WorldWideScience

Sample records for adeno-associated virus mediated

  1. Adeno-Associated Virus-Mediated Cancer Gene Therapy: Current Status

    OpenAIRE

    Luo, Jingfeng; Luo, Yuxuan; Sun, Jihong; Zhou, Yurong; Zhang, Yajing; Yang, Xiaoming

    2014-01-01

    Gene therapy is one of the frontiers of modern medicine. Adeno-associated virus (AAV)-mediated gene therapy is becoming a promising approach to treat a variety of diseases and cancers. AAV-mediated cancer gene therapies have rapidly advanced due to their superiority to other gene-carrying vectors, such as the lack of pathogenicity, the ability to transfect both dividing and non-dividing cells, low host immune response, and long-term expression. This article reviews and provides up to date kno...

  2. Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs.

    Science.gov (United States)

    Nichols, Timothy C; Whitford, Margaret H; Arruda, Valder R; Stedman, Hansell H; Kay, Mark A; High, Katherine A

    2015-03-01

    Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches. PMID:25675273

  3. Adeno-associated Virus Mediated LacZ Gene Transfect to Cultured Human Iris Pigment Epithelium Cells

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Shibo Tang; Yan Luo; Xiaoling Liang; Jing Ma; Shaofen Lin

    2003-01-01

    Purpose: To study the feasibility of adeno-associated virus mediated gene transfection tocultured human iris pigment epithelium (IPE) cells in vitro.Methods: Recombinant replication deficient adeno-associated viruses (AAV) expressingLacZ gene were produced without helper virus. The LacZ gene was transduced into culturedhuman IPE cells.Results: Cultured human IPE cells stained positively anticytokeratin, The titer ofrAAV-LacZ was 2.1 × 108 virus particles/ml, 42% cultured human IPE cells expressedβ-galactosidase 7 days after transfection and 67% after 14 days.Conclusions: Recombined AAV produced without helper virus can transfer a foreign geneinto human IPE cells with high efficiency in vitro.

  4. An adeno-associated virus vector-mediated multiple gene transfer for dopamine synthetic enzymes

    Institute of Scientific and Technical Information of China (English)

    Fan Dongsheng (樊东升); Shen Yang(沈扬)

    2000-01-01

    Objective: To explore a multiple gene transfer approach with separate adeno-associated virus vectors. Methods: The genes of dopamine synthetic enzymes, tyrosine hydroxylasc (TH), GTP cyclohydrolase I (GCH, an enzyme critical for tetrahydrobioptcrin synthesis), and aromatic L-amino acid decarboxylase (AADC), were cotransduced into 293 cells with separate AAV vectors. Expressions of TH, GCH, and AADC were detected by Western blot analysis. L-dopa and dopamine levels in the ceils were assayed by HPLC. Results: TH, GCH, and AADC proteins were effectively cocxpressed in the transduced cells with three separate AAV vectors, AAV-TH, AAV-GCH, and AAV-AADC. Furthermore, the coexpression of these three proteins resulted in an effectively spontaneous dopainc production in the cotransduced cells. Conclusion: The triple transduction of TH, GCH, and AADC genes with separate AAV vectors is effective, which might be important to gene therapy for Parkinson's disease.

  5. Adeno-associated Virus 9 Mediated FKRP Gene Therapy Restores Functional Glycosylation of α-dystroglycan and Improves Muscle Functions

    OpenAIRE

    Xu, Lei; Lu, Pei Juan; Wang, Chi-Hsien; Keramaris, Elizabeth; Qiao, Chunping; Xiao, Bin; Blake, Derek J.; Xiao, Xiao; Lu, Qi Long

    2013-01-01

    Mutations in the FKRP gene are associated with a wide range of muscular dystrophies from mild limb-girdle muscular dystrophy (LGMD) 2I to severe Walker–Warburg syndrome and muscle-eye-brain disease. The characteristic biochemical feature of these diseases is the hypoglycosylation of α-dystroglycan (α-DG). Currently there is no effective treatment available. In this study, we examined the adeno-associated virus serotype 9 vector (AAV9)-mediated gene therapy in the FKRP mutant mouse model with ...

  6. Adeno-Associated Virus-Mediated Microdystrophin Expression Protects Young mdx Muscle from Contraction-Induced Injury

    OpenAIRE

    LIU, MINGJU; Yue, Yongping; Harper, Scott Q.; Grange, Robert W.; Jeffrey S. Chamberlain; Duan, Dongsheng

    2005-01-01

    Duchenne muscular dystrophy (DMD) is the most common inherited lethal muscle degenerative disease. Currently there is no cure. Highly abbreviated microdystrophin cDNAs were developed recently for adeno-associated virus (AAV)-mediated DMD gene therapy. Among these, a C-terminal-truncated ΔR4-R23/ΔC microgene (ΔR4/ΔC) has been considered as a very promising therapeutic candidate gene. In this study, we packaged a CMV.ΔR4/ΔC cassette in AAV-5 and evaluated the transduction and muscle contractile...

  7. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy.

    Science.gov (United States)

    Nguyen, J T; Wu, P; Clouse, M E; Hlatky, L; Terwilliger, E F

    1998-12-15

    Antiangiogenic tumor therapies have recently attracted intense interest for their broad-spectrum action, low toxicity, and, in the case of direct endothelial targeting, an absence of drug resistance. To promote tumor regression and to maintain dormancy, antiangiogenic agents need to be chronically administered. Gene therapy offers a potential way to achieve sustained therapeutic release of potent antiangiogenic substances. As a step toward this goal, we have generated recombinant adeno-associated virus (rAAV) vectors that carry genes coding for angiostatin, endostatin, and an antisense mRNA species against vascular endothelial growth factor (VEGF). These rAAVs efficiently transduced three human tumor cell lines tested. Transduction with an rAAV-encoding antisense VEGF mRNA inhibited the production of endogenous tumor cell VEGF. Conditioned media from cells transduced with this rAAV or with rAAV-expressing endostatin or angiostatin inhibited capillary endothelial cell proliferation in vitro. Antiangiogenic rAAVs may offer a novel gene therapy approach to undermining tumor neovascularization and cancer progression. PMID:9865720

  8. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    Science.gov (United States)

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies. PMID:26159373

  9. Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

    Directory of Open Access Journals (Sweden)

    Daniel C. Chung

    2011-11-01

    Full Text Available Background/Aims: Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods: Adeno-associated virus (AAV offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber’s congenital amaurosis, a disease of childhood blindness. Results: Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions: We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury.

  10. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    International Nuclear Information System (INIS)

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV) vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy

  11. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  12. Adeno-Associated Virus Site-Specific Integration Is Mediated by Proteins of the Nonhomologous End-Joining Pathway▿

    OpenAIRE

    Daya, Shyam; Cortez, Nenita; Berns, Kenneth I.

    2009-01-01

    Adeno-associated virus type 2 (AAV 2) is the only eukaryotic virus capable of site-specific integration; the target site is at chromosome 19q13.4, a site termed AAVS1. The biology of AAV latency has been extensively studied in cell culture, yet the precise mechanism and the required cellular factors are not known. In this study, we assessed the relative frequencies of stable site-specific integration by characterization of cell clones containing integrated AAV vectors. By this assay, two prot...

  13. Adeno-associated virus-mediated Bcl-xL prevents aminoglycoside-induced hearing loss in mice

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-he; KE Xiao-mei; QIN Yong; GU Zhi-ping; XIAO Shui-fang

    2007-01-01

    Background Recent studies showed that aminoglycosides destroyed the cochlear cells and induced ototoxicity by producing reactive oxygen species, including free radicals in the mitochondria, damaging the membrane of mitochondria and resulting in apoptotic cell death. Bcl-xL is a well characterized anti-apoptotic member of the Bcl-2 family. The aim of this study was to determine the potential cochlear protective effect of Bcl-xL as a therapeutic agent in the murine model of aminoglycoside ototoxicity.Methods Serotype 2 of adeno-associated virus (AAV2) as a vector encoding the mouse Bcl-xL gene was injected into mice cochleae prior to injection of kanamycin. Bcl-xL expression in vitro and in vivo was examined with Western blotting and immunohistochemistry separately. Cochlear dissection and auditory steady state responses were checked to evaluate the cochlear structure and function.Results The animals in the AAV2-Bcl-xL/kanamycin group displayed better auditory steady state responses hearing thresholds and cochlear structure than those in the artificial perilymph/kanamycin or AAV2-enhanced humanized green fluorescent protein/kanamycin control group at all tested frequencies. The auditory steady state responses hearing thresholds and cochlear structure in the inoculated side were better than that in the contralateral side.Conclusions AAV2-Bcl-xL afforded significant preservation of the cochlear hair cells against ototoxic insults and protected the cochlear function. AAV2-mediated Bcl-xL might be an approach with respect to potential therapeutic application in the cochlear degeneration.

  14. Adeno-associated virus-mediated heme oxygenase-1 gene transfer suppresses the progression of micronodular cirrhosis in rats

    Institute of Scientific and Technical Information of China (English)

    Tung-Yu Tsui; Chi-Keung Lau; Jian Ma; Gabriel Glockzin; Aiman Obed; Hans J Schlitt; Sheung-Tat Fan

    2006-01-01

    AIM: To test the hypothesis that enhancement of the activity of heme oxygenase can interfere with processes of fibrogenesis associated with recurrent liver injury, we investigated the therapeutic potential of over-expression of heme oxygense-1 in a CCl4-induced micronodular cirrhosis model.METHODS: Recombinant adeno-associated viruses carrying rat HO-1 or GFP gene were generated. 1x1012 vg of adeno-associated viruses were administered through portal injection at the time of the induction of liver fibrosis.RESULTS: Conditioning the rat liver with over-expression of HO-1 by rAAV/HO-1 significantly increased the HO enzymatic activities in a stable manner. The development of micronodular cirrhosis was significantly inhibited in rAAV/HO-1-transduced animals as compared to controls. Portal hypertension was markedly diminished in rAAV/HO-1-transduced animals as compared to controis, whereas there are no significant changes in systolic blood pressure. This finding was accompanied with improved liver biochemistry, less infiltrating macrophages and less activated hepatic stellate cells (HSCs) in rAAV/HO-1-transduced livers.CONCLUSIONS: Enhancement of HO activity in the livers suppresses the development of cirrhosis.

  15. Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer

    Directory of Open Access Journals (Sweden)

    Choi Jin-Ok

    2010-04-01

    Full Text Available Abstract Background Enzyme replacement therapy (ERT with α-galactosidase A (α-Gal A is currently the most effective therapeutic strategy for patients with Fabry disease, a lysosomal storage disease. However, ERT has limitations of a short half-life, requirement for frequent administration, and limited efficacy for patients with renal failure. Therefore, we investigated the efficacy of recombinant adeno-associated virus (rAAV vector-mediated gene therapy for a Fabry disease mouse model and compared it with that of ERT. Methods A pseudotyped rAAV2/8 vector encoding α-Gal A cDNA (rAAV2/8-hAGA was prepared and injected into 18-week-old male Fabry mice through the tail vein. The α-Gal A expression level and globotriaosylceramide (Gb3 levels in the Fabry mice were examined and compared with Fabry mice with ERT. Immunohistochemical and ultrastructural studies were conducted. Results Treatment of Fabry mice with rAAV2/8-hAGA resulted in the clearance of accumulated Gb3 in tissues such as liver, spleen, kidney, heart, and brain with concomitant elevation of α-Gal A enzyme activity. Enzyme activity was elevated for up to 60 weeks. In addition, expression of the α-Gal A protein was identified in the presence of rAAV2/8-hAGA at 6, 12, and 24 weeks after treatment. α-Gal A activity was significantly higher in the mice treated with rAAV2/8-hAGA than in Fabry mice that received ERT. Along with higher α-Gal A activity in the kidney of the Fabry mice treated with gene therapy, immunohistochemical studies showed more α-Gal A expression in the proximal tubules and glomerulus, and less Gb3 deposition in Fabry mice treated with this gene therapy than in mice given ERT. The α-gal A gene transfer significantly reduced the accumulation of Gb3 in the tubules and podocytes of the kidney. Electron microscopic analysis of the kidneys of Fabry mice also showed that gene therapy was more effective than ERT. Conclusions The rAAV2/8-hAGA mediated α-Gal A gene

  16. Recombinant adeno-associated virus-mediated delivery of antisense angiotensin Ⅱ receptor 1 gene attenuates hypertension development

    Institute of Scientific and Technical Information of China (English)

    Xu-guang LI; Jiang-tao YAN; Xi-zheng XU; Jia-ning WANG; Li-ming CHENG; Tao WANG; Ping ZUO; Dao-wen WANG

    2007-01-01

    Aim:The renin-angiotensin system plays a crucial role in the development and establishment of hypertension,and the pharmacological blockade of the system results in a reduction in blood pressure. In the present study,we investigated whether the effects of a novel,double-stranded,recombinant adeno-associated virus vector (rAAV)-mediated antisense angiotensin Ⅱ receptor l (AT1R) gene efficiently prevents the development of hypertension induced by a high-salt diet in adult,male Sprague-Dawley (SD) rats. Methods:A rAAV was prepared with a cassette containing a cytomegalovirus promoter and partial cDNA (660 base pairs) for the AT1R inserted in the antisense direction (rAAV-AT1AS). A single tail vein injection of the rAAV-AT1-AS or rAAV-GFP (green fluorescent protein,a reporter gene) was performed in adult,male SD rats. Two weeks after injection,the animals were fed a diet containing 8% NaCI,and the systolic blood pressure was measured weekly using the tail-cuff method for 12 weeks. Results:The high-salt diet induced a significant rise in systolic blood pressure in the rAAV-GFP-treated animals;however,the rAAV-AT:AS treatment attenuated the rise in blood pressure (142.7±4.5 mmHg vs 117±3.8 mmHg,P<0.01),and the hypotensive effect was maintained until the experiments ended at 12 weeks. In the rAAV-GFP-treated animals AT1 was overexpressed in various tissues,especially in the aorta and kidney at mRNA levels;in contrast,rAAV-AT:AS treatment markedly attenuated AT1 expression. Furthermore,rAAV-AT:AS treatment prevented target organ damages from hypertension,including cardiac dysfunction and renal injury compared to the rAAV-GFP group. Conclusion:These results suggest that rAAVmediated anti-AT1 delivery attenuates the development of hypertension and protects against renal injury and cardiac remodeling.

  17. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome.

    Directory of Open Access Journals (Sweden)

    Jennifer L Daily

    Full Text Available Angelman syndrome (AS, a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286 and Thr(305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

  18. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari;

    2010-01-01

    in dendrites. The in vivo roles of microRNAs in these processes are still uninvestigated, partly due to the lack of tools enabling stable in vivo delivery of microRNAs or microRNA inhibitors into neurons of the mammalian brain. Here we describe the construction and validation of a vector-based tool for stable...... delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  19. Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor.

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Mahendra, Gandham; Kumar, Sanjay; Shaw, Denise R; Stockard, Cecil R; Grizzle, William E; Meleth, Sreelatha

    2004-03-01

    Angiogenesis is characteristic of solid tumor growth and a surrogate marker for metastasis in many human cancers. Inhibition of tumor angiogenesis using antiangiogenic drugs and gene transfer approaches has suggested the potential of this form of therapy in controlling tumor growth. However, for long-term tumor-free survival by antiangiogenic therapy, the factors controlling tumor neovasculature need to be systemically maintained at stable therapeutic levels. Here we show sustained expression of the antiangiogenic factors angiostatin and endostatin as secretory proteins by recombinant adeno-associated virus 2 (rAAV)-mediated gene transfer. Both vectors provided significant protective efficacy in a mouse tumor xenograft model. Stable transgene persistence and systemic levels of both angiostatin and endostatin were confirmed by in situ hybridization of the vector-injected tissues and by serum ELISA measurements, respectively. Whereas treatment with rAAV containing either endostatin or angiostatin alone resulted in moderate to significant protection, the combination of endostatin and angiostatin gene transfer from a single vector resulted in a complete protection. These data suggest that AAV-mediated long-term expression of both endostatin and angiostatin may have clinical utility against recurrence of cancers after primary therapies and may represent rational adjuvant therapies in combination with radiation or chemotherapy. PMID:14996740

  20. Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice

    Directory of Open Access Journals (Sweden)

    Chu Jin

    2012-01-01

    Full Text Available Abstract Background The 5-lipoxygenase (5LO enzymatic pathway is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD, and that its genetic absence results in a reduction of Amyloid beta (Aβ levels in the Tg2576 mice. Here by employing an adeno-associated viral (AAV vector system to over-express 5LO in the same mouse model, we examined its contribution to their cognitive impairments and brain AD-like amyloid pathology. Results Our results showed that compared with controls, 5LO-targeted gene brain over-expression in Tg2576 mice results in significant memory deficits. On the other hand, brain tissues had a significant elevation in the levels of Aβ peptides and deposition, no change in the steady state levels of amyloid-β precursor protein (APP, BACE-1 or ADAM-10, but a significant increase in PS1, nicastrin, and Pen-2, three major components of the γ-secretase complex. Additional data indicate that the transcription factor CREB was elevated and so were the mRNA levels for PS1, nicastrin and Pen-2. Conclusions These data demonstrate that neuronal 5LO plays a functional role in the pathogenesis of AD-like amyloidotic phenotype by modulating the γ-secretase pathway. They support the hypothesis that this enzyme is a novel therapeutic target for the treatment and prevention of AD.

  1. Adeno-associated virus Rep78 restricts adenovirus E1B55K-mediated p53 nuclear exportation

    Institute of Scientific and Technical Information of China (English)

    Jingjing Wang; Wenjuan Li; Ran Wang; Jinglun Xue; Jinzhong Chen

    2013-01-01

    Inactivation of p53 is needed during adenovirus type 5 DNA replication.E1B55K,an adenovirus early protein,has been reported to interact with p53 and inhibit p53 transactivation.Previous studies have shown that adenoassociated virus (AAV) type 2 could reduce the transforming potential of adenovirus by rescuing p53 from adenovirus-mediated degradation,but the details are not clear yet.We detected the Rep78-p53 interaction by co-immunoprecipitation assay.The co-localization assay revealed that Rep78 inhibits E1B55K-mediated p53 nuclear exportation.However,Rep78 did not detectably influence p53 stability and could not relieve the transcriptional inactivation of p53,as E1B55K could not be replaced from the p53-E1B55K complex by Rep78.Our results reveal a new possible mechanism that AAV-2 Rep78 inhibits adenovirus 5 by relocalizing p53 in the nucleus,which may shed some light on the regulatory mechanism of AAV-2 on its helper virus,adenovirus.

  2. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses.

    Science.gov (United States)

    Jin, Lei; Lange, Wienke; Kempmann, Annika; Maybeck, Vanessa; Günther, Anne; Gruteser, Nadine; Baumann, Arnd; Offenhäusser, Andreas

    2016-09-10

    In recent years, optogenetic approaches have significantly advanced the experimental repertoire of cellular and functional neuroscience. Yet, precise and reliable methods for specific expression of optogenetic tools remain challenging. In this work, we studied the transduction efficiency of seven different adeno-associated virus (AAV) serotypes in primary cortical neurons and revealed recombinant (r) AAV6 to be the most efficient for constructs under control of the cytomegalovirus (CMV) promoter. To further specify expression of the transgene, we exchanged the CMV promoter for the human synapsin (hSyn) promoter. In primary cortical-glial mixed cultures transduced with hSyn promoter-containing rAAVs, expression of ChR2opt (a Channelrhodopsin-2 variant) was limited to neurons. In these neurons action potentials could be reliably elicited upon laser stimulation (473nm). The use of rAAV serotype alone to restrict expression to neurons results in a lower transduction efficiency than the use of a broader transducing serotype with specificity conferred via a restrictive promoter. Cells transduced with the hSyn driven gene expression were able to elicit action potentials with more spatially and temporally accurate illumination than neurons electrofected with the CMV driven construct. The hSyn promoter is particularly suited to use in AAVs due to its small size. These results demonstrate that rAAVs are versatile tools to mediate specific and efficient transduction as well as functional and stable expression of transgenes in primary cortical neurons. PMID:27416794

  3. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  4. Inhibition of Histone Deacetylation and DNA Methylation Improves Gene Expression Mediated by the Adeno-Associated Virus/Phage in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amin Hajitou

    2013-10-01

    Full Text Available Bacteriophage (phage, viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV. This novel AAV/phage hybrid (AAVP specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  5. Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells

    International Nuclear Information System (INIS)

    Background and purpose: The success rate of any therapeutic approach depends on the therapeutic window, which can be increased by either raising the resistance of the normal tissue without protecting the tumor cells or by sensitizing the tumor cells but not the normal cells. Two promising candidate genes for normal tissue protection against radiation-induced damage may be the copper-zinc (CuZnSOD) and manganese superoxide-dismutase genes (MnSOD). The recombinant adeno-associated virus 2 (rAAV-2) offers attractive advantages over other vector systems: low immunogenicity, ability to infect dividing and non-dividing tissues and a low chance of insertional mutagenesis, due to extra-chromosomal localization. We report the production of novel rAAV-2-SOD vectors and the investigation of their modulating effects on HeLa-RC cells after irradiation. Material and methods: rAAV-2 vectors were cloned containing the human CuZnSOD or MnSOD as transgene and vector stocks were produced. In the initial experiments human cervix carcinoma (HeLa-RC) cells were chosen for their susceptibility to rAAV-2. On day 0, cells were seeded and transduced with the rAAV-2-SOD vectors. On day 3, cells were harvested, irradiated (0.5-8 Gy) and reseeded in different assays (FACS, SOD, MTT and colony assays). Results: Although >70% of all cells expressed SOD and significant amounts of functional SOD protein were detected, no radioprotective effect of SOD was observed after transduction of HeLa-RC cells. Conclusions: Novel rAAV-2-SOD vectors that could be produced at high titer, were able to efficiently infect cells and express the SOD genes. The absence of a radioprotective effect in HeLa-RC cancer cells indicates an additional safety feature and suggests that rAAV-mediated MnSOD overexpression might contribute to increasing the therapeutic index when applied for normal tissue protection

  6. Recombinant adeno-associated virus-mediated inhibiting of interleukin-4 expression in rat model of asthma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Asthma is a chronic disease characterized by reversible airway obstruction, airway hyper- responsiveness, and inflammation of airways. Th2 cells, one sort of CD4+ T lymphocytes, are currently considered to play an important role in the chronic airway inflammation of asthma. Meanwhile, a number of laboratories have clearly established the importance of the Th2-derived cytokine interleukin-4 (IL-4) in mediating the airway inflammatory response. Anti-IL-4 therapy might be beneficial in treatment of chronic asthma.

  7. Adeno-associated virus mediated endostatin gene therapy in combination with topoisomerase inhibitor effectively controls liver tumor in mouse model

    Institute of Scientific and Technical Information of China (English)

    Sung Yi Hong; Myun Hee Lee; Kyung Sup Kim; Hyun Cheol Jung; Jae Kyung Roh; Woo Jin Hyung; Sung Hoon Noh; Seung Ho Choi

    2004-01-01

    AIM: rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer. However,a sustained and high protein delivery is required to achieve the desired therapeutic effects. We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model.METHODS: rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines. To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin, Western blotting and ELISA were performed. The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays.The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor, etoposide, were evaluated in a mouse liver tumor model.RESULTS: Topoisomerase inhibitors, including camptothecin and etoposide, were found to increase the endostatin expression level in vitro. The over-expressed endostatin,as a result of pretreatment with a topoisomerase inhibitor,was also biologically active. In animal experiments, the combined therapy of topoisomerase inhibitor, etoposide with the rAAV-endostatin vector had the best tumorsuppressive effect and tumor foci were barely observed in livers of the treated mice. Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice. Finally, the mice treated with rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models.CONCLUSION: rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.

  8. Adeno-Associated Virus Vectors (AAV Expressing Phenylalanine Hydroxylase (PAH

    Directory of Open Access Journals (Sweden)

    Ayşegül Akbay Yarpuzlu

    2009-06-01

    Full Text Available Recent articles have appeared in the literature reporting use of adeno-associated virus vectors (AAV expressing phenylalanine hydroxylase in animal trials and suggesting its use in treatment of phenylketonuria (PKU as a form of gene therapy However, agents used in gene therapy to deliver genes are not site-specific and DNA is may be put in the wrong place, causing damage to the organism. The adverse immunogenicity of AAVs also needs to be reconsidered. This letter is written to discuss present unreadiness for Phase 1 clinical trials of gene therapy of PKU. Turk Jem 2009; 13: 18-9

  9. Expression of human nerve growth factor β gene in central nervous system mediated by recombinant adeno-associated viruses type-2 vector

    Institute of Scientific and Technical Information of China (English)

    高凯; 吴勇杰; 吴小兵; 饶春明; 王军志

    2004-01-01

    Background Neurone atrophy and loss are major causes of chronic neurodegenerative disorders such as Alzheimer's disease. Despite many pharmacotherapies for neurodegeneration, there are no accepted treatments. We investigated the feasibility of human nerve growth factor β (hNGFβ) gene expression mediated by recombinant adeno-associated viruses type-2 (rAAV-2) vector in the central nervous system (CNS) after blood brain barrier (BBB) disruption.Methods rAAV-2 containing hNGFβ gene was constructed. The ability of hNGFβ gene mediated by rAAV-2 vector (rAAV-2/hNGFβ) to transfect cells in vitro was confirmed by both ELISA and bioassay of hNGFβ in the culture supernatant of BHK-21 cells infected by rAAV-2/hNGFβ. rAAV-2/hNGFβ and rAAV-2/green fluorescence protein (GFP) were administrated separately to rat brains through internal carotid intubation after BBB disruption with hypertonic mannitol. Brain hNGFβ concentration was measured by ELISA and GFP in brain sections was examined by laser scan confocal microscope.Results After 48 hours, hNGFβ content in supernatant was up to (188.0±28.6) pg/ml when BHK-21 cells were infected by rAAV-2/hNGFβ at multiplicity of infection (MOI)1.0×106 vector genome. Neurone fibre outgrowths were obvious in dorsal root ganglion neurone assays by adding serum free culture medium harvested from BHK-21 cells exposed to rAAV-2/hNGFβ. Whole brain hNGFβ content in rAAV-2/hNGFβ transferred group was up to (636.2±140.6) pg/ml. hNGFβ content of BBB disruption in rAAV-2/hNGFβ infused group increased significantly compared to the control group (P<0.05). GFP expression was clearly observed in brain sections of rAAV-2/GFP transferred group.Conclusion rAAV-2/hNGFβ successfully expresses in the CNS after BBB disruption induced by hypertonic mannitol.

  10. Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in mdx Mice

    OpenAIRE

    Bostick, Brian; Yue, Yongping; Lai, Yi; Long, Chun; Li, Dejia; Duan, Dongsheng

    2008-01-01

    Adeno-associated virus (AAV)-mediated microdystrophin gene therapy holds great promise for treating Duchenne muscular dystrophy (DMD). Previous studies have revealed excellent skeletal muscle protection. Cardiac muscle is also compromised in DMD patients. Here we show that a single intravenous injection of AAV serotype-9 (AAV-9) microdystrophin vector efficiently transduced the entire heart in neonatal mdx mice, a dystrophin-deficient mouse DMD model. Furthermore, microdystrophin therapy norm...

  11. Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons.

    Science.gov (United States)

    Fleming, J; Ginn, S L; Weinberger, R P; Trahair, T N; Smythe, J A; Alexander, I E

    2001-01-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of numerous inherited and acquired neurological conditions. Therefore, efficient and stable gene delivery to these postmitotic cells has significant therapeutic potential. Among contemporary vector systems capable of neuronal transduction, only those based on herpes simplex virus have been extensively evaluated in PNS neurons. We therefore investigated the transduction performance of recombinant adeno-associated virus type 2 (AAV) and VSV-G-pseudotyped lentivirus vectors derived from human immunodeficiency virus (HIV-1) in newborn mouse and fetal human dorsal root ganglia (DRG) sensory neurons. In dissociated mouse DRG cultures both vectors achieved efficient transduction of sensory neurons at low multiplicities of infection (MOIs) and sustained transgene expression within a 28-day culture period. Interestingly, the lentivirus vector selectively transduced neurons in murine cultures, in contrast to human cultures, in which Schwann and fibroblast-like cells were also transduced. Recombinant AAV transduced all three cell types in both mouse and human cultures. After direct microinjection of murine DRG explants, maximal transduction efficiencies of 20 and 200 transducing units per neuronal transductant were achieved with AAV and lentivirus vectors, respectively. Most importantly, both vectors achieved efficient and sustained transduction of human sensory neurons in dissociated cultures, thereby directly demonstrating the exciting potential of these vectors for gene therapy applications in the PNS.

  12. Adeno-associated virus-mediated bone morphogenetic protein-7 gene transfer induces C2C12 cell differentiation into osteoblast lineage cells

    Institute of Scientific and Technical Information of China (English)

    Min YANG; Qing-jun MA; Geng-ting DANG; Kang-tao MA; Ping CHEN; Chun-yan ZHOU

    2005-01-01

    Aim: To investigate the effects of bone morphogenetic protein-7 (BMP7)-expressing recombinant adeno-associated virus (AAV) vector on the differentiation of C2C12 cells. Methods: AAV-BMP7 was packaged by infecting the stable cell clone BHK-21 (integrated with recombinant AAV vector plasmid pSNAV-BMP7)with recombinant herpes simplex virus type 1, which expresses AAV-2 Rep and Cap and possesses AAV packaging functions. Following infection with AAVBMP7 at multiplicities of infection of 1× 105 vector genomes per cell and subsequent culture, C2C12 cells were assessed qualitatively for BMP7 production, alkaline phosphatase activity, osteocalcin production and Cbfal and MyoD expression.Results: C2C 12 cells transduced with AAV-BMP7 could produce BMP7 protein until d 28. Alkaline phosphatase in the cultured C2C12 cell lysate was elevated.Secreted osteocalcin in the culture medium was detectable at d 12 and Cbfal mRNA expression level was upregulated, coinciding with downregulation of MyoD in a temporal manner. Conclusion: The present in vitro study demonstrated that AAV-BMP7 could infect and efficiently convert C2C12 cells from myoblasts into osteoblast lineage cells.

  13. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    Science.gov (United States)

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  14. Recombinant adeno-associated virus-mediated human kallikrein gene therapy prevents high-salt diet-induced hypertension without effect on basal blood pressure

    Institute of Scientific and Technical Information of China (English)

    Jiang-tao YAN; Tao WANG; Juan LI; Xiao XIAO; Dao-wen WANG

    2008-01-01

    Aim: To investigate the effects of the expression of human kallikrein (HK) on basal level blood pressure and high-salt diet-induced hypertension. Methods: We delivered the recombinant adeno-associated viral (rAAV)-mediated HK (rAAV-HK) gene and rAAV-LacZ (as the control) to normal, adult Sprague-Dawley rats. The animals were administered a normal diet in the first 4 weeks, followed by a high-salt diet. The expression of HK in the rats was assessed by ELISA and RT-PCR. Blood pressure and Na~ and K~ urinary excretion were monitored. Results: Under the normal diet, no obvious changes in blood pressure and Na+ and K+ urinary excretion were observed. When the high-salt diet was administered, sys-tolic blood pressure in the control animals receiving rAAV-LacZ increased from 122.3±1. 13 mmHg to a stable 142.4±1.77 mmHg 8 weeks after the high-salt diet. In contrast, there was no significant increase in the blood pressure in the rAAV-HK-treated group, in which the blood pressure remained at 121.9±1.73 mmHg. In the rAAV-HK-treated group, Na+ and K+ urinary excretion were higher compared to those of the control group. The morphological analysis showed that HK delivery remarkably protected against renal damage induced by a high-salt intake. Conclusion: Our study indicates that rAAV-mediated human tissue kallikrein gene delivery is a potentially safe method for the long-term treatment of hypertension. More importantly, it could be applied in the salt-sensitive population to prevent the occurrence of hypertension.

  15. The Helper Activities of Different Avian Viruses for Propagation of Recombinant Avian Adeno-Associated Virus

    Institute of Scientific and Technical Information of China (English)

    WANG An-ping; SUN Huai-chang; WANG Jian-ye; WANG Yong-juan; YUAN Wei-feng

    2007-01-01

    To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV-mediated transgene expression could be enhanced by super infection with the helper viruses.

  16. Adeno-Associated Virus Type 5-Mediated Intraarticular Administration of Tumor Necrosis Factor Small Interfering RNA Improves Collagen-Induced Arthritis

    NARCIS (Netherlands)

    M. Khoury; G. Courties; S. Fabre; C. Bouffi; C.A. Seemayer; M.J. Vervoordeldonk; P.P. Tak; C. Jorgensen; F. Apparailly

    2010-01-01

    Objective. RNA interference (RNAi) is a powerful tool for sequence-specific gene silencing, and interest in its application in human diseases is growing. Given the success of recent strategies for administering gene therapy in rheumatoid arthritis using recombinant vectors such as adeno-associated v

  17. Structure of neurotropic adeno-associated virus AAVrh.8.

    Science.gov (United States)

    Halder, Sujata; Van Vliet, Kim; Smith, J Kennon; Duong, Thao Thi Phuong; McKenna, Robert; Wilson, James M; Agbandje-McKenna, Mavis

    2015-10-01

    Adeno-associated virus rhesus isolate 8 (AAVrh.8) is a leading vector for the treatment of neurological diseases due to its efficient transduction of neuronal cells and reduced peripheral tissue tropism. Toward identification of the capsid determinants for these properties, the structure of AAVrh.8 was determined by X-ray crystallography to 3.5 Å resolution and compared to those of other AAV isolates. The capsid viral protein (VP) structure consists of an αA helix and an eight-stranded anti-parallel β-barrel core conserved in parvoviruses, and large insertion loop regions between the β-strands form the capsid surface topology. The AAVrh.8 capsid exhibits the surface topology conserved in all AAVs: depressions at the icosahedral twofold axis and surrounding the cylindrical channel at the fivefold axis, and three protrusions around the threefold axis. A structural comparison to serotypes AAV2, AAV8, and AAV9, to which AAVrh.8 shares ∼ 84%, ∼ 91%, and ∼ 87% VP sequence identity, respectively, revealed differences in the surface loops known to affect receptor binding, transduction efficiency, and antigenicity. Consistent with this observation, biochemical assays showed that AAVrh.8 is unable to bind heparin and does not cross-react with conformational monoclonal antibodies and human donor serum directed against the other AAVs compared. This structure of AAVrh.8 thus identified capsid surface differences which can serve as template regions for rational design of vectors with enhanced transduction for specific tissues and escape pre-existing antibody recognition. These features are essential for the creation of an AAV vector toolkit that is amenable to personalized disease treatment. PMID:26334681

  18. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers.

    Science.gov (United States)

    Yan, Ziying; Sun, Xingshen; Feng, Zehua; Li, Guiying; Fisher, John T; Stewart, Zoe A; Engelhardt, John F

    2015-06-01

    The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air-liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl(-) currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway. PMID:25763813

  19. Enhancement of Muscle Gene Delivery with Pseudotyped Adeno-Associated Virus Type 5 Correlates with Myoblast Differentiation

    OpenAIRE

    Duan, Dongsheng; Yan, Ziying; Yue, Yongping; Ding, Wei; Engelhardt, John F.

    2001-01-01

    Adeno-associated virus (AAV)-based muscle gene therapy has achieved tremendous success in numerous animal models of human diseases. Recent clinical trials with this vector have also demonstrated great promise. However, to achieve therapeutic benefit in patients, large inocula of virus will likely be necessary to establish the required level of transgene expression. For these reasons, efforts aimed at increasing the efficacy of AAV-mediated gene delivery to muscle have the potential for improv...

  20. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  1. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model

    OpenAIRE

    Wang, Bing; Li, Juan; Xiao, Xiao

    2000-01-01

    Duchenne muscular dystrophy (DMD) is the most common and lethal genetic muscle disorder, caused by recessive mutations in the dystrophin gene. One of every 3,500 males suffers from DMD, yet no treatment is currently available. Genetic therapeutic approaches, using primarily myoblast transplantation and adenovirus-mediated gene transfer, have met with limited success. Adeno-associated virus (AAV) vectors, although proven superior for muscle gene transfer, are too sm...

  2. A novel and highly efficient production system for recombinant adeno-associated virus vector

    Institute of Scientific and Technical Information of China (English)

    WU; Zhijian(伍志坚); WU; Xiaobing(吴小兵); CAO; Hui(曹晖); DONG; Xiaoyan(董小岩); WANG; Hong(王宏); HOU; Yunde(侯云德)

    2002-01-01

    Recombinant adeno-associated virus(rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1(rHSV-1) designated HSV1-rc/△UL2, which expressed adeno-associated virus type2(AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein(GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/△UL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit(TU) or 4.28×104 particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.

  3. Capsid modification of adeno-associated virus and tumor targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    XU ZengHu; ZHOU XiuMei; SHI WenFang; QIAN QiJun

    2008-01-01

    Targeting is critical for successful tumor gene therapy. The adeno-associated virus (AAV) has aroused wide concern due to its excellent advantages over other viral vectors in gene therapy. AAV has a broad infection spectrum, which also results in poor specificity towards tissues or cells and low transduction efficiency. Therefore, it is imperative to improve target and transduction efficiency in AAV-mediated gene therapy. Up to now, researchers have developed many strategies to modify AAV capsids for improving targeting or retargeting only desired cells. These strategies include not only traditional chemical modification, phage display technology, modification of AAV capsid genome, chimeric vectors and so on, but also many novel strategies involved in marker rescue strategy, direct evolution of capsid proteins, direct display random peptides on AAV capsid, AAVP (AAV-Phage), and etc. This review will summarize the advances of researches on the capsid modification of AAV to target malignant cells.

  4. Size does matter: overcoming the adeno-associated virus packaging limit

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2000-07-01

    Full Text Available Abstract Recombinant adeno-associated virus (rAAV vectors mediate long-term gene transfer without any known toxicity. The primary limitation of rAAV has been the small size of the virion (20 nm, which only permits the packaging of 4.7 kilobases (kb of exogenous DNA, including the promoter, the polyadenylation signal and any other enhancer elements that might be desired. Two recent reports (D Duan et al: Nat Med 2000, 6:595-598; Z Yan et al: Proc Natl Acad Sci USA 2000, 97:6716-6721 have exploited a unique feature of rAAV genomes, their ability to link together in doublets or strings, to bypass this size limitation. This technology could improve the chances for successful gene therapy of diseases like cystic fibrosis or Duchenne muscular dystrophy that lead to significant pulmonary morbidity.

  5. Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey

    OpenAIRE

    An, Heeyoung; Cho, Doo-Wan; Lee, Seung Eun; Yang, Young-Su; Han, Su-Cheol; Lee, C. Justin

    2016-01-01

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey br...

  6. ADENO-ASSOCIATED SATELLITE VIRUS INTERFERENCE WITH THE REPLICATION OF ITS HELPER ADENOVIRUS

    Science.gov (United States)

    Parks, Wade P.; Casazza, Anna M.; Alcott, Judith; Melnick, Joseph L.

    1968-01-01

    Adeno-associated satellite virus type 4 interferes with the replication of its helper adenovirus. No interferon-like soluble substance could be detected in satellite-infected cultures and other DNA- and RNA-containing viruses were not inhibited by coinfection with satellite virus under conditions which reduced adenovirus yields by more than 90% in monkey cells. Altering the concentration of adenovirus in the presence of constant amounts of satellite resulted in a constant degree of interference over a wide range of adenovirus inocula and suggested that adenovirus concentration was not a significant factor in the observed interference. The interference with adenovirus replication was abolished by pretreating satellite preparations with specific antiserum, ultraviolet light or heating at 80°C for 30 min. This suggested that infectious satellite virus mediated the interference. Satellite virus concentration was found to be a determinant of interference and studies indicated that the amount of interference with adenovirus was directly proportional to the concentration of satellite virus. 8 hr after adenovirus infection, the replication of adenovirus was no longer sensitive to satellite interference. This was true even though the satellite virus was enhanced as effectively as if the cells were infected simultaneously with both viruses. Interference with adenovirus infectivity was accompanied by reduced yields of complement-fixing antigen and of virus particles which suggested that satellite virus interfered with the formation and not the function of adenovirus products. When cells were infected either with adenovirus alone or with adenovirus plus satellite, the same proportion of cells plated as adenovirus infectious centers. However, the number of plaque-forming units of adenovirus formed per cell in the satellite-infected cultures was reduced by approximately 90%, the same magnitude of reduction noted in whole cultures coinfected with satellite and adenovirus. This

  7. Feasibility of Generating Adeno-Associated Virus Packaging Cell Lines Containing Inducible Adenovirus Helper Genes

    OpenAIRE

    Qiao, Chunping; Li, Juan; Skold, Anna; Zhang, Xudong; Xiao, Xiao

    2002-01-01

    The adeno-associated virus (AAV) vector system is based on nonpathogenic and helper-virus-dependent parvoviruses. The vector system offers safe, efficient, and long-term in vivo gene transfer in numerous tissues. Clinical trials using AAV vectors have demonstrated vector safety as well as efficiency. The increasing interest in the use of AAV for clinical studies demands large quantities of vectors and hence a need for improvement in vector production. The commonly used transient-transfection ...

  8. Construction of Adeno-associated Virus System for Human Bone Morphogenetic Protein 7 Gene

    Institute of Scientific and Technical Information of China (English)

    Ke SONG; Nianjing RAO; Meiling CHEN; Yingguang CAO

    2008-01-01

    To construct the recombinant adeno-associated virus (rAAV) vector with human bone morphogenetic protein 7 (BMP7) and observe the BMP7 mRNA expression in vitro, BMP7 CDS se- quence was cloned into expression plasmid pAAV-MCS of AAV Helper Free System. The recombi- nant plasmid was identified with enzyme digestion and sequencing. The recombinant plasmid, pAAV-RC, pHelper were co-transfected into AAV-293 cells according to the calcium phosphate-based protocol. The viral stock was collected by 4 rounds of freeze/thaw. After purified and concentrated,the recombinant virus titer was determined by dot-blot assay. HEK293 cells were transfected with the recombinant virus at different MOI, and the expression of BMP7 mRNA was detected by RT-PCR. The results showed rAAV-BMP7 was constructed and packaged successfully. The physical particle titer was 2.5×1011 vector genomes/mL. There was different expression level of BMP7 mRNA after transfecton. These data suggested that recombinant AAV mediated a stable expression of hBMP7 mRNA in 293 cells. The AAV production method may pave the way of an effective strategy for the jaw bone defection around dental implants.

  9. 重组腺相关病毒介导遗传性色盲基因治疗的研究进展%Advance in recombinant adeno-associated virus mediated gene therapy for color blindness

    Institute of Scientific and Technical Information of China (English)

    杨红霞; 邱一果

    2013-01-01

    色盲是缺乏或完全没有辨色能力的一类遗传性疾病,长期被认为是不可治愈性疾病.近年来以腺相关病毒(AAV)为载体介导的基因疗法主要用于对由视蛋白缺乏引起的红绿色盲及由视锥细胞环核苷酸门控离子通道A3(CNGA3)A或B(CNGB3)亚单位基因缺失引起的全色盲的治疗,已在动物实验中获得成功.人类色盲患者与一些实验动物存在着相同的基因缺陷,因此相关的动物实验研究结果用AAV介导的基因疗法为色盲患者进行治疗提供了有用的信息.%Color blindness represents a group of vision disorders characterized by lack of ability to distinguish different colors.The inherited color blindness has been regarded as incurable for a long period of time.Recently,adeno-associated virus(AAV) mediated gene therapy has successfully restored cone system vision in animal models with color blindness caused by different gene mutations.These mutations are presented in human color blindness patients.It is predicted that gene therapy will become a novel treatment for these color blindness victims.In addition,a single gene transfer may achieve long-term correction of color deficiency.

  10. Rapid, simple and versatile manufacturing of recombinant adeno-associated virus vectors at scale

    OpenAIRE

    Lock, Martin; Alvira, Mauricio; Vandenberghe, Luk H.; Samanta, Arabinda; Toelen, Jaan; Debyser, Zeger; Wilson, James M

    2010-01-01

    Adeno-associated virus vector manufacturing at scale continues to hinder the application of AAV technology to gene therapy studies. While scalable systems based upon AAV-adenovirus, -herpesvirus and -baculovirus hybrids hold promise for clinical applications, they require time-consuming generation of reagents and are not highly suited to intermediate scale pre-clinical studies in large animals where several combinations of serotype and genome may need to be tested. Recently we observed that d...

  11. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    OpenAIRE

    Yang Lin; Xiao Xiao

    2013-01-01

    Abstract Adeno-associated virus (AAV) is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolutio...

  12. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy. PMID:26414293

  13. Functional analysis of the putative integrin recognition motif on adeno-associated virus 9.

    Science.gov (United States)

    Shen, Shen; Berry, Garrett E; Castellanos Rivera, Ruth M; Cheung, Roland Y; Troupes, Andrew N; Brown, Sarah M; Kafri, Tal; Asokan, Aravind

    2015-01-16

    Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system. PMID:25404742

  14. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    Science.gov (United States)

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  15. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    Science.gov (United States)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  16. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking.

    Science.gov (United States)

    Nam, Hyun-Joo; Gurda, Brittney L; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2011-11-01

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  17. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  18. Productive life cycle of adeno-associated virus serotype 2 in the complete absence of a conventional polyadenylation signal.

    Science.gov (United States)

    Wang, Lina; Yin, Zifei; Wang, Yuan; Lu, Yuan; Zhang, Daniel; Srivastava, Arun; Ling, Changquan; Aslanidi, George V; Ling, Chen

    2015-09-01

    We showed that WT adeno-associated virus serotype 2 (AAV2) genome devoid of a conventional polyadenylation [poly(A)] signal underwent complete genome replication, encapsidation and progeny virion production in the presence of adenovirus. The infectivity of the progeny virion was also retained. Using recombinant AAV2 vectors devoid of a human growth hormone poly(A) signal, we also demonstrated that a subset of mRNA transcripts contained the inverted terminal repeat (ITR) sequence at the 3' end, which we designated ITR in RNA (ITRR). Furthermore, AAV replication (Rep) proteins were able to interact with the ITRR. Taken together, our studies suggest a new function of the AAV2 ITR as an RNA element to mediate transgene expression from poly(A)-deleted mRNA. PMID:26297494

  19. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  20. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery.

    Science.gov (United States)

    Bartel, M A; Weinstein, J R; Schaffer, D V

    2012-06-01

    Gene therapy vectors based on adeno-associated virus (AAV) are currently in clinical trials for numerous disease targets, such as muscular dystrophy, hemophilia, Parkinson's disease, Leber's congenital amaurosis and macular degeneration. Despite its considerable promise and emerging clinical success, several challenges impede the broader implementation of AAV gene therapy, including the prevalence of neutralizing antibodies in the human population, low transduction of a number of therapeutically relevant cell and tissue types, an inability to overcome physical and cellular barriers in vivo and a relatively limited carrying capacity. These challenges arise as the demands we place on AAV vectors are often different from or even at odds with the properties nature bestowed on their parent viruses. Viral-directed evolution-the iterative generation of large, diverse libraries of viral mutants and selection for variants with specific properties of interest-offers an approach to address these problems. Here we outline progress in creating novel classes of AAV variant libraries and highlight the successful isolation of variants with novel and advantageous in vitro and in vivo gene delivery properties. PMID:22402323

  1. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  2. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox.

    Science.gov (United States)

    Senís, Elena; Fatouros, Chronis; Große, Stefanie; Wiedtke, Ellen; Niopek, Dominik; Mueller, Ann-Kristin; Börner, Kathleen; Grimm, Dirk

    2014-11-01

    Its remarkable ease and efficiency make the CRISPR (clustered regularly interspaced short palindromic repeats) DNA editing machinery highly attractive as a new tool for experimental gene annotation and therapeutic genome engineering in eukaryotes. Here, we report a versatile set of plasmids and vectors derived from adeno-associated virus (AAV) that allow robust and specific delivery of the two essential CRISPR components - Cas9 and chimeric g(uide)RNA - either alone or in combination. All our constructs share a modular design that enables simple and stringent guide RNA (gRNA) cloning as well as rapid exchange of promoters driving Cas9 or gRNA. Packaging into potent synthetic AAV capsids permits CRISPR delivery even into hard-to-transfect targets, as shown for human T-cells. Moreover, we demonstrate the feasibility to direct Cas9 expression to or away from hepatocytes, using a liver-specific promoter or a hepatic miRNA binding site, respectively. We also report a streamlined and economical protocol for detection of CRISPR-induced mutations in less than 3 h. Finally, we provide original evidence that AAV/CRISPR vectors can be exploited for gene engineering in vivo, as exemplified in the liver of adult mice. Our new tools and protocols should foster the broad application of CRISPR technology in eukaryotic cells and organisms, and accelerate its clinical translation into humans. PMID:25186301

  3. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 10(12 vector genome particles per mouse. Three months later, we observed a approximately 2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy and ameliorate muscle disease.

  4. A Hypoxia-Regulated Adeno-Associated Virus Vector for Cancer-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    2001-01-01

    Full Text Available The presence of hypoxic cells in human brain tumors is an important factor leading to resistance to radiation therapy. However, this physiological difference between normal tissues and tumors also provides the potential for designing cancer-specific gene therapy. We compared the increase of gene expression under anoxia (<0.01% oxygen produced by 3, 6, and 9 copies of hypoxia-responsive elements (HRE from the erythropoietin gene (Epo, which are activated through the transcriptional complex hypoxia-inducible factor 1 (HIF-1. Under anoxic conditions, nine copies of HIRE (9XHRE yielded 27- to 37-fold of increased gene expression in U-251 MG and U-87 MG human brain tumor cell lines. Under the less hypoxic conditions of 0.3% and 1% oxygen, gene activation by 9XHRE increased expression 11- to 18-fold in these cell lines. To generate a recombinant adeno-associated virus (rAAV in which the transgene can be regulated by hypoxia, we inserted the DNA fragment containing 9XHRE and the LacZ reporter gene into an AAV vector. Under anoxic conditions, this vector produced 79- to 110-fold increase in gene expression. We believe this hypoxia-regulated rAAV vector will provide a useful delivery vehicle for cancer-specific gene therapy.

  5. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  6. ADENO-ASSOCIATED VIRUS INTRODUCED INTEGRATION AND EXPRESSION OF FOREIGN GENES IN PC12 CELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate integration and expression of adeno-associated virus (AAV) vectors in neuronal PC12 cells,the result of which can be applied in further gene therapy of diseases of the central nervous system. Methods Human neurotrophin-3(hNT3)genes were inserted into AAV vectors. Then the recombinat AAV plasmids were encapsidated as recombinant virions. PC12 cells were transfected with the virions and the positive cells were selected by G418. The transfection positive (hNT3 modified)PC12 cells were cultured for several generations and the cellular genomic DNA and total RNA were extracted. We investigated the integration locus of AAV vectors by Southern blot and transcript situation of foreign genes by dot blot. Results The hybridization tests showed that AAV introduced foreign genes were stably integrated, but at random locus, and robustly transcribed in hNT3 modified PC12cells. Conclusion AAV vectors can serve as high efficiency vectors of target genes in neuronal PC12 cells.

  7. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors.

    Science.gov (United States)

    Guenzel, Adam J; Collard, Renata; Kraus, Jan P; Matern, Dietrich; Barry, Michael A

    2015-03-01

    Propionic academia (PA) occurs because of mutations in the PCCA or PCCB genes encoding the two subunits of propionyl-CoA carboxylase, a pivotal enzyme in the breakdown of certain amino acids and odd-chain fatty acids. There is no cure for PA, but dietary protein restriction and liver transplantation can attenuate its symptoms. We show here that a single intravenous injection of adeno-associated virus 2/8 (AAV8) or AAVrh10 expressing PCCA into PA hypomorphic mice decreased systemic propionylcarnitine and methyl citrate for up to 1.5 years. However, long-term phenotypic correction was always better in male mice. AAV-mediated PCCA expression was similar in most tissues in males and females at early time points and differed only in the liver. Over 1.5 years, luciferase and PCCA expression remained elevated in cardiac tissue for both sexes. In contrast, transgene expression in the liver and skeletal muscles of female, but not male, mice waned—suggesting that these tissues were major sinks for systemic phenotypic correction. These data indicate that single systemic intravenous therapy by AAV vectors can mediate long-term phenotype correction for PA. However, tissue-specific loss of expression in females reduces efficacy when compared with males. Whether similar sex-biased AAV effects occur in human gene therapy remains to be determined. PMID:25654275

  8. Recombinant adeno-associated viruses (rAAV2) facilitate the intraperitoneal gene delivery to cancer cells

    OpenAIRE

    Malecki, Maciej; PROCZKA, ROBERT; Chorostowska-Wynimko, Joanna; Swoboda, Paweł; DELBANI, ANNA; Pachecka, Jan

    2010-01-01

    Peritoneal dissemination of cancer cells is characteristic of advanced stages of ovarian, breast and lung cancers, and is associated with poor patient survival. The presence of cancer cells in effusions complicates treatment protocols, while cell eradication is seriously limited. One of the novel options available is cancer gene therapy with recombinant adeno-associated viruses. This combination represents the most promising gene delivery vehicles to neoplasmatic cells within serosal cavities...

  9. Persistence, Localization, and External Control of Transgene Expression After Single Injection of Adeno-Associated Virus into Injured Joints

    OpenAIRE

    Lee, Hannah H.; O'Malley, Michael J.; Friel, Nicole A.; Payne, Karin A.; Qiao, Chunping; Xiao, Xiao(Institute for Strings, Cosmology and Astroparticle Physics (ISCAP) and Physics Department, Columbia University, 538 West 120th Street, New York, NY, 10027 U.S.A.); Chu, Constance R.

    2013-01-01

    A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra...

  10. Activation of the NF-κB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy

    OpenAIRE

    Jayandharan, Giridhara R.; Aslanidi, George; Martino, Ashley T.; Jahn, Stephan C.; Perrin, George Q.; Herzog, Roland W.; Srivastava, Arun

    2011-01-01

    Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold...

