WorldWideScience

Sample records for adenocarcinoma a549 cells

  1. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    Science.gov (United States)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  2. Chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma

    International Nuclear Information System (INIS)

    Shi Degang; Shi Genming; Huang Gang

    2006-01-01

    Objective: To investigate the chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma. Methods: The A549 irradiated resistant cells were the 10th regrowth generations after irradiated with 2.5 Gy of 6 MV X-ray, the control groups were A549 parent cells and MCFY/VCR resistant cells. The 6 kinds of chemotherapeutic drugs were DDP, VDS, 5-FU, HCP, MMC and ADM respectively, with verapamil (VPL) as reverse agent. The treatment effect was compared with MTT assay, and the multidrug resistant gene expressions of mdrl and MRP were measured with RT-PCR method. Results: A549 cells and irradiated resistant cells were resistant to DDP, but sensitivity to VDS,5-FU, HCP, MMC and ADM. The inhibitory rates of VPL to the above two cells were 98% and 25% respectively(P 2 -MG and MRP/β 2 -MG of all A549 cells were about 0 and 0.7 respectively, and those of MCFT/VCR cells were 35 and 4.36. Conclusion: The chemosensitivity of A549 irradiated resistant cells had not changed markedly, the decreased sensitivity to VPL could not be explained by the gene expression of mdrl and MRP. It is conferred that some kinds of changes in the cell membrane and decreased regrowth ability to result in resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to irradiated resistant cells. The new kinds of biological preparation should be sought to combine chemotherapy to treat recurring tumor with irradiated resistance. (authors)

  3. Comparative Proteomic Analysis of Human Lung Adenocarcinoma Cisplatin-resistant Cell Strain A549/CDDP

    Directory of Open Access Journals (Sweden)

    Sien SHI

    2009-11-01

    Full Text Available Background and objective Chemotherapy plays an important role in the comprehensive therapy of lung cancer. However, the drug-resistance often causes the failure of the chemotherapy. The aim of this study is to identify differently expressed protein before and after cisplatin resistance of human lung adenocarcinoma cell A549 by proteomic analysis. Methods Cisplatin-resistant cell strain A549/CDDP was established by combining gradually increasing concentration of cisplatin with large dosage impact. Comparative proteomic analysis of A549 and A549/CDDP were carried out by means of two-dimensional gel electrophoresis. The differentially expressed proteins were detected and identified by MALDI-TOF mass spectrometry. Results Eighty-two differentially expressed proteins were screened by analysis the electrophoretic maps of A549 and A549/CDDP. Six differential proteins were analyzed by peptide mass fingerprinting. Glucose regulating protein 75, ribosomal protein S4, mitochondrial ATP synthase F1 complex beta subunit and immunoglobulin heavy chain variable region were identified. All four differentially expressed proteins were over-expressed in A549/CDDP, whereas low-expressed or no-expressed in A549. Conclusion These differentially expressed proteins give some clues to elucidate the mechanism of lung cancer cell resistant of cisplatin, providing the basis of searching for potential target of chemotherapy of lung cancer.

  4. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  5. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-01-01

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  6. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  7. Effect of silencing of ATM expression by siRNA on radiosensitivity of human lung adenocarcinoma A549 cells

    International Nuclear Information System (INIS)

    Liu Xiaoqun; Qiao Tiankui

    2014-01-01

    Objective: To investigate the effect of silencing of ataxia-telangiectasia mutated (ATM) expression by plasmid-mediated RNA interference on the radiosensitivity of human lung adenocarcinoma A 549 cells. Methods: Eukaryotic expression plasmid containing ATM small interfering RNA (siRNA) (pSilencer2.1-ATM), as well as pSilencer2.1-nonspecific, was constructed.Lung adenocarcinoma A 549 cells were divided into positive group, negative group,and control group to be transfected with pSilencer2.1-ATM, pSilencer2.1-nonspecific, and no plasmid, respectively. The mRNA and protein expression of ATM was measured by RT-PCR and Western blot, respectively. The change in cell radiosensitivity was observed by colony-forming assay. Cell cycle and cell apoptosis were analyzed by flow cytometry. Results: The eukaryotic expression plasmid containing ATM siRNA was successfully constructed. The RT-PCR and Western blot demonstrated that the expression of ATM was down-regulated in the positive group. The sensitization enhancement ratios (D 0 ratios) for the positive group and negative group were 1.50 and 1.01, respectively. The flow cytometry revealed that the proportions of A 549 cells in G 1 and G 2 /M phases were significantly lower in the positive group than in the control group (51.27% vs 61.85%, P = 0.012; 6.34% vs 10.91%, P = 0.008) and that the apoptosis rate was significantly higher in the positive group than in the control group and negative group (49.31% vs 13.58%, P = 0.000; 49.31% vs 13.17%, P = 0.000). Conclusions: Silencing of ATM expression may increase the radiosensitivity of human lung adenocarcinoma A 549 cells, probably by affecting the cell cycle and promoting cell apoptosis. (authors)

  8. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    Science.gov (United States)

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  10. Preliminary Study on the Effect of Adipocytes on the Biological Behaviors of
Lung Adenocarcinoma A549 Cells in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Hang ZHANG

    2018-05-01

    Full Text Available Background and objective Adipocytes in the tumor microenvironment may provide the metabolic fuel or signal transduction through media and other means to promote a variety of malignant proliferation and invasion, of tumor cells, but their role in lung cancer progression is still unclear. The purpose of this study was to investigate the effect of adipocytes on lung cancer cell biology. Methods 3T3-L1 pre-adipocytes were induced into mature adipocytes. The cell morphology was observed by microscopy and Oil Red O staining. MTT assay, colony formation assay, wound-healing and Transwell methods were used to detect lung cancer cell proliferation, migration and invasion ability. The content of triglyceride in cells was determined by colorimetry. Results The morphology of lung adenocarcinoma A549 cells became more slender after co-culture with mature adipocytes, and the proliferation and cloning ability were significantly enhanced (P<0.05. In addition, mature adipocytes can also promote the migration ability (P<0.05, invasion ability (P<0.01 and accumulation of intracellular lipid (P<0.05 of A549 cells. Conclusion These findings suggested that adipocytes in tumor microenvironment can promote the proliferation, migration and invasion of lung adenocarcinoma A549 cells, which may be related to lipid metabolism.

  11. Effects of X-ray irradiation on expression of Pokemon gene in A549 cells of human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Wang Lu; Zou Yue; Jiang Qisheng; Li Wei; Song Xiujun; Zhou Xiangyan; Wang Cuilan

    2011-01-01

    Objective: To study the dose-and time-effects of X-ray irradiation on the expression of Pokemon gene in A549 cells of human lung adenocarcinoma. Methods: A549 cells were cultured in vitro and exposed to X-rays with the doses of 2, 4, 6 and 8 Gy, respectively. Untreated A549 cells were used as control group. The relative levels of Pokemon mRNA expression in the cells were detected by using quantitative real-time PCR at 2, 4, 8, 12, 24, 48 and 72 h after irradiation. Results: The Pokemon mRNA expression levels decreased in the early period after irradiation (except 2 and 4 h after irradiation in 2 Gy group) and then increased in the later stage (48 h after irradiation) with significant statistical differences at the most time points in comparison with the control group (t=3.40-154.76, P<0.05). Conclusions: Higher doses of X-rays may degrade the expression of Pokemon mRNA in the human A549 cells and induce apoptosis in the early period, hut also may upgrade its expression in the later period, which might be correlated with the cell cycle regulation and DNA damage repair in the A549 cells. (authors)

  12. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells).

    Science.gov (United States)

    Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha

    2017-05-01

    Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    Science.gov (United States)

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  14. Effects of exogenous IL-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T cells.

    Science.gov (United States)

    Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan

    2018-02-14

    This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.

  15. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    Science.gov (United States)

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  16. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation.

    Science.gov (United States)

    Ghosh, Somnath; Narang, Himanshi; Sarma, Asitikantha; Krishna, Malini

    2011-11-01

    Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Krishna, Malini

    2012-01-01

    The effect of fractionated doses of γ-irradiation (2 Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2 Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10 Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene.

  18. Effect of etoposide-induced alteration of the Mdm2-Rb signaling pathway on cellular senescence in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Dai, Wenjing; Jiang, Yi; Chen, Kairong; Qiu, Jing; Sun, Jian; Zhang, Wei; Zhou, Xiafei; Huang, Na; Li, Yunhui; Li, Wancheng

    2017-10-01

    The present study aimed to investigate the effect of various concentrations of etoposide (VP-16) on the E3 ubiquitin-protein ligase Mdm2 (Mdm2)-retinoblastoma (Rb) signaling pathway in the cellular senescence of A549 lung adenocarcinoma cells. A549 cells were randomly divided into the following four groups: Control group (no treatment), group 1 (1 µmol/l VP-16), group 2 (5 µmol/l VP-16) and group 3 (25 µmol/l VP-16). Each group was cultured for 48 h after treatment prior to observation of the alterations to cellular morphology. The cell cycle distribution of each group was also detected by flow cytometry. In addition, the activity of cellular senescence-associated β-galactosidase, and the expression of Mdm2 and phosphorylated (p-) Rb protein, was measured. The percentage of senescent cells was significantly higher following VP-16 treatment compared with the control group. The percentage of G 1 phase cells, and p-Rb protein and Mdm2 protein expression were also significantly different following VP-16 treatment compared with the control group. VP-16 increased the activity of β-galactosidase in the A459 cells. VP-16 also decreased the expression level of Mdm2 and p-Rb protein and inhibited cell cycle progression in G 1 . These results indicate that VP-16 induces the cellular senescence of A549 cells via the Mdm2-Rb signaling pathway. However, further investigations are required to validate the mechanisms underlying these effects of VP-16.

  19. Construction of a CD147 Lentiviral Expression Vector and Establishment of Its Stably Transfected A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Shaoxing YANG

    2012-12-01

    Full Text Available Background and objective CD147, a type of transmembrane glycoprotein embedded on the surface of tumor cells, can promote tumor invasion and metastasis. This aim of this study is to construct a CD147 lentiviral expression vector, establish its stably transfected A549 cell line, and observe the effect of CD147 on MMP-9 proliferation as well as on the invasive ability of human lung adenocarcinoma cells. Methods Full-length CD147 gene was amplified by real-time polymerase chain reaction (RT-PCR, inserted into a pEGFP vector to construct pEGFP-CD147 and pEGFP vectors, and then transfected into 293FT cells to precede the lentivirus equipment package. Subsequently, we collected the lentivirus venom to infect the A549 cells and establish a stable, overexpressed cell line named A549-CD147. The mRNA expression of MMP-9 was examined by RT-PCR. The proliferation and invasive ability of the human lung cancer cells before and after transfection were examined by the CCK-8 and Transwell methods. Results A CD147 lentiviral expression vector (pEGFP-CD147 was successfully constructed by restrictive enzyme digestion and plasmid sequencing. RT-PCR and Western blot analyses revealed increased mRNA and protein expression of CD147 gene in cells transfected with pEGFP-CD147 compared with the control groups. Therefore, the A549-CD147 cell line was successfully established through the experiment. The mRNA expression of MMP-9 also significantly increased after the upregulation of CD147 expression. Meanwhile, CCK-8 and Transwell assays indicated that the proliferation and invasive ability significantly increased in the A549-CD147 cells. Conclusion A lentiviral CD147 expression vector and its A549 cell line (A549-CD14 were successfully constructed. CD147 overexpression upregulated the protein expression of MMP-9, and strengthened the proliferation and invasive ability of human lung adenocarcinoma cells.

  20. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Science.gov (United States)

    Di Bucchianico, Sebastiano; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-05-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  1. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia.

    Science.gov (United States)

    Li, Chang-Feng; Chen, Li-Bo; Li, Dan-Dan; Yang, Lei; Zhang, Bao-Gang; Jin, Jing-Peng; Zhang, Ying; Zhang, Bin

    2014-08-01

    The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.

  2. Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.

    Science.gov (United States)

    Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo

    2018-01-01

    P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Bucchianico, Sebastiano Di; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-01-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions

  4. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucchianico, Sebastiano Di [Karolinska Institutet, Institute of Environmental Medicine (Sweden); Migliore, Lucia [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics (Italy); Marsili, Paolo [Institute of Complex Systems (ISC-CNR) (Italy); Vergari, Chiara [Plasma Diagnostics and Technologies s.r.l. (Italy); Giammanco, Francesco [University of Pisa, Department of Physics “E. Fermi” (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Institute of Complex Systems (ISC-CNR) (Italy)

    2015-05-15

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  5. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Mariana da Volta Soares

    2011-01-01

    Full Text Available Mariana da Volta Soares1, Mainara Rangel Oliveira1, Elisabete Pereira dos Santos1, Lycia de Brito Gitirana2, Gleyce Moreno Barbosa3, Carla Holandino Quaresma3, Eduardo Ricci-Júnior11Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG, Faculty of Pharmacy, 2Laboratory of Animal and Comparative Histology, Glycobiology Research Program, Institute of Biomedical Science, 3Department of Medicines, Laboratório Multidisciplinar de Ciências Farmacêuticas, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ, Rio de Janeiro, BrazilAbstract: In this study, zinc phthalocyanine (ZnPc was loaded onto poly-ε-caprolactone (PCL nanoparticles (NPs using a solvent emulsification–evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of -4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi’s kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm with a light dose of 100 J/cm2. The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0–5 µg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10–100 J/cm2. Intense lysis was observed in the cells incubated with the ZnPc-loaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic

  6. Enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell with different p53 status

    International Nuclear Information System (INIS)

    Pang Dequan; Wang Peiguo; Wang Ping; Zhang Weiming

    2008-01-01

    Objective: To investigate the enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell lines(A549 and GLC-82) with different p53 status in vitro. Methods: Two human lung adenocarcinoma cell lines of A549 and GLC-82 were examined on their difference in p53 status with immunohistochemistry stain and PCR-SSCP technique. Expand Ad-wtp53 was transfected into tumor cells. Clonogenic assays were performed to evaluate the inhibition effect on cell growth and the degree of sensitization to irradiation. Apoptosis and cell cycle changes were determined using the flow cytometry assay. Results: The A549 cell line presented positive P53 expression while GLC-82 negative. GLC-82 bore mutant p53 on the exon 7. The wtp53 gene could be efficiently expressed in the two cell lines and greatly inhibit the cell growth. Its efficiency didn't depend on the intrinsic p53 genetic status. After irradiation, its function of inducing G 1 arrest and apoptosis on GLC-82 cell line was much stronger than the A549 cell line. In both the A549 and GLC-82 cell lines, the combination of Ad-p53 plus radiation resulted in more apoptosis than the others. There was no significant difference between two groups. Conclusions: Ad-p53 can depress the tumor growth and enhance the radiosensitivity of human lung adenocarcinoma cells. And this effect is independent of endogenous p53 status. (authors)

  7. A hybrid of coumarin and phenylsulfonylfuroxan induces caspase-dependent apoptosis and cytoprotective autophagy in lung adenocarcinoma cells.

    Science.gov (United States)

    Wang, Qian; Guo, Yalan; Jiang, Shanshan; Dong, Mengxue; Kuerban, Kudelaidi; Li, Jiyang; Feng, Meiqing; Chen, Ying; Ye, Li

    2018-01-15

    Lung adenocarcinoma is the most primary histologic subtype of non-small cell lung cancer (NSCLC). Compound 8b, a novel coumarin derivative with phenylsulfonylfuroxan group, shows significant antiproliferation activity against lung adenocarcinoma cell with low toxicity. This study aims to uncover the potential of compound 8b in relation to apoptosis as well as autophagy induction in lung adenocarcinoma cells. The cytotoxicity and apoptosis of A549 and H1299 cells induced by compound 8b were detected by MTT, microscope and western blot analysis. Autophagy was determined by TEM, confocal microscopy and western blot analysis. Akt/mTOR and Erk signaling pathway were also examined by western blot analysis. First, significant growth inhibition and caspase-dependent apoptosis were observed in compound 8b-treated A549 and H1299 cells. Then, we confirmed compound 8b-induced autophagy by autophagosomes formation, upregulated expression of autophagy-related protein LC3-II and autophagic flux. Importantly, abolishing autophagy using inhibitors and ATG5 siRNA enhanced the cytotoxicity of compound 8b, indicating the cytoprotective role of autophagy in lung adenocarcinoma. Further mechanistic investigations suggested that Akt/mTOR and Erk signaling pathways contributed to autophagy induction by compound 8b. This results demonstrate that compound 8b induces caspase-dependent apoptosis as well as cytoprotective autophagy in lung adenocarcinoma cells, which may provide scientific evidence for developing this furoxan-based NO-releasing coumarin derivative as a potential anti-lung adenocarcinoma therapeutic agents. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway

    Directory of Open Access Journals (Sweden)

    Xia-li Tang

    2017-09-01

    Full Text Available Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP and the reversal mechanism of salvianolic acid A (SAA, a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1 up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway.

  9. [Nickel exposure to A549 cell damage and L-ascorbic acid interference effect].

    Science.gov (United States)

    Fu, Yao; Wang, Yue; Dan, Han; Zhang, Lin; Ma, Wenhan; Pan, Yulin; Wu, Yonghui

    2015-05-01

    Studying different concentrations of nickel smelting smoke subjects of human lung adenocarcinoma cells (A549) carcinogenic effects, discusses the influence of L-ascorbic acid protection. The A549 cells were divided into experimental and L-ascorbic acid in the intervention group. Plus exposure group concentration of nickel refining dusts were formulated 0.00, 6.25, 12.50, 25.00, 50.00, 100.00 µg/ml suspension, the intervention group on the basis of the added exposure group containing L-ascorbic acid (100 mmol/L), contact 24 h. Detection of cell viability by MTT assay. When the test substance concentration select 0.00, 25.00, 50.00, 100.00 µg/ml experiment for internal Flou-3 fluorescent probe to detect cell Ca²⁺ concentration, within DCFH-DA detect intracellular reactive oxygen (ROS) content, real-time quantitative PCR (real time, in the RT-PCR) was used to detect cell HIF-1α gene expression. With the increase of concentration, subjects increased cell growth inhibition rate, intracellular Ca²⁺ concentration increases, ROS content increased, HIF-1α gene expression increased, differences were statistically significant (P nickel exposure damage to cells. With subjects following exposure to nickel concentration increased, its effect on A549 cell damage increases, L-ascorbic acid cell damage caused by nickel has certain protective effect.

  10. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    Science.gov (United States)

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  12. Exogenous wild type p53 gene affects radiosensitivity of human lung adenocarcinoma cell line under hypoxia

    International Nuclear Information System (INIS)

    Wang Jianhua; Wang Feng; Liu Yongping; Zhang Yaping; Ni Yan; Li Shirong

    2008-01-01

    Objective: To evaluate the effect of exogenous wild type p53 (wtp53) gene on radiosensitivity of human lung adenocarcinoma cell line under hypoxia. Methods: Human lung adenocarcinoma cell line A549 was transfected with adenovirus carrying recombinant exogenous wtp53. Four irradiation groups were studied: normal cell (Group A), wtp53 transfected cell (Group B), normal cell under hypoxia (Group C) and wtp53 transfected cell under hypoxia(Group D). Cells were irradiated with 9 MeV electron beams. Cellular survival fraction was analyzed. Multi-target single-hit model was used to plot the survival curve. D 0 , D q , oxygen enhancement ratio (OER), sensitizing enhancement ratio (SER) and other parameters were used to evaluate the effects of wtp53 gene on radiosensitivity of A549. The cell apoptotic rate of each group was examined by flow cytometry. Results: OER was 1.75 and 0.81 before and after wtp53 transfection. SER was 1.77 in oxic circumstance and 3.84 under hypoxia. The cell apoptotic rate of Group A and B was lower than Group C and D (F=7.92, P=0.048), with Group A lower than B and Group C lower than D (F=82.50, P=0.001). But Group B and D were similar(t=2.04, P=0.111). Conclusions: Hypoxia can increase the radiation resistance of lung adenocarcinoma cell line A549. The wtp53 can promote apoptosis and improve tumor radiosensitivity, especially under hypoxia. (authors)

  13. SUN1 silencing inhibits cell growth through G0/G1 phase arrest in lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Huang W

    2017-06-01

    Full Text Available Weiyi Huang,* Haihua Huang,* Lei Wang, Jiong Hu, Weifeng Song Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: Cytoskeleton is critical for carcinoma cell proliferation, migration, and invasion. Sad-1 and UNC-84 domain containing 1 (SUN1 is one of the core linkers of nucleoskeleton and cytoskeleton. However, the functions of SUN1 in lung adenocarcinoma are largely unknown.Methods: In this study, we first transduced the lentivirus delivering the short hairpin RNA (shRNA against SUN1 to lung adenocarcinoma cells (A549 and 95D cells with high efficiency. After lentivirus infection, quantitative real-time polymerase chain reaction and Western blotting were used to detect the expressions of SUN1 mRNA and protein. The cell proliferation and colony formation were detected by MTT assay and colony formation assay, respectively. The cell distribution in the cell cycle was analyzed by flow cytometry.Results: Both mRNA and protein levels of SUN1 were significantly decreased in A549 and 95D cells after lentivirus infection, as indicated by quantitative real-time polymerase chain reaction and Western blot. Next, we found that cell proliferation and colony formation were markedly reduced in SUN1 silenced cells. Moreover, suppression of SUN1 led to cell cycle arrest at G0/G1 phase. Furthermore, Cyclin D1, CDK6, and CDK2 expressions were obviously reduced in A549 cells after SUN1 silencing.Conclusion: These results suggest that SUN1 plays an essential role in proliferation of lung adenocarcinoma cells in vitro and may be used as a potential therapeutic target for the treatment of lung adenocarcinoma in the future. Keywords: SUN1, lung cancer, proliferation

  14. 8-aminoadenosine enhances radiation-induced cell death in human lung carcinoma A549 cells

    International Nuclear Information System (INIS)

    Meike, Shunsuke; Yamamori, Tohru; Yasui, Hironobu; Eitaki, Masato; Inanami, Osamu; Matsuda, Akira

    2011-01-01

    The combination of a chemotherapeutic agent and radiation is widely applied to enhance cell death in solid tumor cells in cancer treatment. The purine analogue 8-aminoadenosine (8-NH 2 -Ado) is known to be a transcription inhibitor that has proved very effective in multiple myeloma cell lines and primary indolent leukemia cells. In this report, to examine whether 8-NH 2 -Ado had the ability to enhance the radiation-induced cell killing in solid tumor cells, human lung adenocarcinoma A549 cells were irradiated in the presence and absence of 8-NH 2 -Ado. 8-NH 2 -Ado significantly increased reproductive cell death and apoptosis in A549 cells exposed to X-rays. When peptide inhibitors against caspase-3, -8, and -9 were utilized to evaluate the involvement of caspases, all inhibitors suppressed the enhancement of radiation-induced apoptosis, suggesting that not only mitochondria-mediated apoptotic signal transduction pathways but also death receptor-mediated pathways were involved in this enhancement of apoptosis. In addition, in the cells exposed to the treatment combining X-irradiation and 8-NH 2 -Ado, reduction of the intracellular ATP concentration was essential for survival, and down-regulation of the expression of antiapoptotic proteins such as survivin and X-linked inhibitor of apoptosis protein (XIAP) was observed. These results indicate that 8-NH 2 -Ado has potential not only as an anti-tumor drug for leukemia and lymphoma but also as a radiosensitizing agent for solid tumors. (author)

  15. Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP.

    Science.gov (United States)

    Wei, Yunyan; Wu, Shuangshuang; Xu, Wei; Liang, Yan; Li, Yue; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Cisplatin is the standard first-line chemotherapeutic agent for the treatment of non-small cell lung cancer (NSCLC). However, resistance to chemotherapy has been a major obstacle in the management of NSCLC. Aldehyde dehydrogenase 1A1 (ALDH1A1) overexpression has been observed in a variety of cancers, including lung cancer. The purpose of this study was to investigate the effect of ALDH1A1 expression on cisplatin resistance and explore the mechanism responsible. Reverse transcriptase-PCR was applied to measure the messenger RNA expression of ALDH1A1, while Western blot assay was employed to evaluate the protein expression of ALDH1A1, B-cell lymphoma 2, Bcl-2-like protein 4, phospho-protein kinase B (p-AKT) and AKT. A short hairpin RNA was used to knockdown ALDH1A1 expression. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effect of ALDH1A1 decrease on cell viability. The cell apoptotic rate was tested using flow cytometry assay. ALDH1A1 is overexpressed in cisplatin resistant cell line A549/DDP, compared with A549. ALDH1A1 depletion significantly decreased A549/DDP proliferation, increased apoptosis, and reduced cisplatin resistance. In addition, the phosphoinositide 3-kinase (PI3K) / AKT pathway is activated in A549/DDP, and ALDH1A1 knockdown reduced the phosphorylation level of AKT. Moreover, the combination of ALDH1A1-short hairpin RNA and PI3K/AKT pathway inhibitor LY294002 markedly inhibited cell viability, enhanced apoptotic cell death, and increased cisplatin sensitivity. These results suggest that ALDH1A1 depletion could reverse cisplatin resistance in human lung cancer cell line A549/DDP, and may act as a potential target for the treatment of lung cancers resistant to cisplatin. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  16. Inactivation of Src-to-Ezrin Pathway: A Possible Mechanism in the Ouabain-Mediated Inhibition of A549 Cell Migration

    Directory of Open Access Journals (Sweden)

    Hye Kyoung Shin

    2015-01-01

    Full Text Available Ouabain, a cardiac glycoside found in plants, is primarily used in the treatment of congestive heart failure and arrhythmia because of its ability to inhibit Na+/K+-ATPase pump. Recently ouabain has been shown to exert anticancer effects but the underlying mechanism is not clear. Here, we explored the molecular mechanism by which ouabain exerts anticancer effects in human lung adenocarcinoma. Employing proteomic techniques, we found 7 proteins downregulated by ouabain in A549 including p-ezrin, a protein associated with pulmonary cancer metastasis in a dose-dependent manner. In addition, when the relative phosphorylation levels of 39 intracellular proteins were compared between control and ouabain-treated A549 cells, p-Src (Y416 was also found to be downregulated by ouabain. Furthermore, western blot revealed the ouabain-mediated downregulation of p-FAK (Y925, p-paxillin (Y118, p130CAS, and Na+/K+-ATPase subunits that have been shown to be involved in the migration of cancer cells. The inhibitory effect of ouabain and Src inhibitor PP2 on the migration of A549 cells was confirmed by Boyden chamber assay. Anticancer effects of ouabain in A549 cells appear to be related to its ability to regulate and inactivate Src-to-ezrin signaling, and proteins involved in focal adhesion such as Src, FAK, and p130CAS axis are proposed here.

  17. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  18. CNTN-1 Enhances Chemoresistance in Human Lung Adenocarcinoma Through Induction of Epithelial-Mesenchymal Transition by Targeting the PI3K/Akt Pathway

    Directory of Open Access Journals (Sweden)

    Ruijie Zhang

    2017-09-01

    Full Text Available Background/Aims: Chemoresistance has been a major obstacle to the effective treatment of lung cancer. Previously, we found that contactin-1 (CNTN-1 is related to cisplatin resistance in lung adenocarcinoma. Here, we aimed to investigate the underlying mechanism behind the role of CNTN-1 in cisplatin resistance in lung adenocarcinoma. Methods: EMT-associated phenotypes, including alterations in cellular morphology and marker (E-cadherin, N-cadherin and Vimentin expression, were compared between A549 cells and A549/DDP cells (a cisplatin-resistant cell line of lung adenocarcinoma with abnormal CNTN-1 expression by using real-time time PCR and Western blotting. Other methods, including CNTN-1 overexpression in A549 cells and CNTN-1 knockdown in A549/DDP cells, were also used to investigate the role of CNTN-1 in mediating the EMT phenotype and thr resulting cisplatin resistance and malignant progression of cancer cells in vitro and in vivo. Results: A549/DDP cells exhibited an EMT phenotype and aggravated malignant behaviors. CNTN-1 knockdown in A549/DDP cells partly reversed the EMT phenotype, increased drug sensitivity, and attenuated the malignant progression whereas CNTN-1 overexpression in A549 cells resulted in the opposite trend. Furthermore, the PI3K/Akt pathway was involved in the effects of CNTN-1 on EMT progression in A549/DDP cells, verified by the xenograft mouse model. Conclusion: CNTN-1 promotes cisplatin resistance in human cisplatin-resistant lung adenocarcinoma through inducing the EMT process by activating the PI3K/Akt signaling pathway. CNTN-1 may be a potential therapeutic target to reverse chemoresistance in cisplatin-resistant lung adenocarcinoma.

  19. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    Science.gov (United States)

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  20. Increased AAA-TOB3 correlates with lymph node metastasis and advanced stage of lung adenocarcinoma.

    Science.gov (United States)

    Liu, Yanfeng; Bu, Lina; Li, Wei; Wu, Wei; Wang, Shengyu; Diao, Xin; Zhou, Jing; Chen, Guoan; Yang, Shuanying

    2017-07-24

    This study was to investigate the differential mitochondrial protein expressions in human lung adenocarcinoma and provide preliminary data for further exploration of the carcinogenic mechanism. Total proteins of A549 and 16HBE mitochondria were extracted through 2D polyacrylamide gel electrophoresis (2-DE). The differential mitochondria proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and were further confirmed by Western blot, immunoelectron microscopy and immunohistochemistry (IHC) in A549 cells as well as lung adenocarcinoma tissues. A total of 41 differentially expressed protein spots were found in A549 mitochondria. Of them, 15 proteins were highly expressed and 26 proteins were lowly expressed in the mitochondria of A549 (by more than 1.5 times). Among the 15 more highly expressed proteins, AAA-TOB3 (by more than 3 times) was highly expressed in the mitochondria of A549 compared with the 16HBE, by LC-MS/MS identification. High electron density and clear circular colloidal gold-marked AAA-TOB3 particles were observed in the A549 cells via immunoelectron microscopy. Besides, AAA-TOB3 was confirmed to be elevated in lung adenocarcinoma by Western blot and IHC. Moreover, increased AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma (pAAA-TOB3 was highly expressed in lung adenocarcinoma, and the up-regulation of AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma, which suggested that it could serve as a potential molecular marker for lung adenocarcinoma.

  1. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Chun-Nun Chao

    Full Text Available Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV infection. Therefore, we designed that the JCPyV virus-like particle (VLP packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp or thymidine kinase gene (pSPB-tk under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549 and large cell carcinoma (H460 cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV, a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  2. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Science.gov (United States)

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  3. The Effect of 5-FU and Radiation on A549 Cells In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Za [Hanyang University College of Medicine, Seoul (Korea, Republic of); Chun, Ha Chong [Medical College of Virgina, Richmond (United States); Lee, Won Young [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1989-06-15

    Effects of ionizing radiation alone and combined with chemotherapy on tumor growth and it clonal specificity Monitored by changes in distribution of chromosome number were studies in A549 cell line originated from human adenocarcinoma of the lung. Radiation (300 rad, 600 rad and 900 rad) were delivered with or without 5-FU. Forty eight hours later, 57.5% of growth inhibition of cell was Seen in cells treated with 5-FU concentration of 0.47g/ml for 24 hr exposure. Cell survival carves after radiation with and without 5-FU were made. Chromosomal analysis of cells in metaphase in control, and in cells treated with 300 rad of radiation, or 0.47g/ml of 5-FU treatment, and combined treatment of cloth were 77ne to examine the changes in ploidy and number of chromosome. Radiation combined with 5-FU enhanced growth inhibition of A549 cells. However, no evidence of synergetic effects in growth inhibition was observed in the cells treated with the combination therapy. Pattern of chromosomal distribution of survived cells were shifted from hyperploidy to hypoploidy by single dose of radiation(300 rad). As radiation dose increased a large number of hypoploidy cells were observed. Following treatment of cells with 5-FU, chomosomal distribution of survived cells were also shifted to hypodiploidy, which were seen in cells treated with radiation. The cell treated with 5-FU and followed by radiation within 24 hrs had cell with increased number of hypodiploidy cells. Almost same type of chromosomal changes were reproduced in cells treated with combined treatment with radiation and 5-FU. Minor differences were that cells with fewer number of chromosome were more frequent in cells treated with combined therapy. Further increase in cells of hypoploidy(93%) having 1-10 chromosome were induced by additional radiation. Therefore, the enhanced therapeutic effect of 5-FU combined with radiation of A549 cells appeared to be additive rather than synergistic.

  4. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  5. [Killing effect of icotinib combined with CIK on human lung adenocarcinoma cells in vitro].

    Science.gov (United States)

    Yao, B Q; Jia, Y; Guo, J Q; Zhao, Q; Sun, H; Zhang, J P

    2017-08-23

    Objective: To explore the inhibitory effect of icotinib combined with cytokine induced killer (CIK) on various human lung adenocarcinoma cell lines in vitro. Methods: The inhibitory effect of icotinib alone or icotinib combined with CIK on HCC827 and A549 cells was detected by cell counting kit-8(CCK-8). The apoptosis was detected by flow cytometry via Annexin V/PI staining. The effect of icotinib on CIK phenotype was detected by flow cytometry. Results: The inhibitory rates of HCC827 cells treated with 1.5, 3, 6, 12 μmol/L icotinib were (5.64±0.05)%, (8.62±0.45)%, (14.57±0.65)% and (18.52±0.91)%, respectively. The inhibitory rates of A549 cells were (1.64±0.48)%, (2.09±0.28)%, (3.69±0.45)%, (4.41±0.58)%, respectively. At the same concentration, the inhibitory rate of HCC827 cells with icotinib treatment was significantly higher than that of A549 cells ( P icotinib was 10∶1, 20∶1 or 40∶1, the inhibitory rates of HCC827 cells were (37.07±3.50)%, (76.03±6.55)%, (80.34±10.69)%, respectively, and the inhibitory rates of A549 cells were(25.72±1.41)%, (52.76±3.82)%, (62.26±1.94)%, respectively. The inhibitory rates of 6 μmol/L icotinib combined with CIK were significantly higher than those of icotinib group and CIK group alone at the same effector/target ratio ( P icotinib combined with CIK were significantly higher than those of icotinib group and blank control group ( P icotinib treatment was not significantly different from each other( P >0.05). Conclusions: EGFR mutant lung adenocarcinoma cells are more sensitive to icotinib, while the EGFR mutation status has no effect on the killing effect of CIK cells. icotinib combined with CIK has a synergistic effect on the inhibition of tumor growth, and icotinib has no any impact on the phenotype of CIK cells.

  6. [Study on thaspine in inducing apoptosis of A549 cell].

    Science.gov (United States)

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  7. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    Science.gov (United States)

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  8. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  9. Effects of X-rays on CC-chemokine receptor 7 expression in human lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wang Cuilan; Jiang Qisheng; Zou Yue; Li Fengsheng; Li Wei; Song Xiujun; He Rui; Wang Lu

    2011-01-01

    Objective: To study the effects of X-ray radiation on CC-chemokine receptor 7 (CCR7) expression in human non-small cell lung cancer (NSCLC) cells. Methods: Human adenocarcinoma cells of the line A549 were cultured and irradiated by X-ray at the absorbed doses of 2, 4, 6, and 8 Gy respectively by linear accelerator (with the source skin distance of 100 cm and dose rate of 442.89 cGy/min). The relative levels of CCR7 mRNA and protein expression in the A549 cells were respectively detected by real time-PCR and Western blotting 4, 12, 24, 48, and 72 h after radiation.Untreated A549 cells were used as control group. Results: The expression levels of CCR7 mRNA and protein in the A549 cells began to increase since 4 h after radiation and then decreased gradually after they reached the peak. The CCR7 mRNA expression levels 72 h after radiation of the 6 and 8 Gy groups were still significantly higher than those of the control group (t=6.75-7.26, both P<0.01), and the CCR7 protein expression levels of the 2 and 6 Gy group were still significantly higher than those of the control group (t=11.13-14.17, both P<0.01). Then the CCR7 protein expression levels of the 4 and 8 Gy groups decreased to the control group level 48 and 72 h after radiation respectively. Conclusions: The CCR7 mRNA and protein expression levels in the NSCLC cells increase after X-ray irradiation,which may be correlated with the promotion of proliferation and metastasis of NSCLC cells by X-ray irradiation at a certain dose. (authors)

  10. Telmisartan Exerts Anti-Tumor Effects by Activating Peroxisome Proliferator-Activated Receptor-γ in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Juan Li

    2014-03-01

    Full Text Available Telmisartan, a member of the angiotensin II type 1 receptor blockers, is usually used for cardiovascular diseases. Recent studies have showed that telmisartan has the property of PPARγ activation. Meanwhile, PPARγ is essential for tumor proliferation, invasion and metastasis. In this work we explore whether telmisartan could exert anti-tumor effects through PPARγ activation in A549 cells. MTT and trypan blue exclusion assays were included to determine the survival rates and cell viabilities. RT-PCR and western blotting were used to analyze the expression of ICAM-1, MMP-9 and PPARγ. DNA binding activity of PPARγ was evaluated by EMSA. Our data showed that the survival rates and cell viabilities of A549 cells were all reduced by telmisartan in a time- and concentration-dependent manner. Meanwhile, our results also demonstrated that telmisartan dose-dependently inhibited the expression of ICAM-1 and MMP-9. Moreover, the cytotoxic and anti-proliferative effects, ICAM-1 and MMP-9 inhibitive properties of telmisartan were totally blunted by the PPARγ antagonist GW9662. Our findings also showed that the expression of PPARγ was up-regulated by telmisartan in a dose dependent manner. And, the EMSA results also figured out that DNA binding activity of PPARγ was dose-dependently increased by telmisartan. Additionally, our data also revealed that telmisartan-induced PPARγ activation was abrogated by GW9662. Taken together, our results indicated that telmisartan inhibited the expression of ICAM-1 and MMP-9 in A549 cells, very likely through the up-regulation of PPARγ synthesis.

  11. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Science.gov (United States)

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  12. Downregulation of cytochrome c oxidase subunit 7A1 expression is important in enhancing cell proliferation in adenocarcinoma cells

    International Nuclear Information System (INIS)

    Mishra, Nawneet; Timilsina, Uddhav; Ghimire, Dibya; Dubey, Ravi C.; Gaur, Ritu

    2017-01-01

    Mitochondrial Dysfunction has been implicated in multiple human diseases, including cancer. Among all cancer, lung cancer is the most common type of cancer worldwide with low survival rates. Mammals possess multiple subunits of the mitochondrial enzyme Cytochrome C oxidase (COX). The COX subunits are expressed in a tissue specific manner and have been implicated in cancer cell metabolism although their molecular and regulatory mechanisms are not clearly understood. In this study, we aimed at identifying novel gene signatures in lung cancer. We performed extensive analysis of seven different Gene Expression Omnibus (GEO) datasets pertaining to different stages of lung adenocarcinoma and identified that multiple subunits of COX genes are differentially expressed in these patients. Amongst all COX genes, the expression of COX7A1 gene was observed to be highly down regulated in these patients. In order to validate the GEO datasets, we looked at the expression of multiple COX genes using quantitative real time PCR (qPCR) using human lung adenocarcinoma cell line A549. Our results confirmed that COX 7A1 gene expression was indeed highly reduced in these cells. Overexpression of COX7A1 in human lung cancer cells led to inhibition of cell proliferation and increase in cell death via apoptosis. These results indicated that low level of COX7A1 gene expression is essential to regulate cell viability and inhibit cell death in lung adenocarcinoma. Our study has identified COX7A1 as a novel gene that might play a crucial role in the etiology of lung adenocarcinoma and can serve as a biomarker for lung cancer disease progression.

  13. Effect of radiation on the expression of tumor-associated antigens of human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Hareyama, Masato

    1988-01-01

    We studied the effects of irradiation on the expression of a tumor-associated antigen (YH206 antigen) of cultured human lung adenocarcinoma A549 cells by using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. YH206 antigen is preferentially expressed on adenocarcinoma cells. Irradiation of A549 cells remarkably increased the expression of YH206 antigen on the cell surface and the level of the antigen in the culture supernatant as well as in the cell lysate, whereas it significantly affected the expression of HLA (MHC-class I) antigen on the same cells. The expression of HLA antigen on the cell was also increased after treatment of the cells with interferon-γ. In an additional experiment, cells were stained simultaneously for surface antigens (fluorescein coupled antibodies) and for DNA content (propidium iodide), and then dual parameter measurements were performed by flow cytometry to analyse the relationship between antigen levels and the cell cycle. YH206 antigen and HLA antigen increased more in the S and G 2 /M phases of the cell cycle than in G 0 /G 1 . The expression of YH206 antigen was enhanced in the S and G 2 /M phases by irradiation, whereas the expression of HLA antigen was enhanced in each phase of the cell cycle with irradiation or IFN. These results suggest that irradiation plays a key role in the change of the expression of certain tumor-associated antigens. (author)

  14. Flavonoids and Tannins from Smilax china L. Rhizome Induce Apoptosis Via Mitochondrial Pathway and MDM2-p53 Signaling in Human Lung Adenocarcinoma Cells.

    Science.gov (United States)

    Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao

    2017-01-01

    In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.

