; Kantardzhieva, Albena; Scheffer, Deborah; Liberman, M. Charles; Chen, Zheng-Yi

    2013-01-01

    Isl1 is a LIM-homeodomain transcription factor that is critical in the development and differentiation of multiple tissues. In the mouse inner ear, Isl1 is expressed in the prosensory region of otocyst, in young hair cells and supporting cells, and is no longer expressed in postnatal auditory hair cells. To evaluate how continuous Isl1 expression in postnatal hair cells affects hair cell development and cochlear function, we created a transgenic mouse model in which the Pou4f3 promoter drives...

  1. Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes

    Directory of Open Access Journals (Sweden)

    Valérie Plaisance

    2014-01-01

    Full Text Available Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.

  2. The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-03-01

    Full Text Available Nonfunctioning pituitary adenoma (NFPA is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403 which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy.

  3. The marine metabolite SZ-685C induces apoptosis in primary human nonfunctioning pituitary adenoma cells by inhibition of the Akt pathway in vitro.

    Science.gov (United States)

    Wang, Xin; Tan, Ting; Mao, Zhi-Gang; Lei, Ni; Wang, Zong-Ming; Hu, Bin; Chen, Zhi-Yong; She, Zhi-Gang; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-03-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy. PMID:25806467

  4. Single-Cell Phenotypic Characterization of Human Pituitary GHomas and Non-Functioning Adenomas Based on Hormone Content and Calcium Responses to Hypothalamic Releasing Hormones

    Science.gov (United States)

    Senovilla, Laura; Núñez, Lucía; de Campos, José María; de Luis, Daniel A.; Romero, Enrique; García-Sancho, Javier; Villalobos, Carlos

    2015-01-01

    Human pituitary tumors are generally benign adenomas causing considerable morbidity due to excess hormone secretion, hypopituitarism, and other tumor mass effects. Pituitary tumors are highly heterogeneous and difficult to type, often containing mixed cell phenotypes. We have used calcium imaging followed by multiple immunocytochemistry to type growth hormone secreting (GHomas) and non-functioning pituitary adenomas (NFPAs). Individual cells were typed for stored hormones and calcium responses to classic hypothalamic releasing hormones (HRHs). We found that GHomas contained growth hormone cells either lacking responses to HRHs or responding to all four HRHs. However, most GHoma cells were polyhormonal cells responsive to both thyrotropin-releasing hormone (TRH) and GH-releasing hormone. NFPAs were also highly heterogeneous. Some of them contained ACTH cells lacking responses to HRHs or polyhormonal gonadotropes responsive to LHRH and TRH. However, most NFPAs were made of cells storing no hormone and responded only to TRH. These results may provide new insights on the ontogeny of GHomas and NFPAs. PMID:26106585

  5. Pleomorphic adenoma of the hard palate

    Directory of Open Access Journals (Sweden)

    Kaur S

    2003-03-01

    Full Text Available Pleomorphic adenoma is a benign tumor of the salivary glands that has elements of both epithelial and mesenchymal tissues. The tumor most commonly arises in the parotid or submandibular glands. Infrequently, it may arise from the minor salivary glands and present as an intraoral mass over the palate or lip. We report a patient with pleomorphic adenoma over the hard palate, which resembled common intraoral diseases like condyloma acuminata, oral papilloma and squamous cell carcinoma.

  6. Gliadin fragments and a specific gliadin 33-mer peptide close KATP channels and induce insulin secretion in INS-1E cells and rat islets of langerhans.

    Directory of Open Access Journals (Sweden)

    Morten Dall

    Full Text Available In non-obese diabetic (NOD mice, diabetes incidence is reduced by a gluten-free diet. Gluten peptides, such as the compound gliadin, can cross the intestinal barrier and may directly affect pancreatic beta cells. We investigated the effects of enzymatically-digested gliadin in NOD mice, INS-1E cells and rat islets. Six injections of gliadin digest in 6-week-old NOD mice did not affect diabetes development, but increased weight gain (20% increase by day 100. In INS-1E cells, incubation with gliadin digest induced a dose-dependent increase in insulin secretion, up to 2.5-fold after 24 hours. A similar effect was observed in isolated rat islets (1.6-fold increase. In INS-1E cells, diazoxide reduced the stimulatory effect of gliadin digest. Additionally, gliadin digest was shown to decrease current through KATP-channels. A specific gliadin 33-mer had a similar effect, both on current and insulin secretion. Finally, INS-1E incubation with gliadin digest potentiated palmitate-induced insulin secretion by 13% compared to controls. Our data suggest that gliadin fragments may contribute to the beta-cell hyperactivity observed prior to the development of type 1 diabetes.

  7. High-throughput sequencing of islet-infiltrating memory CD4+ T cells reveals a similar pattern of TCR Vβ usage in prediabetic and diabetic NOD mice.

    Directory of Open Access Journals (Sweden)

    Idania Marrero

    Full Text Available Autoreactive memory CD4(+ T cells play a critical role in the development of type 1 diabetes, but it is not yet known how the clonotypic composition and TCRβ repertoire of the memory CD4(+ T cell compartment changes during the transition from prediabetes to diabetes. In this study, we used high-throughput sequencing to analyze the TCRβ repertoire of sorted islet-infiltrating memory CD4(+CD44(high T cells in 10-week-old prediabetic and recently diabetic NOD mice. We show that most clonotypes of islet-infiltrating CD4(+CD44(high T cells were rare, but high-frequency clonotypes were significantly more common in diabetic than in prediabetic mice. Moreover, although the CD4(+CD44(high TCRβ repertoires were highly diverse at both stages of disease development, dominant use of TRBV1 (Vβ2, TRBV13-3 (Vβ8.1, and TRBV19 (Vβ6 was evident in both prediabetic and diabetic mice. Our findings strongly suggest that therapeutic targeting of cells specifically expressing the dominant TCRβ might reduce pancreatic infiltration in prediabetic mice and attenuate the progression to diabetes.

  8. Short-chain fatty acid level and field cancerization show opposing associations with enteroendocrine cell number and neuropilin expression in patients with colorectal adenoma

    Directory of Open Access Journals (Sweden)

    Staton Carolyn A

    2011-03-01

    Full Text Available Abstract Background Previous reports have suggested that the VEGF receptor neuropilin-1 (NRP-1 is expressed in a singly dispersed subpopulation of cells in the normal colonic epithelium, but that expression becomes dysregulated during colorectal carcinogenesis, with higher levels in tumour suggestive of a poor prognosis. We noted that the spatial distribution and morphology if NRP-1 expressing cells resembles that of enteroendocrine cells (EEC which are altered in response to disease state including cancer and irritable bowel syndrome (IBS. We have shown that NRP-1 is down-regulated by butyrate in colon cancer cell lines in vitro and we hypothesized that butyrate produced in the lumen would have an analogous effect on the colon mucosa in vivo. Therefore we sought to investigate whether NRP-1 is expressed in EEC and how NRP-1 and EEC respond to butyrate and other short-chain fatty acids (SCFA - principally acetate and propionate. Additionally we sought to assess whether there is a field effect around adenomas. Methodology Biopsies were collected at the mid-sigmoid, at the adenoma and at the contralateral wall (field of 28 subjects during endoscopy. Samples were fixed for IHC and stained for either NRP-1 or for chromogranin A (CgA, a marker of EEC. Stool sampling was undertaken to assess individuals' butyrate, acetate and propionate levels. Result NRP-1 expression was inversely related to SCFA concentration at the colon landmark (mid-sigmoid, but expression was lower and not related to SCFA concentration at the field. Likewise CgA+ cell number was also inversely related to SCFA at the landmark, but was lower and unresponsive at the field. Crypt cellularity was unaltered by field effect. A colocalisation analysis showed only a small subset of NRP-1 localised with CgA. Adenomas showed extensive, weaker staining for NRP-1 which contrastingly correlated positively with butyrate level. Field effects cause this relationship to be lost. Adenoma tissue

  9. In vitro study on Coxsackie virus B3 infection on islet cells%柯萨奇病毒B组3型感染胰岛细胞的体外研究

    Institute of Scientific and Technical Information of China (English)

    盛明薇; 陈思思; 柏晟; 郑禹; 李晓眠

    2011-01-01

    目的 观察柯萨奇病毒B组3型(Coxsackie virus B3,CVB3)对体外培养胰岛细胞的感染情况,初步探讨CVB3损伤胰岛细胞的机制.方法 分离并培养骨髓间充质干细胞,用尼克酰胺和β-巯基乙醇进行胰岛细胞诱导并鉴定.用CVB3感染胰岛细胞,RT-PCR检测胰岛细胞内的CVB3特异性片段.结果 骨髓间充质干细胞经药物诱导后,呈半悬浮状并聚集成用.双硫腙特异性染色后细胞变成红棕色,RT-PCR也证明诱导细胞内具有表达胰岛素的mRNA.CVB3感染胰岛细胞,细胞出现皱缩,折光性下降等典型病变,RT-PCR法成功扩增出胰岛细胞内的CVB3特异性片段.结论 CVB3可以在体外直接损伤胰岛细胞,最终引起胰岛细胞的裂解.%Objective To study the effect of Coxsackie virus B3 (CVB3) infection on islet cells in vitro, and to explore the mechanism of islet cells caused by CVB3. Methods Bone marrow mesenchymal stem cells( BMSCs) were separated from the bone marrow and cultured. Then they were induced to differentiate into islet-like cells using nicotinamide and mercaptoethanol. Differentiated cells were detected by morphology , special staining and RT-PCR. Observe CVB3 infection on islet cells under inverse microscope and detect the specific gene fragment by RT-PCR. Results BMSCs showed half suspended shape and gathered to form a cluster after induction. Cells became red brown by dithizone specific staining. RT-PCR also proved the existence of mRNA expressing insulin. Infected islet cells appeared typical pathological changes like shrinks, refraction decreases. RT-PCR detected the desired specific gene fragment of 299 bp in infected islet cells. Conclusion CVB3 can directly injury islet cells, and damage the function of islet cells of secreting insulin.

  10. Endocrine Secretory Reserve and Proinsulin Processing in Recipients of Islet of Langerhans Versus Whole Pancreas Transplants

    OpenAIRE

    Elkhafif, Nabeel M.; Borot, Sophie; Morel, Philippe; Demuylder-Mischler, Sandrine; Giovannoni, Laurianne; Toso, Christian; Bosco, Domenico; Berney, Thierry

    2013-01-01

    OBJECTIVE β-Cells have demonstrated altered proinsulin processing after islet transplantation. We compare β-cell metabolic responses and proinsulin processing in pancreas and islet transplant recipients with respect to healthy control subjects. RESEARCH DESIGN AND METHODS We studied 15 islet and 32 pancreas transplant recipients. Islet subjects were subdivided into insulin-requiring (IR-ISL, n = 6) and insulin-independent (II-ISL, n = 9) groups. Ten healthy subjects served as control subjects...

  11. Metanephric adenoma

    OpenAIRE

    Brisigotti, M.; Cozzutto, C.; Fabbretti, G.; Sergi, C; Callea, Francesco

    1992-01-01

    In a recent survey of more than one hundred childhood renal tumors in our Laboratory files, we identified a unique case characterized by an unusual degree of differentiation and cell maturity. Histologically this case was notable for an orderly array of small and uniformly-packed tubules with a rosette-like configuration. The nuclei were oval, smooth and of a bland appearance. Mitoses were absent. Many glomerular figures were intermingled. This renal tumor ...

  12. Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development.

    Science.gov (United States)

    Assouline-Thomas, Béatrice; Ellis, Daniel; Petropavlovskaia, Maria; Makhlin, Julia; Ding, Jieping; Rosenberg, Lawrence

    2015-01-01

    Regeneration of β-cells in diabetic patients is an important goal of diabetes research. Islet Neogenesis Associated Protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas. Its bioactive fragment, pentadecapeptide 104-118 (INGAP-P), has been shown to reverse diabetes in animal models and to improve glucose homeostasis in patients with diabetes in clinical trials. Further development of INGAP as a therapy for diabetes requires identification of target cells in the pancreas and characterization of the mechanisms of action. We hypothesized that adult human pancreatic ductal cells retain morphogenetic plasticity and can be induced by INGAP to undergo endocrine differentiation. To test this hypothesis, we treated the normal human pancreatic ductal cell line (HPDE) with either INGAP-P or full-length recombinant protein (rINGAP) for short-term periods. Our data show that this single drug treatment induces both proliferation and transdifferentiation of HPDE cells, the latter being characterized by the rapid sequential activation of endocrine developmental transcription factors Pdx-1, Ngn3, NeuroD, IA-1, and MafA and subsequently the expression of insulin at both the mRNA and the protein levels. After 7 days, C-peptide was detected in the supernatant of INGAP-treated cells, reflecting their ability to secrete insulin. The magnitude of differentiation was enhanced by embedding the cells in Matrigel, which led to islet-like cluster formation. The islet-like clusters cells stained positive for nuclear Pdx-1 and Glut 2 proteins, and were expressing Insulin mRNA. These new data suggest that human adult pancreatic ductal cells retain morphogenetic plasticity and demonstrate that a short exposure to INGAP triggers their differentiation into insulin-expressing cells in vitro. In the context of the urgent search for a regenerative and/or cellular therapy for diabetes, these results make INGAP a promising therapeutic candidate. PMID:26558987

  13. Insulin-dependent diabetes mellitus secondary to chronic pancreatitis is not associated with HLA or the occurrence of islet-cell antibodies

    DEFF Research Database (Denmark)

    Larsen, S; Hilsted, J; Jakobsen, B K;

    1990-01-01

    We assessed HLA-DR types and investigated serum samples for islet-cell cytoplasmic antibodies (ICA) in 31 Danish patients with chronic pancreatitis. The antigen frequencies were compared with those in 1177 unrelated healthy Danish controls. Twenty patients had insulin-dependent diabetes and 11 had...... normal intravenous glucose tolerance. No significant differences in the frequencies of DR3, DR4, or DR2 were found between patients with insulin-dependent diabetes and patients with normal glucose tolerance or between any of these groups and controls. ICA were negative in all patients with chronic...

  14. Linoleic Acid Activates GPR40/FFA1 and Phospholipase C to Increase [Ca2+]i Release and Insulin Secretion in Islet Beta-Cells

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhou; Yu-ling Song; Hui Zhou; Yan Li

    2012-01-01

    To elucidate GPR40/FFA 1 and its downstream signaling pathways in regulating insulin secretion.Methods GPR40/FFA 1 expression was detected by immunofluorescence imaging.We employed linoleic acid (LA),a free fatty acid that has a high affinity to the rat GPR40,and examined its effect on cytosolic free calcium concentration ([Ca2+]i) in primary rat β-cells by Fluo-3 intensity under confocal microscopy recording.Downregulation of GPR40/FFA1 expression by antisense oligonucleotides was performed in pancreatic β-cells,and insulin secretion was assessed by enzyme-linked immunosorbent assay.Results LA acutely stimulated insulin secretion from primary cultured rat pancreatic islets.LA induced significant increase of [Ca2+]i in the presence of 5.6 mmol/L and 11.1 mmol/L glucose,which was reflected by increased Fluo-3 intensity under confocal microscopy recording.LA-stimulated increase in [Ca2+]i and insulin secretion were blocked by inhibition of GPR40/FFA1 expression in β-cells after GPR40/FFA1-specific antisense treatment.In addition,the inhibition of phospholipase C (PLC) activity by U73122,PLC inhibitor,also markedly inhibited the LA-induced [Ca2+]i increase.Conclusion LA activates GPR40/FFA1 and PLC to stimulate Ca2+ release,resulting in an increase in [Ca2+]i and insulin secretion in rat islet β-cells.