  11. Supraspinal gene transfer by intrathecal adeno-associated virus serotype 5

    Directory of Open Access Journals (Sweden)

    Daniel J. Schuster

    2014-08-01

    Full Text Available We report the pattern of transgene expression across brain regions after intrathecal delivery of adeno-associated virus serotype 5 (AAV5. Labeling in hindbrain appeared to be primarily neuronal, and was detected in sensory nuclei of medulla, pontine nuclei, and all layers of cerebellar cortex. Expression in midbrain was minimal, and generally limited to isolated neurons and astrocytes in the cerebral peduncles. GFP immunoreactivity (-ir in thalamus was most prominent in medial geniculate nucleus, and otherwise limited to posterior nuclei of the dorsal and lateral margins. Labeling was also observed in neurons and astrocytes of the hippocampal formation and amygdaloid complex. In the hippocampal formation, GFP-ir was found in neuronal cell bodies of the rostral ventral portion, but was largely restricted to fiber-like staining in the molecular layer of dentate gyrus and stratum lacunosum-moleculare of the rostral dorsal region. GFP-ir was seen in neurons and astroglia throughout caudal cortex, whereas in rostral regions of neocortex it was limited to isolated astrocytes and neurons. Labeling was also present in olfactory bulb. These results demonstrate that intrathecal delivery of AAV5 vector leads to transgene expression in discrete CNS regions throughout the rostro-caudal extent of the neuraxis. A caudal-to-rostral gradient of decreasing GFP-ir was present in choroid plexus and Purkinje cells, suggesting that spread of virus through cerebrospinal fluid plays a role in the resulting transduction pattern. Other factors contributing to the observed expression pattern likely include variations in cell-surface receptors and inter-parenchymal space.

  12. Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy.

    Science.gov (United States)

    Yu, Miao; He, Yonglin; Wang, Kejian; Zhang, Peng; Zhang, Shengle; Hu, Huaiyu

    2013-03-01

    Dystroglycanopathies are a group of congenital muscular dystrophies (CMD) often caused by mutations in genes encoding glycosyltransferases that lead to hypoglycosylation of α-dystroglycan (α-DG) and reduce its extracellular matrix-binding activity. Overexpressing LARGE (formerly known as like-glycosyltransferase) generates an extracellular matrix-binding carbohydrate epitope in cells with CMD-causing mutations in not only LARGE but also other glycosyltransferases, including POMT1, POMGnT1, and fukutin, creating the possibilities of a one-for-all gene therapy. To determine the feasibility of LARGE gene therapy, a serotype 9 adeno-associated viral vector for overexpressing LARGE (AAV9-LARGE) was injected intracardially into newborns of two mouse models of CMD: the natural LARGE mutant Large(myd) mice and protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) knockout mice. AAV9-LARGE virus treatment yielded partial restoration of α-DG glycosylation and ligand-binding activity. The muscular dystrophy phenotype in skeletal muscles was ameliorated as revealed by significantly reduced fibrosis, necrosis, and numbers of centrally located nuclei with improved motor function. These results indicate that LARGE overexpression in vivo by AAV9-mediated gene therapy is effective at restoring functional glycosylation of α-DG and rescuing the muscular dystrophy phenotype in deficiency of not only LARGE but also POMGnT1, providing evidence that in vivo LARGE gene therapy may be broadly useful in dystroglycanopathies. PMID:23379513

  13. Establishment of a recombinant adeno-associated virus expressing hVEGF165

    Institute of Scientific and Technical Information of China (English)

    Xianghui Huang; Zhibin Shi; Xiaoqian Dang; Chen Zhang; Pengbo Yu; Kunzheng Wang

    2008-01-01

    BACKGROUND: Because certain gene vectors could have deleterious effects in the central nervous system, the choice of a safe and effective vector system has become more important for gene therapy of nerve regeneration. OBJECTIVE: To construct a non-pathogenic, recombinant adeno-associated virus (AAV) simultaneously expressing human vascular endothelial growth factor 165 (hVEGF165) and green fluorescent protein (GFP). DESIGN, TIME AND SETTING: A randomized controlled experiment was performed at the Virology Laboratory of Shaanxi Provincial Center for Disease Control and Prevention between March and September 2007. MATERIALS: AAV helper-free system, AAV-293 packaging cell line, and AAV HT-1080 cells were purchased from Stratagene, USA. E. Coli DH5α was a stocked strain from Centers for Disease Control and Prevention of Shaanxi, China. Plasmid pUC18-hHVEGF165 was a gift from Zhibin Shi. METHODS: The hVEGF165 gene was amplified by PCR from pUC18-hHVEGF165 and inserted into plasmid pAAV-IRES-hrGFP to construct recombinant plasmid pAAV-hVEGF165-IRES-hrGFP. Subsequently pAAV-hVEGF165-IRES-hrGFP, pAAV-RC (the rep/cap-gene containing plasmid), and pHelper were co-transfected into AAV-293 cells to complete rAAV-hVEGF165-IRES-hrGFP packaging through homologous recombination. The efficiency of AAV packaging was monitored under a fluorescent microscope, and the recombinant viral particles were harvested from infected AAV-293 cells, and further concentrated and purified. AAV HT-1080 cells were infected with the recombinant virus AAV-hVEGF165-IRES-hrGFP. MAIN OUTCOME MEASURES: Recombinant virus titer was measured by fluorescent cell counting, and infection efficiency was detected by Fluorescence Activated Cell Sorter (FACS) upon infecting AAV-HT1080 cells. The recombination with the exogenous gene was verified by PCR. RESULTS: The PCR amplified products were verified as hVEGF165 gene by DNA sequencing, and the recombinant pAAV-hVEGF165-IRES-GFP was confirmed by double digestion

  14. Stable transduction of large DNA by high-capacity adeno-associated virus/adenovirus hybrid vectors

    International Nuclear Information System (INIS)

    Viral vectors with high cloning capacity and host chromosomal integration ability are in demand for the efficient and permanent genetic modification of target cells with large DNA molecules. We have generated a hybrid gene transfer vehicle consisting of recombinant adeno-associated virus (AAV) replicative intermediates packaged in adenovirus (Ad) capsids. This arrangement allows cell cycle-independent nuclear delivery of recombinant AAV genomes with lengths considerably above the maximum size (i.e., 4.7 kb) that can be accommodated within AAV capsids. Here we show that high-capacity AAV/Ad hybrid vector gene transfer mediates cellular genomic integration of large fragments of foreign DNA and accomplishes stable long-term transgene expression in rapidly proliferating cells. Southern blot and polymerase chain reaction analyses of chromosomal DNA extracted from clones of stably transduced cells revealed that most of them contained a single copy of the full-length hybrid vector genome with AAV inverted terminal repeat (ITR) sequences at both ends. The high-capacity AAV/Ad hybrid vector system can thus be used for the transfer and expression of transgenes that cannot be delivered by conventional integrating viral vectors

  15. Transient suppression of hepatocellular replication in the mouse liver following transduction with recombinant adeno-associated virus.

    Science.gov (United States)

    Dane, A P; Cunningham, S C; Kok, C Y; Logan, G J; Alexander, I E

    2015-11-01

    Recombinant vectors based on adeno-associated virus (AAV) are proving to be powerful tools for genetic manipulation of the liver, for both discovery and therapeutic purposes. The system can be used to deliver transgene cassettes for expression or, alternatively, DNA templates for genome editing via homologous recombination. The replicative state of target cells is known to influence the efficiency of these processes and knowledge of the host-vector interactions involved is required for optimally effective vector deployment. Here we show, for the first time in vivo, that in addition to the known effects of hepatocellular replication on AAV-mediated gene transfer, the vector itself exerts a potent, albeit transient suppressive effect on cell cycle progression that is relieved on a time course that correlates with the known rate of clearance of input single-stranded vector DNA. This finding requires further mechanistic investigation, delineates an excellent model system for such studies and further deepens our insight into the complexity of interactions between AAV vectors and the cell cycle in a clinically promising target tissue.

  16. Targeted Genome Editing by Recombinant Adeno-Associated Virus (rAAV) Vectors for Generating Genetically Modified Pigs

    Institute of Scientific and Technical Information of China (English)

    Yonglun Luo; Emil Kofod-Olsen; Rikke Christensen; Charlotte Brandt S(φ)rensen; Lars Bolund

    2012-01-01

    Recombinant adeno-associated virus (rAAV) vectors have been extensively used for experimental gene therapy of inherited human diseases.Several advantages,such as simple vector construction,high targeting frequency by homologous recombination,and applicability to many cell types,make rAAV an attractive approach for targeted genome editing.Combined with cloning by somatic cell nuclear transfer (SCNT),this technology has recently been successfully adapted to generate gene-targeted pigs as models for cystic fibrosis,hereditary tyrosinemia type 1,and breast cancer.This review summarizes the development of rAAV for targeted genome editing in mammalian cells and provides strategies for enhancing the rAAV-mediated targeting frequency by homologous recombination.We discuss current development and application of the rAAV vectors for targeted genome editing in porcine primary fibroblasts,which are subsequently used as donor cells for SCNT to generate cloned genetically designed pigs and provide positive perspectives for the generation of gene-targeted pigs with rAAV in the future.

  17. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids.

    Science.gov (United States)

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-02-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051

  18. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  19. Construction of adeno-associated virus coexpression system for human angiopoietin-1 and VEGF gene

    Institute of Scientific and Technical Information of China (English)

    陈德杰; 谭最; 谢友利; 刘芳

    2004-01-01

    Background Ischemic disease is one of the leading causes of death in the world. In order to further study gene therapy for ischemic disease, we constructed a recombinant plasmid for co-expression of human angiopoietin-1 and vascular endothelial growth factor 165 (VEGF165) gene in adeno-associated virus (AAV) gene delivery system.Methods Human angiopoietin 1 and VEGF165 gene were obtained using PCR. The upstream of angiopoietin 1 contained restriction enzyme site Hind Ⅲ, and the downstream of angiopoietin 1contained restriction enzyme site BamH Ⅰ. The upstream of VEGF165 contained restriction enzyme site Bgl Ⅱ, and the downstream of VEGF165 contained restriction enzyme site BamH Ⅰ . Using the multiple cloning sites (MCS) in plasmid pZero ++ such as BamH Ⅰ , Bgl Ⅱ, Hind Ⅲ, Not Ⅰ , XhoⅠ,Xba Ⅰ , Sal Ⅰ , BspH Ⅰ , Ksp Ⅰ and the corresponding MCS in plasmid pAAV-MCS, angiopoietin 1 and VEGF165 gene were subcloned into pAAV-MCS.Results DNA sequencing revealed that the PCR- amplified angiopoietin 1 and VEGF165 were consistent with NCBI Gene Bank. The recombinant plasmid was identified using PCR and digestion,which proved to be consistent with our hypothesis. In recombinant plasmid, angiopoietin1 and VEGF possessed a CMV promoter and polyA terminator system respectively, thus assuring co-expression of the two genes.Conclusion Successful construction of AAV co-expression system for human angiopoietin 1 and VEGF165 gene will provide the foundation for gene therapy to cure severe ischemic disease.

  20. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    Science.gov (United States)

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease. PMID:25046265

  1. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  2. Novel Transcriptional Regulatory Signals in the Adeno-Associated Virus Terminal Repeat A/D Junction Element

    OpenAIRE

    Haberman, Rebecca P.; McCown, Thomas J.; Samulski, Richard Jude

    2000-01-01

    Adeno-associated virus (AAV) type 2 vectors transfer stable, long-term gene expression to diverse cell types in vivo. Many gene therapy applications require the control of long-term transgene expression, and AAV vectors, similar to other gene transfer systems, are being evaluated for delivery of regulated gene expression cassettes. Previously, we (R. P. Haberman, T. J. McCown, and R. J. Samulski, Gene Ther. 5:1604–1611, 1998) demonstrated the use of the tetracycline-responsive system for long...

  3. Therapeutic Liabilities of in Vivo Viral Vector Tropism: Adeno-Associated Virus Vectors, NMDAR1 Antisense, and Focal Seizure Sensitivity

    OpenAIRE

    Haberman, Rebecca P.; Criswell, Hugh E.; Snowdy, Stephen; Ming, Zhen; Breese, George R.; Samulski, R. Jude; McCown, Thomas J.

    2002-01-01

    The N-methyl-d-aspartic acid (NMDA) receptor provides a potential target for gene therapy of focal seizure disorders. To test this approach, we cloned a 729-bp NMDA receptor (NMDAR1) cDNA fragment in the antisense orientation into adeno-associated virus (AAV) vectors, where expression was driven by either a tetracycline-off regulatable promoter (AAV-tTAK-NR1A) or a cytomegalovirus (CMV) promoter (AAV-CMV-NR1A). After infection of primary cultured cortical neurons with recombinant AAV-tTAK-NR1...

  4. Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector

    OpenAIRE

    Shyong, Mong-Ping; Lee, Fenq-Lih; Kuo, Ping-Chang; Wu, Ai-Ching; Cheng, Huey-Chung; Chen, Show-Li; Tung, Tao-Hsin; Tsao, Yeou-Ping

    2007-01-01

    Purpose To evaluate the efficacy of recombinant adeno-associated virus (rAAV) vector expressing mouse angiostatin (Kringle domains 1 to 4) in reducing retinal vascular leakage in an experimental diabetic rat model. Methods rAAV-angiostatin was delivered by intravitreal injection to the right eyes of Sprague-Dawley rats. As a control, the contralateral eye received an intravitreal injection of rAAV-lacZ. Gene delivery was confirmed by reverse-transcriptase polymerase chain reaction (RT-PCR). D...

  5. In vivo evaluation of adeno-associated virus gene transfer in airways of mice with acute or chronic respiratory infection.

    Science.gov (United States)

    Myint, Melissa; Limberis, Maria P; Bell, Peter; Somanathan, Suryanarayan; Haczku, Angela; Wilson, James M; Diamond, Scott L

    2014-11-01

    Patients with cystic fibrosis (CF) often suffer chronic lung infection with concomitant inflammation, a setting that may reduce the efficacy of gene transfer. While gene therapy development for CF often involves viral-based vectors, little is known about gene transfer in the context of an infected airway. In this study, three mouse models were established to evaluate adeno-associated virus (AAV) gene transfer in such an environment. Bordetella bronchiseptica RB50 was used in a chronic, nonlethal respiratory infection in C57BL/6 mice. An inoculum of ∼10(5) CFU allowed B. bronchiseptica RB50 to persist in the upper and lower respiratory tracts for at least 21 days. In this infection model, administration of an AAV vector on day 2 resulted in 2.8-fold reduction of reporter gene expression compared with that observed in uninfected controls. Postponement of AAV administration to day 14 resulted in an even greater (eightfold) reduction of reporter gene expression, when compared with uninfected controls. In another infection model, Pseudomonas aeruginosa PAO1 was used to infect surfactant protein D (SP-D) or surfactant protein A (SP-A) knockout (KO) mice. With an inoculum of ∼10(5) CFU, infection persisted for 2 days in the nasal cavity of either mouse model. Reporter gene expression was approximately ∼2.5-fold lower compared with uninfected mice. In the SP-D KO model, postponement of AAV administration to day 9 postinfection resulted in only a two fold reduction in reporter gene expression, when compared with expression seen in uninfected controls. These results confirm that respiratory infections, both ongoing and recently resolved, decrease the efficacy of AAV-mediated gene transfer. PMID:25144316

  6. Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5

    International Nuclear Information System (INIS)

    The production, purification, crystallization and preliminary crystallographic analysis of empty adeno-associated virus serotype 5 capsids are reported. Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Å resolution using synchrotron radiation and belong to the orthorhombic space group P212121, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Å. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress

  7. Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5

    Energy Technology Data Exchange (ETDEWEB)

    DiMattia, Michael; Govindasamy, Lakshmanan; Levy, Hazel C.; Gurda-Whitaker, Brittney; Kalina, Amy [Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610 (United States); Kohlbrenner, Erik [Division of Cell and Molecular Therapy, University of Florida, Gainesville, FL 32610 (United States); Chiorini, John A. [GTTB, NIDCR, National Institutes of Health, Bethesda, MD 20892 (United States); McKenna, Robert [Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610 (United States); Muzyczka, Nicholas [Department of Molecular Genetics and Microbiology and Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL 32610 (United States); Zolotukhin, Sergei [Division of Cell and Molecular Therapy, University of Florida, Gainesville, FL 32610 (United States); Agbandje-McKenna, Mavis, E-mail: mckenna@ufl.edu [Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610 (United States)

    2005-10-01

    The production, purification, crystallization and preliminary crystallographic analysis of empty adeno-associated virus serotype 5 capsids are reported. Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Å resolution using synchrotron radiation and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Å. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.

  8. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  9. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  10. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective.

    Science.gov (United States)

    Hastie, Eric; Samulski, R Jude

    2015-05-01

    Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.

  11. 腺相关病毒介导重组血管抑素联合雷公藤红素对大鼠颅内C6胶质瘤的抗血管生成作用%Anti-angiogenesis effect of adeno-associated virus-mediated recombinant angiostatin combined with celastrol on intracranial C6 glioma in rats

    Institute of Scientific and Technical Information of China (English)

    王冠; 周洁; 冯珂珂; 田麒

    2011-01-01

    目的:腺相关病毒(adeno-associated virus,AAV)介导的重组血管抑素(angiostatin,AS)联合应用雷公藤红素( celastrol)治疗大鼠颅内C6胶质瘤,观察其对肿瘤体积、新生血管密度及肿瘤细胞凋亡的影响,探讨抗血管生成重组基因联合雷公藤红素对胶质瘤治疗的前景.方法:建立颅内原位荷C6脑胶质瘤大鼠模型,7d后随机分为4组,分别给予0.9%氯化钠溶液(作为对照)、AAV-AS、雷公藤红素及两者联合用药.每隔7d行头部强化MRI检查,计算肿瘤体积.于22 d后处死动物,检测AS蛋白表达、血管密度及肿瘤细胞凋亡情况.结果:联合治疗组及AAV-AS治疗组均检测到AS蛋白表达,证实基因转导成功.联合治疗组第22天时肿瘤体积、血管密度和凋亡指数均与对照组、雷公藤红素组及AAV-AS治疗组相比差异有统计学意义(P<0.05),联合治疗可以抑制肿瘤生长,降低新生血管密度,促进肿瘤细胞凋亡.结论:基因治疗联合雷公藤红素可通过抑制胶质瘤血管生成而抑制肿瘤生长;两者联合应用具有协同作用,可弥补两者单独应用的不足之处.%Objective: To examine the effects of therapeutic alliance of adeno-associated virus-mediated recombinant angiostatin (AAV-AS) combined with celastrol on tumor growth, microvessel density and apoptosis of intracranial glioma in rats, and to give a prospective of this therapeutic alliance. Methods: A rat intracranial C6 glioma model was established, and then the rats (n=40) were randomly assigned into four groups after 7 days, which were saline control group, AAV-AS group, celastrol group and therapeutic alliance group. The tumor growth was examined by magnetic resonance imaging (MRI) every 7 days, and the volume of tumor was calculated. The rats were killed after 22 days, and the expression of AS protein, the microvessel density and the apoptosis of tumor cells were detected. Results: The expression of AS protein was detectable in AAV

  12. Interference Between Two Adeno-associated Satellite Viruses: a Three-Component System

    Science.gov (United States)

    Torikai, K.; Mayor, H. D.

    1969-01-01

    Adenovirus-associated satellite viruses interfere with the replication of their helper adenoviruses. According to a previous report, this interference is not mediated by interferon. A three-component system comprising simian adenovirus SV15 and satellites types 1 and 4 was studied to determine whether satellite viruses also interfere with one another. Satellite type 1 interfered with the replication of type 4 and vice versa. The degree of interference was directly proportional to the dose of interfering satellite. The events leading to mutual satellite interference were operative during the first 12 hr of replication, the period associated with active synthesis of viral deoxyribonucleic acid. PMID:5786177

  13. A phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C adeno-associated virus vaccine

    NARCIS (Netherlands)

    Mehendale, Sanjay; van Lunzen, Jan; Clumeck, Nathan; Rockstroh, Jurgen; Vets, Eva; Johnson, Philip R.; Anklesaria, Pervin; Barin, Burc; Boaz, Mark; Kochhar, Sonali; Lehrman, Jennifer; Schmidt, Claudia; Peeters, Mathieu; Schwarze-Zander, Carolynne; Kabamba, Kabeya; Glaunsinger, Tobias; Sahay, Seema; Thakar, Madhuri; Paranjape, Ramesh; Gilmour, Jill; Excler, Jean-Louis; Fast, Patricia; Heald, A1lison E.

    2008-01-01

    A novel prophylactic AIDS vaccine candidate, consisting of single-stranded DNA for HIV-1 subtype C gag, protease, and part of reverse transcriptase genes, enclosed within a recombinant adeno-associated virus serotype-2 protein capsid (tgAAC09) induced T cell responses and antibodies in nonhuman prim

  14. Recombinant adeno-associated virus vector expressing angiostatin inhibits preretinal neovascularization in adult rats.

    Science.gov (United States)

    Lai, Chi-Chun; Wu, Wei-Chi; Chen, Show-Li; Sun, Ming-Hui; Xiao, Xiao; Ma, Lih; Lin, Keng-Kuo; Tsao, Yeou-Ping

    2005-01-01

    Clinically, preretinal neovascularization (PNV) induced by vessel occlusion is one of the leading causes to induce blindness. The present study was designed to determine if a recombinant adeno-associated viral vector expressing mouse angiostatin (rAAV-angiostatin) can inhibit experimental PNV in an adult Sprague-Dawley rat model. rAAV-angiostatin and rAAV-lacZ were delivered by intravitreal injections to the right and left eyes of rats. Transgenetic expression of angiostatin in the retina was determined by reverse-transcriptase polymerase chain reaction (RT-PCR). PNV was established by rose-bengal-assisted laser-induced retinal vein occlusion 21 days after the viral injections. The total number and sizes of the neovascular tufts were analyzed 14 days after venous occlusion using retinal flat mount by fluorescein-isothiocyanate-dextran angiography. Electroretinograms (ERGs) were recorded to study any possibility of retinal toxicity of rAAV-angiostatin 3 months after the injections. Angiostatin gene expression in the retina was detectable by RT-PCR, and ERG analysis showed no reduction of b-waves in the rAAV-angiostatin-injected eyes. The number and size of neovascular tufts were significantly lower in rAAV-angiostatin-injected eyes (p = 0.001) than controls. These findings indicated that rAAV-angiostatin successfully suppressed experimental PNV, and no retinal toxicity of the rAAV-angiostatin injection was observed according to ERG recordings. PMID:15637422

  15. Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles.

    Science.gov (United States)

    McConnell, Kellie I; Rhudy, Jessica; Yokoi, Kenji; Gu, Jianhua; Mack, Aaron; Suh, Junghae; La Francesca, Saverio; Sakamoto, Jason; Serda, Rita E

    2014-11-28

    There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

  16. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing

    Science.gov (United States)

    Adachi, Kei; Enoki, Tatsuji; Kawano, Yasuhiro; Veraz, Michael; Nakai, Hiroyuki

    2014-01-01

    Adeno-associated virus (AAV) capsid engineering is an emerging approach to advance gene therapy. However, a systematic analysis on how each capsid amino acid contributes to multiple functions remains challenging. Here we show proof-of-principle and successful application of a novel approach, termed AAV Barcode-Seq, that allows us to characterize phenotypes of hundreds of different AAV strains in a high-throughput manner and therefore overcomes technical difficulties in the systematic analysis. In this approach, we generate DNA barcode-tagged AAV libraries and determine a spectrum of phenotypes of each AAV strain by Illumina barcode sequencing. By applying this method to AAV capsid mutant libraries tagged with DNA barcodes, we can draw a high-resolution map of AAV capsid amino acids important for the structural integrity and functions including receptor binding, tropism, neutralization and blood clearance. Thus, Barcode-Seq provides a new tool to generate a valuable resource for virus and gene therapy research. PMID:24435020

  17. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    International Nuclear Information System (INIS)

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68

  18. Adeno-associated virus activates an innate immune response in normal human cells but not in osteosarcoma cells.

    Science.gov (United States)

    Laredj, Leila N; Beard, Peter

    2011-12-01

    Adeno-associated virus (AAV) is a small, DNA-containing dependovirus with promising potential as a gene delivery vehicle. Given the variety of applications of AAV-based vectors in the treatment of genetic disorders, numerous studies have focused on the immunogenicity of recombinant AAV. In general, AAV vectors appear not to induce strong inflammatory responses. We have found that AAV2, when it infects the osteosarcoma cells U2OS, can initiate part of its replicative cycle in the absence of helper virus. This does not occur in untransformed cells. We set out to test whether the cellular innate antiviral defenses control this susceptibility and found that, in nonimmune normal human fibroblasts, AAV2 induces type I interferon production and release and the accumulation of nuclear promyelocytic leukemia bodies. AAV fails to mobilize this defense pathway in the U2OS cells. This permissiveness is in large part due to impairment of the viral sensing machinery in these cells. Our investigations point to Toll-like receptor 9 as a potential intracellular sensor that detects AAV2 and triggers the antiviral state in AAV-infected untransformed cells. Efficient sensing of the AAV genome and the ensuing activation of an innate antiviral response are thus crucial cellular events dictating the parvovirus infectivity in host cells.

  19. Immunological inhibition of transplanted liver allografts by adeno-associated virus vector encoding CTLA4Ig in rats

    Institute of Scientific and Technical Information of China (English)

    Sen Lu; Yue Yu; Yun Gao; Guo-Qiang Li; Xue-Hao Wang

    2008-01-01

    BACKGROUND: Blockade interaction between CD28 and B7 with CTLA4Ig has been shown to induce experimental transplantation tolerance. In order to prolong the inhibitory effect of CTLA4Ig, a recombinant adeno-associated virus vector pSNAV expressing CTLA4Ig was constructed, and its effects on transplanted liver allografts were investigated. METHODS:The pSNAV-CTLA4Ig construct was infused into partial liver allografts of rats via the portal vein during transplantation. CTLA4Ig expression in the transplanted livers was detected with reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and immunohistochemistry. Furthermore, real-time quantita-tive PCR was used to measure the expression of IL-2, IFN-γ, IL-4 and IL-10 in the allografts. RESULTS:The expression of CTLA4Ig in the partial allograft was detected successfully and pSNAV-CTLA4Ig improved the survival rate of rats after liver transplantation. Agarose gel analysis of RT-PCR products indicated the presence of CTLA4Ig in the pSNAV-CTLA4Ig treatment group. Cytokines expressed in allografts on day 7 after orthotopic liver transplantation showed that IL-2, IFN-γ, IL-4 and IL-10 mRNA levels decreased in transplant recipients treated with pSNAV-CTLA4Ig compared with those treated with pSNAV-LacZ (1.62±0.09, 1.52±0.11, 1.50± 0.07 and 1.43±0.07 versus 1.29±0.09, 1.32±0.07, 1.34±0.06 and 1.35±0.04, respectively). CONCLUSIONS:pSNAV-CTLA4Ig effectively expressed CTLA4Ig in liver allografts. CTLA4Ig improved the pathological ifndings after liver transplantation. CTLA4Ig induced immune tolerance of liver transplantation, and the mechanism involved induced alteration of Th1 and Th2 cytokine transcripts. The adeno-associated virus vector encoding CTLA4Ig may be useful in the clinical study of transplantation tolerance.

  20. 重组8型腺相关病毒介导双荧光素酶基因在小鼠体内的表达%Recombinant adeno-associated virus type 8 mediated dual-luciferase gene expression in mouse

    Institute of Scientific and Technical Information of China (English)

    王刚; 尉迟捷; 董小岩; 田文洪; 吴小兵

    2012-01-01

    目的 利用共表达的分泌型荧光素酶Gluc(gaussia princeps luciferase)和非分泌型荧光素酶Fluc(firefly luciferase)研究重组8型腺相关病毒(recombinant adeno-associated virus type 8,rAAV8)介导的转基因在小鼠体内的表达特点.方法 制备携带双荧光素酶基因的重组8型腺相关病毒rAAV8-Gluc/Fluc,体外感染HEK293细胞并检测上清和胞内Gluc和Fluc活性;将不同剂量的rAAV8-Gluc/Fluc尾静脉注射或肌内注射至BALB/c小鼠,通过尾静脉采血检测Gluc活性,通过活体成像和裂解组织检测Fluc活性.结果 成功制备了rAAV8-Gluc/Fluc,可以有效感染HEK293细胞,同时分泌表达Gluc和胞内表达Fluc;尾静脉注射或肌内注射rAAV8-Gluc/Fluc至小鼠后,外周血Gluc活性均在注射后10 ~20 d达到高峰并稳定持续120 d以上,Gluc活性随注射剂量增加而增高;静脉注射rAAV8-Gluc/Fluc时Fluc主要在肝脏表达,在骨骼肌和心肌有少量表达,而肌内注射时Fluc既在肌内注射局部表达同时也在肝脏中表达.结论 本研究成功制备了携带双荧光素酶基因rAAV8-Gluc/Fluc,研究了其介导的转基因在小鼠体内的表达特点,为rAAV8的临床前应用打下基础.%Objective Recombinant adeno-associated virus type 8 (rAAV8) mediating transgene expression in mice was investigated using co-expressed report gene of secreted Gaussia princeps luciferase (Gluc) and non-secreted firefly luciferase(Fluc).Methods rAAV8-Gluc/Fluc was prepared and infected HEK293 cells to test its performance in vitro.BALB/c mice were received rAAV8-Gluc/Fluc at different doses by intravenous injection (iv) or intramuscular injection (im).Then Gluc activities in blood were measured,the whole-body images for Fluc activities were performed and Fluc activities of tissue lysate were also detected.Results rAAV8-Gluc/Fluc was successfully prepared and could infected HEK293 cells.The Gluc was mainly detected in the culture media while the Fluc was mainly

  1. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Directory of Open Access Journals (Sweden)

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  2. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells.

    Science.gov (United States)

    Emmerling, Verena V; Pegel, Antje; Milian, Ernest G; Venereo-Sanchez, Alina; Kunz, Marion; Wegele, Jessica; Kamen, Amine A; Kochanek, Stefan; Hoerer, Markus

    2016-02-01

    Viral vectors used for gene and oncolytic therapy belong to the most promising biological products for future therapeutics. Clinical success of recombinant adeno-associated virus (rAAV) based therapies raises considerable demand for viral vectors, which cannot be met by current manufacturing strategies. Addressing existing bottlenecks, we improved a plasmid system termed rep/cap split packaging and designed a minimal plasmid encoding adenoviral helper function. Plasmid modifications led to a 12-fold increase in rAAV vector titers compared to the widely used pDG standard system. Evaluation of different production approaches revealed superiority of processes based on anchorage- and serum-dependent HEK293T cells, exhibiting about 15-fold higher specific and volumetric productivity compared to well-established suspension cells cultivated in serum-free medium. As for most other viral vectors, classical stirred-tank bioreactor production is thus still not capable of providing drug product of sufficient amount. We show that manufacturing strategies employing classical surface-providing culture systems can be successfully transferred to the new fully-controlled, single-use bioreactor system Integrity(TM) iCELLis(TM) . In summary, we demonstrate substantial bioprocess optimizations leading to more efficient and scalable production processes suggesting a promising way for flexible large-scale rAAV manufacturing. PMID:26284700

  3. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    Science.gov (United States)

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. PMID:26264580

  4. Efficacy and safety of myocardial gene transfer of adenovirus, adeno-associated virus and lentivirus vectors in the mouse heart.

    Science.gov (United States)

    Merentie, M; Lottonen-Raikaslehto, L; Parviainen, V; Huusko, J; Pikkarainen, S; Mendel, M; Laham-Karam, N; Kärjä, V; Rissanen, R; Hedman, M; Ylä-Herttuala, S

    2016-03-01

    Gene therapy is a promising new treatment option for cardiac diseases. For finding the most suitable and safe vector for cardiac gene transfer, we delivered adenovirus (AdV), adeno-associated virus (AAV) and lentivirus (LeV) vectors into the mouse heart with sophisticated closed-chest echocardiography-guided intramyocardial injection method for comparing them with regards to transduction efficiency, myocardial damage, effects on the left ventricular function and electrocardiography (ECG). AdV had the highest transduction efficiency in cardiomyocytes followed by AAV2 and AAV9, and the lowest efficiency was seen with LeV. The local myocardial inflammation and fibrosis in the left ventricle (LV) was proportional to transduction efficiency. AdV caused LV dilatation and systolic dysfunction. Neither of the locally injected AAV serotypes impaired the LV systolic function, but AAV9 caused diastolic dysfunction to some extent. LeV did not affect the cardiac function. We also studied systemic delivery of AAV9, which led to transduction of cardiomyocytes throughout the myocardium. However, also diffuse fibrosis was present leading to significantly impaired LV systolic and diastolic function and pathological ECG changes. Compared with widely used AdV vector, AAV2, AAV9 and LeV were less effective in transducing cardiomyocytes but also less harmful. Local administration of AAV9 was safer and more efficient compared with systemic administration.

  5. Production, Purification, Crystallization and Preliminary X-ray Structural Studies of Adeno-Associated Virus Serotype 5

    Energy Technology Data Exchange (ETDEWEB)

    DiMattia,M.; Govindasamy, L.; Levy, H.; Whitaker-Gurda, B.; Kohlbrenner, E.; Chiorini, J.; McKenna, R.; Muzyczka, N.; Zolotukhin, S.; Agbandje-McKenna, M.

    2005-01-01

    Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Angstroms resolution using synchrotron radiation and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Angstroms. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.

  6. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yi Wang; Qing-San Zhu; Yi-Wei Wang; Ruo-Feng Yin

    2015-01-01

    Background:Thymosin beta-4 (TB-4) is considered key roles in tissue development,maintenance and pathological processes.The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation.Methods:TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells.Cell of same group were cultured without gene modification as controlled group.Proliferation capacity and cell apoptosis were observed during 6 passages of the cells.Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage.Results:NP cells with TB-4 transfection has normal TB-4 expression and exocytosis.NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation.TB-4 recombinant AAV-transfected human NP cells also show slower cell aging,lower cell apoptosis and higher cell proliferation than control group.Conclusions:TB-4 can prevent NP cell apoptosis,slow NP cell aging and promote NP cell proliferation.AAV transfection technique was able to highly and stably express TB-4 in human NP cells,which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.

  7. A single injection of recombinant adeno-associated virus into the lumbar cistern delivers transgene expression throughout the whole spinal cord

    OpenAIRE

    Guo, Yansu; Wang, Dan; Qiao, Tao; Yang, Chunxing; Su, Qin; Gao, Guangping; Xu, Zuoshang

    2015-01-01

    The lack of methods to deliver transgene expression in spinal cord has hampered investigation of gene function and therapeutic targets for spinal cord diseases. Here we report that a single intrathecal injection of recombinant adeno-associated virus rhesus-10 (rAAVrh10) into the lumbar cistern led to transgene expression in sixty to ninety percent of the cells in the spinal cord. The transgene was expressed in all cell types, including neurons, glia, ependymal cells and endothelial cells. Add...

  8. Construction of a recombinant human parvovirus B19: adeno-associated virus 2 (AAV) DNA inverted terminal repeats are functional in an AAV-B19 hybrid virus.

    OpenAIRE

    Srivastava, C H; Samulski, R J; L. Lu; Larsen, S H; A Srivastava

    1989-01-01

    To facilitate genetic analysis of the human pathogenic parvovirus B19, we constructed a hybrid B19 viral genome in which the defective B19 inverted terminal repeats were replaced with the full-length inverted terminal repeats from a nonpathogenic human parvovirus, the adeno-associated virus 2 (AAV). The hybrid AAV-B19 genome was rescued from a recombinant plasmid and then the DNA was replicated upon transfection into adenovirus 2-infected human KB cells in the presence of AAV genes coding for...

  9. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  10. Adeno-associated virus type 2 rep protein inhibits human papillomavirus type 16 E2 recruitment of the transcriptional coactivator p300.

    Science.gov (United States)

    Marcello, A; Massimi, P; Banks, L; Giacca, M

    2000-10-01

    Infection by human adeno-associated virus type 2 (AAV2) is a possible protective factor in the development of cervical carcinomas associated with human papillomaviruses (HPV). The replicative proteins of AAV2 (Rep) have been implicated in the inhibition of papillomavirus replication and transforming activities, although the molecular events underlying these effects are poorly understood. We observed that each of the four forms of AAV2 Rep inhibited the E1- and E2-driven replication of oncogenic HPV type 16 (HPV16). Rep40, corresponding to the C-terminal domain of all Rep proteins, inhibited both HPV DNA replication and HPV16 E2-mediated transactivation. Rep40 specifically bound the N-terminal transactivation domain of HPV16 E2 both in vitro and in vivo. This interaction was found to specifically disrupt the binding of E2 to the cellular transcriptional coactivator p300. Accordingly, the inhibitory effect of Rep on HPV16 E2 transactivation was rescued by the overexpression of p300. These data indicate a novel role of Rep in the down-regulation of papillomaviruses through inhibition of complex formation between the HPV16 E2 transcriptional activator and its cellular coactivator, p300. PMID:10982355

  11. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector.

    LENUS (Irish Health Repository)

    Luo, Xiaoyan

    2011-11-01

    Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-\\/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg\\/dl) was prevented for >6 months by the dsAAV2\\/7, dsAAV2\\/8, and dsAAV2\\/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2\\/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2\\/7 and dsAAV2\\/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2\\/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-\\/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2\\/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2\\/9 vector. Hepatorenal correction in G6pase (-\\/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.

  12. Persistence, localization, and external control of transgene expression after single injection of adeno-associated virus into injured joints.

    Science.gov (United States)

    Lee, Hannah H; O'Malley, Michael J; Friel, Nicole A; Payne, Karin A; Qiao, Chunping; Xiao, Xiao; Chu, Constance R

    2013-04-01

    A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra-articular soft tissues when AAV is injected preinjury. Two AAV injection time points, postinjury and preinjury, were investigated in osteochondral defect and anterior cruciate ligament transection models of joint injury. Rats injected with AAV tetracycline response element (TRE)-luciferase received oral doxycycline for 7 days. Luciferase expression was evaluated longitudinally for 6 months. Transgene expression was persistent and controllable with oral doxycycline for 6 months in all groups. However, the location of transgene expression was different: postinjury AAV-injected knees had luciferase expression highly localized to the cartilage, while preinjury AAV-injected knees had more widespread signal from intra-articular soft tissues. The differential transgene localization between preinjury and postinjury injection can be used to optimize treatment strategies. Highly localized postinjury injection appears advantageous for treatments targeting repair cells. The more generalized and controllable reservoir of transgene expression following AAV injection before anterior cruciate ligament transection (ACLT) suggests an intriguing concept for prophylactic delivery of joint protective factors to individuals at high risk for early osteoarthritis (OA). Successful external control of intra-articular transgene expression provides an added margin of safety for these potential clinical applications. PMID:23496155

  13. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice.

    Science.gov (United States)

    Chan, Cheng-Chi; Lai, Chin-Wen; Wu, Chia-Jen; Chen, Li-Chen; Tao, Mi-Hua; Kuo, Ming-Ling

    2016-08-01

    Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma. PMID:27178525

  14. Construction of genetically engineered macrophages expressing Smad6 and Smad7 genes with adeno-associated virus

    Institute of Scientific and Technical Information of China (English)

    黄云剑; 赵景宏; 杨唐俊; 范晓棠; 张金海; 蔡文琴

    2004-01-01

    Objective: To construct the genetically engineered macrophages expressing Smad6 and Smad7 genes with adeno-associated virus (AAV). Methods: The plasmids containing pcDNA3-Smad6/Flag and pcDNA3-Smad7/Flag were digested with BamH Ⅰ and Xho Ⅰ , respectively. Then the Smad6/Flag and Smad7/Flag gene segments obtained were cloned into plasmid pAAV-MCS respectively to construct the recombinant pAAV-Smad6/Flag and pAAV-Smad7/Flag plasmids. The resulting recombinant plasmids (pAAV-Smad6/Flag or pAAV-Smad7/Flag) or pAAV-LacZ plasmid were co-transfected into the HEK 293cells with pHelper and pAAV-RC by calcium-phosphate precipitation method. Recombinant AAV-2 viral particles were prepared from infected HEK293 cells and then were used to infect mouse macrophages. The expressions of Smad6and Smad7 in macrophages were detected by immunocytochemical staining and expression of b-galactosidase was evaluated by X-gal staining. Results: The recombinant AAV vector containing Smad6 or Smad7 genes was successfully constructed. More than 95% macrophage cells expressed X-gal and Smad6 and Smad7 genes at 72 h after infection. Conclusion: These results indicate that the genetically engineered macropbages can express Smad6 and Smad7 proteins effectively, laying the foundation for the studies of TGF-β-induced diseases in vivo and highlighting the feasibility of macrophage-based gene therapy.

  15. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  16. The X gene of adeno-associated virus 2 (AAV2 is involved in viral DNA replication.

    Directory of Open Access Journals (Sweden)

    Maohua Cao

    Full Text Available Adeno-associated virus (AAV (type 2 is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3' end of the AAV2 genome, previously referred to as X (nt 3929 to 4393, overlapping the 3' end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81. Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91, a triple nucleotide substitution mutant that destroys all three 5' AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5 or Ad5 helper plasmid (pHelper. The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects. Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold. Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.

  17. Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene.

    Science.gov (United States)

    Mueller, Christian; Torrez, Daniel; Braag, Sofia; Martino, Ashley; Clarke, Tracy; Campbell-Thompson, Martha; Flotte, Terence R

    2008-01-01

    Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes. PMID:18023072

  18. Full Functional Rescue of a Complete Muscle (TA) in Dystrophic Hamsters by Adeno-Associated Virus Vector-Directed Gene Therapy

    OpenAIRE

    Xiao, Xiao; Li, Juan; Tsao, Yeou-Ping; Dressman, Devin; Hoffman, Eric P; Watchko, Jon F.

    2000-01-01

    Limb girdle muscular dystrophy (LGMD) 2F is caused by mutations in the δ-sarcoglycan (SG) gene. Previously, we have shown successful application of a recombinant adeno-associated virus (AAV) vector for genetic and biochemical rescue in the Bio14.6 hamster, a homologous animal model for LGMD 2F (J. Li et al., Gene Ther. 6:74–82, 1999). In this report, we show efficient and long-term δ-SG expression accompanied by nearly complete recovery of physiological function deficits after a single-dose A...

  19. A Rapid, Cost-Effective Method to Prepare Recombinant Adeno-Associated Virus for Efficient Gene Transfer to the Developing Mouse Inner Ear.

    Science.gov (United States)

    Gomes, Michelle M; Wang, Lingyan; Jiang, Han; Kahl, Christoph A; Brigande, John V

    2016-01-01

    There is keen interest to define gene therapies aimed at restoration of auditory and vestibular function in the diseased or damaged mammalian inner ear. A persistent limitation of regenerative medical strategies that seek to correct or modify gene expression in the sensory epithelia of the inner ear involves efficacious delivery of a therapeutic genetic construct. Our approach is to define methodologies that enable fetal gene transfer to the developing mammalian inner ear in an effort to correct defective gene expression during formation of the sensory epithelia or during early postnatal life. Conceptually, the goal is to atraumatically introduce the genetic construct into the otocyst-staged mouse inner ear and transfect otic progenitors that give rise to sensory hair cells and supporting cells. Our long-term goal is to define therapeutic interventions for congenital deafness and balance disorders with the expectation that the approach may also be exploited for therapeutic intervention postnatally.In the inaugural volume of this series, we introduced electroporation-mediated gene transfer to the developing mouse inner ear that encompassed our mouse survival surgery and transuterine microinjection protocols (Brigande et al., Methods Mol Biol 493:125-139, 2009). In this chapter, we first briefly update our use of sodium pentobarbital anesthesia, our preferred anesthetic for mouse ventral laparotomy, in light of its rapidly escalating cost. Next, we define a rapid, cost-effective method to produce recombinant adeno-associated virus (rAAV) for efficient gene transfer to the developing mouse inner ear. Our immediate goal is to provide a genetic toolkit that will permit the definition and validation of gene therapies in mouse models of human deafness and balance disorders. PMID:27259920

  20. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models.

    Science.gov (United States)

    Zhao, Lingzhi; Gottesdiener, Andrew J; Parmar, Mayur; Li, Mingjie; Kaminsky, Stephen M; Chiuchiolo, Maria J; Sondhi, Dolan; Sullivan, Patrick M; Holtzman, David M; Crystal, Ronald G; Paul, Steven M

    2016-08-01

    The common apolipoprotein E alleles (ε4, ε3, and ε2) are important genetic risk factors for late-onset Alzheimer's disease, with the ε4 allele increasing risk and reducing the age of onset and the ε2 allele decreasing risk and markedly delaying the age of onset. Preclinical and clinical studies have shown that apolipoprotein E (APOE) genotype also predicts the timing and amount of brain amyloid-β (Aβ) peptide deposition and amyloid burden (ε4 >ε3 >ε2). Using several administration protocols, we now report that direct intracerebral adeno-associated virus (AAV)-mediated delivery of APOE2 markedly reduces brain soluble (including oligomeric) and insoluble Aβ levels as well as amyloid burden in 2 mouse models of brain amyloidosis whose pathology is dependent on either the expression of murine Apoe or more importantly on human APOE4. The efficacy of APOE2 to reduce brain Aβ burden in either model, however, was highly dependent on brain APOE2 levels and the amount of pre-existing Aβ and amyloid deposition. We further demonstrate that a widespread reduction of brain Aβ burden can be achieved through a single injection of vector via intrathalamic delivery of AAV expressing APOE2 gene. Our results demonstrate that AAV gene delivery of APOE2 using an AAV vector rescues the detrimental effects of APOE4 on brain amyloid pathology and may represent a viable therapeutic approach for treating or preventing Alzheimer's disease especially if sufficient brain APOE2 levels can be achieved early in the course of the disease. PMID:27318144

  1. Recombinant adeno-associated virus serotype 9 with p65 ribozyme protects H9c2 cells from oxidative stress through inhibiting NF-κB signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Zhan SUN; Yi-Tong MA; Bang-Dang CHEN; Fen LIU

    2014-01-01

    Background Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. It can trigger inflammatory cascades which are primarily mediated via nuclear factor-κB (NF-κB). The NF-κB transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocardial ischemia. It has been proved that persistent myocyte NF-κB p65 activation in heart failure exacerbates cardiac remodeling. Mechods A recombinant adeno-associated virus serotype 9 carrying enhanced green fluorescent protein and anti-NF-κB p65 ribozyme (AAV9-R65-CMV-eGFP) was constructed. The cells were assessed by MTT assay, Annexin V–propidium iodide dual staining to study apoptosis. The expression of P65 and P50 were assessed by Western blot to investigate the under-lying molecular mechanisms. Results After stimulation with H2O2 for 6 h, H9c2 cells viability decreased significantly, a large fraction of cells underwent apoptosis. We observed a rescue of H9c2 cells from H2O2-induced apoptosis in pretreatment with AAV9-R65-CMV-eGFP. Moreover, AAV9-R65-CMV-eGFP decreased H2O2-induced P65 expression. Conclusions AAV9-R65-CMV-eGFP protects H9c2 cells from oxidative stress induced apoptosis through down-regulation of P65 expression. These observations indicate that AAV9-R65-CMV-eGFP has the potential to exert cardioprotective effects against oxidative stress, which might be of great importance to clinical efficacy for cardiovascular disease.

  2. 重组腺相关病毒神经肽Y基因转染对癫(癎)大鼠海马病理变化的影响%Effect of recombinant adeno-associated virus-mediated human-derived neuropeptide Y gene transfection on pathological change of the hippocampus in epileptic rat

    Institute of Scientific and Technical Information of China (English)

    董长征; 董秀芳; 李文玲; 岳向勇; 郭韬; 梁传栋; 赵文清

    2012-01-01

    目的 观察重组腺相关病毒介导人源性神经肽Y(rAA V-hNPY-EGFP)基因转染对癫(癎)大鼠海马病理变化的影响.方法 28只Wistar大鼠随机分为点燃组(n=20)和正常对照组(n=8).正常对照组不进行特殊处理,点燃组以大鼠海马内多次注射红藻氨酸(KA)建立慢性癫(癎)模型,造模成功16只,其随机分为模型组和神经肽Y(NPY)治疗组,每组各8只大鼠.NPY治疗组大鼠转染rAA V2/I- hNPY-EGFP基因,模型组未转染.转染4周后,每组取6只大鼠海马行苏木精-伊红染色,2只行电镜观察.结果 苏木精-伊红染色显示:正常对照组大鼠海马CA3区神经元形态正常;模型组海马CA3区神经元丢失,胶质细胞增生;NPY治疗组基因转染后神经元丢失减少.模型组神经元数目为(10.67±7.87)个/视野,正常对照组为(81.42±5.63)个/视野,明显多于模型组(P<0.05);而NPY治疗组神经元数目为(65.73±2.81)个/视野,明显多于模型组(P<0.05).电镜显示:正常对照组神经元结构正常;模型组神经元固缩,线粒体肿胀;NPY治疗组神经元线粒体结构完整.结论 rAA V-hNPY-EGFP基因转染可减轻大鼠癫(癎)发作引起的病理改变,发挥抑制癫(癎)的作用.%Objective To investigate the effect of recombinant adeno-associated virus-mediated human-derived neuropeptide Y gene (rAAV-hNPY-EGFP gene) transfection on pathological change of hippocampus in epileptic rat. Methods A total of 28 Wistar rats were randomly divided into kindling group (n=20) and normal control group (n=8). No special treatment was performed on rats in normal control group. The chronic epileptic models were successfully established in 16 rats by repeated injection of kainic acid into the hippocampi of rats in kindling group which were equally subdivided into two groups: model group and neuropeptide Y (NPY) treatment group. The rats were transfected with rAAV2/1-hNPV-EGFP gene in NPY treatment group and no transfection was made in model

  3. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson's disease.

    Science.gov (United States)

    Björklund, Tomas; Carlsson, Thomas; Cederfjäll, Erik Ahlm; Carta, Manolo; Kirik, Deniz

    2010-02-01

    Viral vector-mediated gene transfer utilizing adeno-associated viral vectors has recently entered clinical testing as a novel tool for delivery of therapeutic agents to the brain. Clinical trials in Parkinson's disease using adeno-associated viral vector-based gene therapy have shown the safety of the approach. Further efforts in this area will show if gene-based approaches can rival the therapeutic efficacy achieved with the best pharmacological therapy or other, already established, surgical interventions. One of the strategies under development for clinical application is continuous 3,4-dihydroxyphenylalanine delivery. This approach has been shown to be efficient in restoring motor function and reducing established dyskinesias in rats with a partial lesion of the nigrostriatal dopamine projection. Here we utilized high purity recombinant adeno-associated viral vectors serotype 5 coding for tyrosine hydroxylase and its co-factor synthesizing enzyme guanosine-5'-triphosphate cyclohydrolase-1, delivered at an optimal ratio of 5 : 1, to show that the enhanced 3,4-dihydroxyphenylalanine production obtained with this optimized delivery system results in robust recovery of function in spontaneous motor tests after complete dopamine denervation. We found that the therapeutic efficacy was substantial and could be maintained for at least 6 months. The tyrosine hydroxylase plus guanosine-5'-triphosphate cyclohydrolase-1 treated animals were resistant to developing dyskinesias upon peripheral l-3,4-dihydroxyphenylalanine drug challenge, which is consistent with the interpretation that continuous dopamine stimulation resulted in a normalization of the post-synaptic response. Interestingly, recovery of forelimb use in the stepping test observed here was maintained even after a second lesion depleting the serotonin input to the forebrain, suggesting that the therapeutic efficacy was not solely dependent on dopamine synthesis and release from striatal serotonergic terminals

  4. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  5. Adeno-associated virus type 2 infection activates caspase dependent and independent apoptosis in multiple breast cancer lines but not in normal mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Tandon Apurva

    2011-08-01

    Full Text Available Abstract Background In normal cells proliferation and apoptosis are tightly regulated, whereas in tumor cells the balance is shifted in favor of increased proliferation and reduced apoptosis. Anticancer agents mediate tumor cell death via targeting multiple pathways of programmed cell death. We have reported that the non-pathogenic, tumor suppressive Adeno-Associated Virus Type 2 (AAV2 induces apoptosis in Human Papillomavirus (HPV positive cervical cancer cells, but not in normal keratinocytes. In the current study, we examined the potential of AAV2 to inhibit proliferation of MCF-7 and MDA-MB-468 (both weakly invasive, as well as MDA-MB-231 (highly invasive human breast cancer derived cell lines. As controls, we used normal human mammary epithelial cells (nHMECs isolated from tissue biopsies of patients undergoing breast reduction surgery. Results AAV2 infected MCF-7 line underwent caspase-independent, and MDA-MB-468 and MDA-MB-231 cell lines underwent caspase-dependent apoptosis. Death of MDA-MB-468 cells was marked by caspase-9 activation, whereas death of MDA-MB-231 cells was marked by activation of both caspase-8 and caspase-9, and resembled a mixture of apoptotic and necrotic cell death. Cellular demise was correlated with the ability of AAV2 to productively infect and differentially express AAV2 non-structural proteins: Rep78, Rep68 and Rep40, dependent on the cell line. Cell death in the MCF-7 and MDA-MB-231 lines coincided with increased S phase entry, whereas the MDA-MB-468 cells increasingly entered into G2. AAV2 infection led to decreased cell viability which correlated with increased expression of proliferation markers c-Myc and Ki-67. In contrast, nHMECs that were infected with AAV2 failed to establish productive infection or undergo apoptosis. Conclusion AAV2 regulated enrichment of cell cycle check-point functions in G1/S, S and G2 phases could create a favorable environment for Rep protein expression. Inherent Rep associated

  6. Gene therapy for hemophilia B mediated by recombinant adeno-associated viral vector with hFIXR338A, a high catalytic activity mutation of human coagulation factor IX

    Institute of Scientific and Technical Information of China (English)

    LU; Huazhong; (

    2001-01-01

    [1]Chang, J., Jin, J., Lollar, P. et al., Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity, J. Bio. Chem., 1998, 273 (20): 12089-12094.[2]Lai, L., Chen, L., Zhou, H. et al., Clinical phenotype and genetic stability of factor IX gene knock out mice, J. Fudan Uni., 1999, 38 (4): 435-438.[3]Wu, Z. J., Wu, X. B., Hou, Y. D., Generation of a recombinant herps simplex virus which can provide packaging function for recombinant adeno-associated virus, Chinese Sci. Bull., 1999, 44 (8): 715-719.[4]Snyder, R. O., Miao, C. H., Patijn, G. A. et al., Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors, Nat. Genet., 1997, 16 (3): 270-276.[5]Lai, L. H., Chen, L., Wang, J. M. et al., Skeletal muscle-specific expression of human blood coagulation factor IX rescues factor IX deficiency mouse by AAV-mediated gene transfer, Science in China, Ser. C, 1999, 42 (6): 628-634.[6]Snyder, R. O., Miao, C., Meuse, L. et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors, Nat. Med., 1999, 5 (1): 64-70.[7]Kung, S. H., Hagstrom, J. N., Cass, D. et al., Human factor IX corrects the bleeding diathesis of mice with hemophilia B, Blood, 1998, 91(3): 784-790.[8]Hirt, B., Selective extraction of polyoma DNA from infected mouse cell culture, J. Mol. Biol., 1967, 26: 365-369.[9]Sambrook, J., Fritsch, E., Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 1989, 6, 20-21.[10]Chao, H., Samulski, R. J., Bellinger, D. A. et al., Persistent expression of canine factor IX in hemophilia B canines, Gene Ther., 1999, 6: 1695-1704.[11]Kaufman, R. J., Advances toward gene therapy for hemophilia at the millennium, Hum. Gene Ther., 1999, 10 (13): 2091-2107.[12]Lu, D. R., Zhou, J. M., Zheng, B. et al., Stage I clinical trial of gene

  7. Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries.