  15. Effects of X-ray irradiation on the expression of Pokemon gene in human lung adenocarcinoma cell line

    International Nuclear Information System (INIS)

    Liang Xiaofang; Zou Yue; Wang Lu; Jiang Qisheng; Li Fengsheng

    2012-01-01

    Objective: To study the dose and time effects of X-ray radiation on the expression of Pokemon gene and protein in human lung adenocarcinoma cell line A 549 . Methods: A 549 cells was exposed to different doses of X-ray (2, 4, 6 and 8 Gy), and the expression of Pokemon mRNA and protein of the cells was detected by using Quantitative real-time PCR and western-blotting at 2, 4, 8, 12, 24, and 48 h after irradiation. 3-( 4, 5-Dimethylthiazole-2-yl )-2, 5-diphenyltetrazolium bromide was used to detect the proliferation of A 549 cells at 1, 2, 3, 4, and 5 d after 2 Gy X-ray irradiation. The mock treated A 549 cells were used as the control. Results: The expression of Pokemon mRNA trended to decrease after irradiated with 4, 6 and 8 Gy in the earlier period and increased in the later period with statistical difference at the most time points (t =3.40 -154.76, P =0.000 -0.041). The expression of Pokemon protein trended to increase and reached the peak at 8 h after irradiated of 2, 4, 6 and 8 Gy with statistical difference at the most time points (t =4.18 - 89.64, P =0.000 - 0.039). Compared with the control, the proliferation of A 549 cells was significantly inhibited during 3 to 5 d after irradiation of 2 Gy (t =2.34 - 18.19, P =0.000 -0.040). Conclusions: X-ray irradiation may increase the expression of Pokemon mRNA and protein in A 549 cells, which might be correlated with radiation-resistance of A 549 cells. (authors)

  16. Autophagy influences the low-dose hyper-radiosensitivity of human lung adenocarcinoma cells by regulating MLH1.

    Science.gov (United States)

    Wang, Qiong; Xiao, Zhuya; Lin, Zhenyu; Zhou, Jie; Chen, Weihong; Jie, Wuyun; Cao, Xing; Yin, Zhongyuan; Cheng, Jing

    2017-06-01

    To investigate the impact of autophagy on the low-dose hyper-radiosensitivity (HRS) of human lung adenocarcinoma cells via MLH1 regulation. Immunofluorescent staining, Western blotting, and electron microscopy were utilized to detect autophagy in A549 and H460 cells. shRNA was used to silence MLH1 expression. The levels of MLH1, mTOR, p-mTOR, BNIP3, and Beclin-1 were measured by real-time polymerase chain reaction (PCR) and Western blotting. A549 cells, which have low levels of MLH1 expression, displayed HRS/induced radioresistance (IRR). Conversely, the radiosensitivity of H460 cells, which express high levels of MLH1, conformed to the linear-quadratic (LQ) model. After down-regulating MLH1 expression, A549 cells showed increased HRS and inhibition of autophagy, whereas H460 cells exhibited HRS/IRR. The levels of mTOR, p-mTOR, and BNIP3 were reduced in cells harboring MLH1 shRNA, and the changes in the mTOR/p-mTOR ratio mirrored those in MLH1 expression. Low MLH1-expressing A549 cells may exhibit HRS. Both the mTOR/p-mTOR and BNIP3/Beclin-1 signaling pathways were found to be related to HRS, but only mTOR/p-mTOR is involved in the regulation of HRS via MLH1 and autophagy.

  17. Nimesulide has a role of radio-sensitizer against lung carcinoma A549 cells

    International Nuclear Information System (INIS)

    Won, Joo Yoon; Park, Jong Kuk; Hong, Sung Hee

    2006-01-01

    Cyclooxygenases (COX) are key enzymes in the prostaglandin synthesis. There are two isoforms of the COX enzyme, COX-1 and COX-2. COX-2 expression is associated with carcinogenesis in variety of cancers and to render cells resistant to apoptotic stimuli. Increased expression of COX-2 is shown in non-small cell lung cancer (NSCLC), specifically in adenocarcinomas. Radiotherapy has been the important treatment for NSCLC. In recent studies, newer molecules that target specific pathophysiology or molecular pathways have been tested for the radiation sensitizers. COX-2 inhibitors are shown to enhanced radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms how NSAIDs enhance radioresponse of tumor cells. Nimesulide (methanesulfonamide, N-(4-nitro-2- phenoxyphenyl)), selective COX-2 inhibitors, is a drug with anti-inflammatory, anti-pyretic and analgesic properties. Nimesulide has the specific affinity to inhibit the inducible form of cyclooxygenase (COX-2) rather than the constitutive form (COX-1), and is well tolerated by adult, elderly and pediatric patients. Nimesulide was found also to have a chemopreventive activity against colon, urinary bladder, breast, tongue, and liver carcinogenesis. In this study, we examined whether nimesulide can increase radiation induced cell death and its mechanism in NSCLC cells A549

  18. Mechanisms of Proliferative Inhibition by Maimendong & Qianjinweijing Decoction in A549 Cells

    Directory of Open Access Journals (Sweden)

    Xu ZHANG

    2010-05-01

    Full Text Available Background and objective Traditional Chinese medicine is an approach for malignant tumor treatment with Chinese characteristics. The aim of this study is to investigate the inhibitory effects of Maimendong & qianjinweijing decoction extract on A549 human lung cancer cell line proliferation and explored its probable molecular mechanisms. Methods A549 cells were treated with drugs in different does and time. The effects on the proliferation of A549 cells were detected by MTT assay and clonogenic assay in vitro. Cell cycle was analyzed by flow cytometry. Morphological changes of the apoptosis of cancer cells were observed by Hochest 33258 staining. Western blot was performed to detect apoptosis-related gene expression. Results Ethyl acetate extract inhibited the growth of A549 cells but not in HFL-1 cells. Compared with controls, administration of 10 μg/mL ethyl acetate extract resulted in 73.86% decrease in colony formation (P < 0.01, apoptotic rates of 33.86% (P < 0.01, and morphological changes of apoptosis in A549 cells. The expression of anti-apoptotic protein EGFR and ERK were significantly down-regulated (P < 0.01. Conclusion Ethyl acetate extract might inhibit proliferation and induce apoptosis in A549 cells via downregulation of EGFR/ERK signal transduction pathway. Therefore, ethyl acetate extract should be further separated in order to identify the material fundamentals on anti-cancer effect.

  19. Digoxin Downregulates NDRG1 and VEGF through the Inhibition of HIF-1α under Hypoxic Conditions in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Dong Wei

    2013-04-01

    Full Text Available Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  20. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    Science.gov (United States)

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  1. Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Geng Y

    2016-07-01

    Full Text Available Ying Geng,1,* Lili Deng,2,* Dongju Su,1 Jinling Xiao,1 Dongjie Ge,3 Yongxia Bao,1 Hui Jing4 1Department of Respiratory, 2Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, 3Department of Respiratory, The First Hospital of Harbin, 4Department of Emergency, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Background: Variations of microRNA (miRNA expression profile in hypoxic lung cancer cells have not been studied so far. Therefore, using miRNA microarray technology, this study aimed to study the miRNA expression profile and investigate the potential crucial miRNAs and their target genes in hypoxia-induced human lung adenocarcinoma cells.Materials and methods: Based on miRNA microarray, miRNA expression profiling of hypoxia-induced lung adenocarcinoma A549 cells was obtained. After identification of differentially expressed miRNAs (DE-miRNAs in hypoxic cells, target genes of DE-miRNAs were predicted, and functional enrichment analysis of targets was conducted. Furthermore, the expression levels of DE-miRNAs and their target genes were validated by real-time quantitative polymerase chain reaction. In addition, using miRNA mimics, the effect of overexpressed DE-miRNAs on A549 cell behaviors (cell proliferation, cell cycle, and apoptosis was evaluated.Results: In total, 14 DE-miRNAs (nine upregulated miRNAs and five downregulated miRNAs were identified in hypoxic cells, compared with normoxic cells. Target genes of both upregulated and downregulated miRNAs were enriched in the functions such as chromatin modification, and pathways such as Wnt signaling pathway and transforming growth factor (TGF-β signaling pathway. The expression levels of several miRNAs and their target genes were confirmed, including hsa-miR-301b/FOXF2, hsa-miR-148b-3p/WNT10B, hsa-miR-769-5p/(SMAD2, ARID1A, and hsa-miR-622. Among them

  2. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  3. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-01-01

    Highlights: → We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. → We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. → We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. → Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 ± 6% and by liposomal magnetofection by 85.1 ± 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R

  4. Effect of radiation on the expression of tumor-associated antigens of human lung adenocarcinoma cells. Immunological study using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Hareyama, Masato

    1988-12-01

    We studied the effects of irradiation on the expression of a tumor-associated antigen (YH206 antigen) of cultured human lung adenocarcinoma A549 cells by using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. YH206 antigen is preferentially expressed on adenocarcinoma cells. Irradiation of A549 cells remarkably increased the expression of YH206 antigen on the cell surface and the level of the antigen in the culture supernatant as well as in the cell lysate, whereas it significantly affected the expression of HLA (MHC-class I) antigen on the same cells. The expression of HLA antigen on the cell was also increased after treatment of the cells with interferon-..gamma... In an additional experiment, cells were stained simultaneously for surface antigens (fluorescein coupled antibodies) and for DNA content (propidium iodide), and then dual parameter measurements were performed by flow cytometry to analyse the relationship between antigen levels and the cell cycle. YH206 antigen and HLA antigen increased more in the S and G/sub 2//M phases of the cell cycle than in G/sub 0//G/sub 1/. The expression of YH206 antigen was enhanced in the S and G/sub 2//M phases by irradiation, whereas the expression of HLA antigen was enhanced in each phase of the cell cycle with irradiation or IFN. These results suggest that irradiation plays a key role in the change of the expression of certain tumor-associated antigens.

  5. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  6. Aberrant Long Noncoding RNAs Expression Profiles Affect Cisplatin Resistance in Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Lijuan Hu

    2017-01-01

    Full Text Available Background. Long noncoding RNAs (lncRNAs have been shown to be involved in the mechanism of cisplatin resistance in lung adenocarcinoma (LAD. However, the roles of lncRNAs in cisplatin resistance in LAD are not well understood. Methods. We used a high-throughput microarray to compare the lncRNA and mRNA expression profiles in cisplatin resistance cell A549/DDP and cisplatin sensitive cell A549. Several candidate cisplatin resistance-associated lncRNAs were verified by real-time quantitative reverse transcription polymerase chain reaction (PCR analysis. Results. We found that 1,543 lncRNAs and 1,713 mRNAs were differentially expressed in A549/DDP cell and A549 cell, hinting that many lncRNAs were irregular from cisplatin resistance in LAD. We also obtain the fact that 12 lncRNAs were aberrantly expressed in A549/DDP cell compared with A549 cell by quantitative PCR. Among these, UCA1 was the aberrantly expressed lncRNA and can significantly reduce the IC50 of cisplatin in A549/DDP cell after knockdown, while it can increase the IC50 of cisplatin after UCA1 was overexpressed in NCI-H1299. Conclusions. We obtained patterns of irregular lncRNAs and they may play a key role in cisplatin resistance of LAD.

  7. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  8. [Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].

    Science.gov (United States)

    Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min

    2015-05-01

    To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (PBAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.

  9. Edaravone Decreases Paraquat Toxicity in A549 Cells and Lung Isolated Mitochondria

    OpenAIRE

    Shokrzadeh, Mohammad; Shaki, Fatemeh; Mohammadi, Ebrahim; Rezagholizadeh, Neda; Ebrahimi, Fatemeh

    2014-01-01

    Edaravone, an antioxidant and radical scavenger, showed protective effects against oxidative stress-like condition. Paraquat (PQ) is toxic herbicide considerable evidence suggests that oxidative stress and mitochondrial dysfunction contribute to PQ toxicity. In this study, protective effect of edaravone against PQ induced toxicity and reactive oxygen species (ROS) generation in A549 cells and lung isolated mitochondria were evaluated. A549 cells and lung isolated mitochondria were divided int...

  10. PPAR-γ Silencing Inhibits the Apoptosis of A549 Cells by Upregulating Bcl-2

    Directory of Open Access Journals (Sweden)

    Jingyu YANG

    2013-03-01

    Full Text Available Background and objective Drug resistance is the one of primary causes of death in patients with lung cancer, PPAR-γ could induce the apoptosis and reverse drug resistance. The aim of this study is to investigate the expression of PPAR-γ on cisplatin sensitivity and apoptosis response of human lung cancer cell line A549. Methods Reconstruction of PPAR-γ silencing A549 cells (A549/PPAR-γ(- by siRNA. MTT assay was employed to determine the effect of cisplatin on the proliferation of A549/PPAR-γ(-, flow cytometry to determine the effect of cisplatin on the cell apoptosis, Western blot to determine the change of phosphorylation of Akt, caspase-3 and expression of bcl-2/bax. Finally, RT-PCR was employed to determine the transcriptional level of bcl-2. Results Two PPAR-γ silencing A549 cell clones were established successfully, and the expression of PPAR-γ was downregulated significantly as confirmed by RT-PCR and Western blot. After PPAR-γ silencing, the resistance of these two A549 clones to cisplatin was increased by 1.29-fold and 1.60-fold respectively. Flow cytometry showed that the apoptosis rate was decreased, and Western Blot showed that the phosphorylation of Akt and expression of bcl-2/bax were upregulated, caspase-3 was downregulated. Finally, RT-PCR showed that the transcriptional level of bcl-2 was upregulated as well. Conclusion Downregulation of PPAR-γ in A549 cells led to increase of cisplatin resistance. One of the mechanisms was upregulatin of phosphorylation of Akt and expression of bcl-2, which inhibited the apoptosis of cells. The downregulation of PPAR-γ is a possible mechanism that leads to the clinical drug resistance of cancer.

  11. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    International Nuclear Information System (INIS)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-01-01

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  12. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Deng, Yubin, E-mail: dengyub@mail.sysu.edu.cn [Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Zeng, Mian, E-mail: zengmian2004@163.com [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  13. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549).

    Science.gov (United States)

    Coyne, Cody P; Narayanan, Lakshmi

    2016-01-01

    Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in

  14. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    Science.gov (United States)

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  15. Curcumin inhibits interferon-α induced NF-κB and COX-2 in human A549 non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh; Kim, Kihyun; Kim, Won Seog; Ahn, Jin Seok; Jung, Chul Won; Park, Young Suk; Kang, Won Ki; Park, Keunchil

    2005-01-01

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-α treatment. The IFN-α-treated A549 cells showed increase in protein expression levels of NF-κB and COX-2. IFN-α induced NF-κB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-α-induced COX-2 expression in A549 cells. Within 10 min, IFN-α rapidly induced the binding activity of a γ- 32 P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-α-induced activations of NF-κB and COX-2 were inhibited by the addition of curcumin in A549 cells

  16. Nitric oxide generated by ionizing radiation and EGF is implicated in EGF receptor phosphorylation in A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Park, In Chul; Lee, Hyung Chahn; Rhee, Chang Hun; Hong, Seok Il

    2004-01-01

    Although it has been demonstrated that ionizing radiation (IR) control various cell functions in a different cell types, the mechanisms of its action via NO are not well understood. NO may potentially affect every type of mammalian cells, owing to its ubiquitous production and participate in the control of cell proliferation in a great variety of cell types. The epidermal growth factor (EGF) receptor is a transmembrane glycoprotein of Mr 170,000. When EGF binds to its receptor, the receptor is dimerized and autophosphorylated at the carboxyl-terminal tyrosine 992, 1608, 1086, 1148 and 1173. This phosphorylated receptor initiates a series of signal tranduction events through interacting proteins of SH2 family including Shc, Grb2 and Sos, which in turn trigger ativation of MAPK cascades. Although the number of signaling events mediated by IR-induced NO is growing, it is still unclear how NO activate cellular signaling events. Thus, we examined the effect of NO on cellular phosphorylation and found that NO was produced by ionizing radiation in A549 lung adenocarcinoma cells and enhances the unique tyrosine phosphorylation on EGF receptor

  17. Inhibition effect of proteasome inhibitor MG132 combined with X-ray irradiation on cell growth, metastasis and cycle distribution of human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Liu Jing; Tang Yiting; Zhou Jundong; Zhang Shuyu; Cao Han; Wu Jinchang; Luo Judong; Chen Guanglie; Cao Jianping

    2014-01-01

    Objective: To study the effects of proteasome inhibitor MG132 on the growth, metastasis, and cell cycle distribution of human lung adenocarcinoma cells A549 irradiated by X-rays. Methods: After treatment of MG132 and irradiation,cell proliferation was detected by MTT assay. Survival was measured by clonogenic assay. Cell migration ability was detected by the Scratch migration assay. Cell invasion ability was detected by transwell migration assay. Cell cycle distribution were analyzed by flow cytometry assay. Protein expression was detected by Western blot assay. Results: MG132 alone inhibited cell growth in a dose-and time-dependent manner. MG132 in combination with radiation significantly suppressed the growth, migration and invasion of A549 cells compared to the control (F =554.78, 954.64, P<0.01). MG132 enhanced radiation-induced G 1 -arrest (t =4.44, 12.41, 3.52, 6.72, P<0.05). The G 1 cell cycle distribution rate of MG132 plus RT group was increased to (71.05 ± 4.17)%. The expressions of MMP-2, MMP-9 and Cyclin D1 were significantly suppressed by MG132 in combination with radiation, while the expression of P53 was up-regulated. Conclusions: MG132 inhibits cell growth, migration and invasion ability, and induces G 1 cell cycle arrest of A549 cells treated with MG132 in combination with radiation, in which the down-regulation of MMPs and Cyclin D1 and up-regulation of P53 may be involved. (authors)

  18. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy.

    Science.gov (United States)

    Li, Xiaoli; Liu, Jian; Qian, Li; Ke, Honggang; Yao, Chan; Tian, Wei; Liu, Yifei; Zhang, Jianguo

    2018-01-11

    Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) catalyzes the synthesis of F2,6BP, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1): the rate-limiting enzyme of glycolysis. During tumorigenesis, PFKFB3 increases glycolysis, angiogenesis, and tumor progression. In this study, our aim was to investigate the significance of PFKFB3 and Ki67 in human lung adenocarcinomas and to target PFKFB3 as a therapeutic strategy. In this study, we determined the expression levels of PFKFB3 mRNA and proteins in cancerous and normal lung adenocarcinomas by quantitative reverse transcription PCR (qRT-PCR), Western blot analysis, and tissue microarray immunohistochemistry analysis, respectively. In human adenocarcinoma tissues, PFKFB3 and Ki67 protein levels were related to the clinical characteristics and overall survival. Both PFKFB3 mRNA and protein were significantly higher in lung adenocarcinoma cells (all P targeting PFKFB3, it inhibited cell viability and glycolytic activity. It also caused apoptosis and induced cell cycle arrest. Furthermore, the migration and invasion of A549 cells was inhibited. We conclude that PFKFB3 bears an oncogene-like regulatory element in lung adenocarcinoma progression. In the treatment of lung adenocarcinoma, targeting PFKFB3 would be a promising therapeutic strategy.

  19. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway.

    Science.gov (United States)

    Zhao, Yana; Zhang, Shaojing; Wang, Pengfei; Fu, Shengnan; Wu, Di; Liu, Anjun

    2017-12-01

    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

  20. Expression of cyclin A in A549 cell line after treatment with arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Agnieszka Żuryń

    2015-12-01

    Full Text Available Background: Arsenic trioxide (ATO is an effective drug used in acute promyelocytic leukemia (AML. Many reports suggest that ATO can also be applied as an anticancer agent for solid tumors in the future. The influence of arsenic trioxide on the expression of different cell cycle regulators is poorly recognized. The purpose of the current study is to investigate how arsenic trioxide affects cyclin A expression and localization in the A549 cell line.Materials and methods: Morphological and ultrastructural changes in A549 cells were observed using light and transmission electron microscopes. Cyclin A localization was determined by immunofluorescence. Image-based cytometry was applied to evaluate the effect of arsenic trioxide on apoptosis and the cell cycle. Expression of cyclin A mRNA was quantified by real-time PCR.Results: After treatment with arsenic trioxide, increased numbers of cells with cytoplasmic localization of cyclin A were observed. The doses of 10 and 15 μM ATO slightly reduced expression of cyclin A mRNA. The apoptotic phenotype of cells was poorly represented, and the Tali imagebased cytometry analysis showed low percentages of apoptotic cells. The A549 population displayed an enriched fraction of cells in G0/G1 phase in the presence of 5μM ATO, whereas starting from the higher concentrations of the drug, i.e. 10 and 15 μM ATO, the G2/M fraction was on the increase.Discussion: Low expression of cyclin A in the A549 cell line may constitute a potential factor determining arsenic trioxide resistance. It could be hypothesized that the observed alterations in cyclin A expression/distribution may correlate well with changes in cell cycle regulation in our model, which in turn determines the outcome of the treatment.

  1. MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level.

    Science.gov (United States)

    Han, Yong Hwan; Park, Woo Hyun

    2010-07-01

    Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC(50) of approximately 20 microM at 24 hours. DNA flow cytometric analysis indicated that 0.5 approximately 30 microM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 microM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Delta psi m). The intracellular ROS levels including O(2) (*-) were strongly increased in 10 or 30 microM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 microM MG132-treated cells. Furthermore, 10 or 30 microM MG132 increased mitochondrial O(2) (*- ) level but 0.1, 0.5 or 1 microM MG132 decreased that. In addition, 10 or 30 microM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.

  2. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  3. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  4. Effects of miR-424 on Proliferation and Migration Abilities in Non-small Cell Lung Cancer A549 Cells and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Hongmin LI

    2016-09-01

    Full Text Available Background and objective The inhibitory ability of miR-424 on the proliferation of renal carcinoma cell and the migration and invasion of cancer cells has been widely explored and demonstrated. However, the effects of miR-424 on non-small cell lung cancer (NSCLC have not been systematically examined. In this study, detected the growth and invasion effect of miR-424 in NSCLC A549 cell. The migration and molecular mechanism of this cell are also detected. Methods NSCLC A549 cell was transfected with miR-424 and its inhibitor. After transfection, the proliferation ability of A549 cell was detectedby CCK8 assay. Then, the migration ability in A549 cell was detected by migration assays. Furthermore, the expression level of MMP2 and MMP9 in A549 was detected by Western blot and immune fluorescence. The 3'UTR of E2F6 was cloned into luciferase reporter vector and its enzymatic activitywas detected to verify whether miR-424 can target E2F6. The expression level of E2F6 in a549 cell after transfecing with miR-424 was detected by Western blot. Results After transfection of miR-424, the proliferation and migration abilities were remarkably decreased and the expression level of MMP-2 and MMP-9 were down-regulated in A549. Moreover, MiR-424 inhibited the enzymatic activity of luviferase reporter vector of E2F6. Specifically, the expression level of E2F6 was down-regulated in A549. Conclusion miR-424 can inhibit the proliferation and migration abilities of A549 by negatively regulating the expression of E2F6.

  5. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    Science.gov (United States)

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  6. Appendiceal goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid are genetically distinct from primary colorectal-type adenocarcinoma of the appendix

    DEFF Research Database (Denmark)

    Jesinghaus, Moritz; Konukiewitz, Björn; Foersch, Sebastian

    2018-01-01

    The appendix gives rise to goblet cell carcinoids, which represent special carcinomas with distinct biological and histological features. Their genetic background and molecular relationship to colorectal adenocarcinoma is largely unknown. We therefore performed a next-generation sequencing analysis...... a morphomolecular entity, histologically and genetically distinct from appendiceal colorectal-type adenocarcinomas and its colorectal counterparts. Altered Wnt-signaling associated genes, apart from APC, may act as potential drivers of these neoplasms. The absence of KRAS/NRAS mutations might render some....../adenocarcinoma ex-goblet cell carcinoid (n=2, respectively). Mutations in colorectal cancer-related genes (eg, TP53, KRAS, APC) were rare to absent in both, goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid, but frequent in primary colorectal-type adenocarcinomas of the appendix. Additional large...

  7. [Effects of 17-AAG on the proliferation and apoptosis of human lung cancer A549 and H446 cells].

    Science.gov (United States)

    Niu, Ben; Lin, Jingshuang; Feng, Tao

    2015-04-01

    To observe the effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) on the apoptosis of human lung cancer cell lines A549 and H446, and to investigate the potential mechanisms. Proliferation inhibition and apoptosis assays, and the cell cycles were detected by MTT and flow cytometry respectively. Western blot was used to determine the expression level of proteins such as Hsp90, Hsp70, AKt, Her-2, Bcl-2 and Bax. After treated with 17-AAG, the proliferation of both A549 and H446 cells was inhibited significantly in a dose-dependent manner; as the concentration of 17-AAG was from 50 to 500 nmol/L, the IC₅₀ values to A549 and H446 cell lines were (222 ± 13) nmol/L and (189 ± 7) nmol/L respectively at 48 h. Cell cycle assays showed that 17-AAG was able to arrest cell cycles of A549 and H446 cell lines at the G₂/M phase. Apoptosis assay showed that 17-AAG was capable of inducing apoptosis in A549 and H446 cell lines. After treated with 17-AAG for 48 h, there were significant differences between the 400 nmol/L groups(46.3% for A549 cell line and 56.9% for H446 cell line) and the control group (11.9% for A549 cell line and 6.9% for H446 cell line, P AAG treatment: Akt and Her-2 decreased significantly while the expression of Hsp70 increased. Meanwhile, the expression of Bcl-2 decreased but that of Bax increased, indicating that 17-AAG was able to promote apoptosis mode in A549 and H446 cells. 17-AAG can regulate the expression level of apoptosis-related proteins such as Bax and Bcl-2 by Hsp90 signaling pathway in A549 and H446 cells, and ultimately inhibit cell proliferation and induce apoptosis.

  8. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells.

    Science.gov (United States)

    Zhao, Xinyuan; Xing, Fengjun; Cong, Yewen; Zhuang, Yin; Han, Muxi; Wu, Zhiqiang; Yu, Shali; Wei, Haiyan; Wang, Xiaoke; Chen, Gang

    2017-12-01

    Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    Science.gov (United States)

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  10. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Magdalena Izdebska

    2015-12-01

    Full Text Available Background and objectives: For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. Material and methods: A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope.Results: The obtained data suggested that GTE, even at the highest dose employed (150 μM, was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment.Conclusion: Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  11. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment.

    Science.gov (United States)

    Jin, Xuefang; Wu, Nana; Dai, Juji; Li, Qiuxia; Xiao, XiaoQiang

    2017-02-01

    Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. The Effect of dcEFs on migration behavior of A549 cells and Integrin beta1 expression

    Directory of Open Access Journals (Sweden)

    Yunjie WANG

    2008-04-01

    Full Text Available Background and objective The effect of direct-current electric fields (dcEFs on cells attracted extensive attention. Moreover the metastasis and its potential are considered to be related to dcEFs. The aim is to study the effect of dcEFs on migration behavior of A549 cells, Integrin ?1 and its signal pathways. Methods According to exposure to 5 V/cm dcEFs or not and the time of exposure, the A549 cells were divided into 4 groups. Images were taken per 5 min within 2 h to recode the migration of the cells. The data of results were analyzed statistically. Results Most of A549cells exposed to the dcEFs aligned and elongated perpendicularly to the electric field lines and migrated to the cathode continually during 2 h. On the contrary, cells unexposed to dcEFs showed slightly random movements. Immunofluorescence showed that Integrin ?1 on plasma membrane polarized to the cathode of the dcEFs. Western blot showed that Integrin beta1 downstream signal pathways p-FAK and p-ERK were overexpressed in the dcEFs. Conclusion A549 cells have a galvanotatic feature of cathodal directed migration while exposed to the dcEFs. The polarization of Integrin beta1 and the promotion of its downstream signal pathways may play an important roles in the galvanotaxis of A549 cells.

  13. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Patnaik

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNAs (ribonucleic acids that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls. CONCLUSIONS/SIGNIFICANCE: Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.

  14. Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.

    Science.gov (United States)

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-01-01

    Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.

  15. SOCS3 inhibiting migration of A549 cells correlates with PYK2 signaling in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Qingfu

    2008-05-01

    Full Text Available Abstract Background Suppressor of cytokine signaling 3 (SOCS3 is considered to inhibit cytokine responses and play a negative role in migration of various cells. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor kinase and has been found crucial to cell motility. However, little is known about whether SOCS3 could regulate PYK2 pro-migratory function in lung cancer. Methods The methylation status of SOCS3 was investigated in HBE and A549 cell lines by methylation-specific PCR. A549 cells were either treated with a demethylation agent 5-aza-2'-deoxycytidine or transfected with three SOCS3 mutants with various functional domains deleted. Besides, cells were pretreated with a proteasome inhibitor β-lactacystin where indicated. The effects of SOCS3 up-regulation on PYK2 expression, PYK2 and ERK1/2 phosphorylations were assessed by western blot using indicated antibodies. RT-PCR was used to estimate PYK2 mRNA levels. Transwell experiments were performed to evaluate cell migration. Results SOCS3 expression was found impaired in A549 cells and higher PYK2 activity was correlated with enhanced cell migration. We identified that SOCS3 was aberrantly methylated in the exon 2, and 5-aza-2'-deoxycytidine restored SOCS3 expression. Reactivation of SOCS3 attenuated PYK2 expression and phosphorylation, cell migration was inhibited as well. Transfection studies indicated that exogenous SOCS3 interacted with PYK2, and both the Src homology 2 (SH2 and the kinase inhibitory region (KIR domains of SOCS3 contributed to PYK2 binding. Furthermore, SOCS3 was found to inhibit PYK2-associated ERK1/2 activity in A549 cells. SOCS3 possibly promoted degradation of PYK2 in a SOCS-box-dependent manner and interfered with PYK2-related signaling events, such as cell migration. Conclusion These data indicate that SOCS3 negatively regulates cell motility and decreased SOCS3 induced by methylation may confer a migration advantage to A549 cells. These results also suggest a

  16. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    Science.gov (United States)

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  17. Identifying candidate agents for lung adenocarcinoma by walking the human interactome

    Directory of Open Access Journals (Sweden)

    Sun Y

    2016-09-01

    Full Text Available Yajiao Sun,1 Ranran Zhang,2 Zhe Jiang,1 Rongyao Xia,1 Jingwen Zhang,1 Jing Liu,1 Fuhui Chen1 1Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, 2Department of Respiratory, Harbin First Hospital, Harbin, People’s Republic of China Abstract: Despite recent advances in therapeutic strategies for lung cancer, mortality is still increasing. Therefore, there is an urgent need to identify effective novel drugs. In the present study, we implement drug repositioning for lung adenocarcinoma (LUAD by a bioinformatics method followed by experimental validation. We first identified differentially expressed genes between LUAD tissues and nontumor tissues from RNA sequencing data obtained from The Cancer Genome Atlas database. Then, candidate small molecular drugs were ranked according to the effect of their targets on differentially expressed genes of LUAD by a random walk with restart algorithm in protein–protein interaction networks. Our method identified some potentially novel agents for LUAD besides those that had been previously reported (eg, hesperidin. Finally, we experimentally verified that atracurium, one of the potential agents, could induce A549 cells death in non-small-cell lung cancer-derived A549 cells by an MTT assay, acridine orange and ethidium bromide staining, and electron microscopy. Furthermore, Western blot assays demonstrated that atracurium upregulated the proapoptotic Bad and Bax proteins, downregulated the antiapoptotic p-Bad and Bcl-2 proteins, and enhanced caspase-3 activity. It could also reduce the expression of p53 and p21Cip1/Waf1 in A549 cells. In brief, the candidate agents identified by our approach may provide greater insights into improving the therapeutic status of LUAD. Keywords: lung adenocarcinoma, drug repositioning, bioinformatics, protein–protein interaction network, atracurium

  18. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zanhua [Medical School of Nanchang University (China); The Chest Hospital of Jiangxi Province Department of Respiration (China); Jiang, Xunsheng [Department of Respiration, Medical School of Nanchang University (China); Zhang, Wei, E-mail: weizhangncu@gmail.com [Department of Respiration, The First Affiliated Hospital of Nanchang University (China)

    2016-01-29

    Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosis (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.

  19. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    Science.gov (United States)

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dexamethasone-(C21-phosphoramide-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549

    Directory of Open Access Journals (Sweden)

    Coyne CP

    2016-08-01

    Full Text Available Cody P Coyne,1 Lakshmi Narayanan2 1Department of Basic Sciences, 2Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA Purpose: Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma, autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively “target” delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. Materials and methods: The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549 known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. Results: The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin

  1. Small ubiquitin-like modifier 1 modification of pyruvate kinase M2 promotes aerobic glycolysis and cell proliferation in A549 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    An S

    2018-04-01

    overall survival rate (P=0.017 and disease-free survival rate (P=0.027 compared with those with low PKM2 expression. SUMO1 promoted PKM2-dependent glycolysis. Western blotting analysis showed that SUMO1 knockdown in A549 cells led to a significant decrease in PKM2 protein expression. PKM2 could be covalently modified by SUMO1 at K336 (Lys336 site. SUMO1 modification of PKM2 at Lys-336 site increased glycolysis and promoted its cofactor functions. Moreover, PKM2 SUMO1 modification promoted the proliferation of A549 cells in vitro.Conclusion: This information is important in elucidating a new mechanism of regulation of PKM2, and suggested that SUMO1 modification of PKM2 could be a potential therapeutic target in lung cancer. Keywords: Pyruvate Kinase M2, SUMO1 modification, glycolysis, cell proliferation, cancer

  2. Encapsulation in lipid-core nanocapsules overcomes lung cancer cell resistance to tretinoin.

    Science.gov (United States)

    Schultze, Eduarda; Ourique, Aline; Yurgel, Virginia Campello; Begnini, Karine Rech; Thurow, Helena; de Leon, Priscila Marques Moura; Campos, Vinicius Farias; Dellagostin, Odir Antônio; Guterres, Silvia R; Pohlmann, Adriana R; Seixas, Fabiana Kömmling; Beck, Ruy Carlos Ruver; Collares, Tiago

    2014-05-01

    Tretinoin is a retinoid derivative that has an antiproliferative effect on several kinds of tumours. Human lung adenocarcinoma epithelial cell lines (A549) exhibit a profound resistance to the effects of tretinoin. Nanocarriers seem to be a good alternative to overcomecellular resistance to drugs. The aim of this study was to test whether tretinoin-loaded lipid-core nanocapsules exert anantitumor effect on A549 cells. A549 cells were incubated with free tretinoin (TTN), blank nanocapsules (LNC) and tretinoin-loaded lipid-core nanocapsules (TTN-LNC). Data from evaluation of DNA content and Annexin V binding assay by flow cytometry showed that TTN-LNC induced apoptosis and cell cycle arrest at the G1-phase while TTN did not. TTN-LNC showed higher cytotoxic effects than TTN on A549 cells evaluated by MTT and LIVE/DEAD cell viability assay. Gene expression profiling identified up-regulated expression of gene p21 by TTN-LNC, supporting the cell cycle arrest effect. These results showed for the first time that TTN-LNC are able to overcome the resistance of adenocarcinoma cell line A549 to treatment with TTN by inducing apoptosis and cell cycle arrest, providing support for their use in applications in lung cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Anti-EGFR therapy radiosensitizes human lung adenocarcinoma xenograft in nude mouse

    International Nuclear Information System (INIS)

    Wang Hui; Li Tianran; Tian Jiahe; Qu Baolin; Zhu Hui

    2008-01-01

    Objective: To investigate the effect of Gefitinib on radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. Methods: Human lung adenocarcinoma cell line A549 was used to establish nude mouse xenograft tumor model. The mice were derided into 4 groups: control, irradiation alone, Gefinitib alone and radiation combined with Genifitib. Radiation schedule was 3 fractions of 5 Gy, once daily. Gefitinib was daily administered by gavage at 100 mg/(kg·day -1 ) for 14 days. In the combination group, radiotherapy was performed 2 hours after Gefitinib administration. Tumor diameter was measured every other day. Percentage of tumor growth inhibition, growth delay time and regrowth delay time were evaluated. Results: For A549 xenografts in radiation alone, gefitinib alone and combination therapy groups, the percentage of tumor growth inhibition was 22.7%, 12.4% and 38.2%, respectively (F=25.75, P=0.000). Tumor growth delay time was 6.0, 7.8 and 21.6 days, respectively (F=70.49, P=0.000). Tumor regrowth delay time in combination therapy and irradiation alone groups was 23.4 and 10.2 days. (F=174.24, P= 0.000). Sensitizing enhancement ratio of combination group was 1.5 in growth and 1.7 in regrowth. Conclusions: Anti-EGFR therapy enhances the radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. (authors)

  4. Enhanced efficacy of radiation-induced gene therapy in mice bearing lung adenocarcinoma xenografts using hypoxia responsive elements

    International Nuclear Information System (INIS)

    Wang Wei-dong; Chen Zheng-tang; Li De-zhi; Duan Yu-zhong; Cao Zheng-huai; Li Rong

    2005-01-01

    The aim of the present study was to investigate whether the hypoxia responsive element (HRE) could be used to enhance suicide gene (HSV-tk) expression and tumoricidal activity in radiation-controlled gene therapy of human lung adenocarcinoma xenografts. A chimeric promoter, HRE-Egr, was generated by directly linking a 0.3-kb fragment of HRE to a 0.6-kb human Egr-1 promoter. Retroviral vectors containing luciferase or the HSV-tk gene driven by Egr-1 or HRE-Egr were constructed. A human adenocarcinoma cell line (A549) was stably transfected with the above vectors using the lipofectamine method. The sensitivity of transfected cells to prodrug ganciclovir (GCV) and cell survival rates were analyzed after exposure to a dose of 2 Gy radiation and hypoxia (1%). In vivo, tumor xenografts in BALB/c mice were transfected with the constructed retroviruses and irradiated to a total dose of 6 Gy, followed by GCV treatment (20 mg/kg for 14 days). When the HSV-tk gene controlled by the HRE-Egr promoter was introduced into A549 cells by a retroviral vector, the exposure to 1% O 2 and 2 Gy radiation induced significant enhancement of GCV cytotoxicity to the cells. Moreover, in nude mice bearing solid tumor xenografts, only the tumors infected with the hybrid promoter-containing virus gradually disappeared after GCV administration and radiation. These results indicate that HRE can enhance transgene expression and tumoricidal activity in HSV-tk gene therapy controlled by ionizing radiation in hypoxic human lung adenocarcinoma. (author)

  5. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-01-01

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  6. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  7. MicroRNA regulatory networks reflective of polyhexamethylene guanidine phosphate-induced fibrosis in A549 human alveolar adenocarcinoma cells.

    Science.gov (United States)

    Shin, Da Young; Jeong, Mi Ho; Bang, In Jae; Kim, Ha Ryong; Chung, Kyu Hyuck

    2018-05-01

    Polyhexamethylene guanidine phosphate (PHMG-phosphate), an active component of humidifier disinfectant, is suspected to be a major cause of pulmonary fibrosis. Fibrosis, induced by recurrent epithelial damage, is significantly affected by epigenetic regulation, including microRNAs (miRNAs). The aim of this study was to investigate the fibrogenic mechanisms of PHMG-phosphate through the profiling of miRNAs and their target genes. A549 cells were treated with 0.75 μg/mL PHMG-phosphate for 24 and 48 h and miRNA microarray expression analysis was conducted. The putative mRNA targets of the miRNAs were identified and subjected to Gene Ontology analysis. After exposure to PHMG-phosphate for 24 and 48 h, 46 and 33 miRNAs, respectively, showed a significant change in expression over 1.5-fold compared with the control. The integrated analysis of miRNA and mRNA microarray results revealed the putative targets that were prominently enriched were associated with the epithelial-mesenchymal transition (EMT), cell cycle changes, and apoptosis. The dose-dependent induction of EMT by PHMG-phosphate exposure was confirmed by western blot. We identified 13 putative EMT-related targets that may play a role in PHMG-phosphate-induced fibrosis according to the Comparative Toxicogenomic Database. Our findings contribute to the comprehension of the fibrogenic mechanism of PHMG-phosphate and will aid further study on PHMG-phosphate-induced toxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells.

    Science.gov (United States)

    Yazdanifar, Mahboubeh; Zhou, Ru; Mukherjee, Pinku

    2016-01-01

    More than 80% of all cancers arise from epithelial cells referred to as carcinomas. Adenocarcinomas are the most common type of carcinomas arising from the specialized epithelial cells that line the ducts of our major organs. Despite many advances in cancer therapies, metastatic and treatment-refractory cancers remain the 2 nd leading cause of death. Immunotherapy has offered potential opportunities with specific targeting of tumor cells and inducing remission in many cancer patients. Numerous therapies using antibodies as antagonists or checkpoint inhibitors/immune modulators, peptide or cell vaccines, cytokines, and adoptive T cell therapies have been developed. The most innovative immunotherapy approach so far has been the use of engineered T cell, also referred to as chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are genetically modified naïve T cells that express a chimeric molecule which comprises of the antigen-recognition domains (scFv) of an anti-tumor antibody and one, two, or three intracellular signaling domains of the T cell receptor (TCR). When these engineered T cells recognize and bind to the tumor antigen target via the scFv fragment, a signal is sent to the intracellular TCR domains of the CAR, leading to activation of the T cells to become cytolytic against the tumor cells. CAR-T cell therapy has shown tremendous success for certain hematopoietic malignancies, but this success has not been extrapolated to adenocarcinomas. This is due to multiple factors associated with adenocarcinoma that are different from hematopoietic tumors. Although many advances have been made in targeting multiple cancers by CAR-T cells, clinical trials have shown adverse effects and toxicity related to this treatment. New strategies are yet to be devised to manage side effects associated with CAR-T cell therapies. In this review, we report some of the promising immunotherapeutic strategies being developed for treatment of most common adenocarcinomas with

  9. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo.

