WorldWideScience

Sample records for adenine

  1. Adenine-N-oxide produced from adenine with gamma-rays and its binding to SH protein

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, O [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-12-01

    /sup 14/C-labeled adenine aqueous solution was irradiated with /sup 60/Co gamma-rays. The yield of adenine-7-N-oxide, a radiolytic product, was determined by Sephadex G-10 column chromatography and TLC autoradiography. The apparent productive yield was very low, but the true yield should be much higher because of the reversible reaction to adenine and the easy decomposition of the N-oxide itself. Using synthesized /sup 14/C-adenine-7-N-oxide, noncovalent binding of this N-oxide to urease, an SH protein, was confirmed in comparison between the presence and absence of SDS by Ultrogel AcA 22 column chromatography. The noncovalent binding of the gamma-irradiated /sup 35/S-cysteine was also observed. The yield reached a limit in O/sub 2/ easier than in N/sub 2/ as the atmosphere for DNA irradiation. These results support an interaction structure, chemical bonds N-O---H-S-, for noncovalent binding which may be applied to the biological system as a radiation-induced damage.

  2. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  3. Adenine phosphoribosyltransferase-deficient Leishmania donovani

    International Nuclear Information System (INIS)

    Kaur, K.; Iovannisci, D.M.; Ullman, B.

    1986-01-01

    To elucidate the relative roles of two routes for adenine salvage, the authors use biochemical genetic approaches to isolate clonal strains of Leishmania donovani promasatigotes genetically deficient in APRTase activity. The studies suggest that the metabolic rate of adenine in these organisms is initiated by deamination. The radiolabel incorporation experiments and biochemical experiments are described in which the rate of uptake of radiolabelled purine nucleobases (C 14) was determined. Results are presented

  4. Adenine N6-methylation in diverse fungi

    NARCIS (Netherlands)

    Seidl, Michael F.

    2017-01-01

    A DNA modification - methylation of cytosines and adenines - has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant

  5. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles

    International Nuclear Information System (INIS)

    Meerabai Devi, L; Negi, Devendra P S

    2011-01-01

    We have used fluorescent ZnS nanoparticles as a probe for the determination of adenine. A typical 2 x 10 -7 M concentration of adenine quenches 39.3% of the ZnS fluorescence. The decrease in ZnS fluorescence as a function of adenine concentration was found to be linear in the concentration range 5 x 10 -9 -2 x 10 -7 M. The limit of detection (LOD) of adenine by this method is 3 nM. Among the DNA bases, only adenine quenched the fluorescence of ZnS nanoparticles in the submicromolar concentration range, thus adding selectivity to the method. The amino group of adenine was important in determining the quenching efficiency. Steady-state fluorescence experiments suggest that one molecule of adenine is sufficient to quench the emission arising from a cluster of ZnS consisting of about 20 molecules. Time-resolved fluorescence measurements indicate that the adenine molecules block the sites on the surface of ZnS responsible for emission with the longest lifetime component. This method may be applied for the determination of adenine in biological samples since the measurements have been carried out at pH 7.

  6. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    Science.gov (United States)

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  7. Influence of Magnetic Microparticles Isolation on Adenine Homonucleotides Structure

    Directory of Open Access Journals (Sweden)

    Monika Kremplova

    2014-02-01

    Full Text Available The electroactivity of purine and pyrimidine bases is the most important property of nucleic acids that is very useful for determining oligonucleotides using square wave voltammetry. This study was focused on the electrochemical behavior of adenine-containing oligonucleotides before and after their isolation using paramagnetic particles. Two peaks were detected—peak A related to the reduction of adenine base and another peak B involved in the interactions between individual adenine strands and contributes to the formation of various spatial structures. The influence of the number of adenine bases in the strand in the isolation process using paramagnetic particles was investigated too.

  8. Degradation of adenine in aqueous solution containing 3HHO

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Fuji, Izumi

    1986-01-01

    Aqueous adenine solutions of 5 x 10 -4 M (containing 14 C-adenine and buffered pH 7.0) were irradiated with 60 Co gamma-rays and 3 H beta-rays from tritiated water in the presence of N 2 , O 2 , N 2 O or t-BuOH-N 2 . Thin-layer chromatography (TLC) was carried out bidimensionally for separation of the radiolytically produced products and autoradiography was performed. Considerable differences were observed in the dose-yield curves for the decomposition of adenine and for the product formation between gamma- and beta-radiolyses. As for the degradation yield, oxygen enhancement ratios, 3.19 in gamma-irradiation and 1.08 in beta-irradiation, were obtained at a dose of 3.0 x 10 3 Gy. Similar products were produced both under N 2 and O 2 , but there were found a specific reaction of t-butanol radical with adenine, the high yield of hypoxanthine under N 2 O, and the higher degradation of the TLC origin-fixed products in beta-irradiation. The present results on adenine suggest, as reported previously for thymine, that a specific oxidative species is produced from water in beta-radiolysis but not in gamma-radiolysis. (author)

  9. Synthesis of adenine-modified reduced graphene oxide nanosheets.

    Science.gov (United States)

    Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H

    2012-03-05

    We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.

  10. Purine nucleotide synthesis from exogenous adenine and guanine in rodent small intestine

    International Nuclear Information System (INIS)

    Gross, C.J.; Karlberg, P.K.; Savaiano, D.A.

    1986-01-01

    14 C-Adenine and 14 C-guanine uptake was studied in isolated guinea pig enterocytes. Cells were incubated in Hank's buffer and separated from the medium by centrifugation through silicone oil into 1M PCA. Uptake was temperature and concentration dependent. Both compounds were incorporated into nucleotides as measured by HPLC and HVE. Adenine was more extensively incorporated into nucleotides than was guanine. Adenine nucleotides accounted for about 70% of the intracellular label after 30 min with a majority being ADP and ATP (medium concentration = 10 μM). Guanine nucleotides accounted for only 30% of the intracellular label after 30 min. Labeled intracellular free adenine or guanine were not detected. Significantly more guanine vs. adenine was converted to uric acid. After 30 min, 11.5 +/- 3.9% (n=3) and 83.0 +/- 8.4% (n=4) of the label was present as uric acid in the medium when adenine and guanine, respectively, were the substrate. After 1 min, 34.8 +/- 3.4% (n=4) of the label in the medium was present as uric acid when guanine was the substrate. Decreasing the concentration of adenine resulted in an increase in the percent of uric acid in the medium. 14 C-adenine (75 nmol) was injected into 1 gm segments of rat jejunum. After 5 min., segments were quickly flushed and the tissue homogenized in 1M PCA. Only uric acid was present after 5 min (n=6). In contrast, in animals fasted 3 to 5 days, less conversion to uric acid was observed in the intestinal content (50-80% of the same dose was still present as adenine after 5 min) and nucleotide formation was observed in the tissue. The results indicate that uric acid and nucleotide synthesis from exogenous adenine and guanine are concentration dependent and affected by nutritional state

  11. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  12. Studies on mixed ligand complexes of adenine and xanthine with some rare earth ions

    International Nuclear Information System (INIS)

    Rastogi, P.R.; Singh, Mamta; Nayan, Ram

    1993-01-01

    Interactions of 6-aminopurine (adenine, HA) and 2,6-dihydroxypurine (xanthine, HB) with trivalent rare earth ions Y, Tb, Dy, Ho, Er and Tm, have been studied by pH-titration methods in aqueous solution at 20 o (μ = 0.1 M KNO 3 ). The ligands in their mixtures with tripositive rare earth ions (M 3+ ) form a number of mixed ligand complexes, M 3+ -adenine-xanthine, M 3+ -(adenine) 2 -xanthine, M 3+ -adenine-(xanthine) 2 in addition to the binary complexes, M 3+ -(adenine), M 3+ -(adenine) 2 , M 3+ -(adenine) 3 , M 3+ -(xanthine), M 3+ -(xanthine) 2 and M 3+ -(xanthine) 3 . The stability constants of these complexes have been evaluated and the results discussed. (author). 13 refs., 1 fig., 1 tab

  13. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    Science.gov (United States)

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  14. The catalase activity of diiron adenine deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  15. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  16. Hydrolytic cleavage of N-6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, H.; Šebela, M.; Novák, Ondřej; Frébort, I.

    2008-01-01

    Roč. 28, č. 6 (2008), s. 335-347 ISSN 0144-8463 R&D Projects: GA ČR(CZ) GA522/06/0022 Institutional research plan: CEZ:AV0Z50380511 Keywords : adenine deaminase * adenosine deaminase (ADA) * aminohydrolase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.525, year: 2008

  17. Adenine and guanine nucleotide metabolism during platelet storage at 22 degree C

    International Nuclear Information System (INIS)

    Edenbrandt, C.M.; Murphy, S.

    1990-01-01

    Adenine and guanine nucleotide metabolism of platelet concentrates (PCs) was studied during storage for transfusion at 22 +/- 2 degrees C over a 7-day period using high-pressure liquid chromatography. There was a steady decrease in platelet adenosine triphosphate (ATP) and adenosine diphosphate (ADP), which was balanced quantitatively by an increase in plasma hypoxanthine. As expected, ammonia accumulated along with hypoxanthine but at a far greater rate. A fall in platelet guanosine triphosphate (GTP) and guanosine diphosphate (GDP) paralleled the fall in ATP + ADP. When adenine was present in the primary anticoagulant, it was carried over into the PC and metabolized. ATP, GTP, total adenine nucleotides, and total guanine nucleotides declined more slowly in the presence of adenine than in its absence. With adenine, the increase in hypoxanthine concentration was more rapid and quantitatively balanced the decrease in adenine and platelet ATP + ADP. Plasma xanthine rose during storage but at a rate that exceeded the decline in GTP + GDP. When platelet ATP + ADP was labeled with 14C-adenine at the initiation of storage, half of the radioactivity was transferred to hypoxanthine (45%) and GTP + GDP + xanthine (5%) by the time storage was completed. The isotopic data were consistent with the presence of a radioactive (metabolic) and a nonradioactive (storage) pool of ATP + ADP at the initiation of storage with each pool contributing approximately equally to the decline in ATP + ADP during storage. The results suggested a continuing synthesis of GTP + GDP from ATP + ADP, explaining the slower rate of fall of GTP + GDP relative to the rate of rise of plasma xanthine. Throughout storage, platelets were able to incorporate 14C-hypoxanthine into both adenine and guanine nucleotides but at a rate that was only one fourth the rate of hypoxanthine accumulation

  18. Dissociative Excitation of Adenine by Electron Impact

    Science.gov (United States)

    McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek

    2017-04-01

    Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.

  19. File list: Oth.Lar.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.20.Adenine_N6-methylation.AllCell.bed ...

  20. File list: Oth.Adl.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.20.Adenine_N6-methylation.AllCell.bed ...

  1. File list: Oth.Unc.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.10.Adenine_N6-methylation.AllCell.bed ...

  2. File list: Oth.Unc.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.50.Adenine_N6-methylation.AllCell.bed ...

  3. File list: Oth.Emb.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.50.Adenine_N6-methylation.AllCell.bed ...

  4. File list: Oth.ALL.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.20.Adenine_N6-methylation.AllCell.bed ...

  5. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-01-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the [1-14C]glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis

  6. A novel approach to adenine-induced chronic kidney disease associated anemia in rodents.

    Directory of Open Access Journals (Sweden)

    Asadur Rahman

    Full Text Available To date, good experimental animal models of renal anemia are not available. Therefore, the purpose of this study was to establish a novel approach to induce chronic kidney disease (CKD with severe anemia by oral administration of adenine in rodents. Adenine was administered to 6-week-old male C57BL/6 mice (25 and 50 mg/kg body weight by oral gavage daily for 28 days. Serum creatinine and BUN as well as hematocrit, hemoglobin (Hb and plasma erythropoietin (EPO levels were monitored to assess renal function and anemia, respectively. Adenine at 25 mg/kg for 28 days slightly increased plasma creatinine levels, but did not induce anemia. In contrast, 50 mg/kg of adenine daily for 28 days showed severe renal dysfunction (plasma creatinine 1.9 ± 0.10 mg/dL and anemia (hematocrit 36.5 ± 1.0% and EPO 28 ± 2.4 pg/mL as compared with vehicle-treated mice (0.4 ± 0.02 mg/dL, 49.6 ± 1.6% and 61 ± 4.0 pg/mL, respectively. At the end of experiment, level of Hb also significantly reduced in 50 mg/kg adenine administration group. Remarkable histological changes of kidney tissues characterized by interstitial fibrosis and cystic appearance in tubules were observed in 50 mg/kg of adenine treatment group. These results have demonstrated that oral dosing with adenine at 50 mg/kg for 28 days is suitable to induce a stable anemia associated with CKD in mice.

  7. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit

    2015-09-17

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  8. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit; Samanta, Pralok Kumar; Pati, Swapan

    2015-01-01

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  9. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-11-01

    Full Text Available It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2 in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.

  10. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    Science.gov (United States)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  11. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Borst, M.; Niphuis, H.; Balzarini, J.; Neu, H.; Schellekens, H.; Clercq, H. de; Koolen, M.J.M.

    1990-01-01

    The acyclic purine nucleoside analogue 9-(2-phosphonomethoxyethyl)adenine [PMEA; formerly referred to as 9-(2-phosphonylmethoxyethyl)adenine] is a potent and selective inhibitor of human immunodeficiency virus replication in vitro and of Moloney murine sarcoma virus-induced tumor formation in mice.

  12. Dibenzotetraaza[14]annulene-adenine conjugate recognizes complementary poly dT among ss-DNA/ss-RNA sequences.

    Science.gov (United States)

    Radić Stojković, Marijana; Škugor, Marko; Tomić, Sanja; Grabar, Marina; Smrečki, Vilko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2013-06-28

    Among three novel DBTAA derivatives only the DBTAA-propyl-adenine conjugate showed recognition of the consecutive oligo dT sequence by increased affinity and specific induced chirooptical response in comparison to other single stranded RNA and DNA; whereby of particular importance is the up until now unique efficient differentiation between dT and rU. At variance, its close analogue DBTAA-hexyl-adenine did not reveal any selectivity between ss-DNA/RNA pointing out the important role of steric factors (linker length); moreover non-selectivity of the reference compound (, lacking adenine) stressed the importance of adenine interactions in the selectivity.

  13. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    Science.gov (United States)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-05

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Adenine nucleotide depletion from endothelial cells exposed to xanthine oxidase

    International Nuclear Information System (INIS)

    Aalto, T.K.; Raivio, K.O.

    1990-01-01

    Hypoxia causes breakdown of cellular nucleotides, accumulation of hypoxanthine (HX), and conversion of xanthine dehydrogenase into xanthine oxidase (XO). Upon reoxygenation, the HX-XO reaction generates free radicals, one potential mechanism of tissue damage. Because endothelial cells contain XO and are exposed to circulating HX, they are a likely target for damage. We studied the effect of XO and/or HX at physiologically relevant concentrations on nucleotide metabolism of cultured endothelial cells from human umbilical veins. Cells were labeled with [14C]adenine and incubated for up to 6 h with HX, XO, or both, in the absence or presence of serum. Adenine nucleotides from cell extracts and nucleotide breakdown products (HX, xanthine, and urate) from the medium were separated and counted. HX alone had no effect. XO (80 mU/ml) alone caused a 70% (no serum) or 40% (with serum) fall in adenine nucleotides and an equivalent increase of xanthine and urate. The combination of HX and XO caused a 90% (no serum) or 70% (with serum) decrease in nucleotides, decrease in energy charge, and detachment of cells from the culture plate. Nucleotide depletion was not accounted for by proteolytic activity in the XO preparation. Albumin was only half as effective as serum in preventing nucleotide loss. Thus exogenous XO, in the presence of endogenous HX, triggers adenine nucleotide catabolism, but endogenous XO activity is too low to influence nucleotide levels even at high exogenous HX concentrations. Serum limits the catabolic effect of XO and thus protects cells from free radical damage

  15. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-05-01

    Full Text Available Background/Aims: Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Methods: Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks, which is known to involve inflammation and oxidative stress. DEP (0.5m/kg was intratracheally (i.t. instilled every 4th day for 4 weeks (7 i.t. instillation. Four days following the last exposure to either DEP or saline (control, various renal endpoints were measured. Results: While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Conclusion: Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic

  16. Synthesis of adenine mediated superparamagnetic colloidal β-FeOOH nanostructure(s): study of their morphological changes and magnetic behavior

    International Nuclear Information System (INIS)

    Kumar, Anil; Gupta, Sudhir Kumar

    2013-01-01

    This paper describes the synthesis of adenine-mediated superparamagnetic β-FeOOH nanostructures in aqueous medium. Capping by adenine provides a synthetic control to manipulate their size, morphology, optical and magnetization properties. β-FeOOH binds to adenine mainly through –NH 2 , N(3); N(9)H and N(7) of the pyridine and imidazole rings, respectively. At low [adenine], it produces nanorods, but at higher [adenine] (>1 × 10 −2 mol dm −3 ), increasing numbers of spherical nanoparticles encapsulating β-FeOOH with an average diameter of 2.5 nm in the core and adenine molecules in the shell are obtained, causing an increase in the specific surface area by about twofold. Dynamic light scattering technique also depicts a regular decrease in their hydrodynamic size with increasing [adenine] and exhibits the highest stability with a zeta potential of ∼67 mV for the sample containing 2 × 10 −2 mol dm −3 adenine (SP5). An increasing [adenine] from 1 × 10 −3 to 2 × 10 −2 mol dm −3 in these samples enhanced the value of saturation magnetization (M S ), due to β-FeOOH, gradually from 2.0 to 6.9 emu g −1 at 300 K, but at S at 300 K having potential for environmental and biological applications.

  17. Heat-processed ginseng saponin ameliorates the adenine-induced renal failure in rats

    OpenAIRE

    Kim, Eun Jin; Oh, Hyun-A; Choi, Hyuck Jai; Park, Jeong Hill; Kim, Dong-Hyun; Kim, Nam Jae

    2013-01-01

    To evaluate the effect of the saponin of heat-processed ginseng (Sun ginseng, SG), we investigated the protective effect of SG total saponin fraction against adenine-induced chronic renal failure in rats. SG saponin significantly decreased the levels of urea nitrogen and creatinine in the serum, but increased the urinary excretion of urea nitrogen and creatinine, indicating an improvement of renal function. SG saponin also inhibited adenine-induced kidney hypertrophy and edema. SG saponin red...

  18. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure.

    Science.gov (United States)

    Nemmar, Abderrahim; Karaca, Turan; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Hamadi, Naserddine Kamel; Ali, Badreldin H

    2016-01-01

    Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air

  19. Communication: Site-selective bond excision of adenine upon electron transfer

    Science.gov (United States)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.

    2018-01-01

    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.

  20. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-01-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be ∼6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C≡N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  1. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats

    Directory of Open Access Journals (Sweden)

    Yuko Inami

    2014-01-01

    Full Text Available Aim. Chronic kidney disease (CKD represents endothelial dysfunction. Monocyte adhesion is recognized as the initial step of arteriosclerosis. Indoxyl sulfate (IS is considered to be a risk factor for arteriosclerosis in CKD. Oral adsorbent AST-120 retards deterioration of renal function, reducing accumulation of IS. In the present study, we determined the monocyte adhesion in the adenine-induced uremic rats in vivo and effects of AST-120 on the adhesion molecules. Methods. Twenty-four rats were divided into control, control+AST-120, adenine, and adenine+AST-120 groups. The number of monocytes adherent to the endothelium of thoracic aorta by imaging the entire endothelial surface and the mRNA expressions of adhesion and atherosclerosis-related molecules were examined on day 49. The mRNA expressions of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells were also examined. Results. Adenine increased the number of adherent monocytes, and AST-120 suppressed the increase. The monocyte adhesion was related to serum creatinine and IS in sera. Overexpression of VCAM-1 and TGF-β1 mRNA in the arterial walls was observed in uremic rats. IS induced increase of the ICAM-1 and VCAM-1 mRNA expressions in vitro. Conclusion. It appears that uremic condition introduces the monocyte adhesion to arterial wall and AST-120 might inhibit increasing of the monocyte adherence with CKD progression.

  2. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    Science.gov (United States)

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  3. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (Prenal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  4. Design, synthesis, and characterization of 0-D, 1-D, and 2-D Zinc–Adeninate coordination assemblies

    Energy Technology Data Exchange (ETDEWEB)

    An, Ji Hyun [Dept. of Chemistry Education, Seoul National University, Seoul (Korea, Republic of); Geib, Steven J. [Dept. of Chemistry, University of Pittsburgh, Pittsburgh (United States); Kim, Myung Gil [Dept. of Chemistry, Chungang University, Seoul (Korea, Republic of)

    2015-08-15

    In this study, we demonstrate the synthesis and characterization of zinc– adeninate coordination polymers with 0-D, 1-D, and 2-D structures. We describe methods for controlling the structure of these materials by applying different synthetic conditions and discuss their structural relationships. 0-D, 1-D, and 2-D zinc–adeninate coordination polymers with the same metal–adeninate coordination mode were synthesized and characterized. By controlling the temperature, a material with 0-D macrocycle or 1-D chain coordination polymer was prepared. A replacement of pyridine with bipyridine formed 2-D sheet structure by connecting 1-D chains with each other. They exhibited an interesting relationship between synthetic methods and structures. Further study of metal–adeninate coordination chemistry will render a precise control of the structure in synthesis and will open a new venue to new materials with fascinating properties.

  5. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    Science.gov (United States)

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  6. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  7. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  8. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    Science.gov (United States)

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  9. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Science.gov (United States)

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  10. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  11. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu Xiuli; Yang Wu; Ren Jie; Guo Hao; Long Shijia; Chen Jiaojiao; Gao Jinzhang

    2012-01-01

    Highlights: ► This work developed a novel electrochemical biosensors for guanine and adenine detection simultaneously. ► A disposable electrode based on graphene sheets, ionic liquid and chitosan was proposed. ► The presented method was also applied to simultaneous determination of guanine and adenine in denatured DNA samples with satisfying results. ► Easy fabrication, high sensitivity, excellent reproducibility and long-term stability. - Abstract: A graphene sheets (GS), ionic liquid (IL) and chitosan (CS) modified electrode was fabricated and the modified electrode displayed excellent electrochemical catalytic activities toward guanine and adenine. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 2, α = 0.58 for guanine, and n = 2, α = 0.51 for adenine, which indicated the electrochemical oxidation of guanine and adenine on GS/IL/CS modified electrode was a two-electron and two-proton process. The oxidation overpotentials of guanine and adenine were decreased significantly compared with those obtained at the bare glassy carbon electrode and multi-walled carbon nanotubes modified electrode. The modified electrode exhibited good analytical performance and was successfully applied for individual and simultaneous determination of guanine and adenine. Low detection limits of 0.75 μM for guanine and 0.45 μM for adenine were obtained, with the linear calibration curves over the concentration range 2.5–150 μM and 1.5–350 μM, respectively. At the same time, the proposed method was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. Moreover, the GS/IL/CS modified electrode exhibited good sensitivity, long-term stability and reproducibility for the determination of guanine and adenine.

  12. Protection of Chinese herbs against Adenine-induced chronic renal ...

    African Journals Online (AJOL)

    The aim of the study is to evaluate the efficacy of Chinese herbs (Angelica sinensis, Ligusticum wallichii, Salvia miltiorrhiza, Rhizoma dioscoreae, Rhodiola crenilata, Astragalus membranaceus and Angelica sinensis) on adenine-induced chronic renal failure in rats. 30 age-matched male Wistar rats were divided into three ...

  13. Nonselective enrichment for yeast adenine mutants by flow cytometry

    Science.gov (United States)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  14. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1

    Directory of Open Access Journals (Sweden)

    Chi-Tai Fang

    2017-08-01

    Conclusion: Our results support the view that DNA adenine methylation plays an important role in modulating the pathogenicity of K. pneumoniae genotype K1. The incomplete attenuation indicates the existence of other regulatory factors.

  15. The effect of caffeine and adenine on radiation induced suppression of DNA synthesis, and cell survival

    International Nuclear Information System (INIS)

    Wilcoxson, L.T.; Griffiths, T.D.

    1984-01-01

    Exposure of cultured mammalian cells to ionizing radiation or UV light results in a transient decrease in the rate of DNA synthesis. This depression in synthetic rate may be attenuated or deferred via a post-irradiation treatment with caffeine or adenine. It has been suggested that this attenuation may increase the fixation of damage and, therefore, increase radiation sensitivity. However, it has been previously reported that, for V79 cells treated with caffeine or adenine, no correlation exists between the extent of depression and cell survival. The present investigation expands upon these findings by examining the effect of caffeine or adenine post-irradiation treatment on two cell lines with normal UV sensitivity, mouse 3T3 and CHO AA8 cells, and one UV sensitive cell line, CHO UV5 cells. Both caffeine and adenine have been found to reduce, or delay, the suppression in DNA synthesis in all three cell lines. Surprisingly, caffeine appeared to induced even the UV5 cells to recover DNA synthetic ability. The amount of reduction in suppression of DNA synthesis, however, varies between the different cell lines and no consistent relationship with cell survival has emerged

  16. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment.

    Science.gov (United States)

    Anizelli, Pedro R; Baú, João P T; Nabeshima, Henrique S; da Costa, Marcello F; de Santana, Henrique; Zaia, Dimas A M

    2014-05-21

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hydrothermal stability of adenine under controlled fugacities of N2, CO2 and H2.

    Science.gov (United States)

    Franiatte, Michael; Richard, Laurent; Elie, Marcel; Nguyen-Trung, Chinh; Perfetti, Erwan; LaRowe, Douglas E

    2008-04-01

    An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.

  18. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    Energy Technology Data Exchange (ETDEWEB)

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  19. Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.

    Science.gov (United States)

    Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M

    2003-02-27

    Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.

  20. Rapid field multiplication of plantains using benzyl adenine or ...

    African Journals Online (AJOL)

    Une technique appropriee et moins chere pour la multiplication rapide sur Ie terrain de deux varietes locales de plantain Apantu (une corne fausse) et Asamienu (une come veritable) a ete obtenue par injection de 6 ou 8 ml du jus de noix de coco mur sec apres L' ebullition et la filtration ou de 4 ml 10-2 M benzyle adenine ...

  1. Quantification of DNA in Neonatal Dried Blood Spots by Adenine Tandem Mass Spectrometry.

    Science.gov (United States)

    Durie, Danielle; Yeh, Ed; McIntosh, Nathan; Fisher, Lawrence; Bulman, Dennis E; Birnboim, H Chaim; Chakraborty, Pranesh; Al-Dirbashi, Osama Y

    2018-01-02

    Newborn screening programs have expanded to include molecular-based assays as first-tier tests and the success of these assays depends on the quality and yield of DNA extracted from neonatal dried blood spots (DBS). To meet high throughput and rapid turnaround time requirements, newborn screening laboratories adopted rapid DNA extraction methods that produce crude extracts. Quantification of DNA in neonatal DBS is not routinely performed due to technical challenges; however, this may enhance the performance of assays that are sensitive to amounts of input DNA. In this study, we developed a novel high throughput method to quantify total DNA in DBS. It is based on specific acid-catalyzed depurination of DNA followed by mass spectrometric quantification of adenine. The amount of adenine was used to calculate DNA quantity per 3.2 mm DBS. Reference intervals were established using archived, neonatal DBS (n = 501) and a median of 130.6 ng of DNA per DBS was obtained, which is in agreement with literature values. The intra- and interday variations were quantification were 12.5 and 37.8 nmol/L adenine, respectively. We demonstrated that DNA from neonatal DBS can be successfully quantified in high throughput settings using instruments currently deployed in NBS laboratories.

  2. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    International Nuclear Information System (INIS)

    Puig, J.G.; Fox, I.H.

    1984-01-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with [8-14C] adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake

  3. Prevention of injury by resveratrol in a rat model of adenine-induced ...

    African Journals Online (AJOL)

    phosphorous, and fibroblast growth factor-23 (FGF-23) in rat urine samples after 2 months of adenine ... parathyroid hormone, phosphorous and FGF-23 levels (p < 0.002). In rats ... cartilage degradation in animal models of arthritis. [11].