    Directory of Open Access Journals (Sweden)

    Stefan Michelfelder

    Full Text Available Targeting viral vectors to certain tissues in vivo has been a major challenge in gene therapy. Cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids in vitro but so far this system could not easily be translated to in vivo applications. Using a novel, PCR-based amplification protocol for peptide libraries displayed on adeno-associated virus (AAV, we selected vectors for optimized transduction of primary tumor cells in vitro. However, these vectors were not suitable for transduction of the same target cells under in vivo conditions. We therefore performed selections of AAV peptide libraries in vivo in living animals after intravenous administration using tumor and lung tissue as prototype targets. Analysis of peptide sequences of AAV clones after several rounds of selection yielded distinct sequence motifs for both tissues. The selected clones indeed conferred gene expression in the target tissue while gene expression was undetectable in animals injected with control vectors. However, all of the vectors selected for tumor transduction also transduced heart tissue and the vectors selected for lung transduction also transduced a number of other tissues, particularly and invariably the heart. This suggests that modification of the heparin binding motif by target-binding peptide insertion is necessary but not sufficient to achieve tissue-specific transgene expression. While the approach presented here does not yield vectors whose expression is confined to one target tissue, it is a useful tool for in vivo tissue transduction when expression in tissues other than the primary target is uncritical.

  8. Effects of adeno-associated virus-mediated klotho gene delivery on the expression of runx2 and MMP-13 gene in the bone of the ovariectomy rats%腺相关病毒介导的klotho基因表达对去势大鼠骨Runx2及MMP-13表达的影响

    Institute of Scientific and Technical Information of China (English)

    王艳娇; 马厚勋; 李宝善; 吴平

    2012-01-01

    目的 探讨腺相关病毒介导的klotho(KL)基因表达对去势骨质疏松大鼠的调控作用.方法 SD雌性大鼠随机分为假手术组(S组)和手术组,外科去势术后12周再随机分为模型组(O组)、17β-雌二醇组(E组)、KL基因组(KO组)和空质粒组(GO组),实验12周后处死.取股骨、胫骨测骨密度;冰冻切片及免疫组化法观察肾KL荧光及KL蛋白表达;RT-PCR和免疫组化法检测骨Runx2、MMP-13 mRNA及蛋白表达;HE染色观察骨组织形态学变化.结果 KO组和E组骨密度高于O组和GO组(P<0.05);KO组大鼠肾有小鼠KL基因特异性表达;与O组相比,KO组Runx2 mRNA表达明显上调,MMP-13 mRNA表达显著下调(P<0.05);免疫组化分析KO组Runx2吸光度值为411±96,显著高于O组的353±50(P<0.05);KO组MMP-13吸光度值为397±84,显著低于O组的656±89(P<0.05).KO组、E组和S组大鼠骨小梁排列紧密,连接成网,形态结构较完整,明显优于O组和GO组.结论 KL基因表达上调可减缓去势大鼠骨质疏松症的发展及骨组织微结构的破坏,提示KL基因可能在骨质疏松症的发展中扮演重要角色.%Objective To research the effect of the recombinant adeno-associated virus vector containing klotho gene delivery on the regulating of osteoporosis in ovariectomized rats. Methods Female SD rats were randomly divided into sham operation group (S group) and model group. Model was successfully constructed with ovariectomy after 12 weeks,they were randomly divided into model group (0 group), 17(β-estradiol (E group), klotho gene group (K0 group), empty vector group (GO group), all were sacrificed after 12 weeks. Bone mineral density (BMD) of the femurs and tibia were measured. The fluorescent expression of renal klotho was observed by Cryo-sectioning technique. The Runx2 and MMP-13 mRNA expression of bone tissue were detected by reverse transcription-polymerase chain reaction(RT-PCR). Expression of klotho protein in kidney and Runx

  9. Delivery of human EV71 receptors by adeno-associated virus increases EV71 infection-induced local inflammation in adult mice.

    Science.gov (United States)

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Lien, Shu-Pei; Liu, Chia-Chyi; Chong, Pele; Chen, Chih-Yeh; Tao, Mi-Hua; Liu, Shih-Jen

    2014-01-01

    Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  10. Effect of hydroxyurea and etoposide on transduction of human bone marrow mesenchymal stem and progenitor cell by adeno-associated virus vectors

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong JU; Si-quan LOU; Wei-guo WANG; Jian-qiang PENG; Hua TIAN

    2004-01-01

    AIM: To study the effect of hydroxyurea and etoposide on transduction of human marrow mesenchymal and progenitor stem cells by adeno-associated virus (AAV). METHODS: Isolated human bone marrow mesenchymal stem and progenitor cells (hMSCs) were cultured in DMEM containing 10 % FBS or 5 % FBS and dexamethasone 1 μmol/L respectively. After being treated with hydroxyurea and etoposide, hMSCs were transduced by AAV-LUC.After two days luciferase activity (relative light unites per second or RLU/s) were tested, which indirectly reflected the relative transduction efficiency of different groups, and virus DNA was isolated by Hirt extraction for Southern hybridization. RESULTS: Transduction luciferase activity and transduction efficiency in cultures treated with hydroxyurea and etoposide were significantly higher than that in control cultures. Dividing cells had about 20-fold higher transduction efficiency compared with control cells. Transduction efficiency in stationary cells was about 50 times higher than that in control cells. Southern analysis showed that hydroxyurea and etoposide enhanced second-strand DNA synthesis by rAAV. CONCLUSION: Hydroxyurea and etoposide could increase transduction efficiency of hMSCs by AAV vectors, and stationary cells were more sensitive to these drugs than dividing cells.

  11. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice.

    Science.gov (United States)

    Heller, Kristin N; Montgomery, Chrystal L; Shontz, Kimberly M; Clark, K Reed; Mendell, Jerry R; Rodino-Klapac, Louise R

    2015-10-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD. PMID:26076707

  12. Ex vivo intracoronary gene transfer of adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants.

    Science.gov (United States)

    Raissadati, Alireza; Jokinen, Janne J; Syrjälä, Simo O; Keränen, Mikko A I; Krebs, Rainer; Tuuminen, Raimo; Arnaudova, Ralica; Rouvinen, Eeva; Anisimov, Andrey; Soronen, Jarkko; Pajusola, Katri; Alitalo, Kari; Nykänen, Antti I; Lemström, Karl

    2013-11-01

    Heart transplant gene therapy requires vectors with long-lasting gene expression, high cardiotropism, and minimal pathological effects. Here, we examined transduction properties of ex vivo intracoronary delivery of adeno-associated virus (AAV) serotype 2, 8, and 9 in rat syngenic and allogenic heart transplants. Adult Dark Agouti (DA) rat hearts were intracoronarily perfused ex vivo with AAV2, AAV8, or AAV9 encoding firefly luciferase and transplanted heterotopically into the abdomen of syngenic DA or allogenic Wistar-Furth (WF) recipients. Serial in vivo bioluminescent imaging of syngraft and allograft recipients was performed for 6 months and 4 weeks, respectively. Grafts were removed for PCR-, RT-PCR, and luminometer analysis. In vivo bioluminescent imaging of recipients showed that AAV9 induced a prominent and stable luciferase activity in the abdomen, when compared with AAV2 and AAV8. However, ex vivo analyses revealed that intracoronary perfusion with AAV2 resulted in the highest heart transplant transduction levels in syngrafts and allografts. Ex vivo intracoronary delivery of AAV2 resulted in efficient transgene expression in heart transplants, whereas intracoronary AAV9 escapes into adjacent tissues. In terms of cardiac transduction, these results suggest AAV2 as a potential vector for gene therapy in preclinical heart transplants studies, and highlight the importance of delivery route in gene transfer studies.

  13. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    Directory of Open Access Journals (Sweden)

    Lina Li

    Full Text Available Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA. CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9 Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  14. Trans-Splicing Adeno-Associated Viral Vector-Mediated Gene Therapy Is Limited by the Accumulation of Spliced mRNA but Not by Dual Vector Coinfection Efficiency

    OpenAIRE

    XU, ZHUPING; Yue, Yongping; Lai, Yi; Ye, Chaoyang; Qiu, Jianming; Pintel, David J.; Duan, Dongsheng

    2004-01-01

    Therapeutic application of recombinant adeno-associated virus (AAV) has been limited by its small carrying capacity. To overcome this limitation trans-splicing vectors were developed recently. However, the transduction efficiency of trans-splicing vectors is considerably lower than that of a single intact vector in skeletal muscle. To improve trans-splicing vectors for skeletal muscle gene therapy, we examined whether coinfection efficiency is a rate-limiting factor in the mdx mouse, a model ...

  15. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    Science.gov (United States)

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts. PMID:26618393

  16. Development of Recombinant Adeno-Associated Virus Serotype 2/8 Carrying Kringle Domains of Human Plasminogen for Sustained Expression and Cancer Therapy.

    Science.gov (United States)

    Kuo, Cheng-Hsiang; Chang, Bi-Ing; Lee, Fang-Tzu; Chen, Po-Ku; Lee, Jeng-Shin; Shi, Guey-Yueh; Wu, Hua-Lin

    2015-09-01

    Angiostatin and other plasminogen derivatives exhibit antitumor activities directly or indirectly, have demonstrated promising anticancer effects in preclinical studies, but have mostly failed in clinical trials partly due to their short serum half-lives. Our previous studies demonstrated that recombinant human plasminogen kringle 1-5 (K1-5) has superior antitumor activity compared with angiostatin. In addition, optimization of recombinant K1-5 with three amino acid substitutions enhances its antitumor effect. The current study was thus undertaken to evaluate prolonged expression of optimized K1-5 as cancer gene therapy. The recombinant adeno-associated virus (AAV) vector was used to express a secreted form of the optimized K1-5 (AAV-sK15tm) to improve its pharmacokinetic profile, which was considered to be the hurdle in angiostatin treatment of cancer. We successfully generated high-titer recombinant AAV vectors and observed sustained transgene expression for 567 days after a single injection of virus. The treated animals did not display any visible signs of abnormalities and showed normal serum biochemistry. The therapeutic potential of this treatment modality was demonstrated by both a strong inhibition of lung metastasis in the mouse B16F10 melanoma model and significant growth retardation of Lewis lung carcinoma xenografts in C57BL/6N mice as well as human A2058 melanoma xenografts in NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice. Taken together, our results suggested that AAV-sK15tm produced long-term suppressive effects on cancer growth in vivo and should warrant serious consideration for clinical development. PMID:25950911

  17. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation

    Science.gov (United States)

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  18. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation.

    Science.gov (United States)

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  19. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  20. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo.

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R Jude

    2007-07-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.

  1. Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo▿

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R. Jude

    2007-01-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response. PMID:17475652

  2. 9型重组腺相关病毒介导抗核转录因子-κB核酶基因体外转染大鼠心肌细胞及对核转录因子-κB活性的影响%Transfection of rats H9C2 cells with recombinant adeno-associated virus Serotype 9 mediated AntiNF-κB ribozyme in vitro and effects on nuclear factor-κB activity

    Institute of Scientific and Technical Information of China (English)

    高霞; 马依彤; 杨毅宁; 向阳; 陈邦党; 刘芬

    2010-01-01

    Objective To evaluate the transfection efficiency using recombinant adeno-associated virus serotype 9 (rAAV9) mediated anti-nuclear factor-κB (NF) -κB ribozyme and enhanced green fluorescent protein (rAAV9-EGFP-R65) to rats H9C2 cells and the effect on NF-κB activity. Methods rAAV9EGFP-R65 was transfected into H9C2 ceils at multiplicities of infection ( MOI = 1 x 106 v. g./cell). EGFP expression in the cells was observed under an inverted fluorescence microscope, and the percentage of EGFP positive cells was determined by flow cytometry. Alamar Blue assay was used to assess the proliferation of the transfected cells. H9C2 ceils were treated with tumor necrosis factor (TNF)-α, rAAV9-EGFP-R65 and PDTC. The DNA binding activity of NF-KF-κB was examined by electrophoretic mobility shift assay (EMSA). Results The cells began to exhibit EGFP expression one day after transfection. The fluorescence intensity was increased with the time of transfection. EGFP expression reached the maximum on the day 5, at the point of which the transduction efficiency was (32.27 + 3.19)%. Alamar Blue assay did not reveal significant difference in the absorbance between the transfected cells and the control cells. TNF-α could activate NF-κB, and rAAV9-EGFP-R65 and PDCT could efficiently decrease NF-κB activation in rats H9C2 cells. Conclusion rAAV9-EGFP-R65 can be stably and efficiently expressed in H9C2 cells without causing cell growth inhibition, rAAVg-EGFP-R65 can availably inhibit NF-κB activation in rats H9C2 cells in vitro.%目的 观察9型重组腺相关病毒(rAAV9)介导抗核转录因子-κB(NF-κB)核酶基因(rAAV9-ECFP-R65)对大鼠心肌H9C2细胞的转染及对NF-κB活性的影响.方法 rAAV9-EGFP-R65按转染复数(MOI)1×106v.g./cell转染H9C2细胞,在倒置荧光显微镜下观察增强型绿色荧光蛋白(EGFP)阳性表达,采用流式细胞仪检测转染效率.Alamar Blue法检测rAAV9-EGFP-R65对H9C2细胞增殖影响.肿瘤坏死因子-α(TNF-α)、rAAV9

  3. 腺相关病毒介导转化生长因子β1和血管内皮生长因子联合转染促进糖尿病溃疡愈合的生物学效应%Biological effects of co-transfection of transforming growth factor beta 1 and vascular endothelial growth factor mediated by adeno-associated virus on promoting the dermal ulcer healing in diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    赛佳明; 张慧琴

    2006-01-01

    使溃疡组织中毛细血管密度明显增多,愈合组织中Ⅰ型和Ⅲ型胶原构成比中Ⅰ型胶原的比例明显提高,并有效地促进溃疡愈合.%BACKGROUND: The ulcer wound is hard to heal in diabetic patients,and it is believed to be caused by the microcirculatory disorder of wound and decreased contents of endogenous growth factors in patients with diabetes mellitus.OBJECTIVE: To observe the biological effects of adeno-associated virus (AAV) mediated transforming growth factor beta1 (AAV-TGFβ1) and vascular endothelial growth factor (AAV-VEGF) in promoting the dermal ulcer healing of diabetic rabbits.DESIGN: A randomized controlled animal experiment.SETTINGS: Medical College, Qingdao University; Affiliated Hospital of Medical College, Qingdao University.MATERIALS: The experiments were carried out in the gynecological laboratory, Affiliated Hospital of Medical College, Qingdao University from July 2004 to January 2006. Twenty-four healthy adult New Zealand rabbits were randomly divided into co-transfection group (n=12) and control group (n=12).METHODS: ① The dermal ulcer models of diabetic rabbits was established by injecting alloxan (130 mg/kg) via ear vein, and the ulcer wound was made by operation. ② In the co-transfection group, the wound was locally infiltrated, and injected with AAV-TGFβ1 virus and AAV-VEGF virus (the concentration was 9×106 virus granules/mL respectively). The rabbits in the control group were treated with injection of saline.MAIN OUTCOME MEASURES: ① The levels of TGFβ1 and VEGF gene transcription in the healing tissue were detected with polymerase chain reaction (PCR) at 1 month postoperatively. ② The capillary density in the wound margin was counted with microcirculation microscope at 3 weeks postoperatively. ③ The collagen Ⅰ and Ⅲ were isolated and detected with Western blotting by protein gel electrophoresis and semi-dry electrophoretic transfer. ④ The content of collagen in the ulcer healing issue

  4. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors

    OpenAIRE

    Lai, Yi; Yue, Yongping; LIU, MINGJU; Ghosh, Arkasubhra; Engelhardt, John F.; Jeffrey S. Chamberlain; Duan, Dongsheng

    2005-01-01

    Although adeno-associated virus (AAV)-mediated gene therapy has been hindered by the small viral packaging capacity of the vector, trans-splicing AAV vectors are able to package twice the size of the vector genome. Unfortunately, the efficiency of current trans-splicing vectors is very low. Here we show that rational design of the gene splitting site has a profound influence on trans-splicing vector-mediated gene expression. Using mRNA accumulation as a guide, we generated a set of efficient ...

  5. Regression of Schwannomas Induced by Adeno-Associated Virus-Mediated Delivery of Caspase-1

    OpenAIRE

    Prabhakar, Shilpa; Taherian, Mehran; Gianni, Davide; Conlon, Thomas J.; Fulci, Giulia; Brockmann, Jillian; Stemmer-Rachamimov, Anat; Sena-Esteves, Miguel; Breakefield, Xandra O.; Brenner, Gary J.

    2012-01-01

    Schwannomas are tumors formed by proliferation of dedifferentiated Schwann cells. Patients with neurofibromatosis 2 (NF2) and schwannomatosis develop multiple schwannomas in peripheral and cranial nerves. Although benign, these tumors can cause extreme pain and compromise sensory/motor functions, including hearing and vision. At present, surgical resection is the main treatment modality, but it can be problematic because of tumor inaccessibility and risk of nerve damage. We have explored gene...

  6. Cloning of avian adeno-associated virus genome and rescue of the infectious virus%禽腺联病毒全基因组的克隆及感染性病毒的拯救

    Institute of Scientific and Technical Information of China (English)

    王建业; 孙怀昌; 朱国强

    2007-01-01

    为了克隆禽腺联病毒(Avian adeno-associated virus,AAAV)全基因组用于构建基因转移载体研究,以鸡胚致死孤儿病毒(CELO)作为辅助病毒与AAAV共接种SPF鸡胚进行AAAV的增殖,将AAAV约4.7 kb双链基因组DNA与pCR2.1载体连接,构建了含AAAV全基因组的重组质粒pAAAV并进行了测序.序列分析表明,AAAV YZ-1株的基因组为4 684 bp,两端具有141 bp的末端倒置重复序列和Rep蛋白结合位点特征序列,与GenBank中收录的AAAV DA-1株和VR-865株的核苷酸序列同源性分别为95.0%和92.2%.将pAAAV质粒转染CELO病毒感染的鸡胚肝细胞系,获得了感染性AAAV病毒粒子,结果证明克隆的AAAV基因组中存在与病毒复制和包装相关的正确关键序列,可用于重组AAAV载体的构建.

  7. Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectors.

    Science.gov (United States)

    Fleming, Jane; Spinoulas, Afroditi; Zheng, Maolin; Cunningham, Sharon C; Ginn, Samantha L; McQuilty, Robert C; Rowe, Peter B; Alexander, Ian E

    2005-08-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of a number of debilitating inherited and acquired neurological conditions. The lack of effective treatments for many such conditions provides a strong rationale for exploring novel therapeutic approaches, including gene therapy. Friedreich ataxia (FRDA), a sensory neuropathy, is a progressive neurodegenerative disease associated with a loss of large sensory neurons from the dorsal root ganglia. Because a mouse model for this well-characterized disease has been generated, we elected to use FRDA as a model disease. In previous studies we achieved efficient and sustained delivery of a reporter gene to PNS sensory neurons, using recombinant adeno-associated viral (AAV) and lentiviral (LV) vectors. In the current study, AAV and LV vectors encoding the human frataxin cDNA were constructed and assessed for frataxin expression and function in primary FRDA patient fibroblast cell lines. FRDA fibroblasts have been shown to exhibit subtle biochemical changes, including increased mitochondrial iron and sensitivity to oxidant stress. Despite the inherent difficulty in working with primary cells, transduction of patient fibroblasts with either vector resulted in the expression of appropriately localized frataxin and partial reversal of phenotype.

  8. Gene therapy for hemophilia B mediated by recombinant adeno-associated viral vector with hFIXR338A, a high catalytic activity mutation of human coagulation factor IX

    Institute of Scientific and Technical Information of China (English)

    陆华中; 陈立; 王红卫; 伍志坚; 吴小兵; 王学峰; 王鸿利; 卢大儒; 邱信芳; 薛京伦

    2001-01-01

    A mutant human factor IX with arginine at 338 residual changed to alanine (hFIXR338A) by site-directed mutagenesis was introduced into AAV vectors, and a recombinant adeno-associ- ated viral vector containing hFIXR338A, prepared by rHSV/AAV hybrid helper virus system, was directly introduced to the hind leg muscle of factor IX knock out mice. The expression and the biological activity of human factor IX mutant, hFIXR338A, and the immune response against it in the treated mice were assayed and detected. The results showed that (i) the high-level expression of human factor IX mutant protein, hFIXR338A, has been detected in rAAV-hFIXR338A treated hemophilia B mice and lasted more than 15 weeks; (ii) the clotting activity of hFIXR338A in plasma is 34.2%± 5.23%, which is remarkably higher than that of (14.27% ± 3.4%) of wild type hFIX treated mice in the activated partial thromboplastin assay; (iii) immune response against factor IX R338A was absent, with no factor IX mutant protein (hFIXR338A) inhibitors development in the treated mice; and (iv) no local or systemic side-effects and toxicity associated with the gene transfer were found. It demonstrated the potential use of treating hemophilia B by recombinant adeno-associated viral vectors with mutant hFIXR338A gene, an alternative strategy for hemophilia B gene therapy to wild-type human factor IX.

  9. Parvovirus B19 promoter at map unit 6 confers autonomous replication competence and erythroid specificity to adeno-associated virus 2 in primary human hematopoietic progenitor cells.

    OpenAIRE

    Wang, X S; Yoder, M C; Zhou, S. Z.; A Srivastava

    1995-01-01

    The pathogenic human parvovirus B19 is an autonomously replicating virus with a remarkable tropism for human erythroid progenitor cells. Although the target cell specificity for B19 infection has been suggested to be mediated by the erythrocyte P-antigen receptor (globoside), a number of nonerythroid cells that express this receptor are nonpermissive for B19 replication. To directly test the role of expression from the B19 promoter at map unit 6 (B19p6) in the erythroid cell specificity of B1...

  10. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    Science.gov (United States)

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system

  11. Novel qPCR strategy for quantification of recombinant adeno-associated virus serotype 2 vector genome-titer%测定重组腺相关病毒基因组滴度的qPCR新方法

    Institute of Scientific and Technical Information of China (English)

    蒙青林; 张彬彬; 张春

    2013-01-01

    Adeno-associated virus (AAV) has many advantages for gene therapy over other vector systems. However, after the production of recombinant AAV (Raav) vectors, the biological titration of rAAV stocks is still cumbersome. Different investigators used laboratory-specific methods or internal reference standards that may limit preclinical and clinical applications. The inverted terminal repeats (ITR) sequences are the only cw-regulated viral elements required for rAAV packaging and remain within viral vector genomes. ITR is the excellent target sequences for qPCR quantification of rAAV titer. In this study, we developed a novel qPCR strategy to quantify rAAVs' vector genome titer via targeting the ITR2 or ITR2-CMV element. In conclusion, the method is fast and accurate for the titration of rAAV2-derived vector genomes. It will promote the standardization of rAAV titration in the future.%腺相关病毒(Adeno-associated virus,AAV)在基因治疗应用中具有很多优势,但是其生物学滴度的测定仍很繁琐,不同实验室使用各自的方法和参照,这些都影响了重组腺相关病毒(rAAV)载体在临床前和临床上的应用.反向末端重复序列(Inverted terminal repeats,ITR)是重组腺相关病毒载体中不可或缺的顺式作用元件,针对ITR2以及ITR2-CMV设计的qPCR检测方法可以快速、准确地得到rAAV2的基因组滴度,由于该方法可以广泛适用,因此对推动AAV滴度检测的标准化有重要意义.

  12. [Establishment of hepatitis B virus (HBV) chronic infection mouse model by in vivo transduction with a recombinant adeno-associated virus 8 carrying 1. 3 copies of HBV genome (rAAN8-1. 3HBV)].

    Science.gov (United States)

    Dong, Xiao-Yan; Yu, Chi-Jie; Wang, Gang; Tian, Wen-Hong; Lu, Yue; Zhang, Feng-Wei; Wang, Wen; Wang, Yue; Tan, Wen-Jie; Wu, Xiao-Bing

    2010-11-01

    In this report, we developed a HBV infection model in C57BL/6 mouse line by in vivo injection of a recombinant adeno-associated virus 8 vector carrying 1. 3 copies of HBV genome (ayw subtype) (rAAV8-1. 3HBV). We firstly prepared and purified the rAAV8-1. 3HBV and then injected it into three C57BL/6 mice with the dose of 2 x 10e11vg, respectively. HBsAg and HBeAg were assayed in sera collected at different time points post injection. Ten weeks post injection, the three mice were sacrificed and blood and liver tissue were taken for assay. Copies of HBV DNA were detected by real time PCR and the way of HBV DNA replication was identified by PCR. Subsequently, detection of HBV antigen by immunohistochemistry and pathology analysis of liver tissue of mice were performed. The results suggested that expression of HBsAg and HBeAg lasted for at least 10 weeks in mice sera. Among mice injected with rAAV8-1. 3HBV, HBsAg levels were showed an 'increasing-decreasing-increasing' pattern (the lowest level at the 4th week post injection), while HBeAg levels were kept high and relatively stable. HBV DNA copies were 4.2 x 10(3), 3.6 x 10(3), 2.5 x 10(3) copies/mL in sera and 8.0 x 10(6), 5.7 x 10(6), 2.6 x 10(6) copies/g in hepatic tissues of three mice, respectively. We found that the linear 1. 3HBV DNA in the rAAV8-1. 3HBV could self form into circular HBV genome and replicate in livers of HBV transfected mice. HBsAg and HBcAg were both positive in liver tissue of mice injected with rAAV8-1. 3HBV and no obvious pathological characters were found in liver of mice injected with rAAV8-1. 3HBV. In conclusion, we successfully developed a HBV chronic infection model in C57BL/6 mouse line by in vivo transduction with the recombinant virus rAAV8-1. 3HBV, in which HBV genes could be continuously expressed and replicated over 10 weeks, and paved a way for further characterization of the human chronic hepatitis B virus infection and evaluation of vaccine and anti-HBV agents. PMID:21344744

  13. Evolutionary Relationships among Parvoviruses: Virus-Host Coevolution among Autonomous Primate Parvoviruses and Links between Adeno-Associated and Avian Parvoviruses

    OpenAIRE

    Lukashov, Vladimir V.; Goudsmit, Jaap

    2001-01-01

    The current classification of parvoviruses is based on virus host range and helper virus dependence, while little data on evolutionary relationships among viruses are available. We identified and analyzed 472 sequences of parvoviruses, among which there were (virtually) full-length genomes of all 41 viruses currently recognized as individual species within the family Parvoviridae. Our phylogenetic analysis of full-length genomes as well as open reading frames distinguished three evolutionary ...

  14. Construction of recombinant adeno-associated viral vectors in human neurenergen-3 gene

    Institute of Scientific and Technical Information of China (English)

    Xiangli Wang; Haili Wang; Baojie Mi

    2007-01-01

    BACKGROUND: Research of transgene brings hope for gene therapy of various diseases; in addition, some projects have been tested in clinic. Recently, the focus has been to find an ideal vehicle and a suitable therapeutic gene.OBJECTIVE: To explore an effective way to construct recombinant adeno-associated viral vectors expression in human neurnnergen-3 gene. DESIGN: Gene directed cloning.SETTING: Central Laboratory of Northern China Coal Medical College.MATERIALS: DH5a competent bacillus coli strain was provided by Capital Medical University; pCDNA3-NT-3 by professor Chen from Bengbu Medical College; pAAV-Laze, pAAV-Helper, pAAV-RC and pAAV-MCS plasmids by Capital Medical University; HEK293 cells by Cell Center of Basic Medical College of Tongji Medical University.METHODS: NT-3 genes which were selected from pCDNA3-NT-3 plasmids were cloned in pAAV-MCS to form a recombinant adeno-associated viral plasmid (pAAV-NT-3). pAAV-NT-3, pAAV-RC, pAAV-LacZ and pHelper plasmids were extracted, purified and subjected to enzyme-shearing evaluation. In addition, pAAV-NT-3 and pAAV-LacZ were cotransfected with pHelper and pAAV-RC, respectively into AVV-293 cells with DNA mediated by calcium superphosphate transfection gene; and then, AVV-293 cells were packed into recombinant adeno-associated viral rAAV-NT-3 and rAAV-LacZ. After collection of viral particles, rAAV-LacZ viral stock solution was diluted based on ratio of 10:1 and the mixture was used to infect HT1080 cells. X-gal stain was used to measure virus liter.MAIN OUTCOME MEASURES: Size of targeted gene fragments, validity of vehicle construction and virus liter.RESULTS: Targeted gene NT-3 was successfully inserted into the relative vehicle pAAV and pAAV-NT-3 was correctly recongnized by enzyme-shearing evaluation. Enzyme-shearing electrophoresis demonstrated that pAAV-NT-3, pAAV-RC, pAAV-LacZ and pHelper plasmids were successfully extracted and purified.β-galactoside staining in situ indicated that LacZ genes were

  15. Delivery of basic fibroblast growth factor gene to healing tendon by adeno-associated virus 2 vector and tissue reactions of adeno-associated virus vectors%腺相关病毒载体转导基因至愈合肌腱及载体组织反应的研究

    Institute of Scientific and Technical Information of China (English)

    朱蓓; 汤锦波; 曹怡; 陈传好

    2008-01-01

    目的 探讨腺相关病毒(AAV)载体转导碱性成纤维细胞牛长因子(bFGF)基因对肌腱愈合的影响,并观察腺病毒、AAV以及脂质体一质粒三种基因治疗载体应用于肌腱所产生的组织反应.方法 取13只成年白色来亨鸡的双侧巾趾趾深屈肌腱(26根),随机分为实验组和对照组,每组13根,实验组肌腱完全切断后注射AAV2-bFGF并以改良Kessler法修复,对照组不注射AAV2-bFGF,仪以改良Kessler法修复.第4周未行免疫组织化学染色,第8周术测定趾屈曲功.将6只成年新西兰白兔的趾深屈肌腱(36根)分成二组,每组12根,分别注射10μL的腺病毒、AAV2和脂质体.质粒载体,术后第3、7、14天分别取肌腱,进行石蜡切片、HE染色.结果 AAV2-bFGF可以在术后4周显著地提高肌腱bFGF的表达,而且不增加趾屈曲阻力(粘连形成).所测屈曲功第8周末实验组为(0.052±0.031)J,对照组为(0.049±0.035)J,两组问差异无统计学意义(t=0.31266,P=0.8984).脂质体-质粒载体组肌腱组织反廊重于腺病毒载体组,AAV2载体组肌腱组织反应最轻,在腱外膜处有组织反应,而腱内膜区域几乎无组织反应.结论 用AAV2载体转bFGF基因至肌腱能有效增加愈合肌腱的bFGF.在三种所研究的载体中,腺病毒和AAV2载体引起的组织反应比脂质体.质粒载体轻.AAV2引起的组织反应最轻.AAV2可能会成为肌腱的转基因良好载体.%Objective To explore the effect of basic fibroblast growth factor (bFGF) gene transferred by adeno-associated virus (AAV) 2 vectors on tendon healing and to observe tissue reactions of adenovirus, AAV and liposome-plasmid vectors in tendons, Methods Twenty-six flexor digitorum profundus (FDP) tendons from bilateral long toes of 13 chickens were randomly divided into equal 2 groups. Tendons in the experimental group were cut completely and treated with AAV2-bFGF before repair by the modified Kessler method. Tendons as controls were not treated with

  16. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  17. Comparison of Efficacy of the Disease-Specific LOX1- and Constitutive Cytomegalovirus-Promoters in Expressing Interleukin 10 through Adeno-Associated Virus 2/8 Delivery in Atherosclerotic Mice

    Science.gov (United States)

    Zhu, Hongqing; Cao, Maohua; Mirandola, Leonardo; Figueroa, Jose A.; Cobos, Everardo; Chiriva-Internati, Maurizio; Hermonat, Paul L.

    2014-01-01

    The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of “disease-specific promoters” has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2) using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery. PMID:24736312

  18. 重组腺相关病毒2型/人凝血因子IX的质量研究%Quality control of recombinant adeno-associated virus type 2/human blood coagulation factor IX

    Institute of Scientific and Technical Information of China (English)

    高凯; 王军志; 饶春明; 吴小兵

    2003-01-01

    目的研究并建立重组腺相关病毒2型/人凝血因子IX(recombinant adeno-associated virus type 2/human blood coagulation factor IX,rAAV-2/hFIX)的质量标准.方法采用PCR法确认病毒所携带的重组核酸结构和测定辅助病毒(helper virus)和野生型腺相关病毒(wtAAV)的残留片段.SDS-PAGE电泳测定病毒外壳蛋白分子量及纯度,TSK gel SP-NPR阳离子交换柱系统测定病毒颗粒纯度.以斑点杂交法测定病毒颗粒数.一期法于IX因子基因剔除小鼠体内测定rAAV-2/hFIX生物学活性,并通过ELISA法测定感染BHK-21细胞后hFIX的表达量.结果 PCR法确证病毒的重组核酸结构与构建预期相同;在1×107 VG的rAAV-2/hFIX颗粒中,残留辅助病毒的基因片段数少于1个拷贝;在1×108 VG的rAAV-2/hFIX颗粒中,野生型AAV-2基因片段数少于1个拷贝.病毒颗粒及外壳蛋白纯度均大于98%,病毒颗粒数大于1.0×1015 VG*L-1(virus genome*L-1).IX因子剔除小鼠肌肉注射病毒后21 d,小鼠血液中人凝血因子IX活性达到大于正常人因子IX活性的15%,IX因子的体外表达水平大于20.0 μg*L-1.其他各项检测指标均符合规定.结论建立了rAAV-2/hFIX的质量标准,用于控制产品质量.

  19. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt;

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...... as striatal input and output areas, including large parts of the cortex. In both species, rAAV5 resulted in a more widespread transgene expression compared to rAAV1. In neonatal rats, rAAV5 also transduced several other areas such as the olfactory bulbs, hippocampus, and septum. Phenotypic analysis of the GFP...

  20. 重组8型腺相关病毒介导HBV急性感染树鼩模型建立%Establishment of a tree shrew model of acute hepatitis B virus infection by transduction with a recombinant adeno-associated virus 8 carrying 1.3 copies of HBV genome

    Institute of Scientific and Technical Information of China (English)

    曾扬; 吴小红; 胡靓雅; 刘晨风; 于虹; 郭彦; 周勇; 孙世惠; 周育森

    2013-01-01

    目的 利用重组8型腺相关病毒介导1.3拷贝HBV基因组(1.3HBV,ayw亚型)在树鼩肝脏表达,建立HBV急性感染树鼩模型.方法 通过大腿内侧静脉注射将携带有1.3 HBV的重组8型腺相关病毒(recombinant adeno-associated virus 8,rAAV8-1.3HBV)导入树鼩肝脏,通过ELISA检测树鼩血清中HBsAg、HBeAg、HBsAb、HBeAb、HBcAb,荧光定量PCR检测树鼩肝脏和血清中HBV DNA,全自动生化分析仪检测血清中ALT水平,并观察感染后肝脏的病变情况.结果 HBV感染主要血清标志物1~2周内均检测阳性;30 d后肝组织仍可检测到病毒抗原阳性细胞;55 d时肝组织HBV DNA拷贝数仍可达到104~105;树鼩血清中HBV DNA拷贝数持续一个月高于正常组;肝组织炎细胞略增多,血清ALT水平持续升高.结论 rAAV8所携带的HBV基因组高效专一导入树鼩肝细胞并复制表达,成功建立HBV急性感染树鼩模型,为进一步探索rAAV8树鼩慢性感染模型打下一定的基础.%Objective To establish a tree shrew model of acute hepatitis B virus infection by injection of a recombinant adeno-associated virus 8 vector carrying 1.3 copies of HBV genome (ayw subtype) (rAAV8-1.3 HBV)into the liver of tree shrews.Methods Serum and liver tissues were collected at indicated times after i.v.injection of rAAV8-1.3 HBV into the tree shrews.The HBsAg,BeAg,HBsAb,HBeAb,HBcAb,ALT and HBV virus load were examined by ELISA and real-time PCR,respectively.The expression of HBcAg and pathological changes in the liver were also observed after the rAAV8-1.3 HBV infection.Results Markers of serum HBV were all positive 2 weeks after and HBcAg-positive hepatocytes were even detected in the liver 55 days after rAAV8-1.3 HBV injection.The copies of HBV DNA in liver reached 104-105 at 55 days after rAAV8-1.3HBV injection.Serum HBV DNA could be detected for over one month.Mild pathological changes with elevated ALT were observed after rAAV8-1.3 HBV injection.Conclusions A tree shrew

  1. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  2. Culture of 293 cells for the package of adeno-associated viruses%用于包装腺相关病毒293细胞的培养

    Institute of Scientific and Technical Information of China (English)

    魏佳军; 张苏明; 徐金枝

    2007-01-01

    BACKGROUND: As a main gene engineering vector, adeno-associated virus (AAV) is characterized by its extensive host cells, lasting and stable expression and less immune response to hosts, and is applied widely. But AAV is a kind of defective virus, and need incasing cells to supply E1 protein. As important and special AAV incasing cells, AAV-293 cells can produce E1 in trans. But AAV-293 cells are delicated and cultivated difficultly, and the biological character is easy to be changed. Therefore, it is necessary to establish a culture method of AAV-293 cells to meet the need of gene engineering.OBJECTIVE: To establish a culture method of AAV-293 cells in vitro.DESIGN: An opening study.SETTING: Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: AAV-293 cells line was provided by Stratagene Corporation; high-carbohydrate OMEM (H-DMEM) powder by Gibco Company; there plasmids in AAV Helper-Free by Stratagene Company.METHODS: This experiment was carried out in the neurology laboratory of Tongji Hospital in Wuhan during the period from October 2006 to April 2007. AAV-293 cells were resuscitated and cultivated with H-DMEM growth medium in vitro, and were passaged and stored in liquid nitrogen when the cells monolayer confluence reached 50%. At the same time, their growing state was observed by inverted microscope, and their growth curve was noted. According to whether AAV-293 cells could give out green fluorescence or not (observed by fluorescence inverted microscope) after they were cotransfected with the there AAV system plasmids and infected with AAV supernatant, their biological character of packing AAV was assessed.MAIN OUTCOME MEASURES: ① Morphological observation of AAV-293 cells; ② the growth curve; ③ the package of AAV.RESULTS: ① AAV-293 cells observed by fluorescence inverted microscope were growing adhesively well with irregular polygons, light endochylemas and ambiguous nuclei

  3. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt;

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...... to study effects of genetic manipulation in this non-primate large animal species. Finally, we generated an atlas of the Göttingen minipig brain for guiding future studies in this large animal species....

  4. Long-term Rescue of a Lethal Murine Model of Methylmalonic Acidemia Using Adeno associated Viral Gene Therapy

    OpenAIRE

    Chandler, Randy J.; Venditti, Charles P

    2009-01-01

    Methylmalonic acidemia (MMA) is an organic acidemia caused by deficient activity of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT). This disorder is associated with lethal metabolic instability and carries a poor prognosis for long-term survival. A murine model of MMA that replicates a severe clinical phenotype was used to examine the efficacy of recombinant adeno-associated virus (rAAV) serotype 8 gene therapy as a treatment for MMA. Lifespan extension, body weight, circulating meta...

  5. 禽腺联病毒Rep78和VP3蛋白的原核表达及抗血清制备%Prokaryotic expression of the Rep78 and VP3 proteins of avian adeno-associated virus and preparation of specific antisera

    Institute of Scientific and Technical Information of China (English)

    王建业; 孙怀昌; 朱国强

    2008-01-01

    分别将禽腺联病毒(Avian adeno-associated virus,AAAV)的Rep78基因和VP3基因克隆入pET-47b原核表达载体并转化BL21(DE3)大肠杆菌,在1PTG的诱导下2种目的蛋白均成功得到了表达.SDS-PAGE显示,Rep78蛋白的相对分子质量约为85 000,而VP3蛋白相对分子质量约为60 000.Western-blot分析显示,表达产物均能与抗AAAV的阳性血清反应.将目的蛋白切胶免疫BALB/c小鼠分别制备了针对2种蛋白的多克隆血清.间接免疫荧光试验显示制备的抗血清能够与AAAV抗原特异反应.不与鸡胚致死孤儿病毒(CELO)抗原反应.结果表明,制备的抗Rep78和VP3蛋白的血清可以用于检测重组AAAV载体制备过程中Rep和Cap基因的表达水平.

  6. Manufacturing of recombinant adeno-associated viral vectors for clinical trials.

    Science.gov (United States)

    Clément, Nathalie; Grieger, Joshua C

    2016-01-01

    The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings.

  7. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim;

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... for human gene therapy, primarily due to its lack of pathogenicity and low risk of insertional mutagenesis. However, the existing data pertaining to AAV transduction of MSCs is limited. The objective of this work was to examine the efficiency and kinetics of in vitro transduction using AAV serotype 2...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...

  8. Inhibition of infectious bursal disease virus replication in chicken embryos by miRNAs delivered by recombinant avian adeno-associated viral vector%重组禽腺联病毒介导的miRNA抑制传染性法氏囊病病毒在鸡胚内的复制

    Institute of Scientific and Technical Information of China (English)

    沈鹏鹏; 王永娟; 孙怀昌; 张鑫宇; 夏晓莉

    2011-01-01

    [Objective]We studied the inhibition of infectious bursal disease virus ( IBDV ) replication in chicken embryos by recombinant avian adeno-associated virus (AAAV)-delivered VP1- and VP2-specific microRNAs (miRNAs).[Methods and Results]We co-transfected AAV-293 cells with the VP1- or VP2 gene-specific miRNA expression vector pAITR-RFPmiVP1 or AITR-RFPmiVP2E, AAAV packaging vector pcDNA-ARC and adenovirus helper vector pHelper, resulting in recombinant virus rAAAV-RFPmiVP1 or rAAAV-RFPmiVP2E.We also generated the recombinant viruses rAAAV-RFP (without miRNA expression cassette) and rAAAV-RFPmiVP2con ( expressing control miRNA ) using the same method as the control purpose.Electron microscopy showed that the recombinant viruses had a typical morphology of AAV.We confirmed the presence of miRNA expression cassette in the recombinant viral genomes by using PCR.Our poly (A)-tailed RT-PCR showed correct expression of the miRNAs in the rAAAV-transduced DF-1 cells.We inoculated the recombinant viruses individually into 8-day-old SPF chicken embryos and then challenged them using Lukert strain IBDV on day 2 after inoculation.Our IBDV titration assay showed that the 50% tissue culture infectious dose ( TCID50) of rAAAV-RFP- or rAAAV-RFPmiVP2con-inoculated group was 8.0 log10, whereas the TCID50 of rAAAV-RFPmiVP1-inoculated group decreased to 1.0 and 0.8 log10 on day 3 and 6 after challenge, respectively.Similarly, the TCID50 of rAAAV-RFPmiVP2E-inoculated group decreased to 1.5 and 2.0 log10, respectively.[Conclusion]These data suggest that rAAAV can transduce efficiently chicken embryos and the expressed VP1- and VP2-specific miRNAs can inhibit the replication of IBDV efficiently.%[目的]在鸡胚水平上探索VP1和VP2基因特异miRNA抑制传染性法氏囊病病毒(infectious bursaldisease virus,IBDV)复制的可行性.[方法与结果]将表达VP1基因特异miRNA重组载体pAITR-RFPmiVP1或VP2基因特异miRNA重组载体pAITR-RFPmiVP2E

  9. Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice

    Directory of Open Access Journals (Sweden)

    Fussenegger Martin

    2007-11-01

    Full Text Available Abstract Background Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features. Results We designed recombinant adeno-associated virus (rAAV vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7. Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression. Conclusion Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as

  10. Pulmonary Targeting of Adeno-associated Viral Vectors by Next-generation Sequencing-guided Screening of Random Capsid Displayed Peptide Libraries.

    Science.gov (United States)

    Körbelin, Jakob; Sieber, Timo; Michelfelder, Stefan; Lunding, Lars; Spies, Elmar; Hunger, Agnes; Alawi, Malik; Rapti, Kleopatra; Indenbirken, Daniela; Müller, Oliver J; Pasqualini, Renata; Arap, Wadih; Kleinschmidt, Jürgen A; Trepel, Martin

    2016-06-01

    Vectors mediating strong, durable, and tissue-specific transgene expression are mandatory for safe and effective gene therapy. In settings requiring systemic vector administration, the availability of suited vectors is extremely limited. Here, we present a strategy to select vectors with true specificity for a target tissue from random peptide libraries displayed on adeno-associated virus (AAV) by screening the library under circulation conditions in a murine model. Guiding the in vivo screening by next-generation sequencing, we were able to monitor the selection kinetics and to determine the right time point to discontinue the screening process. The establishment of different rating scores enabled us to identify the most specifically enriched AAV capsid candidates. As proof of concept, a capsid variant was selected that specifically and very efficiently delivers genes to the endothelium of the pulmonary vasculature after intravenous administration. This technical approach of selecting target-specific vectors in vivo is applicable to any given tissue of interest and therefore has broad implications in translational research and medicine. PMID:27018516

  11. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector.

    Science.gov (United States)

    Barnard, Alun R; Groppe, Markus; MacLaren, Robert E

    2015-03-01

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene. PMID:25359548

  12. Adeno Associated Viral Vector Delivered RNAi for Gene Therapy of SOD1 Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Stoica, Lorelei; Sena-Esteves, Miguel

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of upper and lower motor neurons. Mutations in superoxide dismutase 1 (SOD1) are a leading cause of ALS, responsible for up to 20% of familial cases. Although the exact mechanism by which mutant SOD1 causes disease remains unknown, multiple studies have shown that reduction of the mutant species leads to delayed disease onset and extension of lifespan of animal models. This makes SOD1 an ideal target for gene therapy coupling adeno associated virus vector (AAV) gene delivery with RNAi molecules. In this review we summarize the studies done thus far attempting to decrease SOD1 gene expression, using AAV vectors as delivery tools, and RNAi as therapeutic molecules. Current hurdles to be overcome, such as the need for widespread gene delivery through the entire central nervous system (CNS), are discussed. Continued efforts to improve current AAV delivery methods and capsids will accelerate the application of these therapeutics to the clinic. PMID:27531973

  13. Copackaging of multiple adeno-associated viral vectors in a single production step.

    Science.gov (United States)

    Doerfler, Phillip A; Byrne, Barry J; Clément, Nathalie

    2014-10-01

    Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing.

  14. Systemic delivery of genes to striated muscles using adeno-associated viral vectors.

    Science.gov (United States)

    Gregorevic, Paul; Blankinship, Michael J; Allen, James M; Crawford, Robert W; Meuse, Leonard; Miller, Daniel G; Russell, David W; Chamberlain, Jeffrey S

    2004-08-01

    A major obstacle limiting gene therapy for diseases of the heart and skeletal muscles is an inability to deliver genes systemically to muscles of an adult organism. Systemic gene transfer to striated muscles is hampered by the vascular endothelium, which represents a barrier to distribution of vectors via the circulation. Here we show the first evidence of widespread transduction of both cardiac and skeletal muscles in an adult mammal, after a single intravenous administration of recombinant adeno-associated virus pseudotype 6 vectors. The inclusion of vascular endothelium growth factor/vascular permeability factor, to achieve acute permeabilization of the peripheral microvasculature, enhanced tissue transduction at lower vector doses. This technique enabled widespread muscle-specific expression of a functional micro-dystrophin in the skeletal muscles of dystrophin-deficient mdx mice, which model Duchenne muscular dystrophy. We propose that these methods may be applicable for systemic delivery of a wide variety of genes to the striated muscles of adult mammals. PMID:15273747

  15. Preparation of a recombinant adeno-associated viral vector with a mutation of human factor IX in large scale and its expression in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of adeno-associated viral vectors conraining a mutation of human factor IX (hFIXR338A) with different regulation elements were constructed and used to transduce cell lines. The plasmids and the stable transduction cell clones with high expression level of hFIXR338Awere obtained by selecting and optimizing, and then, the recombinant adeno-associated viral vector with hFIXR338Awas prepared via novel rHSV/AAV hybrid virus packaging system on a large scale, which contained the capsid protein genes. A method for producing rAAV-hFIXR338A viral stocks on a large scale and higher fiter was established,which can be used for industrial purpose. The titer of rAAV-hFIXR338A was more than 1.25x1012 particle/mL, and then, a mammalian cell line, C2C12 and the factor IXknock-out mice were transfected with the rAAV-hFIXR338Ain vitro and in vivo. The results show that the high-level expression of rAAV-hFIXR338A was achieved in cell line and hemophilia B mice. It reached at (2551.32±92.14) ng@ (106cells)-1 @ (24 h)-1 in C2C12 cell in vitro and had a peak concentration of 463.28 ng/mL in mice treated with rAAV-hFIX R338A, which was as high as the expression of rAAV-hFIX -wt (2565.76±64.36) ng@ (106 cells)-1@ (24 h)-1 in C2C12 and 453.92 ng/mL in the mice treated with rAAV-hFIX-wt) in vitro and in vivo, there is no any difference between two groups, but the clotting activity of hFIXR338A is about 2.46times higher than that of hFIX-wt. It was first reported that a mutation of human factor IX was used into gene therapy research for hemophilia B, meanwhile, a novel packaging system, rAAV/HSV was used for preparation of rAAV-hFIX R338A on a large scale, which laid the foundation of industrial production for applying rAAV viral stocks to gene therapy clinical trial for hemophilia B mediated with rAAV-hFIX.``

  16. 重组腺相关病毒转导人树突状细胞体外诱导抗肝癌免疫应答%Generation of antitumor response against hepatocellular carcinoma by in vitro transduction of dendritic cells with adeno-associated virus expressing α-fetoprotein

    Institute of Scientific and Technical Information of China (English)

    杜文贞; 于天霞

    2011-01-01

    Objective To investigate the generation of antitumor response against hepatocellular carcinoma by in vitro transduction of dendritic cells (DC)with recombinant adeno-associated virus expressing α-fetoprotein (rAAV-AFP). Methods Peripheral blood mononuclear cells were isolated from healthy volunteers. Adherent peripheral blood mononuclear cells were transduced with AAV-AFP and cultured in the presence of granulocyte macrophage colony stimulating factor and interleukin-4 to generate dendritic cells.MTS assay was used to measure the ability of DC transduced with AAV-AFP ( AAV-AFP + DC) to stimulate the proliferation of T cell. The phenotype and AFP protein expression of DC and the secretion of IFN (interferon)-γ and IL (interleukin)-4 by T cells were detected by flow cytometry. The killing efficacy of cytotoxic T lymphocytes (CTL) activated by AAV-AFP + DC against AFP positive hepatocellular carcinoma cell lines was detected by lactate dehydrogenase (LDH) release assay. Results AAV-AFP + DC expressed HLA Ⅰ (97. 12%), HLAⅡ (97.32%), CD80(38.94%), CD83(60.84%)and CD86(98. 14%). AFP was secreted by 81.2% of AAV-AFP + DC. And it could stimulate effectively the proliferation of T cell.19. 84% of CD4 + T cells and 18.65% of CD8 + T cells activated by AAV-AFP + DC produced IFN-γbut not IL-4 and showed distinct killing activities against AFP positive hepatocellular carcinoma cell lines HepG2 (56. 45% ) and BEL7402 (78. 84% ). Conclusion AAV-AFP + DC can elicit distinct antitumor responses against AFP positive hepatocellular carcinoma cell lines so as to provide a basis for further researches on the clinical application of AAV-AFP + DC in the treatment of hepatocellular carcinoma.%目的 探讨携带甲胎蛋白基因的重组腺相关病毒(rAAV-AFP)转导人树突状细胞(DC)体外诱导抗肝癌免疫应答.方法 分离健康志愿者外周血单核细胞,贴壁细胞转导rAAV-AFP后,在粒细胞巨噬细胞集落刺激因子(GMCSF)和白细胞介素4(IL-4)的联

  17. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial.