    Science.gov (United States)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-07-08

    Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1 insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1±6% and by liposomal magnetofection by 85.1±3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R specific-shRNA by lipofection inhibited IGF-1R protein by an average of 43.8±5.3%; that by liposomal magnetofection inhibited IGF-1R protein by 43.4±5.7%, 56.3±9.6%, and 72.2±6.8%, at 24, 48, and 72 h, respectively, after pGFPshIGF-1R injection. Our findings indicate that liposomal magnetofection may be a promising method that allows the targeting of gene therapy to lung cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Trefoil Factor 3 as a Novel Biomarker to Distinguish Between Adenocarcinoma and Squamous Cell Carcinoma

    Science.gov (United States)

    Wang, Xiao-Nan; Wang, Shu-Jing; Pandey, Vijay; Chen, Ping; Li, Qing; Wu, Zheng-Sheng; Wu, Qiang; Lobie, Peter E.

    2015-01-01

    Abstract In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an

  11. Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD₂ metabolite, 15d-PGJ₂.

    Science.gov (United States)

    Wang, Jun-Jie; Mak, Oi-Tong

    2011-11-01

    PGD2 (prostaglandin D2) is a mediator in various pathophysiological processes, including inflammation and tumorigenesis. PGD2 can be converted into active metabolites and is known to activate two distinct receptors, DP (PGD2 receptor) and CRTH2/DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells). In the past, PGD2 was thought to be involved principally in the process of inflammation. However, in recent years, several studies have shown that PGD2 has anti-proliferative ability against tumorigenesis and can induce cellular apoptosis via activation of the caspase-dependent pathway in human colorectal cancer cells, leukaemia cells and eosinophils. In the lung, where PGD2 is highly released when sensitized mast cells are challenged with allergen, the mechanism of PGD2-induced apoptosis is unclear. In the present study, A549 cells, a type of NSCLC (non-small cell lung carcinoma), were treated with PGD2 under various conditions, including while blocking DP and CRTH2/DP2 with the selective antagonists BWA868C and ramatroban respectively. We report here that PGD2 induces A549 cell death through the intrinsic apoptotic pathway, although the process does not appear to involve either DP or CRTH2/DP2. Similar results were also found with H2199 cells, another type of NSCLC. We found that PGD2 metabolites induce apoptosis effectively and that 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2) is a likely candidate for the principal apoptotic inducer in PGD2-induced apoptosis in NSCLC A549 cells.

  12. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    Science.gov (United States)

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  13. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma

    International Nuclear Information System (INIS)

    Gockel, Ines; Galle, Peter R; Junginger, Theodor; Moehler, Markus; Schimanski, Carl C; Heinrich, Christian; Wehler, T; Frerichs, K; Drescher, Daniel; Langsdorff, Christian von; Domeyer, Mario; Biesterfeld, Stefan

    2006-01-01

    Prognosis of esophageal cancer is poor despite curative surgery. The chemokine receptor CXCR4 has been proposed to distinctly contribute to tumor growth, dissemination and local immune escape in a limited number of malignancies. The aim of our study was to evaluate the role of CXCR4 in tumor spread of esophageal cancer with a differentiated view of the two predominant histologic types – squamous cell and adenocarcinoma. Esophageal cancer tissue samples were obtained from 102 consecutive patients undergoing esophageal resection for cancer with curative intent. The LSAB+ System was used to detect the protein CXCR4. Tumor samples were classified into two groups based on the homogeneous staining intensity. A cut-off between CXCR4w (= weak expression) and CXCR4s (= strong expression) was set at 1.5 (grouped 0 – 1.5 versus 2.0 – 3). Long-term survival rates were calculated using life tables and the Kaplan-Meier method. Using the Cox's proportional hazards analysis, a model of survival prediction was established. The overall expression rate for CXCR4 in esophageal squamous cell carcinoma was 94.1%. Subdividing these samples, CXCR4w was found in 54.9% and CXCR4s in 45.1%. In adenocarcinoma, an overall expression rate of 89.1% was detected with a weak intensitiy in 71.7% compared to strong staining in 29.3% (p = 0.066 squamous cell versus adenocarcinoma). The Cox's proportional hazards analysis identified the pM-category with a hazard ratio (HR) of 1.860 (95% CI: 1.014–3.414) (p = 0.045), the histologic tumor type (HR: 0.334; 95% CI: 0.180–0.618) (p = 0.0001) and the operative approach (transthoracic > transhiatal esophageal resection) (HR: 0.546; 95% CI: 0.324–0.920) (p = 0.023) as independent factors with a possible influence on the long-term prognosis in patients with esophageal carcinoma, whereas CXCR4 expression was statistically not significant (>0.05). Expression of the chemokine receptor CXCR4 in esophageal cancer is of major relevance in both

  14. The total flavonoids of Clerodendrum bungei suppress A549 cells proliferation, migration, and invasion by impacting Wnt/β-Catenin signaling

    Directory of Open Access Journals (Sweden)

    Na Yu

    2017-01-01

    Full Text Available Objectives: The objective of this study is to evaluate the effect of the total flavonoids of Clerodendrum bungei (TFCB on the proliferation, invasion, and metastasis of A549 lung cancer cells through the Wnt signaling pathway. Materials and Methods: A549 cells were transfected with a β-catenin overexpression plasmid and the empty vector pcDNA3.1. The A549 cells were divided into six groups: normal A549 cell group, normal A549 cells with TFCB group, vector control group, vector with TFCB group, β-catenin overexpression group, and β-catenin with TFCB group. We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay to detect cell proliferation, a scratch test was used to observe cell migration, and a transwell experiment was employed to evaluate cell invasion. Proteins related to the Wnt pathway were detected with Western blot analysis, including β-catenin, GSK-3 β, P-GSK-3 β, c-Myc, and CyclinD1. Results: The proliferation, invasion, and metastasis of A549 cells were significantly enhanced after being transfected with the β-catenin overexpression plasmid (P < 0.05 or 0.01, accompanied by increased expression of β-catenin, C-Myc, CyclinD1 and reduced expression of Gsk-3 β and P-GSK-3 β. Treatment of cells with TFCB resulted in inhibition of cell proliferation, migration, and invasion; downregulated expression of β-catenin, C-Myc, and CyclinD1; and upregulated expression of GSK-3 β and P-GSK-3 β, especially in the β-catenin overexpression group. Conclusion: TFCB has the potential to inhibit the Wnt/β-catenin pathway by prohibiting the overexpression of β-catenin and regulating its downstream factors.

  15. Dioscorin protects tight junction protein expression in A549 human airway epithelium cells from dust mite damage.

    Science.gov (United States)

    Fu, Lin Shien; Ko, Ying Hsien; Lin, Kuo Wei; Hsu, Jeng Yuan; Chu, Jao Jia; Chi, Chin Shiang

    2009-12-01

    In addition to being an allergen, the trypsin activity of dust mite extract also destroys the tight junctions of bronchial epithelium. Such damage can lead to airway leakage, which increases airway exposure to allergens, irritants, and other pathogens. Dioscorin, the storage protein of yam, demonstrates anti-trypsin activity, as well as other potential anti-inflammatory effects. This study investigated the protective role of dioscorin for tight junctions. The immunofluorescence stains of zonula occludens (ZO-1), E-cadherin (EC) and desmoplakin (DP) proteins were compared. A cultured A549 cell line was used as a control and A549 cells were incubated with mite extract 100 mg/mL for 16 h, with or without dioscorin 100 mg/mL pretreatment for 8 h and with dioscorin 100 mg/mL alone for 16 h. Western blot was performed to detect changes in ZO-1, EC, and DP in the treated A549 cell lines. Loss of tight junction protein expression (ZO-1, EC, DP) was demonstrated after 16-h mite extract incubation. The defect could be restored if cells were pretreated with dioscorin for 8 h. In addition, dioscorin did not cause damage to the A549 cell lines in terms of cell survival or morphology. Western blot showed no change in the amount of tight junction protein under various conditions. Dioscorin is a potential protector of airway damage caused by mite extract.

  16. ROS and NF-κB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Ye Shefang; Wu Yihui; Hou Zhenqing; Zhang Qiqing

    2009-01-01

    Carbon nanotubes (CNTs) have potential applications in biosensors, tissue engineering, and biomedical devices because of their unique physico-chemical, electronic and mechanical properties. However, there is limited literature data available concerning the biological properties and toxicity of CNTs. This study aimed to assess the toxicity exhibited by multi-walled CNTs (MWCNTs) and to elucidate possible molecular mechanisms underlying the biological effects of MWCNTs in A549 cells. Exposing A549 cells to MWCNTs led to cell death, changes in cell size and complexity, reactive oxygen species (ROS) production, interleukin-8 (IL-8) gene expression and nuclear factor (NF)-κB activation. Treatment of A549 cells with antioxidants prior to adding MWCNTs decreased ROS production and abrogated expression of IL-8 mRNA. Pretreatment of A549 cells with NF-κB inhibitors suppressed MWCNTs-induced IL-8 mRNA expression. These results indicate that MWCNTs are able to induce expression of IL-8 in A549 cells, at least in part, mediated by oxidative stress and NF-κB activation.

  17. Protocol for Lipid-Mediated Transient Transfection in A549 Epithelial Lung Cell Line.

    Science.gov (United States)

    Marcos-Vadillo, Elena; García-Sánchez, Asunción

    2016-01-01

    Trials of transfection in eukaryotic cells are essential tools for the study of gene and protein function. They have been used in a wide range of research fields. In this chapter, a method of transient transfection of the A549 cell line, human lung cells of alveolar epithelium, with an expression plasmid is described. In addition, the fundamental characteristics of this experimental procedure are addressed.

  18. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    Science.gov (United States)

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Curcumin Promoted the Apoptosis of Cisplain-resistant Human Lung Carcinoma Cells A549/DDP through Down-regulating miR-186*

    Directory of Open Access Journals (Sweden)

    Jian ZHANG

    2010-04-01

    Full Text Available Background and objective Curcumin, a natural compound, is derived from the rthizom of Curcuma longa. In vitro and in vivo preclinical studies have shown its anti-inflammatory, antioxidant, anticancer activities and so on. miR-186*, which was found by microarray technology, was highly expressed in lung carcinoma cells A549/DDP. The aim of this study is to illustrate whether Curcumin could promote the apoptosis of A549/DDP cells through regulating the expression of miR-186*. Methods An oligonucleotide microarray chip was used to profile microRNA (miRNA expressions in A549/DDP cells treated with and without Curcumin. The significantly differentially expressed miRNA, which was selected from microarray chip, validated by quantitative real-time PCR. Ultimately, the remarkably expressed miRNA modulated the apoptosis assaying by flow cytometry expriments and the survival rate was measured by MTT method. Results The microarray chip results demonstrated: Curcumin altered the expression level of miRNAs compared with untreated control in A549/DDP cell line, miR-186* was significantly down-regulated after Curcumin treatment, which confirmed by quantitative real-time PCR. Downregulation of miR-186* expression by curcumin elevated the apoptosis, and the survival rate of A549/DDP cells decreased; but up-regulation of miR-186* expression by transfection its mimics restrained the apoptosis, the survival rate of A549/DDP cells increased, which were assayed by flow cytometry expriments and MTT method. Conclusion Modulation of miRNAs expression may be an important mechanism underlying the biological roles of Curcumin.

  20. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  1. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    Directory of Open Access Journals (Sweden)

    Lionel Leclere

    Full Text Available Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3 protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  2. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Aman Wang

    2017-05-01

    Full Text Available Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22 with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.

  3. LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells.

    Science.gov (United States)

    Sato, Mariko; Hirose, Katsumi; Kashiwakura, Ikuo; Aoki, Masahiko; Kawaguchi, Hideo; Hatayama, Yoshiomi; Akimoto, Hiroyoshi; Narita, Yuichiro; Takai, Yoshihiro

    2015-09-01

    Hypoxia‑inducible factor 1 (HIF‑1) activates the transcription of genes that act upon the adaptation of cancer cells to hypoxia. LW6, an HIF‑1 inhibitor, was hypothesized to improve resistance to cancer therapy in hypoxic tumors by inhibiting the accumulation of HIF‑1α. A clear anti‑tumor effect under low oxygen conditions would indicate that LW6 may be an improved treatment strategy for cancer in hypoxia. In the present study, the HIF‑1 inhibition potential of LW6 on the growth and apoptosis of A549 lung cancer cells in association with oxygen availability was evaluated. LW6 was observed to inhibit the expression of HIF‑1α induced by hypoxia in A549 cells at 20 mM, independently of the von Hippel‑Lindau protein. In addition, at this concentration, LW6 induced hypoxia‑selective apoptosis together with a reduction in the mitochondrial membrane potential. The intracellular reactive oxygen species levels increased in LW6‑treated hypoxic A549 cells and LW6 induced a hypoxia‑selective increase of mitochondrial O2•‑. In conclusion, LW6 inhibited the growth of hypoxic A549 cells by affecting the mitochondria. The inhibition of the mitochondrial respiratory chain is suggested as a potentially effective strategy to target apoptosis in cancer cells.

  4. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    Science.gov (United States)

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.

  5. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    Science.gov (United States)

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  6. Factors involved in depletion of glutathione from A549 human lung carcinoma cells: implications for radiotherapy

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Varnes, M.E.; Epp, E.R.; Clark, E.P.

    1984-01-01

    The rate of GSH resynthesis has been measured in plateau phase cultures of A549 human lung carcinoma cells subjected to a fresh medium change. Buthionine sulfoximine (BSO) blocks this resynthesis. Diethyl maleate (DEM) causes a decrease in accumulation of GSH. If DEM is added concurrently with BSO there is a rapid decline in GSH that is maximal in the presence of 0.5 mM DEM. GSH depletion rapidly occurs when BSO is added to log phase cultures which initially are higher in GSH content. Twenty-four hr treatment of A549 cells with BSO results in cells that are more radiosensitive in air and show a slight hypoxic radiation response. A 2 hr treatment with DEM results in some hypoxic sensitization and little increase in the aerobic radiation response. Cells treated simultaneously with BSO + DEM show little increase in the hypoxic radiation response, compared to DEM alone, but are more sensitive under aerobic conditions. Decreased cell survival for aerobically irradiated log phase A549 cells occurs within minutes after addition of a mixture of BSO + DEM. The authors suggest that the enhanced aerobic radiation response is related to an inability of GSH depleted cells to inactivate either peroxy radicals or hydroperoxides that may be produced during irradiation of BSO treated cells. Furthermore, enhancement of the aerobic radiation response may be useful in vivo if normal tissue responses are not also increased

  7. A case with primary signet ring cell adenocarcinoma of the prostate and review of the literature

    Directory of Open Access Journals (Sweden)

    Orcun Celik

    2014-06-01

    Full Text Available Primary signet cell carcinoma of the prostate is a rare histological variant of prostate malignancies. It is commonly originated from the stomach, colon, pancreas, and less commonly in the bladder. Prognosis of the classical type is worse than the adenocarcinoma of the prostate. Primary signet cell adenocarcinoma is diagnosed by eliminating the adenocarcinomas of other organs such as gastrointestinal tract organs. In this case report, we present a case with primary signet cell adenocarcinoma of the prostate who received docetaxel chemotherapy because of short prostate specific antigen doubling time.

  8. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Wu Xinjiang; Kassie, Fekadu; Mersch-Sundermann, Volker

    2005-01-01

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS

  9. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xinjiang [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Kassie, Fekadu [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Mersch-Sundermann, Volker [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany)]. E-mail: Volker.mersch-sundermann@uniklinikum-giessen.de

    2005-11-11

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.

  10. Enhanced production of nitric oxide in A549 cells through activation of TRPA1 ion channel by cold stress.

    Science.gov (United States)

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Wang, Xu; Han, Yaling; Ma, Zhuang

    2014-08-31

    The respiratory epithelium is exposed to the external environment, and inhalation of cold air is common during the season of winter. In addition, the lung is a major source of nitric oxide (NO). However, the effect of cold stress on the production of NO is still unclear. In the present work, We measured the change of NO in single cell with DACF-DA and the change in cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 °C to 5 °C) induced an increase of NO in A549 cell, which was completely abolished by applying an extracellular Ca(2+) free medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) channel agonist (allyl isothiocyanate, AITC) increased the production of NO and the level of [Ca(2+)]c in A549 cell. Additionally, TRPA1 inhibitor, Ruthenium red (RR) and camphor, significantly blocked the enhanced production of NO and the rise of [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data indicated that cold-induced TRPA1 activation was responsible for the enhanced production of NO in A549 cell. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    Science.gov (United States)

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui-Hsuan [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chou, Fen-Pi [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Wang, Chau-Jong [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Hsuan, Shu-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China); Wang, Cheng-Kun [E-Chyun Dermatology Clinic, No.70, Sec. 3, Jhonghua E. Rd., East District, Tainan, Taiwan (China); Chen, Jing-Hsien [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China)

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  13. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  14. TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells

    International Nuclear Information System (INIS)

    Zhang, Siyang; Guo, Dawei; Luo, Wenting; Zhang, Qingfu; Zhang, Ying; Li, Chunyan; Lu, Yao; Cui, Zeshi; Qiu, Xueshan

    2010-01-01

    Aberrant regulation in the invasion of cancer cells is closely associated with their metastatic potentials. TrkB functions as a receptor tyrosine kinase and is considered to facilitate tumor metastasis. Pyk2 is a non-receptor tyrosine kinase and integrates signals in cell invasion. However, little is known about the expression of TrkB in NSCLC and whether Pyk2 is involved in TrkB-mediated invasion of A549 cells. The expression of TrkB was investigated in NSCLC by immunohistochemical staining. Both HBE and A549 cells were treated with BDNF. The expression of TrkB, Pyk2 and ERK phosphorylations were assessed by western blot. Besides, A549 cells were transfected with TrkB-siRNA or Pyk2-siRNA, or treated with ERK inhibitor where indicated. Transwell assay was performed to evaluate cell invasion. 40 cases (66.7%) of NSCLC were found higher expression of TrkB and patients with more TrkB expression had significant metastatic lymph nodes (p = 0.028). BDNF facilitated the invasion of A549 cells and the activations of Pyk2 in Tyr402 and ERK. However, the effects of BDNF were not observed in HBE cells with lower expression of TrkB. In addition, the increased Pyk2 and ERK activities induced by BDNF were significantly inhibited by blocking TrkB expression, so was the invasion of A549 cells. Knockdown studies revealed the essential role of Pyk2 for BDNF-induced cell invasion, since the invasion of A549 cells was abolished by Pyk2-siRNA. The application of ERK inhibitor also showed the suppressed ERK phosphorylation and cell invasion. These data indicated that higher expression of TrkB in NSCLC was closely correlated with lymph node metastasis, and BDNF probably via TrkB/Pyk2/ERK promoted the invasion of A549 cells

  15. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Juncheng; Wu, Jihui [School of Life Science, University of Science and Technology of China, Hefei 230022 (China); Luo, Cheng, E-mail: Luo58@yahoo.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  16. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-01

    Highlights: ► A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. ► We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. ► The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. ► The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  17. Correlation between matrix metalloproteinase-9 and vascular endothelial growth factor expression in lung adenocarcinoma.

    Science.gov (United States)

    Wen, Y L; Li, L

    2015-12-29

    The aim of this study was to investigate the correlation between the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) and clinicopathological features of lung adenocarcinoma. The expression of MMP-9 and VEGF was evaluated by immunohistochemistry of 30 samples from lung adenocarcinoma patients and 12 paratumoral (normal) tissue samples. In addition, the change in VEGF or MMP-9 expression after MMP-9 or VEGF blockade, respectively, was measured using western blot in lung adenocarcinoma A549 cells. High expression of MMP-9 was found in 63.3% of adenocarcinoma tissues versus 16.7% in normal tissues (P correlation was identified between MMP-9 and VEGF expression (correlation coefficient = 0.7094, P < 0.001), and their mutual overexpression was associated with clinical staging and lymph node status (P < 0.05). In addition, an decrease in VEGF protein expression was observed after MMP-9 blockade by an MMP-9-specific monoclonal antibody. Similarly, a decrease in MMP-9 protein expression was found after VEGF blockade by a VEGF-specific monoclonal antibody. In conclusion, VEGF and MMP-9 are overexpressed in lung adenocarcinoma tissues, and they have a synergistic effect on the invasion and metastasis of adenocarcinoma.

  18. Sequentially administrated of pemetrexed with icotinib/erlotinib in lung adenocarcinoma cell lines in vitro.

    Science.gov (United States)

    Feng, Xiuli; Zhang, Yan; Li, Tao; Li, Yu

    2017-12-26

    Combination of chemotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved to be a potent anti-drug for the treatment of tumors. However, survival time was not extended for the patients with lung adenocarcinoma (AdC) compared with first-line chemotherapy. In the present study, we attempt to assess the optimal schedule of the combined administration of pemetrexed and icotinib/erlotinib in AdC cell lines. Human lung AdC cell lines with wild-type (A549), EGFR T790M (H1975) and activating EGFR mutation (HCC827) were applied in vitro to assess the differential efficacy of various sequential regimens on cell viability, cell apoptosis and cell cycle distribution. The results suggested that the antiproliferative effect of the sequence of pemetrexed followed by icotinib/erlotinib was more effective than that of icotinib/erlotinib followed by pemetrexed. Additionally, a reduction of G1 phase and increased S phase in sequence of pemetrexed followed by icotinib/erlotinib was also observed, promoting cell apoptosis. Thus, the sequential administration of pemetrexed followed by icotinib/erlotinib exerted a synergistic effect on HCC827 and H1975 cell lines compared with the reverse sequence. The sequential treatment of pemetrexed followed by icotinib/erlotinib has been demonstrated promising results. This treatment strategy warrants further confirmation in patients with advanced lung AdC.

  19. Cell kinetic parameters of a solid mammary adenocarcinoma

    International Nuclear Information System (INIS)

    Porschen, R.; Feinendegen, L.E.

    1978-01-01

    Several cell kinetic parameters of the mammary adenocarcinoma EO 771 were evaluated by means of tumor volume measurements and of 125 I-UdR. The in-situ measured activity loss rate is disturbed by a slow elimination of labelled necrotic cells and by reutilization of 125 I-UdR. The restrictions of the I-UdR method are mentioned and the measured activity loss rates are compared with calculated volume loss rates. (orig./MG) [de

  20. The Effects of Davallic Acid from Davallia divaricata Blume on Apoptosis Induction in A549 Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tsu-Liang Chang

    2012-11-01

    Full Text Available Traditional or folk medicinal herbs continue to be prescribed in the treatment of various diseases and conditions in many cultures. Recent scientific efforts have focused on the potential roles of extracts of traditional herbs as alternative and complementary medications for cancer treatment. In Taiwan, Davallia divaricata Blume has been traditionally employed in folk medicine for therapy of lung cancer, davallic acid being the major active compound of D. divaricata Blume. In this study, we investigated the inhibitory activity of davallic acid on the proliferation of A549 lung cancer cells. Davallic acid was extracted from D. divaricata Blume, and its effects on cell viability, cell cycle distribution, ROS level, and apoptotic protein expression in A549 cells were determined. Davallic acid significantly induced reactive oxygen species (ROS generation as well as caspase-3, -8, and -9 activation, thereby repressing A549 cell growth and elevating apoptotic activity. Since lung cancer has a high incidence of recurrence, these results indicate that davallic acid may have the potential to be a natural anti-lung cancer compound, and may provide a basis for further study of its use in combating cancer.

  1. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Directory of Open Access Journals (Sweden)

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  2. Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells.

    Science.gov (United States)

    Kaewpiboon, Chutima; Boonnak, Nawong; Kaowinn, Sirichat; Chung, Young-Hwa

    2018-02-15

    Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4. Copyright © 2017. Published by Elsevier Ltd.

  3. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    Science.gov (United States)

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  4. Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential.

    Science.gov (United States)

    Ni, Chien-Hang; Yu, Chun-Shu; Lu, Hsu-Feng; Yang, Jai-Sing; Huang, Hui-Ying; Chen, Po-Yuan; Wu, Shin-Hwar; Ip, Siu-Wan; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-05-01

    Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨm ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 740-749, 2014. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  5. Enhancement of cell death by TNF α-related apoptosis-inducing ligand (TRAIL) in human lung carcinoma A549 cells exposed to X rays under hypoxia

    International Nuclear Information System (INIS)

    Takahashi, Momoko; Inanami, Osamu; Yasui, Hironobu; Ogura, Aki; Kuwabara, Mikinori; Kubota, Nobuo; Tsujitani, Michihiko

    2007-01-01

    Our previous study showed that ionizing radiation induced the expression of death receptor DR5 on the cell surface in tumor cell lines and that the death receptor of the TNF α-related apoptosis-inducing ligand TRAIL enhanced the apoptotic pathway (Hamasu et al., (2005) Journal of Radiation Research, 46:103-110). The present experiments were performed to examine whether treatment with TRAIL enhanced the cell killing in tumor cells exposed to ionizing radiation under hypoxia, since the presence of radioresistant cells in hypoxic regions of solid tumors is a serious problem in radiation therapy for tumors. When human lung carcinoma A549 cells were irradiated under normoxia and hypoxia, respectively, radiation-induced enhancement of expression of DR5 was observed under both conditions. Incubation in the presence of TRAIL enhanced the caspase-dependent and chymotrypsin-like-protease-dependent apoptotic cell death in A549 cells exposed to X rays. Furthermore, it was shown that treatment with TRAIL enhanced apoptotic cell death and loss of clonogenic ability in A549 cells exposed to X rays not only under normoxia but also under hypoxia, suggesting that combination treatment with TRAIL and X irradiation is effective for hypoxic tumor cells. (author)

  6. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shang-Jyh [Department of Chest Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Su, Jen-Liang [Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan (China); Department of Biotechnology, Asia University, Taichung, Taiwan (China); Chen, Chi-Kuan [Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua [Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Bien, Mauo-Ying [School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Yang, Shun-Fa [Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chien, Ming-Hsien, E-mail: mhchien1976@gmail.com [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  7. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  8. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    Guo, Kai; Jin, Faguang

    2015-01-01

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  9. Microarray-based apoptosis gene screening technique in trichostatin A-induced drug-resisted lung cancer A549/CDDP cells

    Directory of Open Access Journals (Sweden)

    Ya-jun WANG

    2016-09-01

    Full Text Available Objective  To detect the expression profile changes of apoptosis-related genes in trichostatin A (TSA-induced drug-resisted lung cancer cells A549/CDDP by microarray, in order to screen the target genes in TSA treating cisplatin-resisted lung cancer. Methods  A549/CDDP cells were treated by TSA for 24 hours. Total RNA was extracted and reversely transcribed into cDNA. Gene expression levels were detected by the NimbleGen whole genome microarray. Differences of expression profiles between TSA-treated and control group were measured by NimbleScan 2.5 software and GO analysis. Apoptosis and proliferation related genes were screened from the expression changed genes. Results  Compared with the control group, 85 apoptosis-related genes were up-regulated and 43 growth or proliferation related genes were down-regulated in the TSA-treated group. GO analysis showed that the functions of these genes are mainly regulating apoptosis, cell resistance to chem ical stimuli protein, as well as regulating cell growth, proliferation and the biological process of maintaining the cell biological quality. TSA-activated not only the mitochondrial apoptotic pathways, but also the death receptor related apoptosis pathway, and down-regulated the drug resistance related genes BAG3 and ABCC2. Conclusion  TSA may cause the expression changes of apoptotic and proliferation genes in A549/CDDP cells, these genes may play a role in TSA treating cisplatin-resisted lung cancer. DOI: 10.11855/j.issn.0577-7402.2016.08.07

  10. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    Science.gov (United States)

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  11. Lysine-specific demethylase 2A expression is associated with cell growth and cyclin D1 expression in colorectal adenocarcinoma.

    Science.gov (United States)

    Cao, Lin-Lin; Du, Changzheng; Liu, Hangqi; Pei, Lin; Qin, Li; Jia, Mei; Wang, Hui

    2018-04-01

    Lysine-specific demethylase 2A (KDM2A), a specific H3K36me1/2 demethylase, has been reported to be closely associated with several types of cancer. In this study, we aimed to investigate the expression and function of KDM2A in colorectal adenocarcinoma. A total of 215 colorectal adenocarcinoma specimens were collected, and then subjected to immunohistochemistry assay to evaluate the expression levels of KDM2A, cyclin D1 and other proteins in colorectal adenocarcinoma tissues. Real-time polymerase chain reaction, Western blot, and other molecular biology methods were used to explore the role of KDM2A in colorectal adenocarcinoma cells. In this study, we report that the expression level of KDM2A is high in colorectal adenocarcinoma tissues, and this high expression promotes the proliferation and colony formation of colorectal adenocarcinoma cells, as demonstrated by KDM2A knockdown experiments. In addition, the expression of KDM2A is closely associated with cyclin D1 expression in colorectal adenocarcinoma tissues and cell lines. Our study reveals a novel role for high-expressed KDM2A in colorectal adenocarcinoma cell growth, and that the expression of KDM2A is associated with that of cyclin D1 in colorectal adenocarcinoma.

  12. A rare tumoral combination, synchronous lung adenocarcinoma and mantle cell lymphoma of the pleura

    Directory of Open Access Journals (Sweden)

    Foroulis Christophoros N

    2008-12-01

    Full Text Available Abstract Background Coexistence of adenocarcinoma and mantle cell lymphoma in the same or different anatomical sites is extremely rare. We present a case of incidental discovery of primary lung adenocarcinoma and mantle cell lymphoma involving the pleura, during an axillary thoracotomy performed for a benign condition. Case presentation A 73-year old male underwent bullectomy and apical pleurectomy for persistent pneumothorax. A bulla of the lung apex was resected en bloc with a scar-like lesion of the lung, which was located in proximity with the bulla origin, by a wide wedge resection. Histologic examination of the stripped-off parietal pleura and of the bullectomy specimen revealed the synchronous occurrence of two distinct neoplasms, a lymphoma infiltrating the pleura and a primary, early lung adenocarcinoma. Immunohistochemical and fluorescence in situ hybridization assays were performed. The morphologic, immunophenotypic and genetic findings supported the diagnosis of primary lung adenocarcinoma (papillary subtype coexisting with a non-Hodgkin, B-cell lineage, mantle cell lymphoma involving both, visceral and parietal pleura and without mediastinal lymph node involvement. The neoplastic lymphoid cells showed the characteristic immunophenotype of mantle cell lymphoma and the translocation t(11;14. The patient received 6 cycles of chemotherapy, while pulmonary function tests precluded further pulmonary parenchyma resection (lobectomy for his adenocarcinoma. The patient is alive and without clinical and radiological findings of local recurrence or distant relapse from both tumors 14 months later. Conclusion This is the first reported case of a rare tumoral combination involving simultaneously lung and pleura, emphasizing at the incidental discovery of the two coexisting neoplasms during a procedure performed for a benign condition. Any tissue specimen resected during operations performed for non-tumoral conditions should be routinely sent for

  13. Effects of radioactive 125I seeds on A549 cell line and human embryonic lung diploid cell line 2BS cultivated in vitro and assessment of its clinical safety dose

    International Nuclear Information System (INIS)

    Bian Wenchao; Qi Liangchen

    2012-01-01

    Objective: To observe the cell count changes of A549 cell line and human embryonic lung diploid cell line 2BS after irradiated by 125 I seeds with different doses, and to study the growth inhibition of 125 I on this two kinds of cell lines, and to determine its clinical safety dose in treatment of non-small cell lung. Methods: 125 I seeds with different doses (low dose: 0.2 mCi, mediate dose: 0.4 mCi, high dose: 0.8 mCi) were chosen and put into A549 cells and human embryonic lung diploid cell line 2BS in vitro, the cells on the 2nd, 4th, 6th and 8th days after irradiation were collected, the alive cells were counted by cells dyeing experiments, then the growth curves were drawn, and the IC 50 of the radioactive 125 I seeds to both two cell lines were calculated. Results: Compared with blank and control groups, the cell proliferation trend of A549 cells in low dose group was not significantly influenced (P>0.05), but the growth of A549 cells in mediate and high dose groups were inhibited in a time-dependent manner, there were significant differences (P<0.05), the most obvious change was on the 6th day. The IC 50 of the radioactive 125 I seeds to A549 cells was about .04 mCi. While the growth inhibition of 125 I 2BS had no statistically significant differences between various dose groups (P>0.05), and the IC 50 of the radioactive 125 I seeds to 2BS cell line was about 1.65 mCi. Conclusion: 0.4 mCi of radioactive 125 I seeds has already had the obvious damage effect on A549 cell, 0.8 mCi of radioactive 125 I seeds has the stronger effect. The IC 50 of the radioactive 125 I seeds to 2BS cells is about 1.65 mCi, so the clinical safety dosage is 0.4-0.8 mCi. (authors)

  14. Increased risk of gastric adenocarcinoma after treatment of primary gastric diffuse large B-cell lymphoma

    International Nuclear Information System (INIS)

    Inaba, Koji; Morota, Madoka; Mayahara, Hiroshi; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun; Kushima, Ryoji; Murakami, Naoya; Kuroda, Yuuki; Harada, Ken; Kitaguchi, Mayuka; Yoshio, Kotaro; Sekii, Shuhei; Takahashi, Kana

    2013-01-01

    There have been sporadic reports about synchronous as well as metachronous gastric adenocarcinoma and primary gastric lymphoma. Many reports have dealt with metachronous gastric adenocarcinoma in mucosa-associated lymphoid tissue lymphoma of stomach. But to our knowledge, there have been no reports that document the increased incidence of metachronous gastric adenocarcinoma in patients with gastric diffuse large B-cell lymphoma. This retrospective study was conducted to estimate the incidence of metachronous gastric adenocarcinoma after primary gastric lymphoma treatment, especially in diffuse large B-cell lymphoma. The retrospective cohort study of 139 primary gastric lymphoma patients treated with radiotherapy at our hospital. Mean observation period was 61.5 months (range: 3.7-124.6 months). Patients profile, characteristics of primary gastric lymphoma and metachronous gastric adenocarcinoma were retrieved from medical records. The risk of metachronous gastric adenocarcinoma was compared with the risk of gastric adenocarcinoma in Japanese population. There were 10 (7.2%) metachronous gastric adenocarcinoma patients after treatment of primary gastric lymphomas. It was quite high risk compared with the risk of gastric carcinoma in Japanese population of 54.7/100,000. Seven patients of 10 were diffuse large B-cell lymphoma and other 3 patients were mixed type of diffuse large B-cell lymphoma and mucosa associated lymphoid tissue lymphoma. Four patients of 10 metachronous gastric adenocarcinomas were signet-ring cell carcinoma and two patients died of gastric adenocarcinoma. Metachronous gastric adenocarcinoma may have a more malignant potential than sporadic gastric adenocarcinoma. Old age, Helicobacter pylori infection and gastric mucosal change of chronic gastritis and intestinal metaplasia were possible risk factors for metachronous gastric adenocarcinoma. There was an increased risk of gastric adenocarcinoma after treatment of primary gastric lymphoma

  15. Toxic response of nickel nanoparticles in human lung epithelial A549 cells.

    Science.gov (United States)

    Ahamed, Maqusood

    2011-06-01

    Nickel nanoparticle (Ni NP) is increasingly used in modern industries such as catalysts, sensors and electronic applications. Due to wide-spread industrial applications the inhalation is the primary source of exposure to Ni NPs. However, data demonstrating the effect of Ni NPs on the pulmonary system remain scarce. The present study was designed to examine the toxic effect of human lung epithelial A549 cells treated with well characterized Ni NPs at the concentrations of 0, 1, 2, 5, 10 and 25 μg/ml for 24 and 48 h. Mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH), reactive oxygen species (ROS), membrane lipid peroxidation (LPO) and caspase-3 activity were assessed as toxicity end points. Results showed that Ni NPs reduced mitochondrial function and induced the leakage of LDH in dose and time-dependent manner. Ni NPs were also found to induce oxidative stress in dose and time-dependent manner indicated by depletion of GSH and induction of ROS and LPO. Further, activity of caspase-3 enzyme, marker of apoptosis was significantly higher in treated cells with time and Ni NPs dosage. The results exhibited significant toxicity of Ni NPs in human lung epithelial A549 cells which is likely to be mediated through oxidative stress. This study warrants more careful assessment of Ni NPs before their industrial applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. File list: His.Lng.20.AllAg.Lung_adenocarcinoma_cell_lines [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.AllAg.Lung_adenocarcinoma_cell_lines hg19 Histone Lung Lung adenocarcino...ma cell lines SRX1143596,SRX1143597,SRX1143598,SRX1143599 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.20.AllAg.Lung_adenocarcinoma_cell_lines.bed ...

  17. Genistein enhances the effect of trichostatin A on inhibition of A549 cell growth by increasing expression of TNF receptor-1

    International Nuclear Information System (INIS)

    Wu, Tzu-Chin; Yang, Ying-Chihi; Huang, Pei-Ru; Wen, Yu-Der; Yeh, Shu-Lan

    2012-01-01

    Our previous study has shown that genistein enhances apoptosis in A549 lung cancer cells induced by trichostatin A (TSA). The precise molecular mechanism underlying the effect of genistein, however, remains unclear. In the present study, we investigated whether genistein enhances the anti-cancer effect of TSA through up-regulation of TNF receptor-1 (TNFR-1) death receptor signaling. We incubated A549 cells with TSA (50 ng/mL) alone or in combination with genistein and then determined the mRNA and protein expression of TNFR-1 as well as the activation of downstream caspases. Genistein at 5 and 10 μM significantly enhanced the TSA-induced decrease in cell number and apoptosis in a dose-dependent manner. The combined treatment significantly increased mRNA and protein expression of TNFR-1 at 6 and 12 h, respectively, compared with that of the control group; while TSA alone had no effect. TSA in combination with 10 μM of genistein increased TNFR-1 mRNA and protein expression by about 70% and 40%, respectively. The underlying mechanism for this effect of genistein may be partly associated with the estrogen receptor pathway. The combined treatment also increased the activation of caspase-3 and ‐10 as well as p53 protein expression in A549 cells. The enhancing effects of genistein on the TSA-induced decrease in cell number and on the expression of caspase-3 in A549 cells were suppressed by silencing TNFR-1 expression. These data demonstrated that the upregulation of TNFR-1 death receptor signaling plays an important role, at least in part, in the enhancing effect of genistein on TSA-induced apoptosis in A549 cells. -- Highlights: ► TSA combined with genistein rather than TSA alone increases the expression of TNFR-1. ► Genistein may exert such an effect partly through estrogen receptor pathway. ► The combined treatment increases the activation of caspase-10 and caspase-3. ► The combined treatment also increases the expression of p53 protein. ► TNFR-1 si

  18. Primary mucinous adenocarcinoma of the bladder with signet-ring cells: case report

    Directory of Open Access Journals (Sweden)

    Marcelo Lorenzi Marques

    Full Text Available CONTEXT: Primary adenocarcinomas of the bladder are uncommon and usually occur by contiguity with or hematogenic dissemination of other adenocarcinomas such as colorectal, prostate and gynecological tract carcinomas. Mucinous and signet-ring cell histological patterns are even rarer and it is often difficult to morphologically distinguish them from metastatic colorectal adenocarcinoma. CASE REPORT: We present and discuss a rare case of primary mucinous adenocarcinoma of the bladder with signet-ring cells in a 57-year-old male patient. Other primary sites for the tumor had been excluded and, in the absence of digestive tract tumor and for confirmation that it was a primary bladder tumor, an immunohistochemistry study was performed.

  19. Cytomorphological features of ALK-positive lung adenocarcinomas: psammoma bodies and signet ring cells.

    Science.gov (United States)

    Pareja, Fresia; Crapanzano, John P; Mansukhani, Mahesh M; Bulman, William A; Saqi, Anjali

    2015-03-01

    Correlation between histology and genotype has been described in lung adenocarcinomas. For example, studies have demonstrated that adenocarcinomas with an anaplastic lymphoma kinase (ALK) gene rearrangement may have mucinous features. The objective of the current study was to determine whether a similar association can be identified in cytological specimens. A retrospective search for ALK-rearranged cytopathology (CP) and surgical pathology (SP) lung carcinomas was conducted. Additional ALK-negative (-) lung adenocarcinomas served as controls. For CP and SP cases, the clinical data (i.e., age, sex, and smoking history), architecture, nuclear features, presence of mucin-containing cells (including signet ring cells), and any additional salient characteristics were evaluated. The search yielded 20 ALK-positive (+) adenocarcinomas. Compared with patients with ALK(-) lung adenocarcinomas (33 patients; 12 with epidermal growth factor receptor [EGFR]-mutation, 11 with Kristen rat sarcoma [KRAS]-mutation, and 10 wild-type adenocarcinomas), patients with ALK(+) adenocarcinoma presented at a younger age; and there was no correlation noted with sex or smoking status. The most common histological pattern in SP was papillary/micropapillary. Mucinous features were associated with ALK rearrangement in SP specimens. Signet ring cells and psammoma bodies were evident in and significantly associated with ALK(+) SP and CP specimens. However, psammoma bodies were observed in rare adenocarcinomas with an EGFR mutation. Both the ALK(+) and ALK(-) groups had mostly high nuclear grade. Salient features, including signet ring cells and psammoma bodies, were found to be significantly associated with ALK(+) lung adenocarcinomas and are identifiable on CP specimens. Recognizing these may be especially helpful in the molecular triage of scant CP samples. © 2014 American Cancer Society.

  20. Somatostatin-receptor-targeted α-emitting 213Bi is therapeutically more effective than β--emitting 177Lu in human pancreatic adenocarcinoma cells

    International Nuclear Information System (INIS)

    Nayak, Tapan K.; Norenberg, Jeffrey P.; Anderson, Tamara L.; Prossnitz, Eric R.; Stabin, Michael G.; Atcher, Robert W.