  15. Pituitary prolactin adenoma with Toxoplasma gondii infection

    Institute of Scientific and Technical Information of China (English)

    张晓晖; 李青; 程虹; 阎庆国; 黄高昇

    2003-01-01

    Objective: To report two recent cases of pituitary adenoma associated with Toxoplasma gondii (T.Gondii) infection.Methods: Histological changes were observed in H & E and PAS staining sections microscopically.Immunohistochemistry was performed to classify the pituitary tumors and to confirm the diagnosis of T.gondii.Results: The cases were 43- and 19-year-old females, in which the latter one was a recurring case, and radiology examination showed that tumors existed in sellar region.Microscopically, the tumors consisted of small homogenous polygonal or round cells with abundant eosinophilic granular cytoplasm.Immunohistochemistry revealed they were prolactin-producing adenomas.Interestingly, we found toxoplasma infection in the tumor tissues, being confirmed by T.gondii sepicific antibody immunohistochemistry.Conclusion: The association of pituitary adenoma with toxoplasma raises the possibility that T.gondii may be involved in the development of certain cases of pituitary adenoma.

  16. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    NARCIS (Netherlands)

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    AIMS/HYPOTHESIS: In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus r

  17. No Islet Cell Hyperfunction, but Altered Gut-Islet Regulation and Postprandial Hypoglycemia in Glucose-Tolerant Patients 3 Years After Gastric Bypass Surgery

    DEFF Research Database (Denmark)

    Dirksen, Carsten; Eiken, Aleksander; Bojsen-Møller, Kirstine N;

    2016-01-01

    Postprandial hyperinsulinemia characterizes Roux-en-Y gastric bypass (RYGB) and sometimes leads to reactive hypoglycemia. We prospectively evaluated changes in beta cell function in seven RYGB-operated patients with a median follow-up of 2.9 years with hyperglycemic clamps and oral glucose...

  18. Ca2+ signals induced from calcium stores in pancreatic islet β cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In single rat pancreatic β cells,using fura-2 microfluorometry to measure [Ca2+]i response upon different stimuli,the ways of calcium regulation have been studied.When the extracellular calcium concentration was 2.5 mmol/L,either 60 mmol/L KCl,20 mmol/L D-glucose or 0.1 mmol/L tolbutamide induced increase in [Ca2+]i.Such increase in [Ca2+]i was absent when the same stimuli were applied under zero extracellular calcium.These results indicate that the increase of [Ca2+]i is induced by the activation of voltage-dependent calcium channels in β cells.The manifold forms of [Ca2+]i change induced by glucose imply that the effects of glucose are complex.5 mmol/L caffeine or 5 mmol/L MCh increase the [Ca2+]i ,which is independent of the external calcium,suggesting that [Ca2+]i can be regulated by Ca2+ release from not only the IP3-sensitive but also the ryanodine sensitive calcium stores in β cells.The latency of Ca responses for IP3 pathway (5 s) is faster than that for ryanodine pathway (30 s).It is concluded that there are multiple calcium stores in rat pancreatic β cells.

  19. Adoptive infusion of tolerogenic dendritic cells prolongs the survival of pancreatic islet allografts: a systematic review of 13 mouse and rat studies.

    Directory of Open Access Journals (Sweden)

    Guixiang Sun

    Full Text Available OBJECTIVE: The first Phase I study of autologous tolerogenic dendritic cells (Tol-DCs in Type 1 diabetes (T1D patients was recently completed. Pancreatic islet transplantation is an effective therapy for T1D, and infusion of Tol-DCs can control diabetes development while promoting graft survival. In this study, we aim to systematically review islet allograft survival following infusion of Tol-DCs induced by different methods, to better understand the mechanisms that mediate this process. METHODS: We searched PubMed and Embase (from inception to February 29(th, 2012 for relevant publications. Data were extracted and quality was assessed by two independent reviewers. We semiquantitatively analyzed the effects of Tol-DCs on islet allograft survival using mixed leukocyte reaction, Th1/Th2 differentiation, Treg induction, and cytotoxic T lymphocyte activity as mechanisms related-outcomes. We discussed the results with respect to possible mechanisms that promote survival. RESULTS: Thirteen articles were included. The effects of Tol-DCs induced by five methods on allograft survival were different. Survival by each method was prolonged as follows: allopeptide-pulsed Tol-DCs (42.14 ± 44 days, drug intervention (39 days, mesenchymal stem cell induction (23 days, genetic modification (8.99 ± 4.75 days, and other derivation (2.61 ± 6.98 days. The results indicate that Tol-DC dose and injection influenced graft survival. Single-dose injections of 10(4 Tol-DCs were the most effective for allograft survival, and multiple injections were not superior. Tol-DCs were also synergistic with immunosuppressive drugs or costimulation inhibitors. Possible mechanisms include donor specific T cell hyporesponsiveness, Th2 differentiation, Treg induction, cytotoxicity against allograft reduction, and chimerism induction. CONCLUSIONS: Tol-DCs induced by five methods prolong MHC mismatched islet allograft survival to different degrees, but allopeptide-pulsed host DCs

  20. Interleukin-8 production from human somatotroph adenoma cells is stimulated by interleukin-1β and inhibited by growth hormone releasing hormone and somatostatin

    DEFF Research Database (Denmark)

    Vindeløv, Signe Diness; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh;

    2011-01-01

    Pituitary adenomas cause morbidity and mortality due to their localization and influence on pituitary hormone secretion. Although the pathogenesis of pituitary adenomas is unclear, studies have indicated that cytokines are involved. We investigated the role of cytokines, in particular interleukin...

  1. Justifying clinical trials for porcine islet xenotransplantation.

    Science.gov (United States)

    Ellis, Cara E; Korbutt, Gregory S

    2015-01-01

    The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.

  2. Complement activation pathways associated with islet cell surface antibody (ICSA derived from child patients with insulin-dependent diabetes mellitus (IDDM.

    Directory of Open Access Journals (Sweden)

    Okada,Soji

    1991-06-01

    Full Text Available We studied the pathways of complement activation associated with the islet cell surface antibody (ICSA obtained from sera of 7 patients (age less than 15 years with insulin dependent diabetes mellitus (IDDM. The target cells were 51CR labelled rat islet cells and the complement source was human AB serum. Complement-dependent antibody mediated cytotoxicity (CAMC activity was obtained using the percentage of cytotoxicity. CAMC activity of untreated sera was significantly inhibited by treating with EGTA or EDTA (p less than 0.001. The CAMC activity of EDTA-treated sera was significantly lower than that of EGTA-treated sera (p less than 0.001. In the inactivated human AB serum, it was lower than that of EGTA-treated sera (p less than 0.05, but not different from that of EDTA-treated sera. These results show that the complement activation associated with ICSA in patients occurred not only via the classical pathway but also via the alternative pathway.

  3. A trial for the quantitative determination of the acute radiation-induced pancreatic islet cell death irradiated with 200 KVp x-ray and 30 MeV fast neutron beams

    International Nuclear Information System (INIS)

    Quantitative counting of acute islet cell death of the golden hamster pancreas was adopted for the determination of radiation injury as one of the model in the slowly growing tissues (or slowly renewing tissues), such as liver, salivary gland, pancreas, kidney etc. First mode and dose response relationship of x-ray induced rapid cell death (interphase death) in golden hamster pancreatic islet cell death was investigated after 10-350 Gy irradiation with the dose rate of 4.5 Gy/min. With a latent period of 2-3 hours, pycnotic cells began to appear after irradiation. Then they reached maximum at 4-5 hours, and at 6 hours later on, their nuclei lysed completely. From the disappearance rate of the nuclei, the mean life span of pycnotic cells was estimated to be approximately 2 hours or less. Thereafter these remnants of dead cells were scavenged from the islets within 16 hours after irradiation. The mode of cell death was almost identical irregardless of different irradiation doses. Therefore through the counting of both pycnotic nuclei and normal looking nuclei at 4-5 hours after irradiation, it was possible to determine the radiosensitivity of the islet cells. Cell death by x-ray was dose-dependent and stochastic throughout all dose range even in a surviving fraction of 10-4 order. Thus obtained radio-sensitivity of the islet cells was 62.5 Gy of Do and 3.2 of n number. Unfortunately, however, in neutron irradiated pancreas, quantitation of cell death was not possible unlike in x-rays. This is because the maximum neutron dose rate available was 0.5-0.6 Gy. Therefore initial aim for the study on comparative biological effect of x-ray and neutron through the acute pancreatic cell death was failed by the dose rate problem. (author)

  4. 三维环境下肌源性干细胞分化为胰岛样细胞团%Muscle-derived stem cells differentiate into the islet cells in 3D culture

    Institute of Scientific and Technical Information of China (English)

    殷甜甜; 刘畅; 梅晰凡; 王滢丽

    2013-01-01

    Objective: To study the effect of the extracellular microenvironment in muscle-derived stem cells (MDSCs) differentiating into the islet cells. Methods: MDSCs were extracted by mixed enzymatic digestion, purified by differential adherent culture, and induced by the cells after split into following groups: a collagen and chemical group, a chemical group and a control group. The differentiation was induced separately and the cell morphology was observed simultaneously. Insulin producing cell clusters (IPCCs) were identified by dithizone (DTZ) staining, immunocytochemical staining were used to examine the production of insulin glucagons etc and reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate gene expression.Results: Under an ordinary light microscope, the size of the islet cells induced by the collagen and chemical group was bigger than that in the chemical group; and the DTZ dyeing results showed that the induced islet cells of the collagen and chemical group secreted more insulin than did those of the chemical group; immunocytochemical staining showed that the induced islet cells in the collagen and chemical group were more similar to adult rat islet tissues, and detected by RT-polymerase chain reaction, the gene expression of the induced islet cells in the collagen and chemical group was higher than that in the chemical group. Conclusion: In the three dimensional environment, muscle stem cells could differentiate into the pancreatic islet cells, and muscle source cells can be differentiated into bigger and more mature islet cells.%目的:运用三维细胞培养模型研究细胞外微环境对肌源性干细胞分化为胰岛样细胞的作用.方法:用差速贴壁的方法对SD大鼠肌源性干细胞进行分离和培养,将细胞分为胶原支架化学诱导剂组,化学诱导剂组,空白组.分别观察诱导后细胞的生长形态,采用双巯腙DTZ染色鉴定胰岛素分泌细胞,细胞免疫化学检测胰岛相关蛋

  5. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun [Ataturk Training and Research Hospital, Ankara (Turkmenistan); Ugras, Serdar [Selcuk University, Selcuklu Medical Faculty, Konya (Turkmenistan)

    2011-02-15

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  6. Transplantation of allogeneic pancreatic islets and pancreatic stem cells-derived islet-like structures to treat diabetes%同种异体胰岛及胰腺干细胞来源的胰岛样结构序贯移植治疗糖尿病

    Institute of Scientific and Technical Information of China (English)

    郑伟; 范志勇; 黄盛; 高琪; 张福琴; 宋振顺

    2008-01-01

    目的 观察同种异体大鼠胰岛及胰腺干细胞来源的胰岛样结构序贯移植在糖尿病治疗中的作用.方法 分离胰腺组织获得胰岛及胰腺导管上皮细胞,将具有干细胞潜能的胰腺导管上皮细胞在体外培养27d.将新鲜分离的胰岛(200±50)个及诱导分化2周的胰腺干细胞来源的胰岛样结构(2×106)个序贯移植到糖尿病大鼠的肾被膜下观察大鼠的血糖及生存情况.结果 将胰岛及胰腺干细胞来源的胰岛样结构序贯移植到同一糖尿病大鼠3周后血糖仍在5 mmol/L水平,对照组血糖无明显下降.结论 胰腺干细胞可诱导分化为分泌胰岛素的胰岛样结构,胰岛及胰腺干细胞来源的胰岛样结构序贯移植对大鼠糖尿病有治疗作用.%Objective To observe the transplantation of allogeneie pancreatic islets and pancreatic stem cells-derived islet-like structures in the treatment of diabetes.Methods The pancreatic tissue was isolated to obtain the islets and pancreatic duet epithelial cells.Pancreatic duct epithelial cells which have the potential of stem cells were cultivated in vitro for up to 27 days.The freshly isolated panereatiC islets (200±50)and pancreatic stem cells-denved islet-like structures(2×106)collected 2 weeks after differentiation in vitro were transplanted under the kidney capsule of the same rats.Blood glucose level and the subsistence state were observed.Results Blood gheese level was 5 mmol/L in diabefic rats 3 weeks after the transplantation of freshly isolated allogeneie pancreatic islzts and pancreatic stem cell-derived islet-like structures.In control group.the blood slucese level had significant decrease.Condusion PancreatiC stem cells can differentiate into islet-like structures in vitro.Pancreatic islets and pancreatic stem cells-derived islet-like structures have a potential apphcation to cure diabetes.

  7. 胰岛素原稳态与胰岛β细胞功能%Proinsulin homeostasis and islet β cell function

    Institute of Scientific and Technical Information of China (English)

    朱丹; 蔡可英; 曹萌; 刘超

    2015-01-01

    There is a large number of newly synthetic insulin and proinsulin in endoplasmic reticulum of isletcells.If correctly folded,proinsulin can be converted into native folded monomeric proinsulin with activity.Unfolded or misfolded non-native form of proinsulin will be preserved in the endoplasmic reticulum as the folded polypeptide.Changes of proinsulin folding rate caused by any reasons will result in the imbalance of proinsulin homeostasis,endoplasmic reticulum stress and isletcells dysfunction.%胰岛β细胞内质网中有大量新合成的胰岛素及胰岛素前体即胰岛素原,胰岛素原经过正确的处理转换为天然折叠单体形式即有活性的胰岛素原,后者经过剪切去除C肽而形成胰岛素,从而发挥生物学效应.未折叠或者错误折叠的胰岛素原则仍以非天然折叠多肽的形式存在于内质网中.任何原因导致的胰岛素原折叠率的改变均会导致胰岛素原稳态失衡,导致内质网应激和胰岛β细胞的功能改变.