    Science.gov (United States)

    Allay, James A; Sleep, Susan; Long, Scott; Tillman, David M; Clark, Rob; Carney, Gael; Fagone, Paolo; McIntosh, Jenny H; Nienhuis, Arthur W; Davidoff, Andrew M; Nathwani, Amit C; Gray, John T

    2011-05-01

    To generate sufficient clinical-grade vector to support a phase I/II clinical trial of adeno-associated virus serotype 8 (AAV8)-mediated factor IX (FIX) gene transfer for hemophilia B, we have developed a large-scale, good manufacturing practice (GMP)-compatible method for vector production and purification. We used a 293T-based two-plasmid transient transfection system coupled with a three-column chromatography purification process to produce high-quality self-complementary AAV2/8 FIX clinical-grade vector. Two consecutive production campaigns using a total of 432 independent 10-stack culture chambers produced a total of ∼2 × 10(15) vector genomes (VG) by dot-blot hybridization. Benzonase-treated microfluidized lysates generated from pellets of transfected cells were purified by group separation on Sepharose beads followed by anion-exchange chromatography. The virus-containing fractions were further processed by gel filtration and ultrafiltration, using a 100-kDa membrane. The vector was formulated in phosphate-buffered saline plus 0.25% human serum albumin. Spectrophotometric analysis suggested ∼20% full particles, with only low quantities of nonviral proteins were visible on silver-stained sodium dodecyl sulfate-polyacrylamide gels. A sensitive assay for the detection of replication-competent AAV was developed, which did reveal trace quantities of such contaminants in the final product. Additional studies have confirmed the long-term stability of the vector at -80°C for at least 24 months and for at least 24 hr formulated in the clinical diluent and stored at room temperature within intravenous bags. This material has been approved for use in clinical trials in the United States and the United Kingdom.

  18. Successful disabling of the 5' UTR of HCV using adeno-associated viral vectors to deliver modular multimeric primary microRNA mimics.

    Science.gov (United States)

    Bourhill, Tarryn; Arbuthnot, Patrick; Ely, Abdullah

    2016-09-01

    Chronic hepatitis C virus (HCV) infection is a major health concern and is strongly associated with cirrhosis, hepatocellular carcinoma and liver-related mortality. The HCV genome is the template for both protein translation and viral replication and, being RNA, is amenable to direct genetic silencing by RNA interference (RNAi). HCV is a highly mutable virus and is capable of escaping RNAi-mediated silencing. This has highlighted the importance of developing RNAi-based therapy that simultaneously targets multiple regions of the HCV genome. To develop a multi-targeting RNAi activator, a novel approach for the generation of anti-HCV gene therapy was investigated. Five artificial primary miRNA (pri-miR) were each designed to mimic the naturally occurring monomeric pri-miR-31. Potent knockdown of an HCV reporter was seen with four of the five constructs and were processed according to the intended design. The design of the individual pri-miR mimics enabled the modular assembly into multimeric mimics of any possible conformation. Consequently the four potent pri-miR mimics were used to generate polycistronic cassettes, which showed impressive silencing of an HCV target. To further their application as a gene therapy, recombinant adeno-associated viral (rAAV) vectors that express the polycistronic pri-miR mimics were generated. All AAV-delivered anti-HCV pri-miR mimics significantly knocked down the expression of an HCV target and showed inhibition of HCV replicon replication. Here we describe a protocol for the generation of therapeutic rAAVs that express modular polycistronic pri-miR cassettes allowing for rapid alteration and generation of tailored therapeutic constructs against HCV.

  19. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René;

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... suppression by neuropeptide Y in the hippocampus is predominantly mediated by Y2 receptors, which, together with neuropeptide Y, are upregulated after seizures as a compensatory mechanism. To explore whether such upregulation could prevent seizures, we overexpressed Y2 receptors in the hippocampus using...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  20. Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery.

    Science.gov (United States)

    Zhang, Chuanling; Yao, Tianzhuo; Zheng, Yongxiang; Li, Zhongjun; Zhang, Qiang; Zhang, Lihe; Zhou, Demin

    2016-02-01

    Virus-based nanoparticles have shown promise as vehicles for delivering therapeutic genes. However, the rational design of viral vectors that enable selective tropism towards particular types of cells and tissues remains challenging. Here, we explored structural-functional relationships of the adeno-associated virus 2 (AAV2) vector by expanding its genetic code during production. As a proof-of-principle, an azide moiety was strategically displayed on the vector capsid as a bioorthogonal chemical reporter. Upon bioorthogonal conjugation of AAV2 with fluorophores and cyclic arginyl-glycyl-aspartic acid ligands at certain modifiable sites, we characterized in vitro and in vivo AAV2 movement and enhanced tropism selectivity towards integrin-expressing tumor cells. Targeting AAV2 vectors resulted in selective killing of U87 glioblastoma cells and derived xenografts via the herpes simplex virus suicide gene thymidine kinase, with the potency of ganciclovir being increased by 25-fold. Our results demonstrated successful rational modification of AAV2 as a targeting delivery vehicle, establishing a facile platform for precision engineering of virus-based nanoparticles in basic research and therapeutic applications.

  1. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  2. Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina.

    Science.gov (United States)

    Boye, Shannon E; Alexander, John J; Witherspoon, C Douglas; Boye, Sanford L; Peterson, James J; Clark, Mark E; Sandefer, Kristen J; Girkin, Chris A; Hauswirth, William W; Gamlin, Paul D

    2016-08-01

    Adeno-associated virus (AAV) has emerged as the preferred vector for targeting gene expression to the retina. Subretinally injected AAV can efficiently transduce retinal pigment epithelium and photoreceptors in primate retina. Inner and middle primate retina can be transduced by intravitreally delivered AAV, but with low efficiency. This is due to dilution of vector, potential neutralization of capsid because it is not confined to the immune-privileged retinal compartment, and the presence of the inner limiting membrane (ILM), a barrier separating the vitreous from the neural retina. We here describe a novel "subILM" injection method that addresses all three issues. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. In an initial experiment, we injected viscoelastic (Healon(®)), a substance we confirmed was biocompatible with AAV, to create a subILM bleb and subsequently injected AAV2-GFP into the bleb after irrigation with basic salt solution. For later experiments, we used a Healon-AAV mixture to place single, subILM injections. In all cases, subILM delivery of AAV was well tolerated-no inflammation or gross structural changes were observed by ophthalmological examination or optical coherence tomography. In-life fluorescence imaging revealed profound transgene expression within the area of the subILM injection bleb that persisted for the study duration. Uniform and extensive transduction of retinal ganglion cells (RGCs) was achieved in the areas beneath the subILM bleb. Transduction of Müller glia, ON bipolar cells, and photoreceptors was also observed. Robust central labeling from green fluorescent protein-expressing RGCs confirmed their continued survival, and was observed in the lateral geniculate nucleus, the superior colliculus, and the pretectum. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and

  3. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD.

  4. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo. PMID:26204415

  5. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors.

    Science.gov (United States)

    Piedra, Jose; Ontiveros, Maria; Miravet, Susana; Penalva, Cristina; Monfar, Mercè; Chillon, Miguel

    2015-02-01

    Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.

  6. Virus-mediated EpoR76E Therapy Slows Optic Nerve Axonopathy in Experimental Glaucoma.

    Science.gov (United States)

    Bond, Wesley S; Hines-Beard, Jessica; GoldenMerry, Y Paul L; Davis, Mara; Farooque, Alma; Sappington, Rebecca M; Calkins, David J; Rex, Tonia S

    2016-02-01

    Glaucoma, a common cause of blindness, is currently treated by intraocular pressure (IOP)-lowering interventions. However, this approach is insufficient to completely prevent vision loss. Here, we evaluate an IOP-independent gene therapy strategy using a modified erythropoietin, EPO-R76E, which has reduced erythropoietic function. We used two models of glaucoma, the murine microbead occlusion model and the DBA/2J mouse. Systemic recombinant adeno-associated virus-mediated gene delivery of EpoR76E (rAAV.EpoR76E) was performed concurrent with elevation of IOP. Axon structure and active anterograde transport were preserved in both models. Vision, as determined by the flash visual evoked potential, was preserved in the DBA/2J. These results show that systemic EpoR76E gene therapy protects retinal ganglion cells from glaucomatous degeneration in two different models. This suggests that EPO targets a component of the neurodegenerative pathway that is common to both models. The efficacy of rAAV.EpoR76E delivered at onset of IOP elevation supports clinical relevance of this treatment. PMID:26502777

  7. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  8. Study of adeno-associated virus carrying the HGFK1 gene(AAV-HGFK1) in treating rat hepatocellular carcinoma%腺相关病毒介导的HGFK1对大鼠肝细胞癌的治疗作用研究

    Institute of Scientific and Technical Information of China (English)

    顾春荣; 郭跃武; 赵晖; 孙元珏; 姚阳; 沈赞; 林李家宓

    2009-01-01

    -angiogenesis molecule than angiostatin. In this study, we observed the effects and mechanisms of HGFK1 gene on the HCC. Methods: A recombinant adeno-associated vires carrying the HGFK1 gene (rAAV-HGFK1) was constructed.HCC of rat was induced by McA-RH7777. rAAV-HGFK1 was used to treat the rat, median survival time and metastasis rate were observed. Results: Ten days after tumor cell inoculation, surgery were performed to confirm the tumor formation, PBS, rAAV-EGFP or rAAV-HGFK1 was injected directly into the tumor nodule followed by portal vein injection. Results from our study demonstrated that rAAV-HGFK1 treatment significantly prolonged the median survival time of the HCC bearing rats from 30 days (PBS and rAAV-EGFP groups) to 49 days (rAAV-HGFK1 group). More importantly rAAV-HGFK1 inhibited tumor growth and completely prevented liver, lung and peritoneal metastasis. In the controlled PBS and AAV-EGFP group, liver and peritoneal metastasis rate were both 100%, and lung metastasis rate was 100% and 83%, respectively. While there was no metastasis found in treatment group, with only 33% of ascites happened. This was most possibly due to the primary tumor in liver but not due to the metastasis. Moreover, at a higher magnification (1000×), it was clear that the HGFK1 protein was expressed mainly in the cytoplasma of liver cells. In parallel, IHC staining of CD31 also demonstrated a significantly lower level of microvessel density (MVD) (6.21±1.6) in the liver tumor of the AAV-HGFK1 treatment group, as compared to the two control PBS and AAV-EGFP groups (25.1±2.1 and 26.8±2.5, respectively, P<0.01). HE staining showed that AAV-HGFK1 treatment induced large areas of necrosis in the tumor tissues, while minimal areas of necrosis were observed in the tumor tissue in the control groups. In addition, no toxicity appeared when high dosage (4.8× 1012 vg/rat) of rAAV-HGFK1 was administered in rats. Conclusion: Results from this study demonstrated that HGFK1 inhibited the growth and

  9. 两种不同病毒载体携带靶向大鼠金属蛋白酶组织抑制因子(TIMP)-1小干扰RNA抗肝纤维化作用的比较%Comparison between the antifibrotic effects of adeno-associated virus and lentivirus carrying small interfering RNA of TIMP-1 in rat liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    马雪梅; 张群; 庞国进; 丛敏

    2013-01-01

    Objective To construct recombinant adeno-associated virus and lentivirus carrying siRNA of TIMP-1 and to investigate their antifibrotic effects on CCl4-induced liver fibrosis in rats.Methods One pair of siRNA which could effectively inhibit expression of the TIMP-1 gene in HSC-T6 was screened and cloned into AAV vector and lentiviral vector to construct the recombinant AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1.AAV/EGFP and Lenti/EGFP as negative control were also obtained.Fifty-eight male Wistar rats were randomly divided into six groups:control group (n =8),CCl4 group,AAV/EGFP,Lenti/EGFP,AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 groups (all n =10).After the administration of CCl4 for four weeks,liver samples were collected for the immunohistochemical staining and detection of TIMP-1 expression.Results Livers from the control rats showed normal lobular structure around vessels (HE and Masson staining).In contrast,livers from the model,AAV/EGFP and Lenti/EGFP groups showed severe fibrosis,including septal fibrosis,extensive bridging,and fatty degeneration.The expressions of TIMP-1 mRNA and protein were also elevated in the livers from these groups.Compared with the fibrosis model group,the AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 groups showed good preservation of liver lobular architecture and only mild bridging fibrosis,accompanied by decreased expression of TIMP-1 mRNA and protein.Semi-quantitative analysis of the fibrosis stage indicated that most rats in the model,AAV/EGFP and Lenti/EGFP groups were of S3 and S4 (80%),while 20% of the rats were of S5.In contrast,most rats (90%) in the AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 groups were of stages S2 and S3,with only one rat of S4.There was no significant difference between these recombinant virus therapy groups.Conclusions Both AAV/siRNA-TIMP-1 and Lenti/siRNA-TIMP-1 can suppress the expression of TIMP-1 in rat fibrotic liver,playing an effective antifibrotic role in the rat liver.%目的 观察以腺相关病

  10. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  11. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  12. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Science.gov (United States)

    Weber, Nicholas D; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S; Roychoudhury, Pavitra; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  13. Neutralizing Antibodies Against Adeno-Associated Viral Capsids in Patients with mut Methylmalonic Acidemia.

    Science.gov (United States)

    Harrington, Elizabeth A; Sloan, Jennifer L; Manoli, Irini; Chandler, Randy J; Schneider, Mark; McGuire, Peter J; Calcedo, Roberto; Wilson, James M; Venditti, Charles P

    2016-05-01

    Isolated methylmalonic acidemia (MMA), a group of autosomal recessive inborn errors of metabolism, is most commonly caused by complete (mut(0)) or partial (mut(-)) deficiency of the enzyme methylmalonyl-CoA mutase (MUT). The severe metabolic instability and increased mortality experienced by many affected individuals, especially those with mut(0) MMA, has led centers to use elective liver transplantation as a treatment for these patients. We have previously demonstrated the efficacy of systemic adeno-associated viral (AAV) gene delivery as a treatment for MMA in a murine model and therefore sought to survey AAV antibody titers against serotypes 2, 8, and 9 in a group of well-characterized MMA patients, accrued via a dedicated natural history study ( clinicaltrials.gov ID: NCT00078078). Plasma samples provided by 42 patients (8 mut(-) and 34 mut(0); 10 had received organ transplantation), who ranged in age between 2 and 31 years, were analyzed to examine AAV2 (n = 35), AAV8 (n = 41), and AAV9 (n = 42) antibody titers. In total, the seroprevalence of antibodies against AAV2, AAV8, or AAV9 was 20%, 22%, and 24%, respectively. We observed a lower-than-expected seropositivity rate (titers ≥1:20) in the pediatric MMA patients (2-18 years) for both AAV2 (p gene delivery as a treatment for mut MMA. PMID:26790480

  14. Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: progress and challenges

    OpenAIRE

    Raj, Deepak; Davidoff, Andrew M.; Nathwani, Amit C.

    2011-01-01

    Therapies currently used for hemophilia involve injection of protein concentrates that are expensive, invasive and associated with side effects such as development of neutralizing antibodies (inhibitors) that diminish therapeutic efficacy. Gene transfer is an attractive alternative to circumvent these issues. However, until now, clinical trials using gene therapy to treat hemophilia have failed to demonstrate sustained efficacy, although a vector based on a self-complementary adeno-associated...

  15. Restriction Factors Against Recombinant Adeno-associated Virus Vectormediated Gene Transfer in Dystrophin-deficient Muscles.

    Science.gov (United States)

    Dupont, Jean-Baptiste

    2016-01-01

    Despite the unprecedented beneficial effects of rAAV gene therapy in animal models of Duchenne muscular dystrophy (DMD), the need to inject large amounts of vector in vivo to improve phenotype raises obvious biosafety concerns. While rAAV vectors generally exhibit a good safety profile, specific pathological phenotypes such as those observed in dystrophin-deficient muscles may promote immunotoxic/genotoxic effects. Increasing the therapeutic index of rAAV in DMD muscles by reducing the effective dose could be a pivotal means of ensuring efficient clinical translation. This requires a comprehensive understanding of the rAAV transduction process, which is almost always studied in non-pathological tissues or in vitro. In this review, we focus on the molecular fate of rAAV after injection, and how the individual stages of transduction could be affected in the context of DMD. PMID:27121109

  16. Generation of Insulin-Producing Human Mesenchymal Stem Cells Using Recombinant Adeno-Associated Virus

    OpenAIRE

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-01-01

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet β-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced wi...

  17. Complete Correction of Hemophilia A with Adeno-Associated Viral Vectors Containing a Full-Size Expression Cassette

    OpenAIRE

    Lu, Hui; Chen, Lingxia; Wang, Jinhui; Huack, Bernd; Sarkar, Rita; Zhou, Shangzhen; Xu, Ray; Ding, Qiulan; Wang, Xuefeng; WANG, HONGLI; Xiao, Weidong

    2008-01-01

    Hemophilia A is caused by a deficiency in the factor VIII (FVIII) gene. Constrained by limited packaging capacity, even the 4.3-kb B domain-deleted FVIII remained a challenge for delivery by a single adeno-associated viral (AAV) vector. Studies have shown that up to a 6.6-kb vector sequence may be packaged into AAV virions, which suggested an alternative strategy for hemophilia A gene therapy. To explore the usefulness of AAV vectors carrying an oversized FVIII gene, we constructed the AAV-FV...

  18. CEACAM1-Mediated Inhibition of Virus Production.

    Science.gov (United States)

    Vitenshtein, Alon; Weisblum, Yiska; Hauka, Sebastian; Halenius, Anne; Oiknine-Djian, Esther; Tsukerman, Pinchas; Bauman, Yoav; Bar-On, Yotam; Stern-Ginossar, Noam; Enk, Jonatan; Ortenberg, Rona; Tai, Julie; Markel, Gal; Blumberg, Richard S; Hengel, Hartmut; Jonjic, Stipan; Wolf, Dana G; Adler, Heiko; Kammerer, Robert; Mandelboim, Ofer

    2016-06-14

    Cells in our body can induce hundreds of antiviral genes following virus sensing, many of which remain largely uncharacterized. CEACAM1 has been previously shown to be induced by various innate systems; however, the reason for such tight integration to innate sensing systems was not apparent. Here, we show that CEACAM1 is induced following detection of HCMV and influenza viruses by their respective DNA and RNA innate sensors, IFI16 and RIG-I. This induction is mediated by IRF3, which bound to an ISRE element present in the human, but not mouse, CEACAM1 promoter. Furthermore, we demonstrate that, upon induction, CEACAM1 suppresses both HCMV and influenza viruses in an SHP2-dependent process and achieves this broad antiviral efficacy by suppressing mTOR-mediated protein biosynthesis. Finally, we show that CEACAM1 also inhibits viral spread in ex vivo human decidua organ culture. PMID:27264178

  19. CEACAM1-Mediated Inhibition of Virus Production

    Directory of Open Access Journals (Sweden)

    Alon Vitenshtein

    2016-06-01

    Full Text Available Cells in our body can induce hundreds of antiviral genes following virus sensing, many of which remain largely uncharacterized. CEACAM1 has been previously shown to be induced by various innate systems; however, the reason for such tight integration to innate sensing systems was not apparent. Here, we show that CEACAM1 is induced following detection of HCMV and influenza viruses by their respective DNA and RNA innate sensors, IFI16 and RIG-I. This induction is mediated by IRF3, which bound to an ISRE element present in the human, but not mouse, CEACAM1 promoter. Furthermore, we demonstrate that, upon induction, CEACAM1 suppresses both HCMV and influenza viruses in an SHP2-dependent process and achieves this broad antiviral efficacy by suppressing mTOR-mediated protein biosynthesis. Finally, we show that CEACAM1 also inhibits viral spread in ex vivo human decidua organ culture.

  20. Development of an intein-mediated split-Cas9 system for gene therapy

    OpenAIRE

    Truong, D.J.J.; Kuehner, K.; Kuehn, R.; Werfel, S.; Engelhardt, S.; WURST, W; Ortiz, O.

    2015-01-01

    Using CRISPR/Cas9, it is possible to target virtually any gene in any organism. A major limitation to its application in gene therapy is the size of Cas9 (>4 kb), impeding its efficient delivery via recombinant adeno-associated virus (rAAV). Therefore, we developed a split–Cas9 system, bypassing the packaging limit using split-inteins. Each Cas9 half was fused to the corresponding split-intein moiety and, only upon co-expression, the intein-mediated trans-splicing occurs and the full Cas9 pro...

  1. Neuronal tolerance to hypoxia-ischemia through recombinant adeno-associated viral vectors expressing neuronal and inducible nitric oxide synthase An in vivo study

    Institute of Scientific and Technical Information of China (English)

    Chunmei Chen; Weizhong Yang; Chunhua Wang; Songsheng Shi; Jianping Chen; Yong Huang; Dongsheng Cai

    2008-01-01

    BACKGROUND:Studies have confirmed that neuronal nitric oxide synthase(nNOS)mediates neurotoxic effects during the early stages of hypoxia-ischemia,while inducible nitric oxide synthase(iNOS)mediates delayed neurotoxicity during advanced stages of hypoxia-ischemia.OBJECTIVE:This study was designed to observe neuronal apoptosis and the expressions of nNOS,iNOS, p38 mitogen-activated protein kinase(MAPK),and caspase-3 mRNA following transfection of recombinant adeno-associated viral vectors separately expressing nNOS and iNOS antisense(rAAV-AsnNOS and rAVV-AsiNOS,respectively)into rat brains subjected to cerebral ischemia; to analyze mechanisms underlying elevated neuronal tolerance to hypoxia-ischemia.DESIGN:A randomized controlled in vivo experiment.SETTING:Fujian Institute of Neurosurgery & Department of Neurosurgery,Union Hospital,Fujian Medical University. MATERIALS:Eighty healthy adult male Sprague Dawley rats of clean grade were provided by the Zhejiang Laboratory Animal Center,China.The protocol was performed in accordance with ethical guidelines for the use and care of animals.The following vectors,rAAV-AsnNOS,rAAV-AsiNOS,and rAAV expressing the β-galactosidase gene(rAAV-LacZ),were successfully constructed by Fujian Institute of Neurosurgery. Rabbit anti-mouse nitrotyrosine(NT)monoclonal antibody(Zhongshan Jinqiao Biotechnology Co.,Ltd.,Beijing,China)and reverse transcription-polymerase chain reaction(RT-PCR)kit (two-step method)(Promega Company,USA)were used in this study.METHODS:This study was performed at the Fujian Institute of Neurosurgery in December 2003.Sixty rats were randomly divided into 3 groups,with 20 rats in each group:rAAV-AsnNOS group,rAAV-AsiNOS group,and rAAV-LacZ group.The remaining 20 rats served as controls.Pre-treated viral vectors (rAAV-AsnNOS,rAAV-AsiNOS,and rAAV-LacZ,respectively; each 50 μ L,virus titer of 2x109 viral particles/mL)were transfected into the cerebral cortex of the targeted.Phosphate buffer saline(50 μ L

  2. Effect of nuclear factor κB inhibition on serotype 9 adeno-associated viral (AAV9) minidystrophin gene transfer to the mdx mouse.

    Science.gov (United States)

    Reay, Daniel P; Niizawa, Gabriela A; Watchko, Jon F; Daood, Molly; Reay, Ja'Nean C; Raggi, Eugene; Clemens, Paula R

    2012-01-01

    Gene therapy studies for Duchenne muscular dystrophy (DMD) have focused on viral vector-mediated gene transfer to provide therapeutic protein expression or treatment with drugs to limit dystrophic changes in muscle. The pathological activation of the nuclear factor (NF)-κB signaling pathway has emerged as an important cause of dystrophic muscle changes in muscular dystrophy. Furthermore, activation of NF-κB may inhibit gene transfer by promoting inflammation in response to the transgene or vector. Therefore, we hypothesized that inhibition of pathological NF-κB activation in muscle would complement the therapeutic benefits of dystrophin gene transfer in the mdx mouse model of DMD. Systemic gene transfer using serotype 9 adeno-associated viral (AAV9) vectors is promising for treatment of preclinical models of DMD because of vector tropism to cardiac and skeletal muscle. In quadriceps of C57BL/10ScSn-Dmd(mdx)/J (mdx) mice, the addition of octalysine (8K)-NF-κB essential modulator (NEMO)-binding domain (8K-NBD) peptide treatment to AAV9 minidystrophin gene delivery resulted in increased levels of recombinant dystrophin expression suggesting that 8K-NBD treatment promoted an environment in muscle tissue conducive to higher levels of expression. Indices of necrosis and regeneration were diminished with AAV9 gene delivery alone and to a greater degree with the addition of 8K-NBD treatment. In diaphragm muscle, high-level transgene expression was achieved with AAV9 minidystoophin gene delivery alone; therefore, improvements in histological and physiological indices were comparable in the two treatment groups. The data support benefit from 8K-NBD treatment to complement gene transfer therapy for DMD in muscle tissue that receives incomplete levels of transduction by gene transfer, which may be highly significant for clinical applications of muscle gene delivery. PMID:22231732

  3. Noninvasive Imaging Reveals Stable Transgene Expression in Mouse Airways After Delivery of a Nonintegrating Recombinant Adeno-Associated Viral Vector.

    Science.gov (United States)

    Vidović, Dragana; Gijsbers, Rik; Jimenez, Ana Quiles; Dooley, James; Van den Haute, Chris; Van der Perren, Anke; Liston, Adrian; Baekelandt, Veerle; Debyser, Zeger; Carlon, Marianne Sylvia

    2016-01-01

    Gene therapy holds promise to cure a wide range of genetic and acquired diseases. Recent successes in recombinant adeno-associated viral vector (rAAV)-based gene therapy in the clinic for hereditary disorders such as Leber's congenital amaurosis and hemophilia B encouraged us to reexplore an rAAV approach for pulmonary gene transfer. Only limited clinical successes have been achieved for airway gene transfer so far, underscoring the need for further preclinical development of rAAV-based gene therapy for pulmonary disorders. We sought to determine the preclinical potential of an airway-tropic serotype, rAAV2/5, encoding reporter genes when delivered to mouse airways. Although several groups have assessed the stability of gene transfer using a nonintegrating rAAV in mouse airways, long-term stability for more than a year has not been reported. Additionally, an extensive quantitative analysis of the specific cell types targeted by rAAV2/5 using cell-specific markers is lacking. We obtained sustained gene expression in upper and lower airways up to 15 months after vector administration, a substantial proportion of the lifespan of a laboratory mouse. In addition, we demonstrated that readministration of rAAV2/5 to the airways is feasible and increases gene expression 14 months after primary vector administration, despite the presence of circulating neutralizing antibodies. Finally, identification of transduced cell types revealed different subpopulations being targeted by rAAV2/5, with 64% of β-galactosidase-positive cells being ciliated cells, 34% club cells in the conducting airways, and 75% alveolar type II cells in the alveoli at 1 month postinjection. This underscores the therapeutic potential of a nonintegrating rAAV vector to develop a gene therapeutic drug for a variety of pulmonary disorders, such as cystic fibrosis, primary ciliary dyskinesia, and surfactant deficiencies. PMID:26567984

  4. Adeno-Associated Viral-Mediated LARGE Gene Therapy Rescues the Muscular Dystrophic Phenotype in Mouse Models of Dystroglycanopathy

    OpenAIRE

    Yu, Miao; He, Yonglin; Wang, Kejian; Zhang, Peng; Zhang, Shengle; Hu, Huaiyu

    2013-01-01

    Dystroglycanopathies are a group of congenital muscular dystrophies (CMD) often caused by mutations in genes encoding glycosyltransferases that lead to hypoglycosylation of α-dystroglycan (α-DG) and reduce its extracellular matrix-binding activity. Overexpressing LARGE (formerly known as like-glycosyltransferase) generates an extracellular matrix-binding carbohydrate epitope in cells with CMD-causing mutations in not only LARGE but also other glycosyltransferases, including POMT1, POMGnT1, an...

  5. AAV2/9介导的PD-L1保护移植物的实验研究%EXPERIMENTAL STUDY ON ADENO-ASSOCIATED VIRUS 2/9 MEDIATED PD-L1 GENE TRANSFER TO THE GRAFT PROTECTING ALLO-REJECTION

    Institute of Scientific and Technical Information of China (English)

    罗汕; 蒋小峰; 杨学伟

    2013-01-01

    目的 探讨腺相关病毒介导的PD-L1在移植排斥反应中的作用.方法 用含AAV2/9-PD-L1或LacZ的UW液灌注供体心脏后,移植到受体大鼠体内,观察移植物的转染效率和存活时间.结果 AAV2/9可以高效地介导外源性基因转染移植物,AAV2/9-PD-L1转染移植物后虽能延长移植物的存活时间,但和对照组比较无统计学意义.结论 AAV2/9是一种高效安全的病毒载体,PD-L1局部表达抑制排斥反应的机制还需进一步研究.

  6. Expression of Lecithin: Cholesterol Acyltransferaseand/or apoA-I Mediated by Recombinant Adeno-as-sociated Virus in Myogenic Cell

    Institute of Scientific and Technical Information of China (English)

    王立峰; 范乐明; 陈丙莺; 刘宝瑞; 王若宁; 魏恩会

    2002-01-01

    Objective Lecithia: cholesterol acyltrmsfer ase (LCAT) is the major enzyme producing most plasma cholesterol esters( CE )and a key partiipant in the process of reverse cholesterol traansfer ( RCT). The aim of the study was to co-express LCAT and its nature activator apoA- I medi ated by recombinant adeno-associated virus vectors in the skeletal muscle cells, and open a new avenue of gene therapy touard the primary or secondary LCAT deficiency. Methods 293T cells were cotrans fected with pDG and rAAVAIL/rAAVL plasmid to produce infectious rAAV, and non-iouic iodixanol gradients centri f ngation followed by heparin affinity chromatography was per formed f or separation . pu rification and concentration of rAAV. The particle numbers of rAAV were assayed by dot-blot, then these vectors transduced C2C12 myoblasts. ELISA and Western Blot asasayed for human apoA- I and 3H-cholesterol labeled radiochemical methods for LCAT activity. Genomic DNA was extracted from transduced C2C12 and analyzed fo the presence of vector sequence by PCR amplifiations. Results The particle mumbers of rAAV were 7× 1014/L (rAAAIL) and 1 × 1014/L (rAAVL). The expres sion of human apoA- I cDNA and/or human LCAT cDNA in transduced C2C12 cells lasted for 3 0 d, even after myoblasts were differentiated into myotubes. PCR products for transgene indiated the long-term persistence of transduced vector sequences. Conclusion The result indicated that the meth ods used for production and purification of rAAV is an effiient and rAAV vector mediate the expres sion and secretion of LCAT and apoA- I gene in C2C12 myoblasts successfully. It suggested that the use of rAAV vectors mediating the high efficiency, long-term expression of human LCAT cDNA and/ or apoA- I cDNA in skeletal muscle in vivo might be a safe and fessible strategy to the gene therapy of LCAT deficiency.

  7. Protection from Ebola Virus Mediated by Cytotoxic T Lymphocytes Specific for the Viral Nucleoprotein

    OpenAIRE

    Wilson, Julie A.; Hart, Mary Kate

    2001-01-01

    Cytotoxic T lymphocytes (CTLs) are proposed to be critical for protection from intracellular pathogens such as Ebola virus. However, there have been no demonstrations that protection against Ebola virus is mediated by Ebola virus-specific CTLs. Here, we report that C57BL/6 mice vaccinated with Venezuelan equine encephalitis virus replicons encoding the Ebola virus nucleoprotein (NP) survived lethal challenge with Ebola virus. Vaccination induced both antibodies to the NP and a major histocomp...

  8. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer

    International Nuclear Information System (INIS)

    HSVtk/ganciclovir (GCV) gene therapy has been extensively studied in tumors and relies largely on the gene expression of HSVtk. Most studies, however, have failed to demonstrate any significant benefit of a controlled gene expression strategy in cancer treatment. The Tet-On system is commonly used to regulate gene expression following Dox induction. We have evaluated the antitumor effect of HSVtk/ganciclovir gene therapy under Tet-On regulation by means of adeno-associated virus-2 (AAV-2)-mediated HSVtk gene transfer with direct intratumoral injections in mice bearing breast cancer tumors. Recombinant adeno-associated virus-2 (rAAV) was constructed and transduced into MCF-7 cell line. GCV treatment to the rAAV infected MCF-7 cells was performed by MTT assay under the doxycycline (Dox) induction or without Dox induction at a vp (viral particle) number of ≥104 /cell. The virus was administered intratumorally to nude mice that had also received GCV intraperitoneally. The antitumor effects were evaluated by measuring tumor regression and histological analysis. We have demonstrated that GCV treatment to the infected MCF-7 cells under the Dox induction was of more inhibited effects than those without Dox induction at ≥104 vp/cell. In ex vivo experiments, tumor growth of BALB/C nude mice breast cancer was retarded after rAAV-2/HSVtk/Tet-On was injected into the tumors under the Dox induction. Infiltrating cells were also observed in tumors after Dox induction followed by GCV treatment and cells were profoundly damaged. The expression of HSVtk gene in MCF-7 cells and BALB/C nude mice tumors was up-regulated by Tet-On under Dox induction with reverse transcription-PCR (RT-PCR) analysis. The antitumor effect of rAAV-mediated HSVtk/GCV gene therapy under the Dox induction with direct intratumoral injections may be a useful treatment for breast cancer and other solid tumors

  9. Longitudinal follow-up and characterization of a robust rat model for Parkinson's disease based on overexpression of alpha-synuclein with adeno-associated viral vectors.

    Science.gov (United States)

    Van der Perren, Anke; Toelen, Jaan; Casteels, Cindy; Macchi, Francesca; Van Rompuy, Anne-Sophie; Sarre, Sophie; Casadei, Nicolas; Nuber, Silke; Himmelreich, Uwe; Osorio Garcia, Maria Isabel; Michotte, Yvette; D'Hooge, Rudi; Bormans, Guy; Van Laere, Koen; Gijsbers, Rik; Van den Haute, Chris; Debyser, Zeger; Baekelandt, Veerle

    2015-03-01

    Testing of new therapeutic strategies for Parkinson's disease (PD) is currently hampered by the lack of relevant and reproducible animal models. Here, we developed a robust rat model for PD by injection of adeno-associated viral vectors (rAAV2/7) encoding α-synuclein into the substantia nigra, resulting in reproducible nigrostriatal pathology and behavioral deficits in a 4-week time period. Progressive dopaminergic dysfunction was corroborated by histopathologic and biochemical analysis, motor behavior testing and in vivo microdialysis. L-DOPA treatment was found to reverse the behavioral phenotype. Non-invasive positron emission tomography imaging and magnetic resonance spectroscopy allowed longitudinal monitoring of neurodegeneration. In addition, insoluble α-synuclein aggregates were formed in this model. This α-synuclein rat model shows improved face and predictive validity, and therefore offers the possibility to reliably test novel therapeutics. Furthermore, it will be of great value for further research into the molecular pathogenesis of PD and the importance of α-synuclein aggregation in the disease process. PMID:25599874

  10. Vector-Mediated In Vivo Antibody Expression.

    Science.gov (United States)

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. PMID:26104192

  11. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Directory of Open Access Journals (Sweden)

    Hélène Hall

    Full Text Available Intraneuronal inclusions containing alpha-synuclein (a-syn constitute one of the pathological hallmarks of Parkinson's disease (PD and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  12. RNA interference-mediated inhibition of Hepatitis B Virus replication

    Institute of Scientific and Technical Information of China (English)

    TANG Ni; ZHANG Bingqiang; YAN Ge; PU Dan; GAO Xiaolin; Tong-Chuan He; HUANG Ailong

    2004-01-01

    Persistent and recurrent infection of hepatitis B virus (HBV) represents one of the most common and severe viral infections of humans, and has caused a formidable health problem in the affected countries. Currently used antiviral drugs have a very limited success on controlling HBV replication and infection. RNA interference (RNAi), a process by which double-stranded RNA (dsRNA) directs sequence-specific degradation of target mRNA in mammalian and plant cells, has recently been used to knockdown gene expression in various species. In this study, we sought to determine whether RNAi-mediated silencing of HBV viral gene expression could lead to the effective inhibition of HBV replication. We first developed RNAi vectors that expressed small interfering RNA (siRNA) and targeted the HBV core or surface gene sequence. Our results demonstrated that these specific siRNAs efficiently reduced the levels of corresponding viral RNAs and proteins, and thus suppressed viral replication. Treatment with siRNA gave the greatest reduction in the levels of HBsAg (92%) and in HBeAg (85%) respectively in the cultured cell medium. Our findings further demonstrated that the RNAi-mediated antiviral effect was sequence-specific and dose-dependent. Therefore, our findings strongly suggest that RNAi-mediated silencing of HBV viral genes could effectively inhibit the replication of HBV, hence RNAi-based strategy should be further explored as a more efficacious antiviral therapy of HBV infection.

  13. Phylodynamics and human-mediated dispersal of a zoonotic virus.

    Science.gov (United States)

    Talbi, Chiraz; Lemey, Philippe; Suchard, Marc A; Abdelatif, Elbia; Elharrak, Mehdi; Nourlil, Jalal; Jalal, Nourlil; Faouzi, Abdellah; Echevarría, Juan E; Vazquez Morón, Sonia; Rambaut, Andrew; Campiz, Nicholas; Tatem, Andrew J; Holmes, Edward C; Bourhy, Hervé

    2010-10-28

    Understanding the role of humans in the dispersal of predominantly animal pathogens is essential for their control. We used newly developed Bayesian phylogeographic methods to unravel the dynamics and determinants of the spread of dog rabies virus (RABV) in North Africa. Each of the countries studied exhibited largely disconnected spatial dynamics with major geopolitical boundaries acting as barriers to gene flow. Road distances proved to be better predictors of the movement of dog RABV than accessibility or raw geographical distance, with occasional long distance and rapid spread within each of these countries. Using simulations that bridge phylodynamics and spatial epidemiology, we demonstrate that the contemporary viral distribution extends beyond that expected for RABV transmission in African dog populations. These results are strongly supportive of human-mediated dispersal, and demonstrate how an integrated phylogeographic approach will turn viral genetic data into a powerful asset for characterizing, predicting, and potentially controlling the spatial spread of pathogens.

  14. Phylodynamics and human-mediated dispersal of a zoonotic virus.

    Directory of Open Access Journals (Sweden)

    Chiraz Talbi

    Full Text Available Understanding the role of humans in the dispersal of predominantly animal pathogens is essential for their control. We used newly developed Bayesian phylogeographic methods to unravel the dynamics and determinants of the spread of dog rabies virus (RABV in North Africa. Each of the countries studied exhibited largely disconnected spatial dynamics with major geopolitical boundaries acting as barriers to gene flow. Road distances proved to be better predictors of the movement of dog RABV than accessibility or raw geographical distance, with occasional long distance and rapid spread within each of these countries. Using simulations that bridge phylodynamics and spatial epidemiology, we demonstrate that the contemporary viral distribution extends beyond that expected for RABV transmission in African dog populations. These results are strongly supportive of human-mediated dispersal, and demonstrate how an integrated phylogeographic approach will turn viral genetic data into a powerful asset for characterizing, predicting, and potentially controlling the spatial spread of pathogens.

  15. Electroporation-mediated transfection of Acholeplasma laidlawii with mycoplasma virus L1 and L3 DNA.

    OpenAIRE

    Lorenz, A.; Just, W.; da Silva Cardoso, M; Klotz, G.

    1988-01-01

    In contrast to mycoplasma virus L1 and L2 circular DNA, mycoplasma virus L3 linear DNA is not biologically active in polyethylene glycol-mediated transfection. Electroporation of Acholeplasma laidlawii, however, leads to plaque formation after incubation with L3 DNA. The efficiency of electroporation-mediated transfection is 1/10 that of polyethylene glycol-mediated transfection as estimated with L1 DNA. Trypsin treatment of cells before DNA addition increases the efficiency of DNA uptake.

  16. Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes.

    Science.gov (United States)

    Bodewes, Rogier; van der Giessen, Joke; Haagmans, Bart L; Osterhaus, Albert D M E; Smits, Saskia L

    2013-07-01

    Red foxes (Vulpes vulpes) are the most widespread members of the order of Carnivora. Since they often live in (peri)urban areas, they are a potential reservoir of viruses that transmit from wildlife to humans or domestic animals. Here we evaluated the fecal viral microbiome of 13 red foxes by random PCR in combination with next-generation sequencing. Various novel viruses, including a parvovirus, bocavirus, adeno-associated virus, hepevirus, astroviruses, and picobirnaviruses, were identified.

  17. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  18. Determination of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies in Patients With Heart Failure in the Cardiovascular Foundation of Colombia (ANVIAS): Study Protocol

    Science.gov (United States)

    Prada, Carlos E; Lopez, Marcos; Castillo, Victor; Echeverria, Luis Eduardo; Serrano, Norma

    2016-01-01

    Background Recent progress in the pathophysiology of heart failure (HF) has led to the development of new therapeutic options such as gene therapy and the use of adeno-associated viral (AAV) vectors. Despite the promising results in early clinical trials of gene therapy for HF, various obstacles have been faced, such as the presence of neutralizing antibodies (NAbs) against the capsid vectors. NAb activity limits vector transduction levels and therefore diminishes the final therapeutic response. Recent studies evaluating the prevalence of NAbs in various populations found considerable geographic variability for each AAV serotype. However, the levels of NAbs in Latin American populations are unknown, becoming a limiting factor to conducting AAV vector therapeutic trials in this population. Objective The goal of this study is to determine for the first time, the prevalence of anti-AAV NAbs for the serotypes 1, 2, and 9 in HF patients from the city of Bucaramanga, Colombia, using the in vitro transduction inhibition assay. Methods We will conduct a cross-sectional study with patients who periodically attend the HF clinic of the Cardiovascular Foundation of Colombia and healthy volunteers matched for age and sex. For all participants, we will evaluate the NAb levels against serotypes AAV1, AAV2, and AAV9. We will determine NAb levels using the in vitro transduction inhibition assay. In addition, participants will answer a survey to evaluate their epidemiological and socioeconomic variables. Participation in the study will be voluntary and all participants will sign an informed consent document before any intervention. Results The project is in the first phase: elaboration of case report forms and the informed consent form, and design of the recruitment strategy. Patient recruitment is expected to begin in the spring of 2016. We expect to have preliminary results, including the titer of the viral vectors, multiplicity of infections that we will use for each serotype

  19. Virus-mediated FCC iron nanoparticle induced synthesis of uranium dioxide nanocrystals.

    Science.gov (United States)

    Ling, Tao; Yu, Huimin; Shen, Zhongyao; Wang, Hui; Zhu, Jing

    2008-03-19

    A reducing system involving M13 virus-mediated FCC Fe nanoparticles was employed to achieve uranium reduction and synthesize uranium dioxide nanocrystals. Here we show that metastable face-centered cubic (FCC) Fe nanoparticles were fabricated around the surface of the M13 virus during the specific adsorption of the virus towards Fe ions under a reduced environment. The FCC phase of these Fe nanoparticles was confirmed by careful TEM characterization. Moreover, this virus-mediated FCC Fe nanoparticle system successfully reduced contaminable U(VI) into UO(2) crystals with diameters of 2-5 nm by a green and convenient route.

  20. 口服重组腺相关病毒基因药物%Oral recombinant adeno-associated virus gene medicine

    Institute of Scientific and Technical Information of China (English)

    刁勇; 许瑞安

    2009-01-01

    重组腺相关病毒(rAAV)载体介导的口服基冈药物引起业界广泛的重视.尽管经口服给药后转基因的有效表达面临许多障碍,但该技术的有效性已得到大量实验证实.本文总结了口服rAAV基冈药物的临床前研究结果,重点阐述了该类型药物的传递、吸收、分布和基冈转导等药动学特点.已证实rAAV基因药物对人体的安全性高,但口服rAAV基因药物的临床应用仍需对其作用机制和生物约剂学特征进行深入和广泛的研究.

  1. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications

    OpenAIRE

    Friedland, Ari E.; Baral, Reshica; Singhal, Pankhuri; Loveluck, Katherine; Shen, Shen; Sanchez, Minerva; Marco, Eugenio; Gotta, Gregory M.; Maeder, Morgan L.; Kennedy, Edward M.; Kornepati, Anand V. R.; Sousa, Alexander; Collins, McKensie A.; Jayaram, Hari; Cullen, Bryan R.

    2015-01-01

    Background CRISPR-Cas systems have been broadly embraced as effective tools for genome engineering applications, with most studies to date utilizing the Streptococcus pyogenes Cas9. Here we characterize and manipulate the smaller, 1053 amino acid nuclease Staphylococcus aureus Cas9. Results We find that the S. aureus Cas9 recognizes an NNGRRT protospacer adjacent motif (PAM) and cleaves target DNA at high efficiency with a variety of guide RNA (gRNA) spacer lengths. When directed against geno...

  2. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1–3 of angiostatin reduce retinal neovascularization

    OpenAIRE

    Raisler, Brian J.; Berns, Kenneth I.; Grant, Maria B.; Beliaev, Denis; Hauswirth, William W.

    2002-01-01

    Neovascular diseases of the retina include age-related macular degeneration and diabetic retinopathy, and together they comprise the leading causes of adult-onset blindness in developed countries. Current surgical, pharmaceutical, and laser therapies for age-related macular degeneration (AMD) rarely result in improved vision, do not significantly prevent neovascularization (NV), and often result in at least some vision loss. To address this therapeutic gap, we determined the efficacy of recom...

  3. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins.

    Science.gov (United States)

    Joo, Kye-Il; Tai, April; Lee, Chi-Lin; Wong, Clement; Wang, Pin

    2010-09-01

    Membrane fusion plays an essential role in the entry of enveloped viruses into target cells. The merging of viral and target cell membranes is catalyzed by viral fusion proteins, which involves multiple sequential steps in the fusion process. However, the fusion mechanisms mediated by different fusion proteins involve multiple transient intermediates that have not been well characterized. Here, we report a synthetic virus platform that allows us to better understand the different fusion mechanisms driven by the diverse types fusion proteins. The platform consists of lentiviral particles coenveloped with a surface antibody, which serves as the binding protein, along with a fusion protein derived from either influenza virus (HAmu) or Sindbis virus (SINmu). By using a single virus tracking technique, we demonstrated that both HAmu- and SINmu-bearing viruses enter cells through clathrin-dependent endocytosis, but they required different endosomal trafficking routes to initiate viral fusion. Direct observation of single viral fusion events clearly showed that hemifusion mediated by SINmu upon exposure to low pH occurs faster than that mediated by HAmu. Monitoring sequential fusion processes by dual labeling the outer and inner leaflets of viral membranes also revealed that the SINmu-mediated hemifusion intermediate is relatively long-lived as compared with that mediated by HAmu. Taken together, we have demonstrated that the combination of this versatile viral platform with the techniques of single virus tracking can be a powerful tool for revealing molecular details of fusion mediated by various fusion proteins.

  4. AAVrh.10-Mediated Expression of an Anti-Cocaine Antibody Mediates Persistent Passive Immunization That Suppresses Cocaine-Induced Behavior

    OpenAIRE

    Rosenberg, Jonathan B; Hicks, Martin J.; De, Bishnu P.; Pagovich, Odelya; Frenk, Esther; Kim D. Janda; Wee, Sunmee; Koob, George F.; Hackett, Neil R.; KaMinSky, Stephen M.; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G; Crystal, Ronald G.

    2012-01-01

    Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab...

  5. Computational and molecular tools for scalable rAAV-mediated genome editing.

    Science.gov (United States)

    Stoimenov, Ivaylo; Ali, Muhammad Akhtar; Pandzic, Tatjana; Sjöblom, Tobias

    2015-03-11

    The rapid discovery of potential driver mutations through large-scale mutational analyses of human cancers generates a need to characterize their cellular phenotypes. Among the techniques for genome editing, recombinant adeno-associated virus (rAAV)-mediated gene targeting is suited for knock-in of single nucleotide substitutions and to a lesser degree for gene knock-outs. However, the generation of gene targeting constructs and the targeting process is time-consuming and labor-intense. To facilitate rAAV-mediated gene targeting, we developed the first software and complementary automation-friendly vector tools to generate optimized targeting constructs for editing human protein encoding genes. By computational approaches, rAAV constructs for editing ~71% of bases in protein-coding exons were designed. Similarly, ~81% of genes were predicted to be targetable by rAAV-mediated knock-out. A Gateway-based cloning system for facile generation of rAAV constructs suitable for robotic automation was developed and used in successful generation of targeting constructs. Together, these tools enable automated rAAV targeting construct design, generation as well as enrichment and expansion of targeted cells with desired integrations. PMID:25488813

  6. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  7. Antibody-mediated neutralization of virus is abrogated by mycoplasma.

    OpenAIRE

    Dickson, C; Elkington, J; Hales, A.; Weiss, R.

    1980-01-01

    The ability of a mouse mammary tumor cell line to abrogate antibody neutralization of vesicular stomatitis virus was shown to be due to the presence of mycoplasma. The mycoplasma was isolated from the cell line and typed as Mycoplasma orale. Colonies of this mycoplasma were used to deliberately infect cell cultures which then gained the capacity to reactivate antibody-neutralized virus. The extent of the reactivation depended on the source of neutralizing antiserum. Other species of mycoplasm...

  8. Insect vector-mediated transmission of plant viruses.

    Science.gov (United States)

    Whitfield, Anna E; Falk, Bryce W; Rotenberg, Dorith

    2015-05-01

    The majority of plant-infecting viruses are transmitted to their host plants by vectors. The interactions between viruses and vector vary in duration and specificity but some common themes in vector transmission have emerged: 1) plant viruses encode structural proteins on the surface of the virion that are essential for transmission, and in some cases additional non-structural helper proteins that act to bridge the virion to the vector binding site; 2) viruses bind to specific sites in or on vectors and are retained there until they are transmitted to their plant hosts; and 3) viral determinants of vector transmission are promising candidates for translational research aimed at disrupting transmission or decreasing vector populations. In this review, we focus on well-characterized insect vector-transmitted viruses in the following genera: Caulimovirus, Crinivirus, Luteovirus, Geminiviridae, Reovirus, Tospovirus, and Tenuivirus. New discoveries regarding these genera have increased our understanding of the basic mechanisms of virus transmission by arthropods, which in turn have enabled the development of innovative strategies for breaking the transmission cycle. PMID:25824478

  9. VARICELLA ZOSTER VIRUS-ITS PATHOGENESIS, LATENCY & CELL-MEDIATED IMMUNITY

    Directory of Open Access Journals (Sweden)

    Anis Ahmed

    2013-07-01

    Full Text Available Varicella zoster virus causes primary infection as chickenpox, at which time latencyis established in the neurons of the dorsal root ganglia or ganglia of the cranial nerves.Reactivation produces herpes zoster infection (HZI, commonly called shingles. Anunderstanding of the mechanisms of latency is crucial in developing effective therapies forVZV infections of the nervous system. This article describes the pathogenesis of VZVwhich includes immune response to the virus, immune evasion by the virus, mechanism ofits latency and cell-mediated immunity.

  10. Wolbachia-mediated resistance to dengue virus infection and death at the cellular level.

    Directory of Open Access Journals (Sweden)

    Francesca D Frentiu

    Full Text Available BACKGROUND: Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using paired Wolbachia-infected and uninfected Aedes-derived cell lines and dengue virus, we confirm the phenomenon of viral inhibition at the cellular level. Although Wolbachia imposes a fitness cost to cells via reduced proliferation, it also provides a significant degree of protection from virus-induced mortality. The extent of viral inhibition is related to the density of Wolbachia per cell, with highly infected cell lines showing almost complete protection from dengue infection and dramatically reduced virus titers compared to lines not infected with the bacteria. CONCLUSIONS/SIGNIFICANCE: We have shown that cells infected with Wolbachia display inhibition of dengue virus replication, that the extent of inhibition is related to bacterial density and that Wolbachia infection, although costly, will provide a fitness benefit in some circumstances. Our results parallel findings in mosquitoes and flies, indicating that cell line models will provide useful and experimentally tractable models to study the mechanisms underlying Wolbachia-mediated protection from viruses.

  11. Mechanism of human antibody-mediated neutralization of Marburg virus.

    Science.gov (United States)

    Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E

    2015-02-26

    The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. PMID:25723164

  12. Coat protein-mediated resistance against an Indian isolate of the Cucumber mosaic virus subgroup IB in Nicotiana benthamiana

    Indian Academy of Sciences (India)

    A Srivastava; S K Raj

    2008-06-01

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were tested for resistance against CMV by challenge inoculations. The transgenic lines exhibiting complete resistance remained symptomless throughout life and showed reduced or no virus accumulation in their systemic leaves after virus challenge. These lines also showed virus resistance against two closely related strains of CMV. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IB member isolated from India.

  13. Virus-mediated archaeal hecatomb in the deep seafloor

    Science.gov (United States)

    Danovaro, Roberto; Dell’Anno, Antonio; Corinaldesi, Cinzia; Rastelli, Eugenio; Cavicchioli, Ricardo; Krupovic, Mart; Noble, Rachel T.; Nunoura, Takuro; Prangishvili, David

    2016-01-01

    Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles. PMID:27757416

  14. Measles Virus Spread by Cell-Cell Contacts: Uncoupling of Contact-Mediated Receptor (CD46) Downregulation from Virus Uptake

    OpenAIRE

    firsching, Ruth; Christian J Buchholz; Schneider, Urs; Cattaneo, Roberto; ter Meulen, Volker; Schneider-Schaulies, Jürgen

    1999-01-01

    CD46, which serves as a receptor for measles virus (MV; strain Edmonston), is rapidly downregulated from the cell surface after contact with viral particles or infected cells. We show here that the same two CD46 complement control protein (CCP) domains responsible for primary MV attachment mediate its downregulation. Optimal downregulation efficiency was obtained with CD46 recombinants containing CCP domains 1 and 2, whereas CCP 1, alone and duplicated, induced a slight downregulation. Using ...