  4. Effect of Adenine Concentration on the Corrosion Inhibition of Aisi ...

    African Journals Online (AJOL)

    This gave a surface coverage of 0.8956 and corrosion penetration rate of 0.022132mm/yr. Hence, the best adenine concentration for the corrosion inhibition of alloys 304L in 1.0M sulphuric acid solution to obtain optimum inhibition efficiency is 0.011M. Keywords: Corrosion, AISI 304L Steel, Inhibition efficiency, Degree of ...

  5. Enzymatic synthesis of 13N-β-nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Lambrecht, R.H.D.; Slegers, G.; Claeys, A.; Vandecasteele, C.

    1985-01-01

    Nitrogen-13-labelled β-nicotinamide adenine dinucleotide ( 13 N-NAD) is an interesting new compound for positron emission tomography. A semi-automatic production method is developed that yields a solution of 13 N-NAD of radiopharmaceutical quality, suitable for human intravenous administration. The 13 N-NAD is prepared enzymatically in one step from cyclotron-produced 13 NH 3 and nicotinic acid adenine dinucleotide (deamido-NAD). The enzyme NAD synthetase (E.C. 6.3.1.5), catalysing this reaction, is extracted and purified from Escherichia coli. The purified enzyme is immobilized by glutaraldehyde coupling to γ-aminopropylsilane-coated porous glass beads. The enzyme-loaded glass beads are packed in a column. The kinetic properties of the column are optimized. For synthetizing 13 N-NAD, the mixture of co-factors and substrates, containing 13 NH 3 , is pumped over the enzyme column. The unreacted 13 NH 3 is separated from 13 N-NAD by on-line passage over a cation exchanger. After passing over a millipore filter, a sterile solution of radiochemically pure 13 N-NAD is obtained, containing 70 mCi in 10 mL. The total synthesis time is 10 minutes. The specific activity is about 120 mCi/μmol at EOB. Quality control includes sterility and pyrogen tests, HPLC and HPTLC analysis. (author)

  6. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  7. Voltammetric study of adenine complex with copper on mercury electrode

    Czech Academy of Sciences Publication Activity Database

    Jelen, František; Kouřilová, Alena; Hasoň, Stanislav; Kizek, R.; Trnková, L.

    2009-01-01

    Roč. 21, 3-5 (2009), s. 439-444 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) IAA100040602; GA AV ČR(CZ) IAA400040804; GA AV ČR(CZ) KAN200040651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cyclic voltammetry * elimination voltammetry * copper-adenine complex Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  8. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous...... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  9. In vitro propagation of Calla lily: adenine sulphate and 6-benzilaminopurine

    Directory of Open Access Journals (Sweden)

    Márcia De Nazaré Oliveira Ribeiro

    2014-09-01

    Full Text Available Calla lily [Zantedeschia aethiopica (L. Spreng.] belonging to the Araceae family is appreciated as cut flower and in com­position of gardens. However, the conventional propagation of this plants shows a poor productive. Thus, tissue culture besides allowing fast clonal propagation also provides healthy and uniforms plants. The aim was study the influence of the differents concentrations of 6-benzilaminopurine (BAP and adenine sulphate (AS on in vitro multiplication of Calla lily. The explants were maintained in MS medium added with BAP (0.0, 8.9, 17.8 and 26.7 μM and adenine sulphate (0, 54, 108 and 162 μM. The plants were transferred to growth room and maintained at 25±1ºC and photoperiod of 16 hours for 60 days, under luminous intensity of 35 μmol m-2 s-1, for a period of 60 days. The experimental design was entirely randomized with four repetitions of three seedlings each, resulting in twelve plants per treatment, each tube with one plant. The statistics analysis showed interactive effects for quantify of BAP and AS for leaves number and fresh mass of the aerial parts. The highest number of leaves (4.8 and fresh mass of aerial parts (0.73 g was obtained with 26.7 μM of BAP combined with 108 μM of AS, highest number of shoots (2.6 was obtained with 22,19 μM of BAP and highest lengh of sprouts (5.0 cm was observed in the absence of BAP. The addition of BAP increased the number of shoots per explant. The use of adenine sulphate in combination with BAP had a positive effect for the accumulation of fresh weight and number of leaves in vitro culture.

  10. DNA synthesis and cell survival after X-irradiation of mammalian cells treated with caffeine or adenine

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Carpenter, J.G.; Dahle, D.B.

    1978-01-01

    The expression of the transient depression in the rate of DNA synthesis normally observed after exposure of randomly-dividing Chinese hamster V-79 or Chinese hamster CHO cells to ionizing radiation could be postponed by a post-irradiation treatment with 1.0 to 2.0 mM adenine or 1.5 mM caffeine. Caffeine may exert its effect by creating additional sites for replication in irradiated cells. Cells treated with caffeine or adenine for 2 or 4 hours after exposure to 3000 rad of 300 kVp X-rays exhibited depressed synthesis only after the removal of caffeine or adenine. These alterations in the timing of the X-ray-induced depression of the rate of DNA synthesis had no effect on X-ray-induced cell killing. Although a 4 hour post-irradiation treatment of randomly-dividing Chinese hamster V-79 cells with 1.0 or 2.0 mM caffeine potentiated X-ray-induced cell killing, this reduction in survival was due primarily to effects on cells not in S-phase. (author)

  11. Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rats with adenine-induced chronic kidney disease.

    Science.gov (United States)

    Ali, Badreldin H; Cahliková, Lucie; Opletal, Lubomir; Karaca, Turan; Manoj, Priyadarsini; Ramkumar, Aishwarya; Al Suleimani, Yousuf M; Al Za'abi, Mohammed; Nemmar, Abderrahim; Chocholousova-Havlikova, Lucie; Locarek, Miroslav; Siatka, Tomas; Blunden, Gerald

    2017-09-01

    The aim of this work was to assess the possible beneficial effects of aqueous extracts of Hibiscus sabdariffa L. calyces and anthocyanins isolated therefrom in an adenine-induced chronic kidney disease (CKD) model. Rats were orally given, for 28 consecutive days, either adenine alone or together with either aqueous extract of H. sabdariffa calyces (5 and 10%) or anthocyanins (50, 100 and 200 mg/kg of anthocyanin concentrate). For comparative purposes, two groups of rats were given lisinopril (10 mg/kg). When either H. sabdariffa aqueous extract or the anthocyanins isolated from it was administered along with adenine, the adverse effects of adenine-induced CKD were significantly lessened, mostly in a dose-dependent manner. The positive effects were similar to those obtained by administration of lisinopril. The results obtained show that both H. sabdariffa and its anthocyanins could be considered as possible promising safe dietary agents that could be used to attenuate the progression of human CKD. This could have added significance as H. sabdariffa tea is widely consumed in many parts of Africa and Asia and is thus readily available. © 2017 Royal Pharmaceutical Society.

  12. High-NaCl Diet Aggravates Cardiac Injury in Rats with Adenine-Induced Chronic Renal Failure and Increases Serum Troponin T Levels

    DEFF Research Database (Denmark)

    Kashioulis, Pavlos; Hammarsten, Ola; Marcussen, Niels

    2016-01-01

    AIMS: To examine the effects of 2 weeks of high-NaCl diet on left ventricular (LV) morphology and serum levels of cardiac troponin T (cTnT) in rats with adenine-induced chronic renal failure (ACRF). METHODS: Male Sprague-Dawley rats either received chow containing adenine or were pair......-fed an identical diet without adenine [controls (C)]. Approximately 10 weeks after the beginning of the study, the rats were randomized to either remain on a normal NaCl diet (NNa; 0.6%) or to be switched to high-NaCl chow (HNa; 4%) for 2 weeks, after which acute experiments were performed. RESULTS: Rats with ACRF...... showed statistically significant increases (p rats (p

  13. On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Mikkelsen, Kurt V; Kongsted, Jacob

    2010-01-01

    The (15)N NMR spectrum of adenine in aqueous solution has been modeled using high-level combined density functional theory/molecular mechanics techniques coupled to a dynamical averaging scheme. The explicit consideration of the three lowest-energy tautomers of adenine-H9, H7 and H3-allows...

  14. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    Science.gov (United States)

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  15. Circular dichroism spectroscopy of conformers of (guanine + adenine) repeat strands of DNA

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Kypr, Jaroslav; Vorlíčková, Michaela

    2003-01-01

    Roč. 15, č. 7 (2003), s. 584-592 ISSN 0899-0042 R&D Projects: GA AV ČR IAA4004201; GA ČR GA204/01/0561 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA conformation * (guanine + adenine) repeats * homoduplexes Subject RIV: BO - Biophysics Impact factor: 1.793, year: 2003

  16. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    Science.gov (United States)

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  17. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V.

    Science.gov (United States)

    Chen, Yuanyuan; Eldho, Nadukkudy V; Dayie, T Kwaku; Carey, Paul R

    2010-04-27

    Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates

  18. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    DEFF Research Database (Denmark)

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper

    2013-01-01

    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger....... ONs modified with pyrene-functionalized 2'-amino-α-l-LNA adenine monomers X-Z display greatly increased affinity toward DNA targets (ΔTm/modification up to +14 °C). Results from absorption and fluorescence spectroscopy suggest that the duplex stabilization is a result of pyrene intercalation...

  19. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    Science.gov (United States)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  20. Effect of adenine on bacterial translocation using technetium-99m labeled E. coli in an intestinal obstruction model in rats

    International Nuclear Information System (INIS)

    Ugur Oflaz; Fatma Yurt Lambrecht; Osman Yilmaz; Cetin Pekcetin

    2013-01-01

    This study aims to investigate effects of adenine on bacterial translocation (BT) using 99m Tc-labeled E. coli in an intestinal obstruction rat model. In the study twenty-one rats were used. The rats were divided into three groups according to different feeding patterns. The control group (CG) was fed with a standard chow diet for 7 days. Group A1 and group A2 were fed with adenine supplemented chow diet for 7 days. At the end of the feeding period, after all groups was submitted intestinal obstruction. 99m Tc-E. coli was injected into the rats' terminal ileum under anesthetic. The rats were sacrificed under aseptic conditions at 24th h after the surgery. The uptake of 99m Tc-E. coli was determined in organs such as the liver, mesenteric lymph nodes, spleen and ileum. Group A1 and group A2 results show that the uptake of 99m Tc-E. coli decreased in the blood and organs comparing to the CG. As a result, it was observed that adenine reduced the level of BT when compared with CG. The beneficial effect of adenine on BT in intestinal obstruction was observed. However, further studies are needed to more clearly assess how this benefit can be achieved. (author)

  1. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    Science.gov (United States)

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  2. {8-14C}-Adenine and {1-14C}-isopentenyl pyrophosphate - precursors for root-produced cytokinins in the tomato (Lycopersicon esculentum mill.)

    International Nuclear Information System (INIS)

    Dickinson, J.R.

    1985-01-01

    Following the detection of reasonable levels of biologically active cytokinin-like compounds in one-month-old tomato plants, the possible involvement of {8- 14 C}-adenine and {1- 14 C}-isopentenyl pyrophosphate in the biosynthetic pathway leading to an accumulation of free zeatin derivatives, was studied. Intact tomato plants were used for a time-course study involving the uptake of {8- 14 C}-adenine and the tentative identification of compounds into which the 14 C became incorporated. Using high performance liquid chromatography, radioactive trans-zeatin was identified as being present in the Dowex 50 root extract. The 12-hour time interval was used and the roots of the tomato plants were immersed in a more heavily radiolabelled medium. Modified separation techniques were used to achieve enhanced radioactivity recovery rates. This experiment demonstrated the presence of relatively high levels of tentatively identified radioactive zeatin in the Dowex 50 root and stem extracts. Radioactivity in the aqueous extracts was found not to be contributed by cytokinin nucleotides. A final experiment was carried out using decapitated root systems to determine if the root tissue alone could be implicated in the synthesis of cytokinins. Decapitated tomato root systems were supplied with either {8- 14 C}-adenine or {1- 14 C}-isopentenyl pyrophosphate. The ratio of incorporation of {1- 14 C}-isopentenyl pyrophosphate into identified cytokinins was higher than for {8- 14 C}-adenine. It was concluded that both adenine and isopentenyl pyrophosphate are involved in the biosynthetic pathway leading to an accumulation of free zeatin derivatives in tomato roots

  3. The Effects of Foliar Application of Benzyl Adenine, Ascorbic Acid and Thiamine on Some Morphological and Biochemical Characteristics of Petunia (Petunia hybrida

    Directory of Open Access Journals (Sweden)

    M. Salehi

    2016-05-01

    Full Text Available The improvement of growth and flowering of petunia as one of the most popular and cultivated bedding plants in Iran, is of significant importance. Thus, a CRD experiment with five replications was conducted at the Research Greenhouse of Shahid Bahonar University, Kerman, Iran.  From 48 days after sowing, when the seedlings had 5-6 true leaves, the seedlings were sprayed with  thiamine (0 and 100 mgL-1, ascorbic acid (0 and 100 mg L-1 and benzyl adenine (0 and 200 mg L-1 at 4 steps during  growth and development. The results indicated that the treatment of ascorbic acid with thiamine and benzyl adenine led to 2.5 and 3.5-fold increases in the number and length of lateral shoots compared to control treatment. The greatest fresh weight was obtained with ascorbic acid with thiamine and benzyl adenine treatment which led to a 2.5-fold increase in this trait, compared to the control. The highest dry weight was achieved in benzyl adenine treatment. The greatest vase-life and flower diameter were found with ascorbic acid (100 mg L-1, thiamine (100 mg L-1 and benzyl adenine (200 mg L-1 treatments in an extent that the flower longevity and diameter were increased by 83% and 72%, respectively, in comparison to control. Furthermore, chlorophyll a, chlorophyll b, total chlorophyll, carotenoids and reduced sugars concentrations were significantly increased by the foliar-applied compounds compared to control.

  4. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)-adenine derivatives.

    Science.gov (United States)

    Stojković, Marijana Radić; Skugor, Marko; Dudek, Lukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    An investigation of the interactions of two novel and several known DBTAA-adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA-propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure-activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA.

  5. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  6. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-Ping, E-mail: hyp041@163.com [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Nan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Hunan GuangYi Experimental Middle School, Changsha, Hunan 410014 (China); Tan, Yan-Xi; Wang, Fei; Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  7. Renal and Myocardial Histopathology and Morphometry in Rats with Adenine - Induced Chronic Renal Failure: Influence of Gum Acacia

    Directory of Open Access Journals (Sweden)

    Badreldin H. Ali

    2014-08-01

    Full Text Available Background/Aim: Chronic kidney disease (CKD is associated with increased occurrence of cardiovascular system dysfunction. Previous studies have revealed a number of alterations in the kidneys and heart during CKD. However, unbiased quantitative studies on these structures in this disease have so far not been addressed. Materials and Methods: We induced CKD in rats by feeding adenine (0.75% w/w, four weeks and using unbiased stereological methods, investigated the effect of the ensuing CKD on the kidneys and left ventricular structure. Since gum acacia (GA has previously been shown to ameliorate the severity of CKD in humans and rodents, we investigated the effect of giving GA (15% w/v in the drinking water concomitantly with adenine on the kidneys and left ventricular structure using the above model. Results: The CKD was confirmed by standard biochemical indices in plasma and urine and by accumulation of the uremic toxin indoxyl sulfate. Additionally, it increased blood pressure. In rats with CKD absolute volume of left ventricle was significantly increased, and the volume density and absolute volume of myocardial capillaries were decreased, whilst the same parameters of myocardium and interstitial tissue were increased. Renal morphometry demonstrated significant increase in kidney volume and interstitial tissue in adenine- treated rats. Similarly, glomerular Bowman's capsule was significantly thickened. The myocardial and renal changes were significantly mitigated by GA treatment. Conclusions: These results add to our existing knowledge of the pathophysiology of adenine - CKD and provides plausible histopathological and morphometric evidence for the usefulness of GA in CKD.

  8. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine

    Czech Academy of Sciences Publication Activity Database

    Fernández-Botello, A.; Holý, Antonín; Moreno, V.; Sigel, H.

    2004-01-01

    Roč. 98, - (2004), s. 2114-2124 ISSN 0162-0134 R&D Projects: GA MŠk OC D20.002 Institutional research plan: CEZ:AV0Z4055905 Keywords : adenine nucleotide analogues * intramolecular equilibria * isomeric complexes Subject RIV: CC - Organic Chemistry Impact factor: 2.225, year: 2004

  9. NMR studies of the fate of adenine nucleotides in glucose-starved erythrocytes

    International Nuclear Information System (INIS)

    Bubb, W.A.; Mulquiney, P.J.; Kuchel, P.W.; Rohwer, J.; De Atauri, P.

    2002-01-01

    Full text: As a consequence of many refinements during the past 30 years, we now have a detailed understanding of the glycolytic pathway in human erythrocytes. By comparison, and notwithstanding their central importance to four key steps in erythrocyte glycolysis, our knowledge of the catabolism of adenine nucleotides remains relatively limited. In particular, the mechanism for the degradation of AMP, whose concentration rises under conditions of oxidative stress or glucose deprivation, remains poorly understood, AMP degradation may proceed via two possible pathways which converge in the production of inosine. Analysis of the key intermediates for the respective pathways, adenosine and AMP, as well as determination of end products is not straightforward. High-resolution NMR spectroscopy affords a potentially simple analytical solution to this problem but is complicated by spectral overlap and the sensitivity of key resonances to variations in pH and the concentrations of cations such as Mg 2+ . We describe a multinuclear NMR approach towards characterising the intermediates and end-products of adenine nucleotide metabolism in glucose-starved human erythrocytes. Assignments based on homo- and heteronuclear correlation experiments for both 13 C and 31 P are presented

  10. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    Science.gov (United States)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  11. Synthetic models related to DNA-intercalating molecules. Interactions between 8-alkoxypsoralen and adenine

    International Nuclear Information System (INIS)

    Decout, J.L.; Lhomme, J.

    1983-01-01

    To investigate the interactions and the photoreactions between furocoumarins and adenine, compounds in which a psoralen molecule is linked by different polymethylene bridges have been synthesised. Ring-ring intramolecular interactions are observed by UV spectroscopy. Thermodynamic parameters of these hydrophobic interactions are determined by the study of the variation of the hypochromic effect with temperature. (author)

  12. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    Science.gov (United States)

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA. PMID:25246976

  13. Synthesis of coenzyme A and nicotineamide-adenine dinucleotide labelled with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Zverkov, Yu.B.; Myasoedov, N.F.

    1999-01-01

    Isotopic exchange in solution with tritium water and with gaseous tritium and solid-phase reaction of isotopic exchange of NAD with tritium were investigated. For synthesis of labelled with tritium coenzyme A solid-phase reaction of isotopic exchange with gaseous tritium was used. It was determined that 98% of tritium was contained in nicotineamide part of molecule of NAD. In the case of coenzyme A studying of intramolecular distribution of tritium demonstrated that 90% of tritium were localized in adenine fragment [ru

  14. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine

    NARCIS (Netherlands)

    Fonseca Guerra, C.; van der Wijst, T.; Bickelhaupt, F.M.

    2006-01-01

    Substituted Watson-Crick guanine-cytosine (GC) base pairs were recently shown to yield robust three-state nanoswitches. Here, we address the question: Can such supramolecular switches also be based on Watson-Crick adenine-thymine (AT) base pairs? We have theoretically analyzed AT pairs in which

  15. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage

    International Nuclear Information System (INIS)

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-01-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25±5 °C, Relative Humidity 90±2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar, non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control. (author)

  16. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    DEFF Research Database (Denmark)

    Nielsen, L.M.; Pedersen, S.O.; Kirketerp, M.-B.S.

    2012-01-01

    to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion...

  17. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  18. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    Science.gov (United States)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  19. Ultrafast deactivation processes in the 2-aminopyridine dimer and the adenine-thymine base pair: Similarities and differences

    International Nuclear Information System (INIS)

    Ai Yuejie; Zhang Feng; Cui Ganglong; Fang Weihai; Luo Yi

    2010-01-01

    2-aminopyridine dimer has frequently been used as a model system for studying photochemistry of DNA base pairs. We examine here the relevance of 2-aminopyridine dimer for a Watson-Crick adenine-thymine base pair by studying UV-light induced photodynamics along two main hydrogen bridges after the excitation to the localized 1 ππ* excited-state. The respective two-dimensional potential-energy surfaces have been determined by time-dependent density functional theory with Coulomb-attenuated hybrid exchange-correlation functional (CAM-B3LYP). Different mechanistic aspects of the deactivation pathway have been analyzed and compared in detail for both systems, while the related reaction rates have also be obtained from Monte Carlo kinetic simulations. The limitations of the 2-aminopyridine dimer as a model system for the adenine-thymine base pair are discussed.

  20. Adenine ribbon stabilized by Watson–Crick and Hoogsteen hydrogen Bonds: WFT and DFT study

    Czech Academy of Sciences Publication Activity Database

    Zierkiewicz, W.; Michalska, D.; Hobza, Pavel

    2010-01-01

    Roč. 12, č. 12 (2010), s. 2888-2894 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:Wroclaw University of Technology(PL) 343974/Z0304 Institutional research plan: CEZ:AV0Z40550506 Keywords : adenine ribbon * ab initio correlated calculations * self- organization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  1. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage.

    Science.gov (United States)

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-10-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25 ± 5 °C, Relative Humidity 90 ± 2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar. non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control.

  2. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  3. Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study

    International Nuclear Information System (INIS)

    Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej S.; Rak, Janusz

    2007-01-01

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson-Crick adenine-thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39-2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson-Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.

  4. Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering.

    Science.gov (United States)

    Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica

    2018-04-10

    Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10 -3 , 10 -4 and 10 -5 M and adenine in 30 and 100μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106cm -1 band is explained by involvement of the CS stretching deformation, and the appearance of the broad 300cm -1 band attributed to SAu stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736cm -1 . The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600cm -1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The incorporation of 14C-adenine into the oocytes of Asellus aquaticus as studied by autoradiography

    NARCIS (Netherlands)

    Broek, C.J.H. van den; Tates, A.D.

    Asellus aquaticus females were injected with 8-14C-adenine, fixed after 3 hours and sectioned. In coated autoradiographs, the number of β-tracks from 14C were counted over nucleolus, nucleus and cytoplasm of the oocytes at various stages of their development. Incorporation into nucleolar RNA, being

  6. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    Directory of Open Access Journals (Sweden)

    Biris AR

    2013-04-01

    Full Text Available Alexandru R Biris,1 Stela Pruneanu,1 Florina Pogacean,1 Mihaela D Lazar,1 Gheorghe Borodi,1 Stefania Ardelean,1 Enkeleda Dervishi,2 Fumiya Watanabe,2 Alexandru S Biris2 1National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA Abstract: This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x over an Aux/MgO catalytic system (where x = 1, 2, or 3 wt%. The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3 showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50% and the final purity (96%–98% of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot one order of magnitude higher than that of the bare platinum electrode, which also confirmed that

  7. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    International Nuclear Information System (INIS)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F.

    2009-01-01

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  8. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    Science.gov (United States)

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Alula, Melisew Tadele; Yang, Jyisy

    2015-01-01

    Magnetic microspheres decorated with gold nanoparticles (AuNPs) were prepared and used for the determination of adenine by surface-enhanced Raman scattering (SERS). Magnetic particles were first synthesized by coprecipitation of solutions containing iron(II) and iron(III) ions with ammonium hydroxide. Subsequently, the magnetic particles were suspended into a solution of poly(divinylbenzene-co-methyl methacrylate) to yield polymer-stabilized magnetic microspheres. These were further decorated with AuNPs via a new photochemical reduction method. The magnetic microspheres were characterized by XRD patterns and SEM images. They are shown to represent highly SERS-active substrates by giving an enhancement by almost 7 orders of magnitude compared to conventional Raman spectroscopy. Several factors that affect the photochemical reduction to form the AuNPs were examined. It is found that the concentration of gold ion, UV irradiation time, and citrate concentration have more impact on the reaction rate than on the morphologies of the AuNPs. The gold-decorated magnetic microspheres are highly stable in aqueous solution and capable of concentrating nucleobases. A linear response of the SERS signal to adenine in concentrations up to 10 μM is found, with a linear regression coefficient of 0.997. The detection limit is estimated to a few hundreds of nM (at an SNR of 3). Based on its specific Raman peak at 734 cm −1 , adenine can be selectively determined without interference by other nucleobases, and a recovery higher than 95 % could be obtained. (author)

  10. The effect of solvation on the radiation damage rate constants for adenine

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2016-01-01

    in calculations of Gibbs free energies and reaction rates for the reaction between the OH radical and the DNA nucleobase adenine using Density Functional Theory at the ωB97X-D/6-311++G(2df,2pd) level with the Eckart tunneling correction. The solvent, water, has been included through either the implicit...... polarizable continuum model (PCM) or through explicit modelling of micro-solvation by a single water molecule at the site of reaction as well as the combination of both. Scrutiny of the thermodynamics and kinetics of the individual sub-reactions suggests that the qualitative differences introduced...

  11. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  12. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    Science.gov (United States)

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Kinetics and thermodynamics of the reaction between the •OH radical and adenine – a theoretical investigation

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2015-01-01

    the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimised with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X and wB97X-D), in combination...

  14. Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Atlasi

    2011-01-01

    Full Text Available Objective (s Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury.Materials and MethodsFor this purpose, we used in vivo 4-vessel occlusion model of rat brain and porin purification method by hydroxyapatite column. After SDS gel electrophoresis and silver nitrate staining, Western blotting was done for porin, adenine nucleotide translocase and cyclophilin-D proteins.Results Porin was purified from mitochondrial mixture in ischemic brain and control groups. Investigation of interaction of adenine nucleotide transposes (ANT and cyclophilin-D with porin by Western blotting showed no proteins co-purified with porin from injured tissues.Conclusion The present study implies that there may not be interaction between porin, and ANT or cyclophilin-D, and if there is any, it is not maintained during the purification procedure.

  15. Adenine nucleotide translocator transports haem precursors into mitochondria.

    Directory of Open Access Journals (Sweden)

    Motoki Azuma

    2008-08-01

    Full Text Available Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT, the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.

  16. Supra-molecular hydrogen-bonding patterns in the N(9)-H protonated and N(7)-H tautomeric form of an N(6) -benzoyl-adenine salt: N (6)-benzoyl-adeninium nitrate.

    Science.gov (United States)

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-02-01

    In the title molecular salt, C12H10N5O(+)·NO3 (-), the adenine unit has an N (9)-protonated N(7)-H tautomeric form with non-protonated N(1) and N(3) atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra-molecular N(7)-H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl-adeninium cations also form base pairs through N-H⋯O and C-H⋯N hydrogen bonds involving the Watson-Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra-molecular ribbon with R 2 (2)(9) rings. Benzoyl-adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N-H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π-π stacking inter-actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol-ecules generate a three-dimensional supra-molecular architecture.

  17. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift

    International Nuclear Information System (INIS)

    Luo, X L; Bentley, W E; Buckhout-White, S; Rubloff, G W

    2011-01-01

    Surface-enhanced Raman scattering (SERS) has grown dramatically as an analytical tool for the sensitive and selective detection of molecules adsorbed on nano-roughened noble metal structures. Quantification with SERS based on signal intensity remains challenging due to the complicated fabrication process to obtain well-dispersed nanoparticles and well-ordered substrates. We report a new biofabrication strategy of SERS substrates that enable quantification through a newly discovered spectroscopic shift resulting from the chitosan-analyte interactions in solution. We demonstrate this phenomenon by the quantification of adenine, which is an essential part of the nucleic acid structure and a key component in pathways which generate signal molecules for bacterial communications. The SERS substrates were fabricated simply by sequential electrodeposition of chitosan on patterned gold electrodes and electroplating of a silver nitrate solution through the chitosan scaffold to form a chitosan-silver nanoparticle composite. Active SERS signals of adenine solutions were obtained in real time from the chitosan-silver composite substrates with a significant concentration-dependent spectroscopic shift. The Lorentzian curve fitting of the dominant peaks suggests the presence of two separate peaks with a concentration-dependent area percentage of the separated peaks. The chitosan-mediated composite SERS substrates can be easily biofabricated on predefined electrodes within microfluidic channels for real-time detection in microsystems.