    2007-01-01

    Introduction: Advance clinical cancer therapy studies of patients treated with somatostatin receptor (sstr)-targeted [DOTA 0 -Tyr 3 ]octreotide (DOTATOC) labeled with low-linear-energy-transfer (LET) β - -emitters have shown overall response rates in the range of 15-33%. In order to improve outcomes, we sought to compare the therapeutic effectiveness of sstr-targeted high-LET α-emitting 213 Bi to that of low-LET β - -emitting 177 Lu by determining relative biological effectiveness (RBE) using the external γ-beam of 137 Cs as reference radiation. Methods: Sstr-expressing human pancreatic adenocarcinoma Capan-2 cells and A549 control cells were used for this study. The effects of different radiation doses of 213 Bi and 177 Lu labeled to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and sstr-targeted DOTATOC were investigated with a clonogenic cell survival assay. Apoptosis was measured using the Cell Death Detection ELISA PLUS 10x kit. Results: Using equimolar DOTATOC treatment with concurrent irradiation with a 137 Cs source as reference radiation, the calculated RBE of [ 213 Bi]DOTATOC was 3.4, as compared to 1.0 for [ 177 Lu]DOTATOC. As measured in terms of absorbance units, [ 213 Bi]DOTATOC caused a 2.3-fold-greater release of apoptosis-specific mononucleosomes and oligonucleosomes than [ 177 Lu]DOTATOC at the final treatment time of 96 h (P 213 Bi]DOTATOC is therapeutically more effective in decreasing survival than is [ 177 Lu]DOTATOC in human pancreatic adenocarcinoma cells due to its comparatively higher RBE

  1. Primary Signet Ring Cell Adenocarcinoma of the Urinary Bladder: A Report of 2 Cases

    Directory of Open Access Journals (Sweden)

    Wiem Boukettaya

    2014-05-01

    Full Text Available Primary signet ring cell carcinoma of the urinary bladder is a rare and aggressive histologic subtype of adenocarcinoma. In general, this tumor occurs in the middle age, and clinical presentation does not differ from transitional cell carcinomas. The prognosis is often poor, given the advanced stage at diagnosis. To our knowledge, <100 cases of signet ring cell adenocarcinoma of the urinary bladder have been reported. We report 2 cases with bladder linitis plastica primitive, and we draw attention to its pathologic, anatomoclinical, and evolution specificity to optimize its therapeutic management.

  2. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    Full Text Available The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2, xeroderma pigmentosum complementation group C (XPC, stress inducible protein (SIP and p21 compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

  3. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells.

    Science.gov (United States)

    Jung, Ha-Na; Zerin, Tamanna; Podder, Biswajit; Song, Ho-Yeon; Kim, Yong-Sik

    2014-06-01

    In Korea, lung disease of children and pregnant women associated with humidifier disinfectant use has become a major concern. A common sterilizer is polyhexamethylene guanidine (PHMG), a member of the guanidine family of antiseptics. This study was done to elucidate the putative cytotoxic effect of PHMG and the PHMG-mediated altered gene expression in human alveolar epithelial A549 cells in vitro. Cell viability analyses revealed the potent cytotoxicity of PHMG, with cell death evident at as low as 5 μg/mL. Death was dose- and time-dependent, and was associated with formation of intracellular reactive oxygen species, and apoptosis significantly, at even 2 μg/mL concentration. The gene expression profile in A549 cells following 24 h exposure to 5 μg/mL of PHMG was investigated using DNA microarray analysis. Changes in gene expression relevant to the progression of cell death included induction of genes related to apoptosis, autophagy, fibrosis, and cell cycle. However, the expressions of genes encoding antioxidant and detoxifying enzymes were down-regulated or not affected. The altered expression of selected genes was confirmed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The collective data suggest that PHMG confers cellular toxicity through the generation of intracellular reactive oxygen species and alteration of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    Science.gov (United States)

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  5. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  6. Anticancer Effects of Sinulariolide-Conjugated Hyaluronan Nanoparticles on Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Kuan Yin Hsiao

    2016-03-01

    Full Text Available Lung cancer is one of the most clinically challenging malignant diseases worldwide. Sinulariolide (SNL, extracted from the farmed coral species Sinularia flexibilis, has been used for suppressing malignant cells. For developing anticancer therapeutic agents, we aimed to find an alternative for non-small cell lung cancer treatment by using SNL as the target drug. We investigated the SNL bioactivity on A549 lung cancer cells by conjugating SNL with hyaluronan nanoparticles to form HA/SNL aggregates by using a high-voltage electrostatic field system. SNL was toxic on A549 cells with an IC50 of 75 µg/mL. The anticancer effects of HA/SNL aggregates were assessed through cell viability assay, apoptosis assays, cell cycle analyses, and western blotting. The size of HA/SNL aggregates was approximately 33–77 nm in diameter with a thin continuous layer after aggregating numerous HA nanoparticles. Flow cytometric analysis revealed that the HA/SNL aggregate-induced apoptosis was more effective at a lower SNL dose of 25 µg/mL than pure SNL. Western blotting indicated that caspases-3, -8, and -9 and Bcl-xL and Bax played crucial roles in the apoptotic signal transduction pathway. In summary, HA/SNL aggregates exerted stronger anticancer effects on A549 cells than did pure SNL via mitochondria-related pathways.

  7. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chia-Ling [Translational Research Center, Taipei Medical University, Taipei 110, Taiwan (China); Chiang, Tzu-Hui; Tseng, Po-Chun [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Wang, Yu-Chih [Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin2014@tmu.edu.tw [Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-10-23

    Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cells also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.

  8. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    Science.gov (United States)

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Tissue detection of natural killer cells in colorectal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Patsouris Efstratios S

    2004-09-01

    Full Text Available Abstract Background Natural killer (NK cells represent a first line of defence against a developing cancer; however, their exact role in colorectal cancer remains undetermined. The aim of the present study was to evaluate the expression of CD16 and CD57 [immunohistochemical markers of natural NK cells] in colorectal adenocarcinoma. Methods Presence of NK cells was investigated in 82 colorectal adenocarcinomas. Immunohistochemical analysis was performed, using 2 monoclonal antibodies (anti-Fc Gamma Receptor II, CD16 and an equivalent to Leu-7, specific for CD-57. The number of immunopositive cells (% was evaluated by image analysis. The cases were characterized according to: patient gender and age, tumor location, size, grade, bowel wall invasion, lymph node metastases and Dukes' stage. Results NK cells were detected in 79/82 cases at the primary tumor site, 27/33 metastatic lymph nodes and 3/4 hepatic metastases; they were detected in levels similar to those reported in the literature, but their presence was not correlated to the clinical or pathological characteristics of the series, except for a negative association with the patients' age (p = 0.031. Conclusions Our data do not support an association of NK cell tissue presence with clinical or pathological variables of colorectal adenocarcinoma, except for a negative association with the patients' age; this might possibly be attributed to decreased adhesion molecule expression in older ages.

  10. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.

    Science.gov (United States)

    Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan

    2014-12-05

    The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of

  11. Preprocessing with Photoshop Software on Microscopic Images of A549 Cells in Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Ren, Zhou-Xin; Yu, Hai-Bin; Shen, Jun-Ling; Li, Ya; Li, Jian-Sheng

    2015-06-01

    To establish a preprocessing method for cell morphometry in microscopic images of A549 cells in epithelial-mesenchymal transition (EMT). Adobe Photoshop CS2 (Adobe Systems, Inc.) was used for preprocessing the images. First, all images were processed for size uniformity and high distinguishability between the cell and background area. Then, a blank image with the same size and grids was established and cross points of the grids were added into a distinct color. The blank image was merged into a processed image. In the merged images, the cells with 1 or more cross points were chosen, and then the cell areas were enclosed and were replaced in a distinct color. Except for chosen cellular areas, all areas were changed into a unique hue. Three observers quantified roundness of cells in images with the image preprocess (IPP) or without the method (Controls), respectively. Furthermore, 1 observer measured the roundness 3 times with the 2 methods, respectively. The results between IPPs and Controls were compared for repeatability and reproducibility. As compared with the Control method, among 3 observers, use of the IPP method resulted in a higher number and a higher percentage of same-chosen cells in an image. The relative average deviation values of roundness, either for 3 observers or 1 observer, were significantly higher in Controls than in IPPs (p Photoshop, a chosen cell from an image was more objective, regular, and accurate, creating an increase of reproducibility and repeatability on morphometry of A549 cells in epithelial to mesenchymal transition.

  12. Triple composite tumor of stomach: A rare combination of alpha fetoprotein positive hepatoid adenocarcinoma, tubular adenocarcinoma and large cell neuroendocrine carcinoma

    Directory of Open Access Journals (Sweden)

    Lipika Lipi

    2014-01-01

    Full Text Available A 50-year-old male patient presented with pain abdomen of 6 months duration. Computed tomography scan revealed a large mass in the stomach occluding the lumen. Histopathology revealed a triple composite tumor comprising of tubular adenocarcinoma arising on a background of high-grade dysplasia, hepatoid adenocarcinoma (positive for Hep Par-1 and alpha fetoprotein and large cell neuroendocrine carcinoma (positive for synaptophysin and chromogranin with nodal metastasis.Triple composite tumors are distinctly rare with few reports in literature.

  13. The comparison of CT findings between peripheral pulmonary squamous cell carcinoma and pulmonary adenocarcinoma

    International Nuclear Information System (INIS)

    Tan Guosheng; Yang Xufeng; Zhou Xuhui; Li Ziping; Fan Miao; Chen Jindi

    2007-01-01

    Objective: To compare the principal HRCT features of peripheral pulmonary squamous cell carcinoma and pulmonary adenocarcinoma and to explore their pathological mechanism, in order to improve the recognition of the CT signs of peripheral pulmonary carcinoma. Methods: The principal HRCT signs of thirty-five cases with pathologically proved peripheral pulmonary squamous cell carcinoma and forty cases with pathologically proved peripheral pulmonary adenocarcinoma were analyzed retrospectively to explore the relationship between CT features and pathological findings. Results: The main features of peripheral pulmonary squamous cell carcinoma included larger masses, clear boundary, superficial sublobes and intra-tumor necrosis. While peripheral pulmonary adenocarcinoma mostly demonstrated as smaller nodules, deep sublobes, spiculations, spiculate protuberance, pleural indentation, vessel converging signs, and vacuole signs. The different of these above findings of peripheral pulmonary squamous cell carcinoma and adenocarcinoma were significant (P<0.05). Peripheral pulmonary squamous cell carcinoma may depict bronchial casts and polygonal nodules; and peripheral pulmonary adenocarcinoma may demonstrate ground glass-like nodules. Conclusion: The difference of the CT findings between peripheral pulmonary squamous cell carcinoma and peripheral adenocarcinoma is based on their different histological features and biological behaviors. It is possible to differentiate them before operation in combination with clinical information. (authors)

  14. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu, E-mail: 48151660@qq.com

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  15. The negative enrichment by immunomagnetic beads for tumor cells from malignant pleural effusions

    Institute of Scientific and Technical Information of China (English)

    杨俊俊

    2012-01-01

    Objective To establish a method (negative enrichment by immunomagnetic beads) for detection of tumor cells in pleural effusions and to evaluate the sensitivity and specificity of the method for clinical application. Methods Five,10,20,50 and 100 A549(lung adenocarcinoma) cells were labeled with

  16. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO2 nanoparticles in A549 cells.

    Science.gov (United States)

    Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M

    2018-05-01

    Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.

  17. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: Involvement of ATM pathway

    International Nuclear Information System (INIS)

    Suzuki, Katsura; Inageda, Kiyoshi; Nishitai, Gen; Matsuoka, Masato

    2007-01-01

    When A549 cells were exposed to sodium metavanadate (NaVO 3 ), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 μM)-dependent manner. After the incubation with 50 or 100 μM NaVO 3 for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 μM NaVO 3 for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na 3 VO 4 ) and ammonium metavanadate (NH 4 VO 3 ), also induced Ser15 phosphorylation and accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO 3 , treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO 3 -induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO 3 . However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO 3 -induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO 3 were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line

  18. SU-F-T-677: Synergistic Effect(s) of Clotrimazole On Radiation Cell Survival of A549 Lung Cancer Cells in Glucose Vs. Galactose Media

    Energy Technology Data Exchange (ETDEWEB)

    Boss, G; Tambasco, M; Garakani, M [San Diego State University, San Diego, CA (United States)

    2016-06-15

    Purpose: In order to determine the synergistic effect of clotrimazole on radiosensitivity of A549 lung cancer cells, and the effect of oxidative pathways on modulating radiosensitivity, we studied how these cells survived under varying amounts of radiation and clotrimazole as well ass when glucose was switched for galactose media. Methods: The glucose media was used to determine the presence of any synergistic effect of clotrimazole on radiation using values of radiation and clotrimazole concentrations, varying from 0 – 8 Gy and 0 – 20 µM, respectively. As a galactose diet is known to activate oxidative pathways, which do not rely on hexokinase II (HK2), all trials were repeated using galactose media to determine the extent that HK2 unbinding from the mitochondrial membrane plays a role in modulating the observed radiosensitivity. An apoptosis vs. necrosis assay was implemented to find out the modality by which cell death occurred. An intracellular lactate assay was performed to exhibit the extent of anaerobic glycolysis. Results: After running the primary experiments, it was found that in glucose media, the cancer cells showed higher cell kill when clotrimazole was added to the media, followed by the cells being irradiated. Conclusion: Given the preliminary results it is validated that under higher concentrations of clotrimazole, in glucose media, A549 lung cancer cells exhibit a lower amount of survival. While all results have not yet been gathered. We anticipate that in galactose media the A549 cells will exhibit this effect to a much smaller degree, if at all.

  19. In vitro gene imaging by luciferase to detect the expression and effect of human tumor necrosis factor related apoptosis-inducing ligand in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Zhao Na; Cui Jianling; Guo Zhiyuan; Guo Zhiping; Sun Yingcai; Liu Jicun

    2009-01-01

    Objective: To detect the expression and effect of human tumor necrosis factor related apoptosis-inducing ligand(hTRAIL) in vitro by using a novel double expressing adenoviral vector encoding hTRAIL and firefly luciferase (luc) gene (Ad-hTRAIL-luc), in which luc was used as reporter gene. Methods: A549 cells were transduced with the adenoviral vector encoding enhanced green fluorescent protein (EGFP) gene (Ad-EGFP) at variable multiplicity of infection (MOI). Adenoviral transduction efficiency was determined 48 h later. A549 cells were transduced with Ad-hTRAIL-luc at variable MOI, and the following tests were performed 48h later, respectively: the expressive ratio of hTRAIL and the apoptotic ratio of A549 cells were measured by flow cytometer; counts per minute (cpm) of luminescence were measured by scintillation counters. A549 cells were transduced with Ad-luc at variable MOI, and cpm of luminescence was measured by scintillation counters 48 h later. After A549 cells were transduced with Ad-hTRAIL-luc, the expressive ratio of hTRAIL, the apoptotic ratio of A549 cells and cpm of luminescence were analyzed by one-way ANOVA. The positive ratio of EGFP and cpm of luminescence (Ad-luc) were analyzed by nonparametric ANOVA. Results: After A549 cells were transfected with Ad-hTRAIL-luc, the expressive ratio of hTRAIL on the cell membrane of the groups were (2.37±0.04)%, (3.16±0.03)%, (3.64± 0.03)%, (3.96±0.02)%, (4.24±0.02)%, (4.34±0.02)% respectively, which showed significant difference between each other (P<0.01); and the apoptotic ratio of A549 cells were (1.52±0.04)%, (2.93±0.02)%, (3.39±0.02)%, (3.64±0.02)%, (3.86±0.02)%, (4.08±0.02)%, (4.20± 0.02)%, respectively, and it showed significant difference between each other (P<0.01); cpm of luminescence were 465 561 ± 26 801, 1 038 576 ± 29 417, 937 655 ± 23 197, 786 432 ± 20 028, 524 288 ± 16 338, 401 566 ± 15 961, respectively, and it also showed significant difference between each other (P<0

  20. Follistatin is a novel biomarker for lung adenocarcinoma in humans.

    Directory of Open Access Journals (Sweden)

    Fangfang Chen

    Full Text Available Follistatin (FST, a single chain glycoprotein, is originally isolated from follicular fluid of ovary. Previous studies have revealed that serum FST served as a biomarker for pregnancy and ovarian mucinous tumor. However, whether FST can serve as a biomarker for diagnosis in lung adenocarcinoma of humans remains unclear.The study population consisted of 80 patients with lung adenocarcinoma, 40 patients with ovarian adenocarcinoma and 80 healthy subjects. Serum FST levels in patients and healthy subjects were measured using ELISA. The results showed that the positive ratio of serum FST levels was 51.3% (41/80, which was comparable to the sensitivity of FST in 40 patients with ovarian adenocarcinoma (60%, 24/40 using the 95th confidence interval for the healthy subject group as the cut-off value. FST expressions in lung adenocarcinoma were examined by immunohistochemical staining, we found that lung adenocarcinoma could produce FST and there was positive correlation between the level of FST expression and the differential degree of lung adenocarcinoma. Furthermore, the results showed that primary cultured lung adenocarcinoma cells could secrete FST, while cells derived from non-tumor lung tissues almost did not produce FST. In addition, the results of CCK8 assay and flow cytometry showed that using anti-FST monoclonal antibody to neutralize endogenous FST significantly augmented activin A-induced lung adenocarcinoma cells apoptosis.These data indicate that lung adenocarcinoma cells can secret FST into serum, which may be beneficial to the survival of adenocarcinoma cells by neutralizing activin A action. Thus, FST can serve as a promising biomarker for diagnosis of lung adenocarcinoma and a useful biotherapy target for lung adenocarcinoma.

  1. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    Science.gov (United States)

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  2. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    Directory of Open Access Journals (Sweden)

    Hisatomi Keiko

    2012-06-01

    Full Text Available Abstract Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF. We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

  3. Apoptotic-like tumor cells and apoptotic neutrophils in mitochondrion-rich gastric adenocarcinomas: a comparative study with light and electronmicroscopy between these two forms of cell death

    Directory of Open Access Journals (Sweden)

    Antonio Venuti

    2013-04-01

    Full Text Available Mitochondrion-rich adenocarcinomas represent a rare variant of gastric adenocarcinomas composed predominantly of columnar adenocarcinoma cells with eosinophilic cytoplasm, a strong supranuclear immunoreactivity for antimitochondrial antibody, and a marked neutrophil infiltration associated to tumor cell death. The purpose of this work is to investigate, using correlated light and electron microscopy, mitochondrion-rich gastric adenocarcinomas focusing on the nature of the death in neoplastic cells and in infiltrating neutrophils. Adenocarcinoma cells, single or in small clusters, showed convoluted nuclei, irregularly condensed chromatin, loss of microvilli, and nuclear envelope dilatation. No nuclear fragmentation was observed in these dying cells and the plasma membrane did not show signs of disruption. These ultrastructural findings represent intermediate aspects between apoptosis and necrosis and are compatible with apoptosis-like programmed cell death. By contrast, some infiltrating neutrophils showed ultrastructural signs of classic apoptosis such as chromatin condensation into compact geometric (globular, crescent-shaped figures, tightly packed cytoplasmic granules and intact cell membrane. Our study provides ultrastructural evidence of apoptosis-like tumour cell death in mitochondrion-rich gastric carcinomas and confirms that stereotyped outcome either as apoptosis or necrosis of tumor cells cannot always be expected in human neoplasms.

  4. Prognosis of oesophageal adenocarcinoma and squamous cell carcinoma following surgery and no surgery in a nationwide Swedish cohort study

    Science.gov (United States)

    Mattsson, Fredrik

    2018-01-01

    Objectives To assess the recent prognostic trends in oesophageal adenocarcinoma and oesophageal squamous cell carcinoma undergoing resectional surgery and no such surgery. Additionally, risk factors for death were assessed in each of these patient groups. Design Cohort study. Setting A population-based, nationwide study in Sweden. Participants All patients diagnosed with oesophageal adenocarcinoma and oesophageal squamous cell carcinoma in Sweden from 1 January 1990 to 31 December 2013, with follow-up until 14 May 2017. Outcome measures Observed and relative (to the background population) 1-year, 3-year and 5-year survivals were analysed using life table method. Multivariable Cox regression provided HR with 95% CI for risk factors of death. Results Among 3794 patients with oesophageal adenocarcinoma and 4631 with oesophageal squamous cell carcinoma, 82% and 63% were men, respectively. From 1990–1994 to 2010–2013, the relative 5-year survival increased from 12% to 15% for oesophageal adenocarcinoma and from 9% to 12% for oesophageal squamous cell carcinoma. The corresponding survival following surgery increased from 27% to 45% in oesophageal adenocarcinoma and from 24% to 43% in oesophageal squamous cell carcinoma. In patients not undergoing surgery, the survival increased from 3% to 4% for oesophageal adenocarcinoma and from 3% to 6% for oesophageal squamous cell carcinoma. Women with oesophageal squamous cell carcinoma had better prognosis than men both following surgery (HR 0.71, 95% CI 0.61 to 0.83) and no surgery (HR 0.86, 95% CI 0.81 to 0.93). Conclusions The prognosis has improved over calendar time both in oesophageal adenocarcinoma and oesophageal squamous cell carcinoma in Sweden that did and did not undergo surgery. Women appear to have better prognosis in oesophageal squamous cell carcinoma than men, independent of treatment. PMID:29748347

  5. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  6. Oleiferoside W from the roots of Camellia oleifera C. Abel, inducing cell cycle arrest and apoptosis in A549 cells.

    Science.gov (United States)

    Wu, Jiang-Ping; Kang, Nai-Xin; Zhang, Mi-Ya; Gao, Hong-Wei; Li, Xiao-Ran; Liu, Yan-Li; Xu, Qiong-Ming; Yang, Shi-Lin

    2017-07-06

    Camellia oleifera C. Abel has been widely cultivated in China, and a group of bioactive constituents such as triterpeniod saponin have been isolated from C. oleifera C. Abel. In the current study, a new triterpeniod saponin was isolated from the EtOH extract of the roots of C. oleifera C. Abel, named as oleiferoside W, and the cytotoxic properties of oleiferoside W were evaluated in non-small cell lung cancer A549 cells. At the same time the inducing apoptosis, the depolarization of mitochondrial membrane potential (Δψ), the up-regulation of related pro-apoptotic proteins, such as cleaved-PARP, cleaved-caspase-3, and the down-regulation of anti-apoptotic marker Bcl-2/Bax were measured on oleiferoside W. Furthermore, the function, inducing the generation of reactive oxygen species (ROS) and apoptosis, of oleiferoside W could be reversed by N-acetylcysteine (NAC). In conclusion, our findings showed that oleiferoside W induced apoptosis involving mitochondrial pathway and increasing intracellular ROS production in the A549 cells, suggesting that oleiferoside W may have the possibility to be a useful anticancer agent for therapy in lung cancer.

  7. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    Directory of Open Access Journals (Sweden)

    Jun Xie

    2015-11-01

    Full Text Available The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  8. Squamous metaplasia induced by transfection of human papillomavirus DNA into cultured adenocarcinoma cells

    OpenAIRE

    Kinjo, T; Kamiyama, K; Chinen, K; Iwamasa, T; Kurihara, K; Hamada, T

    2003-01-01

    Background/Aim: It has been reported previously in cases of adenosquamous carcinoma of the lung in Okinawa, a subtropical island 2000 km south of mainland Japan, that the squamous cell carcinoma components were positive for human papillomavirus (HPV) by non-isotopic in situ hybridisation (NISH). The adenocarcinoma cells adjacent to the squamous cell carcinoma components were enlarged and also positive for HPV. This is thought to indicate that after adenocarcinoma cells are infected with HPV, ...

  9. ANTITUMOR AND APOPTOTIC EFFECTS OF CUCURBITACIN A IN A-549 LUNG CARCINOMA CELLS IS MEDIATED VIA G2/M CELL CYCLE ARREST AND M-TOR/PI3K/AKT SIGNALLING PATHWAY.

    Science.gov (United States)

    Wang, Wen-Dong; Liu, Yan; Su, Yuan; Xiong, Xian-Zhi; Shang, Dan; Xu, Juan-Juan; Liu, Hong-Ju

    2017-01-01

    The main aim of this study was to demonstrate the antitumor potential of cucurbitacin A on A-549 NSCLC (non-small cell lung cancer cells). The effects of Cucurbitacin A on apoptotic induction, cell physic, cell cycle failure and m-TOR/PI3K/Akt signalling pathway were also investigated in the present study. MTT assay and clonogenic assay were carried out to study effects of this compound on cell cytotoxicity and colony forming tendency in A-549 cells. Moreover, phase and fluorescence microscopic techniques were used to examine the effects on cell morphology and induction of apoptosis. The effects on cell cycle phase distribution were investigated by flow cytometry and effects on m-TOR/PI3K/Akt signalling proteins were assessed by western blot analysis. Results showed that cucurbitacin A induced dose-dependent cytotoxic effects along with suppressing the colony forming tendency in these cells. Cucurbitacin A also induced morphological changes in these cells featuring chromatin condensation, cell shrinkage and apoptotic body formation. G2/M phase cell cycle collapse was also induced by Cucurbitacin A along with inhibition of expression levels of m-TOR/PI3K/Akt proteins. In conclusion, cucurbitacin A inhibits cancer growth in A-549 NSCLC cells by inducing apoptosis, targeting m-TOR/PI3K/Akt signalling pathway and G2/M cell cycle.

  10. ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis.

    Directory of Open Access Journals (Sweden)

    Takafumi Kuroda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiating cells (CICs are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1(high population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas by the ALDEFLUOR assay. ALDH1(high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1(high cells. ALDH1(high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.

  11. [The CK2 inhibitor quninalizarin enhances the anti-proliferative effect of icotinib on EGFR-TKIs-resistant cell lines and its underlying mechanisms].

    Science.gov (United States)

    Zhou, Y; Zhang, S; Li, K; Li, Q W; Zhou, F Z; Li, Z Y; Ma, H; Dong, X R; Liu, L; Wu, G; Meng, R

    2016-02-01

    To explore whether quninalizarin, an specific inhibitor of protein kinase CK2, could sensitize icotinib in EGFR-TKIs (epithelial growth factor receptor-tyrosine kinase inhibitor)-resistant cell lines and uncover the underlying mechanisms. MTT assay was performed to evaluate the inhibitory effect of quninalizarin, icotinib or the combination of both on cell proliferation in several lung adenocarcinoma cell lines. Western blot assay was used to assess if combined inhibition of EGFR and protein kinase CK2 by icotinib and quninalizarin, exerts effect on the expression and phosphorylation of major proteins of EGFR signaling pathways. The IC50 of HCC827, H1650, H1975 and A549 cells for icotinib were (8.07±2.00)μmol/L, (66.01±6.64)μmol/L, (265.60±9.47)μmol/L and (87.88±6.8)μmol/L, respectively, indicating that HCC827 cells are sensitive to icotinib, and the H1650, H1975 and A549 cells are relatively resistant to icotinib. When treated with both quninalizarin and icotinib in the concentration of 50 μmol/L, the viability of H1650, H1975 and A549 cells was (40.64±3.73)%, (65.74±3.27)% and (44.96±0.48)%, respectively, significantly lower than that of H1650, H1975 and A549 cells treated with 50 μmol/L icotinib alone (55.05±1.22)%, (71.98±1.60)% and (61.74±6.18)%, respectively (Picotinib, the viability of H1650, H1975 and A549 ells were (23.35±0.81)%, (55.70±1.03)%, (33.42±1.33)%, respectively, significantly lower than the viability of H1650, H1975 and A549 cells treated with 100 μmol/L icotinib alone (40.57±2.65)%, (62.40±2.05)% and (44.97±8.20)%, respectively, (Picotinib alone, the viability of cells treated with icotinib and quinalizarin were significantly suppressed, and the differences were statistically significant (Picotinib together in the H1650 cells while the expression of Akt and ERK changed little. Quinalizarin, as a specific CK2 inhibitor, may overcome icotinib resistance by inhibiting proliferation mediated by Akt and ERK in human lung

  12. Effect of X-irradiation on the protein expression of P57kip2 and TGF-β1 in lung cancer cell stain A549

    International Nuclear Information System (INIS)

    Zou Huawei; Tan Yonggang; Zhang Heying

    2008-01-01

    Objective: To analyze the effect of X-irradiation on the proteins expression of p57 kip2 and TGF-β1 in lung cancer cell stain A549 and its clinical significance. Methods: Lung cancer cell stain A549 was cultivated and cell, protein was extracted at 6,12,24,36 and 48 hours after X-irradiation by different doses(2,4, 8 and 12 Gy). The expression of p57 kip2 and TGF-β1 proteins were examined by Western blot. Results: The expression of p57 kip2 in lung cancer cell stain A549 was very low before X-irradiation, and increased significantly after irradiation with different doses and reached the peak level at 12 hours after irradiation (P kip2 and TGF-β1 proteins which increased with certain doses, p57 kip2 and TGF-β1 could be used to predict the damage degree of cancer cells by X-ray. (authors)

  13. Effect of Circular RNA UBAP2 Silencing on Proliferation and Invasion of Human Lung Cancer A549 Cells and Its Mechanism

    Directory of Open Access Journals (Sweden)

    Yujing YIN

    2017-12-01

    Full Text Available Background and objective It has been proven that circular RNAs (circRNAs play an important role on the process of many types cancer and circUBAP2 was a cancer-promoting circRNA, however, the role and mechanism in lung cancer was not clear. The aim of this study is to investigate the effects of circUBAP2 on cell proliferation and invasion of human lung cancer A549 cells. Methods CCK-8 assay was employed to detect the effect of circUBAP2 sliencing on cell proliferation of A549 cells. Fow cytometry was applied to detect the impact of circUBAP2 sliencing on cell cycle and cell anoikis, and Transwell invasion assay was applied to determine cell invasion of A549 cells. We also employed Western blot and Real-time PCR to determine the expressions of CDK6, cyclin D1, p27 and c-IAP1, Bcl-2, Survivin, Bax, FAK, Rac1 and MMP2, and the activities of JNK and ERK1/2, luciferase report gene assay was used to detect the targets. Results CCK-8 assay showed that the inhibition of cell proliferation in the circUBAP2-siRNA group compared to untreated group and siRNA control group. Results of cell cycle detected by flow cytometry showed that cell cycle arrestd at G0/G1 after circUBAP2 silencing, cell apoptosis rate increased also. We also found that after circUBAP2 silencing, cell invasion of A549 cells was significantly inhibited. Western blot and Real-time PCR results showed that expression of CDK6, cyclin D1, c-IAP1, Bcl-2, Survivin, FAK, Rac1 and MMP2 were down-regulated, and the expression of p27 and Bax were up-regulated. Moreover, the activities of JNK and ERK1/2 were inhibited because of circUBAP2 silencing, the target genes were miR-339-5p, miR-96-3p and miR-135b-3p. Conclusion CircUBAP2 plays an important role in the proliferation and invasion of human lung cancer. Silencing of circUBAP2 might be a novel target for molecular targeted therapy of patients with lung cancer.

  14. Antitumor and apoptotic effects of cucurbitacin a in A-549 lung ...

    African Journals Online (AJOL)

    Background: The main aim of this study was to demonstrate the antitumor potential of cucurbitacin A on A-549 NSCLC (non-small cell lung cancer cells). The effects of Cucurbitacin A on apoptotic induction, cell physic, cell cycle failure and m-TOR/PI3K/Akt signalling pathway were also investigated in the present study.

  15. Multisystem Langerhans cell histiocytosis coexisting with metastasizing adenocarcinoma of the lung: A case report

    Directory of Open Access Journals (Sweden)

    Lovrenski Aleksandra

    2013-01-01

    Full Text Available Introduction. Langerhans cell histiocytosis (LCH is an uncommon disease of unknown etiology characterized by uncontrolled proliferation and infiltration of various organs by Langerhans cells. Case report. We presented a 54-year-old man, heavy smoker, with dyspnea, cough, hemoptysis, headache and ataxia, who died shortly after admission to our hospital. On the autopsy, tumor was found in the posterior segment of the right upper pulmonary lobe as well as a right-sided occipitoparietal lesion which penetrated into the right ventricle resulting in internal and external hematocephalus. Histologically and immunohistohemically, the diagnosis of primary lung adenocarcinoma with brain metastasis was made (tumor cells showed positivity for CK7 and TTF-1 which confirmed the diagnosis. In the lung parenchyma around the tumor, as well as in brain tissue around the metastatic adenocarcinoma histiocytic lesions were found. Light microscopic examination of the other organs also showed histiocytic lesions involving the pituitary gland, hypothalamus, spleen and mediastinal lymph nodes. Immunohistochemical studies revealed CD68, S-100 and CD1a immunoreactivity within the histiocytes upon which the diagnosis of Langerhans' cells histiocytosis was made. Conclusion. The multisystem form of LCH with extensive organ involvement was an incidental finding, while metastatic lung adenocarcinoma to the brain that led to hematocephalus was the cause of death.

  16. Clear cell adenocarcinoma of the ulterine cervix in a 15 year old girl: A case report

    International Nuclear Information System (INIS)

    Choi, Seung Joon; Kim, Jee Eun; KIm, Hyung Sik; Choi, Hye Young

    2013-01-01

    Cervical cancer is rare in the pediatric population. In cases of cervical cancer, adenocarcinoma is predominantly reported. Clear cell adenocarcinoma (CCAC) of the uterine cervix is a very rare tumor and accounts for only 4% of all adenocarcinomas of the uterine cervix. Risk factors and pathogenesis of this disease are not exactly revealed. The intrauterine exposure to diethylstilbestrol (DES) and associated non-steroidal estrogen during pregnancy before 18 weeks is the only known risk factor. This study reports the imaging finding of primary uterine cervical tumor in a 15-year-old girl, who was finally diagnosed with CCAC, with no maternal history of DES exposure in utero.

  17. Clear cell adenocarcinoma of the ulterine cervix in a 15 year old girl: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Joon; Kim, Jee Eun; KIm, Hyung Sik; Choi, Hye Young [Dept. of Radiology, Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2013-10-15

    Cervical cancer is rare in the pediatric population. In cases of cervical cancer, adenocarcinoma is predominantly reported. Clear cell adenocarcinoma (CCAC) of the uterine cervix is a very rare tumor and accounts for only 4% of all adenocarcinomas of the uterine cervix. Risk factors and pathogenesis of this disease are not exactly revealed. The intrauterine exposure to diethylstilbestrol (DES) and associated non-steroidal estrogen during pregnancy before 18 weeks is the only known risk factor. This study reports the imaging finding of primary uterine cervical tumor in a 15-year-old girl, who was finally diagnosed with CCAC, with no maternal history of DES exposure in utero.

  18. Dual-specificity phosphatase 6 (Dusp6), a negative regulator of FGF2/ERK1/2 signaling, enhances 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell.

    Science.gov (United States)

    Zhang, Hui; Guo, Qiufen; Wang, Chong; Yan, Lei; Fu, Yibing; Fan, Mingjun; Zhao, Xingbo; Li, Mingjiang

    2013-08-25

    Dual-specificity phosphatase 6 (Dusp6) is a negative feedback mechanism of fibroblast growth factors (FGFs)/mitogen-activated protein kinase (MAPK)/ERK1/2 signaling. The aim of this study was to explore the expression of Dusp6 in human endometrial adenocarcinomas and the role of Dusp6 expression in the growth regulation of endometrial adenocarcinoma cell. We found that Dusp6 was over-expressed in human endometrial adenocarcinomas. In Ishikawa cells, plasmid-driven Dusp6 expression efficiently blocked the activity of FGF2-induced MAPK/ERK1/2 signaling. Unexpectedly, Dusp6 expression significantly enhanced the growth of Ishikawa cells. In Dusp6 forced-expression cells, 17β-estradiol stimulation increased the cell growth by all most threefolds. In addition, progesterone treatment reduced the cell growth to about half both in Ishikawa cells with and without forced-Dusp6-expression. Dusp6 over-expression is involved in the pathogenesis and development of human endometrial adenocarcinomas. Dusp6 functions as a negative regulator of FGF2/ERK1/2 signaling but enhances the growth and 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell. Copyright © 2013. Published by Elsevier Ireland Ltd.

  19. Andrographolide antagonizes cigarette smoke extract-induced inflammatory response and oxidative stress in human alveolar epithelial A549 cells through induction of microRNA-218.

    Science.gov (United States)

    Li, Ying-jie; Yu, Chang-hai; Li, Jing-bo; Wu, Xi-ya

    2013-12-01

    Andrographolide is a major bioactive labdane diterpenoid isolated from Andrographis paniculata and has protective effects against cigarette smoke (CS)-induced lung injury. This study was done to determine whether such protective effects were mediated through modulation of microRNA (miR)-218 expression. Therefore, we exposed human alveolar epithelial A549 cells to cigarette smoke extract (CSE) with or without andrographolide pretreatment and measured the level of glutathione, nuclear factor-kappaB (NF-κB) activation, proinflammatory cytokine production, and miR-218 expression. We found that andrographolide pretreatment significantly restored the glutathione level in CSE-exposed A549 cells, coupled with reduced inhibitor κB (IκB)-α phosphorylation and p65 nuclear translocation and interleukin (IL)-8 and IL-6 secretion. The miR-218 expression was significantly upregulated by andrographolide pretreatment. To determine the biological role of miR-218, we overexpressed and downregulated its expression using miR-218 mimic and anti-miR-218 inhibitor, respectively. We observed that miR-218 overexpression led to a marked reduction in IκB-α phosphorylation, p65 nuclear accumulation, and NF-κB-dependent transcriptional activity in CSE-treated A549 cells. In contrast, miR-218 silencing enhanced IκB-α phosphorylation and p65 nuclear accumulation in cells with andrographolide pretreatment and reversed andrographolide-mediated reduction of IL-6 and IL-8 production. In addition, depletion of miR-218 significantly reversed the upregulation of glutathione levels in A549 cells by andrographolide. Taken together, our results demonstrate that andrographolide mitigates CSE-induced inflammatory response in A549 cells, largely through inhibition of NF-κB activation via upregulation of miR-218, and thus has preventive benefits in CS-induced inflammatory lung diseases.

  20. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    Science.gov (United States)

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (ppotential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  2. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    International Nuclear Information System (INIS)

    Feng, Y; Feng, J; Huang, Z

    2016-01-01

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  3. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y [East Carolina University, Greenville, NC (United States); Feng, J [Tianjin University, Tianjin (China); Huang, Z [East Carolina University, Greenville, NC (United States)

    2016-06-15

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  4. Interleukin-1β-induced iNOS expression in human lung carcinoma A549 cells: involvement of STAT and MAPK pathways

    International Nuclear Information System (INIS)

    Ravichandran, Kameswaran; Tyagi, Alpna; Deep, Gagan; Agarwal, Chapla; Agarwal, Rajesh

    2011-01-01

    For understanding of signaling molecules important in lung cancer growth and progression, IL-1β effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1β exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1β increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1β exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-κB and HIF-1α in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1β-induced iNOS expression involved signaling pathways in addition to JAKSTAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1β-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment. (author)

  5. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    International Nuclear Information System (INIS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-01-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed

  6. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  7. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Science.gov (United States)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  8. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Liao, Chi-Ren; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Wang, Ching-Ying; Yang, Chang-Syun; Lin, Cheng-Wen; Chang, Yuan-Shiun

    2014-07-04

    Elaeagnus oldhamii Maxim. is a commonly used traditional herbal medicine. In Taiwan the leaves of E. oldhamii Maxim. are mainly used for treating lung disorders. Twenty five compounds were isolated from the leaves of E. oldhamii Maxim. in the present study. These included oleanolic acid (1), 3-O-(Z)-coumaroyl oleanolic acid (2), 3-O-(E)-coumaroyl oleanolic acid (3), 3-O-caffeoyl oleanolic acid (4), ursolic acid (5), 3-O-(Z)-coumaroyl ursolic acid (6), 3-O-(E)-coumaroyl ursolic acid (7), 3-O-caffeoyl ursolic acid (8), 3β, 13β-dihydroxyolean-11-en-28-oic acid (9), 3β, 13β-dihydroxyurs-11-en-28-oic acid (10), uvaol (11), betulin (12), lupeol (13), kaempferol (14), aromadendrin (15), epigallocatechin (16), cis-tiliroside (17), trans-tiliroside (18), isoamericanol B (19), trans-p-coumaric acid (20), protocatechuic acid (21), salicylic acid (22), trans-ferulic acid (23), syringic acid (24) and 3-O-methylgallic acid (25). Of the 25 isolated compounds, 21 compounds were identified for the first time in E. oldhamii Maxim. These included compounds 1, 4, 5 and 8-25. These 25 compounds were evaluated for their inhibitory activity against the growth of non-small cell lung cancer A549 cells by the MTT assay, and the corresponding structure-activity relationships were discussed. Among these 25 compounds, compound 6 displayed the best activity against the A549 cell line in vitro (CC50=8.56±0.57 μg/mL, at 48 h of MTT asssay). Furthermore, compound 2, 4, 8 and 18 exhibited in vitro cytotoxicity against the A549 cell line with the CC50 values of less than 20 μg/mL at 48 h of MTT asssay. These five compounds 2, 4, 6, 8 and 18 exhibited better cytotoxic activity compared with cisplatin (positive control, CC50 value of 14.87±1.94 μg/mL, at 48 h of MTT asssay). The result suggested that the five compounds might be responsible for its clinical anti-lung cancer effect.