  15. AAV9-mediated gene transfer of desmin ameliorates cardiomyopathy in desmin-deficient mice.

    Science.gov (United States)

    Heckmann, M B; Bauer, R; Jungmann, A; Winter, L; Rapti, K; Strucksberg, K-H; Clemen, C S; Li, Z; Schröder, R; Katus, H A; Müller, O J

    2016-08-01

    Mutations of the human desmin (DES) gene cause autosomal dominant and recessive myopathies affecting skeletal and cardiac muscle tissue. Desmin knockout mice (DES-KO), which develop progressive myopathy and cardiomyopathy, mirror rare human recessive desminopathies in which mutations on both DES alleles lead to a complete ablation of desmin protein expression. Here, we investigated whether an adeno-associated virus-mediated gene transfer of wild-type desmin cDNA (AAV-DES) attenuates cardiomyopathy in these mice. Our approach leads to a partial reconstitution of desmin protein expression and the de novo formation of the extrasarcomeric desmin-syncoilin network in cardiomyocytes of treated animals. This finding was accompanied by reduced fibrosis and heart weights and improved systolic left-ventricular function when compared with control vector-treated DES-KO mice. Since the re-expression of desmin protein in cardiomyocytes of DES-KO mice restores the extrasarcomeric desmin-syncoilin cytoskeleton, attenuates the degree of cardiac hypertrophy and fibrosis, and improves contractile function, AAV-mediated desmin gene transfer may be a novel and promising therapeutic approach for patients with cardiomyopathy due to the complete lack of desmin protein expression. PMID:27101257

  16. [Development of an ultrasound-mediated nucleic acid delivery system for treating muscular dystrophies].

    Science.gov (United States)

    Negishi, Yoichi; Hamano, Nobuhito; Shiono, Hitomi; Akiyama, Saki; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2012-01-01

    Muscular dystrophies are a group of heterogeneous diseases that are characterized by progressive muscle weakness, wasting and degeneration. These muscular deficiencies are often caused by the loss of the protein dystrophin, a crucial element of the dystrophin-glycoprotein complex of muscle fibers. Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscular disease that occurs in 1 out of every 3500 males. Therefore, feasible strategies for replacing or repairing the defective gene are required; however, to date, no effective therapeutic strategies for muscular dystrophies have been established. In this review, we first introduce gene therapies mediated by adeno-associated viruses (AAVs) including a functional dystrophin cDNA or antisense oligonucleotide (AO)-induced exon-skipping therapies, which are designed to exclude the mutated or additional exon(s) in the defective gene and thereby correct the translational reading frame. Recently, we developed "Bubble liposomes" (BLs), which are polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas that is known as ultrasound (US) imaging gas. BL application combined with US exposure can function as a novel gene delivery tool, and we demonstrate that the US-mediated eruption of BLs is a feasible and efficient technique to deliver plasmid DNA or AOs for the treatment of muscular dystrophies. PMID:23208045

  17. Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Shin'ichi Takeda

    2013-06-01

    Full Text Available Various characteristics of adeno-associated virus (AAV-based vectors with long-term safe expression have made it an exciting transduction tool for clinical gene therapy of Duchenne muscular dystrophy (DMD. Although host immune reactions against the vector as well as transgene products were detected in some instances of the clinical studies, there have been promising observations. Methods of producing AAV vectors for considerable in vivo experimentation and clinical investigations have been developed and a number of studies with AAV vector-mediated muscle transduction were attempted. Notably, an intravenous limb perfusion transduction technique enables extensive transgene expression in the skeletal muscles without noticeable adverse events. Furthermore, cardiac transduction by the rAAV9-microdystrophin would be promising to prevent development of cardiac dysfunction. Recent achievements in transduction technology suggest that long-term transgene expression with therapeutic benefits in DMD treatment would be achieved by the rAAV-mediated transduction strategy with an adequate regimen to regulate host immune response.

  18. Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Okada, Takashi; Takeda, Shin'ichi

    2013-01-01

    Various characteristics of adeno-associated virus (AAV)-based vectors with long-term safe expression have made it an exciting transduction tool for clinical gene therapy of Duchenne muscular dystrophy (DMD). Although host immune reactions against the vector as well as transgene products were detected in some instances of the clinical studies, there have been promising observations. Methods of producing AAV vectors for considerable in vivo experimentation and clinical investigations have been developed and a number of studies with AAV vector-mediated muscle transduction were attempted. Notably, an intravenous limb perfusion transduction technique enables extensive transgene expression in the skeletal muscles without noticeable adverse events. Furthermore, cardiac transduction by the rAAV9-microdystrophin would be promising to prevent development of cardiac dysfunction. Recent achievements in transduction technology suggest that long-term transgene expression with therapeutic benefits in DMD treatment would be achieved by the rAAV-mediated transduction strategy with an adequate regimen to regulate host immune response. PMID:24276316

  19. Virus infection mediates the effects of elevated CO2 on plants and vectors.

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K; Bosque-Pérez, Nilsa A; Powell, Kevin S; Dader, Beatriz; Freeman, Angela J; Yen, Alan L; Fitzgerald, Glenn J; Luck, Jo E

    2016-01-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. PMID:26941044

  20. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  1. Preparation of rAAV/hFⅨ by HSV/AAV hybrid helper virus and evaluation of its safety

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Haoming; ZOU Beiyan; WU Zhijian; WU Xiaobing; LU Daru; XUE Jinglun

    2003-01-01

    The recombinant adeno-associated viral vector with human coagulation Factor Ⅸ minigene which was regulated by CMV promoter was constructed. Large quantity of recombinant adeno-associated viral particles (rAAV/ hFⅨ) was prepared by the HSV/AAV hybrid helper virus method. Southern dot blot assay and QC-PCR indicated that the titer of the virus was 3.6×1012 v.g./mL. It demonstrated that this method can effectively overcome the hurdles of mass production of AAV vector. Followed by an intramuscular injection of viral vectors (7.5×1011 v.g./mouse) in the quadriceps femoris, an elevation of human Factor Ⅸ expression in the plasma of hemophilia B mice was detected (387 ng/mL) and persisted more than 12 weeks. The level of anti-virus antibody in plasma aligned with the Factor Ⅸ expression curve. The QC-PCR method is easier and more accurate than traditional dothybridization for determination of the titer of recombinant adeno-associated virus. Moreover, there are no HSV particles existing in produced AAV assayed by RT-PCR. AAV is the only virus that has been amplified from AAV-injected muscle by PCR.

  2. Borna disease virus induces acute fatal neurological disorders in neonatal gerbils without virus- and immune-mediated cell destructions

    International Nuclear Information System (INIS)

    Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that is known to cause neurological disturbances in various animal species. Our previous experiment demonstrated that neonate gerbils develop an acute fatal neurological disease following infection with BDV , Virology 282, 65-76). The study suggested that BDV directly causes functional damage of neuronal cells resulting in the lethal disorder in neonatal gerbils. To extend this finding, we examined whether BDV can induce neurological diseases in the absence of virus- and immune-mediated cell destruction, by using cyclosporine A (CsA)-treated neonatal gerbils. Although CsA completely suppressed specific antibody production and brain inflammation in the infected gerbil brains, the fatal neurological disorder was not inhibited by the treatment. Furthermore, we demonstrated that CsA treatment significantly decreased brain levels of cytokines, except interleukin (IL)-1β, in the infected gerbils. These results suggested that BDV replication, as well as brain cytokines, at least IL-1β, rapidly induces fatal disturbances in gerbil brain. We demonstrate here that BDV exhibits a unique neuropathogenesis in neonatal gerbil that may be pathologically and immunologically different from those in two other established rodent models, rats and mice. With this novel rodent model of virus infection it should be possible not only to examine acute neurological disturbances without severe neuroanatomical and immunopathological alterations but also to analyze molecular and cellular damage by virus replication in the central nervous system

  3. AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling

    OpenAIRE

    Zouein, Fouad A.; Booz, George W.

    2013-01-01

    Heart failure is a progressive, debilitating disease that is characterized by inadequate contractility of the heart. With an aging population, the incidence and economic burden of managing heart failure are anticipated to increase substantially. Drugs for heart failure only slow its progression and offer no cure. However, results of recent clinical trials using recombinant adeno-associated virus (AAV) gene delivery offer the promise, for the first time, that heart failure can be reversed. The...

  4. Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy

    OpenAIRE

    Shin'ichi Takeda; Takashi Okada

    2013-01-01

    Various characteristics of adeno-associated virus (AAV)-based vectors with long-term safe expression have made it an exciting transduction tool for clinical gene therapy of Duchenne muscular dystrophy (DMD). Although host immune reactions against the vector as well as transgene products were detected in some instances of the clinical studies, there have been promising observations. Methods of producing AAV vectors for considerable in vivo experimentation and clinical investigations have been ...

  5. Antibody-mediated neutralization of African swine fever virus: myths and facts.

    Science.gov (United States)

    Escribano, José M; Galindo, Inmaculada; Alonso, Covadonga

    2013-04-01

    Almost all viruses can be neutralized by antibodies. However, there is some controversy about antibody-mediated neutralization of African swine fever virus (ASFV) with sera from convalescent pigs and about the protective relevance of antibodies in experimentally vaccinated pigs. At present, there is no vaccine available for this highly lethal and economically relevant virus and all classical attempts to generate a vaccine have been unsuccessful. This failure has been attributed, in part, to what many authors describe as the absence of neutralizing antibodies. The findings of some studies clearly contradict the paradigm of the impossibility to neutralize ASFV by means of monoclonal or polyclonal antibodies. This review discusses scientific evidence of these types of antibodies in convalescent and experimentally immunized animals, the nature of their specificity, the neutralization-mediated mechanisms demonstrated, and the potential relevance of antibodies in protection. PMID:23159730

  6. [Mechanisms underlying interferon-mediated host innate immunity during influenza A virus infection].

    Science.gov (United States)

    Chen, Chao; Chi, Xiaojuan; Bai, Qingling; Chen, Jilong

    2015-12-01

    Influenza A virus can create acute respiratory infection in humans and animals throughout the world, and it is still one of the major causes of morbidity and mortality in humans worldwide. Numerous studies have shown that influenza A virus infection induces rapidly host innate immune response. Influenza A virus triggers the activation of signaling pathways that are dependent on host pattern recognition receptors (PRRs) including toll like receptors (TLRs) and RIG-I like receptors (RLRs). Using a variety of regulatory mechanisms, these signaling pathways activate downstream transcript factors that control expression of various interferons and cytokines, such as type I and type III interferons. Thus, these interferons stimulate the transcript of relevant interferon-stimulated genes (ISGs) and expression of the antiviral proteins, which are critical components of host innate immunity. In this review, we will highlight the mechanisms by which influenza A virus infection induces the interferon-mediated host innate immunity.

  7. Citrus tristeza virus p23: a unique protein mediating key virus-host interactions.

    OpenAIRE

    Flores, Ricardo; Ruiz-Ruiz, Susana; Soler, Nuria; Sánchez-Navarro, Jesús; Fagoaga, Carmen; López, Carmelo; Navarro, Luis; Moreno, Pedro; Peña, Leandro

    2013-01-01

    The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3′-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous gene...

  8. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  9. Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock.

    Science.gov (United States)

    Lemgo, Godwin Nana Yaw; Sabbadini, Silvia; Pandolfini, Tiziana; Mezzetti, Bruno

    2013-12-01

    A major application of RNA interference (RNAi) is envisaged for the production of virus-resistant transgenic plants. For fruit trees, this remains the most, if not the only, viable option for the control of plant viral disease outbreaks in cultivated orchards, due to the difficulties associated with the use of traditional and conventional disease-control measures. The use of RNAi might provide an additional benefit for woody crops if silenced rootstock can efficiently transmit the silencing signal to non-transformed scions, as has already been demonstrated in herbaceous plants. This would provide a great opportunity to produce non-transgenic fruit from transgenic rootstock. In this review, we scrutinise some of the concerns that might arise with the use of RNAi for engineering virus-resistant plants, and we speculate that this virus resistance has fewer biosafety concerns. This is mainly because RNAi-eliciting constructs only express small RNA molecules rather than proteins, and because this technology can be applied using plant rootstock that can confer virus resistance to the scion, leaving the scion untransformed. We discuss the main biosafety concerns related to the release of new types of virus-resistant plants and the risk assessment approaches in the application of existing regulatory systems (in particular, those of the European Union, the USA, and Canada) for the evaluation and approval of RNAi-mediated virus-resistant plants, either as transgenic varieties or as plant virus resistance induced by transgenic rootstock.

  10. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots

    Science.gov (United States)

    Andika, Ida Bagus; Kondo, Hideki; Sun, Liying

    2016-01-01

    Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.

  11. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice.

    Science.gov (United States)

    Yang, Yang; Wang, Lili; Bell, Peter; McMenamin, Deirdre; He, Zhenning; White, John; Yu, Hongwei; Xu, Chenyu; Morizono, Hiroki; Musunuru, Kiran; Batshaw, Mark L; Wilson, James M

    2016-03-01

    Many genetic liver diseases in newborns cause repeated, often lethal, metabolic crises. Gene therapy using nonintegrating viruses such as adeno-associated virus (AAV) is not optimal in this setting because the nonintegrating genome is lost as developing hepatocytes proliferate. We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR-Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7-20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet.

  12. Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin.

    Directory of Open Access Journals (Sweden)

    Nirav R Shah

    Full Text Available Ribavirin (RBV is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus and Sendai virus (SeV, a paramyxovirus. Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.

  13. Vaccine-induced T cell-mediated immunity plays a critical role in early protection against pseudorabies virus (suid herpes virus type 1) infection in pigs

    NARCIS (Netherlands)

    Rooij, van E.M.A.; Bruin, de M.G.M.; Visser-Hendriksen, de Y.E.; Middel, W.G.; Boersma, W.J.A.; Bianchi, A.T.J.

    2004-01-01

    The aim of our study was to evaluate the relative importance of antibody and T cell-mediated immunity in protection against pseudorabies virus (suid herpes virus type 1) infection in pigs. We induced different levels of immune responses by using: (1) a modified live vaccine; (2) the same modified li

  14. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available BACKGROUND: Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS. METHODS AND FINDINGS: This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP. CONCLUSION: This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  15. Tn7-mediated Introduction of DNA into Bacmid-cloned Pseudorabies Virus Genome for Rapid Construction of Recombinant Viruses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    lacZα-mini-attTn7 was inserted into the intergenic region between the gG and gD genes in a PRV bacterial artificial chromosome (BAC) by homologous recombination in E. coli. The resulting recombinant BAC (pBeckerZF1) was confirmed by PCR and sequencing. Green fluorescent protein (GFP) gene was then transposed into pBeckerZF1 by transposon Tn7 to generate pBeckerZF2. Recombinant viruses vBeckerZF1 and vBeckerZF2 were generated by transfection with the corresponding BAC pBeckerZF1 or pBeckerZF2. The titers and cytopathic effect (CPE) observed for by vBeckerZF1 and vBeckerZF2 was comparable to that of the parental virus vBecker3. vBeckerZF2 was serial passaged for five rounds in cell culture, and the mini-Tn7 insertion was stably maintained in viral genome. These results show that recombinant viruses can be rapidly and reliably created by Tn7-mediated transposition. This technology should accelerate greatly the pace at which recombinant PRV can be generated and, thus, facilitate the use of recombinant viruses for detailed mutagenic studies.

  16. Platelets promote liver immunopathology contributing to hepatitis B virus-mediated hepatocarcinogenesis.

    Science.gov (United States)

    Sitia, Giovanni

    2014-06-01

    Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC). Among the pathogenetic factors triggered by HBV, virus-specific CD8(+) T cells play and important role in disease pathogenesis by promoting necroinflammatory liver damage. Accordingly, amelioration of immune-mediated chronic liver injury may prevent HCC. Platelets facilitate this process by sustaining the hepatic accumulation of virus-specific CD8(+) T cells and subsequently other virus nonspecific inflammatory cells that contribute to liver disease. Importantly, a recent study shows that the long-term use of clinically relevant doses of the anti-platelet drugs aspirin and clopidogrel, administered after the onset of liver disease, in an HBV transgenic mouse model of immune-mediated chronic hepatitis and HCC, can prevent hepatocarcinogenesis improving overall survival. Platelets therefore, act as key players in the pathogenesis of HBV-associated liver cancer supporting the notion that immune-mediated necroinflammatory liver disease is sufficient to trigger HCC and that interference with platelet activation may have clinical implications for HCC prevention.

  17. Role of CD137 signaling in dengue virus-mediated apoptosis

    International Nuclear Information System (INIS)

    Highlights: → For the first time the role of CD137 in dengue virus (DENV) infection. → Induction of DENV-mediated apoptosis by CD137 signaling. → Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). → Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  18. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  19. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    Science.gov (United States)

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells.

  20. Effect of Nuclear Factor κB Inhibition on Serotype 9 Adeno-Associated Viral (AAV9) Minidystrophin Gene Transfer to the mdx Mouse

    OpenAIRE

    Reay, Daniel P.; Niizawa, Gabriela A; Watchko, Jon F; Daood, Molly; Reay, Ja’Nean C; Raggi, Eugene; Clemens, Paula R

    2012-01-01

    Gene therapy studies for Duchenne muscular dystrophy (DMD) have focused on viral vector-mediated gene transfer to provide therapeutic protein expression or treatment with drugs to limit dystrophic changes in muscle. The pathological activation of the nuclear factor (NF)-κB signaling pathway has emerged as an important cause of dystrophic muscle changes in muscular dystrophy. Furthermore, activation of NF-κB may inhibit gene transfer by promoting inflammation in response to the transgene or ve...

  1. A mediator embedded micro-immunosensing unit for electrochemical detection on viruses within physiological saline media

    International Nuclear Information System (INIS)

    To provide a time- and cost-saving alternative to the conventional methods for virus detection in biological media, this work presents an electrochemical micro-immunosensor based on the nickel hexacyanoferrate (NiHCF) redox mediator film coating the interdigitated microelectrodes (IDMEs). By chelation binding with no additional cross-linker, the 6xHis-tagged antibodies were immobilized on a NiHCF film. Secondly, an immunoassay response was enhanced by employing microbeads coated with 6xHis antibody. The electrochemical properties and the stability of the NiHCF film modified IDMEs were evaluated by cyclic voltammetry. The bead-induced impedance variations at the electrode film/electrolyte interface were characterized by electrochemical impedance spectroscopy and verified using FEM simulation. Experiments of virus detection were conducted through targeting the antigens of the vital infectious salmon viruses, such as infectious salmon anaemia virus, infectious pancreatic necrosis virus and salmonid alphavirus subtype 3. The micro-immunosensor exhibited detection limits as low as 10 pg ml−1 and detection sensitivities as high as 57.5 kΩ µM−1 within a physiological saline solution. Tests for multiple antigen–antibody interactions showed good detection specificity, as confirmed by ELISA. By incorporating the microfluidic network, electrochemical impedance micro-immunosensing units can be realized in a fully integrated platform for multiplex virus detection in tissue samples.

  2. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  3. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    International Nuclear Information System (INIS)

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection

  4. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    Energy Technology Data Exchange (ETDEWEB)

    Chotiwan, Nunya; Roehrig, John T. [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Schlesinger, Jacob J. [Department of Medicine, University of Rochester, Rochester, NY 14642 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H., E-mail: yxh0@cdc.gov [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2014-05-15

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection.

  5. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae.

    Science.gov (United States)

    Lee, Min Young; Kurioka, Takaomi; Nelson, Megan M; Prieskorn, Diane M; Swiderski, Donald L; Takada, Yohei; Beyer, Lisa A; Raphael, Yehoash

    2016-01-01

    Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing. PMID:27525291

  6. Lymphocyte-mediated immune cytotoxicity in dogs infected with virulent canine distemper virus.

    OpenAIRE

    Appel, M J; Shek, W R; Summers, B.A.

    1982-01-01

    Immune lymphocyte-mediated cytotoxicity (ILMC) was evaluated in dogs after intranasal exposure to one of the following three virulent strains of canine distemper virus: Cornell A75/17, Ohio R252, and Snyder Hill. Cytotoxicity was tested with peripheral blood lymphocytes as effector cells and primary dog testicle cells that were matched for histocompatibility as target cells. A strong correlation was found between ILMC and the course of the infection. Dogs that succumbed to encephalitis with a...

  7. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    Science.gov (United States)

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  8. Detection of foot-and-mouth disease virus rna by reverse transcription loop-mediated isothermal amplification

    OpenAIRE

    Chen Hao-tai; Zhang Jie; Liu Yong-sheng; Liu Xiang-tao

    2011-01-01

    Abstract A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for foot-and-mouth disease virus (FMDV) RNA. The amplification was able to finish in 45 min under isothermal condition at 64°C by employing a set of four primers targeting FMDV 2B. The assay showed higher sensitivity than RT-PCR. No cross reactivity was observed from other RNA viruses including classical swine fever virus, swine vesicular disease, porcine reproductive and respiratory syndrome...

  9. Assessment of humoral and cell-mediated immune response to measles–mumps–rubella vaccine viruses among patients with asthma

    OpenAIRE

    Yoo, Kwang Ha; Agarwal, Kanishtha; Butterfield, Michael; Jacobson, Robert M.; Poland, Gregory A.; Juhn, Young J.

    2010-01-01

    Little is known about the influence of asthma status on humoral and cell-mediated immune responses to measles–mumps–rubella (MMR) vaccine viruses. We compared the virus-specific IgG levels and lymphoproliferative response of peripheral blood mononuclear cells to MMR vaccine viruses between asthmatic and nonasthmatic patients. The study subjects included 342 healthy children aged 12–18 years who had received two doses of the MMR vaccine. We ascertained asthma status by applying predetermined c...

  10. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus.

    Directory of Open Access Journals (Sweden)

    I-Chueh Huang

    Full Text Available Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3 are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV hemagglutinin (HA protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2 of Marburg and Ebola filoviruses (MARV, EBOV. Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV and entry mediated by the SARS-CoV spike (S protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.

  11. Citrus tristeza virus p23: a unique protein mediating key virus-host interactions

    Directory of Open Access Journals (Sweden)

    Ricardo eFlores

    2013-05-01

    Full Text Available The large RNA genome of CTV (ca. 20 kb contains 12 open reading frames (ORFs, with the 3’-terminal one corresponding to a protein of 209 amino acids (p23 that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative Zn-finger domain and some basic motifs, is unique to CTV because no homologues have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes. Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: i regulation of the asymmetrical accumulation of CTV RNA strands, ii induction of the seedling yellows syndrome in sour orange and grapefruit, iii intracellular suppression of RNA silencing, iv elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and v enhancement of systemic infection (and virus accumulation in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23.

  12. RNA interference mediated inhibition of dengue virus multiplication and entry in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdelfatah Alhoot

    Full Text Available BACKGROUND: Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells. METHODOLOGY/PRINCIPAL FINDINGS: HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78 and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8% for GRP78, CLTC, and DNM2 respectively in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4% and extracellular viral RNA load (71.4% compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7% in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells. CONCLUSIONS/SIGNIFICANCE: Silencing the attachment receptor and clathrin-mediated endocytosis using siRNA could inhibit dengue virus entry and multiplication into HepG2 cells. This leads to reduction of infected cells as well as the viral load, which might function as a unique and promising therapeutic agent for attenuating dengue infection and prevent the development of dengue fever to the severe life-threatening DHF or DSS

  13. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art

    Directory of Open Access Journals (Sweden)

    Nande R

    2015-11-01

    Full Text Available Rounak Nande,1 Candace M Howard,2 Pier Paolo Claudio,3,4 1Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, 2Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 3Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, 4Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA Abstract: The field of ultrasound (US has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.Keywords: microbubbles, ultrasound

  14. Immunity and AAV-Mediated Gene Therapy for Muscular Dystrophies in Large Animal Models and Human Trials

    OpenAIRE

    ZejingWang; StephenJTapscott; JeffreySChamberlain; RainerStorb

    2011-01-01

    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery ...

  15. Avian leukosis virus subgroup J triggers caspase-1-mediated inflammatory response in chick livers.

    Science.gov (United States)

    Liu, Xue-lan; Shan, Wen-jie; Jia, Li-juan; Yang, Xu; Zhang, Jin-jing; Wu, Ya-rong; Xu, Fa-zhi; Li, Jin-nian

    2016-04-01

    Many pathogens trigger caspase-1-mediated innate immune responses. Avian leukosis virus subgroup J (ALV-J) causes serious immunosuppression and diverse tumors in chicks. The caspase-1 inflammasome mechanism of response to ALV-J invading remains unclear. Here we investigated the expression of caspase-1, the inflammasome adaptor NLRP3, IL-1β and IL-18 in response to ALV-J infection in the liver of chick. We found caspase-1 mRNA expression was elevated at 5 dpi and peaked at 7 dpi in ALV-J infected animals. Corresponding to this, the expressions of NLRP3 and proinflammatory cytokines IL-1β and IL-18 were significantly increased at 5 or 7 dpi. In addition, caspase-1 protein expression and inflammatory cell infiltration were induced after virus infection. These results indicated that ALV-J infection could trigger the caspase-1- mediated inflammatory response in chicks. Thus, an understanding of the inflammatory responses can provide a better insight into the pathogenicity of ALV-J and a possible anti-virus target for ALV-J infection.

  16. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    Science.gov (United States)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  17. Virus-induced gene silencing reveals signal transduction components required for the Pvr9-mediated hypersensitive response in Nicotiana benthamiana.

    Science.gov (United States)

    Tran, Phu-Tri; Choi, Hoseong; Choi, Doil; Kim, Kook-Hyung

    2016-08-01

    Resistance to pathogens mediated by plant resistance (R) proteins requires different signaling transduction components and pathways. Our previous studies revealed that a potyvirus resistance gene in pepper, Pvr9, confers a hypersensitive response (HR) to pepper mottle virus in Nicotiana benthamiana. Our results show that the Pvr9-mediated HR against pepper mottle virus infection requires HSP90, SGT1, NDR1, but not EDS1. These results suggest that the Pvr9-mediated HR is possibly related to the SA pathway but not the ET, JA, ROS or NO pathways.

  18. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hannah E. Rockwell

    2015-04-01

    Full Text Available Sandhoff disease (SD is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex, resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.

  19. AAV8-mediated in vivo overexpression of miR-155 enhances the protective capacity of genetically attenuated malarial parasites.

    Science.gov (United States)

    Hentzschel, Franziska; Hammerschmidt-Kamper, Christiane; Börner, Kathleen; Heiss, Kirsten; Knapp, Bettina; Sattler, Julia M; Kaderali, Lars; Castoldi, Mirco; Bindman, Julia G; Malato, Yann; Willenbring, Holger; Mueller, Ann-Kristin; Grimm, Dirk

    2014-12-01

    Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases.

  20. Interplay between Interferon-Mediated Innate Immunity and Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Mingyuan Han

    2012-04-01

    Full Text Available Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non‑structural proteins (Nsp1, Nsp2, and Nsp11 and a structural protein (N nucleocapsid protein have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp’s are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.

  1. Influenza C virus NS1 protein counteracts RIG-I-mediated IFN signalling

    Directory of Open Access Journals (Sweden)

    Vlasak Reinhard

    2011-02-01

    Full Text Available Abstract The nonstructural proteins 1 (NS1 from influenza A and B viruses are known as the main viral factors antagonising the cellular interferon (IFN response, inter alia by inhibiting the retinoic acid-inducible gene I (RIG-I signalling. The cytosolic pattern-recognition receptor RIG-I senses double-stranded RNA and 5'-triphosphate RNA produced during RNA virus infections. Binding to these ligands activates RIG-I and in turn the IFN signalling. We now report that the influenza C virus NS1 protein also inhibits the RIG-I-mediated IFN signalling. Employing luciferase-reporter assays, we show that expression of NS1-C proteins of virus strains C/JJ/50 and C/JHB/1/66 considerably reduced the IFN-β promoter activity. Mapping of the regions from NS1-C of both strains involved in IFN-β promoter inhibition showed that the N-terminal 49 amino acids are dispensable, while the C-terminus is required for proper modulation of the IFN response. When a mutant RIG-I, which is constitutively active without ligand binding, was employed, NS1-C still inhibited the downstream signalling, indicating that IFN inhibitory properties of NS1-C are not necessarily linked to an RNA binding mechanism.

  2. Egg drop syndrome virus enters duck embryonic fibroblast cells via clathrin-mediated endocytosis.

    Science.gov (United States)

    Huang, Jingjing; Tan, Dan; Wang, Yang; Liu, Caihong; Xu, Jiamin; Wang, Jingyu

    2015-12-01

    Previous studies of egg drop syndrome virus (EDSV) is restricted to serological surveys, disease diagnostics, and complete viral genome analysis. Consequently, the infection characteristics and entry routes of EDSV are poorly understood. Therefore, we aimed to explore the entry pathway of EDSV into duck embryonic fibroblast (DEF) cells as well as the infection characteristics and proliferation of EDSV in primary DEF and primary chicken embryo liver (CEL) cells. Transmission electron microscopy revealed that the virus triggered DEF cell membrane invagination as early as 10 min post-infection and that integrated endocytic vesicles formed at 20 min post-infection. The virus yield in EDSV-infected DEF cells treated with chlorpromazine (CPZ), sucrose, methyl-β-cyclodextrin (MβCD), or NH4Cl was measured by quantitative real-time PCR. Compared with the mock treatment, CPZ and sucrose greatly inhibited the production of viral progeny in a dose-dependent manner, while MβCD treatment did not result in a significant difference. Furthermore, NH4Cl had a strong inhibitory effect on the production of EDSV progeny. In addition, indirect immunofluorescence demonstrated that virus particles clustered on the surface of DEF cells treated with CPZ or sucrose. These results indicate that EDSV enters DEF cells through clathrin-mediated endocytosis followed by a pH-dependent step, which is similar to the mechanism of entry of human adenovirus types 2 and 5. PMID:26200954

  3. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  4. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhang Lili

    2007-04-01

    Full Text Available Abstract Background Hepatitis B virus (HBV replication has been reported to be involved in many extrahepatic viral disorders; however, the mechanism by which HBV is trans-infected into extrahepatic tissues such as HBV associated myocarditis remains largely unknown. Results In this study, we showed that human cord blood endothelial progenitor cells (EPCs, but not human umbilical vein endothelial cells (HUVECs could be effectively infected by uptake of HBV in vitro. Exposure of EPCs with HBV resulted in HBV DNA and viral particles were detected in EPCs at day 3 after HBV challenge, which were peaked around day 7 and declined in 3 weeks. Consistently, HBV envelope surface and core antigens were first detected in EPCs at day 3 after virus challenge and were retained to be detectable for 3 weeks. In contrast, HBV covalently closed circular DNA was not detected in EPCs at any time after virus challenge. Intravenous transplantation of HBV-treated EPCs into myocardial infarction and acute renal ischemia mouse model resulted in incorporation of HBV into injured heart, lung, and renal capillary endothelial tissues. Conclusion These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured endothelial tissues. The findings might provide a novel mechanism for HBV-associated myocarditis and other HBV-related extrahepatic diseases as well.

  5. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  6. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  7. Bovine HEXIM1 inhibits bovine immunodeficiency virus replication through regulating BTat-mediated transactivation

    OpenAIRE

    Guo, Hong-yan; Ma, Yong-gang; Gai, Yuan-ming; Liang, Zhi-bin; Ma, Jing; Su, Yang; Zhang, Qi-cheng; Chen, Qi-Min; Tan, Juan

    2013-01-01

    The bovine immunodeficiency virus (BIV) transactivator (BTat) recruits the bovine cyclin T1 (B-cyclin T1) to the LTR to facilitate the transcription of BIV. Here, we demonstrate that bovine hexamethylene bisacetamide (HMBA)-induced protein 1 (BHEXIM1) inhibits BTat-mediated BIV LTR transcription. The results of in vivo and in vitro assays show direct binding of BHEXIM1 to the B-cyclin T1. These results suggest that the repression arises from BHEXIM1-BTat competition for B-cyclin T1, which all...

  8. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-01-01

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin®) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed. PMID:27019795

  9. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity.

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-03-26

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin(®)) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed.

  10. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    Directory of Open Access Journals (Sweden)

    Sara Landeras-Bueno

    2016-04-01

    Full Text Available Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection.

  11. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer

    OpenAIRE

    Stritzker, Jochen; Kirscher, Lorenz; Scadeng, Miriam; Deliolanis, Nikolaos C.; Morscher, Stefan; Symvoulidis, Panagiotis; Schaefer, Karin; Zhang, Qian; Buckel, Lisa; Hess, Michael; Donat, Ulrike; Bradley, William G.; Ntziachristos, Vasilis; Szalay, Aladar A.

    2013-01-01

    We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin...

  12. Fluorogenic Detection of Duck Tembusu Virus( DTMUV ) by Loop-mediated Isothermal Amplification(LAMP)

    Institute of Scientific and Technical Information of China (English)

    Zhang; Lin; Wang; Bin; Zhang; Wei; Zhang; Xiumei

    2014-01-01

    This study was to develop an efficient and simple method for the detection of duck Tembusu virus( DTMUV) by loop-mediated isothermal amplification( LAMP). Six pairs of LAMP primers were designed according to the conserved region of the DTMUV E gene sequence in Gen Bank,which were then used for the optimization of various reaction components and reaction system of specific LAMP for DTMUV. Further the fluorescent reagent SYBR Green I and a certain proportion of calcium and manganese ion were used to determin the color development of products for visible analysis instead of agarose gel electrophoresis. The results showed that the sensitivity SYBR Green I as the fluorescent reagent was 10 copies viruses per μL,which is 100 times higher than normal PCR method,while the detection limit of combined use of calcium and manganese ion was 1 000 copies viruses per μL. Although the sensitivity of mixture of calcium and manganese ion is lower than SYBR Green I,it can avoid the aerosol contamination. The fluorogenic analysis-based LAMP system established in our study has a high sensitivity and avoid the cross contamination,which is of huge potential in research institutions,grass-roots laboratories and field testing and can provide effective means to completely curb the occurrence and spreading of DTMUV.

  13. Baculovirus-mediated promoter assay and transcriptional analysis of white spot syndrome virus orf427 gene

    Directory of Open Access Journals (Sweden)

    Yu Li

    2005-08-01

    Full Text Available Abstract Background White spot syndrome virus (WSSV is an important pathogen of the penaeid shrimp with high mortalities. In previous reports, Orf427 of WSSV is characterized as one of the three major latency-associated genes of WSSV. Here, we were interested to analyze the promoter of orf427 and its expression during viral pathogenesis. Results in situ hybridization revealed that orf427 was transcribed in all the infected tissues during viral lytic infection and the translational product can be detected from the infected shrimp. A time-course RT-PCR analysis indicated that transcriptional products of orf427 could only be detected after 6 h post virus inoculation. Furthermore, a baculovirus-mediated promoter analysis indicated that the promoter of orf427 failed to express the EGFP reporter gene in both insect SF9 cells and primary shrimp cells. Conclusion Our data suggested that latency-related orf427 might not play an important role in activating virus replication from latent phase due to its late transcription during the lytic infection.

  14. Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Papaya ringspot virus.

    Science.gov (United States)

    Shen, Wentao; Tuo, Decai; Yan, Pu; Yang, Yong; Li, Xiaoying; Zhou, Peng

    2014-08-01

    Papaya ringspot virus (PRSV) and Papaya leaf distortion mosaic virus (PLDMV), which causes disease symptoms similar to PRSV, threaten commercial production of both non-transgenic-papaya and PRSV-resistant transgenic papaya in China. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect PLDMV was developed previously. In this study, the development of another RT-LAMP assay to distinguish among transgenic, PRSV-infected and PLDMV-infected papaya by detection of PRSV is reported. A set of four RT-LAMP primers was designed based on the highly conserved region of the P3 gene of PRSV. The RT-LAMP method was specific and sensitive in detecting PRSV, with a detection limit of 1.15×10(-6)μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR. Field application of the RT-LAMP assay demonstrated that samples positive for PRSV were detected only in non-transgenic papaya, whereas samples positive for PLDMV were detected only in commercialized PRSV-resistant transgenic papaya. This suggests that PRSV remains the major limiting factor for non-transgenic-papaya production, and the emergence of PLDMV threatens the commercial transgenic cultivar in China. However, this study, combined with the earlier development of an RT-LAMP assay for PLDMV, will provide a rapid, sensitive and cost-effective diagnostic power to distinguish virus infections in papaya. PMID:24769198

  15. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome.

    Science.gov (United States)

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-06-17

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss.

  16. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  17. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome

    Science.gov (United States)

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-01-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1−/− mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0–P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner’s membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1−/− mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. PMID:26084842

  18. The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing.

    Science.gov (United States)

    de Solis, Christopher A; Ho, Anthony; Holehonnur, Roopashri; Ploski, Jonathan E

    2016-01-01

    The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox) and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV). Specifically, we developed an inducible gRNA (gRNAi) AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR) to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as 1 day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e., Cas9 mouse, CRISPRi, etc.), and therefore it likely can be used to render these systems inducible as well. PMID:27587996

  19. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing.

    Directory of Open Access Journals (Sweden)

    Christopher A. de Solis

    2016-08-01

    Full Text Available The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV. Specifically, we developed an inducible gRNA (gRNAi AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as one day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e. Cas9 mouse, CRISPRi, etc., and therefore it likely can be used to render these systems inducible as well.

  20. Detection of foot-and-mouth disease virus rna by reverse transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Chen Hao-tai

    2011-11-01

    Full Text Available Abstract A reverse transcription loop-mediated isothermal amplification (RT-LAMP assay was developed for foot-and-mouth disease virus (FMDV RNA. The amplification was able to finish in 45 min under isothermal condition at 64°C by employing a set of four primers targeting FMDV 2B. The assay showed higher sensitivity than RT-PCR. No cross reactivity was observed from other RNA viruses including classical swine fever virus, swine vesicular disease, porcine reproductive and respiratory syndrome virus, Japanese encephalitis virus. Furthermore, the assay correctly detected 84 FMDV positive samples but not 65 FMDV negative specimens. The result indicated the potential usefulness of the technique as a simple and rapid procedure for the detection of FMDV infection.

  1. Homologous interference mediated by defective interfering influenza virus derived from a temperature-sensitive mutant of influenza virus

    International Nuclear Information System (INIS)

    A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 x 105 to 1.05 x 105 appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the uv target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to uv irradiation than was infectivity, further implicating small RNA molecules in interference

  2. Virus-Specific Antibody, in the Absence of T Cells, Mediates Demyelination in Mice Infected with a Neurotropic Coronavirus

    OpenAIRE

    Kim, Taeg S.; Perlman, Stanley

    2005-01-01

    Mice infected with mouse hepatitis virus strain JHM develop an inflammatory demyelinating disease in the central nervous system with many similarities to human multiple sclerosis. The mouse disease is primarily immune-mediated because demyelination is not detected in JHM-infected mice lacking T or B cells but does occur after transfer of JHM-specific T cells. Although less is known about the ability of antibodies to mediate demyelination, the presence of oligoclonally expanded B cells and hig...

  3. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway.

    Science.gov (United States)

    Gardner, Thomas J; Tortorella, Domenico

    2016-09-01

    The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  4. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans

    International Nuclear Information System (INIS)

    DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing α-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capable of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans

  5. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    Directory of Open Access Journals (Sweden)

    Ji-Si Zhang

    Full Text Available The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'. Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS. Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution

  6. Mechanism of antibody-mediated viral clearance in immunotherapy of respiratory syncytial virus infection of cotton rats.

    OpenAIRE

    Prince, G A; Hemming, V G; Horswood, R L; Baron, P A; Murphy, B R; Chanock, R M

    1990-01-01

    Antibody-mediated clearance of respiratory syncytial virus from cotton rat pulmonary tissues occurs in the absence of complement and in the absence of the Fc portion of the immunoglobulin G molecule, suggesting that complement-independent, cell-independent neutralization is the major mechanism of clearance.

  7. Real-time fluorescence loop-mediated isothermal amplification for the diagnosis of hemorrhagic enteritis virus.

    Science.gov (United States)

    Liu, Xuemei; Li, Yuhao; Xu, Chenggang; Qin, Jianru; Hao, Jianyong; Feng, Min; Tan, Liqiang; Jia, Weixin; Liao, Ming; Cao, Weisheng

    2014-04-01

    Suspected cases of hemorrhagic enteritis associated with hemorrhagic enteritis virus (HEV) are becoming more frequent among yellow chickens in the Guangdong Province of China. In this study, we have developed a one-step, ecumenical, real-time fluorescence loop-mediated isothermal amplification (RealAmp) assay for the rapid diagnosis of HEV. The RealAmp assay was performed at 63°C and reduced the assay time to 15min, using a simple and portable device, the ESE-Quant Tube Scanner. The detection limit of DNA was 1fg/μl, and the detection was specific only to HEV. We also used nested PCR to evaluate the application of the RealAmp assay. The coincidence rate of the two methods was 100%. Our data indicated that the RealAmp assay provides a sensitive, specific, and user-friendly diagnostic tool for the identification and quantification of HEV for field diagnosis and in laboratory research.

  8. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer.

    Science.gov (United States)

    Stritzker, Jochen; Kirscher, Lorenz; Scadeng, Miriam; Deliolanis, Nikolaos C; Morscher, Stefan; Symvoulidis, Panagiotis; Schaefer, Karin; Zhang, Qian; Buckel, Lisa; Hess, Michael; Donat, Ulrike; Bradley, William G; Ntziachristos, Vasilis; Szalay, Aladar A

    2013-02-26

    We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin production also facilitated deep tissue optoacoustic imaging as well as MRI. In addition, melanin was shown to be a suitable target for laser-induced thermotherapy and enhanced oncolytic viral therapy. In conclusion, melanin as a mediator for thermotherapy and reporter for different imaging modalities may soon become a versatile alternative to replace fluorescent proteins also in other biological systems. After ongoing extensive preclinical studies, melanin overproducing oncolytic virus strains might be used in clinical trials in patients with cancer.

  9. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    Energy Technology Data Exchange (ETDEWEB)

    Delpeut, Sebastien; Noyce, Ryan S. [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); Richardson, Christopher D., E-mail: chris.richardson@dal.ca [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); The Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada)

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  10. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    International Nuclear Information System (INIS)

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction

  11. Ubiquitin-mediated response to microsporidia and virus infection in C. elegans.

    Directory of Open Access Journals (Sweden)

    Malina A Bakowski

    2014-06-01

    Full Text Available Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.

  12. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus.

    Science.gov (United States)

    Peart, Jack R; Cook, Graeme; Feys, Bart J; Parker, Jane E; Baulcombe, David C

    2002-03-01

    In Arabidopsis, EDS1 is essential for disease resistance conferred by a structural subset of resistance (R) proteins containing a nucleotide-binding site, leucine-rich-repeats and amino-terminal similarity to animal Toll and Interleukin-1 (so-called TIR-NBS-LRR proteins). EDS1 is not required by NBS-LRR proteins that possess an amino-terminal coiled-coil motif (CC-NBS-LRR proteins). Using virus-induced gene silencing (VIGS) of a Nicotiana benthaminana EDS1 orthologue, we investigated the role of EDS1 in resistance specified by structurally distinct R genes in transgenic N. benthamiana. Resistance against tobacco mosaic virus mediated by tobacco N, a TIR-NBS-LRR protein, was EDS1-dependent. Two other R proteins, Pto (a protein kinase), and Rx (a CC-NBS-LRR protein) recognizing, respectively, a bacterial and viral pathogen did not require EDS1. These data, together with the finding that expression of N. benthamiana and Arabidopsis EDS1 mRNAs are similarly regulated, lead us to conclude that recruitment of EDS1 by TIR-NBS-LRR proteins is evolutionarily conserved between dicotyledenous plant species in resistance against bacterial, oomycete and viral pathogens. We further demonstrate that VIGS is a useful approach to dissect resistance signaling pathways in a genetically intractable plant species.

  13. Satellite RNA-mediated Reduction of Cucumber Mosaic Virus Genomic RNAs Accumulation in Nicotiana tabacum

    Institute of Scientific and Technical Information of China (English)

    Qiansheng LIAO; Liping ZHU; Zhiyou DU; Rong ZENG; Junli FENG; Jishuang CHEN

    2007-01-01

    Satellite RNAs (satRNAs) are molecular parasites that interfere with the pathogenesis of the helper viruses.In this study,the relative accumulation of cucumber mosaic virus (CMV)-Fny genomic RNAs with or without satRNAs were quantitatively analyzed by real-time RT-PCR.The results showed that satRs apparently attenuated the symptoms of CMV-Fny on Nicotiana tabacum by depressing the accumulation of CMV-Fny genomic RNAs,tested as open reading frames.The accumulation of CMV-Fny la,2a,2b,3a,and CP genes was much higher than that of CMV-Fny with satRs added(CMV-Fsat),at different inoculation times.CMV-Fny△2b,in which the complete 2b gene and 41 amino acids at the C-terminal of the 2a gene were deleted,caused only a slight mosaic effect on N.tabacum seedlings,similar to that of CMVFsat,but the addition of satRs to CMV-Fny△2b showed further decrease in the accumulation of CMVFny△2b genomic RNAs.Our results indicated that the attenuation of CMV,by adding satRs or deleting the 2b gene,was due to the low accumulation of CMV genomic RNAs,and that satRNA-mediated reduction of CMV genomic RNAs accumulation in N.tabacum was possibly related to the 2b gene.

  14. RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava.

    Science.gov (United States)

    Yadav, Jitender S; Ogwok, Emmanuel; Wagaba, Henry; Patil, Basavaprabhu L; Bagewadi, Basavaraj; Alicai, Titus; Gaitan-Solis, Eliana; Taylor, Nigel J; Fauquet, Claude M

    2011-09-01

    Cassava brown streak disease (CBSD), caused by Cassava brown streak Uganda virus (CBSUV) and Cassava brown streak virus (CBSV), is of new epidemic importance to cassava (Manihot esculenta Crantz) production in East Africa, and an emerging threat to the crop in Central and West Africa. This study demonstrates that at least one of these two ipomoviruses, CBSUV, can be efficiently controlled using RNA interference (RNAi) technology in cassava. An RNAi construct targeting the near full-length coat protein (FL-CP) of CBSUV was expressed constitutively as a hairpin construct in cassava. Transgenic cassava lines expressing small interfering RNAs (siRNAs) against this sequence showed 100% resistance to CBSUV across replicated graft inoculation experiments. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed the presence of CBSUV in leaves and some tuberous roots from challenged controls, but not in the same tissues from transgenic plants. This is the first demonstration of RNAi-mediated resistance to the ipomovirus CBSUV in cassava.

  15. Rapid detection of squash leaf curl virus by loop-mediated isothermal amplification.

    Science.gov (United States)

    Kuan, Cheng-Ping; Wu, Min-Tze; Lu, Yi-Lin; Huang, Hung-Chang

    2010-10-01

    A loop-mediated isothermal amplification (LAMP) assay was employed to develop a simple and efficient system for the detection of squash leaf curl virus (SLCV) in diseased plants of squash (Cucurbita pepo) and melon (Cucumis melo). Completion of LAMP assay required 30-60 min under isothermal conditions at 65 degrees C by employing a set of four primers targeting SLCV. Although the sensitivity of the LAMP assay and the polymerase chain reaction (PCR) assay was comparable at high virus concentrations, the LAMP assay was by a 10-fold dilution factor more sensitive than the PCR assay for the detection of SLCV in diseased plants. No reaction was detected in the tissues of healthy plants by either the LAMP or the PCR. The LAMP products can be visualized by staining directly in the tube with SYBR Safe DNA gel stain dye. The sensitivity of the SYBR Safe DNA gel stain is similar to analysis by gel electrophoresis. Although both the LAMP and the PCR methods were capable of detecting SLCV in infected tissues of squash and melon, the LAMP method would be more useful than the PCR method for detection of SLCV infection in cucurbitaceous plants because it is more rapid, simple, accurate and sensitive.

  16. Inhibition of Rgs10 Expression Prevents Immune Cell Infiltration in Bacteria-induced Inflammatory Lesions and Osteoclast-mediated Bone Destruction

    Institute of Scientific and Technical Information of China (English)

    Sen Yang; Yi-Ping Li; Wei Chen; Liang Hao; Matthew McConnell; Xuedong Zhou; Min Wang; Yan Zhang; John D. Mountz; Michael Reddy; Paul D. Eleazer

    2013-01-01

    Regulator of G-protein Signaling 10 (Rgs10) plays an important function in osteoclast differentiation. However, the role of Rgs10 in immune cells and inflammatory responses, which activate osteoclasts in inflam-matory lesions, such as bacteria-induced periodontal disease lesions, remains largely unknown. In this study, we used an adeno-associated virus (AAV-) mediated RNAi (AAV-shRNA-Rgs10) knockdown approach to study Rgs10’s function in immune cells and osteoclasts in bacteria-induced inflammatory lesions in a mouse model of periodontal disease. We found that AAV-shRNA-Rgs10 mediated Rgs10 knockdown impaired osteoclastogenesis and osteoclast-mediated bone resorption, in vitro and in vivo. Interestingly, local injection of AAV-shRNA-Rgs10 into the periodontal tissues in the bacteria-induced inflammatory lesion greatly decreased the number of dendritic cells, T-cells and osteoclasts, and protected the periodontal tissues from local inflammatory damage and bone destruction. Importantly, AAV-mediated Rgs10 knockdown also reduced local expression of osteoclast markers and pro-inflammatory cytokines. Our results demonstrate that AAV-shRNA-Rgs10 knockdown in periodontal disease tissues can prevent bone resorption and inflammation simultaneously. Our data indicate that Rgs10 may regulate dendritic cell proliferation and maturation, as well as the subsequent stimulation of T-cell proliferation and maturation, and osteoclast differentiation and acti-vation. Our study suggests that AAV-shRNA-Rgs10 can be useful as a therapeutic treatment of periodontal disease.

  17. Gene expression profiles of human liver cells mediated by hepatitis B virus X protein

    Institute of Scientific and Technical Information of China (English)

    Wei-ying ZHANG; Fu-qing XU; Chang-liang SHAN; Rong XIANG; Li-hong YE; Xiao-dong ZHANG

    2009-01-01

    Aim: To demonstrate the gene expression profiles mediated by hepatitis B virus X protein (HBx), we characterized the molecular features of pathogenesis associated with HBx in a human liver cell model.Methods: We examined gene expression profiles in L-O2-X cells, an engineered L-O2 cell line that constitutively expresses HBx, relative to L-O2 cells using an Agilent 22 K human 70-mer oligonucleotide microarray representing more than 21,329 unique, well-characterized Homo sapiens genes, Western blot analysis and RNA interference (RNAi) targeting HBx mRNA validated the overexpression of proliferating cell nuclear antigen (PCNA) and Bcl-2 in L-O2-X cells. Meanwhile, the BrdU incorporation assay was used to test cell proliferation mediated by upregulated cyclooxygenase-2 (COX-2).Results: The microarray showed that the expression levels of 152 genes were remarkably altered; 82 of the genes were upregulated and 70 genes were downregulated in L-O2-X cells. The altered genes were associated with signal transduction pathways, cell cycle, metastasis, transcriptional regulation, immune response, metabolism, and other processes. PCNA and Bcl-2 were upregulated in L-O2-X cells. Furthermore, we found that COX-2 upregulation in L-O2-X cells enhanced proliferation using the BrdU incorporation assay, whereas indomethacin (an inhibitor of COX-2) abolished the promotion.Conclusion: Our findings provide new evidence that HBx is able to regulate many genes that may be involved in the car-cinogenesis. These regulated genes mediated by HBx may serve as molecular targets for the prevention and treatment of hepatocellular carcinoma.

  18. Effects of adeno-associated virus (AAV) of transforming growth factors β1 and β3 (TGFβ1,3) on promoting synthesis of glycosaminoglycan and collagen type Ⅱ of dedifferentiated nucleus pulposus (NP) cells

    Institute of Scientific and Technical Information of China (English)

    SAI; JiaMing; HU; YouGu; WANG; DeChun

    2007-01-01

    The effects of AAV-TGFβ1 and AAV-TGFβ3 on promoting synthesis of glycosaminoglycan and collagen type Ⅱ of dedifferentiated rabbit lumbar disc NP cells were studied in this work. The rabbit lumbar disc NP cells were isolated and cultured. The earlier and later dedifferentiated NP cells were established by subculture. The AAV transfection efficiency to dedifferentiated NP cells was analyzed with AAV-EGFP in vitro. After dedifferentiated NP cells were transfected by AAV-TGFβ1 or AAV-TGFβ3, their biological effects on promoting synthesis of glycosaminoglycan or collagen type Ⅱ were detected and compared by the methods of 35S incorporation or immunoblotting. The experimental results showed that AAV could transfect efficiently the earlier dedifferentiated NP cells, but its transfection rate was shown to be at a low level to the later dedifferentiated NP cells. Both AAV-TGFβ1 and AAV-TGFβ3 could promote the earlier dedifferentiated NP cells to synthesize glycosaminoglycan and collagen type Ⅱ, and the effect of AAV-TGFβ1 was better than that of AAV-TGFβ3. For the later dedifferentiated NP cells, the AAV-TGFβ3 could promote their synthesis, but AAV-TGFβ1 could slightly inhibit their synthesis. Therefore, AAV-TGFβ1 and AAV-TGFβ3 could be used for the earlier dedifferentiated NP cells, and the TGFβ3 could be used as the objective gene for the later dedifferentiated NP cells.