  18. Simultaneous quantification of porcine myocardial adenine nucleotides and creatine phosphate by ion-pair reverse-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Cordis, G.A.; Das, D.K.

    1987-01-01

    In order to follow the energy metabolism and the levels of high-energy phosphate compounds in porcine myocardium subjected to ischemic insult, it was necessary to develop a high-performance liquid chromatography (HPLC) method where creatine phosphate (CP) and the adenine nucleotides could be measured simultaneously in a single run. Currently available ion-pair reverse-phase HPLC methods require a separate injection with a change in wavelength and mobile phase in order to measure the creatine phosphate, while baseline separation of AMP is lacking. The ion-exchange HPLC method includes a simultaneous determination, but the baseline drifts due to the gradient and baseline separation of AMP is not achieved. In the following ion-pair reverse-phase HPLC method, simultaneous measurements of porcine myocardial adenine nucleotides and creatine phosphate were achieved along with a stable baseline and homogeneous baseline separation of each measured compound, allowing accurate quantification

  19. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunhua [College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124 (China); Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108 (United States); Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin [College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124 (China); Su, Jiguo, E-mail: jiguosu@ysu.edu.cn, E-mail: zhng@umich.edu [College of Science, Yanshan University, Qinhuangdao 066004 (China); Zhang, Yang, E-mail: jiguosu@ysu.edu.cn, E-mail: zhng@umich.edu [Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108 (United States)

    2016-07-07

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  20. Fluorometric detection of adenine in target DNA by exciplex formation with fluorescent 8-arylethynylated deoxyguanosine.

    Science.gov (United States)

    Saito, Yoshio; Kugenuma, Kenji; Tanaka, Makiko; Suzuki, Azusa; Saito, Isao

    2012-06-01

    We demonstrated an intriguing method to discriminate adenine by incident appearance of an intense new emission via exciplex formation in hybridization of target DNA with newly designed fluorescent 8-arylethynylated deoxyguanosine derivatives. We described the synthesis of such highly electron donating fluorescent guanosine derivatives and their incorporation into DNA oligomers which may be used for the structural study and the fluorometric analysis of nucleic acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    Science.gov (United States)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  2. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    Science.gov (United States)

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  3. Post-synthetic modification of mesoporous zinc-adeninate framework with tris(2,2′-biprydine) ruthenium(II) complex and its electrochemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Shin, Ik Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of); Oh, Hye Jae; An, Ji Hyun [Dept. of Chemistry Education, Seoul National University, Seoul (Korea, Republic of)

    2017-04-15

    Herein we report a redox-active metal-organic framework (MOF) via post-synthetic cation exchange with tris(2,2′-biprydine) ruthenium(II) complex (Ru(bpy){sub 3}{sup 2+}). A porous anionic zinc-adeninate framework (bMOF-100) is spacious enough to easily entrap 2.43 of Ru(bpy){sub 3}{sup 2+} cations within the mesopore. The encapsulation supported the framework structure preventing any distortion from a rapid solvent evaporation under SEM observation. Ru(bpy){sub 3}{sup 2+}@bMOF-100 was then immobilized on the surface of glassy carbon electrode, and its electrocatalytic and electrochemiluminescent (ECL) properties were investigated in aqueous and organic solution. Especially, Ru(bpy){sub 3}{sup 2+}@bMOF-100 showed the excellent electrochemical properties of Ru(bpy){sub 3}{sup 2+}, but gradual decomposition of the MOF structure was observed under electrochemical measurements because of the sluggish oxidation of adeninate ligand.

  4. Determination of the recognition site for adenine-specific methylase of Shigella sonnei 47 by hydazinolysis of DNA, followed by separation of the purine oligonucleotides by thin-layer chromatography on DEAE-cellulose

    International Nuclear Information System (INIS)

    Lopatina, N.G.; Kirnos, M.D.; Suchkov, S.V.; Vanyushin, B.F.; Nikol'skaya, I.I.; Debov, S.S.

    1985-01-01

    A method has been developed for the separation of oligopurine units according to length and composition by two-dimensional thin-layer chromatography on plates with DEAE-cellulose, permitting a comparative analysis of the content of various purine isopliths in DNA of different origin. In the case of the analysis of methylated DNA, the method permits a comparison of the substrate specificity of various enzymes of methylation of the adenine residues in DNA. In conjunction with enzymatic treatment of labeled methylated isopliths, the method permits determination of the methylatable sequence and in a number of cases an ascertainment of the recognition site for adenine-specific methylase as a whole. The proposed method was used to establish the fact that the methylase Ssol recognizes the sequence 5'...G-A-A-T-T-C...3' and methylates the adenine residue closest to its 5'-end

  5. Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol.

    Science.gov (United States)

    Antonelou, Marianna H; Kriebardis, Anastasios G; Stamoulis, Konstantinos E; Economou-Petersen, Effrosini; Margaritis, Lukas H; Papassideri, Issidora S

    2010-02-01

    It has been suggested that red blood cell (RBC) senescence is accelerated under blood bank conditions, although neither protein profile of RBC aging nor the impact of additive solutions on it have been studied in detail. RBCs and vesicles derived from RBCs in both citrate-phosphate-dextrose (CPD)-saline-adenine-glucose-mannitol (SAGM) and citrate-phosphate-dextrose-adenine (CPDA) were evaluated for the expression of cell senescence markers (vesiculation, protein aggregation, degradation, activation, oxidation, and topology) through immunoblotting technique and immunofluorescence or immunoelectron microscopy study. A group of cellular stress proteins exhibited storage time- and storage medium-related changes in their membrane association and exocytosis. The extent, the rate, and the expression of protein oxidation, Fas oligomerization, caspase activation, and protein modifications in Band 3, hemoglobin, and immunoglobulin G were less conspicuous and/or exhibited significant time retardation under storage in CPD-SAGM, compared to the CPDA storage. There was evidence for the localization of activated caspases near to the membrane of both cells and vesicles. We provide circumstantial evidence for a lower protein oxidative damage in CPD-SAGM-stored RBCs compared to the CPDA-stored cells. The different expression patterns of the senescence markers in the RBCs seem to be accordingly related to the oxidative stress management of the cells. We suggest that the storage of RBCs in CPD-SAGM might be more alike the in vivo RBC aging process, compared to storage in CPDA, since it is characterized by a slower stimulation of the recognition signaling pathways that are already known to trigger the erythrophagocytosis of senescent RBCs.

  6. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    NARCIS (Netherlands)

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite

  7. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  8. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Shahpiri, Azar

    2013-01-01

    The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer...... dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent...

  9. Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine.

    Science.gov (United States)

    Raczyńska, Ewa D; Makowski, Mariusz; Zientara-Rytter, Katarzyna; Kolczyńska, Katarzyna; Stępniewski, Tomasz M; Hallmann, Małgorzata

    2013-02-21

    All possible twenty-three prototropic tautomers of neutral and redox adenine (nine amine and fourteen imine forms, including geometric isomerism of the exo ═NH group) were examined in vacuo {DFT(B3LYP)/6-311+G(d,p)}. The NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. An interesting change of the tautomeric preference occurs when proceeding from neutral to reduced adenine. One-electron reduction favors the nonaromatic amine C8H-N10H tautomer. This tautomeric preference is similar to that (C2H) for reduced imidazole. Water molecules (PCM model) seem to not change this trend. They influence solely the relative energies. The DFT vertical detachment energy in the gas phase is positive for each tautomer, e.g., 0.03 eV for N9H-N10H and 1.84 eV for C8H-N10H. The DFT adiabatic electron affinity for the favored process, neutral N9H-N10H → reduced C8H-N10H (ground states), is equal to 0.18 eV at 0 K (ZPE included). One-electron oxidation does not change the tautomeric preference in the gas phase. The aromatic amine N9H-N10H tautomer is favored for the oxidized molecule similarly as for the neutral one. The DFT adiabatic ionization potential for the favored process, neutral N9H-N10H → oxidized N9H-N10H (ground states), is equal to 8.12 eV at 0 K (ZPE included). Water molecules (PCM model) seem to influence solely the composition of the tautomeric mixture and the relative energies. They change the energies of the oxidation and reduction processes by ca. 2 eV.

  10. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    Science.gov (United States)

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay

  11. Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria

    NARCIS (Netherlands)

    Ciapaite, J; Van Eikenhorst, G; Bakker, SJL; Diamant, M; Heine, RJ; Wagner, MJ; Westerhoff, HV; Krab, K

    To test whether long-chain fatty acyl-CoA esters link obesity with type 2 diabetes through inhibition of the mitochondrial adenine nucleotide translocator, we applied a system-biology approach, dual modular kinetic analysis, with mitochondrial membrane potential (Delta psi) and the fraction of

  12. Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease

    OpenAIRE

    Yokote, Shinya; Katsuoka, Yuichi; Yamada, Akifumi; Ohkido, Ichiro; Yokoo, Takashi

    2017-01-01

    Previous studies have investigated the use of mesenchymal stem cells (MSCs) to treat damaged kidneys. However, the effect of adipose-derived MSCs (ASCs) on vascular calcification in chronic kidney disease (CKD) is still poorly understood. In the present study, we explored the potential of ASCs for the treatment of CKD and vascular calcification. CKD was induced in male Sprague-Dawley rats by feeding them a diet containing 0.75% adenine for 4 weeks. ASCs transplantation significantly reduced s...

  13. Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria

    NARCIS (Netherlands)

    Ciapaite, J.; van Eikenhorst, G.; Bakker, S.J.L.; Diamant, M.; Heine, R.J.; Wagner, M.J.; Westerhoff, H.V.; Krab, K.

    2005-01-01

    To test whether long-chain fatty acyl-CoA esters link obesity with type 2 diabetes through inhibition of the mitochondrial adenine nucleotide translocator, we applied a system-biology approach, dual modular kinetic analysis, with mitochondrial membrane potential (Δψ) and the fraction of matrix ATP

  14. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    Science.gov (United States)

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  15. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  16. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  17. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    Energy Technology Data Exchange (ETDEWEB)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-04-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.

  18. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    International Nuclear Information System (INIS)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.

    2017-01-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C 5 H 5 N 5 ) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO 2 ), isocyanic acid (HNCO), isocyanate (OCN − ), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R 1 R 2 –C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H 2 N–C≡N) was detected in both irradiated samples as well.

  19. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    OpenAIRE

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity...

  20. Rationalizing the structural variability of the exocyclic amino groups in nucleobases and their metal complexes: cytosine and adenine.

    Science.gov (United States)

    Fonseca Guerra, Célia; Sanz Miguel, Pablo J; Cebollada, Andrea; Bickelhaupt, F Matthias; Lippert, Bernhard

    2014-07-28

    The exocyclic amino groups of cytosine and adenine nucleobases are normally almost flat, with the N atoms essentially sp(2) hybridized and the lone pair largely delocalized into the heterocyclic rings. However, a change to marked pyramidality of the amino group (N then sp(3) hybridized, lone pair essentially localized at N) occurs during i) involvement of an amino proton in strong hydrogen bonding donor conditions or ii) with monofunctional metal coordination following removal of one of the two protons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    Science.gov (United States)

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  2. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    Directory of Open Access Journals (Sweden)

    Débora Claramunt

    2015-11-01

    Full Text Available Pediatric chronic kidney disease (CKD has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol.

  3. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen

    2015-01-01

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2, was subjected to crystallographic, kinetic and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5...

  4. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    Science.gov (United States)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  5. Study on preventive effects of i.v. administration of flavin adenine dinucleotide (FAD) before irradiation on radiation stomatitis

    International Nuclear Information System (INIS)

    Nagai, Masao; Houzawa, Jiro; Hakamada, Masaru

    1984-01-01

    In order to compare the preventive effect on radiation stomatitis, flavin adenine dinucleotide (FAD) or vitamin C was administered intravenously until the blood level reached the maximum at the time of irradiation. Thirtyfive patients with cranial or cervical tumors were allocated into the group with FAD (15), the group with vitamin C (10), and the group with irradiation alone (10). The incidence of stomititis was significantly lower and the number of patients in whom the drug was withdrawn due to stomatitis was extremely smaller in the group with FAD than in the other groups. FAD administered before irradiation was considered very useful in preventing radiation stomatitis. (Namekawa, K.)

  6. Structural study and investigation of NMR tensors in interaction of dopamine with Adenine and guanine

    Directory of Open Access Journals (Sweden)

    Lingjia Xu

    2007-04-01

    Full Text Available The interaction of dopamine with adenine and guanine were studied at the Hartree-Fock level theory. The structural and vibrational properties of dopamine-4-N7GUA and dopamine-4-N3ADE were studied at level of HF/6-31G*. Interaction energies (ΔE were calculated to be -11.49 and -11.92 kcal/mol, respectively. Some of bond lengths, angels and tortions are compared. NBO studies were performed to the second-order and perturbative estimates of donor-acceptor interaction have been done. The procedures of gauge-invariant atomic orbital (GIAO and continuous-set-of-gauge-transformation (CSGT were employed to calculate isotropic shielding, chemical shifts anisotropy and chemical shifts anisotropy asymmetry and effective anisotropy using 6-31G* basis set. These calculations yielded molecular geometries in good agreement with available experimental data.

  7. Recognition and repair of the CC-1065-(N3-Adenine)-DNA adduct by the UVRABC nuclease

    International Nuclear Information System (INIS)

    Tang, M.; Lee, C.S.; Doisy, R.; Ross, L.; Needham-VanDevanter, D.R.; Hurley, L.H.

    1988-01-01

    The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with phi X174RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mp1. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1 nuclease activity. Using a viral DNA-Escherichia coli transfection system, the authors have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified phi X174RFI DNA. Using a site-directed and multiple CC-1065 modified (MspI-BstNI) 117 base pair fragment from M13mp1, they have found that UVRABC nuclease incises at the eight phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure

  8. Gas-phase spectroscopy of protonated adenine, adenosine 5′-monophosphate and monohydrated ions

    DEFF Research Database (Denmark)

    Pedersen, S.O.; Støchkel, K.; Byskov, C.S.

    2013-01-01

    . The yields of these were measured as a function of the wavelength of the light from 210 nm to 300 nm, and they were combined to obtain the total photoinduced dissociation at each wavelength (i.e., action spectrum). A broad band between 230 nm and 290 nm and the tail of a band with maximum below 210 nm (high......-energy band) are seen. In the case of AdeH+(H2O), the dominant dissociation channel after photoexcitation in the low-energy band was simply loss of H2O while photodissociation of protonated AMP revealed two dominant dissociation channels associated with the formation of either AdeH+ or loss of H3PO4....... The action spectra of AdeH+, AdeH+(H2O), and AMPH+ are almost identical in the 230–290 nm region, and they resemble the absorption spectrum of protonated adenine in aqueous solution recorded at low pH. Hence from our work it is firmly established that the lowest-energy transitions are independent...

  9. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    OpenAIRE

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-01-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the le...

  10. Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence

    Energy Technology Data Exchange (ETDEWEB)

    Benz, T; Hampp, R; Horsch, F; Filby, G; Fund, N; Gross, S; Hanisch, B; Kilz, E; Seidel, A [comps.

    1986-04-01

    Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence. Lyophilized needles of Picea abies (Kaelbelescheuer, southern Black Forest) were analyzed for their content of adenine nucleotides (ATP, ADP, AMP: AdN) and of inorganic phosphate (Psub(i)). The metabolite levels were related to needle age, vegetation period and degree of damage (chlorophyll content). The results were as follows: 1) With increasing needle age there is a general decrease in the total AdN-pool. This decrease is most pronounced in very young needles and occurs in both healthy and damaged tissue. 2) The ATP/ADP-ratio of damaged needle is significantly higher than that of healthy ones. 3) Both phosphorylation potential (ATP.(ADP.Psub(i))/sup -1/) and adenylate energy charge ((ATP + 0.5.ADP).(AdN)/sup -1/) are significantly reduced in damaged needles. This is due to relatively higher levels of Psub(i) and of AMP. The results, although incomplete and preliminary, indicate metabolic alterations which have been described for other tissues in response to pollution by photooxidants.

  11. Pd-catalyzed versus uncatalyzed, PhI(OAc)2-mediated cyclization reactions of N6-([1,1'-biaryl]-2-yl)adenine nucleosides.

    Science.gov (United States)

    Satishkumar, Sakilam; Poudapally, Suresh; Vuram, Prasanna K; Gurram, Venkateshwarlu; Pottabathini, Narender; Sebastian, Dellamol; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2017-11-09

    In this work we have assessed reactions of N 6 -([1,1'-biaryl]-2-yl)adenine nucleosides with Pd(OAc) 2 and PhI(OAc) 2 , via a Pd II /Pd IV redox cycle. The substrates are readily obtained by Pd/Xantphos-catalyzed reaction of adenine nucleosides with 2-bromo-1,1'-biaryls. In PhMe, the N 6 -biarylyl nucleosides gave C6-carbazolyl nucleoside analogues by C-N bond formation with the exocyclic N 6 nitrogen atom. In the solvent screening for the Pd-catalyzed reactions, an uncatalyzed process was found to be operational. It was observed that the carbazolyl products could also be obtained in the absence of a metal catalyst by reaction with PhI(OAc) 2 in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Thus, under Pd catalysis and in HFIP, reactions proceed to provide carbazolyl nucleoside analogues, with some differences. If reactions of N 6 -biarylyl nucleoside substrates were conducted in MeCN, formation of aryl benzimidazopurinyl nucleoside derivatives was observed in many cases by C-N bond formation with the N 1 ring nitrogen atom of the purine (carbazole and benzimidazole isomers are readily separated by chromatography). Whereas Pd II /Pd IV redox is responsible for carbazole formation under the metal-catalyzed conditions, in HFIP and MeCN radical cations and/or nitrenium ions can be intermediates. An extensive set of radical inhibition experiments was conducted and the data are presented.

  12. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    OpenAIRE

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite direction of the activity of pyruvate dehydrogenase (EC. 1.2.4.1). 3. Changes of the transmembrane pH gradient and of the membrane potential, brought about by the pretreatments of the mitochondria, c...

  13. Crystal structure of an intermolecular 2:1 complex between adenine and thymine. Evidence for both Hoogsteen and 'quasi-Watson-Crick' interactions.

    Science.gov (United States)

    Chandrasekhar, Sosale; Naik, Tangali R Ravikumar; Nayak, Susanta K; Row, Tayur N Guru

    2010-06-15

    The titled complex, obtained by co-crystallization (EtOH/25 degrees C), is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Dependence of mitochondrial and cytosolic adenine nucleotides on oxygen partial pressure in isolated hepatocytes. Application of a new rapid high pressure filtration technique for fractionation.

    OpenAIRE

    Hummerich, H; de Groot, H; Noll, T; Soboll, S

    1988-01-01

    By using a new rapid high pressure filtration technique, mitochondrial and cytosolic ATP and ADP contents were determined in isolated hepatocytes at different oxygen partial pressures. At 670 mmHg, subcellular adenine nucleotide contents and ATP/ADP ratios were comparable with values obtained with the digitonin fractionation technique. However at lower oxygen partial pressure ADP appears to be rephosphorylated during digitonin fractionation whereas with high pressure filtration fractionation ...

  15. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase.

    Science.gov (United States)

    Pavón, Natalia; Correa, Francisco; Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Chávez, Edmundo

    2015-10-15

    Mitochondrial permeability transition is a process established through massive Ca(2+) load in addition to an inducer reagent. Ebselen (Ebs), an antioxidant seleno compound, has been introduced as a reagent which inhibits mitochondrial dysfunction induced by permeability transition. Paradoxically enough, it has been shown that Ebs may also be able to induce the opening of the mitochondrial non-selective pores. This study was performed with the purpose of establishing the membrane system involved in Ebs-induced pore opening. Permeability transition was appraised by analyzing the following: i) matrix Ca(2+) release, and mitochondrial swelling, ii) efflux of cytochrome c, and iii) the inhibition of superoxide dismutase. All of these adverse reactions were inhibited by N-ethylmaleimide and cyclosporin A. At concentrations from 5 to 20 μM, we found that Ebs induces non-specific membrane permeability. Remarkably, Ebs blocks the binding of the fluorescent reagent eosin-5-maleimide to the thiol groups of the adenine nucleotide translocase. Based on the above, it is tempting to hypothesize that Ebs induces pore opening through its binding to the ADP/ATP carrier. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Selective inhibitory effects of (S)-9-(3-hydroxy-2-phosphonyl-methoxypropyl)adenine and 1-(2'-deoxy-2'-fluoro-ß-D-arabinofuranosyl)-5-iodouracil on seal herpesvirus (Phocid herpesvirus 1) infection in vitro.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J. Groen (Jan); E. de Clercq

    1987-01-01

    textabstractFrom a selection of 25 antiviral compounds with specific anti-herpes activity or broad-spectrum antiviral properties, two compounds, namely (S)-9-(3-hydroxy-2-phosphonyl-methoxypropyl)adenine and 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-iodouracil, appeared particularly effective

  17. Functional expression of human adenine nucleotide translocase 4 in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Takashi Hamazaki

    2011-04-01

    Full Text Available The adenine nucleotide translocase (ANT mediates the exchange of ADP and ATP across the inner mitochondrial membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a novel germ cell-specific member of the ANT family, ANT4 (SLC25A31 was identified. Although it is known that targeted depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4 in yeast mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its unique adaptation to germ cells.

  18. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3).

    Science.gov (United States)

    Albertí, Francisca M; Rodríguez-Santiago, Luis; Sodupe, Mariona; Mirats, Andrea; Kaitsiotou, Helena; Sanz Miguel, Pablo J; Lippert, Bernhard

    2014-03-17

    Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton

  19. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids

    International Nuclear Information System (INIS)

    Zanoni, Maria Valnice Boldrin; Rogers, Emma I.; Hardacre, Christopher; Compton, Richard G.

    2010-01-01

    The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N 6,2,2,2 ][N(Tf) 2 ], 1-butyl-3-methylimidazolium hexafluorosphosphate [C 4 mim][PF 6 ], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C 4 mpyrr][N(Tf) 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 4 mim][N(Tf) 2 ], N-butyl-N-methyl-pyrrolidinium dicyanamide [C 4 mpyrr][N(NC) 2 ] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P 14,6,6,6 ][FAP] on a platinum microelectrode. In [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P 14,6,6,6 ][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer

  20. Kynureninase-type enzymes and the evolution of the aerobic tryptophan-to-nicotinamide adenine dinucleotide pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, F.H.; Shetty, A.S.

    1977-01-01

    Kynureninase-type (L-kynurenine hydrolase, EC 3.7.1.3) activity has been found to be present in the livers of fish, amphibia, reptiles, and birds. In addition to past information concerning this enzyme activity in mammalian liver, it is now clear that all the major classes of vertebrates carry a highly specialized kynureninase-type enzyme, which we have termed a hydroxykynureninase. To compare the reactivities of these enzymes with L-kynurenine and L-3-hydroxykynurenine, ratios of tau values (K/sub m//V) were used. Based on this comparison, the bacterium Pseudomonas fluorescens carries the most efficient kynureninase, whereas the amphibian Xenopus laevis has the most efficient hydroxykynurenase. In these two cases, the ratio of tau values differs by a factor of 38,000. It is hypothesized that the tryptophan-to-nicotinamide adenine dinucleotide biosynthetic pathway evolved from a catabolic system of enzymes, and that the differences observed in the kynureninase-type enzymes between lower and higher organisms reflect the specialization of the function of these enzymes from a strictly catabolic role to an anabolic one during the course of evolution.

  1. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    Science.gov (United States)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  2. Unprecedented head-to-head right-handed cross-links between the antitumor bis(mu-N,N'-di-p-tolylformamidinate) dirhodium(II,II) core and the dinucleotide d(ApA) with the adenine bases in the rare imino form.

    Science.gov (United States)

    Chifotides, Helen T; Dunbar, Kim R

    2007-10-17

    Reactions of the anticancer active compound cis-[Rh2(DTolF)2(CH3CN)6](BF4)2 with 9-ethyladenine (9-EtAdeH) or the dinucleotide d(ApA) proceed with bridging adenine bases in the rare imino form (A*), spanning the Rh-Rh bond at equatorial positions via N7/N6. The inflection points for the pH-dependent H2 and H8 NMR resonance curves of cis-[Rh2(DTolF)2(9-EtAdeH)2](BF4)2 correspond to N1H deprotonation of the metal-stabilized rare imino tautomer, which takes place at pKa approximately 7.5 in CD3CN-d3, a considerably reduced value as compared to that of the imino form of 9-EtAdeH. Similarly, coordination of the metal atoms to the N7/N6 adenine sites in Rh2(DTolF)2{d(ApA)} induces formation of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H sites (pKa approximately 7.0 in CD3CN-d3), as compared to the imino form of the free dinucleotide. The presence of the adenine bases in the rare imino form, due to bidentate metalation of the N6/N7 sites, is further corroborated by DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of Rh2(DTolF)2{d(ApA)} in CD3CN-d3 at -38 degrees C. Due to the N7/N6 bridging mode of the adenine bases in Rh2(DTolF)2{d(ApA)}, only the anti orientation of the imino tautomer is possible. The imino form A* of adenine in DNA may result in AT-->CG transversions or AT-->GC transitions, which can eventually lead to lethal mutations. The HH arrangement of the bases in Rh2(DTolF)2{d(ApA)} is indicated by the H8/H8 NOE cross-peaks in the 2D ROESY NMR spectrum, whereas the formamidinate bridging groups dictate the presence of one right-handed conformer HH1R in solution. Complete characterization of Rh2(DTolF)2{d(ApA)} by 2D NMR spectroscopy and molecular modeling supports the presence of the HH1R conformer, anti orientation of both sugar residues about the glycosyl bonds, and N-type conformation for the 5'-A base.

  3. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.; Regan, John M.

    2015-01-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  4. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  5. Effect of gamma radiation on levels of adenine nucleotides in erythrocytes of healthy individuals after submaximum physical exertion

    International Nuclear Information System (INIS)

    Zagorski, T.; Dudek, I.; Mazurek, M.; Berkan, L.; Chmielewski, H.; Kedziora, J.

    1994-01-01

    The authors studied the effect of gamma radiation and submaximum physical exercise on adenosine-5'-triphosphate (ATP), adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) contents in erythrocytes of healthy males. Twenty one men aged 20-22 years were examined. They underwent physical exercise at doses of 2 w/kg body weight for 15 min. Erythrocytes were exposed to gamma radiation (500 Gy doses) from 60 Co source. The concentration of adenine nucleotides in erythrocytes was measured by the Boehringer Mannheim tests. The submaximum physical exercise was found to decrease ATP content and to increase ADP and AMP in erythrocytes. Gamma radiation at 500 Gy dose was found to decrease ATP concentration in erythrocytes both at rest and after submaximum exercise and to increase AD content. It was revealed that AMP content increased at rest and decreased after submaximum exercise in irradiated erythrocytes. (author). 20 refs, 1 tab

  6. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Science.gov (United States)

    Demarre, Gaëlle; Chattoraj, Dhruba K

    2010-05-06

    DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  7. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells.

    Science.gov (United States)

    Burton, Peter; Adams, David R; Abraham, Achamma; Allcock, Robert W; Jiang, Zhong; McCahill, Angela; Gilmour, Jane; McAbney, John; Kaupisch, Alexandra; Kane, Nicole M; Baillie, George S; Baker, Andrew H; Milligan, Graeme; Houslay, Miles D; Mountford, Joanne C

    2010-12-15

    hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.