  9. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    International Nuclear Information System (INIS)

    Kim, Chung Kwon; Nguyen, Truong L.X.; Lee, Sang Bae; Park, Sang Bum; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2011-01-01

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  10. Involvement of ERK, Bcl-2 family and caspase 3 in recombinant human activin A-induced apoptosis in A549

    International Nuclear Information System (INIS)

    Wang Baiding; Feng Yuling; Song Xingbo; Liu Qingqing; Ning Yunye; Ou Xuemei; Yang Jie; Zhang Xiaohong; Wen, Fuqiang

    2009-01-01

    Background: Activins are members of the transforming growth factor-β (TGF-β) superfamily. Previous studies have shown that activin A may have a central role in regulating both apoptosis and proliferation. However, direct studies of recombination human activin A on human NSCLC A549 cells have not yet been reported. The purpose of this study was to investigate whether activin A could induce apoptosis in A549 cells and the possible mechanisms via which it worked. Methods: Cellular apoptosis induced by activin A was detected by TUNEL assay and the levels of protein expression were detected by western blot. Results: Recombination human activin A induced apoptosis in human NSCLC A549 cells in a concentrate-dependent manner. Activin A-induced A549 apoptosis was accompanied by the up-regulation of Bax, Bad and Bcl-Xs and down-regulation of Bcl-2. Moreover, activin A treatment increased the expression of its typeII receptors, activated ERK and caspase 3 in A549. These results clearly demonstrate that the induction of apoptosis by activin-A involves multiple cellular/molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family proteins and caspase 3 participate in activin A-induced apoptotic process in A549 cells. On the other hand, activin A treatment had little effect on primary human small airway epithelial cells (SAECs). Conclusion: Recombination human activin A induced apoptosis in A549 cells, at least partially, through ERK and mitochondrial pathway. The result that activin A did not affect the normal SAEC revealed activin A might be considered as a potential anticancer agent and worthy of further studies

  11. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    International Nuclear Information System (INIS)

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  12. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  13. TGF-β and Hypoxia/Reoxygenation Promote Radioresistance of A549 Lung Cancer Cells through Activation of Nrf2 and EGFR

    Directory of Open Access Journals (Sweden)

    Sae-lo-oom Lee

    2016-01-01

    Full Text Available Although many studies have examined the roles of hypoxia and transforming growth factor- (TGF- β separately in the tumor microenvironment, the effects of simultaneous treatment with hypoxia/reoxygenation and TGF-β on tumor malignancy are unclear. Here, we investigated the effects of redox signaling and oncogenes on cell proliferation and radioresistance in A549 human lung cancer cells in the presence of TGF-β under hypoxia/reoxygenation conditions. Combined treatment with TGF-β and hypoxia activated epidermal growth factor receptor (EGFR and nuclear factor (erythroid-derived 2-like 2 (Nrf2, a redox-sensitive transcription factor. Interestingly, Nrf2 knockdown suppressed the effects of combined treatment on EGFR phosphorylation. In addition, blockade of EGFR signaling also suppressed induction of Nrf2 following combined treatment with hypoxia and TGF-β, indicating that the combined treatment induced positive crosstalk between Nrf2 and EGFR. TGF-β and hypoxia/reoxygenation increased the accumulation of reactive oxygen species (ROS, while treatment with N-acetyl-L-cysteine abolished the activation of Nrf2 and EGFR. Treatment with TGF-β under hypoxic conditions increased the proliferation of A549 cells compared with that after vehicle treatment. Moreover, cells treated with the combined treatment exhibited resistance to ionizing radiation (IR, and knockdown of Nrf2 increased IR-induced cell death under these conditions. Thus, taken together, our findings suggested that TGF-β and hypoxia/reoxygenation promoted tumor progression and radioresistance of A549 cells through ROS-mediated activation of Nrf2 and EGFR.

  14. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.

    Science.gov (United States)

    Rajavel, Tamilselvam; Packiyaraj, Pandian; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar; Ruckmani, Kandasamy; Pandima Devi, Kasi

    2018-02-01

    β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.

  15. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    Science.gov (United States)

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  16. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation; Expression HIF-1-abhaengiger Gene in humanen Lungenadenokarzinom (A549)-Zellen und deren Regulation nach Photonen- und Schwerionenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Verena Maria

    2013-11-26

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  17. Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    Science.gov (United States)

    Srivastava, Ritesh Kumar; Rahman, Qamar; Kashyap, Mahendra Pratap; Lohani, Mohtashim; Pant, Aditya Bhushan

    2011-01-01

    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages. PMID:21980536

  18. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549.

    Directory of Open Access Journals (Sweden)

    Ritesh Kumar Srivastava

    Full Text Available We study the ameliorative potential of dimetylthiourea (DMTU, an OH• radical trapper and N-acetylcysteine (NAC, a glutathione precursor/H₂O₂ scavenger against titanium dioxide nanoparticles (TiO₂-NPs and multi-walled carbon nanotubes (MWCNTs induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml of either of TiO₂-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure, while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure. Investigations were carried out for cell viability, generation of reactive oxygen species (ROS, micronuclei (MN, and expression of markers of oxidative stress (HSP27, CYP2E1, genotoxicity (P⁵³ and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO₂-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO₂-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.

  19. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    Science.gov (United States)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  20. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-15

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H{sub 2}O{sub 2}(toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H{sub 2}O{sub 2} and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation.

  1. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-01

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H 2 O 2 (toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H 2 O 2 and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation

  2. Different effects of a novel CaO-MgO-SiO₂-based multiphase glass-ceramic on cell behaviors of normal and cancer cells in vitro.

    Science.gov (United States)

    Zhang, Mengjiao; Chen, Xianchun; Pu, Ximing; Liao, Xiaoming; Huang, Zhongbing; Yin, Guangfu

    2014-04-01

    The effects in vitro of a novel multiphase glass-ceramic (with nominal composition of 43.19% CaO, 7.68% MgO, and 49.13% SiO2 in weight percent) on cell adhesion, proliferation, differentiation and ultrastructure of human osteosarcoma cell line MG63, mouse fibroblasts L929, and human lung adenocarcinoma epithelial cell line A549 were investigated in this research. Scanning electron microscopy (SEM) micrographs revealed that the surface morphology of this glass-ceramic was beneficial to cell adhesion. The glass-ceramic extracts at certain concentrations could stimulate the proliferation and differentiation of MG63 and L929 cells, whereas inhibit A549 proliferation, which might be resulted from the released Si ions. In addition, when cultured with 0.1mg/mL glass-ceramic powder suspension, the cell ultrastructure of MG63 showed abundant organelles and L929 displayed the phenomena of cellular stress response. While more interestingly, A549 exhibited chromatin condensation, mitochondria swell and RER expansion, which was presumed to be early signs of apoptosis. These results suggest that this novel CaO-MgO-SiO2-based multiphase glass-ceramic has potential for bone regeneration and tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Directory of Open Access Journals (Sweden)

    Kholoud Arafat

    Full Text Available A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  4. WIF-1 and Ihh Expression and Clinical Significance in Patients With Lung Squamous Cell Carcinoma and Adenocarcinoma.

    Science.gov (United States)

    Zhang, Yue; Hu, Chunhong

    2016-10-31

    This study investigated the expression of wingless-type inhibitory factor-1 (WIF-1) and Ihh protein in tumor tissues and their clinical significance in patients with lung squamous cell carcinoma and adenocarcinoma. The expression of WIF-1 and Ihh protein in 74 squamous cell carcinomas and 76 adenocarcinomas was measured by immunohistochemistry. The percentage of positive WIF-1 protein expression was significantly higher, while positive Ihh protein expression was significantly lower in patients with well-differentiated lung squamous cell carcinoma and adenocarcinoma, tumor node metastasis (TNM) stage I disease, and lymph node metastasis than that in patients with poorly differentiated tumor, TNM stage III disease, and lymph node metastasis (PIhh protein expression survived significantly shorter than patients with negative Ihh protein expression. In contrast, no significant difference in mean survival was observed in patients with lung squamous cell carcinoma and adenocarcinoma with positive and negative WIF-1 protein expression (P>0.05). Ihh is a marker for poor prognosis in patients with lung squamous cell carcinoma and adenocarcinoma. WIF-1 is not a predictive marker for lung cancer.

  5. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone.

    Science.gov (United States)

    Xu, Menglin; Wang, Xiangdong

    2017-08-01

    Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.

  6. Analysis of gene expression changes in A549 cells induced by organic compounds from respirable air particles

    Czech Academy of Sciences Publication Activity Database

    Líbalová, Helena; Krčková, S.; Uhlířová, Kateřina; Kléma, J.; Ciganek, M.; Rössner ml., Pavel; Šrám, Radim; Vondráček, J.; Machala, M.; Topinka, Jan

    2014-01-01

    Roč. 770, DEC 2014 (2014), s. 94-105 ISSN 0027-5107 R&D Projects: GA ČR GAP503/11/0142; GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:68378041 Keywords : Ah receptor * gene expression profile * A549 cells Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.680, year: 2014

  7. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico); Gonzalez-Pozos, Sirenia [CINVESTAV-IPN, Unidad de Microscopia Electrónica (LaNSE) (Mexico); Velumani, Subramaniam [CINVESTAV-IPN, Departamento de Ingeniería Eléctrica (Mexico); Arreola-Mendoza, Laura [Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Departamento de Biociencias e Ingeniería (Mexico); Vizcaya-Ruiz, Andrea De, E-mail: avizcaya@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico)

    2016-04-15

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  8. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    Science.gov (United States)

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  9. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways.

    Science.gov (United States)

    Zhang, Liang; Huang, Yi; Zhuo, Wenlei; Zhu, Yi; Zhu, Bo; Chen, Zhengtang

    2016-01-01

    Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor for treatment of non-small cell lung cancer (NSCLC). However, its efficacy is usually reduced by the occurrence of drug resistance. Our recent study showed that a flavonoid found in many plants, Fisetin, might have a potential to reverse the acquired Cisplatin-resistance of lung adenocarcinoma. In the present study, we aimed to test whether Fisetin could have the ability to reverse Erlotinib-resistance of lung cancer cells. Erlotinib-resistant lung adenocarcinoma cells, HCC827-ER, were cultured from the cell line HCC827, and the effects of Fisetin and Erlotinib on the cell viability and apoptosis were evaluated. The possible signaling pathways in this process were also detected. As expected, the results showed that Fisetin effectively increased sensitivity of Erlotinib-resistant lung cancer cells to Erlotinib, possibly by inhibiting aberrant activation of MAPK and AKT signaling pathways resulted from AXL suppression. In conclusion, Fisetin was a potential agent for reversing acquired Erlotinib-resistance of lung adenocarcinoma. Inactivation of AXL, MAPK and AKT pathways might play a partial role in this process.

  10. ESOPHAGEAL CARCINOMA: IS SQUAMOUS CELL CARCINOMA DIFFERENT DISEASE COMPARED TO ADENOCARCINOMA? A transversal study in a quaternary high volume hospital in Brazil.

    Science.gov (United States)

    Tustumi, Francisco; Takeda, Flavio Roberto; Kimura, Cintia Mayumi Sakurai; Sallum, Rubens Antônio Aissar; Ribeiro, Ulysses; Cecconello, Ivan

    2016-01-01

    Esophageal cancer is one of the leading causes of mortality among the neoplasms that affect the gastrointestinal tract. There are several factors that contribute for development of an epidemiological esophageal cancer profile in a population. This study aims to describe both clinically and epidemiologically the population of patients with diagnosis of esophageal cancer treated in a quaternary attention institute for cancer from January, 2009 to December, 2011, in Sao Paulo, Brazil. The charts of all patients diagnosed with esophageal cancer from January, 2009, to December, 2011, in a Sao Paulo (Brazil) quaternary oncology institute were retrospectively reviewed. Squamous cell cancer made up to 80% of the cases of esophageal cancer. Average age at diagnosis was 60.66 years old for esophageal adenocarcinoma and 62 for squamous cell cancer, average time from the beginning of symptoms to the diagnosis was 3.52 months for esophageal adenocarcinoma and 4.2 months for squamous cell cancer. Average time for initiating treatment when esophageal cancer is diagnosed was 4 months for esophageal adenocarcinoma and 4.42 months for squamous cell cancer. There was a clear association between squamous cell cancer and head and neck cancers, as well as certain habits, such as smoking and alcoholism, while adenocarcinoma cancer showed more association with gastric cancer and gastroesophageal reflux disease. Tumoral bleeding and pneumonia were the main causes of death. No difference in survival rate was noted between the two groups. Adenocarcinoma and squamous cell carcinoma are different diseases, but both are diagnosed in advanced stages in Brazil, compromising the patients' possibilities of cure.

  11. Prostatic Adenocarcinoma with Concurrent Sertoli Cell Tumor in a Dog

    Science.gov (United States)

    Gill, C. W.

    1981-01-01

    A case of metastatic prostatic adenocarcinoma with concurrent Sertoli cell tumor is presented in an old, miniature Schnauzer dog. The prostatic neoplasm was highly anaplastic and had metastasized widely. Clinical signs were compatible with increased estrogen production. It is interesting to note that the prostatic carcinoma, usually considered to be androgen dependent, developed and metastasized, despite the presence of apparently increased estrogen levels. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6. PMID:7340923

  12. Expression of C4.4A in precursor lesions of pulmonary adenocarcinoma and squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Santoni-Rugiu, Eric; Illemann, Martin

    2012-01-01

    in precursor lesions of lung squamous cell carcinoma and adenocarcinoma was investigated by stainings with a specific anti-C4.4A antibody. In the transformation from normal bronchial epithelium to squamous cell carcinoma, C4.4A was weakly expressed in basal cell hyperplasia but dramatically increased...... in squamous metaplasia. This was confined to the cell membrane and sustained in dysplasia, carcinoma in situ, and the invasive carcinoma. The induction of C4.4A already at the stage of hyperplasia could indicate that it is a marker of very early squamous differentiation, which aligns well with our earlier...... finding that C4.4A expression levels do not provide prognostic information on the survival of squamous cell carcinoma patients. In the progression from normal alveolar epithelium to peripheral adenocarcinoma, we observed an unexpected, distinct cytoplasmic staining for C4.4A in a fraction of atypical...

  13. MicroRNA-449a enhances radiosensitivity in CL1-0 lung adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yi-Jyun Liu

    Full Text Available Lung cancer is the leading cause of cancer-related mortality worldwide. Radiotherapy is often applied for treating lung cancer, but it often fails because of the relative non-susceptibility of lung cancer cells to radiation. MicroRNAs (miRNAs have been reported to modulate the radiosensitivity of lung cancer cells and have the potential to improve the efficacy of radiotherapy. The purpose of this study was to identify a miRNA that can adjust radiosensitivity in lung adenocarcinoma cells. Two lung adenocarcinoma cell lines (CL1-0 and CL1-5 with different metastatic ability and radiosensitivity were used. In order to understand the regulatory mechanisms of differential radiosensitivity in these isogenic tumor cells, both CL1-0 and CL1-5 were treated with 10 Gy radiation, and were harvested respectively at 0, 1, 4, and 24 h after radiation exposure. The changes in expression of miRNA upon irradiation were examined using Illumina Human microRNA BeadChips. Twenty-six miRNAs were identified as having differential expression post-irradiation in CL1-0 or CL1-5 cells. Among these miRNAs, miR-449a, which was down-regulated in CL1-0 cells at 24 h after irradiation, was chosen for further investigation. Overexpression of miR-449a in CL1-0 cells effectively increased irradiation-induced DNA damage and apoptosis, altered the cell cycle distribution and eventually led to sensitization of CL1-0 to irradiation.

  14. Toxicity of engineered nanomaterials and their transformation products following wastewater treatment on A549 human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Yanjun Ma

    2014-01-01

    Full Text Available Here we characterize the toxicity of environmentally-relevant forms of engineered nanomaterials (ENMs, which can transform during wastewater treatment and persist in aqueous effluents and biosolids. In an aerosol exposure scenario, cytotoxicity and genotoxicity of effluents and biosolids from lab-scale sequencing batch reactors (SBRs to A549 human lung epithelial cells were examined. The SBRs were dosed with nanoAg, nano zero-valent iron (NZVI, nanoTiO2 and nanoCeO2 at sequentially increasing concentrations from 0.1 to 20 mg/L. Toxicities were compared to outputs from SBRs dosed with ionic/bulk analogs, undosed SBRs, and pristine ENMs. Pristine nanoAg and NZVI showed significant cytotoxicity to A549 cells in a dose-dependent manner from 1 to 67 μg/mL, while nanoTiO2 and nanoCeO2 only exerted cytotoxicity at 67 μg/mL. Only nanoAg induced a genotoxic response, at 9, 33 and 53 μg/mL. However, no significant cytotoxic or genotoxic effects of the SBR effluents or biosolids containing nanomaterials were observed.

  15. STMN-1 is a potential marker of lymph node metastasis in distal esophageal adenocarcinomas and silencing its expression can reverse malignant phenotype of tumor cells

    International Nuclear Information System (INIS)

    Akhtar, Javed; Wang, Zhou; Yu, Che; Li, Chen-Sheng; Shi, Yu-Long; Liu, Hong-Jun

    2014-01-01

    Distal esophageal adenocarcinoma is a highly aggressive neoplasm. Despite advances in diagnosis and therapy, the prognosis is still poor. Stathmin (STMN-1) is a ubiquitously expressed microtubule destabilizing phosphoprotein. It promotes the disassembly of microtubules and prevents assembly. STMN-1 can cause uncontrolled cell proliferation when mutated and not functioning properly. Recently, found to be overexpressed in many types of human cancers. However, its clinical significance remains elusive in distal esophageal adenocarcinoma. Here, we reported for the first time that STMN-1 is highly overexpressed in adenocarcinomas of the distal esophagus and strongly associated with lymph node metastasis. STMN-1 expression in 63 cases of distal esophageal adenocarcinoma was analyzed by immunoblotting, while expression in esophageal adenocarcinoma cells was determined by immunocytochemistry, immunofluorescence, qRT-PCR and western blotting. Lentivirus-mediated RNAi was employed to knock-down STMN-1 expression in Human esophageal adenocarcinoma cells. The relationship between STMN-1 expression and lymph node metastasis in distal esophageal adenocarcinoma was determined by univariate and multivariate analyses. STMN-1 was detected in 31 (49.21%) of the 63 cases. STMN-1 was highly overexpressed in specimens with lymph node metastasis pN (+), but its expression was almost undetected in pN (−) status. Multivarian regression analysis demonstrated that STMN-1 overexpression is an independent factor for lymph node metastasis in distal esophageal adenocarcinoma. STMN-1 shRNA effectively reduced STMN-1 expression in esophageal adenocarcinoma cells (P < 0.05), which significantly suppressed proliferation (P < 0.05), increased migration (P < 0.05) and invasion ability (P < 0.05) and G1 phase arrest (P < 0.05) which lead to induction of apoptosis in esophageal adenocarcinoma cells in vitro. To verify the in vitro data, we conducted in vivo tumor xenograft studies. Esophageal

  16. Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Grzanka, Alina; Grzanka, Dariusz

    2018-02-27

    The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS), at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX) to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC) cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT) assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.

  17. Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Anna Klimaszewska-Wiśniewska

    2018-02-01

    Full Text Available The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS, at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR. Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.

  18. Synthesis, Structural Characterization, and Antitumor Activity of a Ca(II Coordination Polymer Based on 1,6-Naphthalenedisulfonate and 4,4′-Bipyridyl

    Directory of Open Access Journals (Sweden)

    Xishi Tai

    2013-08-01

    Full Text Available A novel Ca(II coordination polymer, [CaL(4,4′-bipyridyl(H2O4]n (L = 1,6-naphthalenedisulfonate, was synthesized by reaction of calcium perchlorate with 1,6-naphthalenedisulfonic acid disodium salt and 4,4′-bipyridyl in CH3CH2OH/H2O. It was characterized by elemental analysis, IR, molar conductivity and thermogravimetric analysis. X-ray crystallography reveals that the Ca(II coordination polymer belongs to the orthorhombic system, with space group P212121. The geometry of the Ca(II ion is a distorted CaNO6 pengonal bipyramid, arising from its coordination by four water molecules, one nitrogen atom of 4,4′-bipyridyl molecule, and two oxygen atoms from two L ligands. The complex molecules form a helical chain by self-assembly. The antitumor activity of 1,6-naphthalenedisulfonic acid disodium salt and the Ca(II coordination polymer against human hepatoma smmc-7721 cell line and human lung adenocarcinoma A549 cell line reveals that the Ca(II coordination polymer inhibits cell growth of human lung adenocarcinoma A549 cell line with IC50 value of 27 μg/mL, and is more resistive to human lung adenocarcinoma A549 cell line as compared to 1,6-naphthalenedisulfonic acid disodium salt.

  19. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Science.gov (United States)

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  20. ESOPHAGEAL CARCINOMA: IS SQUAMOUS CELL CARCINOMA DIFFERENT DISEASE COMPARED TO ADENOCARCINOMA? A transversal study in a quaternary high volume hospital in Brazil

    Directory of Open Access Journals (Sweden)

    Francisco TUSTUMI

    Full Text Available ABSTRACT Background Esophageal cancer is one of the leading causes of mortality among the neoplasms that affect the gastrointestinal tract. There are several factors that contribute for development of an epidemiological esophageal cancer profile in a population. Objective This study aims to describe both clinically and epidemiologically the population of patients with diagnosis of esophageal cancer treated in a quaternary attention institute for cancer from January, 2009 to December, 2011, in Sao Paulo, Brazil. Methods The charts of all patients diagnosed with esophageal cancer from January, 2009, to December, 2011, in a Sao Paulo (Brazil quaternary oncology institute were retrospectively reviewed. Results Squamous cell cancer made up to 80% of the cases of esophageal cancer. Average age at diagnosis was 60.66 years old for esophageal adenocarcinoma and 62 for squamous cell cancer, average time from the beginning of symptoms to the diagnosis was 3.52 months for esophageal adenocarcinoma and 4.2 months for squamous cell cancer. Average time for initiating treatment when esophageal cancer is diagnosed was 4 months for esophageal adenocarcinoma and 4.42 months for squamous cell cancer. There was a clear association between squamous cell cancer and head and neck cancers, as well as certain habits, such as smoking and alcoholism, while adenocarcinoma cancer showed more association with gastric cancer and gastroesophageal reflux disease. Tumoral bleeding and pneumonia were the main causes of death. No difference in survival rate was noted between the two groups. Conclusion Adenocarcinoma and squamous cell carcinoma are different diseases, but both are diagnosed in advanced stages in Brazil, compromising the patients' possibilities of cure.

  1. Adenocarcinoma of urinary bladder: A report of two patients

    Directory of Open Access Journals (Sweden)

    Nitu Kumari

    2015-01-01

    Full Text Available Adenocarcinoma of the bladder is a rare tumor. Primary and metastatic adenocarcinomas of urinary bladder are morphologically similar, but histogenetically different. We present two cases, a signet ring cell adenocarcinoma with follow-up and another of glandular adenocarcinoma of urinary bladder. Pathological evaluation and immunohistochemical panel of eight markers (E-cadherin, CK20, CK7, CDX2, estrogen receptor (ER, gross cystic disease fluid protein 15 (GCDFP15, 34bE12, and prostate specific antigen (PSA provides a diagnostic confirmation of primary adenocarcinoma with the positive expression of E-cadherin and CK20 in case 1 and metastatic adenocarcinoma of prostate with profile of E-cadherin+, CK20-, GCDFP15+, 34bE12+, and PSA+ in case 2.

  2. Adenocarcinoma of urinary bladder: A report of two patients.

    Science.gov (United States)

    Kumari, Nitu; Vasudeva, Pawan; Kumar, Anup; Agrawal, Usha

    2015-01-01

    Adenocarcinoma of the bladder is a rare tumor. Primary and metastatic adenocarcinomas of urinary bladder are morphologically similar, but histogenetically different. We present two cases, a signet ring cell adenocarcinoma with follow-up and another of glandular adenocarcinoma of urinary bladder. Pathological evaluation and immunohistochemical panel of eight markers (E-cadherin, CK20, CK7, CDX2, estrogen receptor (ER), gross cystic disease fluid protein 15 (GCDFP15), 34bE12, and prostate specific antigen (PSA) provides a diagnostic confirmation of primary adenocarcinoma with the positive expression of E-cadherin and CK20 in case 1 and metastatic adenocarcinoma of prostate with profile of E-cadherin+, CK20-, GCDFP15+, 34bE12+, and PSA+ in case 2.

  3. A clear cell adenocarcinoma of the gallbladder with hepatoid differentiation: case report and review of literature

    Directory of Open Access Journals (Sweden)

    Zhang C

    2016-09-01

    Full Text Available Chengsheng Zhang,1,2 Wei Zhang,1,2 Dianbin Mu,1 Xuetao Shi,1 Lei Zhao1,2 1Department of Hepatobiliary Surgery, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Science, 2School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China Abstract: An 80-year-old male was referred to our department for a gallbladder mass. He denied any history of alcohol consumption or cholecystitis and smoking. Hepatitis B surface antigen test and antihepatitis C antibody test were found to be negative. Serum carbohydrate antigen 19-9 (CA19-9 and carcinoembryonic antigen were elevated (CA19-9 was 59.92 U/mL and carcinoembryonic antigen was 12.64 ng/mL, whereas alpha-fetoprotein was below the normal limit (2.46 ng/mL. Computed tomography scan revealed a solid mass with measurements of 4.6×5.6×7.1 cm, which nearly filled the whole gallbladder space. Radical cholecystectomy, including segments IV B and V of the liver and lymphadenectomy, was performed. The neoplasm in gallbladder was completely resected, and the patient obtained a negative margin. Histological and immunohistochemical profile suggested a clear cell adenocarcinoma of the gallbladder with hepatoid differentiation. After reviewing the literature, we reported that this case is the first identified case of cell adenocarcinoma of the gallbladder with extensive hepatoid differentiation. However, clinical features of clear cell adenocarcinoma with hepatoid differentiation remain unclear due to the extremely rare incidence. There was no indication of adjuvant chemotherapy and no literature has been reported on the application of chemotherapy. This case showed a promising clinical outcome after curative resection, which indicated that surgical treatment could be potentially considered for suitable patients. Keywords: gallbladder, clear cell adenocarcinoma, hepatoid differentiation 

  4. A study of radiation sensitivity and drug-resistance by DNA methylation in human tumor cell lines

    International Nuclear Information System (INIS)

    Jung, Il Lae; Kim, In Gyu; Kim, Kug Chan

    2009-12-01

    It has recently been known that functional loss of tumor suppressive genes may com from DNA methylation on the chromosome. This kind of tumorigenesis has became one of the major field related to the epigenetics, whose study would be an important fundamental approach in cancer therapy market. In this study, we firstly selected two radiation-resistant mutant H460 cells, which doesn't show any significant cytotoxic effect compared to their parental wild type H460. We found that the two mutants has decreased level of PTEN, whose expression has known to be related to the cell differentiation and growth. We also found that the level of PTEN was greatly different in two lung adenocarcinoma, H460 and A549, in which more radiation-resistant A549 cells showed the decreased PTEN expression. This difference in PTEN expression between two cells was resulted from their different methylation on 5 CpG islands. We expect to know more profoundly through investigating the PTEN-related downstream genes

  5. CEA-producing urothelial cell carcinoma with metastasis presenting as a rectal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Ming-Hsin Yang

    2012-11-01

    Full Text Available This is a case study of a 61-year-old male who presented with difficult defecation for 1 month. A circumferential submucosal rectal tumor was noted on a digital rectal examination and colonoscopy. Laboratory examination revealed high serum levels of carcinoembryonic antigen (CEA; 43.75 ng/mL and carbohydrate antigen 19-9 (CA19-9; 11,790 U/mL. In addition, tumor biopsies revealed a poorly differentiated adenocarcinoma of the rectum with intact mucosa. The patient had history of advanced stage-T2 urothelial cell carcinoma of bladder, which had been downstaged to T0 by neoadjuvant chemotherapy followed by radical cystectomy 1 year prior. After investigating the initial bladder tumor specimens, a small portion of the tumor with high CEA expression comparable to the submucosal rectal tumor was found. The size of the tumor was reduced and the levels of the tumor markers decreased after administering FOLFIRI chemotherapy targeted at the adenocarcinoma. Although neoadjuvant chemotherapy may have a selective pressure to eliminate most urothelial cell carcinoma, physicians should be aware that it can lead to rectal metastasis via CEA-producing components.

  6. Suppression of IL-6 Gene by shRNA Augments Gemcitabine Chemosensitization in Pancreatic Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hai-Bo Xing

    2018-01-01

    Full Text Available Pancreatic adenocarcinoma has an exceedingly poor prognosis, accounting for five-year survival of less than 5%. Presently, improving the efficacy of pancreatic adenocarcinoma treatment has been the focus of medical researchers worldwide. Recently, it has been suggested that deregulation of interleukin- (IL- 6 is caused by a key gene involved in the beginning and development of pancreatic adenocarcinoma. Herein, we investigated whether suppression of IL-6 could augment gemcitabine sensitivity in the PANC-1 cells. We found considerably higher expression of IL-6 in pancreatic adenocarcinoma tissues than that in the adjacent nontumorous tissues. Suppression of IL-6 by shRNA resulted in apoptosis as well as inhibition of cell proliferation and tumorigenicity. In addition, suppression of IL-6 remarkably promoted antitumor effect of gemcitabine, indicating that the combination of shRNA targeting IL-6 with gemcitabine may provide a potential clinical approach for pancreatic cancer therapy.

  7. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Rea Bingula

    2016-01-01

    Full Text Available We investigated the effects of betaine, C-phycocyanin (C-PC, and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50% or C-PC treatment alone (no decrease. Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought.

  8. Treatment of squamous cell and adenocarcinoma of the esophagus

    Directory of Open Access Journals (Sweden)

    Rathbone B

    2012-11-01

    Full Text Available Barrie Rathbone,1 Janusz Jankowski,2 Michael Rathbone31University Hospitals of Leicester, Leicester, 2Sir James Black Professor Queen Mary University of London, 3St George's University of London, London, United KingdomAbstract: Esophageal cancer is the sixth commonest cause of cancer death worldwide. It predominantly occurs in two histological types, ie, squamous cell carcinoma and adenocarcinoma, each with its own distinct geographical distribution and natural history. The incidence of esophageal adenocarcinoma is rising, as is that of its precursor lesion, Barrett's esophagus, which consists of metaplastic change in the squamous mucosa of the esophagus in response to damage by gastroesophageal reflux disease. The principal risk factors for esophageal cancer are cigarette smoking and alcohol consumption, reflux disease, and obesity. In tumors without local invasion or distant metastases, surgery remains the treatment option of choice, although there are considerable differences of opinion regarding the roles of chemotherapy and radiotherapy. A wide variety of endoscopic treatments are available for dysplastic lesions and palliation. Despite the availability of increasingly complex imaging modalities and expensive and possibly ineffective attempts at screening, the evidence base is conflicted and the prognosis remains poor. However, from a recent large systematic review, three clear recommendations can be made, ie, use of endoscopic resection for high grade dysplasia, use of radiofrequency ablation for residual premalignant lesions, and, finally, prevention of risk factors for cancer, such as smoking, alcohol consumption, and obesity.Keywords: cancer, Barrett's, esophagus, squamous cell carcinoma, adenocarcinoma

  9. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma.

    Science.gov (United States)

    Yoon, Changhwan; Cho, Soo-Jeong; Chang, Kevin K; Park, Do Joong; Ryeom, Sandra W; Yoon, Sam S

    2017-08-01

    Rac1, a Rho GTPase family member, is dysregulated in a variety of tumor types including gastric adenocarcinoma, but little is known about its role in cancer stem-like cells (CSCs). Therefore, Rac1 activity and inhibition were examined in gastric adenocarcinoma cells and mouse xenograft models for epithelial-to-mesenchymal transition (EMT) and CSC phenotypes. Rac1 activity was significantly higher in spheroid-forming or CD44 + gastric adenocarcinoma CSCs compared with unselected cells. Rac1 inhibition using Rac1 shRNA or a Rac1 inhibitor (NSC23766) decreased expression of the self-renewal transcription factor, Sox-2, decreased spheroid formation by 78%-81%, and prevented tumor initiation in immunodeficient mice. Gastric adenocarcinoma CSCs had increased expression of the EMT transcription factor Slug, 4.4- to 8.3-fold greater migration, and 4.2- to 12.6-fold greater invasion than unselected cells, and these increases could be blocked completely with Rac1 inhibition. Gastric adenocarcinoma spheroid cells were resistant to 5-fluorouracil and cisplatin chemotherapy, and this chemotherapy resistance could be reversed with Rac1 shRNA or NSC23766. The PI3K/Akt pathway may be upstream of Rac1, and JNK may be downstream of Rac1. In the MKN-45 xenograft model, cisplatin inhibited tumor growth by 50%, Rac1 inhibition by 35%, and the combination by 77%. Higher Rac1 activity, in clinical specimens from gastric adenocarcinoma patients who underwent potentially curative surgery, correlated with significantly worse survival ( P = 0.017). In conclusion, Rac1 promotes the EMT program in gastric adenocarcinoma and the acquisition of a CSC state. Rac1 inhibition in gastric adenocarcinoma cells blocks EMT and CSC phenotypes, and thus may prevent metastasis and augment chemotherapy. Implications: In gastric adenocarcinoma, therapeutic targeting of the Rac1 pathway may prevent or reverse EMT and CSC phenotypes that drive tumor progression, metastasis, and chemotherapy resistance. Mol

  10. Comparison of the uptakes of Tc-99m MIBI and Tc-99m tetrofosmin in A549, an MRP-expressing cancer cell, in vitro and in vivo

    International Nuclear Information System (INIS)

    Yoo, Jeong Ah; Jeong, Shin Young; Seo, Myung Rang; Bae, Jin Ho; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae; Choi, Sang Woon; Lee, Byung Ho

    2003-01-01

    Uptakes of Tc-99m MIBI (MIBI) and Tc-99m tetrofosmin (tetrofosmin) in human non-small cell lung cancer A549, multidrug-resistance associated protein (MRP) expressing cell, were investigated in vitro and in vivo. Western blot analysis and immunohistochemistry were used for detetion of MRP in A549 cells with anti-MRPr1 antibody. Cellular uptakes of two tracers were evaluated at 100 μM of verapamil (Vrp), 50 μM of cyclosporin A (CsA) and 25 μM of butoxysulfoximide (BSO) after incubation with MIBI and tetrofosmin for 30 and 60 min at 37.deg.C, using single cell suspensions at 1x10 6 cells/ml. Radioactivities in supernatants and pellets were measured with gamma well counter. A549 cells were inoculated in each flanks of 24 nude mice. Group 1 (Gr1) and Gr3 mice were treated with only MIBI or tetrofosmin, and Gr2 and Gr4 mice were treated with 70mg/kg of CsA i.p. for 1 hour before injection of 370KBq of MIBI or tetrofosmin. Mice were sacrificed at 10, 60 and 240 min. Radioactivities of organs and tumors were expressed as percentage injected dose per gram of tissue (%ID/gm). Western blot analysis of the A549 cells detected expression of MRPr1 (190 kDa) and immunohistochemical staining of tumor tissue for MRPr1 revealed brownish staining in cell membrane but not P-gp. Upon incubating A549 cells for 60 min with MIBI and tetrofosmin, cellular uptake of MIBI was higher than that of tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetorfosmin. Percentage increase of MIBI was higher than that of tetrofosmin with Vrp by 623% and 427%, CsA by 753% and 629% and BSO by 219% and 140%, respectively. There was no significant difference in tumoral uptakes of MIBI and tetrofosmin between Gr1 and Gr3. Percentage increases in MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at

  11. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC approach

    Directory of Open Access Journals (Sweden)

    Pan ST

    2015-02-01

    Full Text Available Shu-Ting Pan,1,* Zhi-Wei Zhou,2,3,* Zhi-Xu He,3 Xueji Zhang,4 Tianxin Yang,5 Yin-Xue Yang,6 Dong Wang,7 Jia-Xuan Qiu,1 Shu-Feng Zhou2 1Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 5Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA; 6Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 7Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China *These two authors contributed equally to this work Abstract: 5,6-Dimethylxanthenone 4-acetic acid (DMXAA, also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC approach. The proteomic data showed that treatment with DMXAA

  12. Establishment and Characterization of a Novel Chinese Human Lung Adenocarcinoma Cell Line CPA-Yang2 in Immunodeficient Mice

    Directory of Open Access Journals (Sweden)

    Shunfang YANG

    2009-10-01

    Full Text Available Background and objective The recurrence, metastasis and multidrug resistance (MDR in lung cancer are the tough problems worldwide. This study was to establish a novel chinese lung adenocarcinoma cell line with high metastasis potential for exploring the mechanism of reccurrence, development and MDR in lung cancer. Methods The cell came from the abdominal dropsy of a fifty-six years old female patient with lung adenocarcinoma and the tumor markers CA125, CYFRA21-1, CEA, NSE were detected to be higher secretion by radioimmunoassay in the abdominal dropsy. Tumorigenicity of immunodeficient mice was confirmed in 8th passage. The cell growth curve was mapped. Analysis of chromosome karyotype was tested. The gene expression was measured by real-time quantitative PCR. Results The tumorigenesis rate started at 8th passage in 3/10 immunodeficient mice via subcutaneously and the fully tumorigenicity was at 11th passage as well as later passages. Under the microscope, the cell showed oval-shap and adherence. The chromosome karyotype analysis of the cells was sub-triploid. Approximately 1×106 and 1.5×106 cancerous cells were injected into left cardiac ventricle and tail vein of immunodeficient mice respectively. The results showed multiorgan metastasis in the mice after three-four weeks, including mandible, scapula, humerus, vertebral column, femur, rib and brain, liver, adrenal gland, pulmonary in the mice after inoculation. The bone metastasis rate was 100% in the tumor bearing mice by bone scintigraphy and pathology. Quantitative real-time PCR was used to examined and compared with SPC-A-1 lung adenocarcinoma, ESM1, VEGF-C, IL-6, IL-8, AR genes were overexpressed. The novel cell was named CPA-Yang2. Conclusion The characteristics of novel strain CPA-Yang2 is a highly metastasis cell line of Chinese lung adenocarcinoma. It has stable traits, highly metastasis ability and maybe is a MDR lung cancerous cell line. Of course, it’s a good experimental

  13. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing; Cao, Ji-Xiang; Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Jia, Hong-Ti; Li, Shu-Yan

    2016-01-01

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53 −/− cancer cells, in which PLK1 protein was suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.

  14. Duodenal localization is a negative predictor of survival after small bowel adenocarcinoma resection: A population-based, propensity score-matched analysis.

    Science.gov (United States)

    Wilhelm, Alexander; Galata, Christian; Beutner, Ulrich; Schmied, Bruno M; Warschkow, Rene; Steffen, Thomas; Brunner, Walter; Post, Stefan; Marti, Lukas

    2018-03-01

    This study assessed the influence of tumor localization of small bowel adenocarcinoma on survival after surgical resection. Patients with resected small bowel adenocarcinoma, ACJJ stage I-III, were identified from the Surveillance, Epidemiology, and End Results database from 2004 to 2013. The impact of tumor localization on overall and cancer-specific survival was assessed using Cox proportional hazard regression models with and without risk-adjustment and propensity score methods. Adenocarcinoma was localized to the duodenum in 549 of 1025 patients (53.6%). There was no time trend for duodenal localization (P = 0.514). The 5-year cancer-specific survival rate was 48.2% (95%CI: 43.3-53.7%) for patients with duodenal carcinoma and 66.6% (95%CI: 61.6-72.1%) for patients with cancer located in the jejunum or ileum. Duodenal localization was associated with worse overall and cancer-specific survival in univariable (HR = 1.73; HR = 1.81, respectively; both P matrimonial status were positive, independent prognostic factors. Duodenal localization is an independent risk factor for poor survival after resection of adenocarcinoma. © 2017 Wiley Periodicals, Inc.

  15. Mucinous adenocarcinoma of posterior urethra. Report of a case.

    Science.gov (United States)

    Yvgenia, Rosenblat; Ben Meir, David; Sibi, Joseph; Koren, Rumelia

    2005-01-01

    Primary carcinoma of the male urethra accounts for less than 1% of malignancies in males. Mucinous adenocarcinoma of the urethra is extremely rare, and its biologic behavior is not well known. We report a case of mucinous adenocarcinoma showing the histologic features of colloid adenocarcinoma that appears to have evolved either by neoplastic degeneration of goblet cells found in the urethral epithelium or by malignant degeneration of persistent glandular elements of uretheritis cystica and glandularis.

  16. Basal cell adenocarcinoma of minor salivary and seromucous glands of the head and neck region.

    Science.gov (United States)

    Fonseca, I; Soares, J

    1996-05-01

    Basal cell adenocarcinoma of salivary glands is an uncommon and recently described entity occurring almost exclusively at the major salivary glands. This report provides an overview of the clinicopathologic profile of this neoplasm by including the personal experience on the clinical features, microscopic and ultrastructural characteristics, proliferation activity, and DNA tumor patterns of 12 lesions occurring at the minor salivary glands of the head and neck region, where basal cell adenocarcinoma is probably an underecognized entity, previously reported under different designations. Basal cell adenocarcinoma predominates at the seventh decade without sex preference. The tumors affecting the minor salivary glands occur most frequently at the oral cavity (jugal mucosa, palate) and the upper respiratory tract. The prevalent histologic tumor pattern is represented by solid neoplastic aggregates with a peripheral cell palisading arrangement frequently delineated by basement membrane-like material. The neoplastic clusters are formed by two cell populations: the small dark cell type (that predominates) and a large cell type. Necrosis, either of the comedo or the apoptotic type, is a frequent finding. Perineural growth occurs in 50% of the cases and vascular permeation in 25%. Immunohistochemistry identifies a dual differentiation with a reactivity pattern indicative of ductal epithelial and myoepithelial differentiation, which can be confirmed by electron microscopy. The differential diagnosis of the neoplasm includes its benign counterpart, the basal cell adenoma, solid variant of adenoid cystic carcinoma, undifferentiated carcinoma, and basaloid squamous carcinoma. The tumors recur more frequently than lesions originating in major salivary glands. Mortality is associated with the anatomic site of the lesion, advanced stage, residual neoplasia at surgery, and tumor recurrence. The importance of recognizing basal cell adenocarcinoma outside major salivary glands is

  17. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    Science.gov (United States)

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Predictive role of computer simulation in assessing signaling pathways of crizotinib-treated A549 lung cancer cells.