  19. Increasing the Efficiency of CRISPR/Cas9-mediated Precise Genome Editing of HSV-1 Virus in Human Cells

    Science.gov (United States)

    Lin, Chaolong; Li, Huanhuan; Hao, Mengru; Xiong, Dan; Luo, Yong; Huang, Chenghao; Yuan, Quan; Zhang, Jun; Xia, Ningshao

    2016-01-01

    Genetically modified HSV-1 viruses serve as promising vectors for tumour therapy and vaccine development. The CRISPR/Cas9 system is one of the most powerful tools for precise gene editing of the genomes of organisms. However, whether the CRISPR/Cas9 system can precisely and efficiently make gene replacements in the genome of HSV-1 remains essentially unknown. Here, we reported CRISPR/Cas9-mediated editing of the HSV-1 genome in human cells, including the knockout and replacement of large genes. In established cells stably expressing CRISPR/Cas9, gRNA in coordination with Cas9 could direct a precise cleavage within a pre-defined target region, and foreign genes were successfully used to replace the target gene seamlessly by HDR-mediated gene replacement. Introducing the NHEJ inhibitor SCR7 to the CRISPR/Cas9 system greatly facilitated HDR-mediated gene replacement in the HSV-1 genome. We provided the first genetic evidence that two copies of the ICP0 gene in different locations on the same HSV-1 genome could be simultaneously modified with high efficiency and with no off-target modifications. We also developed a revolutionized isolation platform for desired recombinant viruses using single-cell sorting. Together, our work provides a significantly improved method for targeted editing of DNA viruses, which will facilitate the development of anti-cancer oncolytic viruses and vaccines. PMID:27713537

  20. A reverse transcription loop-mediated isothermal amplification assay to rapidly diagnose foot-and-mouth disease virus C

    OpenAIRE

    Ding, Yao-zhong; Zhou, Jian-Hua; Ma, Li-na; Qi, Yan-ni; Wei, Gang; Zhang, Jie; Zhang, Yong-guang

    2014-01-01

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to rapidly detect foot-and-mouth disease virus serotype C (FMDV C). By testing 10-fold serial dilutions of FMDV C samples, sensitivity of the FMDV C RT-LAMP was found to be 10 times higher than that of conventional reverse transcription-PCR (RT-PCR). No cross-reactivity with A, Asia 1, or O FMDV or swine vesicular disease virus (SVDV) indicated that FMDV C RT-LAMP may be an exciting novel method for d...

  1. Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation.

    OpenAIRE

    Zalvide, J; DeCaprio, J A

    1995-01-01

    Simian virus 40 large T-antigen (TAg) transformation is thought to be mediated, at least in part, by binding to and modulating the function of certain cellular proteins, including the retinoblastoma tumor suppressor gene product, pRb. TAg can disrupt the inhibitory complexes formed by pRb with the oncogenic transcription factor E2F, and this mechanism has been suggested to be important for TAg-mediated transformation. Residues 102 to 114 of TAg (including the LXCXE motif) are required for bin...

  2. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  3. Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Dukes, J.P.; King, D.P.; Alexandersen, Søren

    2006-01-01

    Speed is paramount in the diagnosis of foot-and-mouth disease (FMD) and simplicity is required if a test is to be deployed in the field. The development of a one-step, reverse transcription loop-mediated amplification (RT-LAMP) assay enables FMD virus (FMDV) to be detected in under an hour...... in a single tube without thermal cycling. A fragment of the 3D RNA polymerase gene of the virus is amplified at 65 degrees C in the presence of a primer mixture and both reverse transcriptase and Bst DNA polymerase. Compared with real-time RT-PCR, RT-LAMP was consistently faster, and ten copies of FMDV...... transcript were detected in twenty-two minutes. Amplification products were detected by visual inspection, agarose gel electrophoresis, or in real-time by the addition of a fluorescent dye. The specificity of the reaction was demonstrated by the absence of amplification of RNA from other viruses that cause...

  4. Antibody-Dependent Cell-Mediated Cytotoxicity to Hemagglutinin of Influenza A Viruses After Influenza Vaccination in Humans

    Science.gov (United States)

    Zhong, Weimin; Liu, Feng; Wilson, Jason R.; Holiday, Crystal; Li, Zhu-Nan; Bai, Yaohui; Tzeng, Wen-Pin; Stevens, James; York, Ian A.; Levine, Min Z.

    2016-01-01

    Background. Detection of neutralizing antibodies (nAbs) to influenza A virus hemagglutinin (HA) antigens by conventional serological assays is currently the main immune correlate of protection for influenza vaccines However, current prepandemic avian influenza vaccines are poorly immunogenic in inducing nAbs despite considerable protection conferred. Recent studies show that Ab-dependent cell-mediated cytotoxicity (ADCC) to HA antigens are readily detectable in the sera of healthy individuals and patients with influenza infection. Methods. Virus neutralization and ADCC activities of serum samples from individuals who received either seasonal or a stock-piled H5N1 avian influenza vaccine were evaluated by hemagglutination inhibition assay, microneutralization assay, and an improved ADCC natural killer (NK) cell activation assay. Results. Immunization with inactivated seasonal influenza vaccine led to strong expansion of both nAbs and ADCC-mediating antibodies (adccAbs) to H3 antigen of the vaccine virus in 24 postvaccination human sera. In sharp contrast, 18 individuals vaccinated with the adjuvanted H5N1 avian influenza vaccine mounted H5-specific antibodies with strong ADCC activities despite moderate virus neutralization capacity. Strength of HA-specific ADCC activities is largely associated with the titers of HA-binding antibodies and not with the fine antigenic specificity of anti-HA nAbs. Conclusions. Detection of both nAbs and adccAbs may better reflect protective capacity of HA-specific antibodies induced by avian influenza vaccines.

  5. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators.

    Science.gov (United States)

    de Azeredo, Elzinandes Leal; Monteiro, Robson Q; de-Oliveira Pinto, Luzia Maria

    2015-01-01

    Dengue is an infectious disease caused by dengue virus (DENV). In general, dengue is a self-limiting acute febrile illness followed by a phase of critical defervescence, in which patients may improve or progress to a severe form. Severe illness is characterized by hemodynamic disturbances, increased vascular permeability, hypovolemia, hypotension, and shock. Thrombocytopenia and platelet dysfunction are common in both cases and are related to the clinical outcome. Different mechanisms have been hypothesized to explain DENV-associated thrombocytopenia, including the suppression of bone marrow and the peripheral destruction of platelets. Studies have shown DENV-infected hematopoietic progenitors or bone marrow stromal cells. Moreover, anti-platelet antibodies would be involved in peripheral platelet destruction as platelets interact with endothelial cells, immune cells, and/or DENV. It is not yet clear whether platelets play a role in the viral spread. Here, we focus on the mechanisms of thrombocytopenia and platelet dysfunction in DENV infection. Because platelets participate in the inflammatory and immune response by promoting cytokine, chemokine, and inflammatory mediator secretion, their relevance as "immune-like effector cells" will be discussed. Finally, an implication for platelets in plasma leakage will be also regarded, as thrombocytopenia is associated with clinical outcome and higher mortality.

  6. Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33.

    Directory of Open Access Journals (Sweden)

    Jordy Saravia

    2015-10-01

    Full Text Available Respiratory syncytial virus (RSV is the most common cause of infant hospitalizations and severe RSV infections are a significant risk factor for childhood asthma. The pathogenic mechanisms responsible for RSV induced immunopathophysiology remain elusive. Using an age-appropriate mouse model of RSV, we show that IL-33 plays a critical role in the immunopathogenesis of severe RSV, which is associated with higher group 2 innate lymphoid cells (ILC2s specifically in neonates. Infection with RSV induced rapid IL-33 expression and an increase in ILC2 numbers in the lungs of neonatal mice; this was not observed in adult mice. Blocking IL-33 with antibodies or using an IL-33 receptor knockout mouse during infection was sufficient to inhibit RSV immunopathogenesis (i.e., airway hyperresponsiveness, Th2 inflammation, eosinophilia, and mucus hyperproduction; whereas administration of IL-33 to adult mice during RSV infection was sufficient to induce RSV disease. Additionally, elevated IL-33 and IL-13 were observed in nasal aspirates from infants hospitalized with RSV; these cytokines declined during convalescence. In summary, IL-33 is necessary, either directly or indirectly, to induce ILC2s and the Th2 biased immunopathophysiology observed following neonatal RSV infection. This study provides a mechanism involving IL-33 and ILC2s in RSV mediated human asthma.

  7. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Elzinandes Leal de Azeredo

    2015-01-01

    Full Text Available Dengue is an infectious disease caused by dengue virus (DENV. In general, dengue is a self-limiting acute febrile illness followed by a phase of critical defervescence, in which patients may improve or progress to a severe form. Severe illness is characterized by hemodynamic disturbances, increased vascular permeability, hypovolemia, hypotension, and shock. Thrombocytopenia and platelet dysfunction are common in both cases and are related to the clinical outcome. Different mechanisms have been hypothesized to explain DENV-associated thrombocytopenia, including the suppression of bone marrow and the peripheral destruction of platelets. Studies have shown DENV-infected hematopoietic progenitors or bone marrow stromal cells. Moreover, anti-platelet antibodies would be involved in peripheral platelet destruction as platelets interact with endothelial cells, immune cells, and/or DENV. It is not yet clear whether platelets play a role in the viral spread. Here, we focus on the mechanisms of thrombocytopenia and platelet dysfunction in DENV infection. Because platelets participate in the inflammatory and immune response by promoting cytokine, chemokine, and inflammatory mediator secretion, their relevance as “immune-like effector cells” will be discussed. Finally, an implication for platelets in plasma leakage will be also regarded, as thrombocytopenia is associated with clinical outcome and higher mortality.

  8. Urea-mediated cross-presentation of soluble Epstein-Barr virus BZLF1 protein.

    Directory of Open Access Journals (Sweden)

    Sascha Barabas

    2008-11-01

    Full Text Available Soluble extracellular proteins usually do not enter the endogenous human leukocyte antigen (HLA I-dependent presentation pathway of antigen-presenting cells, strictly impeding their applicability for the re-stimulation of protein-specific CD8(+ cytotoxic T lymphocytes (CTL. Here we present for the Epstein-Barr virus (EBV BZLF1 a novel strategy that facilitates protein translocation into antigen-presenting cells by its solubilisation in high molar urea and subsequent pulsing of cells in presence of low molar urea. Stimulation of PBMC from HLA-matched EBV-seropositive individuals with urea-treated BZLF1 but not untreated BZLF1 induces an efficient reactivation of BZLF1-specific CTL. Urea-treated BZLF1 (uBZLF1 enters antigen-presenting cells in a temperature-dependent manner by clathrin-mediated endocytosis and is processed by the proteasome into peptides that are bound to nascent HLA I molecules. Dendritic cells and monocytes but also B cells can cross-present uBZLF1 in vitro. The strategy described here has potential for use in the development of improved technologies for the monitoring of protein-specific CTL.

  9. Differentiation of Th subsets inhibited by nonstructural proteins of respiratory syncytial virus is mediated by ubiquitination.

    Directory of Open Access Journals (Sweden)

    Ling Qin

    Full Text Available Human respiratory syncytial virus (RSV, a major cause of severe respiratory diseases, constitutes an important risk factor for the development of subsequent asthma. However, the mechanism underlying RSV-induced asthma is poorly understood. Viral non-structural proteins NS1 and NS2 are critically required for RSV virulence; they strongly suppress IFN-mediated innate immunity of the host cells. In order to understand the effects of NS1 and NS2 on differentiation of Th subsets, we constructed lentiviral vectors of NS1 or NS2 to infect 16 HBE and analyzed the expression of HLA-DR, CD80 and CD86 and differentiation of Th1, Th2 and Th17 by Flow Cytometric Analysis and real-time PCR. The results showed that NS1 inhibited expression of HLA-DR, CD80 and CD86 and differentiation of Th1, Th2 and Th17 lymphocytes, which could be reversed by deleting elongin C binding domain. NS2 inhibited the differentiation of Th2 and Th17, which was reversed by proteasome inhibitors of PS-341. Our results indicated that NS1 inhibited the differentiation of T lymphocytes through its mono-ubiquitination to interacted proteins, while NS2 inhibited differentiation of Th2 and Th17 through ubiquitin-proteasome pathway, which may be related with the susceptibility to asthma after RSV infection.

  10. Nodular Scleritis Associated with Herpes Zoster Virus: An Infectious and Immune-Mediated Process.

    Science.gov (United States)

    Loureiro, Mónica; Rothwell, Renata; Fonseca, Sofia

    2016-01-01

    Purpose. To describe a case of anterior nodular scleritis, preceded by an anterior hypertensive uveitis, which was primarily caused by varicella zoster virus (VZV). Case Report. A 54-year-old woman presented with anterior uveitis of the right eye presumably caused by herpetic viral disease and was successfully treated. Two months later, she developed a nodular scleritis and started oral nonsteroidal anti-inflammatory without effect. A complete laboratory workup revealed positivity for HLA-B27; the infectious workup was negative. Therapy was changed to oral prednisolone and an incomplete improvement occurred. Therefore, a diagnostic anterior paracentesis was performed and the polymerase chain reaction (PCR) analysis revealed VZV. She was treated with valacyclovir and the oral prednisolone began to decrease; however, a marked worsening of the scleritis occurred with the reduction of the daily dose; subsequently, methotrexate was introduced allowing the suspension of the prednisolone and led to clinical resolution of the scleritis. Conclusion. This report of anterior nodular scleritis caused by VZV argues in favor of an underlying immune-mediated component, requiring immunosuppressive therapy for clinical resolution. The PCR analysis of the aqueous humor was revealed to be a valuable technique and should be considered in cases of scleritis with poor response to treatment. PMID:27298747

  11. Cross-neutralization of influenza A viruses mediated by a single antibody loop.

    Science.gov (United States)

    Ekiert, Damian C; Kashyap, Arun K; Steel, John; Rubrum, Adam; Bhabha, Gira; Khayat, Reza; Lee, Jeong Hyun; Dillon, Michael A; O'Neil, Ryann E; Faynboym, Aleksandr M; Horowitz, Michael; Horowitz, Lawrence; Ward, Andrew B; Palese, Peter; Webby, Richard; Lerner, Richard A; Bhatt, Ramesh R; Wilson, Ian A

    2012-09-27

    Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens. PMID:22982990

  12. Anti-tumor Immune Response Mediated by Newcastle Disease Virus HN Gene

    Institute of Scientific and Technical Information of China (English)

    PENG Li-ping; JIN Ning-yi; LI Xiao; SUN Li-li; WEN Zhong-mei; LIU Yan; GAO Peng; HUANG Hai-yan; PIAO Bing-guo; JIN Jing

    2011-01-01

    Hemagglutinin-neuramidinase(HN) is one of the most important surface structure proteins of the Newcastle disease virus(NDV). HN not only mediates receptor recognition but also possesses neuraminidase(NA) activity,which gives it the ability to cleave a component of those receptors, NAcneu. Previous studies have demonstrated that HN has interesting anti-neoplastic and immune-stimulating properties in mammalian species, including humans. To explore the application of the HN gene in cancer gene therapy, we constructed a Lewis lung carcinoma(LLC) solid tumor model using C57BL/6 mice. Mice were injected intratumorally with the recombinant adenovirus expressing HN gene(Ad-HN), and the effect of HN was explored by natural killer cell activity assay, cytotoxic lymphocyte activity assay, T cell subtype evaluation, and Thl/Th2 cytokines analysis. The results demonstrate that HN not only can elicit clonal expansion of both CD4+ and CD8+ T cell populations and cytotoxic T lymphocyte(CTL) and killer cell response, but also skews the immune response toward Thl. Thus, vaccination with Ad-HN may be a potential strategy for cancer gene therapy.

  13. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  14. Rapid and Sensitive Detection of RNA Viruses Based on Reverse Transcription Loop-Mediated Isothermal Amplification, Magnetic Nanoparticles, and Chemiluminescence.

    Science.gov (United States)

    Wang, Jiuhai; Lu, Peng; Yan, Jieni; Zhang, Yufan; Huang, Lanye; Ali, Zeeshan; Li, Zhiyang; He, Nongyue

    2016-04-01

    RNA viruses, particularly, the highly pathogenic avian influenza (HPAI) virus, pose serious health concerns, and cause huge economic losses worldwide. Diagnostic tools for the early detection of these deadly RNA viruses are urgently needed to implement treatment and disease control strategies. Conventional reverse transcription polymerase chain reaction (RT-PCR)-based chemiluminescent (RT-PCR-CL) detection is frequently used for the diagnosis of viral infections. However, the requirements for expensive PCR machines and longer thermocycling times are significant drawbacks. In this study, we propose a method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with chemiluminescence (CL) to detect H7N9 virus. The proposed method does not require any expensive instruments, and processing time is remarkably shortened compared to that of RT-PCR-CL. Since several factors including RT-LAMP temperature, probe concentration, hybridization temperature, and hybridization duration might affect the CL signal, each of these parameters was investigated and optimized. One thousand copies/mL of H7N9 RNA were detectable using the optimized RT-LAMP-CL method. The detection time was significantly reduced by using RT-LAMP, in comparison with conventional RT-PCR-CL. This technique holds great promise for viral detection and diagnosis, especially with regard to avian influenza virus. PMID:27301197

  15. An improved PCR strategy for fast screening of specific and random integrations in rAAV-mediated gene targeted cell clones

    Directory of Open Access Journals (Sweden)

    Sørensen Charlotte B

    2011-07-01

    Full Text Available Abstract Background Gene targeting by homologous recombination using recombinant adeno-associated virus (rAAV is becoming a useful tool for basic research and therapeutic applications due to the remarkably high targeting frequency of rAAV virus vectors. However, the screening for the pure gene-targeted and random-integration-free primary cell clones is difficult since the cells have a limited proliferation capacity and often cannot be grown to produce sufficient DNA for non-PCR based analysis. This hampers the applications of this technology. Findings In this study, we have developed an improved PCR screening method, which can be used for fast screening of clones with unwanted random integration (RI of the rAAV genome. This improved screening method includes four PCRs: a PCR for the selection gene (e.g. Neo-PCR, a PCR for targeted gene knockout (e.g. BRCA1-KO-PCR, and two generalized PCRs for random integration of the rAAV genome (5'-AAV-RI-PCR, and 3'-AAV-RI-PCR. We have shown that this screening method greatly facilitates the procedure of screening for BRCA1 (BReast CAncer susceptibility gene 1 targeted cell clones, eliminating cell clones with both BRCA1 knockout and random integration of the rAAV genome. Conclusions This screening method has facilitated the screening of correct gene-targeted cells. As the AAV-RI-PCRs are generalized PCRs, this method can also be applied for screening of rAAV-mediated targeting of other genes.

  16. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature.

    Science.gov (United States)

    Kis, András; Tholt, Gergely; Ivanics, Milán; Várallyay, Éva; Jenes, Barnabás; Havelda, Zoltán

    2016-04-01

    Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect-mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off-target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12-15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect-mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process. PMID:26136043

  17. Dual Function of Ccr5 during Langat Virus Encephalitis: Reduction in Neutrophil-Mediated Central Nervous System Inflammation and Increase in T Cell-Mediated Viral Clearance.

    Science.gov (United States)

    Michlmayr, Daniela; Bardina, Susana V; Rodriguez, Carlos A; Pletnev, Alexander G; Lim, Jean K

    2016-06-01

    Tick-borne encephalitis virus (TBEV) is a vector-transmitted flavivirus that causes potentially fatal neurologic infection. There are thousands of cases reported annually, and despite the availability of an effective vaccine, the incidence of TBEV is increasing worldwide. Importantly, up to 30% of affected individuals develop long-term neurologic sequelae. We investigated the role of chemokine receptor Ccr5 in a mouse model of TBEV infection using the naturally attenuated tick-borne flavivirus Langat virus (LGTV). Ccr5-deficient mice presented with an increase in viral replication within the CNS and decreased survival during LGTV encephalitis compared with wild-type controls. This enhanced susceptibility was due to the temporal lag in lymphocyte migration into the CNS. Adoptive transfer of wild-type T cells, but not Ccr5-deficient T cells, significantly improved survival outcome in LGTV-infected Ccr5-deficient mice. Concomitantly, a significant increase in neutrophil migration into the CNS in LGTV-infected Ccr5(-/-) mice was documented at the late stage of infection. Ab-mediated depletion of neutrophils in Ccr5(-/-) mice resulted in a significant improvement in mortality, a decrease in viral load, and a decrease in overall tissue damage in the CNS compared with isotype control-treated mice. Ccr5 is crucial in directing T cells toward the LGTV-infected brain, as well as in suppressing neutrophil-mediated inflammation within the CNS.

  18. Rapid detection of Piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Bhat, A I; Siljo, A; Deeshma, K P

    2013-10-01

    The loop-mediated isothermal amplification (LAMP) assay for Piper yellow mottle virus and the reverse transcription (RT) LAMP assay for Cucumber mosaic virus each consisted of a set of five primers designed against the conserved sequences in the viral genome. Both RNA and DNA isolated from black pepper were used as a template for the assay. The results were assessed visually by checking turbidity, green fluorescence and pellet formation in the reaction tube and also by gel electrophoresis. The assay successfully detected both viruses in infected plants whereas no cross-reactions were recorded with healthy plants. Optimum conditions for successful amplification were determined in terms of the concentrations of magnesium sulphate and betaine, temperature, and duration. The detection limit for both LAMP and RT-LAMP was up to 100 times that for conventional PCR and up to one-hundredth of that for real-time PCR. The optimal conditions arrived at were validated by testing field samples of infected vines of three species from different regions.

  19. Ubiquitin Conjugation of Hepatitis B Virus Core Antigen DNA Vaccine Leads to Enhanced Cell-Mediated Immune Response in BALB/c Mice

    OpenAIRE

    Chen, Jian-Hua; Yu, Yong-Sheng; Liu, Hong-Hong; Chen, Xiao-Hua; Xi, Min; ZANG, GUO-QING; Tang, Zheng-Hao

    2011-01-01

    Background Nearly 350 million persons worldwide are chronically infected with hepatitis B virus (HBV). Ubiquitin (Ub) is a highly conserved small regulatory protein, ubiquitous in eukaryotes, that usually serves as a signal for the target protein that is recognised and degraded in proteasomes . The Ub-mediated processing of antigens is rapid and efficient and stimulates cell-mediated immune responses. Accordingly, Ub-mediated processing of antigens has been widely used in chronic-infection an...

  20. Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice.

    Science.gov (United States)

    Zhang, Chao; Ding, Zuomei; Wu, Kangcheng; Yang, Liang; Li, Yang; Yang, Zhen; Shi, Shan; Liu, Xiaojuan; Zhao, Shanshan; Yang, Zhirui; Wang, Yu; Zheng, Luping; Wei, Juan; Du, Zhenguo; Zhang, Aihong; Miao, Hongqin; Li, Yi; Wu, Zujian; Wu, Jianguo

    2016-09-01

    MicroRNAs (miRNAs) are pivotal modulators of plant development and host-virus interactions. However, the roles and action modes of specific miRNAs involved in viral infection and host susceptibility remain largely unclear. In this study, we show that Rice ragged stunt virus (RRSV) infection caused increased accumulation of miR319 but decreased expression of miR319-regulated TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) genes, especially TCP21, in rice plants. Transgenic rice plants overexpressing miR319 or downregulating TCP21 exhibited disease-like phenotypes and showed significantly higher susceptibility to RRSV in comparison with the wild-type plants. In contrast, only mild disease symptoms were observed in RRSV-infected lines overexpressing TCP21 and especially in the transgenic plants overexpressing miR319-resistant TCP21. Both RRSV infection and overexpression of miR319 caused the decreased endogenous jasmonic acid (JA) levels along with downregulated expression of JA biosynthesis and signaling-related genes in rice. However, treatment of rice plants with methyl jasmonate alleviated disease symptoms caused by RRSV and reduced virus accumulation. Taken together, our results suggest that the induction of miR319 by RRSV infection in rice suppresses JA-mediated defense to facilitate virus infection and symptom development. PMID:27381440

  1. Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response.

    Science.gov (United States)

    Ma, Lin-Lin; Wang, Hui-Qiang; Wu, Ping; Hu, Jin; Yin, Jin-Qiu; Wu, Shuo; Ge, Miao; Sun, Wen-Fang; Zhao, Jiang-Yu; Aisa, Haji Akber; Li, Yu-Huan; Jiang, Jian-Dong

    2016-07-01

    Given the limitation of available antiviral drugs and vaccines, there remains to be a pressing need for novel anti-influenza drugs. Rupestonic acid derivatives were reported to have an anti-influenza virus activity, but their mechanism remains to be elucidated. Herein, we aim to evaluate the antiviral activity of YZH-106, a rupestonic acid derivative, against a broad-spectrum of influenza viruses and to dissect its antiviral mechanisms. Our results demonstrated that YZH-106 exhibited a broad-spectrum antiviral activity against influenza viruses, including drug-resistant strains in vitro. Furthermore, YZH-106 provided partial protection of the mice to Influenza A virus (IAV) infection, as judged by decreased viral load in lungs, improved lung pathology, reduced body weight loss and partial survival benefits. Mechanistically, YZH-106 induced p38 MAPK and ERK1/2 phosphorylation, which led to the activation of erythroid 2-related factor 2 (Nrf2) that up-regulated heme oxygenase-1 (HO-1) expression in addition to other genes. HO-1 inhibited IAV replication by activation of type I IFN expression and subsequent induction of IFN-stimulated genes (ISGs), possibly in a HO-1 enzymatic activity-independent manner. These results suggest that YZH-106 inhibits IAV by up-regulating HO-1-mediated IFN response. HO-1 is thus a promising host target for antiviral therapeutics against influenza and other viral infectious diseases. PMID:27107768

  2. AAV-mediated knock-down of HRC exacerbates transverse aorta constriction-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Chang Sik Park

    Full Text Available Histidine-rich calcium binding protein (HRC is located in the lumen of sarcoplasmic reticulum (SR that binds to both triadin (TRN and SERCA affecting Ca(2+ cycling in the SR. Chronic overexpression of HRC that may disrupt intracellular Ca(2+ homeostasis is implicated in pathogenesis of cardiac hypertrophy. Ablation of HRC showed relatively normal phenotypes under basal condition, but exhibited a significantly increased susceptibility to isoproterenol-induced cardiac hypertrophy. In the present study, we characterized the functions of HRC related to Ca(2+ cycling and pathogenesis of cardiac hypertrophy using the in vitro siRNA- and the in vivo adeno-associated virus (AAV-mediated HRC knock-down (KD systems, respectively.AAV-mediated HRC-KD system was used with or without C57BL/6 mouse model of transverse aortic constriction-induced failing heart (TAC-FH to examine whether HRC-KD could enhance cardiac function in failing heart (FH. Initially we expected that HRC-KD could elicit cardiac functional recovery in failing heart (FH, since predesigned siRNA-mediated HRC-KD enhanced Ca(2+ cycling and increased activities of RyR2 and SERCA2 without change in SR Ca(2+ load in neonatal rat ventricular cells (NRVCs and HL-1 cells. However, AAV9-mediated HRC-KD in TAC-FH was associated with decreased fractional shortening and increased cardiac fibrosis compared with control. We found that phospho-RyR2, phospho-CaMKII, phospho-p38 MAPK, and phospho-PLB were significantly upregulated by HRC-KD in TAC-FH. A significantly increased level of cleaved caspase-3, a cardiac cell death marker was also found, consistent with the result of TUNEL assay.Increased Ca(2+ leak and cytosolic Ca(2+ concentration due to a partial KD of HRC could enhance activity of CaMKII and phosphorylation of p38 MAPK, causing the mitochondrial death pathway observed in TAC-FH. Our results present evidence that down-regulation of HRC could deteriorate cardiac function in TAC-FH through

  3. An African horse sickness virus serotype 4 recombinant canarypox virus vaccine elicits specific cell-mediated immune responses in horses.

    Science.gov (United States)

    El Garch, H; Crafford, J E; Amouyal, P; Durand, P Y; Edlund Toulemonde, C; Lemaitre, L; Cozette, V; Guthrie, A; Minke, J M

    2012-09-15

    A recombinant canarypox virus vectored vaccine co-expressing synthetic genes encoding outer capsid proteins, VP2 and VP5, of African horse sickness virus (AHSV) serotype 4 (ALVAC(®)-AHSV4) has been demonstrated to fully protect horses against homologous challenge with virulent field virus. Guthrie et al. (2009) detected weak and variable titres of neutralizing antibody (ranging from horses received two vaccinations twenty-eight days apart and three horses remained unvaccinated. The detection of VP2/VP5 specific IFN-γ responses was assessed by enzyme linked immune spot (ELISpot) assay and clearly demonstrated that all ALVAC(®)-AHSV4 vaccinated horses developed significant IFN-γ production compared to unvaccinated horses. More detailed immune responses obtained by flow cytometry demonstrated that ALVAC(®)-AHSV4 vaccinations induced immune cells, mainly CD8(+) T cells, able to recognize multiple T-epitopes through all VP2 and only the N-terminus sequence of VP5. Neither VP2 nor VP5 specific IFN-γ responses were detected in unvaccinated horses. Overall, our data demonstrated that an experimental recombinant canarypox based vaccine induced significant CMI specific for both VP2 and VP5 proteins of AHSV4.

  4. Simultaneous detection and differentiation of dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Yin Jianhua

    2011-07-01

    Full Text Available Abstract Background Rapid identification and differentiation of mosquito-transmitted flaviviruses in acute-phase sera of patients and field-caught vector mosquitoes are important for the prediction and prevention of large-scale epidemics. Results We developed a flexible reverse-transcription loop-mediated isothermal amplification (RT-LAMP unit for the detection and differentiation of dengue virus serotypes 1-4 (DENV1-4, Japanese encephalitis virus (JEV, and West Nile virus (WNV. The unit efficiently amplified the viral genomes specifically at wide ranges of viral template concentrations, and exhibited similar amplification curves as monitored by a real-time PCR engine. The detection limits of the RT-LAMP unit were 100-fold higher than that of RT-PCR in 5 of the six flaviviruses. The results on specificity indicated that the six viruses in the assay had no cross-reactions with each other. By examining 66 viral strains of DENV1-4 and JEV, the unit identified the viruses with 100% accuracy and did not cross-react with influenza viruses and hantaviruses. By screening a panel of specimens containing sera of 168 patients and 279 pools of field-caught blood sucked mosquitoes, results showed that this unit is high feasible in clinical settings and epidemiologic field, and it obtained results 100% correlated with real-time RT-PCR. Conclusions The RT-LAMP unit developed in this study is able to quickly detect and accurately differentiate the six kinds of flaviviruses, which makes it extremely feasible for screening these viruses in acute-phase sera of the patients and in vector mosquitoes without the need of high-precision instruments.

  5. A Rab-GAP TBC Domain Protein Binds Hepatitis C Virus NS5A and Mediates Viral Replication▿

    Science.gov (United States)

    Sklan, Ella H.; Staschke, Kirk; Oakes, Tina M.; Elazar, Menashe; Winters, Mark; Aroeti, Benjamin; Danieli, Tsafi; Glenn, Jeffrey S.

    2007-01-01

    Hepatitis C virus (HCV) is an important cause of liver disease worldwide. Current therapies are inadequate for most patients. Using a two-hybrid screen, we isolated a novel cellular binding partner interacting with the N terminus of HCV nonstructural protein NS5A. This partner contains a TBC Rab-GAP (GTPase-activating protein) homology domain found in all known Rab-activating proteins. As the first described interaction between such a Rab-GAP and a viral protein, this finding suggests a new mechanism whereby viruses may subvert host cell machinery for mediating the endocytosis, trafficking, and sorting of their own proteins. Moreover, depleting the expression of this partner severely impairs HCV RNA replication with no obvious effect on cell viability. These results suggest that pharmacologic disruption of this NS5A-interacting partner can be contemplated as a potential new antiviral strategy against a pathogen affecting nearly 3% of the world's population. PMID:17686842

  6. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.

    Science.gov (United States)

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8 weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8 weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3 weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to

  7. Pseudorabies virus US3 protein kinase mediates actin stress fiber breakdown

    NARCIS (Netherlands)

    Minnebruggen, van G.; Favoreel, H.W.; Jacobs, L.; Nauwynck, H.J.

    2003-01-01

    Disruption of specific components of the host cytoskeleton has been reported for several viruses and is thought to be beneficial for viral replication and spread. Our previous work demonstrated that infection of swine kidney (SK-6) cells with pseudorabies virus (PRV), a swine alphaherpesvirus, induc

  8. Antibody-Dependent Cell-Mediated Cytotoxicity to Hemagglutinin of Influenza A Viruses After Influenza Vaccination in Humans.

    Science.gov (United States)

    Zhong, Weimin; Liu, Feng; Wilson, Jason R; Holiday, Crystal; Li, Zhu-Nan; Bai, Yaohui; Tzeng, Wen-Pin; Stevens, James; York, Ian A; Levine, Min Z

    2016-04-01

    Background.  Detection of neutralizing antibodies (nAbs) to influenza A virus hemagglutinin (HA) antigens by conventional serological assays is currently the main immune correlate of protection for influenza vaccines However, current prepandemic avian influenza vaccines are poorly immunogenic in inducing nAbs despite considerable protection conferred. Recent studies show that Ab-dependent cell-mediated cytotoxicity (ADCC) to HA antigens are readily detectable in the sera of healthy individuals and patients with influenza infection. Methods.  Virus neutralization and ADCC activities of serum samples from individuals who received either seasonal or a stock-piled H5N1 avian influenza vaccine were evaluated by hemagglutination inhibition assay, microneutralization assay, and an improved ADCC natural killer (NK) cell activation assay. Results.  Immunization with inactivated seasonal influenza vaccine led to strong expansion of both nAbs and ADCC-mediating antibodies (adccAbs) to H3 antigen of the vaccine virus in 24 postvaccination human sera. In sharp contrast, 18 individuals vaccinated with the adjuvanted H5N1 avian influenza vaccine mounted H5-specific antibodies with strong ADCC activities despite moderate virus neutralization capacity. Strength of HA-specific ADCC activities is largely associated with the titers of HA-binding antibodies and not with the fine antigenic specificity of anti-HA nAbs. Conclusions.  Detection of both nAbs and adccAbs may better reflect protective capacity of HA-specific antibodies induced by avian influenza vaccines. PMID:27419174

  9. Targeting of p300/CREB Binding Protein Coactivators by Simian Virus 40 Is Mediated through p53

    OpenAIRE

    Borger, Darrell R.; DeCaprio, James A.

    2006-01-01

    The primary transforming functions of simian virus 40 large T antigen (SV40 LT) are conferred primarily through the binding and inactivation of p53 and the retinoblastoma family members. Normal p53 function requires an association with the CREB binding protein (CBP)/p300 coactivators, and a ternary complex containing SV40 LT, p53, and CBP/p300 has been identified previously. In this report, we have evaluated a secondary function of p53 bound to the SV40 LT complex in mediating the binding of ...

  10. Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype

    OpenAIRE

    Yeh, Norman; Glosson, Nicole L.; Wang, Nan; Guindon, Lynette; McKinley, Carl; Hamada, Hiromasa; Li, Qingsheng; Dutton, Richard W.; Shrikant, Protul; Zhou, Baohua; Brutkiewicz, Randy R.; Blum, Janice S.; Kaplan, Mark H.

    2010-01-01

    CD8 T cells can acquire cytokine-secreting phenotypes paralleling cytokine production from Th cells. IL-17-secreting CD8 T cells, termed Tc17 cells, have been shown to promote inflammation and mediate immunity to influenza. However, most reports have observed a lack of cytotoxic activity by Tc17 cells. In this report, we explored the anti-viral activity of Tc17 cells using a vaccinia virus infection (VV) model. Tc17 cells expanded during VV infection, and TCR transgenic Tc17 cells were capabl...

  11. Psoralen-mediated virus photoinactivation in platelet concentrates: enhanced specificity of virus kill in the absence of shorter UVA wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Margolis-Nunno, Henrietta; Robinson, Richard; Horowitz, Bernard; Ben-Hur, Ehud [New York Blood Center, NY (United States); Geacintov, N.E. [New York Univ., NY (United States). Dept. of Chemistry

    1995-11-01

    Treatments with psoralens and long-wavelength ultraviolet radiation (UVA, 320-400 nm; PUVA) have shown efficacy for virus sterilization of platelet concentrates (PC). We have employed the psoralen derivative 4`-aminomethyl-4,5`,8-trimethylpsoralen (AMT), and have found that platelet integrity is best preserved when rutin, a flavonoid that quenches multiple reactive oxygen species, is present during AMT/UVA treatment of PC. In this report, we examine the effects of different UVA spectra under our standard PC treatment conditions (i.e. 50 {mu}g/mL AMT, 0.35 mM rutin and 38 J/cm{sup 2} UVA). Added vesicular stomatitis virus (VSV; {>=} 5.5 log{sub 10}) was completely inactivated with the simultaneous maintenance of the platelet aggregation response (> 90% of control) when a UVA light source with transmission mainly between 360 and 370 nm (narrow UVA1) was used. In contrast, with a broad-band UVA (320-400 nm; broad UVA) light source, the aggregation response was greatly compromised (< 50% of control) with only a minor increase in the rate of VSV kill. With this lamp, platelet function could be improved to about 75% of the control by adding a long-pass filter, which reduced the transmission of shorter ({<=} 345 nm) UVA wavelengths (340-400 nm; UVA1). At equivalent levels of virus kill, aggregation function was always best preserved when narrow UVA1 was used for PUVA treatment. Even in the absence of AMT, and with or without rutin present, narrow UVA1 irradiation was better tolerated by platelets than was broad UVA. (author).

  12. Citrus tristeza virus p23: a unique protein mediating key virus–host interactions

    OpenAIRE

    2013-01-01

    The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3′-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous gene...

  13. Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials

    Directory of Open Access Journals (Sweden)

    Zejing eWang

    2011-09-01

    Full Text Available Adeno-associated viral (AAV vector mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery to muscles for treating muscular dystrophies, and immune modulatory strategies to prevent unwanted immune responses and induce tolerance for a successful gene therapy.

  14. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA.

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-04-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia.

  15. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A;

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  16. A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR

    Science.gov (United States)

    Han, Pu; Deem, Michael

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.

  17. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Energy Technology Data Exchange (ETDEWEB)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  18. A Nucleotide Binding Motif in Hepatitis C Virus (HCV) NS4B Mediates HCV RNA Replication

    OpenAIRE

    Einav, Shirit; Elazar, Menashe; Danieli, Tsafi; Glenn, Jeffrey S.

    2004-01-01

    Hepatitis C virus (HCV) is a major cause of viral hepatitis. There is no effective therapy for most patients. We have identified a nucleotide binding motif (NBM) in one of the virus's nonstructural proteins, NS4B. This structural motif binds and hydrolyzes GTP and is conserved across HCV isolates. Genetically disrupting the NBM impairs GTP binding and hydrolysis and dramatically inhibits HCV RNA replication. These results have exciting implications for the HCV life cycle and novel antiviral s...

  19. A Nucleotide Binding Motif in Hepatitis C Virus (HCV) NS4B Mediates HCV RNA Replication

    Science.gov (United States)

    Einav, Shirit; Elazar, Menashe; Danieli, Tsafi; Glenn, Jeffrey S.

    2004-01-01

    Hepatitis C virus (HCV) is a major cause of viral hepatitis. There is no effective therapy for most patients. We have identified a nucleotide binding motif (NBM) in one of the virus's nonstructural proteins, NS4B. This structural motif binds and hydrolyzes GTP and is conserved across HCV isolates. Genetically disrupting the NBM impairs GTP binding and hydrolysis and dramatically inhibits HCV RNA replication. These results have exciting implications for the HCV life cycle and novel antiviral strategies. PMID:15452248

  20. Varicella-zoster virus (VZV) mediates a delayed host shutoff independent of open reading frame (ORF) 17 expression.

    Science.gov (United States)

    Waterboer, Tim; Rahaus, Markus; Wolff, Manfred H

    2002-01-01

    Varicella-zoster virus (VZV) open reading frame 17 (ORF 17) is the gene corresponding to Herpes simplex-virus (HSV) UL41. The UL41 gene encodes the virion host shutoff factor (vhs), a RNase that has been the object of detailed studies. In contrast to HSV, knowledge about VZV mediated shutoff effects and the role of ORF 17 is poor. We investigated the ORF 17 expression in infected cells and analyzed shutoff effects. ORF 17 expression could not be proven in infected human fibroblast cell lines and melanoma (MeWo) cells. Only after induction by Phorbol 12-myristate 13-acetate an ORF 17 expression became detectable in MeWo cells. Nevertheless, using stable expressed GAPDH mRNA as a marker for mRNA degradation, a VZV mediated shutoff, independent of ORF 17 expression, became measurable. Transfection experiments demonstrated that transient ORF 17 expression did not decrease the cellular GAPDH mRNA level. We examined whether the VZV shutoff factor is a tegument protein causing an early shutoff or whether it needs to be expressed (delayed shutoff). The GAPDH mRNA level in Actinomycin D pretreated and infected MeWo cells did not decrease even faster than the theoretical decay rate based on a half-life of 24 h. These findings lead to the conclusion that the VZV shutoff factor is not a mature protein localized in the virion and that VZV causes a delayed virion host shutoff effect.

  1. IL-17 response mediates acute lung injury induced by the 2009 Pandemic Influenza A(H1N1)Virus

    Institute of Scientific and Technical Information of China (English)

    Chenggang Li; Chen Wang; Zhongwei Chen; Li Xing; Chong Tang; Xiangwu Ju; Feng Guo; Jiejie Deng; Yan Zhao; Peng Yang; Jun Tang; Penghui Yang; Huanling Wang; Zhongpeng Zhao; Zhinan Yin; Bin Cao; Xiliang Wang; Chengyu Jiang; Yang Sun; Taisheng Li; Chen Wang; Zhong Wang; Zhen Zou; Yiwu Yan; Wei Wang

    2012-01-01

    The 2009 flu pandemic involved the emergence of a new strain of a swine-origin H1N1 influenza virus(S-OIV H1N1)that infected almost every country in the world.Most infections resulted in respiratory illness and some severe cases resulted in acute lung injury.In this report,we are the first to describe a mouse model of S-OIV virus infection with acute lung injury and immune responses that reflect human clinical disease.The clinical efficacy of the antiviral oseltamivir(Tamiflu)administered in the early stages of S-OIV H1N1 infection was confirmed in the mouse model.Moreover,elevated levels of IL-17,Th-17 mediators and IL-17-responsive cytokines were found in serum samples of S-OIV-infected patients in Beijing.IL-17 deficiency or treatment with monoclonal antibodies against IL-17-ameliorated acute lung injury induced by the S-OIV H1N1 virus in mice.These results suggest that IL-17 plays an important role in S-OIV-induced acute lung injury and that monoclonal antibodies against IL-17 could be useful as a potential therapeutic remedy for future S-OIV H1N1 pandemics.

  2. Tobacco Mosaic Virus-Based 1D Nanorod-Drug Carrier via the Integrin-Mediated Endocytosis Pathway.

    Science.gov (United States)

    Tian, Ye; Gao, Sijia; Wu, Man; Liu, Xiangxiang; Qiao, Jing; Zhou, Quan; Jiang, Shidong; Niu, Zhongwei

    2016-05-01

    For cancer therapy, viruses have been utilized as excellent delivery vehicles because of their facile transfection efficiency in their host cells. However, their inherent immunogenicity has become the major obstacle for their translation into approved pharmaceuticals. Herein, we utilized rodlike plant virus, tobacco mosaic virus (TMV), which is nontoxic to mammals and mainly infects tobacco species, as anticancer nanorod-drug vector for cancer therapy study. Doxorubicin (DOX) was installed in the inner cavity of TMV by hydrazone bond, which enabled the pH-sensitive drug release property. Conjugation of cyclic Arg-Gly-Asp (cRGD) on the surface of TMV can enhance HeLa cell uptake of the carrier via the integrin-mediated endocytosis pathway. Comparing with free DOX, the cRGD-TMV-hydra-DOX vector had similar cell growth inhibition and much higher apoptosis efficiency on HeLa cells. Moreover, the in vivo assay assumed that cRGD-TMV-hydra-DOX behaved similar antitumor efficiency but much lower side effect on HeLa bearing Balb/c-nu mice. Our work provides novel insights into potentially cancer therapy based on rodlike plant viral nanocarriers. PMID:27062971

  3. Plaque identification of strand-forming canine distemper virus by staphylococcal protein A-mediated reverse passive haemadsorption.

    Science.gov (United States)

    Johnson, G C; Fulks, K; Krakowka, S

    1985-02-01

    The R252 neurotropic isolate of canine distemper virus (CDV) produces cytopathic effects (CPE) dominated by strand formation rather than by the formation of multinucleate giant cells. The lack of well-defined CPE and consequent rapid spread of infection throughout the cell monolayer has hindered plaque purification of this virus by conventional methods. However, the use of an immunological detection system which utilizes binding of hyperimmune dog serum to virus-infected cells, followed by the identification of those sites by staphylococcal Protein A-coupled sheep red blood cells (reverse passive haemadsorption) allowed infected foci in cell monolayers to be detected as early as 4 days after infection, coincident with the appearance of the first immunofluorescently identified viral foci. Foci of haemadsorption were specific to sites of CDV infection as demonstrated by blocking experiments. Material recovered from the plaques was successful in infecting Vero cells. Thus, immunologically mediated adsorption of Protein A coupled red blood cells can be used to identify and isolate foci of viral infection which exhibit minimal or no viral CPE without destroying viral replicative ability.

  4. One-step reverse transcription loop-mediated isothermal amplification for the rapid detection of cucumber green mottle mosaic virus.

    Science.gov (United States)

    Li, Jin-yu; Wei, Qi-wei; Liu, Yong; Tan, Xin-qiu; Zhang, Wen-na; Wu, Jian-yan; Charimbu, Miriam Karwitha; Hu, Bai-shi; Cheng, Zhao-bang; Yu, Cui; Tao, Xiao-rong

    2013-11-01

    Cucumber green mottle mosaic virus (CGMMV) has caused serious damage to Cucurbitaceae crops worldwide. The virus is considered one of the most serious Cucurbitaceae quarantine causes in many countries. In this study, a highly efficient and practical one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed for the detection of CGMMV. The total RNA or crude RNA extracted from watermelon plants or seeds could be detected easily by this RT-LAMP assay. The RT-LAMP assay was conducted in isothermal (63°C) conditions within 1h. The amplified products of CGMMV could be detected as ladder-like bands using agarose gel electrophoresis or visualized in-tube under UV light with the addition of a fluorescent dye. The RT-LAMP amplification was specific to CGMMV, as no cross-reaction was observed with other viruses. The RT-LAMP assay was 100-fold more sensitive than that of reverse-transcription polymerase chain reaction (RT-PCR). This is the first report of the application of the RT-LAMP assay to detect CGMMV. The sensitive, specific and rapid RT-LAMP assay developed in this study can be applied widely in laboratories, the field and quarantine surveillance of CGMMV. PMID:23933076

  5. Liposome-Mediated Herpes Simplex Virus Uptake Is Glycoprotein-D Receptor-Independent but Requires Heparan Sulfate.

    Science.gov (United States)

    Burnham, Lorrie A; Jaishankar, Dinesh; Thompson, Jeffrey M; Jones, Kevin S; Shukla, Deepak; Tiwari, Vaibhav

    2016-01-01

    Cationic liposomes are widely used to facilitate introduction of genetic material into target cells during transfection. This study describes a non-receptor mediated herpes simplex virus type-1 (HSV-1) entry into the Chinese hamster ovary (CHO-K1) cells that naturally lack glycoprotein D (gD)-receptors using a commercially available cationic liposome: lipofectamine. Presence of cell surface heparan sulfate (HS) increased the levels of viral entry indicating a potential role of HS in this mode of entry. Loss of viral entry in the presence of actin de-polymerizing or lysosomotropic agents suggests that this mode of entry results in the endocytosis of the lipofectamine-virus mixture. Enhancement of HSV-1 entry by liposomes was also demonstrated in vivo using a zebrafish embryo model that showed stronger infection in the eyes and other tissues. Our study provides novel insights into gD receptor independent viral entry pathways and can guide new strategies to enhance the delivery of viral gene therapy vectors or oncolytic viruses. PMID:27446014

  6. Stoichiometry of Murine Leukemia Virus Envelope Protein-Mediated Fusion and Its Neutralization▿

    OpenAIRE

    Ou, Wu; Silver, Jonathan

    2006-01-01

    Envelope glycoproteins (Envs) of retroviruses form trimers that mediate fusion between viral and cellular membranes and are the targets for neutralizing antibodies. Understanding in detail how Env trimers mediate membrane fusion, and how antibodies interfere with this process, is a fundamental problem in biology with practical implications for the development of antiviral drugs and vaccines. We investigated the stoichiometry of Env-mediated fusion and its inhibition by antibody by inserting a...

  7. Small interfering RNAs targeting peste des petits ruminants virus M mRNA increase virus-mediated fusogenicity and inhibit viral replication in vitro.

    Science.gov (United States)

    Liu, Fuxiao; Wu, Xiaodong; Zou, Yanli; Li, Lin; Liu, Shan; Chi, Tianying; Wang, Zhiliang

    2015-11-01

    Peste des petits ruminants (PPR), caused by peste des petits ruminants virus (PPRV), is an acute or subacute, highly contagious and economically important disease of small ruminants. The PPRV is classified into the genus Morbillivirus in the family Paramyxoviridae. The PPRV matrix (M) protein possesses an intrinsic ability to bind to lipid membranes, and plays a crucial role in viral assembly and further budding. In this study, three different small interfering RNAs (siRNA) were designed on the basis of translated region for PPRV Nigeria 75/1M mRNA, and were subsequently synthesized for their transfection into Vero-SLAM cells, followed by infection with PPRVs. The results showed that two out of three siRNAs robustly induced cell-to-cell fusion as early as 36h post-infection with PPRVs, effectively suppressed expression of the M protein by interference for the M mRNA, and eventually inhibited viral replication in vitro. These findings led us to speculate that siRNA-mediated knockdown of the M protein would alter its interaction with viral glycoproteins, thus exacerbating intercellular fusion but hampering virus release. PMID:26318517

  8. Agrobacterium-mediated infection of whole plants by yellow dwarf viruses.

    Science.gov (United States)

    Yoon, Ju-Yeon; Choi, Seung-Kook; Palukaitis, Peter; Gray, Stewart M

    2011-09-01

    Barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPV (CYDV-RPV) are only transmitted between host plants by aphid vectors and not by mechanical transmission. This presents a severe limitation for the use of a reverse genetics approach to analyze the effects of mutations in these viruses on plant infection and aphid transmission. Here we describe the use of agroinfection to infect plants with BYDV-PAV and CYDV-RPV. The cDNAs corresponding to the complete RNA genomes of BYDV-PAV and CYDV-RPV were cloned into a binary vector under the control of the cauliflower mosaic virus 35S promoter and the nopaline synthase transcription termination signal. The self-cleaving ribozyme from hepatitis virus D was included to produce a transcript in planta with a 3' terminus identical to the natural viral RNA. ELISA and RT-PCR analysis showed that the replicons of BYDV-PAV and CYDV-RPV introduced by Agrobacterium into Nicotiana benthamiana and N. clevelandii gave rise to a local infection in the infiltrated mesophyll cells. After several weeks systemic infection of phloem tissue was detected, although no systemic symptoms were observed. Three heterologous virus silencing suppressors increased the efficiency of agroinfection and accumulation of BYDV-PAV and CYDV-RPV in the two Nicotiana species. The progeny viruses purified from infiltrated tissues were successfully transmitted to oat plants by aphids, and typical yellow dwarf symptoms were observed. This study reports the first agroinfection of eudicot plants using BYDV-PAV and CYDV-RPV. PMID:21763366

  9. Long-term Cre-mediated Retrograde Tagging of Neurons Using a Novel Recombinant Pseudorabies Virus

    Directory of Open Access Journals (Sweden)

    Hassana eOyibo

    2014-09-01

    Full Text Available Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, and infected neurons exhibited normal physiological function more than 45 days after infection, indicating the utility of these engineered viruses for chronic experiments. To enable rapid and convenient construction of novel IE180-null recombinants, we engineered a bacterial artificial chromosome (BAC shuttle-vector system for moving new constructs into the PRV IE180-null genome. Using this system we generated an IE180-null recombinant virus expressing the site-specific recombinase Cre. This Cre-expressing virus (PRV-hSyn-Cre efficiently and robustly infects neurons in vivo and activates transgene expression from Cre-dependent vectors in local and retrograde projecting populations of neurons in the mouse. We also generated an assortment of recombinant viruses expressing fluorescent proteins (mCherry, EGFP, ECFP. These viruses exhibit long-term labeling of neurons in vitro but transient labeling in vivo. Together these novel IE180-null PRV reagents expand the toolkit for targeted gene expression in the brain, facilitating functional dissection of neuronal circuits in vivo.

  10. Application of a Real-time Reverse Transcription Loop Mediated Amplification Method to the Detection of Rabies Virus in Arctic Foxes in Greenland

    DEFF Research Database (Denmark)

    Wakeley, Philip; Johnson, Nicholas; Rasmussen, Thomas Bruun

    Reverse transcription loop mediated amplification (RT-LAMP) offers a rapid, isothermal method for amplification of virus RNA. In this study a panel of positive rabies virus samples originally prepared from arctic fox brain tissue was assessed for the presence of rabies viral RNA using a real time...... RT-LAMP. The method had previously been shown to work with samples from Ghana which clustered with cosmopolitan lineage rabies viruses but the assay had not been assessed using samples from animals infected with rabies from the arctic region. The assay is designed to amplify both cosmopolitan strains...... and arctic-like strains of classical rabies virus due to the primer design and is therefore expected to be universally applicable independent of region of the world where the virus is isolated. Of the samples tested all were found to be positive after incubation for 25 to 30 minutes. The method made...

  11. Hyaluronic acid pretreatment for Sendai virus-mediated cochlear gene transfer.

    Science.gov (United States)

    Kurioka, T; Mizutari, K; Niwa, K; Fukumori, T; Inoue, M; Hasegawa, M; Shiotani, A

    2016-02-01

    Gene therapy with viral vectors is one of the most promising strategies for sensorineural hearing loss. However, safe and effective administration of the viral vector into cochlear tissue is difficult because of the anatomical isolation of the cochlea. We investigated the efficiency and safety of round window membrane (RWM) application of Sendai virus, one of the most promising non-genotoxic vectors, after pretreatment with hyaluronic acid (HA) on the RWM to promote efficient viral translocation into the cochlea. Sendai virus expressing the green fluorescent protein reporter gene was detected throughout cochlear tissues following application combined with HA pretreatment. Quantitative analysis revealed that maximum expression was reached 3 days after treatment. The efficiency of transgene expression was several 100-fold greater with HA pretreatment than that without. Furthermore, unlike the conventional intracochlear delivery methods, this approach did not cause hearing loss. These findings reveal the potential utility of gene therapy with Sendai virus and HA for treatment of sensorineural hearing loss.