  8. Semi-automatic Isolation and Purification of Adult Pig Islet Cells%半自动纯化法分离纯化成年猪胰岛细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    王珏; 侯宗柳; 李汝红

    2011-01-01

    目的 探索大规模猪胰岛细胞分离纯化的方法.方法 采用胶原酶消化法和Ficoll液不连续密度梯度离心进行分离纯化;采用双硫腙染色、AO-PI染色、胰岛素释放试验检测胰岛的纯度和活性.结果 消化后平均获取的胰岛细胞团数量为(4 387±617)IEQ/g胰腺组织;纯化后平均为(3 192±756)IEQ/g胰腺组织;获取的猪胰岛细胞平均纯度为(60.15±2.35)%,活率为(80.00±0.47)%.结论 所获得的胰岛细胞有较好的纯度和良好的生物活性,显示半自动纯化法分离纯化成年云南小耳猪胰岛细胞是成功可行的,可以满足进一步异种移植的研究需要,可为大规模分离纯化猪胰岛细胞提供技术支持.%Objective To establish effective method for large-scale purification of islet cells from pig pancreas. Methods Pig pancreas tissue was digested with collagenase P through continuous infusion. Pig islets was purified by Ficoll discontinuous density gradient centrifugation medium. Dithizone (DTZ) staining was used to observe the morphology of islet cells clusters (ICCS) , to count islet equivalent IEQ, and to detect the purity of the islet. AO-PI staining was used to detect islet viability and the islet function assessed by insulin release assay in vitro. Results The number of the islets collected was (4 387 + 617) IEQ/g in average from pancreas before purification, and (3 192 ±756) IEQ/g pancreas after purification. The average purity of islets cells was (60.15 ±2.35) %, and the motilityrate was (80.00 ± 0.47) %. Conclusions The islet cells obtained by this method have better purity and good biological activity. That' s to say the Semi-automatic isolation and purification of small-eared pig islet cells is successful and feasible. The established method can be applied in large-scale purification of fully functional islet cells from pig pancreas, and can meet the need for further studies of xenotransplantation.

  9. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  10. In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation.

    Science.gov (United States)

    Kim, Jung-Sik; Lim, Jong-Hyung; Nam, Hye-Young; Lim, Hyun-Ju; Shin, Jun-Seop; Shin, Jin-Young; Ryu, Ju-Hee; Kim, Kwangmeyung; Kwon, Ick-Chan; Jin, Sang-Man; Kim, Hang-Rae; Kim, Sang-Joon; Park, Chung-Gyu

    2012-09-10

    Maximum engraftment of transplanted islets is essential for the clinical application of a subcutaneous site. Significant barriers to the current approaches are associated with their low effectiveness, complexity and unproven biosafety. Here, we evaluated and optimized a fibrin-islet composite for effective glycemic control in a subcutaneous site whose environment is highly hypoxic due to low vascularization potential. In the setting of xenogeneic porcine islet transplantation into the subcutaneous space of a diabetic mouse, the in vivo islet functions were greatly affected by the concentrations of fibrinogen and thrombin. The optimized hydrogel-type fibrin remarkably reduced the marginal islet mass to approximately one tenth that of islets without fibrin. This marginal islet mass was comparable to that in the setting of the subcapsular space of the kidney, which is a highly vascularized organ. Highly vascularized structures were generated inside and on the outer surface of the grafts. A hydrogel-type fibrin-islet composite established early diabetic control within an average of 3.4days after the transplantation. In the mechanistic studies, fibrin promoted local angiogenesis, enhanced islet viability and prevented fragmentation of islets into single cells. In conclusion, in situ application of hydrogel-type fibrin-islet composite may be a promising modality in the clinical success of subcutaneous islet transplantation. PMID:22820449

  11. Transcriptional profiling of type 1 diabetes genes on chromosome 21 in a rat beta-cell line and human pancreatic islets

    DEFF Research Database (Denmark)

    Bergholdt, R.; Karlsen, A.E.; Hagedorn, Peter;

    2007-01-01

    likely candidate genes influencing beta-cell function in this region. Two array-based approaches were used, a rat insulinoma cell line (INS-1alphabeta) overexpressing pancreatic duodenum homeobox 1 (pdx-1) and treated with interleukin 1beta (IL-1beta) as well as human pancreatic islets stimulated...... with a mixture of cytokines. Several candidate genes with likely functional significance in T1D were identified. Genes showing differential expression in the two approaches were highly similar, supporting the role of these specific gene products in cytokine-induced beta-cell damage. These were genes involved...... in cytokine signaling, oxidative phosphorylation, defense responses and apoptosis. The analyses, furthermore, revealed several transcription factor binding sites shared by the differentially expressed genes and by genes demonstrating highly similar expression profiles with these genes. Comparable findings...

  12. Pancreatic Islet Transplantation

    Science.gov (United States)

    ... which islets from the pancreas of a deceased organ donor are purified, processed, and transferred into another person. ... in 2011 there were about 8,000 deceased organ donors available in the United States. 2 However, only ...

  13. 间充质干细胞胰岛样细胞分化研究进展%Recent progress in differentiation of mesenchymal stem cells into islet-like cells

    Institute of Scientific and Technical Information of China (English)

    谢秋萍; 吴育连

    2008-01-01

    间充质干细胞是存在于成体多种器官的多能干细胞,具有多胚层分化能力.近年研究发现在体内体外特定微环境作用下,它可以分化为胰岛样细胞,分泌一定量的胰岛素,并且具有降血糖的功能.这一技术可以同时解决胰岛移植中供体紧缺及免疫排斥反应两大难题,为临床糖尿病细胞治疗开辟了一条新的途径.%Mesenchymal stem cells (MSCs) are multipotent stem cells existing in multi-organs and can differentiate into several kinds of somatic cells. Recently it has been found that MSCs, under defined conditions in vivo or in vitro, can be induced to trans-differentiate into islet-like cells, which can secrete a small amount of insulin and lower blood glucose levels in diabetic mice. Thus, two major obstacles of islet transplantation, the insufficience of donor islets and immunologic rejection, might be solved simultaneously with this technique. This finding provides a new insight into treatment for diabetes.

  14. Orexin-1 receptor co-localizes with pancreatic hormones in islet cells and modulates the outcome of streptozotocin-induced diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Ernest Adeghate

    Full Text Available Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes, Goto-Kakizaki (GK, a model of type 2 diabetes rats and in orexin-deficient (OX-/- and wild type mice. Diabetes mellitus (DM was induced in Wistar rats and mice by streptozotocin (STZ. At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS and glucagon (GLU in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001 after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001 higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX-/- animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes.

  15. Clonal evolution and tumor progression in 2 human colorectal adenoma-derived cell-lines invitro - the involvement of chromosome-1 abnormalities.

    Science.gov (United States)

    Hague, A; Hanlon, K; Paraskeva, C

    1992-07-01

    Two human colorectal adenoma cell lines, S/RG and S/AN, have been continuously passaged in vitro to determine whether they would immortalize and if specific cytogenetic changes were involved in immortalization and tumor progression. At passage 7, S/RG was highly aneuploid, but had no abnormalities of chromosome 1 (Paraskeva et al, Cancer Res 49: 1282-1286, 1989). With continued passage under two independent sets of growth conditions an isochromosome Iq and derivatives of this isochromosome occurred as specific abnormalities. S/AN was near-diploid at passage 10, with a deletion in lp and monosomy 18. The karyotype at passage 44 showed no change. The cell lines are stable in that they have remained anchorage-dependent and non-tumorigenic after several years in culture and S/AN has retained a near diploid karyotype. These cell lines are therefore highly valuable for further studies of tumor progression in human colorectal carcinogenesis. PMID:21584532

  16. Pituitary Adenoma Segmentation

    CERN Document Server

    Egger, Jan; Kuhnt, Daniela; Freisleben, Bernd; Nimsky, Christopher

    2011-01-01

    Sellar tumors are approximately 10-15% among all intracranial neoplasms. The most common sellar lesion is the pituitary adenoma. Manual segmentation is a time-consuming process that can be shortened by using adequate algorithms. In this contribution, we present a segmentation method for pituitary adenoma. The method is based on an algorithm we developed recently in previous work where the novel segmentation scheme was successfully used for segmentation of glioblastoma multiforme and provided an average Dice Similarity Coefficient (DSC) of 77%. This scheme is used for automatic adenoma segmentation. In our experimental evaluation, neurosurgeons with strong experiences in the treatment of pituitary adenoma performed manual slice-by-slice segmentation of 10 magnetic resonance imaging (MRI) cases. Afterwards, the segmentations were compared with the segmentation results of the proposed method via the DSC. The average DSC for all data sets was 77.49% +/- 4.52%. Compared with a manual segmentation that took, on the...

  17. Down-regulation of Leucine-rich Repeats and Immunoglobulin-like Domain Proteins (LRIG1-3) in HP75 Pituitary Adenoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    GUO Dongsheng; HAN Lin; SHU Kai; CHEN Jian; LEI Ting

    2007-01-01

    Three human leucine-rich repeats and immunoglobulin-like domains (LRIG) genes and proteins, named LRIG1-3, has been previously characterized and it was proposed that they may act as suppressors of tumor growth. The LRIG1 protein can inhibit the growth of tumors of glial cells and the down-regulation of the LRIG1 gene may be involved in the development and progression of the tumor. Real-time reverse transcription-polymerase chain reaction (RT-PCR) is a recently developed technique for quantitative assessment of specific RNA levels. In the current study, it was demonstrated that LRIG1-3 and EGFR mRNA was detected in human pituitary adenoma cell lines and a normal pituitary sample, with differences in the expression levels. Compared to the normal pituitary samples, the expression of LRIG1-3 in HP75 cell line was lower, but the expression of EGFR in HP75 cell line was higher. The results are consistent with LRIG1-3 being tumour suppressor genes, and LRIG genes decreasing the expression of EGFR. The ratio of EGFR/LRIG1 was increased at least 13-fold in HP75 cells compared with the normal pituitary cells, which was also the case for the ratio of EGFR/LRIG2 (14-fold increase in HP75) and EGFR/LRIG3 (11-fold increase in HP75). Further studies were needed to elucidate the explicit role of LRIG genes as negative regulators of oncogenesis in human pituitary adenoma.

  18. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C;

    1992-01-01

    Synthetic peptides representing unique sequences in rat proinsulin C-peptide I and II were used to generate highly specific antisera, which, when applied on sections of normal rat pancreas, confirm a homogeneous coexpression of the two C-peptides in all islet beta-cells. Insulin gene expression...... of transcription.(ABSTRACT TRUNCATED AT 250 WORDS)...

  19. Pancreatic islet cell tumor

    Science.gov (United States)

    ... may include: Fasting glucose level Gastrin level Glucose tolerance test Secretin stimulation test for pancreas Blood glucagon ... PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Pancreatic Cancer Browse the ...

  20. Th1-Like ICOS+ Foxp3+ Treg Cells Preferentially Express CXCR3 and Home to β-Islets during Pre-Diabetes in BDC2.5 NOD Mice.

    Directory of Open Access Journals (Sweden)

    Mara Kornete

    Full Text Available Type 1 diabetes (T1D occurs through a breakdown of self-tolerance resulting in the autoimmune destruction of the insulin producing β-islets of the pancreas. A numerical and functional waning of CD4+ Foxp3+ regulatory T (Treg cells, prompted by a pancreatic IL-2 deficiency, accompanies Th1 autoimmunity and T1D progression in non-obese diabetic (NOD mice. Recently, we identified a dominant subset of intra-islet Treg cells that expresses the ICOS costimulatory receptor and promotes self-tolerance delaying the onset of T1D. ICOS co-stimulation potently enhances IL-2 induced survival and proliferation, and suppressive activity of Treg cells in situ. Here, we propose an ICOS-dependent mechanism of Treg cell homing to the β-islets during pre-diabetes in the NOD model via upregulation of the CXCR3 chemokine receptor. The islet-specific ICOS+ Treg cell subset preferentially expresses CXCR3 in the pancreatic lymph nodes (pLN in response to Teff cell-mediated pancreatic inflammation, an expression correlating with the onset and magnitude of IFN-γ production by Teff cells in pancreatic sites. We also reveal that intra-pancreatic APC populations and insulin-producing β, but not α nor δ, islet cells secrete the CXCR3 chemokines, CXCL9, 10 and 11, and selectively promote ICOS+ CXCR3+ Treg cell chemotaxis in vitro. Strikingly, islet-derived Treg cells also produce these chemokines suggesting an auto-regulation of homing by this subset. Unlike ICOS- cells, ICOS+ Treg cells adopt a Th1-like Treg phenotype while maintaining their suppressive capacity, characterized by expression of T-bet and CXCR3 and production of IFN-γ in the draining pLNs. Finally, in vivo neutralization of IFN-γ blocked Treg cell CXCR3 upregulation evincing its role in regulating expression of this chemokine receptor by Treg cells. Thus, CXCR3-mediated trafficking of Treg cells could represent a mechanism of homeostatic immunoregulation during diabetogeneesis.

  1. Islet neogenesis potential of human adult stem cells and its applications in cell replacement therapy for diabetes

    OpenAIRE

    Bhonde RR

    2008-01-01

    In recent years regenerative biology has reached to greater heights due to its therapeutic potential in treating degenerative diseases; as they are not curable by modern medicine. With the advent of research in stem cells and developmental biology the regenerative potential of adult resident stem cells is becoming clearer. The long term objective of regenerative medicine or cell therapy is to treat patients with their own stem cells. These stem cells could be derived from the diseased organs ...

  2. Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors.

    Science.gov (United States)

    Tessem, Jeffery S; Moss, Larry G; Chao, Lily C; Arlotto, Michelle; Lu, Danhong; Jensen, Mette V; Stephens, Samuel B; Tontonoz, Peter; Hohmeier, Hans E; Newgard, Christopher B

    2014-04-01

    Loss of functional β-cell mass is a hallmark of type 1 and type 2 diabetes, and methods for restoring these cells are needed. We have previously reported that overexpression of the homeodomain transcription factor NK6 homeobox 1 (Nkx6.1) in rat pancreatic islets induces β-cell proliferation and enhances glucose-stimulated insulin secretion, but the pathway by which Nkx6.1 activates β-cell expansion has not been defined. Here, we demonstrate that Nkx6.1 induces expression of the nuclear receptor subfamily 4, group A, members 1 and 3 (Nr4a1 and Nr4a3) orphan nuclear receptors, and that these factors are both necessary and sufficient for Nkx6.1-mediated β-cell proliferation. Consistent with this finding, global knockout of Nr4a1 results in a decrease in β-cell area in neonatal and young mice. Overexpression of Nkx6.1 and the Nr4a receptors results in increased expression of key cell cycle inducers E2F transcription factor 1 and cyclin E1. Furthermore, Nkx6.1 and Nr4a receptors induce components of the anaphase-promoting complex, including ubiquitin-conjugating enzyme E2C, resulting in degradation of the cell cycle inhibitor p21. These studies identify a unique bipartite pathway for activation of β-cell proliferation, suggesting several unique targets for expansion of functional β-cell mass.