  8. An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro.

    Science.gov (United States)

    Yu, Min; Bojic, Sanja; Figueiredo, Gustavo S; Rooney, Paul; de Havilland, Julian; Dickinson, Anne; Figueiredo, Francisco C; Lako, Majlinda

    2016-11-01

    The cornea is a self-renewing tissue located at the front of the eye. Its transparency is essential for allowing light to focus onto the retina for visual perception. The continuous renewal of corneal epithelium is supported by limbal stem cells (LSCs) which are located in the border region between conjunctiva and cornea known as the limbus. Ex vivo expansion of LSCs has been successfully applied in the last two decades to treat patients with limbal stem cell deficiency (LSCD). Various methods have been used for their expansion, yet the most widely used culture media contains a number of ingredients derived from animal sources which may compromise the safety profile of human LSC transplantation. In this study we sought to understand the role of these components namely adenine, cholera toxin, hydrocortisone and triiodothyronine with the aim of re-defining a safe and GMP compatible minimal media for the ex vivo expansion of LSCs on human amniotic membrane. Our data suggest that all four components play a critical role in maintaining LSC proliferation and promoting LSC self-renewal. However removal of adenine and triiodothyronine had a more profound impact and led to LSC differentiation and loss of viability respectively, suggesting their essential role for ex vivo expansion of LSCs. Replacement of each of the components with GMP-grade reagents resulted in equal growth to non-GMP grade media, however an enhanced differentiation of LSCs was observed, suggesting that additional combinations of GMP grade reagents need to be tested to achieve similar or better level of LSC maintenance in the same manner as the traditional LSC media. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Fluorimetric study of the interaction between nicotinamide adenine dinucleotide phosphate and tetracycline-europium complex and its application

    International Nuclear Information System (INIS)

    Peng Qian; Hou Faju; Ge Xiaoxia; Jiang Chongqiu; Gong Shubo

    2005-01-01

    A new spectrofluorimetric method was developed for the determination of trace amount of nicotinamide adenine dinucleotide phosphate (NADP). Using europium (Eu 3+ )-tetracycline (TC) complex as a fluorescent probe, in the buffer solution of pH 7.60. NADP can remarkably enhance the fluorescence intensity of the Eu 3+ -TC complex at λ = 612 nm and the enhanced fluorescence intensity of Eu 3+ ion is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 4.4 x 10 -7 to 2.2 x 10 -6 mol l -1 with detection limit of 6.9 x 10 -8 mol l -1 . This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples and in serum samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Eu 3+ -TC system and the Eu 3+ -TC-NADP system have been also discussed

  10. Divalent phosphate is a counterion for carboxyatractyloside-insensitive adenine nucleotide transport in rat liver mitochondria

    International Nuclear Information System (INIS)

    Nosek, M.T.; Aprille, J.R.

    1986-01-01

    Unidirectional, carboxyatractyloside(CAT)-insensitive adenine nucleotide (AdN) fluxes have been studied in isolated rat liver mitochondria (mito). Previous work has shown that ATP x Mg transport in one direction is coupled to ATP x Mg or P/sub i/ transport in the opposite direction. The purpose of this study was to determine whether divalent HPO 4 2- or monovalent H 2 PO 4 - is the transported phosphate species. The authors used the monofluorophosphate (PO 3 F 2- ) and difluorophosphate (PO 2 F 2 - ) analogues as potential counterions forAdN efflux. After a preincubation on ice with 14 C-ADP to label the matrix AdN, efflux was measured at 30 0 C, pH 7.4, in 225mM sucrose, 10mM KCl, 5mM MgCl 2 , 5mM glutamate, 5mM malate, 10mM Tris, 0.5mM P/sub i/, 1mM ATP, and 5μM CAT. With no other additions efflux was -0.62 +/- 0.20 nmole/minute/mg protein. The data supports the hypothesis that divalent but not monovalent phosphate can act as a counterion for ATPx Mg transport over this CAT-insensitive carrier

  11. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Directory of Open Access Journals (Sweden)

    Gaëlle Demarre

    2010-05-01

    Full Text Available DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  12. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    Science.gov (United States)

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  13. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    Science.gov (United States)

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    Science.gov (United States)

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  16. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    Science.gov (United States)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  17. Chinese herbal medicine Shenqi Detoxification Granule inhibits fibrosis in adenine induced chronic renal failure rats.

    Science.gov (United States)

    Peng, Min; Cai, Pingping; Ma, Hongbo; Meng, Hongyan; Xu, Yuan; Zhang, Xiaoyi; Si, Guomin

    2014-01-01

    Progressive fibrosis accompanies all chronic renal disease, connective tissue growth factor (CTGF,) and platelet-derived growth factor-B, (PDGF-B,) play important roles in extra-cellular matrix abnormal accumulation, while endothelin-1 (ET-1) nitric oxide (NO,) are related to endothelial dysfunction, which mediates the progression of renal fibrosis. Shenqi Detoxification Granule (SDG), a traditional Chinese herbal formula, has been used for treatment of chronic renal failure in clinic for many years. In order to evaluate the efficacy, and explore the mechanism of SDG to inhibit the progression of renal fibrosis, study was carried out using the adenine-induced Wister rats as the CRF model, and losartan as postive control drug. Levels of serum creatinine [Scr], and blood urea nitrogen (BUN), albumin (ALB), 24hrs, urine protein (24hUP), triacylglycerol (TG), and cholesterol (CHO), together with ET-1, and NO were detected. Pathological changes of renal tissues were observed by HE, staining. In addition, CTGF and PDGF-B expression were analyzed by immuno-histo-chemistry. The results indicated that SDG can effectively reduce Scr, BUN, 24hUP, TG, and CHO levels, increase ALB levels, inhibit renal tissue damage in CRF rats, and the mechanism maybe reduce PDGF-B, CTGF expression and ET-1/NO. Shenqi Detoxification Granule is a beneficial treatment for chronic renal failure.

  18. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Foster, J W; Kinney, D M; Moat, A G

    1979-03-01

    Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.

  19. The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining.

    Science.gov (United States)

    Sims, K S; Williams, R S

    1990-01-01

    We examined the distribution of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase enzyme activity in the human amygdala using histochemical techniques. Both methods revealed compartments of higher or lower enzyme activity, in cells or neuropil, which corresponded to the nuclear subdivisions of the amygdala as defined with classical Nissl and myelin methods. The boundaries between the histochemical compartments were usually so sharp that the identification of these nuclear subdivisions was enhanced. There was also variation of staining intensity within many of the nuclear subdivisions, such as the lateral and central nuclei, anterior amygdaloid area and the intercalated groups. This histochemical difference corresponded to more subtle differences in Nissl and myelin staining patterns, and suggests further structural subdivisions of potential functional significance. We present a revised scheme of anatomical parcellation of the human amygdala based upon serial analysis with all four techniques. Our expectation is that this will allow the delineation of a clearer homology between the cytoarchitectonic subdivisions of the human amygdala and those of experimental animals.

  20. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress.

    Science.gov (United States)

    Klumpe, Inga; Savvatis, Konstantinos; Westermann, Dirk; Tschöpe, Carsten; Rauch, Ursula; Landmesser, Ulf; Schultheiss, Heinz-Peter; Dörner, Andrea

    2016-06-01

    Ischemia impairs the adenine nucleotide translocase (ANT), which transports ADP and ATP across the inner mitochondrial membrane. We investigated whether ANT1 overexpression has protective effects on ischemic hearts. Myocardial infarction was induced in wild-type (WT) and heart-specific ANT1-transgenic (ANT1-TG) rats, and hypoxia was set in isolated cardiomyocytes. ANT1 overexpression reduced the myocardial infarct area and increased the survival rate of infarcted rats. Reduced ANT1 expression and increased 4-hydroxynonenal modification of ANT paralleled to impaired ANT function in infarcted WT hearts. ANT1 overexpression improved ANT expression and function. This was accompanied by reduced mitochondrial cytochrome C release and caspase-3 activation. ANT1-TG hearts suffered less from oxidative stress, as shown by lower protein carbonylation and 4-hydroxynonenal modification of ANT. ANT1 overexpression also increased cell survival of hypoxic cardiomyocytes and attenuated reactive oxygen species (ROS) production. This was linked to higher stability of mitochondrial membrane potential and lower activity of ROS detoxifying catalase. ANT1-TG cardiomyocytes also showed higher resistance against H2O2 treatment, which was independent of catalase activity. In conclusion, ANT1 overexpression compensates impaired ANT activity under oxygen-restricted conditions. It reduces ROS production and oxidative stress, stabilizes mitochondrial integrity, and increases survival, making ANT1 a component in ROS management and heart protection during ischemia. ANT1 overexpression reduces infarct size and increases survival after infarction. ANT1 overexpression compensates restricted ANT expression and function in infarcted hearts. Increased ANT1 expression enhances mitochondrial integrity. ANT1-overexpressing hearts reduce oxidative stress by decreasing ROS generation. ANT1 is a component in ROS management and heart protection.

  1. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. (Fitzsimons Army Medical Center, Aurora, CO (USA))

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  2. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    International Nuclear Information System (INIS)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E.

    1990-01-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of [G- 3 H] hypoxanthine (Hy) into [ 3 H] labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate [ 3 H] ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation

  3. Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Jensen, Kristine Steen; Rasmussen, Mads Skytte

    2014-01-01

    Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine...... phosphoribosyltransferase (PRTase), the protein product turned out to be a PRTase highly specific for adenine and we suggest that the reading frame should be renamed apT. The other reading frame SSO2424 (gpT-2) proved to be a true 6-oxopurine PRTase active with hypoxanthine, xanthine and guanine as substrates, and we.......5, while maximal activity with xanthine was observed at pH 7.5. We discuss likely reasons why SSO2341 in S. solfataricus and similar open reading frames in other Crenarchaeota could not be identified as genes encoding APRTase....

  4. Relative Stability of the La and Lb Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra.

    Science.gov (United States)

    Santoro, Fabrizio; Improta, Roberto; Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-06-05

    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.

  5. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.

    Science.gov (United States)

    Lozoya, Oswaldo A; Martinez-Reyes, Inmaculada; Wang, Tianyuan; Grenet, Dagoberto; Bushel, Pierre; Li, Jianying; Chandel, Navdeep; Woychik, Richard P; Santos, Janine H

    2018-04-18

    Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.

  6. Damage to uracil- and adenine-containing bases, nucleosides, nucleotides and polynucleotides: quantum yields on irradiation at 193 and 254 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Goerner, H.

    1994-01-01

    Photoreactions, such as base release and decomposition of the base moeity, induced by either 20 ns laser pulses at 193 nm or continuous 254 nm irradiation, were studied for a series of uracil and adenine derivatives in neutral aqueous solution. The quantum yield of chromophore loss (Φ cl ) depends significantly on the nature of the nucleic acid constituent and the saturating gas (Ar, N 2 O or O 2 ). In the case of polynucleotides the destruction of nucleotides was measured by high-performance liquid chromatography after hydrolysis; the quantum yields (Φ dn ) are comparable to those of chromophore loss or larger. The Φ cl and Φ dn of 0.04-0.1 for poly(U) and poly(dU), obtained for both wavelengths of irradiation, are due to processes originating from the lowest excited singlet state, i.e. formation of photohydrates and photodimers, and a second part from photoionization using λ irr = 193 nm. Irradiation at 193 nm effectively splits pyrimidine dimers and thus reverts them into monomers. (author)

  7. The Importance of Electron Correlation on Stacking Interaction of Adenine-Thymine Base-Pair Step in B-DNA: A Quantum Monte Carlo Study.

    Science.gov (United States)

    Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo

    2013-02-12

    We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.

  8. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles.

    Science.gov (United States)

    Wang, Guangjie; Jin, Feng; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Li, Mengxia; Yuan, Ruo; Wang, Dong

    2012-03-01

    A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    Science.gov (United States)

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  10. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function

    Science.gov (United States)

    Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP4- (out) for ADP3- (in) + 0.5 phosphate2- (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated. PMID:283393

  11. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    Science.gov (United States)

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-03

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration. © 2011 American Chemical Society

  12. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ryohei Sugahara

    Full Text Available Mitochondrial adenine nucleotide translocase (ANT specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4 and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4 is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1 and the testis-specific paralogue (BmANTI2. The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1, but not those of other insect species (or PxANTI2, restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.

  13. Structural Probing of Off-Target G Protein-Coupled Receptor Activities within a Series of Adenosine/Adenine Congeners

    Science.gov (United States)

    Paoletta, Silvia; Tosh, Dilip K.; Salvemini, Daniela; Jacobson, Kenneth A.

    2014-01-01

    We studied patterns of off-target receptor interactions, mostly at G protein-coupled receptors (GPCRs) in the µM range, of nucleoside derivatives that are highly engineered for nM interaction with adenosine receptors (ARs). Because of the considerable interest of using AR ligands for treating diseases of the CNS, we used the Psychoactive Drug Screening Program (PDSP) for probing promiscuity of these adenosine/adenine congeners at 41 diverse receptors, channels and a transporter. The step-wise truncation of rigidified, trisubstituted (at N6, C2, and 5′ positions) nucleosides revealed unanticipated interactions mainly with biogenic amine receptors, such as adrenergic receptors and serotonergic receptors, with affinities as high as 61 nM. The unmasking of consistent sets of structure activity relationship (SAR) at novel sites suggested similarities between receptor families in molecular recognition. Extensive molecular modeling of the GPCRs affected suggested binding modes of the ligands that supported the patterns of SAR at individual receptors. In some cases, the ligand docking mode closely resembled AR binding and in other cases the ligand assumed different orientations. The recognition patterns for different GPCRs were clustered according to which substituent groups were tolerated and explained in light of the complementarity with the receptor binding site. Thus, some likely off-target interactions, a concern for secondary drug effects, can be predicted for analogues of this set of substructures, aiding the design of additional structural analogues that either eliminate or accentuate certain off-target activities. Moreover, similar analyses could be performed for unrelated structural families for other GPCRs. PMID:24859150

  14. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.

    Science.gov (United States)

    Yang, Ming-Yeh; Chang, Chih-Jui; Chen, Liang-Yü

    2017-08-01

    Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm 2 (=0.52mW/cm 2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD 50 ) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor.

    Science.gov (United States)

    Vidal, Juan-C; Espuelas, Javier; Castillo, Juan-R

    2004-10-01

    A new amperometric biosensor for determining cholesterol based on deflavination of the enzyme cholesterol oxidase (ChOx) and subsequent reconstitution of the apo-protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The charge transfer mediator pyrroquinoline quinone (PQQ) was covalently bound to a cystamine self-assembled monolayer (SAM) on an Au electrode. Boronic acid (BA) was then bound to PQQ using the carbodiimide procedure, and the BA ligand was complexed to the FAD molecules on which the apo-ChOx was subsequently reconstituted. The effective release of the FAD from the enzyme and the successful reconstitution were verified using molecular fluorescence and cyclic voltammetry. The optimal orientation of FAD toward the PQQ mediator and the distances between FAD and PQQ and between PQQ and electrode enhance the charge transfer, very high sensitivity (about 2,500 nAmM(-1)cm(-2)) being obtained for cholesterol determination. The biosensor is selective toward electroactive interferents (ascorbic acid and uric acid) and was tested in reference serum samples, demonstrating excellent accuracy (relative errors below 3% in all cases). The biosensor activity can be successfully regenerated in a simple process by successive reconstitution with batches of recently prepared apo-ChOx on the same immobilized Au/SAM-PQQ-BA-FAD monolayer (it was tested five times); the lifetime of the biosensor is about 45-60 days.

  16. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies

    International Nuclear Information System (INIS)

    Kiick, D.M.; Harris, B.G.; Cook, P.F.

    1986-01-01

    The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. Results indicate that substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction

  17. Wear Particles Promote Reactive Oxygen Species-Mediated Inflammation via the Nicotinamide Adenine Dinucleotide Phosphate Oxidase Pathway in Macrophages Surrounding Loosened Implants

    Directory of Open Access Journals (Sweden)

    Weishen Chen

    2015-03-01

    Full Text Available Background/Aims: Prosthesis loosening is closely associated with chronic inflammatory cytokine secretion by macrophages, which are activated by wear particles or inflammatory stimulants such as lipopolysaccharide (LPS. Reactive oxygen species (ROS are critical regulators of inflammation, but their enzymatic sources in response to wear particles and their effects on peri-implant LPS-tolerance remain unclear. Methods: Three ROS-related enzymes—nicotinamide adenine dinucleotide phosphate oxidase (NOX-1 and -2 and catalase—were investigated in interface membrane tissues and in titanium (Ti particle-stimulated macrophages in vitro. The generation of ROS and downstream inflammatory effects were measured with or without pre-incubation with apocynin, an NOX inhibitor. Results: Pre-exposure to Ti particles attenuated NF-κB activation in LPS-stimulated macrophages, indicating that wear particles suppress immune response, which may lead to chronic inflammation. NOX-1 and -2 were highly expressed in aseptically loosened interface membranes and in macrophages stimulated with Ti particles; the particles induced a moderate amount of ROS generation, NF-κB activation, and TNF-a secretion in macrophages, and these effects were suppressed by apocynin. Conclusion: Wear particles induce ROS generation through the NOX signaling pathway, resulting in persistent inflammation and delayed loosening. Thus, the suppression of NOX activity may be a useful strategy for preventing prosthesis loosening.

  18. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.

    Science.gov (United States)

    Romero, Eduardo E; Hernandez, Florencio E

    2018-01-03

    Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.

  19. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An adenine-to-guanine nucleotide change in the IRES SL-IV domain of picornavirus/hepatitis C chimeric viruses leads to a nonviable phenotype

    International Nuclear Information System (INIS)

    McKnight, Kevin L.; Sandefur, Stephanie; Phipps, Krista M.; Heinz, Beverly A.

    2003-01-01

    The inability for the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) to be readily studied in the context of viral replication has been circumvented by constructing chimeras such as with poliovirus (PV), in which translation of the genome polyprotein is under control of the HCV IRES. During our attempts to configure the PV/HCV chimera for our drug discovery efforts, we discovered that an adenine- (A) to-guanine (G) change at nt 350 in domain IV of the HCV IRES resulted in a nonviable phenotype. Similarly, a mengovirus (MV)/HCV chimera using the same configuration with a G at nt 350 (G-350) was found to be nonviable. In contrast, a bovine viral diarrhea virus (BVDV)/HCV chimera remained viable with G-350 in the HCV IRES insert. Second-site, resuscitating mutations were identified from the G-350 PV/HCV and MV/HCV viruses after blind passaging. For both viruses, the resuscitating mutations involved destabilization of domain IV in the HCV IRES. The nonviability of G-350 in the picornavirus/HCV chimeric background might be linked to translation efficiency as indicated by analyses with dual reporter and PV/HCV replicon constructs

  1. New carbocyclic N(6)-substituted adenine and pyrimidine nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, antiviral, anticancer activity and X-ray crystallography.

    Science.gov (United States)

    Tănase, Constantin I; Drăghici, Constantin; Cojocaru, Ana; Galochkina, Anastasia V; Orshanskaya, Jana R; Zarubaev, Vladimir V; Shova, Sergiu; Enache, Cristian; Maganu, Maria

    2015-10-01

    New nucleoside analogues with an optically active bicyclo[2.2.1]heptane skeleton as sugar moiety and 6-substituted adenine were synthesized by alkylation of 6-chloropurine intermediate. Thymine and uracil analogs were synthesized by building the pyrimidine ring on amine 1. X-ray crystallography confirmed an exo-coupling of the thymine to the ring and an L configuration of the nucleoside analogue. The library of compounds was tested for their inhibitory activity against influenza virus A∖California/07/09 (H1N1)pdm09 and coxsackievirus B4 in cell culture. Compounds 13a and 13d are the most promising for their antiviral activity against influenza, and compound 3c against coxsackievirus B4. Compounds 3b and 3g were tested for anticancer activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Spectral studies of lanthanide-nucleic acid component interaction: complexes of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di- and adenosine 5' tri-phosphates with praseodymium(III)

    International Nuclear Information System (INIS)

    Joseph, George; Anjaiah, K.; Misra, S.N.

    1990-01-01

    The interactions of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di-and adenosine 5'-tri-phosphates with praseodymium(III) have been studied in different stoichiometries and at varying hydrogen ion concentrations by absorption spectral studies. The sharp bands in the spectra have been individually analysed by Gaussian curve analysis, and various spectral parameters have been computed using partial and multiple regression methods on an HP-1000/45 computer. The changes in and the magnitudes of these parameters have been correlated with the degrees of outer- and inner-sphere coordination around praseodymium(III). Crystalline complexes of the type: Pr(nucleotide) 2 (H 2 O) 2 (where nucleotide = AMP, ADP and ATP) have been characterized on the basis of analytical, IR and 1 H NMR spectral data. These studies indicate that the binding of the nucleotide is through phosphoric oxygen. These complexes in aqueous medium show significant ionization which supports the observed weak 4f-4f bands, lower values of nephelauxetic effect and the parameters derived from coulombic and spin-orbit interactions. (author). 3 t abs., 28 refs

  3. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    Science.gov (United States)

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-09-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the least in kidney mitochondria. Enzymatic assays on isolated mitochondria ruled out defects in complexes II, III, and IV of the respiratory chain. Further studies showed that the defect was localized in the inner membrane mitochondrial NADH-ubiquinone oxidoreductase (complex I). When ferricyanide was used as an artificial electron acceptor, complex I activity was normal, indicating that electrons from NADH could reduce the flavin mononucleotide cofactor. However, electron paramagnetic resonance spectroscopy performed on liver submitochondrial particles showed an almost total loss of the iron-sulfur clusters characteristic of complex I, whereas normal signals were noted for other mitochondrial iron-sulfur clusters. This infant is presented as the first reported case of congenital lactic acidosis caused by a deficiency of the iron-sulfur clusters of complex I of the mitochondrial electron transport chain.

  4. Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film

    Energy Technology Data Exchange (ETDEWEB)

    Tang Ching; Yogeswaran, Umasankar [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2009-03-16

    A composite film (MWCNTs-PNF) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(new fuchsin) (PNF) has been synthesized on glassy carbon electrode (GCE), gold (Au) and indium tin oxide (ITO) by potentiostatic methods. The presence of MWCNTs in the composite film enhances surface coverage concentration ({gamma}) of PNF to {approx}176.5%, and increases the electron transfer rate constant (k{sub s}) to {approx}346%. The composite film also exhibits promising enhanced electrocatalytic activity towards the mixture of biochemical compounds such as adenine (AD), guanine (GU) and thymine (THY). The surface morphology of the composite film deposited on ITO has been studied using scanning electron microscopy and atomic force microscopy. These two techniques reveal that the PNF incorporated on MWCNTs. Electrochemical quartz crystal microbalance study reveals the enhancement in the functional properties of MWCNTs and PNF. The electrocatalytic responses of analytes at MWCNTs and MWCNTs-PNF films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electrocatalysis studies, well separated voltammetric peaks have been obtained at the composite film for AD, GU and THY, with the peak separation of 320.3 and 132.7 mV between GU-AD and AD-THY respectively. The sensitivity of the composite film towards AD, GU and THY in DPV technique is 218.18, 12.62 and 78.22 mA M{sup -1} cm{sup -2} respectively, which are higher than MWCNTs film. Further, electroanalytical studies of AD, GU and THY present in single-strand deoxyribonucleic acid (ssDNA) have been carried out using semi-derivative CV and DPV.

  5. Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats.

    Science.gov (United States)

    Iida, Hiroki; Iida, Mami; Takenaka, Motoyasu; Fukuoka, Naokazu; Dohi, Shuji

    2008-06-01

    We previously reported that acute cigarette smoking can cause a dysfunction of endothelium-dependent vasodilation in cerebral vessels, and that blocking the angiotensin II (Ang II) type 1 (AT1) receptor with valsartan prevented this impairment. Our aim was to investigate the effects of a Rho-kinase inhibitor (fasudil) and a Nicotinamide Adenine Dinucleotide PHosphate (NADPH) oxidase inhibitor (apocynin) on smoking-induced endothelial dysfunction in cerebral arterioles. In Sprague-Dawley rats, we used a closed cranial window preparation to measure changes in pial vessel diameters following topical acetylcholine (ACh) before smoking. After one-minute smoking, we again examined the arteriolar responses to ACh. Finally, after intravenous fasudil or apocynin pre-treatment we re-examined the vasodilator responses to topical ACh (before and after cigarette smoking). Under control conditions, cerebral arterioles were dose-dependently dilated by topical ACh (10(-6) M and 10(-5) M). One hour after a one-minute smoking (1 mg-nicotine cigarette), 10(-5) M ACh constricted cerebral arterioles. However, one hour after a one-minute smoking, 10(-5) M ACh dilated cerebral pial arteries both in the fasudil pre-treatment and the apocynin pre-treatment groups, responses that were significantly different from those obtained without fasudil or apocynin pre-treatment. Thus, inhibition of Rho-kinase and NADPH oxidase activities may prevent the above smoking-induced impairment of endothelium-dependent vasodilation.

  6. Comparison of equine platelet function and survival in whole blood collected in acid-citrate-dextrose solution or citrate-phosphate-dextrose-adenine solution.

    Science.gov (United States)

    Bozorgmanesh, Rana; Sutton-Burges, Julie W; Tablin, Fern

    2017-06-01

    Equine whole blood collection and storage methods have been evaluated to assess red blood cell viability; however, platelet (PLT) viability has not been comprehensively assessed. The purpose of the study was to compare viability of PLTs collected in whole blood into 2 different anticoagulants. Whole blood from 6 healthy adult Thoroughbred horses was collected into citrate-phosphate-dextrose-adenine (CPDA) or acid-citrate-dextrose (ACD). Platelet count, pH, and concentrations of glucose, lactate, carbon dioxide, oxygen, bicarbonate, sodium, potassium, and chloride were measured within 10 minutes of collection and then again one hour later at which time PLT aggregometry was performed to assess PLT function. Aggregometry mean amplitudes were significantly higher in CPDA compared to ACD. Blood glucose, pH, bicarbonate, sodium, and lactate concentrations were significantly higher in CPDA compared to ACD. Lactate concentration was higher following one hour in either anticoagulant. Potassium, oxygen, and carbon dioxide concentrations were significantly higher in ACD compared to CPDA at collection. Platelet aggregometry results suggest that CPDA is superior to ACD for maintaining PLT viability following whole blood collection. This may be associated with the higher, more neutral pH as well as an increase in glucose available for metabolism. Although lactate was increased in the CPDA samples it was not high enough to decrease pH and therefore may not have been high enough to cause morphologic lesions and loss of PLT viability. © 2017 American Society for Veterinary Clinical Pathology.

  7. Spectroscopy and Speciation Studies on the Interactions of Aluminum (III with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2012-08-01

    Full Text Available In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, 1H- and 31P-NMR, electrospray ionization mass spectrometry (ESI-MS, pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to study the competitive complexation between ciprofloxacin (CIP and b-nicotinamide adenine dinucleotide phosphate (NADP with aluminum (III in aqueous solutions. Rank annihilation factor analysis (RAFA was used to analyze the absorption and fluorescence emission spectra of the ligands, the binary complexes and the ternary complexes. It is found, at the mM total concentration level and pH = 7.0, the bidentate mononuclear species [Al(CIP]2+ and [Al(NADP] predominate in the aqueous solutions of the Al(III-CIP and Al(III-NADP systems, and the two complexes have similar conditional stability constants. However, the pH-potentiometry results show at the mM total concentration level and pH = 7.0, the ternary species [Al(CIP(HNADP] predominates in the ternary complex system. Comparing predicted NMR spectra with the experimental NMR results, it can be concluded that for the ternary complex, CIP binds to aluminum ion between the 3-carboxylic and 4-carbonyl groups, while the binding site of oxidized coenzyme II is through the oxygen of phosphate, which is linked to adenosine ribose, instead of pyrophosphate. The results also suggested CIP has the potential to be a probe molecular for the detection of NADP and the Al(III-NADP complexes under physiological condition.

  8. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    Science.gov (United States)

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  9. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum

    Science.gov (United States)

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.

    2015-01-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  10. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    Science.gov (United States)

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite.

    Science.gov (United States)

    Anizelli, Pedro R; Baú, João Paulo T; Gomes, Frederico P; da Costa, Antonio Carlos S; Carneiro, Cristine E A; Zaia, Cássia Thaïs B V; Zaia, Dimas A M

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  12. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug

    Science.gov (United States)

    Karimi-Maleh, Hassan; Bananezhad, Asma; Ganjali, Mohammad R.; Norouzi, Parviz; Sadrnia, Abdolhossein

    2018-05-01

    Didanosine is nucleoside analog reverse transcriptase inhibitors with many side effects such as nausea and vomiting, stomach pain, tingling, burning and numbness and determination of this drug is very important in biological samples. This paper presents a DNA biosensor for determination of didanosine (DDI) in pharmaceutical samples. A pencil graphite electrode modified with conductive materials such as polypyrrole (PPy) and reduced graphene oxide (rGO) (PGE/PPy/rGO) was used for this goal. The double-stranded DNA was successfully immobilized on PGE/PPy/rGO. The PGE/PPy/rGO was characterized by microscopic and electrochemical methods. Then, the interaction of DDI with DNA was identified by decreases in the oxidation currents of guanine and adenine by differential pulse voltammetric (DPV) method. The dynamic range of DDI identified in the range of 0.02-50.0 μM and this electrode provided a low limit of detection (LOD = 8.0 nM) for DDI. The PGE/PPy/rGO loaded with ds-DNA was utilized for the measurement of DDI in real samples and obtained data were compared with HPLC method. The statistical tests such as F-test and t-test were used for confirming ability of PGE/PPy/rGO loaded with ds-DNA for analysis of DDI in real samples.