    Science.gov (United States)

    Xia, Pu; Mou, Fei-Fei; Wang, Li-Wei

    2012-01-01

    Non-small-cell lung cancer (NSCLC) is a leading cause of cancer deaths worldwide. Crizotinib has been approved by the U.S. Food and Drug Administration for the treatment of patients with advanced NSCLC. However, understanding of mechanisms of action is still limited. In our studies, we confirmed crizotinib-induced apoptosis in A549 lung cancer cells. In order to assess mechanisms, small molecular docking technology was used as a preliminary simulation of signaling pathways. Interesting, our results of experiments were consistent with the results of computer simulation. This indicates that small molecular docking technology should find wide use for its reliability and convenience.

  19. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  20. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  1. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  2. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  3. Expression and Clinical Significance of CD147 and MMP-2 
in Squamous Cell Carcinoma and Adenocarcinoma of the Lungs

    Directory of Open Access Journals (Sweden)

    Siwen WANG

    2011-09-01

    Full Text Available Background and objective It has been proven that CD147 was an extracellular matrix metalloproteinase inducer reportedly involved in the invasion and metastasis of malignancies. The aim of this study is to investigate CD147 and MMP-2 expression in squamous cell carcinoma and adenocarcinoma of the lungs and to analyze their clinical significance. Methods Tissue samples from 55 patients with squamous cell carcinoma and adenocarcinoma of the lungs and their corresponding non-cancerous tissues were examined for CD147 and MMP-2 expression using immunohistochemistry. Results The positive expression rates of CD147 and MMP-2 in the squamous cell carcinoma and adenocarcinoma among the lung tissues were significantly higher than those in the corresponding normal lung tissues. Moreover, the CD147 and MMP-2 expression in squamous cell carcinoma and adenocarcinoma of the lungs were related to lymph node metastasis and TNM stages (P<0.05, but not to age, gender and histologic type (P>0.05. MMP-2 expression was highly correlated with CD147 expression. Conclusion CD147 and MMP-2 expression is correlated with the invasion and metastasis of squamous cell carcinoma and adenocarcinoma of the lungs and may be used as objective markers for predicting the behavior of squamous cell carcinoma and adenocarcinoma of the lungs.

  4. Analysis of A549 cell proteome alteration in response to recombinant influenza A virus nucleoprotein and its interaction with cellular proteins, a preliminary study.

    Science.gov (United States)

    Kumar, D; Tiwari, K; Rajala, M S

    Influenza A virus undergoes frequent changes of antigenicity and contributes to seasonal epidemics or unpredictable pandemics. Nucleoprotein, encoded by gene segment 5, is an internal protein of the virus and is conserved among strains of different host origins. In the current study, we analyzed the differentially expressed proteins in A549 cells transiently transfected with the recombinant nucleoprotein of influenza A virus by 2D gel electrophoresis. The resolved protein spots on gel were identified by MALDI-TOF/Mass spectrometry analysis. The majority of the host proteins detected to be differentially abundant in recombinant nucleoprotein-expressing cells as compared to vector-transfected cells are the proteins of metabolic pathways, glycolytic enzymes, molecular chaperones and cytoskeletal proteins. We further demonstrated the interaction of virus nucleoprotein with some of the identified host cellular proteins. In vitro binding assay carried out using the purified recombinant nucleoprotein (pET29a+NP-His) and A549 cell lysate confirmed the interaction between nucleoprotein and host proteins, such as alpha enolase 1, pyruvate kinase and β-actin. The preliminary data of our study provides the information on virus nucleoprotein interaction with proteins involved in glycolysis. However, studies are ongoing to understand the significance of these interactions in modulating the host factors during virus replication.

  5. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles

    Science.gov (United States)

    Engelberg, Shira; Modrejewski, Julia; Walter, Johanna G.; Livney, Yoav D.; Assaraf, Yehuda G.

    2018-01-01

    Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (Kd = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance. PMID:29765515

  6. TRAIL overexpression co-regulated by Egr1 and HRE enhances radiosensitivity of hypoxic A549 cells depending on its apoptosis inducing role.

    Science.gov (United States)

    Yang, Yan-Ming; Fang, Fang; Li, Xin; Yu, Lei; Wang, Zhi-Cheng

    2017-01-01

    Ionizing radiation can upregulate the expression levels of TRAIL and enhance tumor cell apoptosis. While Early growth response 1 (Egr1) gene promoter has radiation inducible characteristics, the expression for exogenous gene controlled by Egr1 promoter could be enhanced by ionizing radiation, but its efficiency is limited by tissue hypoxia. Hypoxia response elements (HREs) are important hypoxic response regulatory sequences and sensitivity enhancers. Therefore, we chose TRAIL as the gene radiotherapy to observe whether it is regulated by Egr1 and HER and its effects on A549 cells and its mechanism. The pcDNA3.1-Egr1-TRAIL (pc-E-hsT) and pcDNA3.1-HRE/Egr1-TRAIL (pc-H/E-hsT) plasmids containing Egr1-hsTRAIL and HRE/Egr1-hsTRAIL were transfected into A549 cells, the cells were treated by hypoxia and radiation. The TRAIL mRNA in the cells and protein concentration in the culture supernatants were measured by RT-PCR and ELISA, respectively. Mean lethal dose D0 value was evaluated with colony forming assay. The cell apoptotic rates were analyzed by FCM and TUNEL assay. Expression of DR4, DR5 and cleaved caspase-3 proteins were analyzed by western blotting. It showed that TRAIL mRNA expression and TRAIL concentration all significantly increased under hypoxia and/or radiation. D0 value of pc-H/E‑hsT transfected cells under hypoxia was lowest, indicating more high radiosensitivity. Hypoxia could not cause the pc-E-hsT transfected cell apoptotic rate increase, but there were promoting effects in pc-H/E-hsT transfected cells. DR4 had not obvious change in pc-E-hsT and pc-H/E-hsT transfected cells under normoxic and hypoxic condition, otherwise, DR5 and cleaved caspase-3 increased mostly in pc-H/E-hsT transfected cells under hypoxic condition. TRAIL overexpression was co-regulated by Egr1 and HRE. TRAIL might promote hypoxic A549 cell radiosensitivity and induce apoptosis depending on DR5 to caspase-3 pathways.

  7. A regulatory network for human adenocarcinoma

    African Journals Online (AJOL)

    AJL

    2012-03-13

    Mar 13, 2012 ... Human adenocarcinoma (AC) is the most frequently diagnosed human lung cancer and its absolute incidence is increasing ... Lung carcinomas are usually classified as small-cell lung ..... such as embryonic development, reproduction, and. TYMS .... homeostatic processes including stem cell maintenance,.

  8. Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line.

    Science.gov (United States)

    Park, Jong-Shik; Bang, Ok-Sun; Kim, Jinhee

    2014-06-01

    The transcription factor signal transducer and activator of transcription 3 (Stat3) is constitutively activated in many human cancers. It promotes tumor cell proliferation, inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor host immune responses. Therefore, Stat3 has emerged as a promising molecular target for cancer therapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicines traditionally used in Korea. Medicinal herb extracts in 70% ethanol were screened for their ability to suppress Stat3 in the A549 human lung cancer cell line. A Stat3-responsive reporter assay system was used to detect intracellular Stat3 activity in extract-treated cells, and Western blot analyses were performed to measure the expression profiles of Stat3-regulated proteins. Fifty percent of the 38 extracts possessed at least mild Stat3-suppressive activities (i.e., activity less than 75% of the vehicle control). Ethanol extracts of Bupleurum falcatum L., Taraxacum officinale Weber, Solanum nigrum L., Ulmus macrocarpa Hance, Euonymus alatus Sieb., Artemisia capillaris Thunb., and Saururus chinensis (Lour.) Baill inhibited up to 75% of the vehicle control Stat3 activity level. A549 cells treated with these extracts also had reduced Bcl-xL, Survivin, c-Myc, and Mcl-1 expression. Many medicinal herbs traditionally used in Korea contain Stat3 activity-suppressing substances. Because of the therapeutic impact of Stat3 inhibition, these results could be useful when developing novel cancer therapeutics from medicinal herbs.

  9. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Directory of Open Access Journals (Sweden)

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  10. Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Navin K. [Trinity College Dublin, Department of Clinical Medicine, Institute of Molecular Medicine (Ireland); Moore, Edward; Blau, Werner [Trinity College Dublin, School of Physics (Ireland); Volkov, Yuri [Trinity College Dublin, Department of Clinical Medicine, Institute of Molecular Medicine (Ireland); Ramesh Babu, P., E-mail: babup@tcd.ie [Trinity College Dublin, Centre for Research on Adaptive Nanostructures and Nanodevices (Ireland)

    2012-09-15

    Continuously expanding use of products containing nanoclays for wide range of applications have raised public concerns about health and safety. Although the products containing nanoclays may not be toxic, it is possible that nanomaterials may come in contact with humans during handling, manufacture, or disposal, and cause adverse health impact. This necessitates biocompatibility evaluation of the commonly used nanoclays. Here, we investigated the cytotoxic effects of platelet (Bentone MA, ME-100, Cloisite Na{sup +}, Nanomer PGV, and Delite LVF) and tubular (Halloysite, and Halloysite MP1) type nanoclays on cultured human lung epithelial cells A549. For the first time with this aim, we employed a cell-based automated high content screening in combination with real-time impedance sensing. We demonstrate varying degree of dose- and time-dependent cytotoxic effects of both nanoclay types. Overall, platelet structured nanoclays were more cytotoxic than tubular type. A low but significant level of cytotoxicity was observed at 25 {mu}g/mL of the platelet-type nanoclays. A549 cells exposed to high concentration (250 {mu}g/mL) of tubular structured nanoclays showed inhibited cell growth. Confocal microscopy indicated intracellular accumulation of nanoclays with perinuclear localization. Results indicate a potential hazard of nanoclay-containing products at significantly higher concentrations, which warrant their further biohazard assessment on the actual exposure in humans.

  11. Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis

    International Nuclear Information System (INIS)

    Verma, Navin K.; Moore, Edward; Blau, Werner; Volkov, Yuri; Ramesh Babu, P.

    2012-01-01

    Continuously expanding use of products containing nanoclays for wide range of applications have raised public concerns about health and safety. Although the products containing nanoclays may not be toxic, it is possible that nanomaterials may come in contact with humans during handling, manufacture, or disposal, and cause adverse health impact. This necessitates biocompatibility evaluation of the commonly used nanoclays. Here, we investigated the cytotoxic effects of platelet (Bentone MA, ME-100, Cloisite Na + , Nanomer PGV, and Delite LVF) and tubular (Halloysite, and Halloysite MP1) type nanoclays on cultured human lung epithelial cells A549. For the first time with this aim, we employed a cell-based automated high content screening in combination with real-time impedance sensing. We demonstrate varying degree of dose- and time-dependent cytotoxic effects of both nanoclay types. Overall, platelet structured nanoclays were more cytotoxic than tubular type. A low but significant level of cytotoxicity was observed at 25 μg/mL of the platelet-type nanoclays. A549 cells exposed to high concentration (250 μg/mL) of tubular structured nanoclays showed inhibited cell growth. Confocal microscopy indicated intracellular accumulation of nanoclays with perinuclear localization. Results indicate a potential hazard of nanoclay-containing products at significantly higher concentrations, which warrant their further biohazard assessment on the actual exposure in humans.

  12. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Science.gov (United States)

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  13. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  14. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells

    Directory of Open Access Journals (Sweden)

    Wu C

    2017-10-01

    Full Text Available Chao Wu, Jie Xu, Yanna Hao, Ying Zhao, Yang Qiu, Jie Jiang, Tong Yu, Peng Ji, Ying Liu Pharmacy School, Jinzhou Medical University, Jinzhou, China Abstract: In this study, we developed a lipid-coated hollow calcium phosphate (LCP nanoparticle for the combined application of two chemotherapeutic drugs to human lung cancer A549 cells. Hydrophilic doxorubicin (DOX was incorporated into the hollow structure of hollow calcium phosphate (HCP, and a lipid bilayer containing hydrophobic paclitaxel (PTX was subsequently coated on the surface of HCP. The study on combinational effects demonstrated that the combination of DOX and PTX at a mass ratio of 12:1 showed a synergistic effect against A549 cells. The particle size, zeta potential, and encapsulation efficiency were measured to obtain optimal values: particle size was 335.0 3.2 nm, zeta potential -41.1 mV, and encapsulation efficiency 80.40%±2.24%. An in vitro release study indicated that LCP produced a sustained drug release. A549 cells had a better uptake of LCP with good biocompatibility. Furthermore, in vitro cytotoxicity experiment, apoptosis analysis, in vivo anti-tumor efficacy and protein expression analysis of Bax, Bcl-2, and Caspase-3 demonstrated that the co-delivery system based on LCP had significant synergistic anti-tumor activity. All conclusions suggested that LCP is a promising platform for co-delivery of multiple anti-tumor drugs. Keywords: doxorubicin, paclitaxel, co-delivery, lipid, hollow calcium phosphate, lung cancer cell

  15. Leptomeningeal carcinomatosis from urinary bladder adenocarcinoma: a clinicopathological case study.

    Science.gov (United States)

    Sugimori, Kaoru; Kobayashi, Katsuji; Hayashi, Masahiro; Sakai, Naoto; Sasaki, Motoko; Koshino, Yoshifumi

    2005-03-01

    We report a 73-year-old male patient with leptomeningeal metastasis from urinary bladder adenocarcinoma. He was presented with prominent hyperactive delirium during the course of the disease. Meningeal carcinomatosis was detected 5 days before his death, but the primary site of the malignant tumor could not be determined. Necropsy revealed leptomeningeal infiltration of many adenocarcinoma cells that covered the cerebrum. The leptomeninges of the right middle frontal gyrus, superior temporal gyrus, precentral gyrus and inferior parietal lobe were most severely affected by tumor cell infiltration. Cerebral edema was found to extensively cover the basal part of the temporal lobe. In the cerebrum, tumor cells were clustered in the perivascular spaces and had invaded localized areas of the frontal lobe. Vascular cell adhesion molecule (VCAM)-1 expression was detected in the small vessels of the cerebral upper cortical layers and of temporal subcortical u-fibers. Numerous astrocytes positive for cytokeratin AE1/AE3 were found in the frontal and temporal lobes. Meningeal carcinomatosis from urinary bladder adenocarcinoma is extremely rare and up-regulation of the adhesion molecules in the meningeal adenocarcinoma was confirmed.

  16. Histologic transformation from adenocarcinoma to both small cell lung cancer and squamous cell carcinoma after treatment with gefitinib: A case report.

    Science.gov (United States)

    Yao, Yufeng; Zhu, Zhouyu; Wu, Yimin; Chai, Ying

    2018-05-01

    In the past decade, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) treatment had been an important therapy for treating advanced EGFR-mutated lung cancer patients. However, a large number of these patients with EGFR-TKIs treatment always acquired resistance to these drugs in one year. The histologic transformation is an important resistance mechanism. Here we reported a 41-year-old man with EGFR-mutated lung adenocarcinoma and he showed histologic transformation to both small-cell lung cancer (SCLC) and squamous cell carcinoma (SCC) after treatment of gefitinib. A case of EGFR-mutated lung cancer. Medical thoracoscopy examination was performed and the patient was diagnosed as a EGFR-mutated lung adenocarcinoma. Then gefitinib was administered orally at a dose of 250 mg daily. The patient received treatment with chemotherapy (etoposide 0.1 g day 2-5 +  cis-platinum 30 mg day 2-4) after acquiring resistance to gefitinib. The patient died in April 2017 that survived for 32 months from lung cancer was found for the first time. To the best of our knowledge, it is the first case of EGFR-mutated lung adenocarcinoma transforming to both SCLC and SCC which was treated with and responded to gefitinib.

  17. [Increased expressions of peripheral PD-1+ lymphocytes and CD4+CD25+FOXP3+ T cells in gastric adenocarcinoma patients].

    Science.gov (United States)

    Li, Hao; Li, Songyan; Hu, Shidong; Zou, Guijun; Hu, Zilong; Wei, Huahua; Wang, Yufeng; Du, Xiaohui

    2017-01-01

    Objective To detect the frequencies of peripheral programmed death-1 + (PD-1 + ) lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in patients with gastric adenocarcinoma. Methods The study enrolled 29 patients with gastric adenocarcinoma and 29 age- and sex-matched healthy controls. Frequencies of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells were detected using flow cytometry. Results The number of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood was higher in patients with gastric adenocarcinoma than that in the control group. Moreover, linear correlation analysis indicated a positive correlation between PD-1 expression and frequency of CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood of the patients. Conclusion Gastric adenocarcinoma patients present with increased PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in the peripheral blood.

  18. SPRY4-mediated ERK1/2 signaling inhibition abolishes 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell.

    Science.gov (United States)

    Li, Mingjiang; Zhang, Hui; Zhao, Xingbo; Yan, Lei; Wang, Chong; Li, Chunyan; Li, Changzhong

    2014-08-01

    Basic fibroblast growth factor (FGF2)-mediated Extracellular signal-regulated kinases1/2 (ERK1/2) signaling is a critical modulator in angiogenesis. SPRY4 has been reported to be a feedback negative regulator of FGFs-induced ERK1/2 signaling. The aim of this study was to explore the role of SPRY4 in endometrial adenocarcinoma cell. The effect of SPRY4 expression on FGF2-mediated ERK1/2 signaling was detected by luciferase assay and Western blot analysis. The growth of Ishikawa cells was detected using colony formation assay and cell number counting experiment. We found that plasmid-driven SPRY4 expression efficiently blocked the activity of FGF2-induced ERK1/2 signaling in Ishikawa cells. SPRY4 expression significantly reduced the proliferation and 17β-estradiol-induced proliferation of Ishikawa cells. SPRY4 may function as a tumor suppressor in endometrial adenocarcinoma.

  19. Cytoplasmic Overexpression of CD95L in Esophageal Adenocarcinoma Cells Overcomes Resistance to CD95-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Gregory A. Watson

    2011-03-01

    Full Text Available Introduction: The CD95/CD95L pathway plays a critical role in tissue homeostasis and immune system regulation; however, the function of this pathway in malignancy remains poorly understood. We hypothesized that CD95L expression in esophageal adenocarcinoma confers advantages to the neoplasm other than immune privilege. Methods: CD95L expression was characterized in immortalized squamous esophagus (HET-1A and Barrett esophagus (BAR-T cells; adenocarcinoma cell lines FLO-1, SEG-1, and BIC-1, and MDA468 (- control; and KFL cells (+ control. Analyses included reverse transcription-polymerase chain reaction, immunoblots of whole cell and secretory vesicle lysates, FACScan analysis, laser scanning confocal microscopy of native proteins and fluorescent constructs, and assessment of apoptosis and ERK1/2 pathways. Results: Cleaved, soluble CD95L is expressed at both the RNA and protein levels in these cell lines derived from esophageal adenocarcinoma and other human tissues. CD95L was neither trafficked to the cell membrane nor secreted into the media or within vesicles, rather the protein seems to be sequestered in the cytoplasm. CD95 and CD95L colocalize by immunofluorescence, but an interaction was not proven by immunoprecipitation. Overexpression of CD95L in the adenocarcinoma cell lines induced robust apoptosis and, under conditions of pan-caspase inhibition, resulted in activation of ERK signaling. Conclusions: CD95L localization in EA cells is inconsistent with the conference of immune privilege and is more consistent with a function that promotes tumor growth through alternative CD95 signaling. Reduced cell surface expression of CD95 affects cell sensitivity to extracellular apoptotic signals more significantly than alterations in downstream modulators of apoptosis.

  20. Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells

    DEFF Research Database (Denmark)

    Sannino, Filomena; Sansone, Clementina; Galasso, Christian

    2018-01-01

    In order to exploit the rich reservoir of marine cold-adapted bacteria as a source of bioactive metabolites, ethyl acetate crude extracts of thirteen polar marine bacteria were tested for their antiproliferative activity on A549 lung epithelial cancer cells. The crude extract from Pseudoalteromon...

  1. Cu(II Complexes of Isoniazid Schiff Bases: DNA/BSA Binding and Cytotoxicity Studies on A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Pulipaka Ramadevi

    2014-01-01

    Full Text Available A series of isonicotinoyl hydrazones have been synthesized via template method and were complexed to Cu(II. The ligands are coordinated to Cu(II ion through the enolic oxygen and azomethine nitrogen resulting in a square planar geometry. The CT-DNA and bovine serum albumin binding propensities of the compounds were determined spectrophotometrically, the results of which indicate good binding propensity of complexes to DNA and BSA with high binding constant values. Furthermore, the compounds have been investigated for their cytotoxicities on A549 human lung cancer cell. Also the mode of cell death was examined employing various staining techniques and was found to be apoptotic.

  2. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    Science.gov (United States)

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  3. Bone metastasis of undifferentiated pulmonary adenocarcinoma in a cat

    International Nuclear Information System (INIS)

    Jensen, H.E.; Arnbjerg, J.

    1986-01-01

    In the cat, metastases from primary lung tumors (PLT) to distal bones have been described by Moore & Middleton (differentiated adenocarcinoma) and Pool et al. (squamous cell carcinoma) (16 22). This paper describes the radiological and pathological findings in a cat with metastatic undifferentiated papillary adenocarcinoma. The involvement of the toes was the initial sign leading to veterinary consultation

  4. Sesamol induced apoptotic effect in lung adenocarcinoma cells through both intrinsic and extrinsic pathways.

    Science.gov (United States)

    Siriwarin, Boondaree; Weerapreeyakul, Natthida

    2016-07-25

    Sesamol is a phenolic lignan found in sesame seeds (Sesamum indicum L.) and sesame oil. The anticancer effects and molecular mechanisms underlying its apoptosis-inducing effect were investigated in human lung adenocarcinoma (SK-LU-1) cells. Sesamol inhibited SK-LU-1 cell growth with an IC50 value of 2.7 mM and exhibited less toxicity toward normal Vero cells after 48 h of treatment (Selective index = 3). Apoptotic bodies-the hallmark of apoptosis-were observed in sesamol-treated SK-LU-1 cells, stained with DAPI. Sesamol increased the activity of caspase 8, 9, and 3/7, indicating that apoptotic cell death occurred through both extrinsic and intrinsic pathways. Sesamol caused the loss of mitochondrial transmembrane potential signifying intrinsic apoptosis induction. Decreasing Bid expression revealed crosstalk between the intrinsic and extrinsic apoptotic pathways; demonstrating clearly that sesamol induces apoptosis through both pathways in human lung adenocarcinoma (SK-LU-1) cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Bystander effects of exposure to low-dose-rate 125I seeds on human lung cancers cells in vitro

    International Nuclear Information System (INIS)

    Jia Rongfei; Chen Honghong; Yu Lei; Zhao Meijia; Shao Chunlin; Cheng Wenying

    2007-01-01

    The bystander effects induced by continuous low-dose-rate (LDR) 125 I seeds radiation on damage of human lung cancer cells were investigated. Human adenocarcinoma cell line A549 and human small cell lung cancer cell line NCI-H446, which have different sensitivities to high-dose rate (HDR) external irradiation, were exposed directly to 125 I seeds in vitro and co-cultured with unirradiated cells for 24 h. Using cytokinesis-blocking micronucleus method and γ H2AX fluorescence immunoassay, bystander effects induced by 2Gy and 4Gy 125 I seed irradiation on micronucleus formation and DNA double-strand breaks (DSBs) of human lung cancer cells were detected and evaluated. The results showed that irradiation with 125 I seeds can induce medium-mediated bystander effects in A549 cells and NCI-H446 cells, exhibiting that both micronuclei formation and γ H2AX focus formation in bystander cells were increased significantly compared with non-irradiated cells. The extent of DNA damage induced by bystander effects was correlated with accumulated radiation dose and radiosensitive of tumor cells. NCI-H446 cells that were sensitive to HDR γ irradiation were more sensitive to continuous LDR irradiation and bystander effects than A549. However, a comparison between the bystander effects and direct effects elicits the intensity of bystander responses of A549 cells was higher than that of NCI-H446 cells. A dose-related reduction in bystander responses was observed both in A549 cells and NCI-H446 cells, suggesting that the signaling factors involved in the bystander signaling pathways may decrease with the increase of cell damages. (authors)

  6. Integrins are not essential for entry of coxsackievirus A9 into SW480 human colon adenocarcinoma cells

    NARCIS (Netherlands)

    Heikkilä, Outi; Merilahti, Pirjo; Hakanen, Marika; Karelehto, Eveliina; Alanko, Jonna; Sukki, Maria; Kiljunen, Saija; Susi, Petri

    2016-01-01

    Coxsackievirus A9 (CV-A9) is a pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma cells by attaching to the αVβ6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD) motif, which is located at the exposed carboxy-terminus of the

  7. An Exceptional Adenocarcinoma in a Girl

    Directory of Open Access Journals (Sweden)

    Bangaly Traore

    2018-01-01

    Full Text Available Anal adenocarcinoma is very rare and usually occurs in the elderly. We present a case of a 12-year-old girl with an anal margin painful tumor infiltrating the lower rectum, with perineal and vulvar permeation nodules and bilateral fixed inguinal and iliac lymph nodes. Histology showed anal adenocarcinoma with mucosecreting component and independent cells. She had no extra pelvic metastasis on CT scan. She underwent a colostomy and palliative care. This exceptional case challenges us on the diversity of forms of anal cancers that require a multidisciplinary approach. The precarious social context and the age of onset make it difficult to manage this rare cancer.

  8. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Directory of Open Access Journals (Sweden)

    Betty R Liu

    Full Text Available Cell-penetrating peptides (CPPs have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW from bovine lactoferricin (LFcin, stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  9. Dioscorin pre-treatment protects A549 human airway epithelial cells from hydrogen peroxide-induced oxidative stress.

    Science.gov (United States)

    Hsu, Jeng-Yuan; Chu, Jao-Jia; Chou, Ming-Chih; Chen, Ya-Wen

    2013-10-01

    Hydrogen peroxide (H(2)O(2)) is a highly reactive oxygen species involved in lung and bronchial epithelium injury. Increased H(2)O(2) levels have been reported in expired breath condensates of patients with inflammatory airway diseases such as chronic obstructive pulmonary disease. Protecting airway epithelial cells from oxidative stress is an important task in the prevention and management of airway diseases. Previous studies demonstrate that yam (Dioscorea batatas Decne) has antioxidant and anti-trypsin activities. This study evaluated the validity of dioscorin in vitro. The results showed that dioscorin attenuated the alteration of H(2)O(2) on G2/M cell cycle arrest. This might be associated with the activation of IκB and subsequent inactivation of NF-κB. Furthermore, dioscorin suppressed IL-8 secretion and reduced changes of adhesion molecule expressions in H(2)O(2)-injured A549 cells. These results help in understanding the potential of traditional Chinese herbal medicine as treatment for airway inflammatory diseases.

  10. Adenocarcinoma of the urinary bladder, mesonephroid type: a rare case

    Directory of Open Access Journals (Sweden)

    Mahmoud Abbas

    2013-02-01

    Full Text Available Primary adenocarcinoma of the urinary bladder is a rare disease. It occurs in 0.5-2% of all bladder cancers and is discussed as the malignant counterpart of nephrogenic adenomas. We report a 46-year-old white female presented with gross hematuria for clinical examination. Histopathology revealed pT2, Pn1, L1, G2 adenocarcinoma of the bladder and carcinoma in situ according to the TNM classification. Computed tomography scan diagnostic was unremarkable. Patients with adenocarcinoma of the urinary bladder should be treated vigorously and without time delay. Only 7 cases of adenocarcinoma in the urinary bladder (mesonephroid have been described until now. We present a case of clear cell adenocarcinoma of the urinary bladder, mesonephroid type that early diagnosed and till now 3 months after the cystectomy without symptoms and without complications.

  11. Mixed Large Cell Neuroendocrine Carcinoma and Adenocarcinoma with Spindle Cell and Clear Cell Features in the Extrahepatic Bile Duct

    Directory of Open Access Journals (Sweden)

    John Wysocki

    2014-01-01

    Full Text Available Mixed adenoneuroendocrine carcinomas, spindle cell carcinomas, and clear cell carcinomas are all rare tumors in the biliary tract. We present the first case, to our knowledge, of an extrahepatic bile duct carcinoma composed of all three types. A 65-year-old man with prior cholecystectomy presented with painless jaundice, vomiting, and weight loss. CA19-9 and alpha-fetoprotein (AFP were elevated. Cholangioscopy revealed a friable mass extending from the middle of the common bile duct to the common hepatic duct. A bile duct excision was performed. Gross examination revealed a 3.6 cm intraluminal polypoid tumor. Microscopically, the tumor had foci of conventional adenocarcinoma (CK7-positive and CA19-9-postive surrounded by malignant-appearing spindle cells that were positive for cytokeratins and vimentin. Additionally, there were separate areas of large cell neuroendocrine carcinoma (LCNEC. Foci of clear cell carcinoma merged into both the LCNEC and the adenocarcinoma. Tumor invaded through the bile duct wall with extensive perineural and vascular invasion. Circumferential margins were positive. The patient’s poor performance status precluded adjuvant therapy and he died with recurrent and metastatic disease 5 months after surgery. This is consistent with the reported poor survival rates of biliary mixed adenoneuroendocrine carcinomas.

  12. Pancreatic Polypeptide Cell Proliferation in the Pancreas and Duodenum Coexisting in a Patient With Pancreatic Adenocarcinoma Treated With a GLP-1 Analog.

    Science.gov (United States)

    Talmon, Geoffrey A; Wren, J David; Nguyen, Christophe L; Pour, Parviz M

    2017-07-01

    A partial pancreaticogastrodudenectomy was performed on a 66-year old man with type 2 diabetes mellitus because of an invasive, moderately differentiated adenocarcinoma in the head of the pancreas. In the adjacent grossly normal tissue of the uncinate process, there was a massive proliferation of pancreatic polypeptide (PP) cells confined to this region and showed invasive pattern. Strikingly, in the heaped area of his duodenum, there was a strikingly large number of PP, glucagon, a few insulin cells in a mini-islet-like patterns composed of glucagon and insulin cells. Among the etiological factors, the possible long-lasting effects of the GLP-1 analog, with which the patient was treated, are discussed. This is the first report in the literature of both the coexistence of a pancreatic adenocarcinoma and invasive PPoma and the occurrence of PP and insulin cells in human duodenal mucosa.

  13. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  14. Serous papillary adenocarcinoma possibly related to the presence of primitive oocyte-like cells in the adult ovarian surface epithelium: a case report

    Directory of Open Access Journals (Sweden)

    Virant-Klun Irma

    2011-08-01

    Full Text Available Abstract Introduction The presence of oocytes in the ovarian surface epithelium has already been confirmed in the fetal ovaries. We report the presence of SSEA-4, SOX-2, VASA and ZP2-positive primitive oocyte-like cells in the adult ovarian surface epithelium of a patient with serous papillary adenocarcinoma. Case presentation Ovarian tissue was surgically retrieved from a 67-year old patient. Histological analysis revealed serous papillary adenocarcinoma. A proportion of ovarian cortex sections was deparaffinized and immunohistochemically stained for the expression of markers of pluripotency SSEA-4 and SOX-2 and oocyte-specific markers VASA and ZP2. The analysis confirmed the presence of round, SSEA-4, SOX-2, VASA and ZP2-positive primitive oocyte-like cells in the ovarian surface epithelium. These cells were possibly related to the necrotic malignant tissue. Conclusion Primitive oocyte-like cells present in the adult ovarian surface epithelium persisting probably from the fetal period of life or developed from putative stem cells are a pathological condition which is not observed in healthy adult ovaries, and might be related to serous papillary adenocarcinoma manifestation in the adult ovarian surface epithelium. This observation needs attention to be further investigated.

  15. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

    Science.gov (United States)

    Lipsa, Dorelia; Leva, Paolo; Barrero-Moreno, Josefa; Coelhan, Mehmet

    2016-11-16

    Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC 50 =1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC 50 =3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC 50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Net expression inhibits the growth of pancreatic ductal adenocarcinoma cell PL45 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Baiwen Li

    Full Text Available Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene.

  17. [Primary pigmented breast adenocarcinoma in a male patient].

    Science.gov (United States)

    Dauendorffer, J-N; Pages, C; Abd Alsamad, I; Bagot, M; Fraitag, S

    2013-01-01

    Pigmented mammary tumours are rare. Herein, we report the third case of primary pigmented breast adenocarcinoma in a male patient with clinical mimicking of nodular melanoma of the nipple. A male patient presented with a pigmented nodule of the right nipple. Histological examination of the lesion showed dermal and subcutaneous adenocarcinomatous proliferation. The perilesional stroma contained melanin both inside and outside macrophages, leading us to conclude on primary pigmented breast adenocarcinoma clinically mimicking nodular melanoma of the nipple. Local production of melanin by neoplastic cells in the mammary carcinoma was postulated as the cause of hyperpigmentation of the tumour. Other possible causes are transfer of melanin from overlying melanocytes of the pigmented areolar epidermis to the underlying neoplastic cells, or melanin synthesis by intratumoral melanocytes migrating from the epidermis (which strikes us as the most convincing interpretation for the reported case). Breast adenocarcinoma is a rare tumour in men and may present clinically as a pigmented lesion of the nipple, resulting in the problem of differential diagnosis with primary or metastasised nodular melanoma. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Adenocarcinoma of the rete testis with prominent papillary structure and clear neoplastic cells: Morphologic and immunohistochemical findings and differential diagnosis

    Directory of Open Access Journals (Sweden)

    Pei-Wen Huang

    2015-01-01

    Full Text Available Adenocarcinoma of the rete testis is rare, and its etiology is unknown. The definite diagnosis merely depends on the exclusion of other tumors and histological features. We first describe a 38-year-old man with a carcinoma arising in the rete testis. The tumor was characterized by clear neoplastic cells and branching papillary growth. Focal stromal invasion and transition of normal rete epithelium to neoplastic cells were seen. The neoplastic cells were positive for epithelial membrane antigen, Ber-Ep4, vimentin, renal cell carcinoma marker, and CD10, while negative for Wilms′ tumor 1, thyroid transcription factor-1, estrogen receptor, prostate specific antigen, placental alkaline phosphate, CD117, and alpha-1-fetoprotein. According to the above features, we diagnosed this tumor as adenocarcinoma of the rete testis. To our best knowledge, this is the first reported case of adenocarcinoma of the rete testis with prominently papillary structure and clear neoplastic cells. The rarity of adenocarcinoma of the rete testis and the unique features in our case cause diagnostic pitfalls. A complete clinicopathological study and thorough differential diagnosis are crucial for the correct result.

  19. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Pfeilschifter Josef

    2008-09-01

    Full Text Available Abstract Background Production of interferon (IFN-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA. mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA, respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8.

  20. Early-Onset Signet-Ring Cell Adenocarcinoma of the Colon: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Maliha Khan

    2017-01-01

    Full Text Available Colorectal cancer (CRC remains the second leading cause of cancer-related deaths in the United States. While a decline has been observed in the older population, the occurrence of CRC in the adolescent and young adult (AYA population has increased over the past two decades. The histopathologic characteristics and clinical behavior of CRC in AYA patients have been shown to be distinct from those of CRC in older adults. The rarer subtypes of CRC such as mucinous adenocarcinoma and signet-ring cell carcinoma are associated with a poorer prognosis compared to the more common subtypes. Here we report a case of a 20-year-old man who was diagnosed with stage IVB (T4 N2 M1, with peritoneal carcinomatosis signet-ring cell adenocarcinoma of the colon. The scarcity of information on these rarer subtypes merits further study and investigation.

  1. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells.

    Science.gov (United States)

    Tanel, André; Pallepati, Pragathi; Bettaieb, Ahmed; Morin, Patrick; Averill-Bates, Diana A

    2014-05-01

    Acrolein, a highly reactive α,β-unsaturated aldehyde, is a product of endogenous lipid peroxidation. It is a ubiquitous environmental pollutant that is generated mainly by smoke, overheated cooking oil and vehicle exhaust. Acrolein damages cellular proteins, which could lead to accumulation of aberrantly-folded proteins in the endoplasmic reticulum (ER). This study determines the mechanisms involved in acrolein-induced apoptosis mediated by the ER and possible links with the ER stress response in human A549 lung cells. The exposure of cells to acrolein (15-50μM) for shorter times of 15 to 30min activated several ER stress markers. These included the ER chaperone protein BiP and the three ER sensors: (i) the survival/rescue molecules protein kinase RNA (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α) were phosphorylated; (ii) cleavage of activating transcription factor 6 (ATF6) occurred, and (iii) inositol-requiring protein-1 alpha (IRE1α) was phosphorylated. Acrolein (25-50μM) caused apoptotic cell death mediated by the ER after 2h, which was characterised by the induction of CHOP and activation of ER proteases calpain and caspase-4. Calpain and caspase-7 were the initiating factors for caspase-4 activation in acrolein-induced apoptosis. These results increase our knowledge about cellular responses to acrolein in lung cells, which have implications for human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 25 CFR 700.549 - Employee organizations.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Employee organizations. 700.549 Section 700.549 Indians... Employee Responsibility and Conduct § 700.549 Employee organizations. An employee may not knowingly be a member of an organization of Government employees that advocates the overthrow of the United States...

  3. C4.4A as a biomarker in pulmonary adenocarcinoma and squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Kriegbaum, Mette Camilla; Santoni-Rugiu, Eric

    2014-01-01

    to invasive carcinomas of the lung, i.e., in bronchial hyperplasia/metaplasia and atypical adenomatous hyperplasia. In the stages leading to pulmonary squamous cell carcinoma, expression is sustained in dysplasia, carcinoma in situ and invasive carcinomas, and this pertains to the normal presence of C4.4A...... in squamous epithelium. In pulmonary adenocarcinomas, a fraction of cases is positive for C4.4A, which is surprising, given the origin of these carcinomas from mucin-producing and not squamous epithelium. Interestingly, this correlates with a highly compromised patient survival and a predominant solid tumor...

  4. Demographic, Clinical, and Prognostic Factors of Ovarian Clear Cell Adenocarcinomas According to Endometriosis Status

    DEFF Research Database (Denmark)

    Schnack, Tine H; Høgdall, Estrid; Thomsen, Lotte Nedergaard

    2017-01-01

    OBJECTIVES: Women with endometriosis carry an increased risk for ovarian clear cell adenocarcinomas (CCCs). Clear cell adenocarcinoma may develop from endometriosis lesions. Few studies have compared clinical and prognostic factors and overall survival in patients diagnosed as having CCC according...... to endometriosis status. METHODS: Population-based prospectively collected data on CCC with coexisting pelvic (including ovarian; n = 80) and ovarian (n = 46) endometriosis or without endometriosis (n = 95) were obtained through the Danish Gynecological Cancer Database. χ Test, independent-samples t test, logistic...... regression, Kaplan-Meier test, and Cox regression were used. Statistical tests were 2 sided. P values less than 0.05 were considered statistically significant. RESULTS: Patients with CCC and pelvic or ovarian endometriosis were significantly younger than CCC patients without endometriosis, and a higher...

  5. Radiosensitivity of a monoclonal human lung adenocarcinoma cell line with MDR phenotype induced by CDDP: an in vitro study

    International Nuclear Information System (INIS)

    Zhang Junxiang; Kong Zhaolu; Shen Zhifen; Tong Shungao; Jin Yizun

    2006-01-01

    The study was to evaluate radiosensitivity of a monoclonal human lung adenocarcinoma cell line SPC-A-1/CDDP-4 with MDR phenotype induced by cisplatin (CDDP) compared with its parental cell SPC-A-1 in vitro. The glutathione (GSH) content and the radiosensitivity of SPC-A-1/CDDP-4 and SPC-A-1 cells were investigated in aerobic and under hypoxia, respectively. The radiosensitization effect of buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, to SPC-A-1/CDDP-4 and SPC-A-1 cells was observed. The results indicated that the monoclonal human lung adenocarcinoma cell line SPC-A-1/CDDP-4 showed, to some extent, a cross-resistance to 137 Cs γ-ray, in addition to its resistance to anticancer drugs (CDDP, ADM, MTX and VCR). The GSH content of SPC-A-1/CDDP-4 cells was higher than that of SPC-A-1 cells both in aerobic and under hypoxia which might account for it. BSO had radiosensitization effect to SPC-A-1/CDDP-4 and SPC-A-1 cells both in aerobic and under hypoxia, but it was stronger under hypoxia than in aerobic and it was stronger to SPC-A-1/CDDP-4 cells than to SPC-A-1 cells. (authors)

  6. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.

    Science.gov (United States)

    Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin

    2012-02-05

    Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Michelle Visagie

    Full Text Available 2-Methoxyestradiol (2ME2 is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1-25 μM was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues.

  8. Revelation of Different Nanoparticle-Uptake Behavior in Two Standard Cell Lines NIH/3T3 and A549 by Flow Cytometry and Time-Lapse Imaging

    Directory of Open Access Journals (Sweden)

    André Jochums

    2017-07-01

    Full Text Available The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs. Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549 and mouse fibroblast (NIH/3T3 cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC and propidium iodide (PI. We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies.