  3. Clinicopathological research on basal cell adenoma of salivary gland%涎腺基底细胞腺瘤临床病理分析

    Institute of Scientific and Technical Information of China (English)

    赵雪艳; 荣小伟; 田海萍; 除远义

    2012-01-01

    目的 探讨涎腺基底细胞腺瘤的临床病理特点、免疫表型、鉴别诊断、治疗及预后.方法 回顾性分析14例涎腺基底细胞腺瘤的临床资料、组织病理及免疫表型.结果 (1)涎腺基底细胞腺瘤好发于中老年女性,主要见于腮腺,生长缓慢,有完整包膜.(2)肿瘤由两种形态不同的基底样细胞混合而成,排列呈巢状、小梁状、腺管状,外周瘤细胞呈典型的栅栏状排列,并见明显的基底膜.(3)免疫组织化学:实体团块、小梁中央及管状结构的腔面细胞CK-pan(+),实体团块、小梁和小管的外周细胞p63(+),SMA(+),GFAP(-),Ki-67增值指数较低.结论 涎腺基底细胞腺瘤是一种少见肿瘤,但其具有一定临床病理特征及免疫表型,有利于诊断.诊断时需与基底细胞腺癌、腺样囊性癌,多形性腺瘤、基底样鳞状细胞癌鉴别,手术切除后预后较好.%Objective To investigate the clinicopathological features, immunoprofile, differential diagnosis, therapy and prognosis of basal cell adenoma of salivary gland. Methods The clinical, pathologic and immunohistochemical features of 14 cases with basal cell adenoma of the salivary gland were reviewed. Results (1) This neoplasm was usually occurred in parotid gland and had a definite predilection for middle and aged women patients, and the growth of the tumor was usually slow, and it had complete capsule. ( 2 ) It was composed of basaloid cells which had two different morphologies and intermingled with the patterns showing solid, trabecular and tubular. The peripheral cells showed a typical palisading with distinct basement membrane-like structure. ( 3 ) Immunohistochemistry staining for CK-pan expression was positive in the solid, trabecular and tubular central cells, p63 and SMA were positive in the solid, trabecular and tubular peripheral cells, GFAP was negative,Ki-67 presented a low level proliferation index. Conclusions Basal cell adenoma of the salivary gland is a rare

  4. Expression of Neuropeptide Y in Human Pituitary Adenoma

    Institute of Scientific and Technical Information of China (English)

    Laizhao Chen; Jingjian Ma; Anchao Zheng; Honggang Zheng

    2006-01-01

    OBJECTIVE Neuropeptid e Y (NPY) acts as a neuroendocrine modulator in the anterior pituitary, and NPY mRNA and NPY-immunoreactivity have been detected in normal human anterior pituitaries. However, only a few studies of NPY expression in human pituitary adenomas have been published. Our study was conducted to determine whether or not adenomatous cells express NPY, to investigate the relationship between NPY expression and the subtypes of pituitary adenoma and to explore the clinical significance of NPY.METHODS The study included tissues from 58 patients with pituitary adenomas who underwent surgery because of their clinical diagnosis.Using a highly specific anti-NPY polyclonal antibody, immunohistochemical analysis was performed on the surgically removed pituitary adenomas. Six fresh specimens also were examined using immuno-electron microscopy. NPY was labeled with colloidal gold in order to study the distribution of NPY at the subcellular level.RESULTS The NPY expression level was significantly different among subgroups of pituitary adenomas (P<0.05). NPY was immuno-detected in 58.6% of all adenomas, in 91.7% of gonadotrophic adenomas and in 14.3% of prolactinomas. NPY expression was slightly lower in invasive pituitary adenomas compared to noninvasive adenomas, but the difference was not significant (t=1.81, P>0.05). Of particular interest was the finding that vascular endothelial cells showed positive NPY expression in some pituitary adenomas. Parts of strongly positive tumor cells were seen in channels formed without endothelial cells, but which contained some red blood cells in a formation similar to so-called vasculogenic mimicry. Immuno-electron microscopy demonstrated that 4 of the 6 fresh specimens displayed positive NPY staining with a high density of gold particles located mainly in the secretory granulas. In addition, gold particles were sparsely detected in the rough endoplasmic reticulum and cell matrix.CONCLUSION NPY exists in pituitary adenomas

  5. Pituitary adenoma: a radiotherapeutic perspective.

    Science.gov (United States)

    Platta, Christopher S; Mackay, Christopher; Welsh, James S

    2010-08-01

    Pituitary adenomas comprise approximately 10% to 20% of all central nervous system neoplasms whereas autopsy series have suggested that the incidence of pituitary adenoma in the general population may approach 25%. Several treatment modalities are used in the treatment of pituitary adenomas, including observation, surgery, medical intervention, and radiotherapy. The treatment modality employed depends greatly on the type of pituitary adenoma and presenting symptoms. This review will discuss the biology of pituitary adenomas and the current management principles for the treatment of prolactinomas, Cushing disease, acromegaly, and nonsecretory adenomas, with an emphasis on the published radiotherapeutic literature.

  6. Adenoma metanéfrico Metanephric adenoma

    Directory of Open Access Journals (Sweden)

    Ana Sayuri Ota

    2005-12-01

    Full Text Available Metanephric adenoma is a recently described, rare and benign renal tumor that generally occurs in adults and has an excellent prognosis. Pain, hematuria and palpable mass are the most commonly presented signs. We report the case of a 49-year old female with a 14-cm solitary right renal tumor. Radiological features of the tumor were non-specific and histopathological examination was essential to establish a definitive diagnosis.

  7. Light bodies in human pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1987-01-01

    Light bodies are large cytoplasmic granules originally described in the gonadotrophic cells of the rat pituitary gland. In order to determine whether similar bodies occur in the human anterior pituitary gland, 89 pituitary adenomas and periadenomatous tissue from 20 cases were examined by...... cells in periadenomatous tissue from 20 cases. These results show that some human pituitary adenomas may contain light bodies identical to those seen in gonadotrophs of rat pituitary....... transmission electron microscopy. Double membrane bound bodies with filamentous internal structure identical to rodent light bodies were identified in 10 hormone-producing adenomas: 5 PRL, 1 PRL-GH, 2 GH, and 2 ACTH-producing tumours. No light bodies were found in the remaining 79 tumours nor in the pituitary...

  8. Pretreatment of donor islets with papain improves allograft survival without systemic immunosuppression in mice.

    Science.gov (United States)

    Kumano, Kenjiro; Nishinakamura, Hitomi; Mera, Toshiyuki; Itoh, Takeshi; Takahashi, Hiroyuki; Fujiwara, Toshiyoshi; Kodama, Shohta

    2016-09-01

    Although current immunosuppression protocols improve the efficacy of clinical allogenic islet transplantation, T cell-mediated allorejection remains unresolved, and major histocompatibility complexes (MHCs) play a crucial role in this process. Papain, a cysteine protease, has the unique ability to cleave the extracellular domain of the MHC class I structure. We hypothesized that pretreatment of donor islets with papain would diminish the expression of MHC class I on islets, reducing allograft immunogenicity and contributing to prolongation of islet allograft survival. BALB/c islets pretreated with papain were transplanted into C57BL/6J mice as an acute allorejection model. Treatment with 1 mg/mL papain significantly prolonged islet allograft survival. In vitro, to determine the inhibitory effect on T cell-mediated alloreactions, we performed lymphocyte proliferation assays and mixed lymphocyte reactions. Host T cell activation against allogenic islet cells was remarkably suppressed by pretreatment of donor islet cells with 10 mg/mL papain. Flow cytometric analysis was also performed to investigate the effect of papain treatment on the expression of MHC class I on islets. One or 10 mg/mL papain treatment reduced MHC class I expression on the islet cell surface. Pretreatment of donor islets with papain suppresses MHC class I-mediated allograft rejection in mice and contributes to prolongation of islet allograft survival without administration of systemic immunosuppressants. These results suggest that pretreatment of human donor islets with papain may reduce the immunogenicity of the donor islets and minimize the dosage of systemic immunosuppressants required in a clinical setting. PMID:27618231

  9. Automated separation of merged Langerhans islets

    Science.gov (United States)

    Švihlík, Jan; Kybic, Jan; Habart, David

    2016-03-01

    This paper deals with separation of merged Langerhans islets in segmentations in order to evaluate correct histogram of islet diameters. A distribution of islet diameters is useful for determining the feasibility of islet transplantation in diabetes. First, the merged islets at training segmentations are manually separated by medical experts. Based on the single islets, the merged islets are identified and the SVM classifier is trained on both classes (merged/single islets). The testing segmentations were over-segmented using watershed transform and the most probable back merging of islets were found using trained SVM classifier. Finally, the optimized segmentation is compared with ground truth segmentation (correctly separated islets).

  10. Protection of human islets from induction of apoptosis and improved islet function with HO-1 gene transduction

    Institute of Scientific and Technical Information of China (English)

    LI Yong-xiang; LI Ge; DONG Wei-ping; LU Da-ru; TAN Jian-ming

    2006-01-01

    Background Islet transplantation represents an ideal therapeutic approach for treatment of type 1 diabetes but islet function and regeneration may be influenced by necrosis or apoptosis induced by oxidative stress and other insults. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in the catabolism of heme into biliverdin,releasing free iron and carbon monoxide. It has also been reported to be an antioxidant enzyme which can improve the function of grafted islets by cytoprotection via free radical scavenging and apoptosis prevention. In the present study, we investigated whether transduction of HO-1 genes into human islets with an adenovirus vector has cytoprotective action on islets cultured in vitro and discuss this method of gene therapy for clinical islet transplantation.Methods Cadaveric pancreatic islets were isolated and purified in vitro. Transduction efficiency of islets was determined by infecting islets with adenovirus vector containing the enhanced green fluorescent protein gene (Ad-EGFP) at multiplicities of infection (MOI) of 2, 5, 10, or 20. Newly isolated islets were divided into three groups: EGFP group, islets transduced with Ad-EGFP using MOI=20; HO-1 group, transduced with adenovirus vectors containing the human HO-1 gene using MOI=20; and control group, mock transduced islets. Insulin release after glucose stimulation of the cell lines was determined by a radioimmunoassay kit and the stimulation index was calculated. Flow cytometry was used to detect apoptotic cells in the HO-1 group and in the control group after induction by recombinant human tumor necrosis factor-α (rTNFα) and cycloheximide (CHX) for 48 hours.Results Adenovirus vectors have a high efficiency of gene transduction into adult islet cells. Transduction of islets with the Ad-EGFP was most successful at MOI 20, at which MOI fluorescence was very intense on day 7 after transduction and EGFP was expressed in cultured islet cells for more than four weeks in vitro. The insulin

  11. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials

    OpenAIRE

    Pedraza, Eileen; Coronel, Maria M.; Fraker, Christopher A.; Ricordi, Camillo; Stabler, Cherie L

    2012-01-01

    A major hindrance in engineering tissues containing highly metabolically active cells is the insufficient oxygenation of these implants, which results in dying or dysfunctional cells in portions of the graft. The development of methods to increase oxygen availability within tissue-engineered implants, particularly during the early engraftment period, would serve to allay hypoxia-induced cell death. Herein, we designed and developed a hydrolytically activated oxygen-generating biomaterial in t...

  12. Islet transplantation and antioxidant management A comprehensive review

    Institute of Scientific and Technical Information of China (English)

    Seyed Sajad Mohseni Salehi Monfared; Bagher Larijani; Mohammad Abdollahi

    2009-01-01

    Islet transplantation as a promising treatment for type 1 diabetes has received widespread attention.Oxidative stress plays an essential role in cell injury during islet isolation and transplantation procedures.Antioxidants have been used in various studies to improve islet transplantation procedures. The present study reviews the role of oxidative stress and the benefits of antioxidants in islet transplantation procedures. The bibliographical databases Pubmed and Scopus were searched up to November 2008.All relevant human and animal in-vivo and in-vitro studies, which investigated antioxidants on islets,were included. Almost all the tested antioxidants used in the in-vitro studies enhanced islet viability and insulin secretion. Better control of blood glucose after transplantation was the major outcome of antioxidant therapy in all in-vivo studies. The data also indicated that antioxidants improved islet transplantation procedures. Although there is still insufficient evidence to draw definitive conclusions about the efficacy of individual supplements, the benefits of antioxidants in islet isolation procedures cannot be ignored.

  13. Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats

    DEFF Research Database (Denmark)

    Zumsteg, U; Reimers, J I; Pociot, F;

    1993-01-01

    , mouse and human islets exposed to recombinant human interleukin-1 beta, and on interleukin-1 beta induced changes in blood glucose, serum insulin and serum glucagon levels in Wistar Kyoto rats. The interleukin-1 receptor antagonist reduced the co-mitogenic effect of interleukin-1 beta on mouse and rat......The monokines interleukin-1 alpha and -beta have been implicated as effector molecules in the immune-mediated pancreatic beta-cell destruction leading to insulin-dependent diabetes mellitus. Here we investigated the effects of interleukin-1 receptor antagonism on insulin and glucagon release of rat...... thymocytes with a 50% inhibitory concentration of 10- and 100-fold molar excess, respectively. Complete inhibition was obtained with a 100-1,000-fold molar excess. However, at a 100-fold molar excess the interleukin-1 receptor antagonist did not antagonise the potentiating effect of interleukin-1 beta on rat...

  14. Hexose metabolism in pancreatic islets: the Pasteur effect.

    Science.gov (United States)

    Malaisse, W J; Rasschaert, J; Zähner, D; Sener, A

    1988-02-01

    In rat pancreatic islets, hypoxia severely decreased both the oxidation of D-[U-14C]glucose and the release of insulin evoked by D-glucose. The production of [14C]lactate was increased in the hypoxic islets, the relative magnitude of such an increment being greater at low (2.8 mM) than high (8.3 and 16.7 mM) D-glucose concentrations. Hypoxia increased the detritiation of D-[5-3H]glucose at low glucose concentration (2.8 mM), failed to affect 3H2O production at an intermediate glucose level (8.3 mM), and inhibited the utilization of D-[5-3H]glucose at a higher hexose concentration (16.7 mM). In tumoral islet cells (RINm5F line) exposed to 16.7 mM D-glucose, hypoxia decreased D-[U-14C]glucose oxidation to the same extent as in normal islet cells, but increased the production of [14C]lactate and 3H2O to a greater extent than in normal islets. These findings indicate that the Pasteur effect is operative in islet cells. The experimental data also suggest that, under normal conditions of oxygenation, high concentrations of D-glucose lead to both activation of phosphofructokinase and stimulation of mitochondrial oxidative events in normal, but not tumoral, islet cells.

  15. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: An hormetic stimulus

    Directory of Open Access Journals (Sweden)

    Elisabetta Borchi

    2014-01-01

    Full Text Available The presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP, a hallmark of type 2 diabetes, contributes to pancreatic β-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about β-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic β-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage.