  12. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease.

    Science.gov (United States)

    Dong, Yan-mei; Zhang, Guo-guang; Huang, Xiao-jun; Chen, Liang; Chen, Hao-tai

    2015-05-01

    Foot-and-mouth disease (FMD) has caused severe economic losses to millions of farmers worldwide. In this work, the coding genes of 141-160 epitope peptide (EP141-160) of VP1 were inserted into the coat protein (CP) genes of MS2 in prokaryotic expression vector, and the recombinant protein self-assembled into virus-like particles (VLP). Results showed that the CP-EP141-160 VLP had a strong immunoreaction with the FMD virus (FMDV) antigen in vitro, and also had an effective immune response in mice. Further virus challenge tests were carried out on guinea pigs and swine, high-titer neutralizing antibodies were produced and the CP-EP141-160 VLP vaccine could protect most of the animals against FMDV. PMID:25676866

  13. Enhanced neuroprotection and improved motor function in traumatized rat spinal cords by rAAV2-mediated Glial-derived neurotrophic factor combined with early rehabilitation training

    Institute of Scientific and Technical Information of China (English)

    Han Qingquan; Xiang Jingjing; Zhang Yun; Qiao Hujun; Shen Yongwei; Zhang Chun

    2014-01-01

    Background Spinal cord injury (SCI) is a serious neurological injury that often leads to permanent disabilities for the victims.The aim of this study was to determine the effects of glial-derived neurotrophic factor (GDNF) mediated by recombinant adeno-associated virus type 2 (rAAV2) alone or in combination with early rehabilitation training on SCI.Methods SCI was induced on the T8-9 segments of the spinal cord by laminectomy in adult male Sprague-Dawley rats.Then besides the sham operation group,the SCI rats were randomly divided into four groups:natural healing group,gene therapy group,rehabilitation training group,and combination therapy group (gene therapy in combination with rehabilitation training).Motor dysfunction,protein expression of GDNF,edema formation,and cell injury were examined 7,14,and 21 days after trauma.Results The topical application of rAAV-GDNF-GFP resulted in strong expression of GDNF,especially after the 14th day,and could protect the motor neuron ceils.Early rehabilitative treatment resulted in significantly improved motor function,reduced edema formation,and protected the cells from injury,especially after the 7th and 14th days,and increased the GDNF expression in the damaged area,which was most evident after Day 14.The combined application of GDNF and early rehabilitative treatment after SCI resulted in a significant reduction in spinal cord pathology and motor dysfunction after the 7th and 14th days.Conclusion These observations suggest that rAAV2 gene therapy in combination with rehabilitation therapy has potential clinical value for the treatment of SCI.

  14. AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior and emotional reactivity

    Directory of Open Access Journals (Sweden)

    Matthias eKlugmann

    2011-07-01

    Full Text Available The endocannabinoid (ECB system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus (AAV vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity (e.g. elevated plus maze (EPM, light/dark emergence test (EMT, social interaction and the attentional set shift task (ASST - an adaptation of the human Wisconsin card sorting test - for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R compared to empty vector injected controls (Empty in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior towards the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients.

  15. Bordetella pertussis infection exacerbates influenza virus infection through pertussis toxin-mediated suppression of innate immunity.

    Directory of Open Access Journals (Sweden)

    Victor I Ayala

    Full Text Available Pertussis (whooping cough is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8 infection in mouse models and the role of pertussis toxin (PT in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT and subsequently (up to 14 days later infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.

  16. Heterosubtype neutralizing responses to influenza A (H5N1 viruses are mediated by antibodies to virus haemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jean-Michel Garcia

    Full Text Available BACKGROUND: It is increasingly clear that influenza A infection induces cross-subtype neutralizing antibodies that may potentially confer protection against zoonotic infections. It is unclear whether this is mediated by antibodies to the neuraminidase (NA or haemagglutinin (HA. We use pseudoviral particles (H5pp coated with H5 haemagglutinin but not N1 neuraminidase to address this question. In this study, we investigate whether cross-neutralizing antibodies in persons unexposed to H5N1 is reactive to the H5 haemagglutinin. METHODOLOGY/PRINCIPAL FINDINGS: We measured H5-neutralization antibody titers pre- and post-vaccination using the H5N1 micro-neutralization test (MN and H5pp tests in subjects given seasonal vaccines and in selected sera from European elderly volunteers in a H5N1 vaccine trial who had detectable pre-vaccination H5N1 MN antibody titers. We found detectable (titer > or = 20 H5N1 neutralizing antibodies in a minority of pre-seasonal vaccine sera and evidence of a serological response to H5N1 in others after seasonal influenza vaccination. There was excellent correlation in the antibody titers between the H5N1 MN and H5pp tests. Similar correlations were found between MN and H5pp in the pre-vaccine sera from the cohort of H5N1 vaccine trial recipients. CONCLUSIONS/SIGNIFICANCE: Heterosubtype neutralizing antibody to H5N1 in healthy volunteers unexposed to H5N1 is mediated by cross-reaction to the H5 haemagglutinin.

  17. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes.

    Science.gov (United States)

    Xiao, Xiangwei; Guo, Ping; Prasadan, Krishna; Shiota, Chiyo; Peirish, Lauren; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Wiersch, John; El-Gohary, Yousef; Husain, Sohail Z; Gittes, George K

    2014-12-01

    Genetic manipulations, with or without lineage tracing for specific pancreatic cell types, are very powerful tools for studying diabetes, pancreatitis and pancreatic cancer. Nevertheless, the use of Cre/loxP systems to conditionally activate or inactivate the expression of genes in a cell type- and/or temporal-specific manner is not applicable to cell tracing and/or gene manipulations in more than one lineage at a time. Here we report a technique that allows efficient delivery of dyes for cell tagging into the mouse pancreas through the duct system, and that also delivers viruses carrying transgenes or siRNA under a specific promoter. When this technique is applied in genetically modified mice, it enables the investigator to perform either double lineage tracing or cell lineage tracing combined with gene manipulation in a second lineage. The technique requires <40 min.

  18. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity

    International Nuclear Information System (INIS)

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30II, a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30II, a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30II-dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30II-mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30II-mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30II-mediated LTR repression. Collectively, our data indicate that HTLV-1 p30II modulates viral gene expression in a cooperative manner with p300-mediated acetylation

  19. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Directory of Open Access Journals (Sweden)

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  20. Role of human GRP75 in miRNA mediated regulation of dengue virus replication.

    Science.gov (United States)

    Kakumani, Pavan Kumar; Medigeshi, Guruprasad R; Kaur, Inderjeet; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-07-15

    In recent times, RNAi has emerged as an important defence system that regulates replication of pathogens in host cells. Many RNAi related host factors especially the host miRNAs play important roles in all intrinsic cellular functions, including viral infection. We have been working on identification of mammalian host factors involved in Dengue virus infection. In the present study, we identified Glucose Regulated Protein 75kDa (GRP75), as a host factor that is associated with dicer complex, in particular with HADHA (trifunctional enzyme subunit alpha, mitochondrial), an auxiliary component of dicer complex. Knockdown of GRP75 by respective siRNAs in Huh-7 cells resulted in the accumulation of dengue viral genomic RNA suggesting a role of GRP75 in regulating dengue virus replication in human cell lines. To elucidate the mode of action of GRP75, we over expressed the protein in Huh-7 cells and analysed the host miRNAs processing. The results revealed that, GRP75 is involved in processing of host miRNA, hsa-mir-126, that down regulates dengue virus replication. These findings suggest a regulatory role of human miRNA pathway especially GRP75 protein and hsa-mir-126 in dengue virus replication. These results thus provide insights into the role of miRNAs and RNAi machinery in dengue life cycle. PMID:27039024

  1. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta.

    Science.gov (United States)

    Brodzik, R; Bandurska, K; Deka, D; Golovkin, M; Koprowski, H

    2005-12-16

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP. PMID:16236249

  2. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

    International Nuclear Information System (INIS)

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP

  3. Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus.

    Science.gov (United States)

    Myers, Rachel; Coviello, Christian; Erbs, Philippe; Foloppe, Johann; Rowe, Cliff; Kwan, James; Crake, Calum; Finn, Seán; Jackson, Edward; Balloul, Jean-Marc; Story, Colin; Coussios, Constantin; Carlisle, Robert

    2016-09-01

    Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport. In particular, shockwaves and microstreaming resulting from the instigation of an ultrasound-induced event known as inertial cavitation can propel OV hundreds of microns. We have recently developed a polymeric cup formulation which, when delivered intravenously, provides the nuclei for instigation of sustained inertial cavitation events within tumors. Here we report that exposure of tumors to focused ultrasound after intravenous coinjection of cups and oncolytic vaccinia virus , leads to substantial and significant increases in activity. When cavitation was instigated within SKOV-3 or HepG2 xenografts, reporter gene expression from vaccinia virus was enhanced 1,000-fold (P cavitation to a vaccinia virus expressing a prodrug converting enzyme provided significant (P < 0.05) retardation of tumor growth. This technology could improve the clinical utility of all biological therapeutics including OV. PMID:27375160

  4. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.

  5. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    International Nuclear Information System (INIS)

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells

  6. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  7. Flow cytometric assessment of chicken T cell-mediated immune responses after Newcastle disease virus vaccination and challenge

    DEFF Research Database (Denmark)

    Dalgaard, T. S.; Norup, L. R.; Pedersen, A.R.;

    2010-01-01

    The objective of this study was to use flow cytometry to assess chicken T cell-mediated immune responses. In this study two inbred genetic chicken lines (L130 and L133) were subjected to two times vaccination against Newcastle disease (ND) and a subsequent challenge by ND virus (NDV) infection....... Furthermore, peripheral lymphocytes from L133 exhibited a significantly higher expression of CD44 and CD45 throughout the experiment. Interestingly, also vaccine-induced differences were observed in L133 as immune chickens had a significantly higher CD45 expression on their lymphocytes than the naïve controls....... Immune chickens from both lines had a significantly higher frequency of circulating γδ T cells than the naïve controls both after vaccination and challenge. Finally, the proliferative capacity of peripheral CD4+ and CD8+ cells specific for NDV was addressed 3 weeks after vaccination and 1 week after...

  8. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid diagnosis of chilli veinal mottle virus.

    Science.gov (United States)

    Banerjee, Amrita; Roy, Somnath; Sharma, Susheel Kumar; Dutta, Sudip Kumar; Chandra, Satish; Ngachan, S V

    2016-07-01

    Chilli veinal mottle virus (ChiVMV) causes significant economic loss to chilli cultivation in northeastern India, as well as in eastern Asia. In this study, we have developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid, sensitive and specific diagnosis of ChiVMV. Amplification could be visualized after adding SYBR Green I (1000×) dye within 60 min under isothermal conditions at 63 °C, with a set of four primers designed based on the large nuclear inclusion protein (NIb) domain of ChiVMV (isolate KC-ML1). The RT-LAMP method was 100 times more sensitive than one-step reverse transcription polymerase chain reaction (RT-PCR), with a detection limit of 0.0001 ng of total RNA per reaction. PMID:27063408

  9. Epstein-Barr virus (EBV Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Directory of Open Access Journals (Sweden)

    Yen-Ju Chen

    Full Text Available Epstein-Barr virus (EBV Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV, to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1 an ideal environment for virus reactivation if EBV or KSHV coexists and (2 a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  10. Detection of shrimp Taura syndrome virus by loop-mediated isothermal amplification using a designed portable multi-channel turbidimeter.

    Science.gov (United States)

    Sappat, Assawapong; Jaroenram, Wansadaj; Puthawibool, Teeranart; Lomas, Tanom; Tuantranont, Adisorn; Kiatpathomchai, Wansika

    2011-08-01

    In this study, a portable turbidimetric end-point detection method was devised and tested for the detection of Taura syndrome virus (TSV) using spectroscopic measurement of a loop-mediated isothermal amplification (LAMP) by-product: magnesium pyrophosphate (Mg(2)P(2)O(7)). The device incorporated a heating block that maintained an optimal temperature of 63°C for the duration of the RT-LAMP reaction. Turbidity of the RT-LAMP by-product was measured when light from a light-emitting diode (LED) passed through the tube to reach a light dependent resistance (LDR) detector. Results revealed that turbidity measurement of the RT-LAMP reactions using this device provided the same detection sensitivity as the agarose gel electrophoresis detection of RT-LAMP and nested RT-PCR (IQ2000™) products. Cross reactions with other shrimp viruses were not found, indicating that the RT-LAMP-turbidity measurement was highly specific to TSV. The combination of 10 min for rapid RNA preparation with 30 min for RT-LAMP amplification followed by turbidity measurement resulted in a total assay time of less than 1h compared to 4-8h for the nested RT-PCR method. RT-LAMP plus turbidity measurement constitutes a platform for the development of more rapid and user-friendly detection of TSV in the field.

  11. Obtained transgenic wheat expressing pac1 mediated by Agrobacterium is resistant against Barley yellow dwarf virus-GPV

    Institute of Scientific and Technical Information of China (English)

    YAN Fei; ZHENG Yinying; ZHANG Wenwei; XIAO Hong; LI Shifang; CHENG Zhuomin

    2006-01-01

    In fission yeast (Schizosaccharomyces pombe), pac1 gene was cloned with 99.3% nucleotide sequence similarity with published pac1 in GenBank. In pET-5α expression system, the expression product of cloned pac1 in E. coli showed activity to degrade the double-strand RNA. Harboring the binary vector pBI121, which contains pac1 gene, Agrobacterium tumefaciens strain LBA4404 was used to transform the wheat immature embryos precultured 7―10 d. After preregeneration, regeneration and selection culture stage, totally 41 G418 resistant plants were obtained, in which 25 lines were proved to integrate with transgene and express transgene normally by PCR, Dot blot, RT-PCR and ELISA detection. Antivirus test carried out on 25 positive lines with high dose of Barley yellow dwarf virus-GPV revealed that 12 lines had resistance to BVDV-GPV in low level, another 12 lines had resistance to BVDV- GPV in middle level, and 1 line showed resistance to BVDV-GPV in high level. However, both low and middle level of resistance plants showed no symptoms when infected by viruses at low dose, which suggested the dose-dependent effect of the resistance mediated by pac1 to BYDV-GPV.

  12. Development of a rapid and specific loop-mediated isothermal amplification detection method that targets Marek's disease virus meq gene.

    Science.gov (United States)

    Wei, Xiuying; Shi, Xingming; Zhao, Yan; Zhang, Jing; Wang, Mei; Liu, Changjun; Cui, Hongyu; Hu, Shunlei; Quan, Yanming; Chen, Hongyan; Wang, Yunfeng

    2012-08-01

    A rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) method was developed and evaluated for the detection of Marek's disease virus (MDV) by amplification of conserved MDV meq gene sequences. LAMP is an innovative technique that allows the rapid detection of targeted nucleic acid sequences under isothermal conditions without the need for complex instrumentation. In this study, meq gene sequences were amplified successfully from different MDV strains by LAMP within 60min and no cross-reactivity was observed in a panel of related viruses that were associated with diseases of chickens. The detection limit of LAMP was 3.2 copies/million cells compared with 320 copies/million cells required for conventional PCR. Positive detection rates were assessed using either LAMP or PCR by examination of feather follicles that were collected from chickens infected experimentally with either strain J-1 (n=20) or strain Md5 (n=17), In addition to these samples, three isolates that were suspected to have been infected in the clinic were also tested. Results showed that the positive detection rate for LAMP was 95% (38/40), compared with 87.5% (35/40) and 90% (38/40) for strains J-1 and Md5 by PCR, respectively. These results indicated that the LAMP assay was more sensitive, rapid and specific than conventional PCR for the detection of MDV. This easy-to-perform technique will be useful for the detection of MDV and will aid in the establishment of disease control protocols.

  13. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein.

    OpenAIRE

    Ryan, M. D.; J. Drew

    1994-01-01

    We describe the construction of a plasmid (pCAT2AGUS) encoding a polyprotein in which a 19 amino acid sequence spanning the 2A region of the foot-and-mouth disease virus (FMDV) polyprotein was inserted between the reporter genes chloramphenicol acetyl transferase (CAT) and beta-glucuronidase (GUS) maintaining a single, long open reading frame. Analysis of translation reactions programmed by this construct showed that the inserted FMDV sequence functioned in a manner similar to that observed i...

  14. Multiple Effector Functions Mediated by Human Immunodeficiency Virus-Specific CD4+ T-Cell Clones

    OpenAIRE

    Norris, Philip J.; Sumaroka, Marina; Brander, Christian; Moffett, Howell F.; Boswell, Steven L.; Nguyen, Tam; Sykulev, Yuri; Walker, Bruce D; Rosenberg, Eric S.

    2001-01-01

    Mounting evidence suggests that human immunodeficiency virus type 1 (HIV-1) Gag-specific T helper cells contribute to effective antiviral control, but their functional characteristics and the precise epitopes targeted by this response remain to be defined. In this study, we generated CD4+ T-cell clones specific for Gag from HIV-1-infected persons with vigorous Gag-specific responses detectable in peripheral blood mononuclear cells. Multiple peptides containing T helper epitopes were identifie...

  15. AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication

    OpenAIRE

    Weber, Nicholas D.; Daniel Stone; Ruth Hall Sedlak; De Silva Feelixge, Harshana S.; Pavitra Roychoudhury; Schiffer, Joshua T.; Martine Aubert; Jerome, Keith R.

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatme...

  16. Vaccinia Virus-mediated Therapy of Solid Tumor Xenografts: Intra-tumoral Delivery of Therapeutic Antibodies

    OpenAIRE

    Huang, Ting

    2013-01-01

    Over the past 30 years, much effort and financial support have been invested in the fight against cancer, yet cancer still represents the leading cause of death in the world. Conventional therapies for treatment of cancer are predominantly directed against tumor cells. Recently however, new treatments options have paid more attention to exploiting the advantage of targeting the tumor stroma instead. Vaccinia virus (VACV) has played an important role in human medicine since the 18th century...

  17. Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission.

    Directory of Open Access Journals (Sweden)

    Pascale Schellenberger

    2011-05-01

    Full Text Available Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV, a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP, carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.

  18. Inhibition of Human Immunodeficiency Virus Type 1 Env-Mediated Fusion by DC-SIGN

    OpenAIRE

    Nobile, Cinzia; Moris, Arnaud; Porrot, Françoise; Sol-Foulon, Nathalie; Schwartz, Olivier

    2003-01-01

    DC-SIGN, a lectin expressed on dendritic cell and macrophage subsets, binds to human immunodeficiency virus Env glycoproteins, allowing capture of viral particles. Captured virions either infect target cells or are efficiently transmitted to lymphocytes. Cellular mechanisms underlying the effects of DC-SIGN remain poorly understood. Here we have analyzed the effects of DC-SIGN on viral entry and on syncytium formation induced by Env glycoproteins. The lectin enhanced susceptibility to viral i...

  19. Human Immunodeficiency Virus Type 1 Coat Protein Neurotoxicity Mediated by Nitric Oxide in Primary Cortical Cultures

    Science.gov (United States)

    Dawson, Valina L.; Dawson, Ted M.; Uhl, George R.; Snyder, Solomon H.

    1993-04-01

    The human immunodeficiency virus type 1 coat protein, gp120, kills neurons in primary cortical cultures at low picomolar concentrations. The toxicity requires external glutamate and calcium and is blocked by glutamate receptor antagonists. Nitric oxide (NO) contributes to gp120 toxicity, since nitroarginine, an inhibitor of NO synthase, prevents toxicity as does deletion of arginine from the incubation medium and hemoglobin, which binds NO. Superoxide dismutase also attenuates toxicity, implying a role for superoxide anions.

  20. Bovine Viral Diarrhea Virus Entry Is Dependent on Clathrin-Mediated Endocytosis

    OpenAIRE

    Lecot, Steve; Belouzard, Sandrine; Dubuisson, Jean; Rouillé, Yves

    2005-01-01

    Cellular mechanisms of bovine viral diarrhea virus (BVDV) entry in MDBK cells were investigated. Chloroquine, bafilomycin A1, or ammonium chloride inhibited BVDV infection, indicating that an acidic endosomal pH is required for BVDV entry. The tyrosine kinase inhibitor genistein partially inhibited BVDV infection at a postentry step, whereas BVDV entry was strongly inhibited by chlorpromazine or by the overexpression of a dominant-negative form of EPS15, a protein essential for the formation ...

  1. Human Immunodeficiency Virus-1 (HIV-1-Mediated Apoptosis: New Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Zukile Mbita

    2014-08-01

    Full Text Available HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.

  2. Mathematical model of plant-virus interactions mediated by RNA interference.

    Science.gov (United States)

    Neofytou, G; Kyrychko, Y N; Blyuss, K B

    2016-08-21

    Cross-protection, which refers to a process whereby artificially inoculating a plant with a mild strain provides protection against a more aggressive isolate of the virus, is known to be an effective tool of disease control in plants. In this paper we derive and analyse a new mathematical model of the interactions between two competing viruses with particular account for RNA interference. Our results show that co-infection of the host can either increase or decrease the potency of individual infections depending on the levels of cross-protection or cross-enhancement between different viruses. Analytical and numerical bifurcation analyses are employed to investigate the stability of all steady states of the model in order to identify parameter regions where the system exhibits synergistic or antagonistic behaviour between viral strains, as well as different types of host recovery. We show that not only viral attributes but also the propagating component of RNA-interference in plants can play an important role in determining the dynamics. PMID:27188250

  3. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Marathe, Rajendra; Dinesh-Kumar, S P

    2002-05-01

    The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.

  4. Interleukin-2 protects neonatal mice from lethal herpes simplex virus infection: a macrophage-mediated, gamma interferon-induced mechanism.

    Science.gov (United States)

    Kohl, S; Loo, L S; Drath, D B; Cox, P

    1989-02-01

    Administration of human recombinant interleukin-2 (IL-2) protected neonatal mice from a lethal herpes simplex virus (HSV) infection. Protection was not associated with viral antibody production, enhanced natural killer cell cytotoxicity, or intrinsic resistance of macrophages to viral infection. Protection was associated with increased macrophage-mediated antiviral antibody-dependent cellular cytotoxicity (ADCC). Spleen cells from IL-2-treated neonatal mice and from neonatal mice that were treated in vitro with IL-2 transferred protection to neonatal mice. These cells, by adherence, silica, and asialo GM 1 antibody treatment, were shown to be macrophages. IL-2 treatment in vitro enhanced the neonatal macrophages' ADCC function and superoxide release. Similar protection was induced by gamma interferon (IFN-gamma)-treated spleen cells. Antibody to IFN-gamma ablated both IFN-gamma- and IL-2-induced protection by adherent spleen cells. Thus, IL-2-mediated protection against murine neonatal HSV infection was affected by stimulated macrophage activity, via helper T cell-produced IFN-gamma. PMID:2492588

  5. Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1 protein gp120.

    Directory of Open Access Journals (Sweden)

    Yanjing Yang

    Full Text Available It is becoming widely accepted that psychoactive drugs, often abused by HIV-I infected individuals, can significantly alter the progression of neuropathological changes observed in HIV-associated neurodegenerative diseases (HAND. The underlying mechanisms mediating these effects however, remain poorly understood. In the current study, we explored whether the psychostimulant drug cocaine could exacerbate toxicity mediated by gp120 in rat primary astrocytes. Exposure to both cocaine and gp120 resulted in increased cell toxicity compared to cells treated with either factor alone. The combinatorial toxicity of cocaine and gp120 was accompanied by an increase in caspase-3 activation. In addition, increased apoptosis of astrocytes in the presence of both the agents was associated with a concomitant increase in the production of intracellular reactive oxygen species and loss of mitochondrial membrane potential. Signaling pathways including c-jun N-teminal kinase (JNK, p38, extracellular signal-regulated kinase (ERK/mitogen-activated protein kinases (MAPK, and nuclear factor (NF-κB were identified to be major players in cocaine and gp120-mediated apoptosis of astrocytes. Our results demonstrated that cocaine-mediated potentiation of gp120 toxicity involved regulation of oxidative stress, mitochondrial membrane potential and MAPK signaling pathways.

  6. Systemic transport of Alfalfa mosaic virus can be mediated by the movement proteins of several viruses assigned to five genera of the 30K family.

    Science.gov (United States)

    Fajardo, Thor V M; Peiró, Ana; Pallás, Vicente; Sánchez-Navarro, Jesús

    2013-03-01

    We previously showed that the movement protein (MP) gene of Alfalfa mosaic virus (AMV) is functionally exchangeable for the cell-to-cell transport of the corresponding genes of Tobacco mosaic virus (TMV), Brome mosaic virus, Prunus necrotic ringspot virus, Cucumber mosaic virus and Cowpea mosaic virus. We have analysed the capacity of the heterologous MPs to systemically transport the corresponding chimeric AMV genome. All MPs were competent in systemic transport but required the fusion at their C terminus of the coat protein-interacting C-terminal 44 aa (A44) of the AMV MP. Except for the TMV MP, the presence of the hybrid virus in upper leaves correlated with the capacity to move locally. These results suggest that all the MPs assigned to the 30K superfamily should be exchangeable not only for local virus movement but also for systemic transport when the A44 fragment is present. PMID:23136366

  7. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis.

    Science.gov (United States)

    Gagnidze, Khatuna; Hajdarovic, Kaitlyn H; Moskalenko, Marina; Karatsoreos, Ilia N; McEwen, Bruce S; Bulloch, Karen

    2016-05-17

    Certain components and functions of the immune system, most notably cytokine production and immune cell migration, are under circadian regulation. Such regulation suggests that circadian rhythms may have an effect on disease onset, progression, and resolution. In the vesicular stomatitis virus (VSV)-induced encephalitis model, the replication, caudal penetration, and survivability of intranasally applied VSV depends on both innate and adaptive immune mechanisms. In the current study, we investigated the effect of circadian time of infection on the progression and outcome of VSV-induced encephalitis and demonstrated a significant decrease in the survival rate in mice infected at the start of the rest cycle, zeitgeber time 0 (ZT0). The lower survival rate in these mice was associated with higher levels of circulating chemokine (C-C motif) ligand 2 (CCL2), a greater number of peripherally derived immune cells accumulating in the olfactory bulb (OB), and increased production of proinflammatory cytokines, indicating an immune-mediated pathology. We also found that the acrophase of molecular circadian clock component REV-ERBα mRNA expression in the OB coincides with the start of the active cycle, ZT12, when VSV infection results in a more favorable outcome. This result led us to hypothesize that REV-ERBα may mediate the circadian effect on survival following VSV infection. Blocking REV-ERBα activity before VSV administration resulted in a significant increase in the expression of CCL2 and decreased survival in mice infected at the start of the active cycle. These data demonstrate that REV-ERBα-mediated inhibition of CCL2 expression during viral-induced encephalitis may have a protective effect. PMID:27143721

  8. Vector-mediated expression of interferon gamma inhibits replication of hepatitis B virus in vitro.

    Science.gov (United States)

    Kan, Q C; Li, D L; Yu, Z J

    2013-01-01

    Despite the existence of efficient vaccines against hepatitis B virus (HBV) infections, these still represent a serious threat to human health worldwide. Acute HBV infections often become chronic, marked by liver cirrhosis and hepatocellular carcinoma. Promising results with interferons alpha or gamma (IFN-α, γ) or nucleoside/nucleotide analogs in inhibiting HBV replication in vitro have led to therapeutic applications to chronic HBV patients, however, their results so far have not been satisfactory. The treatments were either not effective in all patients or had adverse effects. Certain progress was expected from expression of interferons targeted to liver by adenovirus vectors, however, this approach turned out to be limited by undesired expression of toxic viral genes and high production costs. Therefore, in this study, we attempted to inhibit HBV replication in HepG2.2.15 cells by human IFN-γ expressed through a non-viral vector, an eukaryotic plasmid. The results demonstrated that IFN-γ, targeted to HBV-replicating cells, significantly inhibited the virus growth without inducing apoptosis and indicated that local expression of this kind of cytokine may be a promising strategy of gene therapy. PMID:24294955

  9. Mechanisms of alcohol-mediated hepatotoxicity in humanimmunodeficiency- virus-infected patients

    Institute of Scientific and Technical Information of China (English)

    Gyongyi Szabo; Samir Zakhari

    2011-01-01

    Clinical observations have demonstrated that excessive chronic alcohol use negatively affects human immunodeficiency virus (HIV) infection and contributes to the liver manifestations of the disease, even in HIV monoinfection. HIV/hepatitis C virus (HCV) co-infection is associated with increased progression of HVC liver disease compared to HCV infection alone, and both of these are negatively affected by alcohol use. Recent data suggest that alcohol use and HIV infection have common targets that contribute to progression of liver disease. Both HIV infection and chronic alcohol use are associated with increased gut permeability and elevated plasma levels of lipopolysaccharide; a central activator of inflammatory responses. Both alcoholic liver disease and HIV infection result in non-specific activation of innate immunity, proinflammatory cytokine cascade upregulation, as well as impaired antigen presenting cell and dendritic cell functions. Finally, alcohol, HIV and antiretroviral therapy affect hepatocyte functions, which contributes to liver damage. The common targets of alcohol and HIV infection in liver disease are discussed in this mini-review.

  10. Antibodies to P-selectin glycoprotein ligand-1 block dendritic cell-mediated enterovirus 71 transmission and prevent virus-induced cells death.

    Science.gov (United States)

    Ren, Xiao-Xin; Li, Chuan; Xiong, Si-Dong; Huang, Zhong; Wang, Jian-Hua; Wang, Hai-Bo

    2015-01-01

    P-selectin glycoprotein ligand-1 (PSGL-1) has been proved to serve as the functional receptor for enterovirus 71 (EV71). We found the abundant expression of PSGL-1 on monocyte-derived dendritic cells (MDDCs). However, we have previously demonstrated that MDDCs did not support efficient replication of EV71. Dendritic cells (DCs) have been described to be subverted by various viruses including EV71 for viral dissemination, we thus explore the potential contribution of PSGL-1 on DC-mediated EV71 transmission. We found that the cell-surface-expressing PSGL-1 on MDDCs mediated EV71 binding, and intriguingly, these loaded-viruses on MDDCs could be transferred to encountered target cells; Prior-treatment with PSGL-1 antibodies or interference with PSGL-1 expression diminished MDDC-mediated EV71 transfer and rescued virus-induced cell death. Our data uncover a novel role of PSGL-1 in DC-mediated EV71 spread, and provide an insight into blocking primary EV71 infection.

  11. Antibodies are necessary for rVSV/ZEBOV-GP–mediated protection against lethal Ebola virus challenge in nonhuman primates

    OpenAIRE

    Marzi, Andrea; Engelmann, Flora; Feldmann, Friederike; Haberthur, Kristen; Shupert, W. Lesley; Brining, Douglas; Scott, Dana P.; Geisbert, Thomas W.; Kawaoka, Yoshihiro; Michael G Katze; Feldmann, Heinz; Messaoudi, Ilhem

    2013-01-01

    Ebola viruses cause hemorrhagic disease in humans and nonhuman primates with high fatality rates. These viruses pose a significant health concern worldwide due to the lack of approved therapeutics and vaccines as well as their potential misuse as bioterrorism agents. Although not licensed for human use, recombinant vesicular stomatitis virus (rVSV) expressing the filovirus glycoprotein (GP) has been shown to protect macaques from Ebola virus and Marburg virus infections, both prophylactically...

  12. Bispecific Antibodies that Mediate Killing of Cells Infected with Human Immunodeficiency Virus of Any Strain

    Science.gov (United States)

    Berg, Jorg; Lotscher, Erika; Steimer, Kathelyn S.; Capon, Daniel J.; Baenziger, Jurg; Jack, Hans-Martin; Wabl, Matthias

    1991-06-01

    Although AIDS patients lose human immunodeficiency virus (HIV)-specific cytotoxic T cells, their remaining CD8-positive T lymphocytes maintain cytotoxic function. To exploit this fact we have constructed bispecific antibodies that direct cytotoxic T lymphocytes of any specificity to cells that express gp120 of HIV. These bispecific antibodies comprise one heavy/light chain pair from an antibody to CD3, linked to a heavy chain whose variable region has been replaced with sequences from CD4 plus a second light chain. CD3 is part of the antigen receptor on T cells and is responsible for signal transduction. In the presence of these bispecific antibodies, T cells of irrelevant specificity effectively lyse HIV-infected cells in vitro.

  13. The Effect of Temperature on Wolbachia-Mediated Dengue Virus Blocking in Aedes aegypti.

    Science.gov (United States)

    Ye, Yixin H; Carrasco, Alison M; Dong, Yi; Sgrò, Carla M; McGraw, Elizabeth A

    2016-04-01

    Dengue fever, caused by dengue virus (DENV), is endemic in more than 100 countries. The lack of effective treatment of patients and the suboptimal efficacies of the tetravalent vaccine in trials highlight the urgent need to develop alternative strategies to lessen the burden of dengue fever.Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits the replication of the DENV in the mosquito vector,Aedes aegypti However, several recent studies have demonstrated the sensitivity of pathogens, vectors, and their symbionts to temperature. To understand how the tripartite interactions between the mosquito, DENV, andWolbachiamay change under different temperature regimes, we assessed the vector competence and transmission potential of DENV-infected mosquitoes reared at a common laboratory setting of a constant 25°C and at two diurnal temperature settings with mean of 25°C and 28°C and a fluctuating range of 8°C (±4°C). Temperature significantly affected DENV infection rate in the mosquitoes. Furthermore, temperature significantly influenced the proportion of mosquitoes that achieved transmission potential as measured by the presence of virus in the saliva. Regardless of the temperature regimes,Wolbachiasignificantly and efficiently reduced the proportion of mosquitoes achieving infection and transmission potential across all the temperature regimes studied. This work reinforces the robustness of theWolbachiabiocontrol strategy to field conditions in Cairns, Australia, and suggests that similar studies are required for local mosquito genotypes and field relevant temperatures for emerging field release sites globally. PMID:26856916

  14. Repair effects of co-expression of the VEGF and BMP genes via an adeno-associated viral vector on early steroid-in-duced avascular necrosis of the femoral head in rabbits%重组腺相关病毒介导VEGF和BMP双基因共表达对兔早期激素性股骨头坏死的修复作用

    Institute of Scientific and Technical Information of China (English)

    张晨; 李兴华; 李苗; 唐一仑; 时志斌; 党晓谦; 王坤正

    2014-01-01

    (AAV-VEGF/BMP)groups. The four group virus vectors were injected into core decompression region at the dose of 25μl/site after core decompression operation directly. Repair effects of rAAV vector on early SANFH in rabbits were evaluated by Western blot assay, HE staining, immunohistochemical staining, MRI, radionuclide bone scan, blood vessel counting detected by ink perfusion and fro-zen section, Micro-CT and biomechanical strength detection on the 12th week post-injection. Results Model success ratio was 73.33%. rAAV-hVEGF165-IRES-hBMP-7 virus vector efficiently expressed hVEGF165 and hBMP-7 genes on the 12th week after rAAV injection. hVEGF165 protein secreted in vivo promoted metabolism in core decompression region by increasing the quantity of new vessels and improving the blood supply;hBMP-7 protein secreted in vivo promoted new bone formation in core decompres-sion region by increasing bone mineral density and improving bone biomechanical strength. The AAV-VEGF/BMP group can pro-mote repair effects more effectively than AAV-VEGF group or AAV-BMP group. Conclusion The adeno-associated viral vectors co-expressing hVEGF165 and hBMP-7 can promote repair effects on early SANFH in rabbits by increasing the blood supply and strengthening the bone quality of femoral head.

  15. Visual detection of Potato Leafroll virus by loop-mediated isothermal amplification of DNA with the GeneFinder™ dye.

    Science.gov (United States)

    Almasi, Mohammad Amin; Erfan Manesh, Maryam; Jafary, Hossein; Dehabadi, Seyed Mohammad Hosseini

    2013-09-01

    The most common virus affecting potatoes in the field worldwide is Potato Leafroll virus (PLRV), belonging to the family Luteoviridae, genius Plerovirus. There are several molecular methods to detect PLRV including polymerase chain reaction (PCR), Multiplex AmpliDet RNA and double antibody sandwich ELISA (DAS-ELISA). But these techniques take a long time for 3h to two days, requiring sophisticated tools. The aim of this study was to reduce the time required to detect PLRV, using a newly designed loop-mediated isothermal amplification (LAMP) technique requiring only an ordinary water bath or thermoblock. PLRV RNA was extracted from overall 80 infected naturally potato leaves. A set of six novel primers for the LAMP reaction was designed according to the highly conserved sequence of the viral coat protein (CP) gene. LAMP was carried out under isothermal conditions, applying the Bst DNA polymerase enzyme; the LAMP products were detected visually using the GeneFinder™ florescence dye. A positive result using the GeneFinder™ dye was a color change from the original orange to green. Results confirmed LAMP with GeneFinder™ provides a rapid and safe assay for detection of PLRV. Since with other molecular methods, equipping laboratories with a thermocycler or expensive detector systems is unavoidable, this assay was found to be a simple, cost-effective molecular method that has the potential to replace other diagnostic methods in primary laboratories without the need for expensive equipment or specialized techniques. It can also be considered as a reliable alternative viral detection system in further investigations.

  16. Complement-mediated, antibody-dependent enhancement of HIV-1 infection in vitro is characterized by increased protein and RNA syntheses and infectious virus release.

    Science.gov (United States)

    Robinson, W E; Montefiori, D C; Gillespie, D H; Mitchell, W M

    1989-01-01

    Antibody-dependent enhancement (ADE) of human immunodeficiency virus type 1 (HIV-1) infection in vitro has been described recently and was shown to occur by two mechanisms: either participation of the alternative pathway of complement or to involve an Fc receptor-mediated, complement-independent mechanism. Complement-mediated ADE results in an accelerated cytopathic effect in target cells that can abrogate the protective properties of neutralizing antibodies. This study characterizes the surface antigens of MT-2 cells using flow cytometric analysis and shows that these cells express high levels of both CD4 and complement receptor type 2 (CR2) while several CD4+ cell lines that do not demonstrate complement-mediated ADE lack high levels of complement receptors. Further, utilizing MT-2 cell cultures, it is demonstrated that complement-mediated ADE of HIV-1 infection is conferred by the sera from more than 80% of HIV-1 antibody-positive individuals (N = 85). Complement-mediated ADE of HIV-1 infection causes an acceleration of several parameters indicative of HIV-1 infection in vitro including increased HIV-1 antigen synthesis as detected by indirect immunofluorescence, RNA accumulation as measured by a solution hybridization protocol, reverse transcriptase release, and progeny virus production. PMID:2465404

  17. A one-step reverse transcription loop-mediated isothermal amplification for detection and discrimination of infectious bursal disease virus

    Directory of Open Access Journals (Sweden)

    Qi Xiaole

    2011-03-01

    Full Text Available Abstract Background Infectious bursal disease (IBD is a highly contagious immunosuppressive disease in young chickens caused by infectious bursal disease virus (IBDV. It causes huge economic losses to the poultry industry. The objective of this study is to develop a loop-mediated isothermal amplification (LAMP method for the detection and discrimination of IBDV. Results In this study, we applied reverse transcription loop-mediated isothermal amplification (RT-LAMP to detect IBDV in one simple step and further identified the very virulent strain from non-vvIBDVs with a simply post-amplification restriction enzyme analysis. Based on sequence analysis, a set of two inner, two outer and two loop primers were designed to target the VP5 gene and they showed great specificity with no cross reaction to the other common avian pathogens. The detection limit determined by both color change inspection and agarose gel electrophoresis was 28 copies viral RNA, which was almost as sensitive as a real-time RT-PCR previous developed in our laboratory. We also identified a unique Tfi I restriction site located exclusively in non-vvIBDVs, so very virulent strain could be distinguished from current vaccine strains. By screening a panel of clinical specimens, results showed that this method is high feasible in clinical settings, and it obtained results 100% correlated with real-time RT-PCR. Conclusion RT-LAMP is a rapid, simple and sensitive assay. In combination with the Tfi I restriction analysis, this method holds great promises not only in laboratory detection and discrimination of IBDV but also in large scale field and clinical studies.

  18. Targeting of p300/CREB binding protein coactivators by simian virus 40 is mediated through p53.

    Science.gov (United States)

    Borger, Darrell R; DeCaprio, James A

    2006-05-01

    The primary transforming functions of simian virus 40 large T antigen (SV40 LT) are conferred primarily through the binding and inactivation of p53 and the retinoblastoma family members. Normal p53 function requires an association with the CREB binding protein (CBP)/p300 coactivators, and a ternary complex containing SV40 LT, p53, and CBP/p300 has been identified previously. In this report, we have evaluated a secondary function of p53 bound to the SV40 LT complex in mediating the binding of human CBP/p300. We demonstrate that p53 associated with SV40 LT was posttranslationally modified in a manner consistent with the binding of CBP/p300. Furthermore, expression of SV40 LT induced the proportion of p53 phosphorylated on S15. An essential function for p53 in bridging the interaction between SV40 LT and CBP/p300 was identified through the reconstitution of the SV40 LT-CBP/p300 complex upon p53 reexpression in p53-null cells. In addition, the SV40 LT-CBP/p300 complex was disrupted through RNA interference-mediated depletion of endogenous p53. We also demonstrate that SV40 LT was acetylated in a p300- and p53-dependent manner, at least in part through the CH3 domain of p300. Therefore, the binding of p53 serves to modify SV40 LT by targeting CBP and p300 binding to direct the acetylation of SV40 LT. PMID:16611888

  19. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1 and electroporation: methods and optogenetic applications

    Directory of Open Access Journals (Sweden)

    Ming eZou

    2014-05-01

    Full Text Available The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1 or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications.

  20. Hepatitis C virus p7 mediates membrane-to-membrane adhesion.

    Science.gov (United States)

    Lee, Gi Young; Lee, Sora; Lee, Hye-Ra; Yoo, Young Do

    2016-09-01

    Viroporin p7 of the hepatitis C virus (HCV) acts as an ion channel for pH equilibration to stabilize HCV particles; most studies of p7 have focused on this role. However, pH equilibration by p7 via its ion channel activity does not fully explain the importance of p7 in HCV particle production. Indeed, several researchers have suggested p7 to have an unidentified ion channel-independent function. Here, we show that p7 has a novel role as a lipid raft adhesion factor, which is independent of its ion channel activity. We found that p7 targets not only the liquid-disordered (Ld) phase, but also the negatively-charged liquid-ordered (Lo) phase that can be represented as a lipid raft. p7 clusters at the phase boundary of the neutral Ld phase and the negatively-charged Lo phase. Interestingly, p7 targeting the Lo phase facilitates membrane-to-membrane adhesion, and this activity is not inhibited by p7 ion channel inhibitors. Our results demonstrated that HCV p7 has dual roles as a viroporin and as a lipid raft adhesion factor. This ion channel-independent function of p7 might be an attractive target for development of anti-HCV compounds. PMID:27320856

  1. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms

    International Nuclear Information System (INIS)

    Human Ebola virus causes severe hemorrhagic fever disease with high mortality and there is no vaccine or treatment. Antibodies in survivors occur early, are sustained, and can delay infection when transferred into nonhuman primates. Monoclonal antibodies (mAbs) from survivors exhibit potent neutralizing activity in vitro and are protective in rodents. To better understand targets and mechanisms of neutralization, we investigated a panel of mAbs shown previously to react with the envelope glycoprotein (GP). While one non-neutralizing mAb recognized a GP epitope in the nonessential mucin-like domain, the rest were specific for GP1, were neutralizing, and could be further distinguished by reactivity with secreted GP. We show that survivor antibodies, human KZ52 and monkey JP3K11, were specific for conformation-dependent epitopes comprising residues in GP1 and GP2 and that neutralization occurred by two distinct mechanisms; KZ52 inhibited cathepsin cleavage of GP whereas JP3K11 recognized the cleaved, fusion-active form of GP.

  2. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Linda M Bradley

    Full Text Available The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88⁻/⁻ airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes.

  3. Foot-and-mouth disease virus 2A protease mediates cleavage in attenuated Sabin 3 poliovirus vectors engineered for delivery of foreign antigens.

    OpenAIRE

    Mattion, N M; Harnish, E C; Crowley, J C; Reilly, P A

    1996-01-01

    Poliovirus vectors are being studied as potential vaccine delivery systems, with foreign genetic sequences incorporated as part of the viral genome. The foreign sequences are expressed as part of the viral polyprotein. Addition of proteolytic cleavage sites at the junction of the foreign polypeptide and the viral proteins results in cleavage during polyprotein processing. The ability of foot-and-mouth disease virus (FMDV) 2A to mediate proteolytic cleavage in the context of poliovirus vectors...

  4. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    Science.gov (United States)

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR. PMID:26343487

  5. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation

    International Nuclear Information System (INIS)

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1α (HIF-1α) and induced the nuclear translocation of C/EBPβ. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1α siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1α activation, and suggest HIF-1α for the therapeutic target of HBV-mediated chemoresistance

  6. Immune Complex Mediated Glomerulonephritis with Acute Thrombotic Microangiopathy following Newly Detected Hepatitis B Virus Infection in a Kidney Transplant Recipient

    Science.gov (United States)

    Burton, Hannah; Douthwaite, Sam; Newsholme, William; Horsfield, Catherine

    2016-01-01

    Hepatitis B virus (HBV) presents a risk to patients and staff in renal units. To minimise viral transmission, there are international and UK guidelines recommending HBV immunisation for patients commencing renal replacement therapy (RRT) and HBV surveillance in kidney transplant recipients. We report the case of a 56-year-old male who was immunised against HBV before starting haemodialysis. He received a deceased donor kidney transplant three years later, at which time there was no evidence of HBV infection. After a further six years he developed an acute kidney injury; allograft biopsy revealed an acute thrombotic microangiopathy (TMA) with glomerulitis, peritubular capillaritis, and C4d staining. Due to a “full house” immunoprofile, tests including virological screening were undertaken, which revealed acute HBV infection. Entecavir treatment resulted in an improvement in viral load and kidney function. HBV genotyping demonstrated a vaccine escape mutant, suggesting “past resolved” infection that reactivated with immunosuppression, though posttransplant acquisition cannot be excluded. This is the first reported case of acute HBV infection associated with immune complex mediated glomerulonephritis and TMA. Furthermore, it highlights the importance of HBV surveillance in kidney transplant recipients, which although addressed by UK guidelines is not currently practiced in all UK units.

  7. Immune Complex Mediated Glomerulonephritis with Acute Thrombotic Microangiopathy following Newly Detected Hepatitis B Virus Infection in a Kidney Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Tracey Salter

    2016-01-01

    Full Text Available Hepatitis B virus (HBV presents a risk to patients and staff in renal units. To minimise viral transmission, there are international and UK guidelines recommending HBV immunisation for patients commencing renal replacement therapy (RRT and HBV surveillance in kidney transplant recipients. We report the case of a 56-year-old male who was immunised against HBV before starting haemodialysis. He received a deceased donor kidney transplant three years later, at which time there was no evidence of HBV infection. After a further six years he developed an acute kidney injury; allograft biopsy revealed an acute thrombotic microangiopathy (TMA with glomerulitis, peritubular capillaritis, and C4d staining. Due to a “full house” immunoprofile, tests including virological screening were undertaken, which revealed acute HBV infection. Entecavir treatment resulted in an improvement in viral load and kidney function. HBV genotyping demonstrated a vaccine escape mutant, suggesting “past resolved” infection that reactivated with immunosuppression, though posttransplant acquisition cannot be excluded. This is the first reported case of acute HBV infection associated with immune complex mediated glomerulonephritis and TMA. Furthermore, it highlights the importance of HBV surveillance in kidney transplant recipients, which although addressed by UK guidelines is not currently practiced in all UK units.

  8. Efficient detection of pathogen virus in sand dabs,Paralichthys olivaceus using loop-mediated isothermal amplification (LAMP)

    Institute of Scientific and Technical Information of China (English)

    HWANG Jinik; PARK So Yun; SUH Sung-Suk; PARK Mirye; LEE Sukchan; LEE Taek-Kyun

    2016-01-01

    Viral hemorrhagic septicemia virus (VHSV) and marine birnavirus (MABV) are the causative pathogens for some of the most explosive epidemics of emerging viral diseases in many Asian countries, leading to huge economic losses in aquaculture. Rapid molecular detection for surveillance or diagnosis has been a critical component in reducing the prevalence of pathogen infection. The loop-mediated isothermal amplification (LAMP) of DNA is currently one of the most commonly used molecular diagnostic tools, as it is simple, quick, and easy to amplify target DNA under isothermal conditions. In the present study, a novel and highly specific LAMP assay for the sensitive and rapid detection of VHSV and MABV infection in fish was developed. Using a set of synthesized primers matching a specific region of the genome, the efficiency and specificity of the LAMP assay were optimized in terms of the reaction temperature and DNA polymerase concentration, as they are the main determinants of the sensitivity and specificity of the LAMP assay. In particular, we demonstrated that our assay could be applied to efficient detection of VHSV and MABV infection in the wild fish,Paralichthys olivaceus. Our results demonstrate the simplicity and convenience of this method for the detection of viral infection in aquatic organisms.

  9. The second amino acid of alfalfa mosaic virus coat protein is critical for coat protein-mediated protection.

    Science.gov (United States)

    Tumer, N E; Kaniewski, W; Haley, L; Gehrke, L; Lodge, J K; Sanders, P

    1991-01-01

    Transgenic plants expressing the coat protein (CP) of alfalfa mosaic virus (AIMV) are resistant to infection by AIMV. A mutation was introduced into the second amino acid of the cDNA for the CP of AIMV. Three different transgenic tobacco lines expressing the mutant CP and two different transgenic tobacco lines expressing the wild-type CP at similar levels were challenged with AIMV virions and viral RNA. Whereas the lines expressing the wild-type CP were highly resistant to infection by AIMV virions and viral RNA, the lines expressing the mutant CP were susceptible to infection by both. The binding affinity of the mutant and the wild-type CPs for the 3' terminal protein binding site on AIMV RNAs was similar, as determined by electrophoretic mobility shift assay. A mixture of AIMV genomic RNAs 1-3 was infectious on the plants expressing the mutant CP but not on vector control plants or plants expressing the wild-type CP, indicating that the mutant CP can activate the AIMV genomic RNAs for infection. These results demonstrate that the second amino acid of the AIMV CP is critical for protection from AIMV but not for the initial interaction between the AIMV RNA and CP, suggesting that this initial interaction does not play a major role in CP-mediated protection. Images PMID:11607167

  10. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1.

    Directory of Open Access Journals (Sweden)

    Grant R Campbell

    Full Text Available Toll-like receptors (TLR are important in recognizing microbial pathogens and triggering host innate immune responses, including autophagy, and in the mediation of immune activation during human immunodeficiency virus type-1 (HIV infection. We report here that TLR8 activation in human macrophages induces the expression of the human cathelicidin microbial peptide (CAMP, the vitamin D receptor (VDR and cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1, which 1α-hydroxylates the inactive form of vitamin D, 25-hydroxycholecalciferol, into its biologically active metabolite. Moreover, we demonstrate using RNA interference, chemical inhibitors and vitamin D deficient media that TLR8 agonists inhibit HIV through a vitamin D and CAMP dependent autophagic mechanism. These data support an important role for vitamin D in the control of HIV infection, and provide a biological explanation for the benefits of vitamin D. These findings also provide new insights into potential novel targets to prevent and treat HIV infection.

  11. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhen [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China); Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Xiang, Wenqing; Guo, Yajuan [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Chen, Zhi [The State Key Laboratory for Infectious Disease, Institute of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Liu, Wei, E-mail: liuwei666@zju.edu.cn [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Lu, Daru, E-mail: drlu@fudan.edu.cn [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China)

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  12. Germline transgenesis and insertional mutagenesis in Schistosoma mansoni mediated by murine leukemia virus.

    Directory of Open Access Journals (Sweden)

    Gabriel Rinaldi

    Full Text Available Functional studies will facilitate characterization of role and essentiality of newly available genome sequences of the human schistosomes, Schistosoma mansoni, S. japonicum and S. haematobium. To develop transgenesis as a functional approach for these pathogens, we previously demonstrated that pseudotyped murine leukemia virus (MLV can transduce schistosomes leading to chromosomal integration of reporter transgenes and short hairpin RNA cassettes. Here we investigated vertical transmission of transgenes through the developmental cycle of S. mansoni after introducing transgenes into eggs. Although MLV infection of schistosome eggs from mouse livers was efficient in terms of snail infectivity, >10-fold higher transgene copy numbers were detected in cercariae derived from in vitro laid eggs (IVLE. After infecting snails with miracidia from eggs transduced by MLV, sequencing of genomic DNA from cercariae released from the snails also revealed the presence of transgenes, demonstrating that transgenes had been transmitted through the asexual developmental cycle, and thereby confirming germline transgenesis. High-throughput sequencing of genomic DNA from schistosome populations exposed to MLV mapped widespread and random insertion of transgenes throughout the genome, along each of the autosomes and sex chromosomes, validating the utility of this approach for insertional mutagenesis. In addition, the germline-transmitted transgene encoding neomycin phosphotransferase rescued cultured schistosomules from toxicity of the antibiotic G418, and PCR analysis of eggs resulting from sexual reproduction of the transgenic worms in mice confirmed that retroviral transgenes were transmitted to the next (F1 generation. These findings provide the first description of wide-scale, random insertional mutagenesis of chromosomes and of germline transmission of a transgene in schistosomes. Transgenic lines of schistosomes expressing antibiotic resistance could advance

  13. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    International Nuclear Information System (INIS)

    Highlights: → LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. → LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. → LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  14. Wind-mediated spread of low-pathogenic avian influenza virus into the environment during outabreaks at commercial poultry farms

    NARCIS (Netherlands)

    M. Jonges (Marcel); Van Leuken, J. (Jeroen); I.M. Wouters (Inge M); G. Koch (Guus); A. Meijer (Adam); M.P.G. Koopmans D.V.M. (Marion)

    2015-01-01

    textabstractAvian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airbo

  15. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  16. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  17. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline;

    2005-01-01

    T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double......-deficient mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  18. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia.