  13. Effect of transient warming of red blood cells for up to 24 h: in vitro characteristics in CPD/saline-adenine-glucose-mannitol environment.

    Science.gov (United States)

    Gulliksson, H; Nordahl-Källman, A-S

    2014-01-01

    There are few studies on transient warming of red blood cells (RBCs). Occasional storage outside restricted temperature range often results in destroying of the RBC unit, even after a short period of time due to national guidelines. This study evaluates the in vitro effects associated with such accidental warming on RBCs stored in saline-adenine-glucose-mannitol (SAGM) and prepared within 8 h after blood collection. This study includes both repeated short-term exposure of RBCs to room temperature for 6 h as wells as warming for either 6, 12, 18 or 24 h after 1 week or after 3 weeks of storage in two separate studies. RBCs were stored for 42 days. We weekly measured pH, K(+) , glucose, lactate, haemolysis, red cell ATP and 2,3-diphosphoglycerate. The lowest individual ATP value observed in any of the groups of warmed units was 2·6 μmol/g haemoglobin. Increased haemolysis in warmed units was noted in two of the studies. None of the individual units exceeded the European maximum limit of 0·8% haemolysis. Our results suggest that quality of RBCs after transient warming will be maintained at acceptable levels specified in standards and in previous studies. However, increased haemolysis was observed when transient warming occurred during the second part of the storage period of 6 weeks suggesting that RBCs are more vulnerable to warming by the end of storage. © 2013 International Society of Blood Transfusion.

  14. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    Science.gov (United States)

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Experimental study on the fragmentation of Adenine and Porphyrin molecules induced by low energy multicharged ion impact

    International Nuclear Information System (INIS)

    Li, B.

    2010-01-01

    Since the dissociation of small molecules might play key roles in the understanding of radiation induced damages of living tissues at the primary steps and at the molecular levels, fragmentation dynamics of small biomolecules have drawn much attention. The knowledge of the internal energy is of fundamental importance for understanding its fragmentation dynamics following external excitation. For a long time however, it was difficult to measure this parameter in coincidence with the fragmentation patterns until the development of CIDEC (Collision Induced Dissociation under Energy Control) method in 2007. In this work, the CIDEC method was extended to study the fragmentation of gas-phase biomolecules adenine (Ade: H 5 C 5 N 5 ) and porphyrin chloride FeTPPCl (C 44 H 28 N 4 FeCl). The population distribution for each dissociation channel as a function of the excitation energy of the parent molecular ions at a well-determined initial charge state has been experimentally determined, which could shed some light on the fragmentation dynamics of these molecules. In collisions between Cl + and Ade at 3 keV, the fragmentation pattern of Ade 2+ is dominated by the loss of H 2 CN + and the successive emission of HCN. The energy distribution of the parent dication confirms the successive emission dynamics. A specific decay channel is observed, i.e. the emission of a charged H 2 CN + followed by the emission of HC 2 N 2 . The measured mean excitation energies of this channel and other competitive channels are compared. In Kr 8+ - FeTPPCl collisions at 80 keV, parent ions FeTPPCL 1+,2+,3+ are observed, along with the corresponding decay patterns. It is found that, in the first step the dominant low-energy-cost decay channel is the emission of Cl 0 independent of the initial charge state of FeTPPCl r+ . For the resulted dication FeTPP 2+ , the dominant fragmentation channel is the neutral evaporation; for the tri-cation however, the dominant fragmentation channel is the

  16. Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Guo Zhixin

    2012-08-01

    Full Text Available Abstract Background Diabetic cardiovascular disease is associated with decreased adiponectin and increased oxidative stress. This study investigated the effect of telmisartan on the expression of adiponectin receptor 2 (adipoR2 and nicotinamide adenine dinucleotide phosphate (NADPH oxidase subunits in the heart and the expression of adiponectin receptor 1 (adipoR1 in aorta in type 2 diabetic rats. Methods Type 2 diabetes was induced by high-fat and high-sugar diet and intraperitoneal injection of a low dose of streptozotocin (STZ. Heart function, adipoR2, p22phox, NOX4, glucose transporter 4(GLUT4, monocyte chemoattractant protein-1(MCP-1 and connective tissue growth factor (CTGFin the heart, and adipoR1, MCP-1 and nuclear factor kappa B (NF-κB in aorta were analyzed in controls and diabetic rats treated with or without telmisartan (5mg/kg/d by gavage for 12 weeks. Results Heart function, plasma and myocardial adiponectin levels, the expression of myocardial adipoR2 and GLUT4 were significantly decreased in diabetic rats (P Conclusions Our results suggest that telmisartan upregulates the expression of myocardial adiponectin, its receptor 2 and GLUT4. Simultaneously, it downregulates the expression of myocardial p22phox, NOX4, MCP-1, and CTGF, contributing so to the improvement of heart function in diabetic rats. Telmisartan also induces a protective role on the vascular system by upregulating the expression of adipoR1 and downregulating the expression of MCP-1 and NF-κB in the abdominal aorta in diabetic rats.

  17. Defects in Nicotinamide-adenine Dinucleotide Phosphate Oxidase Genes NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Patti Hayes

    2015-09-01

    Full Text Available Background & Aims: Defects in intestinal innate defense systems predispose patients to inflammatory bowel disease (IBD. Reactive oxygen species (ROS generated by nicotinamide-adenine dinucleotide phosphate (NADPH oxidases in the mucosal barrier maintain gut homeostasis and defend against pathogenic attack. We hypothesized that molecular genetic defects in intestinal NADPH oxidases might be present in children with IBD. Methods: After targeted exome sequencing of epithelial NADPH oxidases NOX1 and DUOX2 on 59 children with very early onset inflammatory bowel disease (VEOIBD, the identified mutations were validated using Sanger Sequencing. A structural analysis of NOX1 and DUOX2 variants was performed by homology in silico modeling. The functional characterization included ROS generation in model cell lines and in in vivo transduced murine crypts, protein expression, intracellular localization, and cell-based infection studies with the enteric pathogens Campylobacter jejuni and enteropathogenic Escherichia coli. Results: We identified missense mutations in NOX1 (c.988G>A, p.Pro330Ser; c.967G>A, p.Asp360Asn and DUOX2 (c.4474G>A, p.Arg1211Cys; c.3631C>T, p.Arg1492Cys in 5 of 209 VEOIBD patients. The NOX1 p.Asp360Asn variant was replicated in a male Ashkenazi Jewish ulcerative colitis cohort. Patients with both NOX1 and DUOX2 variants showed abnormal Paneth cell metaplasia. All NOX1 and DUOX2 variants showed reduced ROS production compared with wild-type enzymes. Despite appropriate cellular localization and comparable pathogen-stimulated translocation of altered oxidases, cells harboring NOX1 or DUOX2 variants had defective host resistance to infection with C. jejuni. Conclusions: This study identifies the first inactivating missense variants in NOX1 and DUOX2 associated with VEOIBD. Defective ROS production from intestinal epithelial cells constitutes a risk factor for developing VEOIBD. Keywords: Inflammatory Bowel Disease, NADPH Oxidase

  18. Effects of aqueous extract of Ruta graveolens and its ingredients on cytochrome P450, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH-quinone oxidoreductase in mice

    Directory of Open Access Journals (Sweden)

    Yune-Fang Ueng

    2015-09-01

    Full Text Available Ruta graveolens (the common rue has been used for various therapeutic purposes, including relief of rheumatism and treatment of circulatory disorder. To elucidate the effects of rue on main drug-metabolizing enzymes, effects of an aqueous extract of the aerial part of rue and its ingredients on cytochrome P450 (P450/CYP, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH:quinone oxidoreductase were studied in C57BL/6JNarl mice. Oral administration of rue extract to males increased hepatic Cyp1a and Cyp2b activities in a dose-dependent manner. Under a 7-day treatment regimen, rue extract (0.5 g/kg induced hepatic Cyp1a and Cyp2b activities and protein levels in males and females. This treatment increased hepatic UDP-glucuronosyltransferase activity only in males. However, NAD(PH:quinone oxidoreductase activity remained unchanged. Based on the contents of rutin and furanocoumarins of mouse dose of rue extract, rutin increased hepatic Cyp1a activity and the mixture of furanocoumarins (Fmix increased Cyp2b activities in males. The mixture of rutin and Fmix increased Cyp1a and Cyp2b activities. These results revealed that rutin and Fmix contributed at least in part to the P450 induction by rue.

  19. Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation: Enhanced Stability and Potency as P2Y1 Receptor Agonists

    Science.gov (United States)

    Ravi, R. Gnana; Kim, Hak Sung; Servos, Jörg; Zimmermann, Herbert; Lee, Kyeong; Maddileti, Savitri; Boyer, José L.; Harden, T. Kendall; Jacobson, Kenneth A.

    2016-01-01

    Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5′-triphosphate agonists at P2Y1, P2Y2, P2Y4, and P2Y11 receptors, but not P2Y6 receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208–218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y1 or human P2Y1 and P2Y2 receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC50 at the hP2Y1 receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5′-diphosphate. 2-Cl–(N)-methanocarba-ATP and its N6-Me analogue were also highly selective, full agonists at P2Y1 receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y1 receptors, while the corresponding ribosides were inactive. Although β,γ-methylene-ATP was inactive at P2Y receptors, β,γ-methylene-(N)-methanocarba-ATP was a potent hP2Y1 receptor agonist with an EC50 of 160 nM and was selective versus hP2Y2 and hP2Y4 receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5′-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of

  20. Determination of nucleosides in Cordyceps sinensis and Ganoderma lucidum by high performance liquid chromatography method

    Directory of Open Access Journals (Sweden)

    Masood Shah Khan

    2015-01-01

    Full Text Available Background: Nucleosides are supportive in the regulation and modulation of various physiological processes in body, they acts as precursors in nucleic acid synthesis, enhance immune response, help in absorption of iron and influence the metabolism of fatty acids. Cordyceps sinensis and Ganoderma lucidum are well-known for its use in traditional medicine of China, Nepal and India. They are rich in nucleosides such as adenine, adenosine, cordycepin, etc. Hence, a simple, economic and accurate high-performance liquid chromatography (HPLC analytical method was proposed for determination of adenine and adenosine for the quality control of plants. Materials and Methods: Chromatographic experiments were conducted on YL9100 HPLC system (South Korea. Reversed-phase chromatography was performed on a C18 column with methanol and dihydrogen phosphate as the mobile phase in isocratic elution method at a flow rate of 1.0 mL/min. Detection was carried out at 254 nm, which gives a sharp peak of adenine and adenosine at a retention time of 6.53 ± 0.02 min and 12.41 ± 0.02, respectively. Results and Discussion: Linear regression analysis data for the calibration plot showed a good linear relationship between response and concentration in the range of 25–200 µg/mL for adenosine and 100–800 µg/mL for adenine with regression coefficient of 0.999 and 0.996, respectively. The adenine was found 0.16% and 0.71% w/w in G. lucidum and in C. sinensis, respectively, and adenosine was found to be 0.14% w/w in G. lucidum whereas absent in C. sinensis. Conclusion: The developed HPLC method for the quantification of adenosine and adenine can be used for the quality control and standardization of crude drug and for the different herbal formulations, in which adenine and adenosine are present as major constituents. The wide linearity range, sensitivity, accuracy, and simple mobile phase imply the method is suitable for routine quantification of adenosine and adenine with

  1. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    Directory of Open Access Journals (Sweden)

    Martin Lubin

    2009-05-01

    Full Text Available The gene for methylthioadenosine phosphorylase (MTAP lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA, to adenine and 5-methylthioribose-1-phosphate (MTR-1-P, which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP, 6-methylpurine (MeP, or 2-fluoroadenine (F-Ade, are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT, to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked.We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU and 6-thioguanine (6-TG may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP. The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index

  2. Antimutagenic activity of oxidase enzymes

    International Nuclear Information System (INIS)

    Agabeili, R.A.

    1986-01-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity

  3. Permeability of Rickettsia prowazekii to NAD

    International Nuclear Information System (INIS)

    Atkinson, W.H.; Winkler, H.H.

    1989-01-01

    Rickettsia prowazekii accumulated radioactivity from [adenine-2,8-3H]NAD but not from [nicotinamide-4-3H]NAD, which demonstrated that NAD was not taken up intact. Extracellular NAD was hydrolyzed by rickettsiae with the products of hydrolysis, nicotinamide mononucleotide and AMP, appearing in the incubation medium in a time- and temperature-dependent manner. The particulate (membrane) fraction contained 90% of this NAD pyrophosphatase activity. Rickettsiae which had accumulated radiolabel after incubation with [adenine-2,8-3H]NAD were extracted, and the intracellular composition was analyzed by chromatography. The cells contained labeled AMP, ADP, ATP, and NAD. The NAD-derived intracellular AMP was transported via a pathway distinct from and in addition to the previously described AMP translocase. Exogenous AMP (1 mM) inhibited uptake of radioactivity from [adenine-2,8-3H]NAD and hydrolysis of extracellular NAD. AMP increased the percentage of intracellular radiolabel present as NAD. Nicotinamide mononucleotide was not taken up by the rickettsiae, did not inhibit hydrolysis of extracellular NAD, and was not a good inhibitor of the uptake of radiolabel from [adenine-2,8-3H]NAD. Neither AMP nor ATP (both of which are transported) could support the synthesis of intracellular NAD. The presence of intracellular [adenine-2,8-3H]NAD within an organism in which intact NAD could not be transported suggested the resynthesis from AMP of [adenine-2,8-3H]NAD at the locus of NAD hydrolysis and translocation

  4. A quick look at biochemistry : Carbohydrate metabolism

    NARCIS (Netherlands)

    Dashty, Monireh

    2013-01-01

    In mammals, there are different metabolic pathways in cells that break down fuel molecules to transfer their energy into high energy compounds such as adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), reduced nicotinamide adenine dinucleotide (NADH2), reduced flavin adenine

  5. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms

    DEFF Research Database (Denmark)

    Ross, Fiona A; Jensen, Thomas Elbenhardt; Hardie, D Grahame

    2016-01-01

    The g subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different g isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged ve...

  6. New validated LC-MS/MS method for the determination of three alkylated adenines in human urine and its application to the monitoring of alkylating agents in cigarette smoke.

    Science.gov (United States)

    Tian, Yongfeng; Hou, Hongwei; Zhang, Xiaotao; Wang, An; Liu, Yong; Hu, Qingyuan

    2014-09-01

    A highly specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of urinary N(3)-methyladenine (N(3)-MeA), N(3)-ethyladenine (N(3)-EtA), and N(3)-(2-hydroxyethyl)adenine (N(3)-HOEtA). Chromatographic separation was achieved on a hydrophilic interaction liquid chromatography column, with a mobile phase gradient prepared from aqueous 10 mM ammonium formate-acetonitrile (5:95 v/v, pH 4.0). Quantification of the analytes was done by multiple reaction monitoring using a triple-quadrupole mass spectrometer in positive-ionization mode. The limits of quantification were 0.13, 0.02, and 0.03 ng/mL for N(3)-MeA, N(3)-EtA, and N(3)-HOEtA, respectively. Intraday and interday variations (relative standard deviations) ranged from 0.6 to 1.3 % and from 3.7 to 7.5 %. The recovery ranges of N(3)-MeA, N(3)-EtA, and N(3)-HOEtA in urine were 80.1-97.3 %, 83.3-90.0 %, and 100.0-110.0 %, respectively. The proposed method was successfully applied to urine samples from 251 volunteers including 193 regular smokers and 58 nonsmokers. The results showed that the levels of urinary N(3)-MeA, N(3)-EtA, and N(3)-HOEtA in smokers were significantly higher than those in nonsmokers. Furthermore, the level of urinary N(3)-MeA in smokers was found to be positively correlated with the level of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (r = 0.48, P alkylating agent exposure.

  7. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    Science.gov (United States)

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  8. Drug: D07633 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D07633 Mixture ... Drug Chondroitin sulfate sodium - flavin adenine dinucleotide sodium... mixt; Chondroitin sulfate sodium - FAD sodium mixt; Mucofadin (TN); Mucotear (TN) Chondroitin sulfate sodium... [DR:D04078], Flavin adenine dinucleotide sodium [DR:D02011] ... Therapeutic category: 1319 ... PubChem: 96024455 ...

  9. George Gamow and the Genetic Code

    Indian Academy of Sciences (India)

    cause they were held together by hydrogen bonds formed be- tween adenine and ... To return to our story, on the 8th of July Gamow addressed a letter to Watson and ... "For example, the animal will be a cat if Adenine is always followed by ...

  10. Selective accumulation of organically bound tritium in the marine unicellular algae Dunaliella bioculata and Acetabularia mediterranea

    International Nuclear Information System (INIS)

    Strack, S.; Kirchmann, R.; Luettke, A.; Bonotto, S.

    1983-01-01

    The marine unicellular algae Dunaliella bioculata and Acetabularia mediterranea have been used to assess the importance of the radioactive contamination by 3 H bound to different organic molecules. We have studied the uptake of 10 different tritiated substances, which are precursors for the cells' main macromolecules: thymidine-methyl- 3 H, adenine-2- 3 H, uridine-5- 3 H, L-leucine-4- 3 H, glycine-2- 3 H, L-arginine-3.4- 3 H, L-aspartic acid-2.3- 3 H, L-phenylalanine-2.3- 3 H, D-glucose-2- 3 H and D-glucose-6- 3 H. Under our experimental conditions, all the tritiated organic molecules are taken up by both algal species. Their intracellular concentration may reach that of the external medium. However, some molecules are selectively accumulated: adenine and leucine in Dunaliella, adenine, arginine and glucose in Acetabularia. Increasing concentrations of adenine and leucine, supplied to the cultures of Dunaliella seem to be without effect on the growth of the algae. (author)

  11. Antinociceptive effect of purine nucleotides.

    Science.gov (United States)

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Prabhpreet Singh. Articles written in Journal of Chemical Sciences. Volume 126 Issue 1 January 2014 pp 159-167. The family of N-adenine: New entry for adenine-benzamide conjugates linked via versatile spacers · Prabhpreet Singh · More Details Abstract Fulltext PDF.

  13. pH dependent interaction of biofunctionalized CdS nanoparticles with nucleobases and nucleotides: A fluorimetric study

    International Nuclear Information System (INIS)

    Chatterjee, Anindita; Priyam, Amiya; Bhattacharya, Subhash C.; Saha, Abhijit

    2007-01-01

    The interaction of DNA bases and corresponding nucleotides with CdS nanoparticles (NPs), biofunctionalized by cysteine, has been investigated by absorption and fluorescence spectroscopy. Unique enhancement effect of adenine, in contrast to other nucleobases, on the luminescence of cysteine capped CdS (cys-CdS) NPs at both pH 7.5 and 10.5 was found, the extent of enhancement being much higher at pH 10.5. At the latter pH, the difference optical absorption spectra show development of new peak at 278 nm with corresponding decrease in the absorption of adenine at 260 nm, which is attributed to binding of adenine anion to the CdS surface through N7 of the purine ring. Appearance of a new band at 478 cm -1 and concomitant shift in the C 8 -N 7 vibrations to 1610 cm -1 in the FTIR spectra of cys-CdS NPs with adenine also suggest Cd-N7 binding on the particle surface. Amongst various nucleotides, ATP exhibited maximum luminescence enhancement on CdS NPs for a given change in concentration in the micro-molar range at physiological pH. A quantitative correlation between ATP concentration and PL enhancement of CdS NPs has been established, a step which in future might assist in developing new protocols for fluorescence sensing of adenine nucleotides under certain pathological conditions

  14. The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size

    DEFF Research Database (Denmark)

    Nygaard, P.; Saxild, Hans Henrik

    2005-01-01

    a functional PbuE pump. In a mutant defective in the metabolism of adenine, the ade apt mutant, we found a high intracellular level of adenine and constitutive high levels of PbuE. A growth test using a purine auxotroph provided further evidence for the role of PbuE in lowering the intracellular concentration...

  15. Spectrum of myeloid neoplasms and immune deficiency associated with germline GATA2 mutations

    OpenAIRE

    Mir, Muhammad A; Kochuparambil, Samith T; Abraham, Roshini S; Rodriguez, Vilmarie; Howard, Matthew; Hsu, Amy P; Jackson, Amie E; Holland, Steven M; Patnaik, Mrinal M

    2015-01-01

    Guanine-adenine-thymine-adenine 2 (GATA2) mutated disorders include the recently described MonoMAC syndrome (Monocytopenia and Mycobacterium avium complex infections), DCML (dendritic cell, monocyte, and lymphocyte deficiency), familial MDS/AML (myelodysplastic syndrome/acute myeloid leukemia) (myeloid neoplasms), congenital neutropenia, congenital lymphedema (Emberger's syndrome), sensorineural deafness, viral warts, and a spectrum of aggressive infections seen across all age groups. While c...

  16. Effect of halophilic conditions in stabilisation of RNA structure and function at high temperature under radiations.

    Science.gov (United States)

    Maurel, M.-C.

    We have already shown the structural integrity of tRNA at high temperature - 82C for 30h - in high salt concentrations (Tehei et al, 2002). Stability were also performed by measuring the residual specific tRNA charge capacity after heat treatment for 30 h at 82C. RNA molecules are selected (in vitro selection) at high temperature at high salt concentration. We are undergoing studies of such molecules submitted to several stressful conditions, in particular high radiations. These studies provide support for the importance of salt to protect macromolecules against severe cosmic conditions. These could be useful for searching traces of life in planetary objects and space exploration. References : ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine adsorption onto and release from meteorite specimens assessed by Surface Enhanced Raman Spectroscopy ''. Journal of Raman Spectroscopy (2004) in press. Meli, M., Vergne, J. and Maurel, M-C. "In vitro selection of adenine-dependent hairpin ribozymes" J. Biol. Chem., (2003), 278, 11, 9835-9842. ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine in mineral samples : development of a methodology based on Surface Enhanced Raman Spectroscopy (SERS) for picomole detections ''. Spectrochimica Acta, A, 59, 2645-2654. Tehei, M., Franzetti, B., Maurel, M-C., Vergne, J., Hountondji, C. , Zaccai, G. ``Salt and the Search for Traces of Life '', Extremophiles, (2002), 6 : 427-430. Meli, M., Vergne, J., Décout, J.L., and Maurel, M-C. ``Adenine-Aptamer Complexes. A bipartite RNA site which binds the adenine nucleic base '', J. Biol. Chem., (2002), 277, 3, 2104-2111.

  17. The Role Of Salivary Glands In Phosphate Homeostasis

    Directory of Open Access Journals (Sweden)

    Tomo Mukai

    2012-06-01

    In Npt2b+/- mice, the salivary Pi concentrations were significantly increased compared with those in Npt2b+/+ mice. Npt2b+/- mice with adenine-induced renal failure had low plasma and salivary Pi levels, and plasma creatinine and BUN levels compared with Npt2b+/+ mice treated with adenine. In conclusion, Npt2b is involved in Pi secretion by salivary glands.

  18. Cytokinins and urea derivatives stimulate seed germination in Lotus corniculatus L.

    Directory of Open Access Journals (Sweden)

    Nikolić Radomirka

    2007-01-01

    Full Text Available We studied the effects of various cytokinins and urea derivatives on germination of aged seeds of in Lotus corniculatus L. The following substances were applied: N6-isoprenoid cytokinins (isopentenyl adenine and zeatin, adenine sulfate, N6-aromatic cytokinins (kinetin, benzyladenine and their N9-ribosides, N-benzyl-9-(2- tetrahydropyranyladenine, and urea derivatives (diphenylurea, thidiazuron, and chloro-pyridyl phenylurea. With the exception of adenine sulfate, all cytokinins increased the percentage of seed germination up to twofold, depending on their kind and concentration. It is concluded that cytokinins may be among the missing factors in aged seeds of L. corniculatus contributing to the implementation of their full germination potential. They could be used to improve germination of both freshly harvested and aged seed samples, if necessary. .

  19. Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G).

    Science.gov (United States)

    Pardi, A; Morden, K M; Patel, D J; Tinoco, I

    1982-12-07

    The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.

  20. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    Science.gov (United States)

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  1. Mechanism Underlying the Nucleobase-Distinguishing Ability of Benzopyridopyrimidine (BPP).

    Science.gov (United States)

    Kochman, Michał A; Bil, Andrzej; Miller, R J Dwayne

    2017-11-02

    Benzopyridopyrimidine (BPP) is a fluorescent nucleobase analogue capable of forming base pairs with adenine (A) and guanine (G) at different sites. When incorporated into oligodeoxynucleotides, it is capable of differentiating between the two purine nucleobases by virtue of the fact that its fluorescence is largely quenched when it is base-paired to guanine, whereas base-pairing to adenine causes only a slight reduction of the fluorescence quantum yield. In the present article, the photophysics of BPP is investigated through computer simulations. BPP is found to be a good charge acceptor, as demonstrated by its positive and appreciably large electron affinity. The selective quenching process is attributed to charge transfer (CT) from the purine nucleobase, which is predicted to be efficient in the BPP-G base pair, but essentially inoperative in the BPP-A base pair. The CT process owes its high selectivity to a combination of two factors: the ionization potential of guanine is lower than that of adenine, and less obviously, the site occupied by guanine enables a greater stabilization of the CT state through electrostatic interactions than the one occupied by adenine. The case of BPP illustrates that molecular recognition via hydrogen bonding can enhance the selectivity of photoinduced CT processes.

  2. Chemical speciation and equilibria of some nucleic acid compounds and their iron(III) complexes

    Science.gov (United States)

    Masoud, Mamdouh S.; Abd El-Kaway, Marwa Y.; Hindawy, Ahmed M.; Soayed, Amina A.

    The pH effect on electronic absorption spectra of some biologically active nucleic acid constituents have been studied at room temperature and the mechanism of ionization was explained. These compounds are of two categories (pyrimidines: [barbital; 5,5'-diethyl-barbituric acid], [SBA; 4,6-dihydroxy-2-mercapto-pyrimidin], [NBA; 5-nitro-2,4,6(1H,3H,5H)-pyrimidine trione] and [TU; 2,3-dihydro-2-thioxo-pyrimidin-4(1H)-one]) and (purines: [adenine; 6-amino purine], its [Schiff bases derived from adenine-acetylacetone; (Z)-4-(7H-purin-6-ylimino)pentan-2-one) and adenine-salicylaldehyde; 2-((7H-purin-6-ylimino) methyl) phenol] and its [Azo derived from adenine-resorcinol; 4-((7H-purin-6-yl)-diazenyl) benzene-1,3-diol]. The phenomena of tautomerization assigned different tautomers. Different spectrophotometric methods are applied to evaluate the pK's values that explained with their molecular structures. The interaction of Fe3+ with some selected pyrimidines (barbital, NBA and SBA) was explained using familiar six spectrophotometric methods. The data typified the existence of different absorbing species with the different stoichiometries 1:1, 1:2, 1:3 and 2:3. The stability constant of the complexes was computed. More approach was deduced to assign the existence of different species applying the distribution diagrams.

  3. Cyclic AMP in rat pancreatic islets

    International Nuclear Information System (INIS)

    Grill, V.; Borglund, E.; Cerasi, E.; Uppsala Univ.