  16. Contemporary issues in the evaluation and management of pituitary adenomas.

    Science.gov (United States)

    Pekic, S; Stojanovic, M; Popovic, V

    2015-12-01

    Pituitary adenomas are common benign monoclonal neoplasms accounting for about 15% of intracranial neoplasms. Data from postmortem studies and imaging studies suggest that 1 of 5 individuals in the general population may have pituitary adenoma. Some pituitary adenomas (mainly microadenomas which have a diameter of less than 1 cm) are exceedingly common and are incidentally diagnosed on magnetic resonance imaging (MRI) performed for an unrelated reason (headache, vertigo, head trauma). Most microadenomas remain clinically occult and stable in size, without an increase in tumor cells and without local mass effects. However, some pituitary adenomas grow slowly, enlarge by expansion and become demarcated from normal pituitary (macroadenomas have a diameter greater than 1 cm). They may be clinically silent or secrete anterior pituitary hormones in excess such as prolactin, growth hormone (GH), or adrenocorticotropic hormone (ACTH) causing diseases like prolactinoma, acromegaly, Cushing's disease or rarely thyroid-stimulating hormone (TSH) or gonadotropins (LH, FSH). The incidence of the various subtypes of pituitary adenoma varies but the most common is prolactinoma. Clinically non-functioning pituitary adenomas (NFPAs), which do not secrete hormones often cause local mass symptoms and represent one-third of pituitary adenomas. Given the high prevalence of pituitary adenomas and their heterogeneity (different tumor subtypes), it is critical that clinicians have a thorough understanding of the potential abnormalities in pituitary function and prognostic factors for behavior of pituitary adenomas in order to timely implement specific treatment modalities. Regarding pathogenesis of these tumors genetics, epigenetics and signaling pathways are the focus of current research yet our understanding of pituitary tumorigenesis remains incomplete. Although several genes and signaling pathways have been identified as important factors in the development of pituitary tumors, current

  17. Contemporary issues in the evaluation and management of pituitary adenomas.

    Science.gov (United States)

    Pekic, S; Stojanovic, M; Popovic, V

    2015-12-01

    Pituitary adenomas are common benign monoclonal neoplasms accounting for about 15% of intracranial neoplasms. Data from postmortem studies and imaging studies suggest that 1 of 5 individuals in the general population may have pituitary adenoma. Some pituitary adenomas (mainly microadenomas which have a diameter of less than 1 cm) are exceedingly common and are incidentally diagnosed on magnetic resonance imaging (MRI) performed for an unrelated reason (headache, vertigo, head trauma). Most microadenomas remain clinically occult and stable in size, without an increase in tumor cells and without local mass effects. However, some pituitary adenomas grow slowly, enlarge by expansion and become demarcated from normal pituitary (macroadenomas have a diameter greater than 1 cm). They may be clinically silent or secrete anterior pituitary hormones in excess such as prolactin, growth hormone (GH), or adrenocorticotropic hormone (ACTH) causing diseases like prolactinoma, acromegaly, Cushing's disease or rarely thyroid-stimulating hormone (TSH) or gonadotropins (LH, FSH). The incidence of the various subtypes of pituitary adenoma varies but the most common is prolactinoma. Clinically non-functioning pituitary adenomas (NFPAs), which do not secrete hormones often cause local mass symptoms and represent one-third of pituitary adenomas. Given the high prevalence of pituitary adenomas and their heterogeneity (different tumor subtypes), it is critical that clinicians have a thorough understanding of the potential abnormalities in pituitary function and prognostic factors for behavior of pituitary adenomas in order to timely implement specific treatment modalities. Regarding pathogenesis of these tumors genetics, epigenetics and signaling pathways are the focus of current research yet our understanding of pituitary tumorigenesis remains incomplete. Although several genes and signaling pathways have been identified as important factors in the development of pituitary tumors, current

  18. Can pancreatic duct-derived progenitors be a source of islet regeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Zhan, Xiao-Rong, E-mail: xiaorongzhan@sina.com [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Yi, Ran [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Yang, Baofeng [Department of Pharmacology, State Key Laboratory of Biomedicine and Pharmacology, Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China)

    2009-06-12

    The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing {beta}-cells. The functional mass of {beta}-cells is decreased in type 1 diabetes, so replacing missing {beta}-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the {beta}-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding {beta}-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated. In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet {beta}-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the 'gold standard' of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal

  19. Can pancreatic duct-derived progenitors be a source of islet regeneration?

    International Nuclear Information System (INIS)

    The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing β-cells. The functional mass of β-cells is decreased in type 1 diabetes, so replacing missing β-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the β-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding β-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated. In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet β-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the 'gold standard' of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal cells as an in vivo progenitor for

  20. Carbonyl stress-induced 5-hydroxytriptamine secretion from RIN-14B, rat pancreatic islet tumor cells, via the activation of transient receptor potential ankyrin 1.

    Science.gov (United States)

    Suzawa, Sayaka; Takahashi, Kenji; Shimada, Takahisa; Ohta, Toshio

    2016-07-01

    Methylglyoxal (MG), a highly reactive dicarbonyl substance, is known as an endogenous carbonyl stress-inducing substance related to various disease states. Irritable bowel syndrome (IBS) is one of the most frequently encountered gastrointestinal disorders and MG is considered to be its causal substance. An increased serum 5-hydroxytryptamine (5-HT) level is related to IBS symptoms and the majority of 5-HT originates from enterochromaffin (EC) cells in the intestine. Here we examine the mechanisms of MG-induced 5-HT secretion using RIN-14B cells derived from a rat pancreatic islet tumor since these cells are used as a model for EC cells. MG increased the intracellular Ca(2+) concentration ([Ca(2+)]i) and 5-HT secretion, both of which were inhibited by the removal of extracellular Ca(2+) and specific transient receptor potential ankyrin 1 (TRPA1) antagonists. MG elicited an inward current under voltage-clamped conditions. Prior application of MG evoked reciprocal suppression of subsequent [Ca(2+)]i responses to allylisothiocyanate, a TRPA1 agonist, and vice versa. Glyoxal, an analog of MG, also evoked [Ca(2+)]i and secretory responses but its potency was much lower than that of MG. The present results suggest that MG promotes 5-HT secretion through the activation of TRPA1 in RIN-14B cells. These results may indicate that TRPA1 is a promising target for the treatment of IBS and that the RIN-14B cell line is a useful model for investigation of IBS. PMID:27423812

  1. Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism.

    Science.gov (United States)

    Ainscow, Edward K; Rutter, Guy A

    2002-02-01

    Normal glucose-stimulated insulin secretion is pulsatile, but the molecular mechanisms underlying this pulsatility are poorly understood. Oscillations in the intracellular free [ATP]/[ADP] ratio represent one possible mechanism because they would be expected to cause fluctuations in ATP-sensitive K(+) channel activity and hence oscillatory Ca(2+) influx. After imaging recombinant firefly luciferase, expressed via an adenoviral vector in single human or mouse islet beta-cells, we report here that cytosolic free ATP concentrations oscillate and that these oscillations are affected by glucose. In human beta-cells, oscillations were observed at both 3 and 15 mmol/l glucose, but the oscillations were of a longer wavelength at the higher glucose concentration (167 vs. 66 s). Mouse beta-cells displayed oscillations in both cytosolic free [Ca(2+)] and [ATP] only at elevated glucose concentrations, both with a period of 120 s. To explore the causal relationship between [Ca(2+)] and [ATP] oscillations, the regulation of each was further investigated in populations of MIN6 beta-cells. Incubation in Ca(2+)-free medium lowered cytosolic [Ca(2+)] but increased [ATP] in MIN6 cells at both 3 and 30 mmol/l glucose. Removal of external Ca(2+) increased [ATP], possibly by decreasing ATP consumption by endoplasmic reticulum Ca(2+)-ATPases. These results allow a model to be constructed of the beta-cell metabolic oscillator that drives nutrient-induced insulin secretion.

  2. Adaptation of pancreatic islet cyto-architecture during development

    Science.gov (United States)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1–35 weeks and 12–24 months.

  3. Adaptation of pancreatic islet cyto-architecture during development.

    Science.gov (United States)

    Striegel, Deborah A; Hara, Manami; Periwal, Vipul

    2016-01-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months. PMID:27063927

  4. Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore.

    Science.gov (United States)

    Lyon, James; Manning Fox, Jocelyn E; Spigelman, Aliya F; Kim, Ryekjang; Smith, Nancy; O'Gorman, Doug; Kin, Tatsuya; Shapiro, A M James; Rajotte, Raymond V; MacDonald, Patrick E

    2016-02-01

    Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and β-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.

  5. Pregnancy and pituitary adenomas.

    Science.gov (United States)

    Glezer, Andrea; Jallad, Raquel S; Machado, Marcio C; Fragoso, Maria C; Bronstein, Marcello D

    2016-09-01

    Infertility is frequent in patients harboring pituitary adenomas. The mechanisms involved include hypogonadism secondary to hormonal hypersecretion (prolactin, growth hormone and cortisol), stalk disconnection and pituitary damage. With the improvement of clinical and surgical treatment, pregnancy in women harboring pituitary adenomas turned into a reality. Pituitary hormonal hyper- and hyposecretion influences pregnancy outcomes, as well as pregnancy can interfere on pituitary tumors, especially in prolactinomas. We review literature about specific follow-up and management in pregnant women harboring prolactinomas, acromegaly, or Cushings disease and the impact of clinical and surgical treatment on each condition. PMID:26977888

  6. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  7. Immunohistochemical Expression of p16 in Pleomorphic Salivary Adenoma

    OpenAIRE

    Hanouneh, Salah; Darwish, Shorouk; Baroudi, Kusai; Sakka, Salah; Tarakji, Bassel

    2013-01-01

    Objective: This study aimed to characterize alteration in the immunohistochemical expression of p16 in normal tissue of the salivary gland surrounding pleomorphic adenoma, and the tumor cells of pleomorphic adenomas.Material and Method: A selected series of 120 cases of pleomorphic adenomas were examined.Results: The results showed that p16 expression in non tumor duct cells was strong positive nuclear staining in 98 (81.6%) cases out of 120, while there were 20 (16.6%) with moderate staining...

  8. 衰老与胰岛β细胞功能%Relationship between senescence and the function of islet β cell

    Institute of Scientific and Technical Information of China (English)

    于园; 段宇

    2010-01-01

    胰岛β细胞衰老导致的胰岛功能衰退在2型糖尿病的发病机制中起重要作用.衰老的胰岛β细胞复制受限.出现形态及功能改变,即细胞体积增大、小规则,胰岛素分泌模式受损.导致B细胞衰老的机制复杂,包括端粒缩短学说、氧化应激敛DNA损伤学说、致癌基因表达上调学说等.新近研究发现,β-半乳糖苷酶活性增加、p16 1NK4a表达上调及衰老相关的异染色质位点(SAHF)等可作为胰岛β细胞衰老的非特异性生物学标记物,可能对早期预测胰岛β细胞功能衰退、预防2型糖尿病起重要作用.%Dysfunction of islets caused by beta cell senescence plays an important role in the patho-genesis of type 2 diabetes. Senescence induces replicative arrest,which is accompanied with morphologic and functional changes, such as the enlargement and irregularity of cells and impaired insulin secretion. The mechanism of β cell senescence is very complicated, including series theories such as telomere shortening, impaired DNA by oxidative stress, upregulation of oncogene and so on. Recent researches have found some nonspecific biological markers of senescent beta cells,for example,the increased activity of beta galactosidase (β-Gal) ,upregulation of pl6 1NK4a and senescence-associated heterochromatic foci(SAHF) phenomenon,they may play important roles in predicting the development of islet β cell dysfunction and type 2 diabetes mellitus.

  9. Immune tolerance in pancreatic islet xenotransplantation

    Institute of Scientific and Technical Information of China (English)

    Tian-Hua Tang; Chun-Lin Li; Xin Li; Feng-Qin Jiang; Yu-Kun Zhang; Hai-Quan Ren; Shan-Shan Su; Guo-Sheng Jiang

    2004-01-01

    AIM: To observe the effect of tail vein injection with donor hepatocytes and/or splenocytes on the islet xenotransplantation rejection.METHODS: New-bom male pigs and BALB/C mice were selected as donors and recipients respectively. Islet xenotransplantation was performed in recipients just after the third time of tail vein injection with donor hepatocytes and/or splenocytes.Macrophage phagocytosis, NK(natural killing cell) killing activity, T lymphocyte transforming function of spleen cells,antibody forming function of B lymphocytes, and T lymphocyte subsets were taken to monitor transplantation rejection. The effects of this kind of transplantation were indicated as variation of blood glucose and survival days of recipients.RESULTS: The results showed that streptozotocin (STZ) could induce diabetes mellitus models of mice. The preinjection of donor hepatocytes, splenocytes or their mixture by tail vein injection was effective in preventing donor islet transplantation from rejection, which was demonstrated by the above-mentioned immunological marks. Each group of transplantation could decrease blood glucose in recipients and increase survival days. Pre-injection of mixture of donor hepatocytes and splenocytes was more effective in preventing rejection as compared with that of donor hepatocyte or splenocyte pre-injection respectively.CONCLUSION: Pre-injection of donor hepatocytes, splenocytes or their mixture before donor islet transplantation is a good way in preventing rejection.

  10. Altered Expression of Somatostatin Receptors in Pancreatic Islets from NOD Mice Cultured at Different Glucose Concentrations In Vitro and in Islets Transplanted to Diabetic NOD Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Eva Ludvigsen

    2011-01-01

    Full Text Available Somatostatin acts via five receptors (sst1-5. We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5 and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentration in vitro as compared to the islet transplantation in vivo to diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.

  11. Matrix metalloproteinase-13 expression in the progression of colorectal adenoma to carcinoma : Matrix metalloproteinase-13 expression in the colorectal adenoma and carcinoma.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira K; Abdel-Aziz, Azza

    2014-06-01

    Most colorectal carcinomas (CRCs) are considered to arise from conventional adenoma based on the concept of the adenoma-carcinoma sequence. Matrix metalloproteinases (MMPs) are known to be overexpressed as normal mucosa progresses to adenomas and carcinomas. There has been little previous investigation about MMP-13 expression in adenoma-carcinoma sequence. In this study, we aimed to investigate the immunohistochemical expression of MMP-13 in colorectal adenoma and CRC specimens using tissue microarray (TMA) technique. A total of 40 cases of CRC associated with adenoma were collected from files of the Pathology laboratory at Mansoura Gastroenterology Center between January 2007 and January 2012. Sections from TMA blocks were prepared and stained for MMP-13. Immunoreactivity to MMP-13 staining was localized to the cytoplasm of mildly, moderately, and severely dysplatic cells of adenomas and CRC tumor cells that were either homogenous or heterogeneous. There was no significant difference in MMP-13 expression between adenomas and CRCs either non-mucinous or mucinous. Adenomas with high MMP-13 expression were significantly associated with moderate to marked degree of inflammatory cellular infiltrate and presence of familial adenomatous polyps. In conclusion, MMP-13 may be a potential biological marker of early tumorigenesis in the adenoma-carcinoma sequence. PMID:24563279

  12. Islet Insulin Secretion, β-Cell Mass, and Energy Balance in a Polygenic Mouse Model of Type 2 Diabetes With Obesity

    Directory of Open Access Journals (Sweden)

    Xia Mao MD, PhD

    2014-04-01

    Full Text Available Type 2 diabetes (T2D and obesity are polygenic metabolic diseases, highly prevalent in humans. The TALLYHO/Jng (TH mouse is a polygenic model of T2D and obesity that encompasses many aspects of the human conditions. In this study, we investigated the key metabolic components including β-cell physiology and energy balance involved in the development of diabetes and obesity in TH mice. Glucose-stimulated insulin secretion from freshly isolated islets was significantly enhanced in TH mice compared with normal C57BL/6 (B6 mice, similar to the compensated stage in human T2D associated with obesity. This increased glucose responsiveness was accompanied by an increase in total β-cell mass in TH mice. Energy expenditure and locomotor activity were significantly reduced in TH mice compared with B6 mice. Food intake was comparable between the two strains but water intake was more in TH mice. Together, obesity in TH mice does not appear to be due to hyperphagia, and TH mice may be a genetic model for T2D with obesity, allowing study of the important signaling or metabolic pathways leading to compensatory increases in insulin secretion and β-cell mass in insulin resistance.