    Science.gov (United States)

    Ruozi, Giulia; Bortolotti, Francesca; Falcione, Antonella; Dal Ferro, Matteo; Ukovich, Laura; Macedo, Antero; Zentilin, Lorena; Filigheddu, Nicoletta; Gortan Cappellari, Gianluca; Baldini, Giovanna; Zweyer, Marina; Barazzoni, Rocco; Graziani, Andrea; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy. PMID:26066847

  19. Us3 kinase encoded by herpes simplex virus 1 mediates downregulation of cell surface major histocompatibility complex class I and evasion of CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Takahiko Imai

    Full Text Available Detection and elimination of virus-infected cells by CD8(+ cytotoxic T lymphocytes (CTLs depends on recognition of virus-derived peptides presented by major histocompatibility complex class I (MHC-I molecules on the surface of infected cells. In the present study, we showed that inactivation of the activity of viral kinase Us3 encoded by herpes simplex virus 1 (HSV-1, the etiologic agent of several human diseases and a member of the alphaherpesvirinae, significantly increased cell surface expression of MHC-I, thereby augmenting CTL recognition of infected cells in vitro. Overexpression of Us3 by itself had no effect on cell surface expression of MHC-I and Us3 was not able to phosphorylate MHC-I in vitro, suggesting that Us3 indirectly downregulated cell surface expression of MHC-I in infected cells. We also showed that inactivation of Us3 kinase activity induced significantly more HSV-1-specific CD8(+ T cells in mice. Interestingly, depletion of CD8(+ T cells in mice significantly increased replication of a recombinant virus encoding a kinase-dead mutant of Us3, but had no effect on replication of a recombinant virus in which the kinase-dead mutation was repaired. These results indicated that Us3 kinase activity is required for efficient downregulation of cell surface expression of MHC-I and mediates evasion of HSV-1-specific CD8(+ T cells. Our results also raised the possibility that evasion of HSV-1-specific CD8(+ T cells by HSV-1 Us3-mediated inhibition of MHC-I antigen presentation might in part contribute to viral replication in vivo.

  20. Environmental surveillance of viruses by tangential flow filtration and metagenomic reconstruction.

    Science.gov (United States)

    Furtak, Vyacheslav; Roivainen, Merja; Mirochnichenko, Olga; Zagorodnyaya, Tatiana; Laassri, Majid; Zaidic, Sohail Z; Rehman, Lubna; Alam, Muhammad M; Chizhikov, Vladimir; Chumakov, Konstantin

    2016-04-14

    An approach is proposed for environmental surveillance of poliovirus by concentrating sewage samples with tangential flow filtration (TFF) followed by deep sequencing of viral RNA. Subsequent to testing the method with samples from Finland, samples from Pakistan, a country endemic for poliovirus, were investigated. Genomic sequencing was either performed directly, for unbiased identification of viruses regardless of their ability to grow in cell cultures, or after virus enrichment by cell culture or immunoprecipitation. Bioinformatics enabled separation and determination of individual consensus sequences. Overall, deep sequencing of the entire viral population identified polioviruses, non-polio enteroviruses, and other viruses. In Pakistani sewage samples, adeno-associated virus, unable to replicate autonomously in cell cultures, was the most abundant human virus. The presence of recombinants of wild polioviruses of serotype 1 (WPV1) was also inferred, whereby currently circulating WPV1 of south-Asian (SOAS) lineage comprised two sub-lineages depending on their non-capsid region origin. Complete genome analyses additionally identified point mutants and intertypic recombinants between attenuated Sabin strains in the Pakistani samples, and in one Finnish sample. The approach could allow rapid environmental surveillance of viruses causing human infections. It creates a permanent digital repository of the entire virome potentially useful for retrospective screening of future discovered viruses. PMID:27105043

  1. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation.

    Directory of Open Access Journals (Sweden)

    Hannah Greenfeld

    2015-05-01

    Full Text Available The Epstein-Barr virus (EBV encoded oncoprotein Latent Membrane Protein 1 (LMP1 signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC, and stimulated linear (M1-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63

  2. Combination of small interfering RNAs mediates greater inhibition of human hepatitis B virus replication and antigen expression

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe; XU Ze-feng; YE Jing-jia; YAO Hang-ping; ZHENG Shu; DING Jia-yi

    2005-01-01

    Objectives: To evaluate the inhibitory effect mediated by combination of small interfering RNAs (siRNAs) targeting different sites of hepatitis B virus (HBV) transcripts on the viral replication and antigen expression in vitro. Methods: (1) Seven siRNAs targeting surface (S), polymerase (P) or precore (PreC) region ofHBV genome were designed and chemically synthesized.(2) HBV-producing HepG2.2.15 cells were treated with or without siRNAs for 72 h. (3) HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay. (4) Intracellular viral DNA was quantified by real-time PCR(Polymerase Chain Reaction). (5) HBV viral mRNA was reverse transcribed and quantified by real-time PCR. (6) The change of cell cycle and apoptosis was determined by flow cytometry. Results: Our data demonstrated that synthetic small interfering RNAs(siRNAs) targeting S and PreC gene could efficiently and specifically inhibit HBV replication and antigen expression. The expression of HBsAg and HBeAg and the replication of HBV could be specifically inhibited in a dose-dependent manner by siRNAs.Furthermore, our results showed that the combination of siRNAs targeting various regions could inhibit HBV replication and antigen expression in a more efficient way than the use of single siRNA at the same final concentration. No apoptotic change was observed in the cell after siRNA treatment. Conclusion: Our results demonstrated that siRNAs exerted robust and specific inhibition on HBV replication and antigen expression in a cell culture system and combination of siRNAs targeting different regions exhibited more potency.

  3. Hepatitis C virus core protein abrogates the DDX3 function that enhances IPS-1-mediated IFN-beta induction.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Oshiumi

    Full Text Available The DEAD box helicase DDX3 assembles IPS-1 (also called Cardif, MAVS, or VISA in non-infected human cells where minimal amounts of the RIG-I-like receptor (RLR protein are expressed. DDX3 C-terminal regions directly bind the IPS-1 CARD-like domain as well as the N-terminal hepatitis C virus (HCV core protein. DDX3 physically binds viral RNA to form IPS-1-containing spots, that are visible by confocal microscopy. HCV polyU/UC induced IPS-1-mediated interferon (IFN-beta promoter activation, which was augmented by co-transfected DDX3. DDX3 spots localized near the lipid droplets (LDs where HCV particles were generated. Here, we report that HCV core protein interferes with DDX3-enhanced IPS-1 signaling in HEK293 cells and in hepatocyte Oc cells. Unlike the DEAD box helicases RIG-I and MDA5, DDX3 was constitutively expressed and colocalized with IPS-1 around mitochondria. In hepatocytes (O cells with the HCV replicon, however, DDX3/IPS-1-enhanced IFN-beta-induction was largely abrogated even when DDX3 was co-expressed. DDX3 spots barely merged with IPS-1, and partly assembled in the HCV core protein located near the LD in O cells, though in some O cells IPS-1 was diminished or disseminated apart from mitochondria. Expression of DDX3 in replicon-negative or core-less replicon-positive cells failed to cause complex formation or LD association. HCV core protein and DDX3 partially colocalized only in replicon-expressing cells. Since the HCV core protein has been reported to promote HCV replication through binding to DDX3, the core protein appears to switch DDX3 from an IFN-inducing mode to an HCV-replication mode. The results enable us to conclude that HCV infection is promoted by modulating the dual function of DDX3.

  4. A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles.

    Science.gov (United States)

    Tang, Shubing; Xuan, Baoqin; Ye, Xiaohua; Huang, Zhong; Qian, Zhikang

    2016-01-01

    Virus-like particles (VLPs) can be used as powerful nanoscale weapons to fight against virus infection. In addition to direct use as vaccines, VLPs have been extensively exploited as platforms on which to display foreign antigens for prophylactic vaccination and immunotherapeutic treatment. Unfortunately, fabrication of new chimeric VLP vaccines in a versatile, site-specific and highly efficient manner is beyond the capability of traditional VLP vaccine design approaches, genetic insertion and chemical conjugation. In this study, we described a greatly improved VLP display strategy by chemoenzymatic site-specific tailoring antigens on VLPs surface with high efficiency. Through the transpeptidation mediated by sortase A, one protein and two epitopes containing N-terminal oligoglycine were conjugated to the LPET motif on the surface of hepatitis B virus core protein (HBc) VLPs with high density. All of the new chimeric VLPs induced strong specific IgG responses. Furthermore, the chimeric VLPs with sortase A tagged enterovirus 71 (EV71) SP70 epitope could elicit effective antibodies against EV71 lethal challenging as well as the genetic insertion chimeric VLPs. The sortase A mediated chemoenzymatic site-specific tailoring of the HBc VLP approach shows great potential in new VLP vaccine design for its simplicity, site specificity, high efficiency, and versatility. PMID:27170066

  5. A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles

    Science.gov (United States)

    Tang, Shubing; Xuan, Baoqin; Ye, Xiaohua; Huang, Zhong; Qian, Zhikang

    2016-01-01

    Virus-like particles (VLPs) can be used as powerful nanoscale weapons to fight against virus infection. In addition to direct use as vaccines, VLPs have been extensively exploited as platforms on which to display foreign antigens for prophylactic vaccination and immunotherapeutic treatment. Unfortunately, fabrication of new chimeric VLP vaccines in a versatile, site-specific and highly efficient manner is beyond the capability of traditional VLP vaccine design approaches, genetic insertion and chemical conjugation. In this study, we described a greatly improved VLP display strategy by chemoenzymatic site-specific tailoring antigens on VLPs surface with high efficiency. Through the transpeptidation mediated by sortase A, one protein and two epitopes containing N-terminal oligoglycine were conjugated to the LPET motif on the surface of hepatitis B virus core protein (HBc) VLPs with high density. All of the new chimeric VLPs induced strong specific IgG responses. Furthermore, the chimeric VLPs with sortase A tagged enterovirus 71 (EV71) SP70 epitope could elicit effective antibodies against EV71 lethal challenging as well as the genetic insertion chimeric VLPs. The sortase A mediated chemoenzymatic site-specific tailoring of the HBc VLP approach shows great potential in new VLP vaccine design for its simplicity, site specificity, high efficiency, and versatility. PMID:27170066

  6. The 3'-terminal hexamer sequence of classical swine fever virus RNA plays a role in negatively regulating the IRES-mediated translation.

    Directory of Open Access Journals (Sweden)

    Shih-Wei Huang

    Full Text Available The 3' untranslated region (UTR is usually involved in the switch of the translation and replication for a positive-sense RNA virus. To understand the 3' UTR involved in an internal ribosome entry site (IRES-mediated translation in Classical swine fever virus (CSFV, we first confirmed the predicted secondary structure (designated as SLI, SLII, SLIII, and SLIV by enzymatic probing. Using a reporter assay in which the luciferase expression is under the control of CSFV 5' and 3' UTRs, we found that the 3' UTR harbors the positive and negative regulatory elements for translational control. Unlike other stem loops, SLI acts as a repressor for expression of the reporter gene. The negative cis-acting element in SLI is further mapped to the very 3'-end hexamer CGGCCC sequence. Further, the CSFV IRES-mediated translation can be enhanced by the heterologous 3'-ends such as the poly(A or the 3' UTR of Hepatitis C virus (HCV. Interestingly, such an enhancement was repressed by flanking this hexamer to the end of poly(A or HCV 3' UTR. After sequence comparison and alignment, we have found that this hexamer sequence could hypothetically base pair with the sequence in the IRES IIId1, the 40 S ribosomal subunit binding site for the translational initiation, located at the 5' UTR. In conclusion, we have found that the 3'-end terminal sequence can play a role in regulating the translation of CSFV.

  7. Levamisole Enhances Cell-Mediated Immune Responses and Reduces Shedding of H9N2 Avian Influenza Virus in Japanese Quails (Coturnix coturnix japonica

    Directory of Open Access Journals (Sweden)

    Tahoora Shomali

    2012-01-01

    Full Text Available Problem statement: Regarding the role of Japanese quails (Coturnix coturnix japonica in reassortment and spreading of avian influenza (AI viruses and inadequate protection of vaccination in this species, the present study aimed to evaluate the effect of levamisole as an immunomodulatory agent on cell-mediated immunity (CMI, antibody responses and shedding of H9N2 AI virus in experimentally infected quails. Approach: On day 20 of age, 100 quails randomly allocated into 4 equal groups. Birds in groups 2, 3 and 4 were inoculated with virus where group 1 kept as control. Groups 3 and 4 orally received 15 mg kg-1 levamisole for three consecutive days just before virus inoculation which was repeated 10 days post inoculation (PI only in group 4. Antibody titers and CMI of all birds were assayed by HI and delayed type hypersensitivity (DTH test respectively and virus detection in fecal and tracheal samples performed by RT-PCR method. Data analyzed by one-way ANOVA and Tukey’s test. Results: Levamisole in both regimens had no appreciable effect on antibody titers (p>0.05 while repeated regimen resulted in higher CMI response than group 2 at 48 and 72 h post DTH test (p = 0.011 and p = 0.031 respectively. Total fecal samples positive for virus from birds in group 3 and 4 were 34.4 and 40% lower than group 2 respectively. For trachea, the positive samples were 33.3% (group 3 and 46.7% (group 4 lower than group 2. Moreover; fecal and tracheal samples from levamisole treated birds (especially from group 4 became void of virus earlier than group 2. Conclusion/Recommendations: Levamisole administration in a repeated regimen enhances CMI response against H9N2 AI virus and reduces virus shedding in quails. This may pave the road for further investigations on potential positive effects of this agent on prevention and management of H9N2 AI infections in quail industry.

  8. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    Science.gov (United States)

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-01

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. PMID:25499296

  9. Complement mediates human immunodeficiency virus type 1 infection of a human T cell line in a CD4- and antibody-independent fashion.

    Science.gov (United States)

    Boyer, V; Desgranges, C; Trabaud, M A; Fischer, E; Kazatchkine, M D

    1991-05-01

    Incubation of the human T cell lymphotropic virus (HTLV)-IIIB and HTLV-RF strains of human immunodeficiency virus type 1 (HIV-1) with normal seronegative human serum under conditions that allow complement activation resulted in enhancement of infection of the MT2 human T cell line cultured in the presence of low amounts of virus. Infection of MT2 cells was assessed by measuring reverse transcriptase activity in supernatants at day 9 of culture. Complement activation by viral suspensions occurred through the alternative pathway. Opsonization of HTLV-RF viral particles with complement was sufficient to allow a productive infection to occur in cells exposed to suboptimal amounts of virus. Infection of MT2 cells with suboptimal amounts of serum-opsonized HIV-1 was suppressed by blocking the C3dg receptor (CR2, CD21) on MT2 cells with monoclonal anti-CR2 antibody and rabbit F(ab')2 anti-mouse immunoglobulin antibodies. Blocking of the gp120-binding site on CD4 under similar experimental conditions had no inhibitory effect on infection of MT2 cells with opsonized virus. Opsonization of HIV-1 with seronegative serum also resulted in a CR2-mediated enhancement of the infection of normal peripheral blood mononuclear cells and T lymphocytes. These results indicate that complement in the absence of antibody may enhance infection of C3 receptor-bearing T cells with HIV-1, and that the interaction of opsonized virus with the CR2 receptor may result by itself in the infection of target T cells in a CD4- and antibody-independent fashion. PMID:1827139

  10. Establishment of a novel one-step reverse transcription loop-mediated isothermal amplification assay for rapid identification of RNA from the severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Xu, Haihong; Zhang, Lei; Shen, Guangqiang; Feng, Cen; Wang, Xinying; Yan, Jie; Zhang, Yanjun

    2013-12-01

    As an emerging infectious disease, severe fever with thrombocytopenia syndrome virus (SFTSV) infection has been found in many areas of China. Suitable laboratory diagnostic method is urgently needed in clinical detections and epidemiological investigations. In this study, a modified, low-cost and rapid visualized one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of RNA from the SFTSV has been established. In order to avoid the risk of aerosol contamination and facilitate the naked eye to observe, a microcrystalline wax-dye capsule wrapping the highly sensitive DNA fluorescence dye SYBR Green I was added to the RT-LAMP reaction tube before the initiation of the assay. The detection limit of the established RT-LAMP assay was 10 fg template RNA per reaction mixture. The RT-LAMP assay was confirmed to be high specific to SFTSV, and no cross-reaction was found with the detection of the Chikungunya fever virus, Hemorrhagic Fever with Renal Syndrome virus (HFRSV), and Dengue fever virus. The assay was then applied for the detection of SFTSV RNA in 32 clinical serum samples and showed 94.4% consistence with the detection results of the real-time RT-PCR. The whole process, from sample preparation to result reporting, can be completed within 2h. This adapted, cost efficient and quick visualized RT-LAMP method is feasible for SFTSV field diagnosis in resource-limited field settings.

  11. 猪瘟病毒对IFN-β启动子活化%The activation of IFN-β promoter mediated by classical swine fever virus

    Institute of Scientific and Technical Information of China (English)

    夏燕华; 赵天生

    2012-01-01

    Classical swine fever virus can persistently infect swine for its ability to escape the killing of immune system. In order to prove it,Newcastle disease virus as IFN inducer,firefly luciferase reporter system was used to test the effect on interferon-beta promoter induced by CSFV Shimen strain. Results demonstrate that CSFV can't induce IFN-βpromoter but can obviously inhibit the NDV-mediated-activation, which prove that CSFV escape from the killing of immune system by inhibiting IFN production. The research partly explains why CSFV can establish persistent infection in swine.%猪瘟病毒(Classical swine fever virus,CSFV)之所以能在猪体中建立持续感染,与其逃避宿主的免疫清除有关,据此,本课题以新城疫病毒(Newcastle disease virus,NDV)作为诱导剂,利用荧光素酶报告基因系统测定了CSFV Shimen株对IFN-β启动子活化的影响.结果表明CSFV不仅不能活化IFN-β启动子,而且能明显抑制NDV对IFN-β启动子的活化作用,说明CSFV可通过抑制IFN产生来逃避机体的免疫清除,为病毒建立持续性感染创造条件.

  12. Resistance of non-transgenic papaya plants to papaya ringspot virus (PRSV) mediated by intron-containing hairpin dsRNAs expressed in bacteria.

    Science.gov (United States)

    Shen, W; Yang, G; Chen, Y; Yan, P; Tuo, D; Li, X; Zhou, P

    2014-01-01

    RNA-mediated virus resistance based on natural antiviral RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants. In this study, a conserved 3'-region (positions 9839-10117, 279 nt) of the capsid protein (CP) gene of papaya ringspot virus (PRSV), designated CP279, was used to generate an intron-containing hairpin RNA (ihpRNA) construct by one-step, zero-background ligation-independent cloning (OZ-LIC). The RNaseIII-deficient Escherichia coli strain M-JM109lacY was identified as the best choice for producing large quantities of specific ihpRNA-CP279. Resistance analyses and ELISA data verified that most papaya plants mechanically co-inoculated with TRIzol-extracted ihpRNA-CP279 and PRSV were resistant to PRSV, and resistance was maintained throughout the test period (>2 months post-inoculation). In contrast, a 1-2 day interval between sequential inoculation of PRSV and ihpRNA-CP279 did not result in complete protection against PRSV infection, but delayed the appearance of viral symptoms by 3 to 4 days. These findings indicate that direct mechanical inoculation of papaya plants with bacterially-expressed ihpRNA-CP279 targeting the PRSV CP gene can interfere with virus infection. This work lays a foundation for developing a non-transgenic approach to control PRSV by directly spraying plants with ihpRNA or crude bacterial extract preparations. PMID:25283861

  13. Analysis of the Mild strain of tomato yellow leaf curl virus, which overcomes Ty-2 gene-mediated resistance in tomato line H24.

    Science.gov (United States)

    Ohnishi, Jun; Yamaguchi, Hirotaka; Saito, Atsushi

    2016-08-01

    In tomato line H24, an isolate of the Mild (Mld) strain of tomato yellow leaf curl virus (TYLCV-Mld [JR:Kis]) overcomes Ty-2 gene-mediated resistance and causes typical symptoms of tomato yellow leaf curl disease (TYLCD). No systemic infection with visible symptoms or accumulation of viral DNA in the upper leaves was observed in H24 challenged with another isolate, TYLCV-IL (TYLCV-IL [JR:Osaka]), confirming that H24 is resistant to the IL strain. To elucidate the genomic regions that cause the breakdown of the Ty-2 gene-mediated resistance, we constructed a series of chimeras by swapping genes between the two strains. A chimeric virus that had the overlapping C4/Rep region of the Mld strain in the context of the IL strain genome, caused severe TYLCD in H24 plants, suggesting that the overlapping C4/Rep region of the Mld strain is associated with the ability of this strain to overcome Ty-2 gene-mediated resistance. PMID:27231006

  14. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    Directory of Open Access Journals (Sweden)

    Marcel Jonges

    Full Text Available Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4 genome copies/m(3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  15. Heparan Sulfate-Binding Foot-and-Mouth Disease Virus Enters Cells Via Caveolae-Mediated Endocytosis

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus which is virulent for susceptible animals infects cells via four members of the alpha V subclass of cellular integrins. In contrast, tissue culture adaptation of some...

  16. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron.

    Science.gov (United States)

    Miyazaki, Yu; Du, Xiaofei; Muramatsu, Shin-Ichi; Gomez, Christopher M

    2016-07-13

    Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by slowly progressive ataxia and Purkinje cell degeneration. SCA6 is caused by a polyglutamine repeat expansion within a second CACNA1A gene product, α1ACT. α1ACT expression is under the control of an internal ribosomal entry site (IRES) present within the CACNA1A coding region. Whereas SCA6 allele knock-in mice show indistinguishable phenotypes from wild-type littermates, expression of SCA6-associated α1ACT (α1ACTSCA6) driven by a Purkinje cell-specific promoter in mice produces slowly progressive ataxia and cerebellar atrophy. We developed an early-onset SCA6 mouse model using an adeno-associated virus (AAV)-based gene delivery system to ectopically express CACNA1A IRES-driven α1ACTSCA6 to test the potential of CACNA1A IRES-targeting therapies. Mice expressing AAV9-mediated CACNA1A IRES-driven α1ACTSCA6 exhibited early-onset ataxia, motor deficits, and Purkinje cell degeneration. We identified miR-3191-5p as a microRNA (miRNA) that targeted CACNA1A IRES and preferentially inhibited the CACNA1A IRES-driven translation of α1ACT in an Argonaute 4 (Ago4)-dependent manner. We found that eukaryotic initiation factors (eIFs), eIF4AII and eIF4GII, interacted with the CACNA1A IRES to enhance α1ACT translation. Ago4-bound miR-3191-5p blocked the interaction of eIF4AII and eIF4GII with the CACNA1A IRES, attenuating IRES-driven α1ACT translation. Furthermore, AAV9-mediated delivery of miR-3191-5p protected mice from the ataxia, motor deficits, and Purkinje cell degeneration caused by CACNA1A IRES-driven α1ACTSCA6 We have established proof of principle that viral delivery of an miRNA can rescue a disease phenotype through modulation of cellular IRES activity in a mouse model. PMID:27412786

  17. Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs

    Science.gov (United States)

    Ohtaka, Manami; Nakanishi, Mahito

    2016-01-01

    Tissue-specific control of gene expression is an invaluable tool for studying various biological processes and medical applications. Efficient regulatory systems have been utilized to control transgene expression in various types of DNA viral or integrating viral vectors. However, existing regulatory systems are difficult to transfer into negative-strand RNA virus vector platforms because of significant differences in their transcriptional machineries. In this study, we developed a novel strategy for regulating transgene expression mediated by a cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp). Because of the capacity of Sendai virus (SeV) nonstructural C proteins to specifically inhibit viral RNA synthesis, overexpression of C protein significantly reduced transgene expression mediated by SeVdp vectors. We found that SeV C overexpression concomitantly reduced SeVdp mRNA levels and genomic RNA synthesis. To control C expression, target sequences for an endogenous microRNA were incorporated into the 3′ untranslated region of the C genes. Incorporation of target sequences for miR-21 into the SeVdp vector restored transgene expression in HeLa cells by decreasing C expression. Furthermore, the SeVdp vector containing target sequences for let-7a enabled cell-specific control of transgene expression in human fibroblasts and induced pluripotent stem cells. Our findings demonstrate that SeV C can be used as an effective regulator for controlling transgene expression. This strategy will contribute to efficient and less toxic SeVdp-mediated gene transfer in various biological applications. PMID:27764162

  18. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  19. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    OpenAIRE

    ÇEVİK, Bayram; Richard F. Lee; NIBLETT, Charles L.

    2012-01-01

    Citrus paradisi Macfad. ‘Duncan’ was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from a CTV genome and used to generate the wild-type and 2 mutant RdRp constructs for plant transformation. One mutant had the key amino acids GDD changed to AAA (RdRp-mGDD), and the second mutant had a deletio...

  20. Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India.

    Science.gov (United States)

    Maan, S; Maan, N S; Batra, K; Kumar, A; Gupta, A; Rao, Panduranga P; Hemadri, Divakar; Reddy, Yella Narasimha; Guimera, M; Belaganahalli, M N; Mertens, P P C

    2016-08-01

    Bluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV. PMID:27054888

  1. An immunoassay-based reverse-transcription loop-mediated isothermal amplification assay for the rapid detection of avian influenza H5N1 virus viremia.

    Science.gov (United States)

    Tang, Yi; Yu, Xu; Chen, Hao; Diao, Youxiang

    2016-12-15

    Avian influenza virus (AIV) subtype H5N1 attracts particular consideration because it is a continuous threat to animals and public health systems. The viremia caused by AIV H5N1 infection may increase the risk of blood-borne transmission between humans. Therefore, there is a need to rapidly evaluate and implement screening measures for AIV H5N1 viremia that allows for rapid response to this potentially pandemic threat. The present report describes an immunoassay-based reverse-transcription loop-mediated isothermal amplification (immuno-RT-LAMP) assay for the rapid detection of AIV H5N1 in whole blood samples. Using PCR tubes coated with an H5 subtype monoclonal antibody, AIV H5N1 virions were specifically captured from blood samples. After a thermal lysis step, the released viral N1 gene was exponentially amplified using RT-LAMP on either a real-time PCR instrument for quantitative analysis, or in a water bath system for endpoint analysis. The detection limit of the newly developed immuno-RT-LAMP assay was as low as 1.62×10(1) 50% embryo infectious dose/mL of virus in both regular samples and simulated viremia samples. There were no cross-reactions with non-H5N1 influenza viruses or other avian viruses. The reproducibility of the assay was confirmed using intra- and inter-assay tests with variability ranging from 1.05% to 3.37%. Our results indicate that immuno-RT-LAMP is a novel, effective point-of-care virus identification solution for the rapid diagnosis and monitoring of AIV H5N1 in blood samples. PMID:27376196

  2. Immunosuppression during Acute Infection with Foot-and-Mouth Disease Virus in Swine Is Mediated by IL-10

    OpenAIRE

    Fayna Díaz-San Segundo; Teresa Rodríguez-Calvo; Ana de Avila; Noemí Sevilla

    2009-01-01

    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10) production by dendritic cells (DCs) i...

  3. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1(G93A) Mice and Nonhuman Primates.

    Science.gov (United States)

    Borel, Florie; Gernoux, Gwladys; Cardozo, Brynn; Metterville, Jake P; Toro Cabreja, Gabriela C; Song, Lina; Su, Qin; Gao, Guang Ping; Elmallah, Mai K; Brown, Robert H; Mueller, Christian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3-5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1-3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1(G93A) protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and recombinant adeno-associated virus (rAAV) 9. We report here a silencing method based on an artificial microRNA termed miR-SOD1 systemically delivered using adeno-associated virus rAAVrh10, a serotype with a demonstrated safety profile in CNS clinical trials. Silencing of SOD1 in adult SOD1(G93A) transgenic mice with this construct profoundly delayed both disease onset and death in the SOD1(G93A) mice, and significantly preserved muscle strength and motor and respiratory functions. We also document that intrathecal delivery of the same rAAVrh10-miR-SOD1 in nonhuman primates significantly and safely silences SOD1 in lower motor neurons. This study supports the view that rAAVrh10-miR-SOD1 merits further development for the treatment of SOD1-linked ALS in humans. PMID:26710998

  4. RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus.

    Science.gov (United States)

    Nogusa, Shoko; Thapa, Roshan J; Dillon, Christopher P; Liedmann, Swantje; Oguin, Thomas H; Ingram, Justin P; Rodriguez, Diego A; Kosoff, Rachelle; Sharma, Shalini; Sturm, Oliver; Verbist, Katherine; Gough, Peter J; Bertin, John; Hartmann, Boris M; Sealfon, Stuart C; Kaiser, William J; Mocarski, Edward S; López, Carolina B; Thomas, Paul G; Oberst, Andrew; Green, Douglas R; Balachandran, Siddharth

    2016-07-13

    Influenza A virus (IAV) is a lytic virus in primary cultures of many cell types and in vivo. We report that the kinase RIPK3 is essential for IAV-induced lysis of mammalian fibroblasts and lung epithelial cells. Replicating IAV drives assembly of a RIPK3-containing complex that includes the kinase RIPK1, the pseudokinase MLKL, and the adaptor protein FADD, and forms independently of signaling by RNA-sensing innate immune receptors (RLRs, TLRs, PKR), or the cytokines type I interferons and TNF-α. Downstream of RIPK3, IAV activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis, with the former reliant on RIPK3 kinase activity and neither on RIPK1 activity. Mice deficient in RIPK3 or doubly deficient in MLKL and FADD, but not MLKL alone, are more susceptible to IAV than their wild-type counterparts, revealing an important role for RIPK3-mediated apoptosis in antiviral immunity. Collectively, these results outline RIPK3-activated cytolytic mechanisms essential for controlling respiratory IAV infection. PMID:27321907

  5. Enhanced viral production and virus-mediated mortality of bacterioplankton in a natural iron-fertilized bloom event above the Kerguelen Plateau

    Directory of Open Access Journals (Sweden)

    A. Malits

    2014-07-01

    Full Text Available Above the Kerguelen Plateau in the Southern Ocean natural iron fertilization sustains a large phytoplankton bloom over three months during austral summer. During the KEOPS1 project (KErguelen Ocean and Plateau compared Study1 we sampled this phytoplankton bloom during its declining phase along with the surrounding HNLC waters to study the effect of natural iron fertilization on the role of viruses in the microbial food web. Bacterial and viral abundances were 1.7 and 2.1 times, respectively, higher within the bloom than in HNLC waters. Viral production and virus-mediated mortality of bacterioplankton was 4.1 and 4.9 times, respectively, higher in the bloom, while the fraction of infected cells (FIC and the fraction of lysogenic cells (FLC showed no significant differences between environments. The present study suggests viruses to be more important for bacterial mortality within the bloom and dominate over protozoan grazing during the late bloom phase. As a consequence, at least at a late bloom stage, viral lysis shunts part of the photosynthetically fixed carbon in iron-fertilized regions into the dissolved organic matter (DOM pool with potentially less particulate organic carbon transfered to larger members of the food web or exported.

  6. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip

    Directory of Open Access Journals (Sweden)

    Zengguo eCao

    2016-04-01

    Full Text Available West Nile virus (WNV causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification methodfor WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF was developed to detect the envelope (E gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl ofan WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubationof the amplification product on the visualization strip, and no cross-reaction with other closely related members of theFlavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV.The assay produced sensitivities of 101.5TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  7. Enhanced viral production and virus-mediated mortality of bacterioplankton in a natural iron-fertilized bloom event above the Kerguelen Plateau

    Science.gov (United States)

    Malits, A.; Christaki, U.; Obernosterer, I.; Weinbauer, M. G.

    2014-12-01

    Above the Kerguelen Plateau in the Southern Ocean natural iron fertilization sustains a large phytoplankton bloom over 3 months during austral summer. During the KEOPS1 project (KErguelen Ocean and Plateau compared Study1) we sampled this phytoplankton bloom during its declining phase along with the surrounding high-nutrient-low-chlorophyll (HNLC) waters to study the effect of natural iron fertilization on the role of viruses in the microbial food web. Bacterial and viral abundances were 1.7 and 2.1 times, respectively, higher within the bloom than in HNLC waters. Viral production and virus-mediated mortality of bacterioplankton were 4.1 and 4.9 times, respectively, higher in the bloom, while the fraction of infected cells (FIC) and the fraction of lysogenic cells (FLC) showed no significant differences between environments. The present study suggests viruses to be more important for bacterial mortality within the bloom and dominate over grazing of heterotrophic nanoflagellates (HNFs) during the late bloom phase. As a consequence, at least at a late bloom stage, viral lysis shunts part of the photosynthetically fixed carbon in iron-fertilized regions into the dissolved organic matter (DOM) pool with potentially less particulate organic carbon transferred to larger members of the food web or exported.

  8. Induction of humoral and cell-mediated immune responses by hepatitis B virus epitope displayed on the virus-like particles of prawn nodavirus.

    Science.gov (United States)

    Yong, Chean Yeah; Yeap, Swee Keong; Goh, Zee Hong; Ho, Kok Lian; Omar, Abdul Rahman; Tan, Wen Siang

    2015-02-01

    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes. PMID:25416760

  9. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways.

    Science.gov (United States)

    Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Hua, Liang; Wang, Hanzhong; Xia, Huimin; Zhu, Bing

    2016-09-21

    As the therapeutic agent for antiviral applications, the clinical use of oseltamivir is limited with the appearance of drug-resistant viruses. It is important to explore novel anti-influenza drugs. The antiviral activity of silver nanoparticles (AgNPs) has attracted increasing attention in recent years and was a possibility to be employed as a biomedical intervention. Herein, we describe the synthesis of surface decoration of AgNPs by using oseltamivir (OTV) with antiviral properties and inhibition of drug resistance. Compared to silver and oseltamivir, oseltamivir-modified AgNPs (Ag@OTV) have remarkable inhibition against H1N1 infection, and less toxicity was found for MDCK cells by controlled-potential electrolysis (CPE), MTT, and transmission electron microscopy (TEM). Furthermore, Ag@OTV inhibited the activity of neuraminidase (NA) and hemagglutinin (HA) and then prevented the attachment of the H1N1 influenza virus to host cells. The investigations of the mechanism revealed that Ag@OTV could block H1N1 from infecting MDCK cells and prevent DNA fragmentation, chromatin condensation, and the activity of caspase-3. Ag@OTV remarkably inhibited the accumulation of reactive oxygen species (ROS) by the H1N1 virus and activation of AKT and p53 phosphorylation. Silver nanoparticle based codelivery of oseltamivir inhibits the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. These findings demonstrate that Ag@OTV is a novel promising efficient virucide for H1N1. PMID:27588566

  10. One-step detection of Bean pod mottle virus in soybean seeds by the reverse-transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Wei Qi-Wei

    2012-09-01

    Full Text Available Abstract Background Bean pod mottle virus (BPMV is a wide-spread and destructive virus that causes huge economic losses in many countries every year. A sensitive, reliable and specific method for rapid surveillance is urgently needed to prevent further spread of BPMV. Methods A degenerate reverse-transcription loop-mediated isothermal amplification (RT-LAMP primer set was designed on the conserved region of BPMV CP gene. The reaction conditions of RT-LAMP were optimized and the feasibility, specificity and sensitivity of this method to detect BPMV were evaluated using the crude RNA rapidly extracted from soybean seeds. Results The optimized RT-LAMP parameters including 6 mM MgCl2, 0.8 M betaine and temperature at 62.5-65°C could successfully amplify the ladder-like bands from BPMV infected soybean seeds. The amplification was very specific to BPMV that no cross-reaction was observed with other soybean viruses. Inclusion of a fluorescent dye makes it easily be detected in-tube by naked eye. The sensitivity of RT-LAMP assay is higher than the conventional RT-PCR under the conditions tested, and the conventional RT-PCR couldn’t be used for detection of BPMV using crude RNA extract from soybean seeds. Conclusion A highly efficient and practical method was developed for the detection of BPMV in soybean seeds by the combination of rapid RNA extraction and RT-LAMP. This RT-LAMP method has great potential for rapid BPMV surveillance and will assist in preventing further spread of this devastating virus.

  11. CD8(+) T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types.

    Science.gov (United States)

    Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark

    2015-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533

  12. CD8+ T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types

    Directory of Open Access Journals (Sweden)

    Stephen A. Migueles

    2015-01-01

    Full Text Available Understanding natural immunologic control over Human Immunodeficiency Virus (HIV-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC, should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23, B*27/57pos LTNP/EC (n = 23 and B*27/57neg progressors (n = 13. Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.

  13. Rapid Detection of Hepatitis B Virus Surface Antigen by an Agglutination Assay Mediated by a Bispecific Diabody against Both Human Erythrocytes and Hepatitis B Virus Surface Antigen▿

    OpenAIRE

    Chen, Yu-Ping; Qiao, Yuan-Yuan; Zhao, Xiao-Hang; Chen, Hong-Song; Wang, Yan; Wang, Zhuozhi

    2007-01-01

    Bispecific antibodies have immense potential for use in clinical applications. In the present study, a bispecific diabody against human red blood cells (RBCs) and hepatitis B virus surface antigen (HBsAg) was used to detect HBsAg in blood specimens. The bispecific diabody was constructed by crossing over the variable region of the heavy chains and the light chains of anti-RBC and anti-HBsAg antibodies with a short linker, SRGGGS. In enzyme-linked immunosorbent assays, this bispecific diabody ...

  14. Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2011-02-01

    Full Text Available Abstract Background In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV. Methods Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient or upon cyclophosphamide-induced immunosuppression (MHCII+-cell depletion in nude mice. Results Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII+/CD31+ vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in

  15. AC2 and AC4 proteins of Tomato yellow leaf curl China virus and Tobacco curly shoot virus mediate suppression of RNA silencing

    Institute of Scientific and Technical Information of China (English)

    CUI Xiaofeng; ZHOU Xueping

    2004-01-01

    Tomato yellow leaf curl China virus Y10 isolate (TYLCCNV-Y10) alone could systemically infect host plants such as Nicotiana benthamiana without symptoms. In contrast, Tobacco curly shoot virus Y35 isolate (TbCSV-Y35) alone induces leaf curl symptoms in N. benthamiana. When inoculated into transgenic N. benthamiana plants expressing GFP gene (line 16c), TYLCCNV-Y10 neither reverses the established GFP silencing nor blocks the onset of GFP silencing. In contrast, TbCSV-Y35 can partially reverse the established GFP silencing and block the onset of GFP silencing in new leaves. In the patch co-infiltration assays, the AC2 and AC4 proteins of TYLCCNV-Y10 and TbCSV-Y35 could suppress local GFP silencing and delay systemic GFP silencing, suggesting that they are suppressors of RNA silencing. Comparison of the accumulation levels of GFP mRNA in the co-infiltration patches showed that Y10 AC2 and Y35 AC2 proteins had similar efficiency for suppression of RNA silencing. However, Y35 AC4 protein functioned as a stronger suppressor of RNA silencing than Y10 AC4 protein. Therefore, the pathogenicity difference between TbCSV-Y35 and TYLCCNV-Y10 may be related to the functional difference in their AC4 proteins.

  16. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response.

    Science.gov (United States)

    Bharaj, Preeti; Wang, Yao E; Dawes, Brian E; Yun, Tatyana E; Park, Arnold; Yen, Benjamin; Basler, Christopher F; Freiberg, Alexander N; Lee, Benhur; Rajsbaum, Ricardo

    2016-09-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  17. Viral-mediated Inhibition of Antioxidant Enzymes Contributes to the Pathogenesis of Severe Respiratory Syncytial Virus Bronchiolitis

    OpenAIRE

    Hosakote, Yashoda M.; Jantzi, Paul D.; Esham, Dana L.; Spratt, Heidi; Kurosky, Alexander; Casola, Antonella; Garofalo, Roberto P.

    2011-01-01

    Rationale: Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children, for which no specific treatment or vaccine is currently available. We have previously shown that RSV induces reactive oxygen species in cultured cells and oxidative injury in the lungs of experimentally infected mice. The mechanism(s) of RSV-induced oxidative stress in vivo is not known.

  18. Immunosuppression during acute infection with foot-and-mouth disease virus in swine is mediated by IL-10.

    Directory of Open Access Journals (Sweden)

    Fayna Díaz-San Segundo

    Full Text Available Foot-and-mouth disease virus (FMDV is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10 production by dendritic cells (DCs is drastically increased during acute infection with FMDV in swine. In vitro blockade of IL-10 with a neutralizing antibody against porcine IL-10 restores T cell activation by DCs. Additionally, we describe that FMDV infects DC precursors and interferes with DC maturation and antigen presentation capacity. Thus, we propose a new mechanism of virus immunity in which a non-persistent virus, FMDV, induces immunosuppression by an increment in the production of IL-10, which in turn, reduces T cell function. This reduction of T cell activity may result in a more potent induction of neutralizing antibody responses, clearing the viral infection.

  19. Tongue Epithelium Cells from shRNA Mediated Transgenic Goat Show High Resistance to Foot and Mouth Disease Virus

    Science.gov (United States)

    Li, Wenting; Wang, Kejun; Kang, Shimeng; Deng, Shoulong; Han, Hongbing; Lian, Ling; Lian, Zhengxing

    2015-01-01

    Foot and mouth disease induced by foot and mouth disease virus (FMDV) is severe threat to cloven-hoofed domestic animals. The gene 3Dpol in FMDV genome encodes the viral RNA polymerase, a vital element for FMDV replication. In this study, a conserved 3D-7414shRNA targeting FMDV-3Dpol gene was designed and injected into pronuclear embryos to produce the transgenic goats. Sixty-one goats were produced, of which, seven goats positively integrated 3D-7414shRNA. Loss of function assay demonstrated that siRNA effectively knockdown 3Dpol gene in skin epithelium cells of transgenic goats. Subsequently, the tongue epithelium cells from transgenic and non-transgenic goats were infected with FMDV O/YS/CHA/05 strain. A significant decrease of virus titres and virus copy number was observed in cells of transgenic goats compared with that of non-transgenic goats, which indicated that 3D-7414siRNA inhibited FMDV replication by interfering FMDV-3Dpol gene. Furthermore, we found that expression of TLR7, RIG-I and TRAF6 was lower in FMDV infected cells from transgenic goats compared to that from non-transgenic goats, which might result from lower virus copy number in transgenic goats’ cells. In conclusion, we successfully produced transgenic goats highly expressing 3D-7414siRNA targeting 3Dpol gene, and the tongue epithelium cells from the transgenic goats showed effective resistance to FMDV. PMID:26671568

  20. Estrogen plays a critical role in AAV2-mediated gone transfer in ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    Wen-fang SHI; Jeffrey S BARTLETT

    2008-01-01

    Aim: The aim of our study was to develop an effective gone delivery system for ovarian cancer gone therapy. Methods: The expression of heparin sulfate proteoglycan (HSPG) and integrins αvβ3 and αvβ5 were analyzed with flow cytometry on 2 human ovarian cancer cell lines (OVCAR-3 and SKOV-3ip). The gone transduction efficiencies were evaluated with recombinant adeno-associated viral vector (rAAV)2-green fluorescent protein or rAAV2-1actase Z followed by flow eytometry or cytohistochemistry staining. The effect of 17β-estradiol on ovarian cancer cell proliferation, HSPG, the expressions of integrins αvβ3 and αvβ5, and adeno-associated viral vector (AAV)2-mediated gone transduction were determined. Results: In the present study, we found: (1) a variation in HSPG and the expressions of integrins αvβ3 and αvβ5 between OVCAR-3 and SKOV-3ip; (2) that 1713-estradiol was shown to significantly stimulate cell proliferation and integrin β5 expression in certain ovarian cancer cell lines; and (3) integrin-targeted A520/N584RGD-rAAV2, which has alternative interactivity with integrins and abrogates the binding capacity HSPG, showed much higher gone transduction efficiency in ovarian cancer cells than rAAV2 in the presence/ absence of 17β-estradiol. Moreover, this RGD-modified rAAV2 exerted more efficient transduction in ovarian cancer cells in response to 17β-estradiol. Conclusion: Our findings implied that A520/N584RGD-rAAV2 may offer great potential for ovarian cancer treatment in vivo.

  1. Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves.

    Science.gov (United States)

    Palomares, R A; Hurley, D J; Bittar, J H J; Saliki, J T; Woolums, A R; Moliere, F; Havenga, L J; Norton, N A; Clifton, S J; Sigmund, A B; Barber, C E; Berger, M L; Clark, M J; Fratto, M A

    2016-10-01

    Our objective was to evaluate the effect of an injectable trace mineral (ITM) supplement containing zinc, manganese, selenium, and copper on the humoral and cell mediated immune (CMI) responses to vaccine antigens in dairy calves receiving a modified-live viral (MLV) vaccine containing BVDV, BHV1, PI3V and BRSV. A total of 30 dairy calves (3.5 months of age) were administered a priming dose of the MLV vaccine containing BHV1, BVDV1 & 2, BRSV, PI3V, and an attenuated-live Mannheimia-Pasteurella bacterin subcutaneously (SQ). Calves were randomly assigned to 1 of 2 groups: (1) administration of ITM SQ (ITM, n=15) or (2) injection of sterile saline SQ (Control; n=15). Three weeks later, calves received a booster of the same vaccine combination SQ, and a second administration of ITM, or sterile saline, according to the treatment group. Blood samples were collected on days 0, 7, 14, 21, 28, 42, 56, and 90 post-vaccination for determination of antibody titer, viral recall antigen-induced IFN-γ production, and viral antigen-induced proliferation by peripheral blood mononuclear cells (PBMC). Administration of ITM concurrently with MLV vaccination resulted in higher antibody titers to BVDV1 on day 28 after priming vaccination compared to the control group (P=0.03). Calves treated with ITM showed an earlier enhancement in PBMC proliferation to BVDV1 following vaccination compared to the control group. Proliferation of PBMC after BVDV stimulation tended to be higher on day 14 after priming vaccination in calves treated with ITM than in the control group (P=0.08). Calves that received ITM showed higher PBMC proliferation to BRSV stimulation on day 7 after priming vaccination compared to the control group (P=0.01). Moreover, calves in the ITM group also had an enhanced production IFN-γ by PBMC after stimulation with BRSV on day 21 after priming vaccination compared to day 0 (P<0.01). In conclusion, administration of ITM concurrently with MLV vaccination in dairy calves

  2. Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves.

    Science.gov (United States)

    Palomares, R A; Hurley, D J; Bittar, J H J; Saliki, J T; Woolums, A R; Moliere, F; Havenga, L J; Norton, N A; Clifton, S J; Sigmund, A B; Barber, C E; Berger, M L; Clark, M J; Fratto, M A

    2016-10-01

    Our objective was to evaluate the effect of an injectable trace mineral (ITM) supplement containing zinc, manganese, selenium, and copper on the humoral and cell mediated immune (CMI) responses to vaccine antigens in dairy calves receiving a modified-live viral (MLV) vaccine containing BVDV, BHV1, PI3V and BRSV. A total of 30 dairy calves (3.5 months of age) were administered a priming dose of the MLV vaccine containing BHV1, BVDV1 & 2, BRSV, PI3V, and an attenuated-live Mannheimia-Pasteurella bacterin subcutaneously (SQ). Calves were randomly assigned to 1 of 2 groups: (1) administration of ITM SQ (ITM, n=15) or (2) injection of sterile saline SQ (Control; n=15). Three weeks later, calves received a booster of the same vaccine combination SQ, and a second administration of ITM, or sterile saline, according to the treatment group. Blood samples were collected on days 0, 7, 14, 21, 28, 42, 56, and 90 post-vaccination for determination of antibody titer, viral recall antigen-induced IFN-γ production, and viral antigen-induced proliferation by peripheral blood mononuclear cells (PBMC). Administration of ITM concurrently with MLV vaccination resulted in higher antibody titers to BVDV1 on day 28 after priming vaccination compared to the control group (P=0.03). Calves treated with ITM showed an earlier enhancement in PBMC proliferation to BVDV1 following vaccination compared to the control group. Proliferation of PBMC after BVDV stimulation tended to be higher on day 14 after priming vaccination in calves treated with ITM than in the control group (P=0.08). Calves that received ITM showed higher PBMC proliferation to BRSV stimulation on day 7 after priming vaccination compared to the control group (P=0.01). Moreover, calves in the ITM group also had an enhanced production IFN-γ by PBMC after stimulation with BRSV on day 21 after priming vaccination compared to day 0 (P<0.01). In conclusion, administration of ITM concurrently with MLV vaccination in dairy calves

  3. Identification of Novel Pepper Genes Involved in Bax- or INF1-Mediated Cell Death Responses by High-Throughput Virus-Induced Gene Silencing

    Directory of Open Access Journals (Sweden)

    Jeong Hee Lee

    2013-11-01

    Full Text Available Hot pepper is one of the economically important crops in Asia. A large number of gene sequences, including expressed sequence tag (EST and genomic sequences are publicly available. However, it is still a daunting task to determine gene function due to difficulties in genetic modification of a pepper plants. Here, we show the application of the virus-induced gene silencing (VIGS repression for the study of 459 pepper ESTs selected as non-host pathogen-induced cell death responsive genes from pepper microarray experiments in Nicotiana benthamiana. Developmental abnormalities in N. benthamiana plants are observed in the 32 (7% pepper ESTs-silenced plants. Aberrant morphological phenotypes largely comprised of three groups: stunted, abnormal leaf, and dead. In addition, by employing the combination of VIGS and Agrobacterium-mediated transient assays, we identified novel pepper ESTs that involved in Bax or INF1-mediated cell death responses. Silencing of seven pepper ESTs homologs suppressed Bax or INF1-induced cell death, five of which suppressed both cell death responses in N. benthamiana. The genes represented by these five ESTs encode putative proteins with functions in endoplasmic reticulum (ER stress and lipid signaling. The genes represented by the other two pepper ESTs showing only Bax-mediated cell death inhibition encode a CCCH-type zinc finger protein containing an ankyrin-repeat domain and a probable calcium-binding protein, CML30-like. Taken together, we effectively isolated novel pepper clones that are involved in hypersensitive response (HR-like cell death using VIGS, and identified silenced clones that have different responses to Bax and INF1 exposure, indicating separate signaling pathways for Bax- and INF1-mediated cell death.

  4. Antibody-mediated enhancement of human immunodeficiency virus type 1 infectivity is determined by the structure of gp120 and depends on modulation of the gp120-CCR5 interaction

    NARCIS (Netherlands)

    C. Guillon (Christophe); M. Schutten (Martin); P.H.M. Boers (Patrick); R.A. Gruters (Rob); A.D.M.E. Osterhaus (Ab)

    2002-01-01

    textabstractIn this study, we characterized the viral determinants of coreceptor usage in relation to susceptibility to antibody-mediated neutralization or enhancement of infectivity by using chimeras of three highly related human immunodeficiency virus type 1 (HIV-1) isolates of different phenotype

  5. Loop-mediated isothermal amplification (RT-LAMP): a new approach for the detection of foot-and-mouth disease virus and its sero-types in Pakistan.

    Science.gov (United States)

    Farooq, U; Latif, A; Irshad, H; Ullah, A; Zahur, A B; Naeem, K; Khan, S U H; Ahmed, Z; Rodriguez, L L; Smoliga, G

    2015-01-01

    Successful disease management requires a rapid and sensitive diagnosis method that can recognize early infection even before the manifestation of its clinical signs. The only available field diagnostic tests for foot-and-mouth disease (FMD) are lateral flow devices, commonly known as chromatographic strips. Low sensitivity and inability to detect FMD virus (FMDV) at the serotype level are limitations of lateral flow devices. Therefore, a reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) was standardized using universal and sero-type specific genes in a single tube. This test does not require sophisticated equipment and can detect FMDV at serotype level in about 60 min. In addition, the sensitivity and specificity of this test is comparable to conventional reverse transcriptase PCR and real time PCR (rRT-PCR). PMID:27175198

  6. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling

    Institute of Scientific and Technical Information of China (English)

    Jianhui Ma; Qian Sun; Ruifang Mi; Hongbing Zhang

    2011-01-01

    Of the few avian influenza viruses that have crossed the species barrier to infect humans,the highly pathogenic influenza A (H5N1) strain has claimed the lives of more than half of the infected patients.With largely unknown mechanism of lung injury by H5N1 infection,acute respiratory distress syndrome (ARDS) is the major cause of death among the victims.Here we present the fact that H5N1 caused autophagic cell death through suppression of mTOR signaling.Inhibition of autophagy,either by depletion of autophagy gene Beclinl or by autophagy inhibitor 3-methyladenine (3-MA),significantly reduced H5N1 mediated cell death.We suggest that autophagic cell death may contribute to the development of ARDS in H5N1 influenza patients and inhibition of autophagy could therefore become a novel strategy for the treatment of H5N1 infection.

  7. The varicella-zoster virus-mediated delayed host shutoff: open reading frame 17 has no major function, whereas immediate-early 63 protein represses heterologous gene expression.

    Science.gov (United States)

    Desloges, Nathalie; Rahaus, Markus; Wolff, Manfred H

    2005-12-01

    We reported that varicella-zoster virus (VZV) causes a delayed host shutoff during its replicative cycle. VZV open reading frame 17 (ORF17) is the homologue of the herpes simplex virus (HSV) UL41 gene encoding the virion host shutoff (vhs) protein which is responsible for the shutoff effect observed in HSV-infected cells. In the present study, we demonstrated that O