    1977-01-01

    The incorporation of [ 3 H]adenine into cyclic AMP was studied in rat pancreatic islets under varying conditions of labeling. Prolonging the exposure to [ 3 H]adenine progressively augmented the islet cyclic [ 3 H]AMP level. Islets labeled for different periods of time and subsequently incubated (without adenine) in the presence of D-glucose or cholera toxin showed stimulations of intra-islet cyclic [ 3 H]AMP that were proportionate to the levels of radioactive nucleotide present under non-stimulatory conditions. Labeling the islets in a high glucose concentration (27.7 mM) did not modify the nucleotide responses to glucose or cholera toxin. The specific activity of cyclic [ 3 H]AMP, determined by simultaneous assay of cyclic [ 3 H]AMP and total cyclic AMP, was not influenced by glucose or cholera toxin. Glucose had no effect on the specific activity of labeled ATP

  4. HepG2 cells develop signs of riboflavin deficiency within four days of culture in riboflavin-deficient medium*

    OpenAIRE

    Werner, Ricarda; Manthey, Karoline C.; Griffin, Jacob B.; Zempleni, Janos

    2005-01-01

    Flavin mononucleotide and flavin adenine dinucleotide are essential coenzymes in redox reactions. For example, flavin adenine dinucleotide is a coenzyme for both glutathione reductase and enzymes that mediate the oxidative folding of secretory proteins. Here we investigated short-term effects of moderately riboflavin-deficient culture medium on flavin-related responses in HepG2 hepatocarcinoma cells. Cells were cultured in riboflavin-deficient (3.1 nmol/L) medium for up to six days; controls ...

  5. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    Science.gov (United States)

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A New Baltic Population-Specific Human Genetic Marker in the PMCA4 Gene.

    Science.gov (United States)

    Stavusis, Janis; Inashkina, Inna; Lace, Baiba; Pelnena, Dita; Limborska, Svetlana; Khrunin, Andrey; Kucinskas, Vaidutis; Krumina, Astrida; Piekuse, Linda; Zorn, Branko; Fodina, Violeta; Punab, Margus; Erenpreiss, Juris

    2016-01-01

    The PMCA gene family consists of 4 genes and at least 21 splice variants; among these, the Ca2+ ATPase 4 (PMCA4) gene encodes a plasma membrane protein abundantly expressed in several tissues, including the kidney, heart, and sperm. Knockout of PMCA4 causes infertility due to immotile sperm in mouse models. We therefore investigated variants in this gene for potential association with infertility in groups of Estonian (n = 191) and Latvian (n = 92) men with reduced sperm motility. All exons, exon-intron boundaries, 5' and 3' untranslated regions, and the promoter region of the PMCA4 gene were analysed by direct sequencing for a group of Estonian infertile men. Genotyping of guanine and adenine alleles of rs147729934 was performed, using a custom-designed TaqMan® probe for a group of Latvian infertile men as well as additional groups from Latvia and several groups of people with proven ethnicity from the Baltic region. Although we did not identify any significant associations between variants in the gene and infertility, our results indicated that in all studied Latvian and Estonian groups the adenine allele of the variant rs147729934 was present at a higher frequency than expected. Analysis of additional samples indicated that the adenine allele of rs147729934 likely originated once in the modern-day Baltic or western Russia area, as the frequency of the minor adenine allele observed in this region is remarkably higher than that in the general European population. Our results revealed no significant difference in frequencies of genetic variants in PMCA4 gene between men with normal and those with reduced sperm motility. The adenine allele of the variant rs147729934 is potentially an informative tool for future population studies concerning ancient Baltic and Finno-Ugric history. © 2017 S. Karger AG, Basel.

  7. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    Science.gov (United States)

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  8. Direct adventitious shoot bud formation on hypocotyls explants in Millettia pinnata (L.) Panigrahi- a biodiesel producing medicinal tree species

    OpenAIRE

    Nagar, Durga Singh; Jha, Suman Kumar; Jani, Jigar

    2015-01-01

    A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sul...

  9. Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.

    Science.gov (United States)

    El-Diasty, Fouad; Abdel-Wahab, Fathy

    2015-10-01

    The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy. Copyright © 2015. Published by Elsevier B.V.

  10. Effects of vacuum ultraviolet radiation on deoxyoligonucleotides in solids in the wavelength region around and above ionization potential -with special reference to the chain scission

    International Nuclear Information System (INIS)

    Ito, Takashi; Saito, Mikio

    1991-01-01

    Photoproducts arising from exposure of deoxyoligonucleotides of adenine, d(pA) n (n = 2 ∼ 5), as solids to vacuum-u.v. radiation at the wavelengths around and above ionization potential were analyzed by thin-layer chromatography. The main decomposition products were identified as adenine and all possible oligonucleotide and mononucleotide components for k satisfying n - k ≥ 1. These results and previous findings on the related compounds were discussed with special reference to the rules on the induction of chain scission by superexcitation. (author)

  11. Synthesis of acyclic adenine 8,N-anhydronucleosides

    Czech Academy of Sciences Publication Activity Database

    Meszárosová, Kateřina; Holý, Antonín; Masojídková, Milena

    2000-01-01

    Roč. 65, č. 7 (2000), s. 1109-1125 ISSN 0010-0765 R&D Projects: GA ČR GV203/96/K001 Institutional research plan: CEZ:AV0Z4055905 Subject RIV: CC - Organic Chemistry Impact factor: 0.960, year: 2000

  12. Determination of the 24-hours survival of stored red cells beyond the legal duration (42 and 49 days). Value of a double labelling

    International Nuclear Information System (INIS)

    Messian, O.; Noel, L.; Saint-Paul, B.; Fabre, G.; Saint-Blancard, J.

    1985-01-01

    Red cell double labelling using chromium 51 and Tc 99m proved to be the good method for the measurement of 24-hour post-transfusion survival values of red cells stored at 4 0 C. Satisfactory results were obtained with the preservative solution PAGGSS (Phosphate Adenine Guanosine Glucose Sorbitol Saline) for 42 and 49 days, and with ADSOL (Adenine Dextrose Saline Mannital) for 42 days. But for 49 days ADSOL does not maintain 24-hour post-transfusion survival of the cells at an acceptable level, 70 per cent, for this length of time [fr

  13. Fluorescent Oligonucleotides Containing a 2-Ethynylfluorene-or 2-Ethynylfluorenone-labeled 2'-Deoxyguanosine Unit: Fluorescence Changes upon Duplex Formation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Ji; Hwang, Gil Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2016-08-15

    Two new DNA probes bearing a fluorescent deoxyguanosine unit labeled with 2-ethynylfluorene (G{sup FL} )or 2-ethynylfluorenone (G{sup FO}) were synthesized and examined for their efficiency as quencher-free linear beacon probes. Oligodeoxynucleotides (ODNs) containing a G{sup FL} or G{sup FO} unit exhibit low thermal selectivity and few distinctive fluorescence changes upon duplex formation due to the syn conformation about the glycosidic bond. An exciplex emission was observed when the G{sup FL} unit of ODNs bearing adenine flanking bases was positioned opposite to the adenine nucleobases.

  14. Maitotoxin-induced liver cell death involving loss of cell ATP following influx of calcium

    International Nuclear Information System (INIS)

    Kutty, R.K.; Singh, Y.; Santostasi, G.; Krishna, G.

    1989-01-01

    Maitotoxin, one of the most potent marine toxins known, produced cell death in cultures of rat hepatocytes with a TD50 of 80 pM at 24 hr. The cell death, as indicated by a dose- and time-dependent leakage of lactate dehydrogenase (LDH), was also associated with the leakage of [14C]adenine nucleotides from hepatocytes prelabeled with [14C]-adenine. The toxic effect of maitotoxin was completely abolished by the omission of calcium from the culture medium. The cell death induced by maitotoxin increased with increasing concentrations of calcium in the medium. Treatment of hepatocytes with low concentrations of the toxin (less than 0.5 ng/ml) resulted in increases in 45Ca influx into the cells. At higher concentrations of maitotoxin (greater than 1ng/ml), the initial increase in 45Ca influx was followed by the release of the 45Ca from the cells into the medium. Since the 45Ca release paralleled the LDH leakage, the release of calcium was due to cell death. The 45Ca influx, [14C]adenine nucleotide leakage, and LDH leakage were effectively inhibited by verapamil, a calcium channel blocker. Maitotoxin also induced a time- and dose-dependent loss of ATP from hepatocytes, which preceded the [14C]adenine nucleotide and LDH leakage. Thus, it appears that the cell death resulting from maitotoxin treatment is caused by the elevated intracellular calcium, which in turn inhibits mitochondrial oxidative phosphorylation causing depletion of cell ATP. Loss of cell ATP may be the causative event in the maitotoxin-induced cell death

  15. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    International Nuclear Information System (INIS)

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-01-01

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ

  16. New carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, X-ray crystallography and anticancer activity.

    Science.gov (United States)

    Tănase, Constantin I; Drăghici, Constantin; Căproiu, Miron Teodor; Shova, Sergiu; Mathe, Christophe; Cocu, Florea G; Enache, Cristian; Maganu, Maria

    2014-01-01

    An amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate. This was then reacted with ammonia and selected amines obtaining new adenine- and 6-substituted adenine conformationally constrained carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane skeleton in the sugar moiety. X-ray crystallography confirmed an exo-coupling of base to the ring and a L configuration of the nucleoside analogues. The compounds were tested for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    Science.gov (United States)

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  18. Nitrogen-15-labeled deoxynucleosides. 3. Synthesis of [3-15N]-2'-deoxyadenosine

    International Nuclear Information System (INIS)

    Rhee, Young-Sook; Jones, R.A.

    1990-01-01

    The synthesis of [3- 15 N]-labeled adenine has been reported by several groups. Each of these syntheses followed essentially the same route, in which the 15 N is introduced by nitration of 4-bromoimidazole under forcing conditions using [ 15 N]-HNO 3 . The authors have devised an alternate route which uses an azo coupling reaction for introduction of the 15 N and proceeds through the intermediacy of [5- 15 N]-labeled 5-aminoimidazole-4-carboxamide (AICA). An unrelated route to the [5- 15 N]-labeled 5-amino-imidazole ribonucleoside (AIRs) was recently reported. AICA is a versatile precursor, which is most commonly used for entry into the guanine or isoguanine families, although it is usually used as the AICA-riboside rather than the heterocycle itself. The authors have found that AICA also can be used for the adenine family by cyclization to hypoxanthine using diethoxymethyl acetate in DMF at reflux. Although these conditions are more vigorous than those required for cyclization of 4,5-diaminopyrimidines using this reagent, the reaction works well. In addition, they report high-yield enzymatic conversion of [3- 15 N]-adenine to [3- 15 N]-2'-deoxyadenosine

  19. A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides.

    Science.gov (United States)

    Esipov, R S; Abramchik, Yu A; Fateev, I V; Konstantinova, I D; Kostromina, M A; Muravyova, T I; Artemova, K G; Miroshnikov, A I

    2016-01-01

    We propose a new approach for the synthesis of biologically important nucleotides which includes a multi-enzymatic cascade conversion of D -pentoses into purine nucleotides. The approach exploits nucleic acid exchange enzymes from thermophilic microorganisms: ribokinase, phosphoribosylpyrophosphate synthetase, and adenine phosphoribosyltransferase. We cloned the ribokinase gene from Thermus sp . 2.9, as well as two different genes of phosphoribosylpyrophosphate synthetase (PRPP-synthetase) and the adenine phosphoribosyltransferase (APR-transferase) gene from Thermus thermophilus HB27 into the expression vectors, generated high-yield E. coli producer strains, developed methods for the purification of the enzymes, and investigated enzyme substrate specificity. The enzymes were used for the conversion of D -pentoses into 5-phosphates that were further converted into 5-phospho-α- D -pentofuranose 1-pyrophosphates by means of ribokinase and PRPP-synthetases. Target nucleotides were obtained through the condensation of the pyrophosphates with adenine and its derivatives in a reaction catalyzed by APR-transferase. 2-Chloro- and 2-fluoroadenosine monophosphates were synthesized from D -ribose and appropriate heterobases in one pot using a system of thermophilic enzymes in the presence of ATP, ribokinase, PRPP-synthetase, and APR-transferase.

  20. Antioxidant effect of naturally occurring xanthines on the oxidative damage of DNA bases; Effet antioxydant de xanthines naturelles sur le dommage oxydant des bases de l`ADN

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, A.J.S.C.; Telo, J.P.; Pereira, H.F.; Patrocinio, P.F. [Instituto Superior Tecnico, Lisbon (Portugal); Dias, R.M.B. [Instituto Tecnologico e Nuclear, Sacavem codex (Portugal). Dept. de Quimica

    1999-01-01

    The repair of the oxidised radicals of adenine and guanosine by several naturally occurring xanthines was studied. Each pair of DNA purine/xanthine was made to react with the sulphate radical and the decrease of the concentration of both compounds was measured by HPLC as a function of irradiation time. The results show that xanthine efficiently prevents the oxidation of the two DNA purines. Theophylline and para-xanthine repair the oxidizes radical of adenine but not the one from guanosine. Theobromine and caffeine to do not show any protecting effect. An order of the oxidation potentials of all the purines studied is proposed. (authors) 10 refs.

  1. Antioxidant effect of naturally occurring xanthines on the oxidative damage of DNA bases

    International Nuclear Information System (INIS)

    Vieira, A.J.S.C.; Telo, J.P.; Pereira, H.F.; Patrocinio, P.F.; Dias, R.M.B.

    1999-01-01

    The repair of the oxidised radicals of adenine and guanosine by several naturally occurring xanthines was studied. Each pair of DNA purine/xanthine was made to react with the sulphate radical and the decrease of the concentration of both compounds was measured by HPLC as a function of irradiation time. The results show that xanthine efficiently prevents the oxidation of the two DNA purines. Theophylline and para-xanthine repair the oxidizes radical of adenine but not the one from guanosine. Theobromine and caffeine to do not show any protecting effect. An order of the oxidation potentials of all the purines studied is proposed. (authors)

  2. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model.

    Directory of Open Access Journals (Sweden)

    Chung-Kan Peng

    Full Text Available Lung ischemia reperfusion injury (LIRI is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75% diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS, proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF. The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway.

  3. TGF-beta1 immunohistochemistry and promoter methylation in chronic renal failure rats treated with Uremic Clearance Granules.

    Directory of Open Access Journals (Sweden)

    Cheng-Bin Chen

    2010-08-01

    Full Text Available The aim of the study was the explain the mechanism related to therapeutic effects of Uremic Clearance Granules (Niaoduqing Keli in Chinese on adenine-induced Chronic Renal Failure in rats. Thirty 8-week-old male Wistar rats were selected and randomly divided in to 3 groups: Normal Control Group (NCGconsisted of 10 rats, Chronic Renal Failure Pathological Control Group (PCG 10 rats, and Uremic Clearance Granules Treatment Group (UCG 10 rats. Each rat in PCG and UCG was fed with adenine-enriched diets, containing 10 g adenine per kg food for 6 weeks. After fed with adenine, each rat in UCG was administered orally with 2 ml solution of Uremic Clearance Granules for 6 weeks. The concentration of Uremic Clearance Granules solution was 0.42 g/ml which was 10 times of human. On days 42 and 84, the serum levels of creatinine, Blood Urea Nitrogen and homocysteine were determined. The methylation of TGFbeta1 promoter was tested by methylation-specific PCR. TGF-beta1 mRNA and protein expression in rat renal cortex were analyzed by real-time RT-PCR and Immunohistochemistry. (1 Experimented on model of Chronic Renal Failure in rats, the preparation was proved to be able to reduce serum creatinine, Blood Urea Nitrogen, and homocysteine (p<0.05, improve renal function. (2 The expression of TGF-beta1 in mRNA and protein level were down-regulated. (3 TGF-beta1 promoter was demethylated at some loci in PCG, and was recovered in UCG. After treatment with Uremic Clearance Granules, the Chronic Renal Failure Wistar rat's kidney function was recovered. The recovery may be result of the remethylation of TGF-beta1 promoter and then lead to TGF-beta1 be transcripted and translated normally. The experimental study explain the molecular mechanism by which Uremic Clearance Granules treat Chronic Renal Failure.

  4. Effect of Plant Growth Regulators and Cold on Improvement of Morphological Characteristics of Cineraria (Pericallis × hybrida

    Directory of Open Access Journals (Sweden)

    Kazem Bashiri

    2017-12-01

    Full Text Available Introduction: The climate of every region does not let to have year-round production of crops. Use of plant growth regulators allows to produce the flowers out of season and improve their quality and yield. Gibberellin is one of the plant growth regulators which can substitute cold requirement of plants, while cytokinin is another plant growth regulator to stimulate floral initials. Paclobutrazol is a triazole compound that inhibits gibberellin synthesis. Cineraria (Pericallis × hybrida as a prominent flowering pot plant has a growing demand during the spring festivals especially Nowrouz, which needs further improvement of quality and yield. In this regard a study was designed to examine the morphological characteristics of cineraria using gibberellin, cytokinin, paclobutrazol and cold. Materials and Methods: Seeds of cineraria (Pericallis × hybrida cv. Satellite( were sown in plug trays at the research greenhouse of college of agriculture, Shiraz University. A study was carried out with a completely randomized design and five replications. Control plants were transferred to incubators at eight leaves stage to receive six weeks of cold. Spraying treatments consisted of control (water, 100 mg/L gibberellin at three times (before cold, middle of cold and after cold, combinations of cold and/or gibberellin (100, 200 mg/L with benzyl adenine (150, 300 mg/L and/or paclobutrazol (250, 500 mg/L. In order to better understand the effects of paclobutrazol, its treatments were applied two weeks after gibberellin treatments. Data analysis was done by SAS 9.1 software and means were compared by LSD at 5 percent probability level. Results and Discussions: Gibberellin can be used as a replacement for cold. The maximum acceleration of full flowering (32 days and the greatest delay of full bloom (14 days were observed in 100 mg/L gibberellin + 250 mg/L paclobutrazol and 200 mg/L gibberellin + 300 mg/L benzyl adenine, respectively. These results were

  5. Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges

    Science.gov (United States)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    The synthesis of purines and pyrimidines using Oparin-Urey-type primitive earth atmospheres has been demonstrated by reacting methane, ethane, and ammonia in electrical discharges. Adenine, guaine, 4-aminoimidazole-5-carboxamide (AICA), and isocytosine have been identified by UV spectrometry and paper chromatography as the products of the reaction. The total yields of the identified heterocyclic compounds are 0.0023 percent. It is concluded that adenine synthesis occurs at a much lower concentration of hydrogen cyanide than has been shown by earlier studies. Pathways for the synthesis of purines from hydrogen cyanide are discussed, and a comparison of the heterocyclic compounds that have been identified in meteorites and in prebiotic reactions is presented.

  6. Cyclo-(trp-phe diketopiperazines from the endophytic fungus Aspergillus versicolor isolated from Piper aduncum

    Directory of Open Access Journals (Sweden)

    Juliana R. Gubiani

    Full Text Available Six known compounds, three peptide derivatives: cyclo-(tryptophyl-phenylalanyl (2, diketopiperazine dimer WIN 64821 (3 and 3-hydroxy-15H-tryptophenaline (4, one adenine derivative: 2-hydroxy-6-N-isopentenyl-adenine (5, one phtalide derivative: 4-methoxyphtalide (1 and one benzoic acid derivative: 3-hydroxy-4-(1-hydroxy-1,5-dimethyl-hexyl benzoic acid (6, were isolated from the ethyl acetate extract of the endophytic fungus Aspergillus versicolor associated with the Piper aduncum plant. Their structures were determined on the basis of detailed interpretation of 1 D and 2D NMR spectra and in comparison with works reported in the literature. This paper, in effect, deals with the first report of these compounds in A. versicolor.

  7. On the effect of certain mutations on the radiosensitivity of haploid and diploid yeast cells

    International Nuclear Information System (INIS)

    Sokurova, E.N.; Korogodin, V.I.

    1978-01-01

    Mutation ade 1-6 in haploid cell Saccharomyces cerevisiae increases half as much against radioresistance of cells. Diploid cells lacking in adenine, homozygous by ade 1-6 mutation, are nearly twice as radiosensitive as prototrophic cells. Hence ade 1-6 mutation increases radioresistance of haploid cells and decreases that of diplois. These changes in radioresistance are not connected with variations in the extrapolation number of survival curve, the ability of cells to recover from radiation damages upon cultivation in an innutrient medium, and with the inactivation form ratio. Lack of adenine influences the radioresistance of diploid yeast irrespective of whether it is or it is not affected by homo- or heterozygosity by the locus of mating type

  8. Nanostructured films of metal particles obtained by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Miranda, M., E-mail: muniz@unifi.it [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Gellini, C. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Giorgetti, E.; Margheri, G.; Marsili, P. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Lascialfari, L.; Becucci, L. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Trigari, S. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Giammanco, F. [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2013-09-30

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films.

  9. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness

    Science.gov (United States)

    Burroughs, A. Maxwell; Ando, Yoshinari; de Hoon, Michiel J.L.; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O.

    2010-01-01

    Animal microRNA sequences are subject to 3′ nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3′ adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1–EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3′ addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3′ adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake. PMID:20719920

  10. Novel furosemide cocrystals and selection of high solubility drug forms.

    Science.gov (United States)

    Goud, N Rajesh; Gangavaram, Swarupa; Suresh, Kuthuru; Pal, Sharmistha; Manjunatha, Sulur G; Nambiar, Sudhir; Nangia, Ashwini

    2012-02-01

    Furosemide was screened in cocrystallization experiments with pharmaceutically acceptable coformer molecules to discover cocrystals of improved physicochemical properties, that is high solubility and good stability. Eight novel equimolar cocrystals of furosemide were obtained by liquid-assisted grinding with (i) caffeine, (ii) urea, (iii) p-aminobenzoic acid, (iv) acetamide, (v) nicotinamide, (vi) isonicotinamide, (vii) adenine, and (viii) cytosine. The product crystalline phases were characterized by powder x-ray diffraction, differential scanning calorimetry, infrared, Raman, near IR, and (13) C solid-state NMR spectroscopy. Furosemide-caffeine was characterized as a neutral cocrystal and furosemide-cytosine an ionic salt by single crystal x-ray diffraction. The stability of furosemide-caffeine, furosemide-adenine, and furosemide-cytosine was comparable to the reference drug in 10% ethanol-water slurry; there was no evidence of dissociation of the cocrystal to furosemide for up to 48 h. The other five cocrystals transformed to furosemide within 24 h. The solubility order for the stable forms is furosemide-cytosine > furosemide-adenine > furosemide-caffeine, and their solubilities are approximately 11-, 7-, and 6-fold higher than furosemide. The dissolution rates of furosemide cocrystals were about two times faster than the pure drug. Three novel furosemide compounds of higher solubility and good phase stability were identified in a solid form screen. Copyright © 2011 Wiley Periodicals, Inc.

  11. Influence of Growth Regulators on Callogenesis and Somatic Embryo Development in Date Palm (Phoenix dactylifera L. Sahelian Cultivars

    Directory of Open Access Journals (Sweden)

    Djibril Sané

    2012-01-01

    Full Text Available This study provides a physiological analysis of somatic embryogenesis in four elite cultivars of date palms: Ahmar, Amsekhsi, Tijib, and Amaside, from the initial callogenesis to establishment and proliferation of embryogenic suspension cultures. Somatic embryos development and in vitro plants rooting were also studied. For each step, auxins and cytokinins concentrations were optimised. The primary callogenesis from leaf explants of seedlings appeared highly dependent on genotype. Ahmar (80% and Amsekhsi (76% appeared highly callogenic, whereas Tijib (10% and Amaside (2% produced low amounts of calluses. 2,4-Dichlorophenoxyacetic acid appeared favorable to the induction of primary callogenesis and its effect was enhanced by the addition of benzyl adenine or adenine sulfate. Secondary friable calli obtained from chopped granular calli were used to initiate embryogenic cell suspensions in media supplied with 2,4-dichlorophenoxyacetic acid. Suspension cultures showed a growth rate of fourfold after four subcultures in presence of 2,4-dichlorophenoxyacetic acid 2 mg/L. Our results showed that a seven-day transitory treatment with benzyl adenine 0,5 mg/L was necessary to optimize embryos development. Naphthalene acetic acid induced the development of primary orthogravitropic roots during embryos germination. The comparison with cytofluorometry of nuclear DNA amounts showed no significant difference in ploidy level between regenerated plants and seedlings.

  12. Combination therapy with renin-angiotensin-aldosterone system inhibitor telmisartan and serine protease inhibitor camostat mesilate provides further renoprotection in a rat chronic kidney disease model

    Directory of Open Access Journals (Sweden)

    Yuki Narita

    2016-02-01

    Full Text Available We previously reported that camostat mesilate (CM had renoprotective and antihypertensive effects in rat CKD models. In this study, we examined if CM has a distinct renoprotective effect from telmisartan (TE, a renin-angiotensin-aldosterone system (RAS inhibitor, on the progression of CKD. We evaluated the effect of CM (400 mg/kg/day and/or TE (10 mg/kg/day on renal function, oxidative stress, renal fibrosis, and RAS components in the adenine-induced rat CKD model following 5-weeks treatment period. The combination therapy with CM and TE significantly decreased the adenine-induced increase in serum creatinine levels compared with each monotherapy, although all treatment groups showed similar reduction in blood pressure. Similarly, adenine-induced elevation in oxidative stress markers and renal fibrosis markers were significantly reduced by the combination therapy relative to each monotherapy. Furthermore, the effect of the combination therapy on plasma renin activity (PRA and plasma aldosterone concentration (PAC was similar to that of TE monotherapy, and CM had no effect on both PRA and PAC, suggesting that CM has a distinct pharmacological property from RAS inhibition. Our findings indicate that CM could be a candidate drug for an add-on therapy for CKD patients who had been treated with RAS inhibitors.

  13. Sylwan manuscript revised

    African Journals Online (AJOL)

    이영준

    mature adipocytes and accumulate lipids, as an obesity model with cytotoxicity and ... 2,5-diphenyltetrazolium Bromide; NAC = N-acetyl-L-cysteine; NADPH = Nicotinamide adenine dinucleotide phosphate; OD = ..... ovariectomized rats.

  14. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    National Research Council Canada - National Science Library

    Kerman, Kagan

    2001-01-01

    The utility and advantages of an indicator free and MB based sequence specific DNA hybridization biosensor based on guanine and adenine oxidation signals and MB reduction signals have been demonstrated...

  15. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  16. Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes.

    Science.gov (United States)

    Du, Meng; Yang, Tao; Ma, Suyan; Zhao, Changzhi; Jiao, Kui

    2011-04-01

    Electrochemical activities of typically electrochemical targets at three kinds of modified carbon electrodes, i.e. carbon ionic liquid electrode (CILE), graphene/carbon paste electrode (CPE), and ionic liquid-functionalized graphene (IL-graphene)/CPE, were compared in detail. The redox processes of the probes at IL-graphene/CPE were faster than those at CILE and graphene/CPE from cyclic voltammetry. An electrochemical method for the simultaneous determination of guanine and adenine was described with detection limits of 6.5×10(-8) mol L(-1) (guanine) and 3.2×10(-8) mol L(-1) (adenine). Single A→G mutation of sequence-specific DNA could be discriminated by the IL-graphene/CPE. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    Science.gov (United States)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  18. Effect of the neurosphere size on the viability and metabolism of ...

    African Journals Online (AJOL)

    2012-02-23

    Feb 23, 2012 ... substance metabolism mathematic model with which the substance distribution ..... dinucleotide (NADH) back to NAD+ and flavin adenine dinucleotide (FADH2) ... differentiated from rat neurospheres. Brain Res. 1101: 5-11.

  19. Biodegradation of 2,4-dichlorophenol using Mycoplana dimorpha ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... dation kinetic models have been developed, proposed and used in ... kinetic models. ..... Dihydroxycyclohexa-3, 5-Diene (Nicotinamide Adenine Dinucleotide) .... (KMUP-3) in rat trachea: The involvement of soluble guanylate.