  13. 针刺对糖尿病大鼠胰岛β细胞数量变化的影响%Effect of Acupuncture on the Number of Islet Cells in Diabetic Rats

    Institute of Scientific and Technical Information of China (English)

    王福波; 战文翔

    2015-01-01

    目的:分析针刺对糖尿病大鼠胰岛β细胞数目变化的影响。方法将36只成功造模大鼠分为模型组(12)、药物组(12)、针刺组(12),将12只普食大鼠设为对照组,检测胰岛β细胞数量变化。结果针刺组胰岛β细胞数量增值明显。模型组胰岛素表达低于针刺组(P<0.05)。结论针刺具有促使胰岛β细胞数量增殖的作用。%ObjectiveTo study the effect of acupuncture on the changes of the number of islet beta cell of diabetic rats.Methods 36 successful model rats were divided into the model group (12), drug group(12), acupuncture group (12), 12 normal diet rats were divided into controlgroup, detected pancreatic beta cells and expression of gray value.ResultsThe number of islet beta cell increment obvious acupuncture group. Insulin expression in model group was lower than acupuncture group (P<0.05).ConclusionAcupuncture has prompted a number of value-added role of beta cell of islet.

  14. Expression of innate immunity genes and damage of primary human pancreatic islets by epidemic strains of Echovirus: implication for post-virus islet autoimmunity.

    Directory of Open Access Journals (Sweden)

    Luis Sarmiento

    Full Text Available Three large-scale Echovirus (E epidemics (E4,E16,E30, each differently associated to the acute development of diabetes related autoantibodies, have been documented in Cuba. The prevalence of islet cell autoantibodies was moderate during the E4 epidemic but high in the E16 and E30 epidemic. The aim of this study was to evaluate the effect of epidemic strains of echovirus on beta-cell lysis, beta-cell function and innate immunity gene expression in primary human pancreatic islets. Human islets from non-diabetic donors (n = 7 were infected with the virus strains E4, E16 and E30, all isolated from patients with aseptic meningitis who seroconverted to islet cell antibody positivity. Viral replication, degree of cytolysis, insulin release in response to high glucose as well as mRNA expression of innate immunity genes (IFN-b, RANTES, RIG-I, MDA5, TLR3 and OAS were measured. The strains of E16 and E30 did replicate well in all islets examined, resulting in marked cytotoxic effects. E4 did not cause any effects on cell lysis, however it was able to replicate in 2 out of 7 islet donors. Beta-cell function was hampered in all infected islets (P<0.05; however the effect of E16 and E30 on insulin secretion appeared to be higher than the strain of E4. TLR3 and IFN-beta mRNA expression increased significantly following infection with E16 and E30 (P<0.033 and P<0.039 respectively. In contrast, the expression of none of the innate immunity genes studied was altered in E4-infected islets. These findings suggest that the extent of the epidemic-associated islet autoimmunity may depend on the ability of the viral strains to damage islet cells and induce pro-inflammatory innate immune responses within the infected islets.

  15. Islet Transplantation in Pediatric Patients: Current Indications and Future Perspectives.

    Science.gov (United States)

    Bertuzzi, Federico; Antonioli, Barbara; Tosca, Marta C; Galuzzi, Marta; Bonomo, Matteo; Marazzi, Mario; Colussi, Giacomo

    2016-01-01

    The first islet transplantation in diabetes mellitus was performed more than 20 years ago. Since then, clinical results have progressively improved. Nowadays, islet transplantation can be considered a real therapeutic option after pancreatectomy for painful chronic pancreatitis (autotransplantation) and in selected adult patients affected by type 1 diabetes mellitus (allotransplantation). Better results are mainly due to the advances in the standardization of islet isolation and purification procedures as well as in the pharmacological treatment of recipients. Anti-inflammatory treatments facilitate islet engraftment and prevent metabolic exhaustion and functional β-cell apoptosis; new strategies better control islet graft rejection. As a consequence, islet transplantation activities are no longer confined to few centers only, rather thousands of transplants are now performed all over the world. Many attempts are actually undertaken to find solutions to current problems of islets transplantation, from toxicity of immunosuppressive therapy to the limited engraftment, function and duration. There is general hope that these procedures will offer a safe and feasible therapeutic option for an increasing number of patients suffering from diabetes mellitus, including pediatric patients. PMID:26682915

  16. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Iwao; Noguchi, Naoya [Department of Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories), Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Nata, Koji [Department of Medical Biochemistry, Iwate Medical University School of Pharmacy, Yahaba-cho 028-3603 (Japan); Yamada, Shuhei; Kaneiwa, Tomoyuki; Mizumoto, Shuji [Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo 001-0021 (Japan); Ikeda, Takayuki [Department of Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories), Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Sugihara, Kazushi; Asano, Masahide [Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640 (Japan); Yoshikawa, Takeo [Department of Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories), Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Yamauchi, Akiyo [Department of Biochemistry, Nara Medical University, Kashihara 634-8521 (Japan); Shervani, Nausheen Jamal; Uruno, Akira [Department of Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories), Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Kato, Ichiro [Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194 (Japan); Unno, Michiaki [Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574 (Japan); Sugahara, Kazuyuki [Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo 001-0021 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University, Kashihara 634-8521 (Japan); and others

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.

  17. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    International Nuclear Information System (INIS)

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet β-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in β-cells. These mice exhibited abnormal islet morphology with reduced β-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.

  18. Research Progress on Oxidative Stress of Islet Beta Cells in Type 2 Diabetes Mellitus%2型糖尿病胰岛β细胞氧化应激的研究进展

    Institute of Scientific and Technical Information of China (English)

    裴晓艳; 张晓梅

    2011-01-01

    Objective:To investigate the research advancement on oxidative stress of islet beta cells in type 2 diabetes Mellitus (T2 DM).Methods:To explore the research progress on oxidative stress of islet beta cells in T2 DM from the concept of oxidative stress, the oxidative stress factors of islet beta cells and the mechanism of oxidative stress damage in islet beta cells.Results: Because of lower level of antioxidant system in beta cells of islet in T2 DM, oxidative stress will easily occur during metabolic process of hyperglycaemia and hyperlipemia.Oxidative stress impairs β - cell function through many approaches, decreases insulin synthesis and secretion, aggravates T2 DM.Conclusions: Oxidative stress will easily occur in beta cells and it is a complex progress as a result of many factors and pathways.Antioxidant application can protect β - cell function, prevent and treat the incidence and growth of T2 DM.%目的:探讨2型糖尿病(T2DM)胰岛β细胞氧化应激的研究进展.方法:从氧化应激的概念、胰岛β细胞发生氧化应激的因素、氧化应激损伤胰岛β细胞的机制三方面来探讨T2DM胰岛β细胞氧化应激的研究进展.结果:T2DM胰岛β细胞内含有较低水平的抗氧化系统, 在高糖、高脂等作用下,容易发生氧化应激反应, 氧化应激通过多种途径损伤胰岛β细胞, 使胰岛素合成分泌减少,加重T2DM.结论:T2DM胰岛β细胞容易发生氧化应激是多因素多途径共同作用的复杂过程,积极应用抗氧化剂治疗,能保护胰岛β细胞功能,预防和治疗T2DM的发生与发展.

  19. Thomsen-Friedenreich (T) antigen as marker of myoepithelial and basal cells in the parotid gland, pleomorphic adenomas and adenoid cystic carcinomas. An immunohistological comparison between T and sialosyl-T antigens, alpha-smooth muscle actin and cytokeratin 14

    DEFF Research Database (Denmark)

    Therkildsen, M H; Mandel, U; Christensen, M;

    1995-01-01

    -known markers of normal MEC/basal cells (i.e. alpha-smooth muscle actin and cytokeratin 14) with T (Thomsen-Friedenreich) antigen and its sialylated derivative: sialosyl-T antigen,) in 17 normal parotid glands and in two tumour types with MEC participation (i.e pleomorphic adenomas (PA) and adenoid cystic...... was the only marker of cells in solid undifferentiated areas of adenoid cystic carcinomas. Our study supports the view, that modified "myoepithelial" cells in the tumours consist of a mixture of basal cells and myoepithelial cells. None of the investigated structures was in itself an ideal marker...

  20. Transient Suppression of TGFβ Receptor Signaling Facilitates Human Islet Transplantation.

    Science.gov (United States)

    Xiao, Xiangwei; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Zimmerman, Ray; Wiersch, John; Prasadan, Krishna; Shiota, Chiyo; Guo, Ping; Ramachandran, Sabarinathan; Witkowski, Piotr; Gittes, George K

    2016-04-01

    Although islet transplantation is an effective treatment for severe diabetes, its broad application is greatly limited due to a shortage of donor islets. Suppression of TGFβ receptor signaling in β-cells has been shown to increase β-cell proliferation in mice, but has not been rigorously examined in humans. Here, treatment of human islets with a TGFβ receptor I inhibitor, SB-431542 (SB), significantly improved C-peptide secretion by β-cells, and significantly increased β-cell number by increasing β-cell proliferation. In addition, SB increased cell-cycle activators and decreased cell-cycle suppressors in human β-cells. Transplantation of SB-treated human islets into diabetic immune-deficient mice resulted in significant improvement in blood glucose control, significantly higher serum and graft insulin content, and significantly greater increases in β-cell proliferation in the graft, compared with controls. Thus, our data suggest that transient suppression of TGFβ receptor signaling may improve the outcome of human islet transplantation, seemingly through increasing β-cell number and function. PMID:26872091

  1. SUITO Index for Evaluation of Clinical Islet Transplantation

    OpenAIRE

    Takita, Morihito; Matusmoto, Shinichi

    2012-01-01

    The major endpoints for clinical islet transplantation for type 1 diabetes are insulin independence and reduction of hypoglycemic episodes. Both endpoints are influenced by patients’ and physicians’ preferences regarding the use of exogenous insulin. Therefore, development of an objective endpoint for assessing clinical islet transplantation is desirable. HOMA-beta score is useful in assessing functional β-cell mass. However, this score uses blood insulin levels that are influenced by exogeno...

  2. Pig-to-Nonhuman Primates Pancreatic Islet Xenotransplantation: An Overview

    OpenAIRE

    Marigliano, Marco; Bertera, Suzanne; Grupillo, Maria; Trucco, Massimo; Bottino, Rita

    2011-01-01

    The therapy of type 1 diabetes is an open challenging problem. The restoration of normoglycemia and insulin independence in immunosuppressed type 1 diabetic recipients of islet allotransplantation has shown the potential of a cell-based diabetes therapy. Even if successful, this approach poses a problem of scarce tissue supply. Xenotransplantation can be the answer to this limited donor availability and, among possible candidate tissues for xenotransplantation, porcine islets are the closest ...

  3. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors

    International Nuclear Information System (INIS)

    The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex of 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result

  4. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daughaday, W.H.; Kapadia, M. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1989-09-01

    The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex of 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result.

  5. Lacrimal Gland Pleomorphic Adenoma and Carcinoma ex Pleomorphic Adenoma

    DEFF Research Database (Denmark)

    von Holstein, Sarah L; Fehr, André; Persson, Marta;

    2014-01-01

    To study genetic alterations in lacrimal gland pleomorphic adenoma (PA) and carcinoma ex pleomorphic adenoma (Ca-ex-PA) with focus on copy number changes and expression patterns of the translocation target genes PLAG1, HMGA2, and CRTC1-MAML2 in relation to clinical data.......To study genetic alterations in lacrimal gland pleomorphic adenoma (PA) and carcinoma ex pleomorphic adenoma (Ca-ex-PA) with focus on copy number changes and expression patterns of the translocation target genes PLAG1, HMGA2, and CRTC1-MAML2 in relation to clinical data....

  6. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Science.gov (United States)

    Meier, Raphael P H; Seebach, Jörg D; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H; Muller, Yannick D

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  7. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  8. Growth hormone receptor expression and function in pituitary adenomas

    DEFF Research Database (Denmark)

    Clausen, Lene R; Kristiansen, Mikkel T; Rasmussen, Lars M;

    2004-01-01

    OBJECTIVE AND DESIGN: Hypopituitarism, in particular GH deficiency, is prevalent in patients with clinically nonfunctioning pituitary adenomas (NFPAs) both before and after surgery. The factors regulating the growth of pituitary adenomas in general and residual tumour tissue in particular are not...... transcription 5) phosphorylation was measured by Western blot analysis as an index of GHR signalling; cell proliferation was evaluated by [H3]-thymidine incorporation and glycoprotein hormone production analysed by radioimmunoassay (RIA). RESULTS: All adenomas investigated expressed the GHR, but there was no...... detection of STAT5 phosphorylation. Overall, GH and IGF-I administration did not significantly stimulate cell proliferation in vitro, although some individual adenomas exhibited a proliferative response to various extents. GH also did not significantly influence glycoprotein hormone secretion in vitro...

  9. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. (Cedars-Sinai Medical Center, Los Angeles, CA (United States))

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  10. Parathyroid adenoma Localization

    OpenAIRE

    Nasiri, Shirzad; Soroush, Ahmadreza; Hashemi, Amir Pejman; Hedayat, Anushiravan; Donboli, Kianoush; Mehrkhani, Farhad

    2012-01-01

    Background Bilateral neck exploration is the gold standard for parathyroid adenoma localization in primary hyperparathyroidism. But surgeons do not have adequate experience for accurate surgical exploration and new methods are developed for surgery like unilateral exploration and minimally invasive surgery, thus, preoperative localization could reduces time and stress in surgical performance. Method 80 patients with documented primary hyperparathyroidism and with raised serum calcium and para...

  11. The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

    OpenAIRE

    Xin Wang; Ting Tan; Zhi-Gang Mao; Ni Lei; Zong-Ming Wang; Bin Hu; Zhi-Yong Chen; Zhi-Gang She; Yong-Hong Zhu; Hai-Jun Wang

    2015-01-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-6...