  9. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure

    Directory of Open Access Journals (Sweden)

    Sahbaie Peyman

    2007-06-01

    Full Text Available Abstract Background Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined whether similar exposure to acid or bile salts results in gene expression changes that provide insights into malignant transformation. Methods Using previously published methods, Barrett's-associated esophageal adenocarcinoma cell lines and primary cultures of Barrett's esophageal tissue were exposed to short pulses of acid or bile salts followed by incubation in culture media at pH 7.4. A genome-wide assessment of gene expression was then determined for the samples using cDNA microarrays. Subsequent analysis evaluated for statistical differences in gene expression with and without treatment. Results The SEG-1 cell line showed changes in gene expression that was dependent on the length of exposure to pH 3.5. Further analysis using the Gene Ontology, however, showed that representation by genes associated with cell proliferation is not enhanced by acid exposure. The changes in gene expression also did not involve genes known to be differentially expressed in esophageal adenocarcinoma. Similar experiments using short-term primary cultures of Barrett's esophagus also did not result in detectable changes in gene expression with either acid or bile salt exposure. Conclusion Short-term exposure of esophageal adenocarcinoma SEG-1 cells or primary cultures of Barrett's esophagus does not result in gene expression changes that are consistent with enhanced cell proliferation. Thus other model systems are needed that may reflect the impact of acid and bile salt exposure on the esophagus in vivo.

  11. BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Christina A. Wicker

    2009-01-01

    Full Text Available Pancreatic adenocarcinoma is an aggressive cancer with a greater than 95% mortality rate and short survival after diagnosis. Chemotherapeutic resistance hinders successful treatment. This resistance is often associated with mutations in codon 12 of the K-Ras gene (K-Ras 12, which is present in over 90% of all pancreatic adenocarcinomas. Codon 12 mutations maintain Ras in a constitutively active state leading to continuous cellular proliferation. Our study determined if TRAIL resistance in pancreatic adenocarcinomas with K-Ras 12 mutations could be overcome by first sensitizing the cells with Benzyl isothiocyanate (BITC. BITC is a component of cruciferous vegetables and a cell cycle inhibitor. BxPC3, MiaPaCa2 and Panc-1 human pancreatic adenocarcinoma cell lines were examined for TRAIL resistance. Our studies show BITC induced TRAIL sensitization by dual activation of both the extrinsic and intrinsic apoptotic pathways.

  12. Cytotoxic and Apoptosis-Inducing Activity of Plants from the Family Asparagaceae in Relation to Human Alveolar Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Y.N. Kamalova

    2016-06-01

    Full Text Available Cancer is known as the second major mortality cause. The number of new cases is increasing every year. Thus, it is urgent for scientists to search for alternative drugs with selective antitumor action and minimal side effects. It is known that some plant metabolites exhibit antioxidant, cytotoxic, and antitumor activity, while at the same time being less toxic than modern allopathic drugs. In this work, we have investigated the cytotoxic and apoptosis-inducing effects of extracts obtained from plants of the family Asparagaceae on A549 human lung adenocarcinoma cells. The analysis has been performed using flow cytofluorometry. If extracts showed cytotoxicity, the apoptosis-inducing action has been evaluated at the concentration of 50 μg/mL; in other cases, the analyzed concentration range was 50–300 μg/mL. On the basis of the experiments carried out, the following conclusions have been made. Extracts of the leaves and rhizomes of Sansevieria cylindrica and Sansevieria trifasciata do not possess antitumor activity. Extracts of the leaves of Polianthes tuberosa and Furcraea gigantea, which were cytotoxic at high concentrations, cause cell death at 50 μg/mL in the amount of 21.35 ± 1.86 and 15.6 ± 3.23, respectively. Extracts of Polianthes tuberosa bulbs and Yucca filamentosa leaves are able to induce apoptosis at higher concentrations. When the concentration reaches 100 μg/mL, the proportion of apoptotic cells for these plants is 45.76 ± 1.34 and 11.33 ± 0.07, respectively. The number of dead cells at the concentration of 300 μg/mL increased up to 73.33 ± 3.05 and 81.75 ± 4.07. The results have great importance for development of new drugs based on metabolites from these plant extracts.

  13. Primary adenocarcinoma of lung: A pictorial review of recent updates

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Anand, E-mail: anandgaik@yahoo.co.in [Department of Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Gupta, Ashish, E-mail: ashgupta@toh.on.ca [Department of Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Hare, Sam, E-mail: samanjeet@btinternet.com [Department of Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Gomes, Marcio, E-mail: mgomes@toh.on.ca [Department of Pathology and Laboratory Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Sekhon, Harman, E-mail: hsekhon@toh.on.ca [Department of Pathology and Laboratory Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Souza, Carolina, E-mail: csouza@ottawahospital.on.ca [Department of Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Inacio, Joao, E-mail: joao.r.inacio@gmail.com [Department of Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Lad, Shilpa, E-mail: slad@toh.on.ca [Department of Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada); Seely, Jean, E-mail: jeseely@ottawahospital.on.ca [Department of Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON (Canada)

    2012-12-15

    Primary adenocarcinoma of lung has replaced squamous cell carcinoma as the commonest histological subtype of lung cancer and the incidence of primary lung adenocarcinoma appears to be rising. Although the main factors behind this ‘epidemic-like’ situation are largely undiscovered, filter cigarettes appear to significantly contribute to this shift in the histopathological spectrum. The new multidisciplinary classification of adenocarcinoma of lung was introduced to address advances in clinical, pathological, radiological and molecular sciences. The purpose of this essay is to discuss various classes of lung adenocarcinoma in the new classification with their classical imaging features on computed tomography and summarise the recent advances in the field of radiology and review radiology recommendations.

  14. Assessment of cytotoxicity of Portulaca oleracea Linn. against human colon adenocarcinoma and vero cell line

    Science.gov (United States)

    Mali, Prashant Y.

    2015-01-01

    Background: Portulaca oleracea Linn. (Portulacaceae) is commonly known as purslane in English. In traditional system it is used to cure diarrhea, dysentery, leprosy, ulcers, asthma, and piles, reduce small tumors and inflammations. Aim: To assess cytotoxic potential of chloroform extract of P. oleracea whole plant against human colon adenocarcinoma (HCT-15) and normal (Vero) cell line. Materials and Methods: Characterization of chloroform extract of P. oleracea by Fourier transform infrared (FTIR) spectroscopy was performed. Cytotoxicity (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was used for assessment of cytotoxic potential of chloroform extract of P. oleracea. The concentrations of 1000–0.05 μg/ml were used in the experiment. Doxorubicin was considered as standard reference drug. Results: FTIR spectrum showed the peak at 1019.52 and 1396.21 center. The 50% cell growth inhibition (IC50) of chloroform extract of P. oleracea and doxorubicin was 1132.02 μg/ml and 460.13 μg/ml against human colon adenocarcinoma and 767.60 μg/ml and 2392.71 μg/ml against Vero cell line, respectively. Conclusion: Chloroform extract of P. oleracea whole plant was less efficient or does not have cytotoxic activity against human colon adenocarcinoma cell line. It was not safe to normal Vero cell line. But, there is a need to isolate, identify, and confirm the phytoconstituents present in extract by sophisticated analytical techniques. PMID:27833374

  15. A case report of metastatic adenocarcinoma of the gingiva

    Directory of Open Access Journals (Sweden)

    Buddula Aravind

    2009-01-01

    Full Text Available Localized gingival enlargement is often associated with specific systemic medication, abscess formation, trauma or reactive lesions. Scant literature is available reporting enlargement of gingiva due the metastasis of adenocarcinoma from lung. The case report presents a unique case of an adenocarcinoma in the lung metastasizing to the buccal and lingual interdental papillae of teeth numbering 34 and 35. A 72-year-old female was referred to the Mayo Clinic with a recent diagnosis of metastatic stage IV adenocarcinoma of the left lung presented with an abnormal mass located on the left posterior buccal keratinized tissue adjacent to teeth numbering 34-35. Biopsy of the lesion was performed for CK7, CK20, TTF-1 and p63. The tumor cells were positive for CK7 and TTF-1, and weakly positive for p63 suggesting a diagnosis of adenocarcinoma. The periodontist may be in the unique position to be the first oral health care provider to evaluate any biopsy suspicious intra-oral lesions.

  16. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: A case report and literatures review.

    Science.gov (United States)

    Liu, Yangyang

    2018-06-03

    Epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have markedly improved the response of non-small cell lung cancer (NSCLC) with EGFR-mutant patients. However, these patients inevitably come cross acquired resistance to EGFR-TKIs. The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) following treatment with EGFR-TKIs is rare, which leads to resistance to EGFR-TKIs. The present case concerns a case of a 38-year-old man presenting with cough and dyspnea. Radical resection was performed and confirmed an EGFR exon 21 L858R lung adenocarcinoma. However, the patient suffered pleural metastasis after successful treatment with surgery and adjuvant treatment. So, erlotinib was administered with 18 months. Because of enlarged pleural nodule, repeat biopsy identified an SCLC and chemotherapy was started. However, despite the brief success of chemotherapy, our patient suffered brain metastasis. Our case emaphsizes both the profile of transformation from NSCLC to SCLC and the importance of repeat biopsy dealing with drug resistance. We also summarize the clinical characteristics, mechanisms, predictors of SCLC transformation, treatment after transformation and other types of transformation to SCLC.

  17. Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Maruyama, I.; Majerus, P.W.

    1987-01-01

    We investigated the effect of protein C on the endocytosis of thrombin-thrombomodulin complexes. We previously showed that exposure of umbilical vein endothelial cells to thrombin stimulated the internalization and degradation of thrombin. A similar internalization was stimulated by a monoclonal antithrombomodulin antibody. We have repeated these studies in the presence of protein C and found that endocytosis of 125 I-thrombin-thrombomodulin complexes, but not 125 I-antithrombomodulin-thrombomodulin complexes, is inhibited. Activated protein C did not inhibit endocytosis of thrombin-thrombomodulin complexes. Protein C inhibited both internalization and degradation of 125 I-thrombin and diisopropylphosphoryl (DIP) 125 I-thrombin in human lung cancer cells (A549). These effects were observed at protein C concentrations found in human plasma. Protein S had no effect on the inhibition of endocytosis of thrombin-thrombomodulin complexes by protein C. We propose that protein C may regulate the rate of endocytosis of thrombin-thrombomodulin complexes in vivo and thereby control the capacity for endothelium to activate protein C

  18. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    Science.gov (United States)

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell lines, icotinib significantly inhibited A431 (P = 0.009, 0.005 and 0.000) and HCC827 (P = 0.001, 0.001 and 0.000) cell lines. And it lowered the expressions of p-AKT, p-ERK and survivin protein expression through the inhibited activity of p-EGFR protein. Icotinib can arrest the proliferation of lung adenocarcinoma cells with EGFR mutation or over-expression by inhibiting the signal pathways of AKT-ERK and survivin.

  19. A case of alpha-fetoprotein-producing esophageal adenocarcinoma.

    Science.gov (United States)

    Chen, Yi-Yu; Hsu, Wen-Hung; Hu, Huang-Ming; Wu, Deng-Chyang; Lin, Wen-Yi

    2013-02-01

    Alpha-fetoprotein is a well-known tumor marker in the screening and follow-up of hepatocellular carcinoma. In Taiwanese society, a high prevalence of hepatitis and hepatoma and elevation of alpha-fetoprotein associated with liver function impairment usually suggested clinics undertake further examination for liver or genital tumor. We report the case of 45-year-old man who was found to have an alpha-fetoprotein-producing esophageal adenocarcinoma with an initial presentation of liver function impairment and rapid elevation of alpha-fetoprotein. Esophageal cancer was diagnosed via endoscope and a biopsy proved the presence of adenocarcinoma. A small endoscopic biopsy specimen failed to identify the alpha-fetoprotein positive tumor cell. Esophagectomy was performed and histopathological study of surgical specimen revealed grade II adenocarcinoma with regional metastatic lymphadenopathy. Immunohistochemical study was focal positive for alpha-fetoprotein. Serum alpha-fetoprotein declined transiently after esophagectomy and fluctuation of alpha-fetoprotein level was noted during the treatment with adjuvant chemotherapy. Finally, 19 months after the operation, the patient died due to multiple organ metastases with multiple organ failure. Thus, a small specimen for upper endoscopy may not be sufficient in the presence of alpha-fetoprotein-producing adenocarcinoma. Monitoring of serum alpha-fetoprotein may be useful in the evaluation and follow-up of esophageal alpha-fetoprotein-producing adenocarcinoma. Copyright © 2012. Published by Elsevier B.V.

  20. Echinophora platyloba DC (Apiaceae crude extract induces apoptosis in human prostate adenocarcinoma cells (PC 3

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2014-10-01

    Full Text Available Background: Prostate cancer is the second leading malignancy worldwide and the second prominent cause of cancer-related deaths among men. Therefore, there is a serious necessity for finding advanced alternative therapeutic measures against this lethal malignancy. In this article, we report the cytotoxicity and the mechanism of cell death of the methanolic extract prepared from Echinophora platyloba DC plant against human prostate adenocarcinoma PC 3 cell line and Human Umbilical Vein Endothelial Cells HUVEC cell line. Methods: Cytotoxicity and viability of the methanolic extract were assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and dye exclusion assay. Cell death enzyme-linked immunosorbent assay (ELISA was employed to quantify the nucleosome production resulting from nuclear DNA fragmentation during apoptosis and determine whether the mechanism involves induction of apoptosis or necrosis. The cell death was identified as apoptosis using terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end labeling (TUNEL assay and DNA fragmentation gel electrophoresis. Results: E. platyloba could decrease cell viability in malignant cells in a dose- and time-dependent manner. The IC50 values against PC 3 were determined as 236.136 ± 12.4, 143.400 ± 7.2, and 69.383 ± 1.29 μg/ml after 24, 36, and 48 h, respectively, but there was no significant activity in HUVEC normal cell (IC50 > 800 μg/ml. Morphological characterizations and DNA laddering assay showed that the methanolic extract treated cells displayed marked apoptotic characteristics such as nuclear fragmentation, appearance of apoptotic bodies, and DNA laddering fragment. Increase in an early apoptotic population was observed in a dose-dependent manner. PC 3 cell death elicited by the extract was found to be apoptotic in nature based a clear indication of TUNEL assay and gel electrophoresis DNA fragmentation, which is a hallmark of apoptosis

  1. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano; Kawana, Ayako; Nishiyama, Takahito; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira, E-mail: hiratuka@toyaku.ac.jp [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)

    2011-10-07

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  2. New geranylated flavanones from the fruits of Paulownia catalpifolia Gong Tong with their anti-proliferative activity on lung cancer cells A549.

    Science.gov (United States)

    Gao, Tian-yang; Jin, Xing; Tang, Wen-zhao; Wang, Xiao-jing; Zhao, Yun-xue

    2015-09-01

    Three new geranylated flavanones, named as paucatalinone A (1), B (2), and isopaucatalinone B (3), were isolated from the fruits of Paulownia catalpifolia Gong Tong (Scrophulariaceae). Their structures were well determined by means of IR, MS, 1D and 2D NMR, and CD techniques. Paucatalinone A (1) is the first sample as a dimeric geranylated flavanone derivative isolated from natural products. Paucatalinone A (1) displayed good antiproliferative effects on human lung cancer cells A549 and resulted in a clear increase of the percentage of cells in G1 phase and a decrease in the percentage of cells in S and G2/M phases in comparison with control cells. Copyright © 2015. Published by Elsevier Ltd.

  3. A platycoside-rich fraction from the root of Platycodon grandiflorum enhances cell death in A549 human lung carcinoma cells via mainly AMPK/mTOR/AKT signal-mediated autophagy induction.

    Science.gov (United States)

    Yim, Nam-Hui; Hwang, Youn-Hwan; Liang, Chun; Ma, Jin Yeul

    2016-12-24

    The root of Platycodon grandiflorum (PG), commonly known as Kilkyong in Korea, Jiegeng in China, and Kikyo in Japan, has been extensively used as a traditional anti-inflammatory medicine in Asia for the treatment of respiratory conditions, such as bronchitis, asthma, and tonsillitis. Platycosides isolated from PG are especially well-known for their anti-cancer effects. We investigated the involvement of autophagic cell death and other potential molecular mechanisms induced by the platycoside-containing butanol fraction of PG (PGB) in human lung carcinoma cells. PGB-induced growth inhibition and cell death were measured using a 5-diphenyl-tetrazolium bromide (MTT) assay. The effects of PGB on autophagy were determined by observing microtubule-associated protein 1 light chain 3 (LC3) redistribution with confocal microscopy. The PGB-mediated regulation of autophagy-associated proteins was investigated using Western blotting analysis. Furthermore, the anti-cancer mechanism of PGB was confirmed using chemical inhibitors. A high-performance liquid chromatography (HPLC)-DAD system was used to analyze the platycosides in PGB. In A549 cells, PGB induced significant autophagic cell death. Specifically, PGB upregulated LC3-II in a time- and dose-dependent manner, and it redistributed LC3 via autophagosome formation in the cytoplasm. PGB treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and subsequently suppressed the AKT/mammalian target of the rapamycin (mTOR) pathway. Furthermore, PGB inhibited cell proliferation by regulating the mitogen-activated protein kinase (MAPK) pathways. In this study, six types of platycosides were identified in the PGB using HPLC. PGB efficiently induced cancer cell death via autophagy and the modulation of the AMPK/mTOR/AKT and MAPK signaling pathways in A549 cells. Therefore, PGB may be an efficacious herbal anti-cancer therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway

    International Nuclear Information System (INIS)

    Luo, FengMing; Liu, XiaoJing; Yan, NaiHong; Li, ShuangQing; Cao, GuiQun; Cheng, QingYing; Xia, QingJie; Wang, HongJing

    2006-01-01

    Hypoxia-inducible transcription factor-1α (HIF-1α), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a 'master' gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1α on apoptosis by modulating HIF-1α gene expression in A549 cells through both siRNA knock-down and over-expression. A549 cells were transfected with a HIF-1α siRNA plasmid or a HIF-1α expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry. Knocking down expression of HIF-1α inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1α accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1α on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1α over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES. During hypoxia in A549 cells, HIF-1α promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis

  5. Clear Cell Adenocarcinoma of the Urethra: Review of the Literature

    Directory of Open Access Journals (Sweden)

    Anthony Kodzo-Grey Venyo

    2015-01-01

    Full Text Available Background. Clear cell adenocarcinoma of the urethra (CCAU is extremely rare and a number of clinicians may be unfamiliar with its diagnosis and biological behaviour. Aims. To review the literature on CCAU. Methods. Various internet databases were used. Results/Literature Review. (i CCAU occurs in adults and in women in the great majority of cases. (ii It has a particular association with urethral diverticulum, which has been present in 56% of the patients; is indistinguishable from clear cell adenocarcinoma of the female genital tract but is not associated with endometriosis; and probably does not arise by malignant transformation of nephrogenic adenoma. (iii It is usually, readily distinguished from nephrogenic adenoma because of greater cytological a-typicality and mitotic activity and does not stain for prostate-specific antigen or prostatic acid phosphatase. (iv It has been treated by anterior exenteration in women and cystoprostatectomy in men and at times by radiotherapy; chemotherapy has rarely been given. (v CCAU is aggressive with low 5-year survival rates. (vi There is no consensus opinion of treatment options that would improve the prognosis. Conclusions. Few cases of CCAU have been reported. Urologists, gynaecologists, pathologists, and oncologists should report cases of CCAU they encounter and enter them into a multicentric trial to determine the best treatment options that would improve the prognosis.

  6. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells

    International Nuclear Information System (INIS)

    Buchholz, Daniel J.; Lepek, Katherine J.; Rich, Tyvin A.; Murray, David

    1995-01-01

    Purpose: To determine the effect of cellular proliferation and cell cycle stage on the ability of postirradiation 5-fluorouracil (5-FU) to radiosensitize cultured human colon adenocarcinoma Clone A cells. Methods and Materials: Cell survival curves were generated for irradiated: (a) log- and plateau-phase Clone A cells; and (b) Clone A cells separated by centrifugal elutriation into the various phases of the cell cycle; with and without postirradiation treatment with 100 μg/ml 5-FU. Results: Postirradiation treatment with 5-FU sensitized proliferating cells to a greater degree than it sensitized cells growing in plateau phase. The β component of cell kill in log-phase cells was increased by a factor of 1.5 with a sensitizer enhancement ratio of 1.21 at the 0.01 survival level. Plateau-phase cells showed less radiosensitization (sensitizer enhancement ratio of 1.13 at the 0.01 survival level); however, there was a mild increase in both α and β kill in plateau-phase cells. Elutriated G 1 cells were the most radiosensitive, independent of treatment with 5-FU. The phase of the cell cycle had little effect on the ability of fluorouracil to radiosensitize Clone A cells. Conclusion: Proliferating cells are more susceptible to radiosensitization with 5-FU than plateau-phase cells are, but this effect appears to be independent of the phase of the cell cycle

  7. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression.

    Science.gov (United States)

    Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2017-08-01

    Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Clear Cell Adenocarcinoma Arising from Abdominal Wall Endometriosis

    Directory of Open Access Journals (Sweden)

    Thouraya Achach

    2008-01-01

    Full Text Available Endometriosis is a frequent benign disorder. Malignancy arising in extraovarian endometriosis is a rare event. A 49-year-old woman is presented with a large painful abdominal wall mass. She underwent a myomectomy, 20 years before, for uterus leiomyoma. Computed tomography suggested that this was a desmoid tumor and she underwent surgery. Histological examination showed a clear cell adenocarcinoma associated with endometriosis foci. Pelvic ultrasound, computed tomography, and endometrial curettage did not show any malignancy or endometriosis in the uterus and ovaries. Adjuvant chemotherapy was recommended, but the patient was lost to follow up. Six months later, she returned with a recurrence of the abdominal wall mass. She was given chemotherapy and then she was reoperated.

  9. Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Hjortland, Geir Olav; Fodstad, Oystein; Smeland, Sigbjorn; Hovig, Eivind; Meza-Zepeda, Leonardo A; Beiske, Klaus; Ree, Anne H; Tveito, Siri; Hoifodt, Hanne; Bohler, Per J; Hole, Knut H; Myklebost, Ola

    2011-01-01

    Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy. In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry. ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously

  10. Effect of repeated irradiation on biological characteristics of lung adenocarcinoma cell line Anip973 in vitro

    International Nuclear Information System (INIS)

    Xu Qingyong; Xu Xiangying; Yang Zhiwei

    2008-01-01

    Objective: To study the effect of repeated irradiation on biological characteristics of human lung adenocarcinoma cell line Anip973 in vitro. Methods: Anip973 cells were treated with high energy X-ray to a total dose of 60 Gy at 4 Gy fractions. The radiosensitivity of Anip973R and its parental cell were measured by clonogenic assay. The biological parameters were fitted to the single hit multitarget formula. Furthermore, the population double time(PDT) and cell cycle distribution were measured by cell growth curve and flow cytometry, respectively. Results: Comparing with its parental cell, Anip973 R acquired radioresistance showing increased D 0 , D q and SF 2 and a broader shoulder. PDT of Anip973R extended 3 h more than that of Anip973. The Anip973R also showed higher and lower percentage of cells in G 1 and S phase (P 2 /M distribution (P>0.05). Conclusions: A radioresistant lung adenocarcinoma cell line Anip973R is established by repeatedly irradiation. Its radioresistance displays obviously in lower dose area. However, its characteristic of cell cycle is not completely coincident with the classical radiobiological theory. (authors)

  11. The Prognostic Impact of NK/NKT Cell Density in Periampullary Adenocarcinoma Differs by Morphological Type and Adjuvant Treatment.

    Science.gov (United States)

    Lundgren, Sebastian; Warfvinge, Carl Fredrik; Elebro, Jacob; Heby, Margareta; Nodin, Björn; Krzyzanowska, Agnieszka; Bjartell, Anders; Leandersson, Karin; Eberhard, Jakob; Jirström, Karin

    2016-01-01

    Natural killer (NK) cells and NK T cells (NKT) are vital parts of tumour immunosurveillance. However, their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, has not yet been described. Immune cell-specific expression of CD56, CD3, CD68 and CD1a was analysed by immunohistochemistry on tissue microarrays with tumours from 175 consecutive cases of periampullary adenocarcinoma, 110 of pancreatobiliary type (PB-type) and 65 of intestinal type (I-type) morphology. Kaplan-Meier and Cox regression analysis were applied to determine the impact of CD56+ NK/NKT cells on 5-year overall survival (OS). High density of CD56+ NK/NKT cells correlated with low N-stage and lack of perineural, lymphatic vessel and peripancreatic fat invasion. High density of CD56+ NK/NKT cells was associated with prolonged OS in Kaplan-Meier analysis (p = 0.003), and in adjusted Cox regression analysis (HR = 0.49; 95% CI 0.29-0.86). The prognostic effect of high CD56+ NK/NKT cell infiltration was only evident in cases not receiving adjuvant chemotherapy in PB-type tumours (p for interaction = 0.014). This study demonstrates that abundant infiltration of CD56+ NK/NKT cells is associated with a prolonged survival in periampullary adenocarcinoma. However, the negative interaction with adjuvant treatment is noteworthy. NK cell enhancing strategies may prove to be successful in the management of these cancers.

  12. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549 and Cervical Cancer (HeLa Cell Lines

    Directory of Open Access Journals (Sweden)

    S. Rupachandra

    2014-01-01

    Full Text Available A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3 on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3 exhibited significant cytotoxic activity against lung (A549 and cervical (HeLa cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549 and cervical (HeLa cancer cells.

  13. Adenocarcinoma of the Lung Acquiring Resistance to Afatinib by Transformation to Small Cell Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Jun Nishimura

    2017-07-01

    Full Text Available A 65-year-old woman visited our hospital due to right chest pain and dyspnea on exertion. Chest radiography revealed decreased permeability of the right lung. Computed tomography demonstrated a huge mass in the right upper lobe and right pleural effusion. Right pleural effusion cytology yielded a diagnosis of adenocarcinoma and was positive for mutation of epidermal growth factor receptor (EGFR; exon 21 L858R. Afatinib was selected for the initial treatment. Multiple tumors regressed remarkably, but then rapidly progressed 3 months later. We performed re-biopsy to detect the mechanism of resistance to afatinib. Histopathology revealed a mixture of small cell carcinoma (SCC and adenocarcinoma harboring same EGFR mutation. To the best of our knowledge, this is the first report of transformation to SCC after treatment with afatinib.

  14. Effect of primarily cultured human lung cancer-associated fibroblasts on radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Ji Xiaoqin; Ji Jiang; Chen Yongbing; Shan Fang; Lu Xueguan

    2014-01-01

    Objective: To investigate the effect of human lung cancer-associated fibroblasts (CAF) on the radiosensitivity of lung cancer cells when CAF is placed in direct contact co-culture with lung cancer cells. Methods: Human lung CAF was obtained from fresh human lung adenocarcinoma tissue specimens by primary culture and subculture and was then identified by immunofluorescence staining. The CAF was placed in direct contact co-culture with lung cancer A 549 and H 1299 cells, and the effects of CAF on the radiosensitivity of A 549 and H 1299 cells were evaluated by colony-forming assay. Results: The human lung CAF obtained by adherent culture could stably grow and proliferate, and it had specific expression of α-smooth muscle actin, vimentin, and fibroblast activation protein,but without expression of cytokeratin-18. The plating efficiency (PE, %) of A 549 cells at 0 Gy irradiation was (20.0 ± 3.9)% when cultured alone versus (32.3 ± 5.5)% when co-cultured with CAF (t=3.16, P<0.05), and the PE of H 1299 cells at 0 Gy irradiation was (20.6 ± 3.1)% when cultured alone versus (35.2 ± 2.3)% when co-cultured with CAF (t=6.55, P<0.05). The cell survival rate at 2 Gy irradiation (SF 2 ) of A 549 cells was 0.727 ±0.061 when cultured alone versus 0.782 ± 0.089 when co-cultured with CAF (t=0.88, P>0.05), and the SF 2 of H 1299 cells was 0.692 ±0.065 when cultured alone versus 0.782 ± 0.037 when co-cultured with CAF (t=2.08, P>0.05). The protection enhancement ratios of human lung CAF for A 549 cells and H 1299 cells were 1.29 and 1.25, respectively. Conclusions: Human lung CAF reduces the radiosensitivity of lung cancer cells when placed in direct contact co-culture with them, and the radioprotective effect may be attributed to CAF promoting the proliferation of lung cancer cells. (authors)

  15. Tumor necrosis factor-α induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-κB in A549 cells

    International Nuclear Information System (INIS)

    Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung; Lee, Chiang-Wen; Wu, C.-Y.; Cheng, C.-Y.; Yang, C.-M.

    2008-01-01

    Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-α (TNF-α) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-α in human A549 cells remain unclear. Here, we showed that TNF-α induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-κB (helenalin), and transfection with dominant negative mutants of ERK2 (ΔERK) and JNK (ΔJNK), and siRNAs for MEK1, p42 and JNK2. TNF-α-stimulated phosphorylation of p42/p44 MAPK and JNK were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of ΔERK and ΔJNK. Furthermore, the involvement of NF-κB in TNF-α-induced MMP-9 production was consistent with that TNF-α-stimulated degradation of IκB-α and translocation of NF-κB into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-κB was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-α in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-α-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-κB MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-α-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-κB are essential for TNF-α-induced MMP-9 gene expression

  16. In Vitro Antioxidant Activities of Phenols and Oleanolic Acid from Mango Peel and Their Cytotoxic Effect on A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2018-06-01

    Full Text Available Mango peel, the main by-product of juice processing, possesses appreciable quantities of bioactive phenolic compounds and is worthy of further utilization. The present work reports for the first time the HPLC analysis and in vitro antioxidant evaluation of mango peel phenols (MPPs and their cytotoxic effect on the A549 lung cancer cell line. These results indicated that mango peel has the total phenolic content of 723.2 ± 0.93 mg·kg−1 dry mango peel (DMP, which consisted mainly of vanillic aldehyde, caffeic acid, chlorogenic acid, gallic acid, procyanidin B2 and oleanolic acid. Antioxidant assays showed that MPPs had strong antioxidant activities, with 92 ± 4.2% of DPPH radical scavenging rate, 79 ± 2.5% of ABTS radical inhibition rate and 4.7 ± 0.5 μM Trolox equivalents per kg−1 DMP of ferric reducing power. Gallic acid possess a stronger antioxidant capacity than other phenols. In vitro cytotoxic tests suggested that mango peel extract (MPE had an IC50 value of 15 mg·mL−1 and MPPs had a stronger inhibitory effect on the A549 cell line. Oleanolic acid exhibited the strongest cytotoxicity, with an IC50 value of 4.7 μM, which was similar with that of the positive control 5-fluorouracil.

  17. Sulforaphane?induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC?05

    OpenAIRE

    Zhou, Lan; Yao, Qian; Li, Yan; Huang, Yun?chao; Jiang, Hua; Wang, Chuan?qiong; Fan, Lei

    2016-01-01

    Background Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non?smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane?induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL?05) to explore the value of s...

  18. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    Science.gov (United States)

    Islas-Vazquez, Lorenzo; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells. PMID:26582240

  19. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Lorenzo Islas-Vazquez

    2015-01-01

    Full Text Available Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells.

  20. Indomethacin-Enhanced Anticancer Effect of Arsenic Trioxide in A549 Cell Line: Involvement of Apoptosis and Phospho-ERK and p38 MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Ali Mandegary

    2013-01-01

    Full Text Available Background. Focusing on novel drug combinations that target different pathways especially apoptosis and MAPK could be a rationale for combination therapy in successful treatment of lung cancer. Concurrent use of cyclooxygenase (COX inhibitors with arsenic trioxide (ATO might be a possible treatment option. Methods. Cytotoxicity of ATO, dexamethasone (Dex, celecoxib (Cel, and Indomethacin (Indo individually or in combination was determined at 24, 48, and 72 hrs in A549 lung cancer cells. The COX-2 gene and protein expression, MAPK pathway proteins, and caspase-3 activity were studied for the most cytotoxic combinations. Results. The IC50s of ATO and Indo were 68.7 μmol/L and 396.5 μmol/L, respectively. Treatment of cells with combinations of clinically relevant concentrations of ATO and Indo resulted in greater growth inhibition and apoptosis induction than did either agent alone. Caspase-3 activity was considerably high in the presence of ATO and Indo but showed no difference in single or combination use. Phosphorylation of p38 and ERK1/2 was remarkable in the concurrent presence of both drugs. Conclusions. Combination therapy with ATO and Indo exerted a very potent in vitro cytotoxic effect against A549 lung cancer cells. Activation of ERK and p38 pathways might be the mechanism of higher cytotoxic effect of ATO-Indo combination.

  1. Killing Effect of Ad5/F35-APE1 siRNA Recombinant Adenovirus in Combination with Hematoporphrphyrin Derivative-Mediated Photodynamic Therapy on Human Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lei Xia

    2013-01-01

    Full Text Available The main goal of this work is to investigate the killing effects and molecular mechanism of photodynamic therapy (PDT mediated by the Ad5/F35-APE1 siRNA recombinant adenovirus in combination with a hematoporphrphyrin derivative (HpD in the A549 human lung adenocarcinoma cell line in vitro to provide a theoretical reference for treating lung cancer by HpD-PDT. By using the technologies of MTT, flow cytometry, ELISA, and western blot, we observed that the proliferation inhibition and apoptosis of the A549 cells were significantly higher than the control group ( after HpD-PDT was performed. The inhibitory efficiency is dependent on the HpD concentration and laser intensity dose. The inhibitory effect on the proliferation of A549 cells of Ad5/F35-APE1 siRNA is more significant after combining with PDT, as indicated by a significant elevation of the intracellular ROS level and the expression of inflammatory factors (. The HpD-PDT-induced expression of the APE1 protein reached the peak after 24 h in A549 cells. The inhibition of APE1 expression in A549 cells was most significant after 48 hours of infection by Ad5/F35-APE1 siRNA recombinant adenovirus (10 MOI. In conclusion, the Ad5/F35-APE1 siRNA recombinant adenovirus could efficiently inhibit the HpD-PDT-induced APE1 expression hence could significantly enhance the killing effect of HpD-PDT in lung cancer cells.

  2. Individually programmable cell stretching microwell arrays actuated by a Braille display.

    Science.gov (United States)

    Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-Chung; Huh, Dongeun; Song, Jonathan W; Takayama, Shuichi

    2008-06-01

    Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.

  3. In vitro cytotoxic effects of PM2.5 from the city of Abidjan (Ivory Coast) on human A549 lung cells

    International Nuclear Information System (INIS)

    Kouassi, Kouakou-Serge; Billet, Sylvain; Garcon, Guillaume; Verdin, Anthony; Courcot, Dominique; Shirali, Pirouz; Diouf, Amadou; Cazier, Fabrice; Djaman, Joseph

    2012-01-01

    Epidemiological studies associate air pollution, especially particulate, increased morbidity and mortality from respiratory and cardiovascular origin . Africa, which has an urbanization rate among the highest in the world, is particularly exposed. The 'Initiative on the air quality in Sub-Saharan Africa' showed the importance of atmospheric concentrations of certain pollutants such as nitrogen oxides, sulfur dioxide and particulate matter (PM 10 ). Like the great capitals of Africa, Abidjan, economic capital and most industrialized city of Ivory Coast is facing an air pollution from industrial-urban and health consequences for its population of nearly 6 million inhabitants. To better understand the mechanisms of action resulting from pulmonary exposure to particulate atmospheric aerosols, we proposed: (i) to collect atmospheric particles (PM 2.5 ) using high volume cascade impaction in the District of Abidjan in three influences (rural, urban or industrial), (ii) to determine their main physicochemical, (iii) assess their cytotoxicity and their role in the induction of oxidative damage in a model of human lung cells (A549) in culture. The chemical composition of the atmospheric particles revealed their heterogeneity, and many inorganic (e.g. Al, Ca, Fe, Mn, Zn, Ni, Cr, Cu, Pb, Mg) and organic compounds (e.g. paraffins) were quantified at the three sites. Their effect concentrations (EC) to 10 and 50% on the A549 were as follows: influence rural: EC 10 = 5.91 μg/cm 2 and EC 50 29.55 μg/cm 2 , urban influence: EC 10 = 5 .45 μg/cm 2 and EC 50 = 27.23 μg/cm 2 , and industrial influence: EC 10 = 6.86 μg/cm 2 and EC 50 = 34.29 μg/cm 2 . Exposure of A549 cells to Abidjan city's PM samples for 24, 48 or 72 hours to their EC 10 or EC 50 induced oxidative damage, as demonstrated by the formation of malon-dialdehyde, changes in enzyme activity of superoxide dismutase and alteration of glutathione status. (authors)

  4. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method

    International Nuclear Information System (INIS)

    Kaviyarasu, K.; Geetha, N.; Kanimozhi, K.; Maria Magdalane, C.; Sivaranjani, S.; Ayeshamariam, A.; Kennedy, J.; Maaza, M.

    2017-01-01

    We report the synthesis of high quality ZnO doped TiO 2 nanocrystals by chemical method at room temperature (RT), it can cause serious oxidative stress and DNA damage to human lung epithelial cells (A549) lines. Our aim in this study, to reduce the cytotoxicity effect of ZnO doped TiO 2 nanocrystals are widely in biological fields. Several studies have been performed to understand the influence of ZnO doped titanium dioxide (TiO 2 -NPs) on cell function; however the effects of nanoparticle against to exposure on the cell membrane have been duly addressed fascinatingly so far. However, In this interaction, which may alter cell metabolism and integrity, it is one of the importance to understand the modifications of the cell membrane, mechanisms of pulmonary A549 cell lines nanoparticles were uptake and the molecular pathway during the initial cell responses are still unclear and much more investigative efforts are need to properly characterize the ZnO doped titanium dioxide nanoparticles were reported successfully. In particular of the epithelial cells, upon particles are exposed human pulmonary epithelial cells (A549) to various concentrations of composition, structure and morphology of the nanocrystals were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanocrystals which identified peaks associated with (002), (100) and (101) planes of hexagonal wurtzite-type ZnO with lattice constants of a = b = 3.249 Å and c = 5.219 Å. The IR results showed high purity of products and indicated that the nanocrystals are made up of Ti−O and Zn−O bonds. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of ZnO/TiO 2 nanocrystals which exhibits antibacterial activity over a broad range of bacterial species and in particular against Stre. Mut where it out competes

  5. Molecular mechanisms of bortezomib resistant adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Erika Suzuki

    Full Text Available Bortezomib (Velcade™ is a reversible proteasome inhibitor that is approved for the treatment of multiple myeloma (MM. Despite its demonstrated clinical success, some patients are deprived of treatment due to primary refractoriness or development of resistance during therapy. To investigate the role of the duration of proteasome inhibition in the anti-tumor response of bortezomib, we established clonal isolates of HT-29 adenocarcinoma cells adapted to continuous exposure of bortezomib. These cells were ~30-fold resistant to bortezomib. Two novel and distinct mutations in the β5 subunit, Cys63Phe, located distal to the binding site in a helix critical for drug binding, and Arg24Cys, found in the propeptide region were found in all resistant clones. The latter mutation is a natural variant found to be elevated in frequency in patients with MM. Proteasome activity and levels of both the constitutive and immunoproteasome were increased in resistant cells, which correlated to an increase in subunit gene expression. These changes correlated with a more rapid recovery of proteasome activity following brief exposure to bortezomib. Increased recovery rate was not due to increased proteasome turnover as similar findings were seen in cells co-treated with cycloheximide. When we exposed resistant cells to the irreversible proteasome inhibitor carfilzomib we noted a slower rate of recovery of proteasome activity as compared to bortezomib in both parental and resistant cells. Importantly, carfilzomib maintained its cytotoxic potential in the bortezomib resistant cell lines. Therefore, resistance to bortezomib, can be overcome with irreversible inhibitors, suggesting prolonged proteasome inhibition induces a more potent anti-tumor response.

  6. The identification of new genes related to cisplatin resistance in ovarian adenocarcinoma cell line A2780

    International Nuclear Information System (INIS)

    Solar, P.; Fedorocko, P.; Sytkowski, A.; Hodorova, I.

    2006-01-01

    Ovarian cancer cells are usually sensitive to platinum-based chemotherapy, such as cisplatin (CDDP), initially but typically become resistant to the drug over time. The phenomenon of clinical drug resistance represents a serious problem for successful disease treatment, and the molecular mechanism(s) are not fully understood. In search of novel mechanisms that may lead to the development of CDDP chemoresistance we have applied subtractive hybridization based on the PCR-select cDNA subtraction. In current study we have used subtractive hybridization to identify differentially-expressed genes in CDDP resistant CP70 and C200 cells versus CDDP-sensitive A2780 human ovarian adenocarcinoma cells. We have analyzed 256 randomly selected clones. Subtraction efficiency was determined by dot blot and DNA sequencing. Confirmation of differentially expressed cDNAs was done by virtual northern blot analysis, and 17 genes that were differentially expressed in both CDDP resistant cell lines versus CDDP sensitive A2780 cells were identified. The expression of 10 of these genes was undetectable or detected with low expression in sensitive A2780 cells in comparison to resistant ones. These genes included ARHGDIB, RANBP2, ASPH, PRTFDC1, SSX2IP, MBNL1, DNAJC15, MMP10, TCTE1L and one unidentified sequence. Additional 7 genes that were more highly expressed in resistant CP70 and C200 vs. A2780 cells included ANXA2, USP8, HSPCA, TRA1, CNAP1, ATP2B1 and COX2. Interestingly, multi-drug resistance associated p-glycoprotein (p170) was not detected by the western blot in CDDP resistant CP70 and C200 cells. Our identified genes are involved in diverse processes, such as stress response, chromatin condensation, protection from protein degradation, invasiveness of cells, alterations of Ca 2+ homeostasis and others which may contribute to CDDP resistance of ovarian adenocarcinoma cells. Further characterization of these genes and gene products should yield important insights into the biology of

  7. Synchronous primary adenocarcinoma and adenosquamous carcinoma of the esophagus

    International Nuclear Information System (INIS)

    Cirillo, L.C.; Franco, R.; Gatta, G.; Rosa, G. de; Mainenti, P.P.; Imbriaco, M.; Salvatore, M.