  20. Synthesis and biological evaluation of conformationally restricted adenine bicycloribonucleosides

    Czech Academy of Sciences Publication Activity Database

    Hřebabecký, Hubert; Procházková, Eliška; Šála, Michal; Plačková, Pavla; Tloušťová, Eva; Barauskas, O.; Lee, Y. J.; Tian, Y.; Mackman, R.; Nencka, Radim

    2015-01-01

    Roč. 13, č. 35 (2015), s. 9300-9313 ISSN 1477-0520 R&D Projects: GA ČR GPP207/12/P625; GA ČR GA15-09310S; GA ČR GA13-24880S; GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : nucleic acid analogs * nucleoside triphosphates * sugar ring Subject RIV: CC - Organic Chemistry Impact factor: 3.559, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ob/c5ob00987a

  1. Roles of Nicotinamide Adenine Dinucleotide (NAD+ in Biological Systems

    Directory of Open Access Journals (Sweden)

    Palmiro Poltronieri

    2018-01-01

    Full Text Available NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A and oligoadenylates (oligo2′-5′A, two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.

  2. [Determination of 5 nucleosides components in culture of Paecilomyces hepialid by HPLC].

    Science.gov (United States)

    Yang, Dan; Ma, Yun-shu; Huang, Ting-ting; Chen, Cheng

    2015-08-01

    The concentration of 5 nucleosides, uracil, uridine, guanidine, adenine and adenosine in culture of Paecilomyces hepialid was determined by the developed method of HPLC. The HPLC method was performed on a Waters SunFire C18 (4.6 mm x 250 mm, 5 μm) column with methanol-water gradient elution as the mobile phase. The detection wavelength was 260 nm and the colunmn temperature was controlled at 30 °C. The linear range was 10.00-200.00 mg · L(-1) (r = 0.9994) for uracil, 10.10-202.00 mg · L(-1) (r = 0.9992) for uridine, 10.00-200.00 mg · L(-1) (r = 0.9991) for guanidine, 10.30-206.00 mg · L(-1) (r = 0.9992) for adenine and 10.45-209.00 mg · L(-1) (r = 0.9991) for adenosine, respectively. The RSD of precision was 0.032%, 0.035%, 0.039%, 0.049%, 0.00080%, respectively. The average recoveries of uracil, guanidine, adenine, and adenosine were 97.34%, 99.10%, 101.6%, 98.61% and 100.2% with RSD of 1.3%, 2.1%, 0.96%, 0.95%, and 1.3% respectively. The method showed high sensitivity, good selectivity, linearity and repeatability, which was suitable for the content analysis of 5 nucleosides components in P. hepialid and its extracts.

  3. Regulation of Ecto-5´-Nucleotidase by Docosahexaenoic Acid in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Vu Thi Thom

    2013-08-01

    Full Text Available Background/Aims: Modulation of extracellular adenine nucleotide and adenosine concentrations is one potential mechanism by which docosahexaenoic acid (DHA may exert beneficial effects in critically ill patients. This study assessed DHA effects on extracellular adenine purines. Methods: Experiments used human pulmonary endothelial cells (HPMEC and umbilical vein endothelial cells (HUVEC treated with DHA (48 h. mRNA level (real-time PCR, expression (western blot, flow cytometry and activities (hydrolysis of etheno(ε-purines and fluorescence HPLC of CD73 (ecto-5´-nucleotidase and CD39 (ecto-NTPDase-1 were quantified. Results: DHA elevated total CD73 membrane protein expression concentration-dependently but CD73 mRNA level did not change. Increased expression was paralleled by increased enzyme activity. Effects observed on membrane level were reversed in intact cells, in which ε-AMP hydrolysis decreased after DHA. In intact endothelial cells ATP release was enhanced and CD39 activity blunted following DHA treatment. Hence, extracellular ATP and ADP concentrations increased and this inhibited ε-AMP hydrolysis. Conclusion: In human endothelial cells DHA caused 1 up-regulation of CD73 protein content and increased AMP hydrolysis at the cell membrane level, 2 increased cellular ATP release, and 3 decreased extracellular ATP/ADP hydrolysis. Thus, reorganization of the extracellular adenine-nucleotide-adenosine axis in response to DHA resulted in an increased extracellular ATP/adenosine ratio.

  4. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    Science.gov (United States)

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  5. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    Science.gov (United States)

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  6. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  7. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Science.gov (United States)

    Roque, Fernanda R.; Soci, Ursula Paula Renó; De Angelis, Katia; Coelho, Marcele A.; Furstenau, Cristina R.; Vassallo, Dalton V.; Irigoyen, Maria Claudia; Oliveira, Edilamar M.

    2011-01-01

    OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C) and trained (T). An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05). RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 5′-nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion. PMID:22189737

  8. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Directory of Open Access Journals (Sweden)

    Fernanda R. Roque

    2011-01-01

    Full Text Available OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C and trained (T. An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05. RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 59- nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion.

  9. Do diosgenin ameliorate urinary bladder toxic effect of ...

    African Journals Online (AJOL)

    SWEET

    2012-01-26

    Jan 26, 2012 ... experimental animal models? ... BSO doses using a Swiss albino mouse model. Toxicity modulation ... bladder inflammation induced by CP in rats and mice .... 0.1 ml NADPH (nicotinamide adenine dinucleotide phosphate.

  10. DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation.

    Science.gov (United States)

    Smaill, J B; Fan, J Y; Denny, W A

    1998-12-01

    A series of bisbenzimidazoles bearing a variety of alkylating agents [ortho- and meta-mustards, imidazolebis(hydroxymethyl), imidazolebis(methylcarbamate) and pyrrolebis(hydroxymethyl)], appended by a propyl linker chain, were prepared and investigated for sequence-specificity of DNA alkylation and their cytotoxicity. Previous work has shown that, for para-aniline mustards, a propyl linker is optimal for cytotoxicity. Alkaline cleavage assays using a variety of different labelled oligonucleotides showed that the preferred sequences for adenine alkylation were 5'-TTTANANAANN and 5'-ATTANANAANN (underlined bases show the drug alkylation sites), with AT-rich sequences required on both the 5' and 3' sides of the alkylated adenine. The different aniline mustards showed little variation in alkylation pattern and similar efficiencies of DNA cross-link formation despite the changes in orientation and positioning of the mustard, suggesting that the propyl linker has some flexibility. The imidazole- and pyrrolebis(hydroxymethyl) alkylators showed no DNA strand cleavage following base treatment, indicating that no guanine or adenine N3 or N7 adducts were formed. Using the PCR-based polymerase stop assay, these alkylators showed PCR blocks at 5'-C*G sites (the * nucleotide indicates the blocked site), particularly at 5'-TAC*GA 5'-AGC*GGA, and 5'-AGCC*GGT sequences, caused by guanine 2-NH2 lesions on the opposite strand. Only the (more reactive) imidazolebis(methylcarbamoyl) and pyrrolebis(hydroxymethyl) alkylators demonstrated interstrand cross-linking ability. All of the bifunctional mustards showed large (approximately 100-fold) increases in cytotoxicity over chlorambucil, with the corresponding monofunctional mustards being 20- to 60-fold less cytotoxic. These results suggest that in the mustards the propyl linker provides sufficient flexibility to achieve delivery of the alkylator to favoured (adenine N3) sites in the minor groove, regardless of its exact geometry with

  11. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    Science.gov (United States)

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  12. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.

    Science.gov (United States)

    Holland, Joseph G; Geiger, Franz M

    2012-06-07

    The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.

  13. Chromium uptake by Saccharomyces cerevisiae and isolation of ...

    Indian Academy of Sciences (India)

    Unknown

    In most models two nicotinate ligands are ... However, both biological extracts and synthetic GTF models have ..... chromium (III)-β-nicotinamide adenine dinucleotide phos- ... and free fatty acids levels in diabetic rats; J. Inorg. Biochem.

  14. Dietary strategies to treat hyperhomocysteinaemia based on the ...

    African Journals Online (AJOL)

    2014-01-13

    Jan 13, 2014 ... of a methyl group and the purine base, adenine (from adenosine triphosphate or ..... rat liver betaine‑homocysteine methyltransferase gene expression and organization of the .... Betaine rescue of an animal model with.

  15. Development and evaluation of an in vivo assay in Caenorhabditis ...

    Indian Academy of Sciences (India)

    Madhu urs

    1. Introduction. Cytochrome P450 enzymes (CYPs) are nicotinamide adenine .... guinea pig and rat are not amenable for high-throughput screening. Therefore, there ... model that is inexpensive and suitable for high-throughput drug screening.

  16. Biokemistri

    African Journals Online (AJOL)

    Chibuike

    2011-12-31

    Dec 31, 2011 ... domain housing the nicotinamide adenine dinucleotide (NAD)- binding site and the ..... compared to wild-type animals, in experimental models of excitotoxicity .... Factor during transient focal cerebral ischemia in rat. Brain Res.

  17. Organic Frameworks on CNTs

    Indian Academy of Sciences (India)

    Admin

    Conjugates and Catalysis. Sandeep Verma. D ... Structural aspects: complex architectures. ➢ Chemical ... Selective deposition on HOPG surface. N. I compared to mica and Si wafers. N. G ... π-π stacking of adenine between hexameric layers.

  18. Pyrazine Nucleic Acids: From Small Molecules to Proto-Informational Polymers

    Science.gov (United States)

    Wong, S. B.; Gately, M.; Young, E.; Krishnamurthy, R.; Weber, A. L.; Campbell, T.

    2017-07-01

    Pyrazine nucleosides are derivable from amino acid amides and pentoses under plausibly prebiotic conditions. Pyrazines share features similar to adenine or thymine, and may behave as an informational polymer when polymerized as pyrazine nucleic acid.

  19. The effect of blood ozonation on mitochondrial function and ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... form); NAD+, nicotinamide adenine dinucleotide (oxidised form);. ROS, reactive .... Isolation of rat liver mitochondria. Liver from healthy ... Respiration was measured using a MitocellTM (model MT 200) oxy- gen electrode and ...

  20. Chemopreventive Effect of Tadalafil in Cisplatin-Induced ...

    African Journals Online (AJOL)

    olayemitoyin

    mgkg-1 and 5 mgkg-1 of Tadalafil in cisplatin-induced nephrotoxic rats. In this study, twenty-five male ... mitochondria, and reduced nicotinamide adenine dinucletide .... Laboratory Centrifuge (Model SM 112, Surgifriend. Medicals, England) at ...

  1. Ulinastatin Reduces T Cell Apoptosis in Rats with Severe Acute ...

    African Journals Online (AJOL)

    in rats with severe acute pancreatitis (SAP) and to elucidate its underlying molecular mechanism. Methods: Thirty .... on T lymphocytes apoptosis in SAP rat model and elucidated ..... oxygen radicals, the exhaustion of adenine nucleotide and ...

  2. Protective effect of Euphorbia neriifolia saponin fraction on CCl 4 ...

    African Journals Online (AJOL)

    Jane

    2010-10-18

    Oct 18, 2010 ... ALP, alkaline phosphatase; NAD, nicotinamide adenine dinucleotide .... Laboratory bred Wistar albino rats of both sexes (150 - 200 g) were maintained .... experimental animals is a commonly used model for the screening of ...

  3. Decreased visfatin after exercise training correlates with improved glucose tolerance

    DEFF Research Database (Denmark)

    Haus, Jacob M; Solomon, Thomas; Marchetti, Christine M

    2009-01-01

    Nampt/pre-B-cell colony-enhancing factor/visfatin (visfatin) release from adipocytes has recently been suggested to be nutrient responsive and linked to systemic nicotinamide adenine dinucleotide biosynthesis and regulation of pancreatic beta-cell function....

  4. Browse Title Index

    African Journals Online (AJOL)

    Items 101 - 150 of 187 ... ... NMR and Solvent Effect Study on the Thymine-Adenine-Thymine ... animal model of schistosoma mansoni treated with myrrh or praziquantel, Abstract ... On In Vivo Paraquat Induced Oxidative Damage In Rats, Abstract.

  5. Nitric oxide level and von Willebrand factor (vWF) secretion are not ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... potassium channels; RBECs, rat brain capillary endothelial cells. and transport of ... addition, adenine nucleotides modulate the release of endothelial-derive ..... A cellular model of endothelial cell ischemia. J Surg Res. 44(5): ...

  6. Fulltext PDF

    Indian Academy of Sciences (India)

    Madhsudhan

    in the rat vitamin C is synthesised from glucose via the glucuronic pathway of ..... guinea pig model, we have demonstrated that moderately large doses of vitamin C ... of nicotinamide adenine dinucleotide phosphate (NADPH) to microsomal ...

  7. The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studied in vitro and with a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.

    1982-01-01

    The applicability of phenazine methosulfate, 1-methoxyphenazine methosulfate, menadione, and meldola blue as exogenous electron carriers for the cytochemical staining of nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent dehydrogenases has been studied quantitatively with tetranitro BT

  8. Download this PDF file

    African Journals Online (AJOL)

    Magashi

    2013-06-01

    Jun 1, 2013 ... and Flory-Huggins models. The functional and ... Table 3: Functional and linear forms of adsorption isotherm models tested. Isotherm .... Induced Oxidative Stress in Rat's Testes. In Vitro ... Inhibiting Action of Adenine on the.

  9. Polyphenolic constituents and antioxidant/antiradical activity in ...

    African Journals Online (AJOL)

    USER

    2015-11-25

    Nov 25, 2015 ... models (Bandawane et al., 2011) and this may be due to its inhibitory activity of .... (Nicotineamide adenine dinucleotide hydrogen salt) and assayed by the reduction of ..... streptozotocin induced diabetic rats. Ind. J. Pharm.

  10. Studies towards the synthesis of ATP analogs as potential glutamine synthetase inhibitors

    CSIR Research Space (South Africa)

    Salisu, S

    2011-05-01

    Full Text Available and Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, South Africa b CSIR BIO/CHEMTEK, Modderfontein, South Africa ABSTRACT In research directed at the development of adenine triphosphate (ATP) analogs as potential...

  11. Three cases of intentional isoniazid overdose – a life-threatening ...

    African Journals Online (AJOL)

    . Lactic acidosis is thought to occur by INH inhibition of lactate dehydrogenase via its effect on the co-enzyme nicotinamide adenine dinucleotide. This is exacerbated by increased lactate production during seizures. For the management of an ...

  12. Energy-responsive timekeeping

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... involved lesions of the parabrachial nucleus in rats (David- son et al. 2000); however .... loops (figure 2). The current model involves a primary loop with CLOCK and .... of reduced to oxidized nicotinamide adenine dinucleotide.

  13. Original Article Pubertal Development of Penile Nitric Oxide ...

    African Journals Online (AJOL)

    mn

    penile tissue in different age groups in the rat and to measure serum testosterone levels ... shaft specimen was taken for nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase ..... The rat as a model for the study of penile erection.

  14. OGG1, MYH and MTH1 gene variants identified in gastric cancer ...

    Indian Academy of Sciences (India)

    Handayama, Hamamatsu, Shizuoka 431-3192, Japan. 2Department ... 1997; Farinati et al. 1998), induce inflammation in the stomach tissue. A con- ..... 1999; Chen et al. 2003 .... R., Nohmi T. and Yokota J. 2000 Adenine excisional repair func-.

  15. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    Energy Technology Data Exchange (ETDEWEB)

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas; Schrader, Tobias E.; Evans, Gary B.; Kovalevsky, Andrey; Ronning, Donald R.

    2016-11-16

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pKa above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH), Formycin A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.

  16. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    Science.gov (United States)

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  17. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    Science.gov (United States)

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  18. Structure-function relationship of a plant NCS1 member - Homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from arabidopsis

    KAUST Repository

    Witz, Sandra

    2014-03-12

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. 2014 Witz et al.

  19. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.

    Science.gov (United States)

    Schurig-Briccio, Lici A; Yano, Takahiro; Rubin, Harvey; Gennis, Robert B

    2014-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Molecular cloning, sequence analysis and tissue expression of ...

    African Journals Online (AJOL)

    Proofreader

    2017-10-01

    Oct 1, 2017 ... p-distance model for amino acid substitutions. A bootstrap .... These were a thymine/cytosine (T/C) SNP and a thymine/adenine (T/A) SNP. ..... Two rat homologues of Drosophila achaete–scute specifically expressed in ...

  1. Fermentative metabolism impedes p53-dependent apoptosis in a ...

    Indian Academy of Sciences (India)

    Abhay Kumar

    2017-10-31

    Oct 31, 2017 ... inhibit respiration of mitochondria isolated from normal rat liver cells ... yeast as a model, it was reported that Warburg effect in addition to inducing aerobic ...... of adenine nucleotides carrier and cytochrome c. FEBS Lett. 456.

  2. SIRT1 gene is associated with cardiovascular disease in the Iranian ...

    African Journals Online (AJOL)

    N. Mohtavinejad

    2015-01-20

    Jan 20, 2015 ... rs3758391 CC genotype in both additive and recessive models. The rs3758391 CC ... of the sirtuin family which belongs to the sirtuin family of nicotinamide adenine ..... of streptozotocin-induced diabetic rats. Genet Mol Res.

  3. cDNA structure, genomic organization and expression patterns of ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... adenine dinucleotide (NAD) intermediate (Rongvaux et al., 2002). Thereupon ... in house mouse, Norway rat and human. It was not difficult to ... species in freshwater regions, and has been a new model organism in aquatic ...

  4. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency)

    NARCIS (Netherlands)

    Mills, P.B.; Footitt, E.J.; Mills, K.A.; Tuschl, K.; Aylett, S.; Varadkar, S.; Hemingway, C.; Marlow, N.; Rennie, J.; Baxter, P.; Dulac, O.; Nabbout, R.; Craigen, W.J.; Schmitt, B.; Feillet, F.; Christensen, E.; de Lonlay, P.; Pike, M.G.; Hughes, M.I.; Struijs, E.A.; Jakobs, C.; Zuberi, S.M.; Clayton, P.T.

    2010-01-01

    Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-α-aminoadipic semialdehyde/l-Δ

  5. Synthesis, Cyclopolymerization and Cyclo-Copolymerization of 9-(2-Diallylaminoethyladenine and Its Hydrochloride Salt

    Directory of Open Access Journals (Sweden)

    Karyn Usher

    2012-11-01

    Full Text Available We report herein the synthesis and characterization of 9-(2-diallylaminoethyl adenine. We evaluated two different synthetic routes starting with adenine where the optimal route was achieved through coupling of 9-(2-chloroethyladenine with diallylamine. The cyclopolymerization and cyclo-copolymerization of 9-(2-diallylaminoethyladenine hydrochloride salt resulted in low molecular weight oligomers in low yields. In contrast, 9-(2-diallylaminoethyladenine failed to cyclopolymerize, however, it formed a copolymer with SO2 in relatively good yields. The molecular weights of the cyclopolymers were around 1,700–6,000 g/mol, as estimated by SEC. The cyclo-copolymer was stable up to 226 °C. To the best of our knowledge, this is the first example of a free-radical cyclo-copolymerization of a neutral alkyldiallylamine derivative with SO2. These polymers represent a novel class of carbocyclic polynucleotides.

  6. [Adenylate cyclase from rabbit heart: substrate binding site].

    Science.gov (United States)

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  7. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    Science.gov (United States)

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  8. Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis P. Y. Li

    Directory of Open Access Journals (Sweden)

    Rui Peng

    2013-05-01

    Full Text Available High-performance liquid chromatography (HPLC coupled with an evaporative light scattering detector (ELSD or a diode array detector (DAD were utilized for the quantitative analysis of 4 alkaloids (peimisine, sipeimine, peimine and peiminine and 9 nucleosides and nucleobases (uracil, uridine, adenosine, adenine, inosine, thymine, cytidine, guanosine and thymidine from Fritillaria taipaiensis P. Y. Li that had been cultivated in the same field for 2–6 years. The content of peimisine, sipeimine, peimine, peiminine, uracil, thymine, adenine and inosine in plants cultivated for 2–4 years was significantly higher than that of plants cultivated for 5–6 years, while the content of cytidine, uridine, guanosine, thymidine and adenosine did not change over this period. This is the first evaluation of variation in the bioactive compounds in F. taipaiensis over its life cycle.

  9. Spectrum of myeloid neoplasms and immune deficiency associated with germline GATA2 mutations

    International Nuclear Information System (INIS)

    Mir, Muhammad A; Kochuparambil, Samith T; Abraham, Roshini S; Rodriguez, Vilmarie; Howard, Matthew; Hsu, Amy P; Jackson, Amie E; Holland, Steven M; Patnaik, Mrinal M

    2015-01-01

    Guanine-adenine-thymine-adenine 2 (GATA2) mutated disorders include the recently described MonoMAC syndrome (Monocytopenia and Mycobacterium avium complex infections), DCML (dendritic cell, monocyte, and lymphocyte deficiency), familial MDS/AML (myelodysplastic syndrome/acute myeloid leukemia) (myeloid neoplasms), congenital neutropenia, congenital lymphedema (Emberger's syndrome), sensorineural deafness, viral warts, and a spectrum of aggressive infections seen across all age groups. While considerable efforts have been made to identify the mutations that characterize this disorder, pathogenesis remains a work in progress with less than 100 patients described in current literature. Varying clinical presentations offer diagnostic challenges. Allogeneic stem cell transplant remains the treatment of choice. Morbidity, mortality, and social costs due to the familial nature of the disease are considerable. We describe our experience with the disorder in three affected families and a comprehensive review of current literature

  10. Conformational change of adenosine deaminase during ligand-exchange in a crystal.

    Science.gov (United States)

    Kinoshita, Takayoshi; Tada, Toshiji; Nakanishi, Isao

    2008-08-15

    Adenosine deaminase (ADA) perpetuates chronic inflammation by degrading extracellular adenosine which is toxic for lymphocytes. ADA has two distinct conformations: open form and closed form. From the crystal structures with various ligands, the non-nucleoside type inhibitors bind to the active site occupying the critical water-binding-position and sustain the open form of apo-ADA. In contrast, substrate mimics do not occupy the critical position, and induce the large conformational change to the closed form. However, it is difficult to predict the binding of (+)-erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), as it possesses characteristic parts of both the substrate and the non-nucleoside inhibitors. The crystal structure shows that EHNA binds to the open form through a novel recognition of the adenine base accompanying conformational change from the closed form of the PR-ADA complex in crystalline state.

  11. Clonal analysis of the progeny of UV-irradiated cells of Bacillus subtilis (uvr+ and uvr)

    International Nuclear Information System (INIS)

    Lotareva, O.V.; Filippov, V.D.

    1975-01-01

    The revertants to adenine prototrophy or mutants to auxotrophy can be easily identified on synthetic media which are pathly enriched with caseine hydrolyzate and yeast extract. It is shown with the use of these media that 1.5% colonies formed by Bacillus subtilis cells of the original type (ade6 met5) have mutant clones which are initiated by spontaneous revertants to adenine prototrophy. These revertants arise in the time of division of cells in macrocolonies. After plating diluted suspension of irradiated cells those colonies which contain mutant clones formed by spontaneous revertants can be erroneously taken for mixed colonies formed by induced revertants. About 40% mutants to auxotrophy induced by high dose of UV-light in uvr + cells form pure mutant colonies. The same mutants, induced in uvr cells by a five-times as-low UV-dose, usually form mixed colonies

  12. CURRENT TRENDS IN THE MANAGEMENT OF SICKLE CELL ...

    African Journals Online (AJOL)

    drclement

    level as sickle cell disease. Sickle cell anemia is due to the substitution of thymine for adenine ..... and local instillation of vaso-active drugs, shunting ... oral pseudoephedrine at night as an attempt to ..... Management of Cancer. Pain. Clinical ...

  13. Effect of the acquisition enhancing drug piracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effects of Piracetam, Naftidrofuryl and methamphetamine on several parameters of cerebral energy metabolism have been studied. At variance with some reports in the literature neither Piracetam nor Naftidrofuryl affected the cerebral contents of adenine nucleotides and, accordingly, both

  14. Modeling of NAD+ analogues in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Beijer, N.A.; Buck, H.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1990-01-01

    So far, the interactions of nicotinamide adenine dinucleotide (NAD+) derivatives with dehydrogenases are not very well understood. This hampers the introduction of NAD+ analogues with improved characteristics concerning industrial application. We have developed an AMBER molecular mechanics model in

  15. Can we predict and/or prevent type I diabetes?

    African Journals Online (AJOL)

    1990-10-20

    Oct 20, 1990 ... detecting 64KA using Western bloning with rat islet prepara- tions has been ... Although the model appears to give a good correlation, it must be .... DNA repair using cyrosolic nicotinamide adenine dinucleotide. (NAD) as a ...

  16. Two restriction edonuclease in Selenomonas ruminatium, sups. lactilytica

    Czech Academy of Sciences Publication Activity Database

    Pristaš, P.; Fliegerová, Kateřina; Javorský, P.

    1998-01-01

    Roč. 25, č. 2 (1998), s. 83-85 ISSN 0266-8254 Institutional research plan: CEZ:AV0Z5045916 Keywords : RUMINOCOCCUS-FLAVEFACIENS FD-1 * ADENINE METHYLATION * DIVERSITY Subject RIV: EE - Microbiology, Virology Impact factor: 0.964, year: 1998

  17. Two X-linked chronic granulomatous disease patients with unusual NADPH oxidase properties

    NARCIS (Netherlands)

    Wolach, Baruch; Broides, Arnon; Zeeli, Tal; Gavrieli, Ronit; de Boer, Martin; van Leeuwen, Karin; Levy, Jacov; Roos, Dirk

    2011-01-01

    Chronic granulomatous disease (CGD) is an immune deficiency syndrome caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme that generates reactive oxygen species (ROS) in phagocytizing leukocytes. This study evaluates the NADPH oxidase capacity in two

  18. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1996-01-01

    Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase

  19. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure

    NARCIS (Netherlands)

    Pulskens, W.P.C.; Verkaik, M.; Sheedfar, F.; Loon, E.P.M. van; Sluis, B. van de; Vervloet, M.G.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2015-01-01

    Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce

  20. Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria

    NARCIS (Netherlands)

    Gellerich, F.N.; Laterveer, F.D.; Korzeniewski, B.; Zierz, S.; Nicolaij, K.

    1998-01-01

    Macromolecules restore the morphological changes which occur upon isolation of mitochondria in normally used isolation media. It was shown that in the presence of dextrans the permeability of mitochondrial outer membrane for adenine nucleotides decreases which may have considerable implications for

  1. AcEST: DK945559 [AcEST

    Lifescience Database Archive (English)

    Full Text Available DEC_RHILO Adenine deaminase OS=Rhizobium loti GN=ade ... 34 0.58 sp|O24006|AMP_IMPBA Antimicrobial peptides ...A E DH+GT Sbjct: 222 YASRDLGLP-FHGYVAGGPEDDHEGT 246 >sp|O24006|AMP_IMPBA Antimicrobial peptides OS=Impatiens

  2. The role of HUCB derived stem cells therapy in repair of renal ...

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    and improvement of renal function in cisplatin-induced ARF model. Forty four rats ... 88.9% of animals in MSCs treated rats versus 87.5% in CD34+ cells treated rats. HUCB derived .... containing 5 ml of citrate phosphate dextrose adenine-1.

  3. Browse Title Index

    African Journals Online (AJOL)

    Items 301 - 350 of 444 ... ... system for integrated management of oil palm pests in Ghana : A review, Abstract ... of plantains using benzyl adenine or coconut water-treated split ... Vol 43, No 1 (2010), Relative efficacy of cocoa pod husk-based ...

  4. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase

    DEFF Research Database (Denmark)

    Ebbesson, Lars O E; Tipsmark, Christian K; Holmqvist, Bo

    2005-01-01

    We investigated the relationship between nitric oxide (NO) and Na(+),K(+)-ATPase (NKA) in the gill of anadromous Atlantic salmon. Cells containing NO-producing enzymes were revealed by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphor...

  5. A powerful selection assay for mixture libraries of DNA alkylating agents.

    Science.gov (United States)

    Ham, Young-Wan; Boger, Dale L

    2004-08-04

    A simple and powerful selection assay that permits the separation (rpHPLC), quantitation (ELSD), and identification (ESI-MS) of thermally released adenine adducts derived from duocarmycin analogues is detailed that can establish the most effective DNA alkylating agents in synthetic combinatorial mixtures.

  6. Riboflavin carrier protein-targeted fluorescent USPIO for the assessment of vascular metabolism in tumors

    NARCIS (Netherlands)

    Jayapaul, J.; Arns, S.; Lederle, W.; Lammers, Twan Gerardus Gertudis Maria; Comba, P.; Gätjens, J.; Kiessling, F.