  12. Characterisation of the xenogeneic immune response to microencapsulated fetal pig islet-like cell clusters transplanted into immunocompetent C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Vijayaganapathy Vaithilingam

    Full Text Available Xenotransplantation of microencapsulated fetal pig islet-like cell clusters (FP ICCs offers a potential cellular therapy for type 1 diabetes. Although microcapsules prevent direct contact of the host immune system with the xenografted tissue, poor graft survival is still an issue. This study aimed to characterise the nature of the host immune cells present on the engrafted microcapsules and effects on encapsulated FP ICCs that were transplanted into immunocompetent mice. Encapsulated FP ICCs were transplanted into the peritoneal cavity of C57BL/6 mice. Grafts retrieved at days 1, 3, 7, 14 and 21 post-transplantation were analysed for pericapsular fibrotic overgrowth (PFO, cell viability, intragraft porcine gene expression, macrophages, myofibroblasts and intraperitoneal murine cytokines. Graft function was assessed ex vivo by insulin secretion studies. Xenogeneic immune response to encapsulated FP ICCs was associated with enhanced intragraft mRNA expression of porcine antigens MIP-1α, IL-8, HMGB1 and HSP90 seen within the first two weeks post-transplantation. This was associated with the recruitment of host macrophages, infiltration of myofibroblasts and collagen deposition leading to PFO which was evident from day 7 post-transplantation. This was accompanied by a decrease in cell viability and loss of FP ICC architecture. The only pro-inflammatory cytokine detected in the murine peritoneal flushing was TNF-α with levels peaking at day 7 post transplantation. This correlated with the onset of PFO at day 7 implying activated macrophages as its source. The anti-inflammatory cytokines detected were IL-5 and IL-4 with levels peaking at days 1 and 7, respectively. Porcine C-peptide was undetectable at all time points post-transplantation. PFO was absent and murine intraperitoneal cytokines were undetectable when empty microcapsules were transplanted. In conclusion, this study demonstrated that the macrophages are direct effectors of the xenogeneic

  13. Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas

    International Nuclear Information System (INIS)

    Nonpolypoid adenomas are a subgroup of colorectal adenomas that have been associated with a more aggressive clinical behaviour compared to their polypoid counterparts. A substantial proportion of nonpolypoid and polypoid adenomas lack APC mutations, APC methylation or chromosomal loss of the APC locus on chromosome 5q, suggesting the involvement of other Wnt-pathway genes. The present study investigated promoter methylation of several Wnt-pathway antagonists in both nonpolypoid and polypoid adenomas. Quantitative methylation-specific PCR (qMSP) was used to evaluate methylation of four Wnt-antagonists, SFRP2, WIF-1, DKK3 and SOX17 in 18 normal colorectal mucosa samples, 9 colorectal cancer cell lines, 18 carcinomas, 44 nonpolypoid and 44 polypoid adenomas. Results were integrated with previously obtained data on APC mutation, methylation and chromosome 5q status from the same samples. Increased methylation of all genes was found in the majority of cell lines, adenomas and carcinomas compared to normal controls. WIF-1 and DKK3 showed a significantly lower level of methylation in nonpolypoid compared to polypoid adenomas (p < 0.01). Combining both adenoma types, a positive trend between APC mutation and both WIF-1 and DKK3 methylation was observed (p < 0.05). Methylation of Wnt-pathway antagonists represents an additional mechanism of constitutive Wnt-pathway activation in colorectal adenomas. Current results further substantiate the existence of partially alternative Wnt-pathway disruption mechanisms in nonpolypoid compared to polypoid adenomas, in line with previous observations

  14. Human Placenta-Derived Mesenchymal Stem Cells and Islet-Like Cell Clusters Generated From These Cells as a Novel Source for Stem Cell Therapy in Diabetes

    OpenAIRE

    Kadam, Sachin; Muthyala, Sudhakar; Nair, Prabha; Bhonde, Ramesh

    2010-01-01

    Placental tissue holds great promise as a source of cells for regenerative medicine due to its plasticity, and easy availability. Human placenta-derived mesenchymal stem cells (hPDMSCs) have the potential to differentiate into insulin-producing cells. Upon transplantation, they can reverse experimental diabetes in mice. However, it is not known whether culture-expanded undifferentiated hPDMSCs are capable of restoring normoglycemia upon transplantation in streptozotocin (STZ)-induced diabetic...

  15. Extracellular matrix improves islet cell survival by α3-integrin regulation%细胞外基质通过调节α3整合素的表达促进小鼠胰岛存活

    Institute of Scientific and Technical Information of China (English)

    缪刚; 赵艳阳; 李尧; 蔡建平; 黎健; 韦军民

    2012-01-01

    Objective To determine the molecular pathway of reconstituted basement membrane extract(BME)embedment in the context of promoting islet cell survival.Methods Mouse islet cells were isolated and embedded in BME for in vitro culture.Caspase-3,integrin-α1 and 5,PDX-1,Akt,FAK and phospho Erk were detected using Western blot.Results Islet cells embedded with BME were partially protected from apoptosis indicated by a lower caspase-3 level and an increased phosphoAkt activity compared with untreated control.In addition,an increase of α3-integrin,FAK protein level and FAK activity were observed as well.Furthermore,the expression of PDX-1 and phosphoErk at the 48 h mark were preserved,suggesting the positive effect of BME to islet activity.Conclusion These results indicate that the embedment of BME construction can up-regulate α3 integrin and its signal transduction,which may improve viability and function of islet cells.%目的 确定重组基底膜提取物(BME)作为细胞外基质促进体外胰岛存活的分子通路.方法 分离提纯小鼠胰岛并植入BME凝胶体外培养.蛋白印迹法检测Caspase-3,α1、α5整合素,胰岛功能相关蛋白PDX-1,信号传导相关蛋白Akt、FAK、Erk等的表达.结果 研究显示BME可预防胰岛凋亡的发生.和未处理胰岛相比,胰岛植入BME后的Caspase-3表达水平下降和磷酸化Akt表达增加.此外,α3整合素的表达、FAK蛋白水平、磷酸化FAK的表达也显著提高.PDX-1和磷酸化Erk在培养48 h时间点的表达显著增加,显示了BME对体外胰岛保存起到了正性调节的作用.结论 胰岛体外BME包埋培养可以上调α3整合素及其下游信号转导,以提高其生存能力和胰岛细胞的功能.

  16. Rat pancreatic islet function during prolonged glucose stimulation in vitro : Effect of sex and reproductive state

    NARCIS (Netherlands)

    Moes, H; Koiter, TR

    1997-01-01

    Prolonged stimulation with glucose may induce desensitisation of pancreatic beta-cell function in male rats. The effects of such a treatment on pancreatic islets of pregnant (P) rats, in which beta-cell function is enhanced, were studied in a perifusion design and compared with the effects on islets

  17. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    Science.gov (United States)

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.

  18. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    Science.gov (United States)

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation. PMID:25669871

  19. Growth hormone secreting pituitary adenoma with admixed gangliocytoma and ganglioglioma.

    Science.gov (United States)

    Jukes, Alistair; Allan, Rodney; Rawson, Robert; Buckland, Michael E

    2016-09-01

    Pituitary adenomas are the most common tumours found in the sellar region and, when both functioning and non-functioning adenomas are combined, account for 7-15% of primary brain tumours in adults. Rarely, admixed or discrete groups of cells comprising two or more tumour subtypes are seen; the so-called 'collision tumour'. We present a case of a 54-year-old-woman with a growth hormone-secreting pituitary adenoma admixed with both ganglioglioma and gangliocytoma. The possible mechanisms by which this may occur include a pre-existing gangliocytoma promoting the development of pituitary adenoma by hypersecretion of releasing hormones or aberrant migration of hypothalamic neurons in early embryogenesis. PMID:27068013

  20. Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Han-Hung Huang

    2011-01-01

    Full Text Available Exercise appears to improve glycemic control for people with type 1 diabetes (T1D. However, the mechanism responsible for this improvement is unknown. We hypothesized that exercise has a direct effect on the insulin-producing islets. Eight-week-old mice were divided into four groups: sedentary diabetic, exercised diabetic, sedentary control, and exercised control. The exercised groups participated in voluntary wheel running for 6 weeks. When compared to the control groups, the islet density, islet diameter, and β-cell proportion per islet were significantly lower in both sedentary and exercised diabetic groups and these alterations were not improved with exercise. The total insulin content and insulin secretion were significantly lower in sedentary diabetics compared to controls. Exercise significantly improved insulin content and insulin secretion in islets in basal conditions. Thus, some improvements in exercise-induced glycemic control in T1D mice may be due to enhancement of insulin content and secretion in islets.

  1. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    Science.gov (United States)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  2. Small intestinal submucosa improves islet survival and function during in vitro culture

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Tian; Wu-Jun Xue; Xiao-Ming Ding; Xin-Lu Pang; Yan Teng; Pu-Xun Tian; Xin-Shun Feng

    2005-01-01

    AIM: To evaluate the recovery and function of isolated rat pancreatic islets during in vitro culture with small intestinal submucosa (SIS).METHODS: Pancreatic islets were isolated from Wistar rats by standard surgical procurement followed by intraductal collagenase distension, mechanical dissociation and Euroficoll purification. Purified islets were cultured in plates coated with multilayer SIS (SIS-treated group) or without multilayer SIS (standard cultured group) for 7 and 14 d in standard islet culture media of RPMI 1640. After isolation and culture, islets from both experimental groups were stained with dithizone and counted. Recovery of islets was determined by the ratio of counts after the culture to the yield of islets immediately following islet isolation. Viability of islets after the culture was assessed by the glucose challenge test with low (2.7 mmol/L) and high glucose (16.7 mmol/L)solution supplemented with 50 mmol/L 3-isobutyl-1-methylxanthine (IBMX) solution. Apoptosis of islet cells after the culture was measured by relative quantification of histone-complexed DNA fragments using ELISA.RESULTS: After 7 or 14 d of in vitro tissue culture, the recovery of islets in SIS-treated group was significantly higher than that cultured in plates without SIS coating. The recovery of islets in SIS-treated group was about twice more than that of in the control group. In SIS-treated group, there was no significant difference in the recovery of islets between short- and long-term periods of culture (95.8±1.0% vs 90.8±1.5%, P>0.05). When incubated with high glucose (16.7 mmol/L) solution,insulin secretion in SIS-treated group showed a higher increase than that in control group after 14 d of culture (20.7±1.1 mU/L vs11.8±1.1 mU/L, P0.05).Much less apoptosis of islet cells occurred in SIS-treated group than in control group after the culture.CONCLUSION: Co-culture of isolated rat islets with native sheet-like SIS might build an extracellular matrix for islets and

  3. Intracerebral xenotransplantation of semipermeable membrane- encapsuled pancreatic islets

    Institute of Scientific and Technical Information of China (English)

    Zhao-Liang Xin; Song-Lin Ge; Xiao-Kang Wu; Yan-Jie Jia; Han-Tao Hu

    2005-01-01

    AIM: To identify the decreasing effect of xenotransplantion in combination with privileged sites on rejection and death of biological semipermeable membrane-(BSM) encapsulated implanted islets.METHODS: After the BSM experiment in vitro, BSMencapsulated SD rat's islet-like cell clusters (ICCs) were xenotransplanted into normal dog's brain. Morphological changes were observed under light and transmission electron microscope. The islets and apoptosis of implanted B cells were identified by insulin-TUNEL double staining.RESULTS: The BSM used in our study had a favorable permeability, some degree of rigidity, lighter foreign body reaction and toxicity. The grafts consisted of epithelioid cells and loose connective tissue. Severe infiltration of inflammatory cells was not observed. The implanted ICCs were identified 2 mo later and showed typical apoptosis.CONCLUSION: BSM xenotransplantation in combination with the privileged site can inhibit the rejection of implanted heterogeneous ICCs, and death of implanted heterogeneous B cells is associated with apoptosis.

  4. Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    Full Text Available OBJECT: To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO nanoparticles. MATERIALS AND METHODS: After being incubated with and without CSPIO (10 µg/ml, C57BL/6 mouse islets were examined under transmission electron microscope (TEM and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1 and β (NIT-1 and βTC cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies. RESULTS: After incubation of mouse islets with CSPIO (10 µg/mL, TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure. CONCLUSION: Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR.

  5. Transcriptional Regulation of Chemokine Genes: A Link to Pancreatic Islet Inflammation?

    Directory of Open Access Journals (Sweden)

    Susan J. Burke

    2015-05-01

    Full Text Available Enhanced expression of chemotactic cytokines (aka chemokines within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.

  6. Expression and regulation of nampt in human islets.

    Directory of Open Access Journals (Sweden)

    Karen Kover

    Full Text Available Nicotinamide phosphoribosyltransferase (Nampt is a rate-limiting enzyme in the mammalian NAD+ biosynthesis of a salvage pathway and exists in 2 known forms, intracellular Nampt (iNampt and a secreted form, extracellular Nampt (eNampt. eNampt can generate an intermediate product, nicotinamide mononucleotide (NMN, which has been reported to support insulin secretion in pancreatic islets. Nampt has been reported to be expressed in the pancreas but islet specific expression has not been adequately defined. The aim of this study was to characterize Nampt expression, secretion and regulation by glucose in human islets. Gene and protein expression of Nampt was assessed in human pancreatic tissue and isolated islets by qRT-PCR and immunofluorescence/confocal imaging respectively. Variable amounts of Nampt mRNA were detected in pancreatic tissue and isolated islets. Immunofluorescence staining for Nampt was found in the exocrine and endocrine tissue of fetal pancreas. However, in adulthood, Nampt expression was localized predominantly in beta cells. Isolated human islets secreted increasing amounts of eNampt in response to high glucose (20 mM in a static glucose-stimulated insulin secretion assay (GSIS. In addition to an increase in eNampt secretion, exposure to 20 mM glucose also increased Nampt mRNA levels but not protein content. The secretion of eNampt was attenuated by the addition of membrane depolarization inhibitors, diazoxide and nifedipine. Islet-secreted eNampt showed enzymatic activity in a reaction with increasing production of NAD+/NADH over time. In summary, we show that Nampt is expressed in both exocrine and endocrine tissue early in life but in adulthood expression is localized to endocrine tissue. Enzymatically active eNampt is secreted by human islets, is regulated by glucose and requires membrane depolarization.

  7. STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion

    OpenAIRE

    Zhou, Cuiqi; Jiao, Yonghui; Wang, Renzhi; Ren, Song-Guang; Wawrowsky, Kolja; Melmed, Shlomo

    2015-01-01

    Pituitary somatotroph adenomas result in dysregulated growth hormone (GH) hypersecretion and acromegaly; however, regulatory mechanisms that promote GH hypersecretion remain elusive. Here, we provide evidence that STAT3 directly induces somatotroph tumor cell GH. Evaluation of pituitary tumors revealed that STAT3 expression was enhanced in human GH-secreting adenomas compared with that in nonsecreting pituitary tumors. Moreover, STAT3 and GH expression were concordant in a somatotroph adenoma...

  8. Angiopoetin-2 Signals Do Not Mediate the Hypervascularization of Islets in Type 2 Diabetes

    Science.gov (United States)

    Shah, Payal; Lueschen, Navina; Ardestani, Amin; Oberholzer, Jose; Olerud, Johan; Carlsson, Per-Ola; Maedler, Kathrin

    2016-01-01

    Aims Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. Methods Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. Results Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN-ɣ and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to

  9. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Nasser Abualhassan

    Full Text Available There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group. Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ, 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group. Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.

  10. IL-12p40 is not required for islet allograft rejection

    Institute of Scientific and Technical Information of China (English)

    En-guang BI; Wei SHI; Jia ZOU; Zhen-hua HAO; Zhen-hu LI; Duan CAI; Hua-qun ZHANG; Bing SUN

    2006-01-01

    Aim: To investigate whether IL-12p40 plays a crucial role in regulating islet allograft rejection in a streptozotocin (STZ)-induced diabetes mouse model. Methods: C57BL/6 and IL-12p40 gene knockout mice were selected as recipient mice, to which the diabetes was induced with a treatment of STZ (150-200 mg/kg) by a single ip injection. BALB/c mice were selected as donor mice and islet cells were isolated from the mice. The 500 islets were transplanted into recipient mice beneath the capsule of the left kidney. Following the islet transplantation the glucose from the mice sera was monitored and the rejection rate of islets was analyzed. Results: STZ could induce diabetes in the recipient mice within 1 week. After transplantation of allograft islets, the increased glucose in wild-type (WT) mice returned to normal level and was maintained for 10 d. Unexpectedly, the rejection rate of islet allograft between IL-12p40-deficient mice and WT mice was similar. Conclusion: The results suggested that, although islet allograft rejection is believed to be Th1-cell predominant, the Th1 response inducer, IL-12 and IL-23 are not essential to induce islet allograft rejection.