    2001-01-01

    Multiple malignant esophageal tumors of the same cell type are described. In the esophageal mucosa, widespread carcinomatous transformation may be observed and multicentric invasive squamous cell carcinomas may develop. The concomitance of two independent esophageal malignant neoplasms of different epithelial histogenesis is uncommon. Synchronous adenocarcinoma and squamous cell carcinoma of the esophagus is reported. Adenosquamous carcinoma of the esophagus is a rare tumor. Adenocarcinoma of the esophagus represents 10% of esophageal cancer. We report a case of a synchronous primary invasive adenosquamous carcinoma and adenocarcinoma of the esophagus. Both tumors were demonstrated radiographically. The peculiarity of this neoplastic association and the importance of complete radiographic esophageal evaluation in patients with one obvious obstructing tumor of the esophagus are emphasized. (orig.)

  8. Black cohosh inhibits 17β-estradiol-induced cell proliferation of endometrial adenocarcinoma cells.

    Science.gov (United States)

    Park, So Yun; Kim, Hee Ja; Lee, Sa Ra; Choi, Youn-Hee; Jeong, Kyungah; Chung, Hyewon

    2016-10-01

    This study was conducted to investigate the effect of black cohosh (BC) extract on the proliferation and apoptosis of Ishikawa cells. Ishikawa human endometrial adenocarcinoma cells were treated with or without BC (1, 5, 10 and 25 μM) and cell proliferation and cytotoxicity were measured by CCK-8 assays and flow cytometry analysis. Additionally, Ishikawa cells were treated with 17β-estradiol (E2), E2 + progesterone and E2 + BC (5 and 10 μM) and the effect of BC and progesterone on E2-induced cell proliferation was analyzed. BC decreased the proliferation of Ishikawa cells at a dose-dependent rate compared with the control group (p < 0.05). The proliferation of Ishikawa cells increased in the presence of E2, whereas the subsequent addition of progesterone or BC decreased proliferation to the level of the control group (p < 0.05). The inhibitory effect of BC on E2-induced cell proliferation was greater than the inhibitory effect of progesterone. In conclusion, BC induces apoptosis in Ishikawa cells and suppresses E2-induced cell proliferation in Ishikawa cells. BC could be considered a candidate co-treatment agent of estrogen-dependent tumors, especially those involving endometrial cells.

  9. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    Science.gov (United States)

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  10. Gleditsia Saponin C Induces A549 Cell Apoptosis via Caspase-Dependent Cascade and Suppresses Tumor Growth on Xenografts Tumor Animal Model

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    2018-01-01

    Full Text Available Saponins are natural compounds and possess the most promising anti-cancer function. Here, a saponin gleditsia saponin C (GSC, extracted from gleditsiae fructus abnormalis, could induce apoptosis of lung tumor cell line A549 via caspase dependent cascade and this effect could be prevented by the caspase inhibitors. In addition, GSC induced cell death companied with an increase ratio of Bax:Bcl-2 and inhibition of ERK and Akt signaling pathways. Meanwhile, GSC suppressed TNFα inducing NF-κB activation and increased the susceptibility of lung cancer cell to TNFα induced apoptosis. Furthermore, on mouse xenograft model, GSC significantly suppressed tumor growth and induced cancer cell apoptosis, which validated the anti-tumor effect of GSC. Based on these results, GSC might be a promising drug candidate of anti-lung cancer for its potential clinical applications.

  11. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhenhai, E-mail: tomsyu@163.com [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Huang, Liangqian [Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine -SJTUSM, Shanghai, 200025 (China); Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Tang, Shengjian; Zhang, Wei [Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041 (China); Ren, Chune, E-mail: ren@wfmc.edu.cn [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China)

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  12. [The effect and mechanism of vinorelbine on cisplatin resistance of human lung cancer cell line A549/DDP].

    Science.gov (United States)

    Qi, Chunsheng; Gao, Sen; Li, Huiqiang; Gao, Weizhen

    2014-02-01

    Drug resistance is a major obstacle on lung cancer treatment and Vinorelbine is an effective drug to inhibition of tumor proliferation and metastasis. In this study, we investigated the effect and mechanism of Vinorelbine on reversing the cisplatin resistance of human lung cancer A549/DDP cell line. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, MTS assay was employed to determine the effect of the cisplatin sensitivity of tumor cells, flow cytometry to determine the apoptosis rate and change of Rh-123 content; Western blot to determine the expression of MDR1, Bcl-2, surviving, PTEN, caspase-3/8 and phosphorylation level of Akt (p-Akt); Real-time PCR was to determine the mRNA expression of MDR1, Bcl-2, survivin and PTEN. Finally the transcriptional activities of NF-κB, Twist and Snail were determined by reporter gene system. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, the sensitivity of cancer cells to cisplatin was increased by 1.91- and 2.54- folds respectively, flow cytometry showed that the content of Rh-123 was elevated 1.93- and 2.95- folds and apoptosis rate was increased 2.25- and 3.82- folds, Western blot showed that the expression of multidrug resistance related proteins MDR, Bcl-2 and survivin were downregulated, caspase-3/8 and PTEN was upregulated, phosphorylation of Akt was downregulated as well, real-time assay showed that the mRNA expression of MDR1 was downregulated 43.5% and 25.8%, Bcl-2 was downregulated 57.3% and 34.1%, survivin was downregulated 37.6% and 12.4%, PTEN was upregulated 183.4% and 154.2%, the transcriptional activities of NF-κB was downregulated 53.2% and 34.5%, Twist was downregulated 61.4% and 33.5%, and Snail was downregulated 57.8% and 18.7%. Vinorelbine treatment led to increase of cisplatin sensitivity of A549/DDP cells and the mechanisms included the regulation of PTEN/AKT/NF-κB signal pathway to decreased drug resistance gene expression and increased pro-apoptosis gene expression.

  13. 28 CFR 549.73 - Appealing the fee.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Appealing the fee. 549.73 Section 549.73 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MEDICAL SERVICES Fees for Health Care Services § 549.73 Appealing the fee. You may seek review of issues related to...

  14. Metformin inhibits 17?-estradiol-induced epithelial-to-mesenchymal transition via ?Klotho-related ERK1/2 signaling and AMPK? signaling in endometrial adenocarcinoma cells

    OpenAIRE

    Liu, Zhao; Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Ding, Sentai; Lu, Jiaju; Zhang, Hui

    2016-01-01

    The potential role of metformin in treating endometrial cancer remains to be explored. The current study investigated the role of metformin in 17?-estradiol-induced epithelial-mesenchymal transition (EMT) in endometrial adenocarcinoma cells. We found that 17?-estradiol promoted proliferation and migration, attenuated apoptosis in both estrogen receptor (ER) positive and ER negative endometrial adenocarcinoma cells (Ishikawa and KLE cells, respectively). Metformin abolished 17?-estradiol-induc...

  15. Differential diagnosis and cancer staging of a unique case with multiple nodules in the lung - lung adenocarcinoma, metastasis of colon adenocarcinoma, and colon adenocarcinoma metastasizing to lung adenocarcinoma.

    Science.gov (United States)

    Bai, Yun; Qiu, Jianxing; Shang, Xueqian; Liu, Ping; Zhang, Ying; Wang, Ying; Xiong, Yan; Li, Ting

    2015-05-01

    Lung cancer is the most common cancer in the world. Despite this, there have been few cases of simultaneous primary and metastatic cancers in the lung reported, let alone coexisting with tumor-to-tumor metastasis. Herein, we describe an extremely unusual case. A 61-year-old man with a history of colon adenocarcinoma was revealed as having three nodules in the lung 11 months after colectomy. The nodule in the left upper lobe was primary lung adenocarcinoma, the larger one in the right upper lobe was a metastasis of colon adenocarcinoma, and the smaller one in the right upper lobe was colon adenocarcinoma metastasizing to lung adenocarcinoma. Our paper focused on the differential diagnosis and cancer staging of this unique case, and discussed the uncommon phenomenon of the lung acting as a recipient in tumor-to-tumor metastasis.

  16. 28 CFR 549.60 - Purpose and scope.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Purpose and scope. 549.60 Section 549.60 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MEDICAL SERVICES Hunger Strikes, Inmate § 549.60 Purpose and scope. The Bureau of Prisons provides guidelines for the medical and administrative management of...

  17. Effect of glutathione depletion on the aerobic radiation response of A549 human lung carcinoma cells

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Clark, E.P.; Varnes, M.E.; Tuttle, S.W.; Epp, E.R.

    1985-01-01

    The authors demonstrated that depletion of glutathione (GSH) from cultured A549 cells to non-detectable levels, using L-buthionine sulfoximine (L-BSO), results in an increased aerobic radiation response. This response can be further increased if dimethylfumarate (DMF) is added concurrently with L-BSO. L-BSO is a relatively slow depletor of GSH compared to DMF, which acts by both spontaneous and enzyme catalysed reactions. The authors have studied: 1. the effect of continuous long-term exposure to 0.1 mM L-BSO on GSH levels and the subsequent radiation response and 2. the effect of GSH depletion on enzymes essential for radical detoxification. The results show an enhanced aerobic radiation response that increases with the time of exposure to L-BSO. For example surviving fraction (S.F.) after 5 Gy for cells exposed to L-BSO for 24 hrs is 0.004 and 0.08 for control cultures. Cells washed free of medium and irradiated in Hanks' show 0.0007 S.F. after 120 hr exposure to L-BSO and S.F. of 0.075 for the control cultures. The relationship between the chronic GSH depleted state, GSH peroxidase, and radiation induced lipid peroxidation is being investigated

  18. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO{sub 2} nanocrystals: Investigation of bio-medical application by chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), i Themba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Geetha, N. [Research and Development Center, Bharathiyar University, Coimbatore 641046 (India); Kanimozhi, K. [PG Research & Department of Chemistry, Auxilium College (Autonomous), Vellore (India); Maria Magdalane, C. [Department of Chemistry, St. Xavier’s College (Autonomous), Tirunelveli 627002 (India); LIFE, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Sivaranjani, S. [Research and Development Center, Bharathiyar University, Coimbatore 641046 (India); Department of Physics, SBM College of Engineering and Technology, Dindigul -624 005 (India); Ayeshamariam, A. [Research and Development Center, Bharathiyar University, Coimbatore 641046 (India); Department of Physics, Khadir Mohideen College, Adirampattinam 614601 (India); Kennedy, J. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5010 (New Zealand); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), i Themba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2017-05-01

    We report the synthesis of high quality ZnO doped TiO{sub 2} nanocrystals by chemical method at room temperature (RT), it can cause serious oxidative stress and DNA damage to human lung epithelial cells (A549) lines. Our aim in this study, to reduce the cytotoxicity effect of ZnO doped TiO{sub 2} nanocrystals are widely in biological fields. Several studies have been performed to understand the influence of ZnO doped titanium dioxide (TiO{sub 2}-NPs) on cell function; however the effects of nanoparticle against to exposure on the cell membrane have been duly addressed fascinatingly so far. However, In this interaction, which may alter cell metabolism and integrity, it is one of the importance to understand the modifications of the cell membrane, mechanisms of pulmonary A549 cell lines nanoparticles were uptake and the molecular pathway during the initial cell responses are still unclear and much more investigative efforts are need to properly characterize the ZnO doped titanium dioxide nanoparticles were reported successfully. In particular of the epithelial cells, upon particles are exposed human pulmonary epithelial cells (A549) to various concentrations of composition, structure and morphology of the nanocrystals were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanocrystals which identified peaks associated with (002), (100) and (101) planes of hexagonal wurtzite-type ZnO with lattice constants of a = b = 3.249 Å and c = 5.219 Å. The IR results showed high purity of products and indicated that the nanocrystals are made up of Ti−O and Zn−O bonds. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of ZnO/TiO{sub 2} nanocrystals which exhibits antibacterial activity over a broad range of bacterial species and in particular against Stre. Mut

  19. Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaochun; Komaki, Ritsuko; Cheung, Rex; Fang Bingliang

    2006-01-01

    Purpose: To overcome radiation resistance in esophageal adenocarcinoma by tumor-specific apoptotic gene targeting using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Methods and Materials: Adenoviral vector Ad/TRAIL-F/RGD with a tumor-specific human telomerase reverse transcription promoter was used to transfer TRAIL gene to human esophageal adenocarcinoma and normal human lung fibroblastic cells (NHLF). Activation of apoptosis was analyzed by Western blot, fluorescent activated cell sorting, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate labeling (TUNEL) assay. A human esophageal adenocarcinoma mouse model was treated with intratumoral injections of Ad/TRAIL-F/RGD plus local radiotherapy. Results: The combination of Ad/TRAIL-F/RGD and radiotherapy increased the cell-killing effect in all esophageal adenocarcinoma cell lines but not in NHLF cells. This combination also significantly reduced clonogenic formation (p < 0.05) and increased sub-G1 deoxyribonucleic acid accumulation in cancer cells (p < 0.05). Activation of apoptosis by Ad/TRAIL-F/RGD plus radiotherapy was demonstrated by activation of caspase-9, caspase-8, and caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase in vitro and TUNEL assay in vivo. Combined Ad/TRAIL-F/RGD and radiotherapy dramatically inhibited tumor growth and prolonged mean survival in the esophageal adenocarcinoma model to 31.6 days from 16.7 days for radiotherapy alone and 21.5 days for Ad/TRAIL-F/RGD alone (p < 0.05). Conclusions: The combination of tumor-specific TRAIL gene targeting and radiotherapy enhances the effect of suppressing esophageal adenocarcinoma growth and prolonging survival

  20. Deficiency of Functional Iron-Sulfur Domains in ABCE1 Inhibits the Proliferation and Migration of Lung Adenocarcinomas By Regulating the Biogenesis of Beta-Actin In Vitro

    Directory of Open Access Journals (Sweden)

    Qian Yu

    2017-11-01

    Full Text Available Background/Aims: ATP-binding cassette transporter E1 (ABCE1, a unique ABC superfamily member that bears two Fe-S clusters, is essential for metastatic progression in lung cancer. Fe-S clusters within ABCE1 are crucial for ribosome dissociation and translation reinitiation; however, whether these clusters promote tumor proliferation and migration is unclear. Methods: The interaction between ABCE1 and β-actin was confirmed using GST pull-down. The lung adenocarcinoma (LUAD cell line A549 was transduced with lentiviral packaging vectors overexpressing either wild-type ABCE1 or ABCE1 with Fe-S cluster deletions (ΔABCE1. The role of Fe-S clusters in the viability and migration of cancer cells was evaluated using clonogenic, MTT, Transwell and wound healing assays. Cytoskeletal rearrangement was determined using immunofluorescent techniques. Results: Fe-S clusters were the key domains in ABCE1 involved in binding to β-actin. The proliferative and migratory capacity increased in cells overexpressing ABCE1. However, the absence of Fe-S clusters reversed these effects. A549 cells overexpressing ABCE1 exhibited irregular morphology and increased levels of cytoskeletal polymerization as indicated by the immunofluorescence images. In contrast, cells expressing the Fe-S cluster deletion mutant presented opposing effects. Conclusion: These results demonstrate the indispensable role of Fe-S clusters when ABCE1 participates in the proliferation and migration of LUADs by interacting with β-actin. The Fe-S clusters of ABCE1 may be potential targets for the prevention of lung cancer metastasis.

  1. Diffuse large cell lymphoma and colon adenocarcinoma in patient with Waldenström’s macroglobulinaemia

    Directory of Open Access Journals (Sweden)

    Radojković Milica

    2011-01-01

    Full Text Available Introduction. Waldenström’s macroglobulinaemia is a rare B cell lymphoproliferative disorder characterized by lymphoplasmocyte bone marrow infiltration and monoclonal IgM gammopathy. In the majority of cases, Waldenström’s macroglobulinaemia is a chronic disease with variable course. Therapy consists of alkylating agents, purine analogs and antiCD20 monoclonal antibody. In the literature, there have been descriptions of rare cases of progression of Waldenström’s macroglobulinaemia to aggressive lymphoma, as well as secondary carcinoma in the patients after treatment of macroglobulinaemia. Case Outline. A 63-year-old patient was diagnosed with serum monoclonal IgM kappa gammopathy (Waldenström’s macroglobulinaemia. Chemotherapy was applied and a good clinical and haematological response had been achieved. Ten years later, the patient was diagnosed with colon adenocarcinoma as a secondary malignancy, and operated on. Within one month, the patient rapidly developed a large neck tumour mass. Tumour biopsy revealed the diagnosis of diffuse large B cell lymphoma with the expression of monoclonal lambda chain, which more likely pointed out to coexistence of two different B cell lymphoproliferative disorders, rather than the transformation of Waldenström’s macroglobulinaemia to aggressive lymphoma. The patient was treated with chemotherapy following R-CHOP protocol, and clinical remission was achieved. Seven months later, despite the successful treatment of lymphoproliferative disorder, dissemination of adenocarcinoma led to the lethal outcome. Conclusion. The patient was diagnosed with a rare occurrence of three neoplastic diseases: Waldenström’s macroglobulinaemia, colon adenocarcinoma and diffuse large B cell lymphoma. The possible mechanisms of the combined appearance of lymphoproliferative and other malignant diseases include the previous treatment with alkylating agents, genetic, immunomodulatory and environmental factors.

  2. Clear Cell Adenocarcinoma Arising from Endometriosis in the Groin: Wide Resection and Reconstruction with a Fascia Lata Tensor Muscle Skin Flap

    Directory of Open Access Journals (Sweden)

    Shozo Yoshida

    2018-01-01

    Full Text Available We herein report a case of clear cell carcinoma arising from endometriosis in the groin in a 53-year-old woman. The findings of MRI and FDG/PET-CT indicated a malignant tumor, and surgical biopsy confirmed adenocarcinoma of the female genital tract. The tumor including a part of the abdominal rectus muscle and rectus sheath, subcutaneous fat, skin, and the right inguinal ligament was resected en bloc. The defect in the abdominal wall was reconstructed with a fascia lata tensor muscle skin flap. The tumor was composed of clear cell adenocarcinoma arising from extrapelvic endometriosis. The patient received chemotherapy with gemcitabine and carboplatin for 6 cycles and had no evidence of recurrence 7 months after the treatment. We herein described the diagnosis and surgical management of endometriosis-associated carcinoma in the groin.

  3. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques

    NARCIS (Netherlands)

    Mihucz, Victor G.; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-01-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge

  4. Distinct Histopathologic and Molecular Alterations in Inflammatory Bowel Disease-Associated Intestinal Adenocarcinoma: c-MYC Amplification is Common and Associated with Mucinous/Signet Ring Cell Differentiation.

    Science.gov (United States)

    Hartman, Douglas J; Binion, David G; Regueiro, Miguel D; Miller, Caitlyn; Herbst, Cameron; Pai, Reetesh K

    2018-05-17

    Chronic idiopathic inflammatory bowel disease (IBD) is a significant risk factor for the development of intestinal adenocarcinoma. The underlying molecular alterations in IBD-associated intestinal adenocarcinoma remain largely unknown. We compared the clinicopathologic and molecular features of 35 patients with 47 IBD-associated intestinal adenocarcinomas with a consecutive series of 451 patients with sporadic colorectal carcinoma identified at our institution and published data on sporadic colorectal carcinoma. c-MYC amplification was the most frequent molecular alteration identified in 33% of IBD-associated intestinal adenocarcinoma that is a significantly higher frequency than in sporadic colorectal carcinoma (8%) (P = 0.0001). Compared to sporadic colorectal carcinoma, IBD-associated intestinal adenocarcinomas more frequently demonstrated mucinous differentiation (60% vs 25%, P < 0.001) and signet ring cell differentiation (28% vs 4%, P < 0.001). Mucinous and signet ring cell differentiation were significantly associated with the presence of c-MYC amplification (both with P < 0.05). HER2 positivity (11%), KRAS exon 2 or 3 mutation (10%), and IDH1 mutation (7%) were less commonly observed in IBD-associated intestinal adenocarcinoma. There was an association between poor survival and HER2 status with 3 of 4 patients having HER2-positive adenocarcinoma dead of disease at last clinical follow-up; however, no statistically significant survival effect was identified for any of the molecular alterations identified. We demonstrate that IBD-associated intestinal adenocarcinomas have a high frequency of c-MYC amplification that is associated with mucinous and signet ring cell differentiation. Many of the identified molecular alterations have potential therapeutic relevance, including HER2 amplification, IDH1 mutation, and low frequency KRAS mutation.

  5. Synthesis and characterization of folate-poly(ethylene glycol ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Cell lines, culture and viability assays. Human embryonic kidney cell line (293T), human colonic cancer cell line (LoVo), human lung adenocarcinoma epithelial cell line. (A549) and human cervical carcinoma cells (Hela) were cultured in. Dulbecco's modified eagle medium (DMEM, Gibco BRL, Paris,.

  6. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    Science.gov (United States)

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Serum deprivation induces glucose response and intercellular coupling in human pancreatic adenocarcinoma PANC-1 cells.

    Science.gov (United States)

    Hiram-Bab, Sahar; Shapira, Yuval; Gershengorn, Marvin C; Oron, Yoram

    2012-03-01

    This study aimed to investigate whether the previously described differentiating islet-like aggregates of human pancreatic adenocarcinoma cells (PANC-1) develop glucose response and exhibit intercellular communication. Fura 2-loaded PANC-1 cells in serum-free medium were assayed for changes in cytosolic free calcium ([Ca]i) induced by depolarization, tolbutamide inhibition of K(ATP) channels, or glucose. Dye transfer, assayed by confocal microscopy or by FACS, was used to detect intercellular communication. Changes in messenger RNA (mRNA) expression of genes of interest were assessed by quantitative real-time polymerase chain reaction. Proliferation was assayed by the MTT method. Serum-deprived PANC-1 cell aggregates developed [Ca]i response to KCl, tolbutamide, or glucose. These responses were accompanied by 5-fold increase in glucokinase mRNA level and, to a lesser extent, of mRNAs for K(ATP) and L-type calcium channels, as well as increase in mRNA levels of glucagon and somatostatin. Trypsin, a proteinase-activated receptor 2 agonist previously shown to enhance aggregation, modestly improved [Ca]i response to glucose. Glucose-induced coordinated [Ca]i oscillations and dye transfer demonstrated the emergence of intercellular communication. These findings suggest that PANC-1 cells, a pancreatic adenocarcinoma cell line, can be induced to express a differentiated phenotype in which cells exhibit response to glucose and form a functional syncytium similar to those observed in pancreatic islets.

  8. Inflammation by Breast Implants and Adenocarcinoma: Not Always a Bad Company.

    Science.gov (United States)

    Orciani, Monia; Sorgentoni, Giulia; Olivieri, Fabiola; Mattioli-Belmonte, Monica; Di Benedetto, Giovanni; Di Primio, Roberto

    2017-07-01

    Inflammation and tumor are now an inseparable binomial. Inflammation may also derive by the use of breast implants followed by the formation of a periprosthetic capsule. It is known that tumor cells, in an inflamed microenvironment, can profit by the paracrine effect exerted also by mesenchymal stem cells (MSCs). Here we evaluated the role of inflammation on the immunobiology of MSCs before and after cocultures with cells derived from breast adenocarcinoma. MSCs derived from both inflamed (I-MSCs) and control (C-MSCs) tissues were isolated and cocultured with MCF7 cells derived from breast adenocarcinoma. Before and after cocultures, the proliferation rate of MCF7 cells and the expression/secretion of cytokines related to inflammation were tested. Before cocultures, higher levels of cytokine related to chronic inflammation were detected in I-MSCs than in C-MSCs. After cocultures with MCF7, C- and I-MSCs show a variation in cytokine production. In detail, IL-2, IL-4, IL-5, IL-10, IL-13, TGF-β and G-CSF were decreased, whereas IL-6, IL-12, IFN-γ, and IL-17 were oversecreted. Proliferation of MCF7 was significantly increased after cocultures with I-MSCs. Inflammation at the site of origin of MSCs affects their immunobiology. Even if tumor cells increased their proliferation rate after cocultures with I-MSCs, the analysis of the cytokines, known to play a role in the interference of tumor cells with the host immune system, absolves completely the breast implants from the insult to enforce the risk of adenocarcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Metformin inhibits 17β-estradiol-induced epithelial-to-mesenchymal transition via βKlotho-related ERK1/2 signaling and AMPKα signaling in endometrial adenocarcinoma cells.

    Science.gov (United States)

    Liu, Zhao; Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Ding, Sentai; Lu, Jiaju; Zhang, Hui

    2016-04-19

    The potential role of metformin in treating endometrial cancer remains to be explored. The current study investigated the role of metformin in 17β-estradiol-induced epithelial-mesenchymal transition (EMT) in endometrial adenocarcinoma cells. We found that 17β-estradiol promoted proliferation and migration, attenuated apoptosis in both estrogen receptor (ER) positive and ER negative endometrial adenocarcinoma cells (Ishikawa and KLE cells, respectively). Metformin abolished 17β-estradiol-induced cell proliferation and reversed 17β-estradiol-induced EMT in Ishikawa cells. In addition, metformin increased the expression of βKlotho, a fibroblast growth factors (FGFs) coreceptor, and decreased ERK1/2 phosphorylation in both Ishikawa and KLE cells. Decreased expression of βKlotho was noted in human endometrial adenocarcinomas, and plasmid-driven expression of βKlotho in Ishikawa cells abolished 17β-estradiol-induced EMT via inhibiting ERK1/2 signaling. βKlotho expression and metformin show synergetic effects on the proliferation and the EMT in Ishikawa cells. Furthermore, we demonstrated that the anti-EMT effects of metformin could be partly abolished by introducing Compound C, a specific AMPKα signaling inhibitor. In conclusion, metformin abolishes 17β-estradiol-induced cell proliferation and EMT in endometrial adenocarcinoma cells by upregulating βKlotho expression, inhibiting ERK1/2 signaling, and activating AMPKα signaling. Our study provides novel mechanistic insight into the anti-tumor effects of metformin.

  10. Expression of p53 protein in Barrett’s adenocarcinoma and adenocarcinoma of the gastric cardia and antrum

    Directory of Open Access Journals (Sweden)

    Jovanović Ivan

    2005-01-01

    Full Text Available Background/Aim. Most studies of esophageal and gastric adenocarcinomas have shown a very high rate of p53 gene mutation and/or protein overexpression, but the influence of the tumor site upon the frequency of p53 protein expression has not been evaluated (gastroesophageal junction, Barret's esophagus, and antrum. The aim of our study was to analyze the correlation between the selected clinico-pthological parameters, and p53 protein overexpression in regards to the particular tumor location. Methods. The material comprised 66 surgical specimens; 10 were Barrett’s carcinomas, 25 adenocarcinomas of the gastric cardia (type II adenocarcinoma of the esophagogastric junction - EGJ, and 31 adenocarcinomas of the antrum. Immunostaining for p53 protein was performed on formalin-fixed, paraffin-embedded tissue sections, using the alkaline phosphatase - antialkaline phosphatase (APAAP method. The cases were considered positive for p53 if at least 5% of the tumor cells expressed this protein by immunostaining. Results. There was no significant difference observed between the studied groups in regards to age, sex, Lauren’s classification and tumor differentiation. There was, however, a significant difference observed in the depth of tumor invasion between Barrrett’s adenocarcinoma and adenocarcinoma of the cardia compared with the adenocarcinoma of the antrum. Namely, at the time of surgery, both Barrett’s adenocarcinomas and adenocarcinomas of the cardia, were significantly more advanced comparing with the adenocarcinomas of the antrum. Overexpression of p53 was found in 40% (4/10 of Barrett’s adenocarcinomas, 72% (18/25 of adenocarcinoma of the cardia and 65% (20/31 of adenocarcinoma of the antrum. No significant differences in p53 expression in relation to sex, type (Lauren of tumor, depth of invasion, lymph node involvement, or tumor differentiation were observed in any of the analyzed groups of tumors. Patients with more advanced Barrett

  11. Inhibition of Various Cancer Cells Proliferation of Bornyl Acetate and Essential Oil from Inula graveolens (Linnaeus Desf

    Directory of Open Access Journals (Sweden)

    Tunay Karan

    2018-05-01

    Full Text Available Inula species are medicinal and aromatic plants used for folk medicine extensively. In this work, hydrodistilled essential oil of Inula graveolens (Linnaeus Desf. analyzed by GC-MS which revealed that bornyl acetate was the major product (69.15%. Camphene was the second major compound (11.11%. Antiproliferative activity of the essential oil and bornyl acetate was investigated on HeLa (human cervix carcinoma, HT29 (human colon carcinoma , A549 (human lung carcinoma, MCF7 ( human breast adenocarcinoma cancer cells and FL (human amnion cells normal cells. The cytotoxicity was executed by a Lactate Dehydrogenase (LDH Cytotoxicity Detection Kit. Essential oil and bornyl acetate displayed the outstanding activities on HeLa (IC 50, 64.1, 72.0 µg/mL, HT29 (IC 50, 24.6, 60.5 µg/mL, A549 (IC 50, 28.3, 44.1 µg/mL, MCF-7 (IC 50, 66.5, 85.6 µg/mL, and FL (IC 50, 42.1, 50.6 µg/mL cell lines respectively.

  12. Expression profiles of cancer stem cell markers: CD133, CD44, Musashi-1 and EpCAM in the cardiac mucosa-Barrett's esophagus-early esophageal adenocarcinoma-advanced esophageal adenocarcinoma sequence.

    Science.gov (United States)

    Mokrowiecka, Anna; Veits, Lothar; Falkeis, Christina; Musial, Jacek; Kordek, Radzislaw; Lochowski, Mariusz; Kozak, Jozef; Wierzchniewska-Lawska, Agnieszka; Vieth, Michael; Malecka-Panas, Ewa

    2017-03-01

    Barrett's esophagus (BE), which develops as a result of gastroesophageal reflux disease, is a preneoplastic condition for esophageal adenocarcinoma (EAC). A new hypothesis suggests that cancer is a disease of stem cells, however, their expression and pathways in BE - EAC sequence are not fully elucidated yet. We used a panel of putative cancer stem cells markers to identify stem cells in consecutive steps of BE-related cancer progression. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded blocks from 58 patients with normal cardiac mucosa (n=5), BE (n=14), early EAC (pT1) from mucosal resection (n=17) and advanced EAC (pT1-T4) from postoperative specimens (n=22). Expression of the CD133, CD44, Musashi-1 and EpCAM was analyzed using respective monoclonal antibodies. All markers showed a heterogeneous expression pattern, mainly at the base of the crypts of Barrett's epithelium and EAC, with positive stromal cells in metaplastic and dysplastic lesions. Immuno-expression of EpCAM, CD44 and CD133 in cardiac mucosa was significantly lower (mean immunoreactivity score (IRS)=1.2; 0.0; 0.4; respectively) compared to their expression in Barrett's metaplasia (mean IRS=4.3; 0.14; 0.7; respectively), in early adenocarcinoma (mean IRS=4.4; 0.29; 1.3; respectively) and in advanced adenocarcinoma (mean IRS=6.6; 0.7; 2.7; respectively) (p<0.05). On the contrary, Musashi-1 expression was higher in BE and early ADC compared to GM and advanced ADC (NS). Our results suggest that the stem cells could be present in premalignant lesions. EpCAM, CD44 and CD133 expression could be candidate markers for BE progression, whereas Musashi-1 may be a marker of the small intestinal features of Barrett's mucosa. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Clinicopathologic and Molecular Features of Colorectal Adenocarcinoma with Signet-Ring Cell Component.

    Directory of Open Access Journals (Sweden)

    Qing Wei

    Full Text Available We performed a retrospective study to assess the clinicopathological characters, molecular alterations and multigene mutation profiles in colorectal cancer patients with signet-ring cell component.Between November 2008 and January 2015, 61 consecutive primary colorectal carcinomas with signet-ring cell component were available for pathological confirmation. RAS/BRAF status was performed by direct sequencing. 14 genes associated with hereditary cancer syndromes were analyzed by targeted gene sequencing.A slight male predominance was detected in these patients (59.0%. Colorectal carcinomas with signet-ring cell component were well distributed along the large intestine. A frequently higher TNM stage at the time of diagnosis was observed, compared with the conventional adenocarcinoma. Family history of malignant tumor was remarkable with 49.2% in 61 cases. The median OS time of stage IV patients in our study was 14 months. RAS mutations were detected in 22.2% (12/54 cases with KRAS mutations in 16.7% (9/54 cases and Nras mutations in 5.4%(3/54 cases. BRAF V600E mutation was detected in 3.7% (2/54 cases. As an exploration, we analyzed 14 genes by targeted gene sequencing. These genes were selected based on their biological role in association with hereditary cancer syndromes. 79.6% cases carried at least one pathogenic mutation. Finally, the patients were classified by the percentage of signet-ring cell. 39 (63.9% cases were composed of ≥50% signet-ring cells; 22 (36.1% cases were composed of <50% signet-ring cells. We compared clinical parameters, molecular and genetic alterations between the two groups and found no significant differences.Colorectal adenocarcinoma with signet-ring cell component is characterized by advanced stage at diagnosis with remarkable family history of malignant tumor. It is likely a negative prognostic factor and tends to affect male patients with low rates of RAS /BRAF mutation. Colorectal patients with any component of

  14. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    Science.gov (United States)

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  15. Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell: In vitro cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Jha

    2018-06-01

    Full Text Available An eco-friendly green approach was proposed to synthesise stable, cytotoxic colloidal silver nanoparticles (AgNPs using Momordica charantia (M. charantia fruit extract. Bioinspired green method adopted for fabrication of AgNPs because of easy, fast, low-cost and benign bioprocess. Phytocomponents played the crucial role in capping, stabilisation and inherent cytotoxic potential of colloidal nanosilver. The physiochemical, crystalline, optical and morphological properties of AgNPs were characterized using UV-vis, FT-IR, XRD, SEM, TEM, EDX and AFM. FT-IR reveals the presence of carbonyl, methyl, polyphenol (flavonoid, primary and secondary amine (protein, carboxyl group, ester as major functional groups over the surface of nanomaterials. Mechanistic pathway for formation and stabilisation of colloidal nanosilver has been discussed. Average crystalline size of AgNPs was found to be 12.55 nm from XRD. TEM shows AgNPs nanosphere with size range 1–13.85 nm. Consistency in spherical morphology was also confirmed through Atomic Force Microscopy (AFM. AFM measurement provided image Rq value 3.62, image Ra 2.47, roughness Rmax 36.4 nm, skewness 1.99 and kurtosis 9.87. The SRB assay revealed substantial in vitro noticeable anti-cancer activity of colloidal nanosilver on A549 and HOP-62 human lung cancer cells in a dose dependent manner with IC50 value of 51.93 µg/ml and 76.92 µg/ml. In addition, M. charantia capped AgNPs were found to be more biocompatible in comparison to M. charantia FE. Our study demonstrated the integration of green chemistry principle in nanomaterials fabrication and focused on the potential use of M. charantia fruit extract as an efficient precursor for biocompatible AgNPs anodrug formulation with improved cytotoxic applications. Keywords: M. charantia, Silver nanoparticles, TEM, Anticancer activity, A549, HOP-62

  16. Establishment of A Novel Chinese Human Lung Adenocarcinoma Cell Line CPA-Yang3 and Its Real Bone Metastasis Clone CPA-Yang3BM in Immunodeficient Mice

    Directory of Open Access Journals (Sweden)

    Shunfang YANG

    2011-02-01

    Full Text Available Background and objective The recurrence and metastasis of lung cancer is a tough problem worldwide. The aim of this study is to establish a novel Chinese lung adenocarcinoma cell line and its real bone-seeking clone sub-line for exploring the molecular mechanism of lung cancer metastasis. Methods The cells came from the pleural effusion of a sixtyfive years old female patient with lung adenocarcinoma and supraclavicular lymph node metastases. The gene expression was detected by real-time quantitative PCR. Intracardiac injection of the cells into nude mice was performed and in vivo imaging was obtained by bone scintigraphy and conventional radiography. Bone metastases were determined on bone scintigraphy and then the lesions were resected under deep anesthesia for bone metastasis cancer cell culture. The process was repeated for four cycles to obtain a real bone-seeking clone. Results The tumorigenesis rate started at 4th passage in immunodeficient mice via subcutaneously and as well as later passages. Approximately 1×106 cancer cells were injected into left cardiac ventricle of immunodeficient mice resulted bone metastasis sites were successfully revealed by bone scintigraphy and pathological diagnosis, the mandible (100%, scapula (33%, humerus (50%, vertebral column (50%, femur (66.7% and accompanied invasion with other organs, the adrenal gland (17%, pulmonary (33%, liver (50%, submaxillary gland (33% in the mice after inoculation two-three weeks. The chromosome karyotype analysis of the cells was subdiploid. Quantitative real-time PCR was used to examined and compared with SPC-A-1 lung adenocarcinoma, ESM1, VEGF-C, IL-6, IL-8, AR, SVIL, FN1 genes were overexpress. The novel cell was named CPA-Yang3. The femur metastasis cell was repeated in vivo-in vitro-in vivo with three cycles and harvested a real bone metastasis clone. It was named CPA-Yang3BM. Conclusion Tne characteristics of novel strain CPAYang3 is a highly metastasis cell line of

  17. Difference in prognostic significance of maximum standardized uptake value on [18F]-fluoro-2-deoxyglucose positron emission tomography between adenocarcinoma and squamous cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Tsutani, Yasuhiro; Miyata, Yoshihiro; Misumi, Keizo; Ikeda, Takuhiro; Mimura, Takeshi; Hihara, Jun; Okada, Morihito

    2011-01-01

    This study evaluates the prognostic significance of [18F]-fluoro-2-deoxyglucose positron emission tomography/computed tomography findings according to histological subtypes in patients with completely resected non-small cell lung cancer. We examined 176 consecutive patients who had undergone preoperative [18F]-fluoro-2-deoxyglucose-positron emission tomography/computed tomography imaging and curative surgical resection for adenocarcinoma (n=132) or squamous cell carcinoma (n=44). Maximum standardized uptake values for the primary lesions in all patients were calculated as the [18F]-fluoro-2-deoxyglucose uptake and the surgical results were analyzed. The median values of maximum standardized uptake value for the primary tumors were 2.60 in patients with adenocarcinoma and 6.95 in patients with squamous cell carcinoma (P 6.95 (P=0.83) among patients with squamous cell carcinoma, 2-year disease-free survival rates were 93.9% for maximum standardized uptake value ≤3.7 and 52.4% for maximum standardized uptake value >3.7 (P<0.0001) among those with adenocarcinoma, and notably, 100 and 57.2%, respectively, in patients with Stage I adenocarcinoma (P<0.0001). On the basis of the multivariate Cox analyses of patients with adenocarcinoma, maximum standardized uptake value (P=0.008) was a significantly independent factor for disease-free survival as well as nodal metastasis (P=0.001). Maximum standardized uptake value of the primary tumor was a powerful prognostic determinant for patients with adenocarcinoma, but not with squamous cell carcinoma of the lung. (author)

  18. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  19. Different fatty acid metabolism effects of (−-Epigallocatechin-3-Gallate and C75 in Adenocarcinoma lung cancer

    Directory of Open Access Journals (Sweden)

    Relat Joana

    2012-07-01

    Full Text Available Abstract Background Fatty acid synthase (FASN is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−-epigallocatechin-3-gallate (EGCG in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes, cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively. In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.

  20. Mammalian mediator 19 mediates H1299 lung adenocarcinoma cell clone conformation, growth, and metastasis.

    Science.gov (United States)

    Xu, Lu-Lu; Guo, Shu-Liang; Ma, Su-Ren; Luo, Yong-Ai

    2012-01-01

    Mammalian mediator (MED) is a multi-protein coactivator that has been identified by several research groups. The involvement of the MED complex subunit 19 (MED 19) in the metastasis of lung adenocarcinoma cell line (H1299), which expresses the MED 19 subunit, was here investigated. When MED 19 expression was decreased by RNA interference H1299 cells demonstrated reduced clone formation, arrest in the S phase of the cell cycle, and lowered metastatic capacity. Thus, MED 19 appears to play important roles in the biological behavior of non-small cell lung carcinoma cells. These findings may be important for the development of novel lung carcinoma treatments.

  1. Sequentially administrated of pemetrexed with icotinib/erlotinib in lung adenocarcinoma cell lines in vitro

    OpenAIRE

    Feng, Xiuli; Zhang, Yan; Li, Tao; Li, Yu

    2017-01-01

    Combination of chemotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved to be a potent anti-drug for the treatment of tumors. However, survival time was not extended for the patients with lung adenocarcinoma (AdC) compared with first-line chemotherapy. In the present study, we attempt to assess the optimal schedule of the combined administration of pemetrexed and icotinib/erlotinib in AdC cell lines. Human lung AdC cell lines with wild-type (A54...

  2. The role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma cell line PC-9 induced by icotinib.

    Science.gov (United States)

    Zhang, Yuping; Meng, Xia; Shi, Hongyang; Li, Wei; Ming, Zongjuan; Zhong, Yujie; Deng, Wenjing; Zhang, Qiuhong; Fan, Na; Niu, Zequn; Chen, Guo'an; Yang, Shuanying

    2016-01-01

    The aim of this study is to estimate the role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma induced by icotinib. EGFR mutation was detected in lung adenocarcinoma cell line PC-9 by ARMS assay; The inhibitory rates of cell proliferation of PC-9 cells which were exposed to different concentrations of icotinib (0~100 μMol/L) for different time (24~72 h) respectively were evaluated by MTT assay; Apoptosis of PC-9 cells exposed to different c