  11. Macro-or microencapsulation of pig islets to cure type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Denis Dufrane; Pierre Gianello

    2012-01-01

    Although allogeneic islet transplantation can successfully cure type 1 diabetes,it has limited applicability.For example,organs are in short supply; several human pancreas donors are often needed to treat one diabetic recipient; the intrahepatic site may not be the most appropriate site for islet implantation; and immunosuppressive regimens,which are associated with side effects,are often required to prolong survival of the islet graft.An altemative source of insulinproducing cells would therefore be of major interest.Pigs represent a possible alternative source of beta cells.Grafting of pig islets may appear difficult because of the immunologic species barrier,but pig islets have been shown to function in primates for at least 6 mo with clinically incompatible immunosuppression.Therefore,a bioartificial pancreas made of encapsulated pig islets may resolve issues associated with islet allotransplantation.Although several groups have shown that encapsulated pig islets are functional in small-animal models,less is known about the use of bioartificial pancreases in large-animal models.In this review,we summarize current knowledge of encapsulated pig islets,to determine obstacles to implantation in humans and possible solutions to overcome these obstacles.

  12. Though active on RINm5F insulinoma cells and cultured pancreatic islets, recombinant IL-22 fails to modulate cytotoxicity and disease in a protocol of streptozotocin-induced experimental diabetes.

    Directory of Open Access Journals (Sweden)

    Anika eBerner

    2016-01-01

    Full Text Available Interleukin (IL-22 is a cytokine displaying tissue protective and pro-regenerative functions in various preclinical disease models. Anti-bacterial, pro-proliferative, and anti-apoptotic properties mediated by activation of the transcription factor signal transducer and activator of transcription (STAT-3 are key to biological functions of this IL-10 family member. Herein, we introduce RINm5F insulinoma cells as rat ß-cell line that, under the influence of IL-22, displays activation of STAT3 with induction of its downstream gene targets Socs3, Bcl3, and Reg3ß. In addition, IL-22 also activates STAT1 in this cell type. To refine those observations, IL-22 biological activity was evaluated using ex vivo cultivated murine pancreatic islets. In accord with data on RINm5F cells, islet exposure to IL-22 activated STAT3 and upregulation of STAT3-inducible Socs3, Bcl3, and STEAP4 was evident under those conditions. As these observations supported the hypothesis that IL-22 may exert protective functions in toxic ß-cell injury, application of IL-22 was investigated in murine multiple-low-dose streptozotocin (STZ-induced diabetes. For that purpose, recombinant IL-22 was administered thrice either immediately before and at disease onset (at d4, d6, d8 or closely thereafter (at d8, d10, d12. These two IL-22-treatment periods coincide with two early peaks of ß-cell injury detectable in this model. Notably, none of the two IL-22-treatment strategies affected diabetes incidence or blood glucose levels in STZ-treated mice. Moreover, pathological changes in islet morphology analyzed 28 days after disease induction were not ameliorated by IL-22 administration. Taken together, despite being active on rat RINm5F insulinoma cells and murine pancreatic islets, recombinant IL-22 fails to protect pancreatic ß-cells in the tested protocols from toxic effects of STZ and thus is unable to ameliorate disease in the widely used model of STZ-induced diabetes.

  13. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children

    NARCIS (Netherlands)

    Lundh, M.; Christensen, D.P.; Damgaard Nielsen, M.; Richardson, S.J.; Dahllof, M.S.; Skovgaard, T.; Berthelsen, J.; Dinarello, C.A.; Stevenazzi, A.; Mascagni, P.; Grunnet, L.G.; Morgan, N.G.; Mandrup-Poulsen, T.

    2012-01-01

    AIMS/HYPOTHESIS: Histone deacetylases (HDACs) are promising pharmacological targets in cancer and autoimmune diseases. All 11 classical HDACs (HDAC1-11) are found in the pancreatic beta cell, and HDAC inhibitors (HDACi) protect beta cells from inflammatory insults. We investigated which HDACs mediat

  14. Total Pancreatectomy and Islet Auto-Transplantation as Treatment for Ampullary Adenocarcinoma in the Setting of Pancreatic Ductal Disruption Secondary to Acute Necrotizing Pancreatitis. A Case Report

    Directory of Open Access Journals (Sweden)

    Uroghupatei P Iyegha

    2012-03-01

    Full Text Available Context Ampullary adenocarcinoma is the third most common periampullary malignancy. Obstruction of the main pancreatic duct is linked with an increased incidence of acute pancreatitis. Acute necrotizing pancreatitis leading to pancreatic duct disruption carries significant morbidity. When these conditions occur in combination, the treatment can be drastically limited as pancreaticoduodenectomy is not a viable option in the setting of friable ductal tissue, which precludes pancreatic ductal anastomosis and can lead to the complications of leak or stricture. Case report Our patient is a 72-year-old woman who developed pancreatic ductal disruption and splenic vein thrombosis as a result of acute necrotizing pancreatitis. Concurrently, she was found to have an ampullary adenoma with high-grade dysplasia. Her treatment options were limited, as she was neither a candidate for pancreaticoduodenectomy given the ductal disruption nor total pancreatectomy, which would render her a brittle diabetic. She was successfully treated with total pancreatectomy and islet auto-transplantation thereby resecting her ampullary lesion while both avoiding a pancreatic anastomosis and preserving pancreatic endocrine beta-cell function. Conclusion We report a case where total pancreatectomy and islet auto-transplantation can be considered as a viable option for treatment of ampullary lesions in a setting where standard surgical options are suboptimal.

  15. The Spectrum of Pituitary Adenoma Hemorrhage

    OpenAIRE

    Hickstein, Dennis D.; Marshall, John C.; Chandler, William F.

    1986-01-01

    In 34 cases of pituitary adenoma hemorrhage at one institution, the clinical manifestations of adenoma hemorrhage depended upon the size of the adenoma, the presence of suprasellar extension, the amount of hemorrhage and the extent of pituitary glandular destruction. Recognition of the spectrum of acute, subacute and chronic pituitary adenoma hemorrhage should expedite diagnosis and treatment.

  16. A thyrotropin-secreting pituitary adenoma as a cause of thyrotoxic periodic paralysis.

    Science.gov (United States)

    Alings, A M; Fliers, E; de Herder, W W; Hofland, L J; Sluiter, H E; Links, T P; van der Hoeven, J H; Wiersinga, W M

    1998-11-01

    We describe a patient with thyrotoxic periodic paralysis (TPP) caused by a thyrotropin-secreting pituitary adenoma. The diagnosis TPP was based on the combination of episodes of reversible hypokalaemic paralysis, hyperthyroidism and electrophysiological findings. A thyrotropin-secreting pituitary adenoma was diagnosed on the basis of endocrinological function tests and MRI of the pituitary gland. Before transsphenoidal resection of the adenoma, treatment with octreotide restored euthyroidism both clinically and biochemically. Immunocytochemistry of the pituitary adenoma was positive for TSH exclusively. Incubation with octreotide or quinagolide induced decreased TSH and alpha-subunit production by the cultured adenoma cells, in agreement with the pre-operative in vivo data. This paper is the first to describe in vivo and in vitro characteristics of a thyrotropin-secreting pituitary adenoma in a patient presenting with periodic paralysis. PMID:9854688

  17. Massive parallel gene expression profiling of RINm5F pancreatic islet beta-cells stimulated with interleukin-1beta

    DEFF Research Database (Denmark)

    Rieneck, K; Bovin, L F; Josefsen, K;

    2000-01-01

    Interleukin 1 (IL-1) is a pleiotropic cytokine with the potential to kill pancreatic beta-cells, and this unique property is thought to be involved in the pathogenesis of type I diabetes mellitus. We therefore determined the quantitative expression of 24,000 mRNAs of RINm5F, an insulinoma cell line...... derived from rat pancreatic beta-cells, before and after challenge with 30 and 1,000 pg/ml of recombinant human IL-1beta. The highest concentration resulted in decreased insulin production and cell death over a period of 4 days. Using three different time points, 2, 4 and 24 hours after challenge, we...

  18. Effects of sericine on neuropeptide Y expression in islet cells of type 2 diabetes mellitus rats%丝胶对糖尿病大鼠胰岛细胞神经肽Y表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘平; 刘东慧; 付秀美; 陈志宏

    2014-01-01

    目的:观察丝胶对2型糖尿病大鼠胰岛细胞神经肽Y(NPY)表达的影响。方法36只雄性 SD大鼠随机分为正常对照组、糖尿病模型组和丝胶治疗组,每组12只。链脲佐菌素腹腔注射建立2型糖尿病大鼠模型并给予丝胶(2.4 g/kg)灌胃。 SP免疫组织化学染色法观察大鼠胰岛细胞NPY的表达。结果 NPY蛋白阳性产物位于胰岛α细胞细胞质,呈棕黄色颗粒状。糖尿病模型组大鼠胰岛α细胞NPY蛋白的表达明显高于正常对照组大鼠( P<0.01);丝胶治疗组大鼠胰岛α细胞NPY蛋白的表达明显低于糖尿病模型组大鼠( P<0.01)。结论丝胶可通过降低神经肽Y的表达保护糖尿病时胰岛细胞损伤。%Objective To observe the effects of sericine on neuropeptide Y ( NPY) expression in islet cells of type 2 diabetes melli-tus rats.Methods Methods 36 male SD rats were randomly divided into 3 groups with 12 rats in each group:normal control , diabetes mel-litus model and sericine treatment groups .Type 2 diabetes mellitus rat model was made by continuous intraperitoneal injection of streptozoto -cin, and then the rats were lavaged with sericine (2.4g/kg).SP immunohistochemical stain was used to observe NPY expression in islet cells.Results NPY positive immunoreactive products were located in cytoplasm of islet alpha cells .Compared with normal control rats , the NPY expression in alpha cells of rats in diabetes mellitus model group obviously increased (P<0.01).The NPY expression in alpha cells of rats in sericine treatment group was obviously lower than that of rats in diabetes mellitus model group (P<0.01).Conclusions Sericine can protect islet alpha cells by down regulating NPY expression during diabetes mellitus .

  19. Embryonic and foetal Islet-1 positive cells in human hearts are also positive to c-Kit

    Directory of Open Access Journals (Sweden)

    C. Serradifalco

    2011-12-01

    Full Text Available During embryogenesis, the mammalian heart develops from a primitive heart tube originating from two bilateral primary heart fields located in the lateral plate mesoderm. Cells belongings to the pre-cardiac mesoderm will differentiate into early cardiac progenitors, which express early transcription factors which are also common to the Isl-1 positive cardiac progenitor cells isolated from the developing pharyngeal mesoderm and the foetal and post-natal mice hearts. A second population of cardiac progenitor cells positive to c-Kit has been abundantly isolated from adult hearts. Until now, these two populations have been considered two different sets of progenitor cells present in the heart in different stages of an individual life. In the present study we collected embryonic, foetal and infant hearts, and we tested the hypotheses that c-Kit positive cells, usually isolated from the adult heart, are also present in the intra-uterine life and persist in the adult heart after birth, and that foetal Isl-1 positive cells are also positive to c-Kit. Using immunohistochemistry we studied the temporal distribution of Isl-1 positive and c-Kit/CD105 double positive cells, and by immunofluorescence and confocal analysis we studied the co-localization of c-Kit and Isl-1 positive cells. The results indicated that cardiomyocytes and interstitial cells were positive for c-Kit from the 9th to the 19th gestational week, that cells positive for both c-Kit and CD105 appeared in the interstitium at the 17th gestational week and persisted in the postnatal age, and that the Isl-1 positive cells were a subset of the c-Kit positive population.

  20. Bile Duct Adenoma with Oncocytic Features

    Directory of Open Access Journals (Sweden)

    E. J. Johannesen

    2014-01-01

    Full Text Available Bile duct adenomas are benign bile duct proliferations usually encountered as an incidental finding. Oncocytic bile duct neoplasms are rare and the majority are malignant. A 61-year-old male with a diagnosis of colorectal adenocarcinoma was undergoing surgery when a small white nodule was discovered on the surface of the right lobe of his liver. This lesion was composed of cytologically bland cells arranged in tightly packed glands. These cells were immunopositive for cytokeratin 7, negative for Hep Par 1, contained mucin, and had a Ki67 proliferation index of 8%. The morphology, immunophenotype, presence of mucin, and normal appearing bile ducts, as well as the increased Ki67 proliferation rate, were consistent with a bile duct adenoma with oxyphilic (oncocytic change. Oncocytic tumors in the liver are rare; the first described in 1992. Only two bile duct adenomas with oncocytic change have been reported and neither of them had reported mucin production or the presence of normal appearing bile ducts within the lesion.

  1. Protection of rat islet viability following heme oxygenase-1 gene transfection via adenoviral vector in vitro

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Chen; Yongxiang Li; Weiping Dong; Yang Jiao; Jianming Tan

    2007-01-01

    Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively.The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index (SI) was calculated. Glucose-stimulated insulin release was usedto assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index(SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets(P < 0.05).Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.

  2. 胰腺导管上皮细胞转分化为胰岛样细胞%Transdifferentiation of mouse pancreatic ductal epithelial cells into islet-like cells

    Institute of Scientific and Technical Information of China (English)

    赵艳艳; 余勤; 李志臻; 秦贵军

    2010-01-01

    BACKGROUND: Islet transplantation is an effective method for the treatment of type 1 diabetes mellitus and parts of type 2 diabetes mellitus. However, its application is hindered by insufficient sources and immunologic rejection. Though transdifferentiation of pancreatic stem cells is at the starting step, it is thought to be the hopeful source for islet cell transplantation.OBJECTIVE: To look for a suitable cells-transplantation source for the treatment of diabetes mellitus. METHODS: The pancreatic ductal epithelial cells were separated from Kunming mice and cultured in DMEM/F12 medium supplemented with keratinocyte growth factor, hepatocyte growth factor and nicotinamide, etc. Samples were taken at different time points for light microscopy and electron microscope. The changes of CK-19 and PDX-1 were detected by immunocytochemistry at 1 and 16 days. The expressions of insulin and glucagon gene were detected by RT-PCR at 1 and 16 days. The physiologic function of these islet-like clusters was determined by dithizone staining and glucose stimulation at 21 days. RESULTS AND CONCLUSION: A large number of epitheliod cells were CK-19 immunoreactive positive and few of them were PDX-1 positive at 1 day after isolation, then CK-19 positive cells proliferated quickly and formed substantial plaques of epithelial cells in cobblestone pattern. At 16 days later, these cells begin to form islet-like clusters gradually, while most of them were PDX-1 immunoreactive positive. The analysis of mRNA by RT-PCR showed very low levels of insulin and glucagon mRNA in the starting materials but increase was found as the process of transdifferentiation. At 21 day differentiated islet-like clusters were stained red by dithizone. In those samples exposed to a stimulatory 15 mmol/L glucose, there was a 1.6-fold increase in insulin compared with to 5.6 mmol/L glucose (P < 0.05). Pancreatic ductal cells of adult Kunming mice could proliferate quickly and have the potency of