    2012-01-01

    Abstract Riboflavin (Rf) and its metabolic analogs flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential for normal cellular growth and function. Their intracellular transport is regulated by the riboflavin carrier protein (RCP), which has been shown to be over-expressed by

  7. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    Science.gov (United States)

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  8. Gold electrodes modified with 16H, 18H-dibenzo[c,l]-7,9-dithia-16,18-diazapentacene for electrocatalytic oxidation of NADH

    NARCIS (Netherlands)

    Rosca, V.; Muresan, L.; Popescu, I.C.; Cristea, C.; Silberg, I.A.

    2001-01-01

    16H,18H-Dibenzo[c,l]-7,9-dithia-16,18-diazapentacene (DDDP), a new phenothiazine derivative containing two linearly condensed phenothiazine rings, strongly adsorbs on polyoriented gold resulting in a modified electrode with electrocatalytic activity for ß-nicotinamide adenine dinucleotide (NADH)

  9. Ameliorative effect and potential mechanism of Ermiao san on ...

    African Journals Online (AJOL)

    EMS (1 and 2 g/kg) significantly decreased the foot volume of AIA rats by 10 % (p < 0.05) and. 19 % (p < 0.01) ..... most experimental arthritis models, but plays a significant role in .... Rats Induced by Adenine and Potassium Oxonate. Cell.

  10. Structural studies on a non-toxic homologue of type II RIPs from ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... bond of a specific adenine in 28 S rRNA (Endo and Tsurugi. 1987; Barbieri et .... model. The structures were refined using Refmac. (Murshudov et al. 1997) from the ...... kine expression in treated spleen cells of rats. Mol. Cell.

  11. Identification of phytochemical components of aloe plantlets by gas ...

    African Journals Online (AJOL)

    MRT Pack 20 DVDs

    2013-12-04

    Dec 4, 2013 ... mented with 0.5 mgl-1 benzyl adenine + 0.5 mgl-1 α-naphthalene acetic acids into ... 5973) coupled to H.P. gas chromatograph (model 6890) equipped .... effects of Aloe vera leaf gel extract on oxidative stress in rats treated.

  12. of Caenorhabditis elegans: Adaptive and developmental regulation

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... cursor for the synthesis of flavin adenine dinucleotide (FAD) ... an excellent animal model for performing integrated in vivo ..... amino acid sequence of C. elegans RFT-2 with human hRFT2 (RFVT3), rat rRFT2 and mice.

  13. Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice

    NARCIS (Netherlands)

    Zhang, Kezhong; Kim, Hyunbae; Fu, Zhiyao; Qiu, Yining; Yang, Zhao; Wang, Jiemei; Zhang, Deqiang; Tong, Xin; Yin, Lei; Li, Jing; Wu, Jianmei; Qi, Nathan R.; Houten, Sander M.; Zhang, Ren

    2018-01-01

    The mitochondrial nicotinamide adenine dinucleotide (NAD) kinase (NADK2, also called MNADK) catalyzes phosphorylation of NAD to yield NADP. Little is known about the functions of mitochondrial NADP and MNADK in liver physiology and pathology. We investigated the effects of reduced mitochondrial NADP

  14. The Order Bacillales Hosts Functional Homologs of the Worrisome cfr Antibiotic Resistance Gene

    DEFF Research Database (Denmark)

    Hansen, Lykke H.; Planellas, Mercè H.; Long, Katherine S.

    2012-01-01

    The cfr gene encodes the Cfr methyltransferase that methylates a single adenine in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to several classes of antibiotics that include drugs of clinical and veterinary importance. This paper describes a first...

  15. NMR and Solvent Effect Study on the Thymine-Adenine-Thymine ...

    African Journals Online (AJOL)

    ... discussed about the plotted graphs of relative energies versus dielectric constants of our considered solvents. Thus, we can drastically conclude that the dielectric permittivity of the solvent is a key factor that determines the chemical behavior of DNA in solution. Keywords: TAT sequence; solvent effect; NMR parameters; ...

  16. Effects of adenine sulphate, glutamine and casein hydrolysate on in ...

    African Journals Online (AJOL)

    The in vitro raised plantlets were acclimatized under culture room conditions in different potting mixture, of which the combination of garden soil, sand and vermiculite mixture in 1:1:2 ratio was found most supportive. After 30 days of acclimatization, plantlets were transferred to soil, where established plants showed more ...

  17. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question.

    Science.gov (United States)

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2014-03-05

    Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be

  18. Direct adventitious shoot bud formation on hypocotyls explants in Millettia pinnata (L.) Panigrahi- a biodiesel producing medicinal tree species.

    Science.gov (United States)

    Nagar, Durga Singh; Jha, Suman Kumar; Jani, Jigar

    2015-04-01

    A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sulphate and 11.84 μM silver nitrate. Elongated shoots were harvested and successful rooting of microshoots achieved on MS media supplemented with 9.84 μM IBA, with 81.1 % rooting. Remaining shoot buds sub-cultured for further multiplication and elongation. Each subculture produced eight to nine elongated microshoots up to four subcultures. The rooted microshoots were successfully hardened and transferred to field.

  19. Functional and structural analysis of yeast trx system reveals structural elements of substrate specificity

    International Nuclear Information System (INIS)

    Oliveira, Marcos Antonio; Discola, Karen Fulan; Alves, Simone Vidigal; Netto, Luis Eduardo Soares; Amorim, Gisele Cardoso; Pinheiro, Anderson Sa; Valente, Ana Paula; Almeida, Fabio Ceneviva Lacerda; Medrano, Francisco Javier; Guimaraes, Beatriz Gomes

    2006-01-01

    Thioredoxin reductases (Trr) are members of the nucleotide pyridine disulfide oxide reductase family, which includes glutathione reductase (Gr), alkyl hydroperoxide reductase F (AhpF) and lipoamide dehydrogenase (Lpd). Constituents of this family are homodimeric flavoproteins containing one redoxactive disulfide and one tightly bound flavin adenine dinucleotide (FAD) per subunit. Trr catalyzes the disulfide reduction of oxidized Thioredoxin (Trx) using nicotinamide adenine dinucleotide phosphate (NADPH) via a FAD molecule and a redox-active cysteine motif. In this context, FAD transfers the reducing equivalents from NADPH molecule to the reactive cysteines and then to the Trx. Trx, Trr and NADPH comprise the Trx system. Trx are low molecular weight proteins (∼12 KDa) which are involved in several thiol-dependent cellular reactions such as synthesis of deoxyribonucleotides, sulphur metabolism, regulation of the gene expression and oxidative stress defenses. Remarkably, Trr - Trx interactions presents high species and organelle specificities. (author)

  20. The effect of spermine on spontaneous and UV-induced mutations in Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Prendergast, J.A.; Kamra, O.P.; Nasim, A.

    1984-01-01

    The effect of different concentrations of spermine on spontaneous and UV-induced mutation in the adenine forward mutation system of Schizosaccharomyces pombe was investigated. The effect of spermine on spontaneous mutation was studied in 5 mutator strains (mut 1-4, mut 1-23, mut 2-9, mut 2-20 and mut 3-21) and on UV-induced mutation in a pigmented adenine-requiring strain and its radiation-sensitive derivative (rad 13). The effect of spermine exposure on mutation induction before and after UV irradiation was also investigated. Spermine increased spontaneous forward mutation in the mut 1-4 strain by 47% and enhanced UV-induced forward mutation 2-fold in the rad 13 and normal pigmented strains. No antimutagenic effect of spermine was seen in any of the strains tested. This is in marked contrast to the antimutagenic effect of spermine observed with bacteria. (Auth.)

  1. Kennedy's disease and partial androgen insensitivity syndrome. Report of 4 cases and literature review.

    Science.gov (United States)

    Valera Yepes, Rocío; Virgili Casas, Maria; Povedano Panades, Monica; Guerrero Gual, Mireia; Villabona Artero, Carles

    2015-05-01

    Kennedy's disease, also known as bulbospinal muscular atrophy, is a rare, X-linked recessive neurodegenerative disorder affecting adult males. It is caused by expansion of an unstable cytosine-adenine-guanine tandem-repeat in exon 1 of the androgen-receptor gene on chromosome Xq11-12, and is characterized by spinal motor neuron progressive degeneration. Endocrinologically, these patients often have the features of hypogonadism associated to the androgen insensitivity syndrome, particularly its partial forms. We report 4 cases with the typical neurological presentation, consisting of slowly progressing generalized muscle weakness with atrophy and bulbar muscle involvement; these patients also had several endocrine manifestations; the most common non-neurological manifestation was gynecomastia. In all cases reported, molecular analysis showed an abnormal cytosine-adenine-guanine triplet repeat expansion in the androgen receptor gene. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  2. [Direct assays of radiation-induced DNA base lesions in mammalian cells.] Final progress report, February 1, 1984-June 30, 1986

    International Nuclear Information System (INIS)

    Wheeler, K.T.

    1986-01-01

    Adenine (Ade), 2'-deoxyadenosine (dAdo) and 5'-deoxyadenosine monophosphate (5'-dAMP) were irradiated with 50 to 15,000 Gy under oxic and hypoxic conditions. HPLC procedures providing satisfactory separation of the adenine damage products formed during irradiation of DNA model compounds were found. Structures of some of the damage products were confirmed to include 8-OHAde, 4,6-diamino-5-formamidopyrimidine, and 8-OH-5'-dAMP. Two damage products of dAdo (8-OHdAdo and the major isomer of 8,5'-cdAdo), the formation of which depends on the presence or absence of oxygen, were determined quantitatively by HPLC. The limit for HPLC detection was estimated as 4 to 50 pmoles for these compounds. This corresponds to a detection limit of about 50 Gy in radiation dose units. These two products were also detected in mixtures of all four nucleosides irradiated with 50 Gy

  3. Glycogen synthase activation by sugars in isolated hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  4. Analysis of the Main Nucleosides in Cordyceps Sinensis by LC/ESI-MS

    Directory of Open Access Journals (Sweden)

    Yun-Biao He

    2010-01-01

    Full Text Available A sensitive, selective and reliable liquid chromatography-mass spectrometry coupled with electrospray ionization interface method for simultaneous separation and determination of thymine, adenine, adenosine and cordycepin in Cordyceps sinensis has been established. The optimum separation for these analytes was achieved using a gradient elution system and a 2.0 × 150 mm Shimadzu VP-ODS column. 2-Chloroadenosine was used as internal standard for this assay. [M+H]+ions at m/z 127, 136, 268, 252 and 302 were chosen and selective ion monitoring (SIM mode was used for quantitative analysis of the four main nucleosides. The regression equations were linear in the range of 1.0–117.5 μg·mL-1 for thymine, 1.8-127.0 μg·mL-1 for adenine, 0.6-114.0 μg·mL-1 for adenosine and 0.5-107.5 μg·mL-1 for cordycepin. The limits of quantitation (LOQ and detection (LOD were 1.0 and 0.2 μg·mL-1 for thymine, 1.8 and 0.6 μg·mL-1 for adenine, 0.6 and 0.1 μg·mL-1 for adenosine and 0.5 and 0.1 μg·mL-1 for cordycepin, respectively. The recoveries of the four nucleosides ranged from 98.47 to 99.32%. The developed method was successfully used to determine nucleosides in Cordyceps sinensis from different sources.

  5. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes.

    Science.gov (United States)

    Mitrović, Nataša; Zarić, Marina; Drakulić, Dunja; Martinović, Jelena; Sévigny, Jean; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana

    2017-03-01

    17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.

  6. Raman microspectroscopic study of effects of Na(I) and Mg(II) ions on low pH induced DNA structural changes.

    Science.gov (United States)

    Muntean, C M; Segers-Nolten, G M J

    2003-01-01

    In this work a confocal Raman microspectrometer is used to investigate the influence of Na(+) and Mg(2+) ions on the DNA structural changes induced by low pH. Measurements are carried out on calf thymus DNA at neutral pH (7) and pH 3 in the presence of low and high concentrations of Na(+) and Mg(2+) ions, respectively. It is found that low concentrations of Na(+) ions do not protect DNA against binding of H(+). High concentrations of monovalent ions can prevent protonation of the DNA double helix. Our Raman spectra show that low concentrations of Mg(2+) ions partly protect DNA against protonation of cytosine (line at 1262 cm(-1)) but do not protect adenine and guanine N(7) against binding of H(+) (characteristic lines at 1304 and 1488 cm(-1), respectively). High concentrations of Mg(2+) can prevent protonation of cytosine and protonation of adenine (disruption of AT pairs). By analyzing the line at 1488 cm(-1), which obtains most of its intensity from a guanine vibration, high magnesium salt protect the N(7) of guanine against protonation. A high salt concentration can prevent protonation of guanine, cytosine, and adenine in DNA. Higher salt concentrations cause less DNA protonation than lower salt concentrations. Magnesium ions are found to be more effective in protecting DNA against binding of H(+) as compared with calcium ions presented in a previous study. Divalent metal cations (Mg(2+), Ca(2+)) are more effective in protecting DNA against protonation than monovalent ions (Na(+)). Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Biospectroscopy) 72: 000-000, 2003

  7. Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia

    NARCIS (Netherlands)

    Lachmeijer, AMA; Arngrimsson, R; Bastiaans, EJ; Pals, G; ten Kate, LP; de Vries, JIP; Kostense, PJ; Aarnoudse, JG; Dekker, GA

    OBJECTIVE: This study was undertaken to assess frequencies of the methylenetetrahydrofolate reductase gene mutations cytosine-to-thymine substitution at base 677 (C677T) and adenine-to-cytosine substitution at base 1298 (A1298C) and their interactions with homocysteine and vitamin levels among Dutch

  8. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency)

    DEFF Research Database (Denmark)

    Mills, Philippa B; Footitt, Emma J; Mills, Kevin A

    2010-01-01

    Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-alpha-aminoadipic semialdehyde/L-Delta1-piperideine 6-carboxylate. However, whilst t...

  9. Preparation of leukocyte-poor platelet concentrates from buffy coats. I. Special inserts for centrifuge cups

    NARCIS (Netherlands)

    Pietersz, R. N.; Reesink, H. W.; Dekker, W. J.; Fijen, F. J.

    1987-01-01

    A special insert was developed for centrifuge cups in order to prepare leukocyte-poor platelet concentrates from buffy coats by using quadruple citrate phosphate dextrose-saline adenine glucose mannitol systems from different manufacturers. Each centrifuge cup could contain up to 4 sets of double

  10. NAD(+) metabolism: A therapeutic target for age-related metabolic disease

    NARCIS (Netherlands)

    Mouchiroud, Laurent; Houtkooper, Riekelt H.; Auwerx, Johan

    2013-01-01

    Abstract Nicotinamide adenine dinucleotide (NAD) is a central metabolic cofactor by virtue of its redox capacity, and as such regulates a wealth of metabolic transformations. However, the identification of the longevity protein silent regulator 2 (Sir2), the founding member of the sirtuin protein

  11. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  12. Biological Sensors Using DNA Functionalized Multiwalled Carbon Nanotubes

    Science.gov (United States)

    2009-10-01

    hydrodynamic voltammetry and the results have been discussed. 5 2. Experimental Methods Reagents GOD (EC 1.1.3.4, Aspergillus niger , >100 U...is of practical use, stable and inexpensive. GOD from Aspergillus , is a homodimer containing two tightly bound flavine adenine dinucleotide (FAD

  13. Transfusion requirements in septic shock (TRISS) trial - comparing the effects and safety of liberal versus restrictive red blood cell transfusion in septic shock patients in the ICU

    DEFF Research Database (Denmark)

    Holst, Lars B; Haase, Nicolai; Wetterslev, Jørn

    2013-01-01

    Requirements in Septic Shock (TRISS) trial is a multicenter trial with assessor-blinded outcome assessment, randomising 1,000 patients with septic shock in 30 Scandinavian ICUs to receive transfusion with pre-storage leuko-depleted RBC suspended in saline-adenine-glucose and mannitol (SAGM) at haemoglobin...

  14. Biochemistry of Trypanosomatidae of Importance in Africa.

    Science.gov (United States)

    1983-12-01

    translocation of the substrate across the cytoplasmic menbrane . As a consequence of this trans- location, substrates may become available to intracellular...concentration in plasma (Arnold and Cysyk, 1983). These authors found that in rat liver the purines hypoxanthine, inosine, and adenine were all found

  15. Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment

    NARCIS (Netherlands)

    Fonseca Guerra, C.; Bickelhaupt, F.M.; Snijders, J.G.; Baerends, E.J.

    2000-01-01

    Up till now, there has been a significant disagreement between theory and experiment regarding hydrogen bond lengths in Watson - Crick base pairs. To investigate the possible sources of this discrepancy, we have studied numerous model systems for adenine - thymine (AT) and guanine - cytosine (GC)

  16. Growth hormone dose in growth hormone-deficient adults is not associated with IGF-1 gene polymorphisms

    NARCIS (Netherlands)

    S. Meyer (Silke); S. Schaefer (Stephan); D. Ivan (Diana); L. Stolk (Lisette); P.P. Arp (Pascal); A.G. Uitterlinden (André); P.P. Nawroth (Peter); U. Plöckinger (Ursula); G.K. Stalla (Günter); U. Tuschy (Ulrich); M.M. Weber (Matthias); W.J. Weise (Wolfgang); A. Pfützner (Andreas); P. Kann (Peter)

    2009-01-01

    textabstractAims: Several SNPs and a microsatellite cytosine-adenine repeat promoter polymorphisms of the IGF-1 gene have been reported to be associated with circulating IGF-1 serum concentrations. Variance in IGF-1 concentrations due to genetic variations may affect different response to growth

  17. Biochemical characterization of blood plasma of coronary artery ...

    Indian Academy of Sciences (India)

    2015-01-11

    Jan 11, 2015 ... R2 was 0.67 and Q2 was 0.61 for the PLS model for controls vs. TVD patients indicating the .... amide adenine dinucleotide via the malate-aspartate cycle. The malate-aspartate .... muscle of perfused rat heart. Effect of insulin.

  18. Kongenit methaemoglobinaemi: en sjaelden årsag til neonatal cyanose

    DEFF Research Database (Denmark)

    Smith, Birgitte; Pryds, Ole Axel; Christensen, Ernst

    2008-01-01

    We present a case study of a newborn girl with a reduced erythrocytic nicotinamide adenine dinucleotide (NADH)-dependent methaemoglobin reductase level. Within the first days of life she developed cyanosis due to a methaemoglobin level of 21%. The hyperoxia test was characteristic, with normal in...

  19. Characterization of genetic miscoding lesions caused by postmortem damage

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Hansen, Anders J; Willerslev, Eske

    2002-01-01

    The spectrum of postmortem damage in mitochondrial DNA was analyzed in a large data set of cloned sequences from ancient human specimens. The most common forms of damage observed are two complementary groups of transitions, termed "type 1" (adenine-->guanine/thymine-->cytosine) and "type 2...

  20. Immunomodulating effect of blood transfusion: is storage time important?

    DEFF Research Database (Denmark)

    Mynster, T; Dybkjoer, E; Kronborg, Gitte

    1998-01-01

    OBJECTIVES: TNF-alpha and IL-2 are important cytokines in macrophage and T-lymphocyte activity against infection and dissemination of malignant cells. We studied the influence of supernatants from stored whole blood and buffy-coat-depleted SAGM (saline, adenine, glucose and mannitol) blood in sti...

  1. Gene cloning and characterization of NADH oxidase from ...

    African Journals Online (AJOL)

    The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 ...

  2. Thiamin and riboflavin vitamers in human milk: effects of lipid-based nutrient supplementation and stage of lactation on vitamer secretion and contributions to total vitamin content

    Science.gov (United States)

    While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main...

  3. The Johns Hopkins RTR Consortium: A Collaborative Approach to Advance Translational Science and Standardize Clinical Monitoring of Restorative Transplantation

    Science.gov (United States)

    2016-10-01

    showed indirect signs of higher ATP production in the MP group when compared to the CSP. The adenine family has a variety of roles in cellular...which leads into oxidative damage and disintegration of cellular membranes when prolonged hypothermia, anoxia, and limited glucose supply is imposed

  4. Review Article Heart failure - an inflammatory paradigm

    African Journals Online (AJOL)

    1999-02-01

    Feb 1, 1999 ... Together with the growing clinical problem of heart failure, new information at a .... nificantly raised in the prevention as well as the treatment arms when .... tricular dysfunction and pulmonary oedema in humans; experimentally ... adenine dinucleotide (reduced) and the rate-limiting amino acid (L-arginine).

  5. Synthesis and spectroscopy of clay intercalated Cu(II) bio-monomer complexes: coordination of Cu(II) with purines and nucleotides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Leeman, H.; Schoonheydt, R.A.

    1999-01-01

    The spectroscopic properties of Cu(bio-monomer)nm+ complexes [BM=bio-monomer (purine, adenine, guanine, hypoxanthine, 5-ADP and 5-GMP)] in saponite clays have been investigated by diffuse reflectance spectroscopy (DRS) in the UV-Vis-NIR region and electron paramagnetic resonance (EPR) at X-band.

  6. Biochemical characterization of putative adenylate dimethylallyltransferase and cytokinin dehydrogenase from Nostoc sp. PCC 7120

    NARCIS (Netherlands)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F.; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are

  7. Mevastatin-induced inhibition of cell growth in avocado suspension ...

    African Journals Online (AJOL)

    Cell suspension cultures were established using soft, friable callus derived from nucellar tissue of 'Hass' avocado (Persea americana Mill.) seed from fruit harvested 190 days after full bloom. Cell cultures were maintained in liquid medium supplemented with naphthalene acetic acid (NAA), isopentenyl adenine (iP) and ...

  8. Huntingtin gene repeat size variations affect risk of lifetime depression

    DEFF Research Database (Denmark)

    Gardiner, Sarah L.; van Belzen, Martine J.; Boogaard, Merel W.

    2017-01-01

    Huntington disease (HD) is a severe neuropsychiatric disorder caused by a cytosine-adenine-guanine (CAG) repeat expansion in the HTT gene. Although HD is frequently complicated by depression, it is still unknown to what extent common HTT CAG repeat size variations in the normal range could affect...

  9. Ketogenesis in rat-liver mitochondria: Stimulation by palmityl-coenzyme A

    NARCIS (Netherlands)

    Vaartjes, W.J.; Lopes-Cardozo, M.; Bergh, S.G. van den

    1972-01-01

    It is well-known that the movement of adenine nucleotides (AdN) across the inner mitochondrial membrane is markedly decreased both by unsaturated and by saturated long-chain fatty acids. A similar effect is displayed by palmityl-CoA as demonstrated recently with isolated mitochondria of rat

  10. Metabolic footprint of Lactobacillus acidophilus NCFM at different pH

    DEFF Research Database (Denmark)

    Sulek, Karolina; Frandsen, Henrik Lauritz; Smedsgaard, Jørn

    2012-01-01

    increased the concentration of lactic acid, succinic acid, adenine and arginine in the medium. The metabolism of NCFM did not change significantly between pH 5 and 7, suggesting that other environmental factors than pH might have bigger impact on its colonization throughout the gastrointestinal tract....

  11. Mitochondrial uncouplers with an extraordinary dynamic range.

    Science.gov (United States)

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy.

  12. Effect of different post harvest treatments on physical characteristics of custard apple fruits

    International Nuclear Information System (INIS)

    Singh, Alpana; Chouksey, Swati; Deshmukh, Reena; Thakur, R.S.

    2008-01-01

    The study was conducted with the objective to see the effect of different post harvest treatments on physical characteristics of custard apple fruits. Fruits were treated with different doses of gamma radiation ranging from 0.25 to 1.75 kGy in combination with antioxidant i.e. Benzyl Adenine (BA) at the rate of 50 and 100 ppm and stored for 12 days at ambient temperature (25 ± 5 deg C, RH 90 ± 2 %) during winter season. Fruits treated with low doses of gamma radiation i.e. upto 1.00 kGy along with 50 ppm benzyl adenine extended the shelf life of fruits up to 6 days as compared to untreated fruits as well as fruits treated with higher doses of radiation. A decreasing trend in physiological weight loss (PLW) and percentage of marketable fruits was observed with increase in radiation doses. This promises to provide advantage to producers for transhipment of custard apple fruits in good and acceptable condition. (author)

  13. Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases

    DEFF Research Database (Denmark)

    Ntokou, Eleni; Hansen, Lykke Haastrup; Kongsted, Jacob

    2015-01-01

    -ray structure of RlmN. We used a trinucleotide as target sequence and assessed its positioning at the active site for methylation. The calculations are in accordance with different poses of the trinucleotide in the two enzymes indicating major evolutionary changes to shift the C2/C8 specificities. To explore......Cfr and RlmN methyltransferases both modify adenine 2503 in 23S rRNA (Escherichia coli numbering). RlmN methylates position C2 of adenine while Cfr methylates position C8, and to a lesser extent C2, conferring antibiotic resistance to peptidyl transferase inhibitors. Cfr and RlmN show high sequence...... interchangeability between Cfr and RlmN we constructed various combinations of their genes. The function of the mixed genes was investigated by RNA primer extension analysis to reveal methylation at 23S rRNA position A2503 and by MIC analysis to reveal antibiotic resistance. The catalytic site is expected...

  14. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    International Nuclear Information System (INIS)

    Chen Huixia; Xiu Zhilong; Bai Fengwu

    2014-01-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD + -linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation

  15. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    Science.gov (United States)

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  16. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I

    Science.gov (United States)

    Gupta, Yogesh K.; Chan, Siu-Hong; Xu, Shuang-Yong; Aggarwal, Aneel K.

    2015-06-01

    Type III R-M enzymes were identified >40 years ago and yet there is no structural information on these multisubunit enzymes. Here we report the structure of a Type III R-M system, consisting of the entire EcoP15I complex (Mod2Res1) bound to DNA. The structure suggests how ATP hydrolysis is coupled to long-range diffusion of a helicase on DNA, and how a dimeric methyltransferase functions to methylate only one of the two DNA strands. We show that the EcoP15I motor domains are specifically adapted to bind double-stranded DNA and to facilitate DNA sliding via a novel `Pin' domain. We also uncover unexpected `division of labour', where one Mod subunit recognizes DNA, while the other Mod subunit methylates the target adenine--a mechanism that may extend to adenine N6 RNA methylation in mammalian cells. Together the structure sheds new light on the mechanisms of both helicases and methyltransferases in DNA and RNA metabolism.

  17. Regulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chong; Ma, Kun; Xing, Xin-Hui [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-02-15

    Experiments involving the addition of external nicotinamide adenine dinucleotide, reduced form (NADH) or nicotinamide adenine dinucleotide (NAD{sup +}) have been designed to examine how the hydrogen in Enterobacter aerogenes is liberated by NADH or NAD{sup +}. The addition of external NADH or NAD{sup +} was found to regulate hydrogen production by E. aerogenes in resting cells, batch cultures, and chemostat cultures. Particularly in chemostat cultivation, with the external addition of NADH, hydrogen production via the NADH pathway was decreased, while that via the formate pathway was increased; in the end, the overall hydrogen p was decreased. The addition of NAD{sup +}, on the other hand, gave the opposite results. The membrane-bound hydrogenase was found to play a central role in regulating hydrogen production. The occurrence of NADH oxidation (NAD{sup +} reduction) on the cell membrane resulted in an electron flow across the membrane; this changed the oxidation state and metabolic pattern of the cells, which eventually affected the hydrogen evolution. (author)

  18. Structural basis for recognition of S-adenosylhomocysteine by riboswitches

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A.L.; Heroux, A.; Reyes, F. E.; Batey, R. T.

    2010-11-01

    S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.

  19. Structural Basis for Recognition of S-adenosylhomocysteine by Riboswitches

    Energy Technology Data Exchange (ETDEWEB)

    A Edwards; F Reyes; A Heroux; R Batey

    2011-12-31

    S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.

  20. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    Science.gov (United States)

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-05

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution.

  1. Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)

    Science.gov (United States)

    Risqi, A. M.; Yudiarsah, E.

    2017-07-01

    Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.

  2. Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2011-01-01

    Full Text Available Alcohol dehydrogenases (ADH are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD or nicotinamide adenine dinucleotide phosphate (NADP, as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5'-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+. The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3, and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD+, thereby indicating ethanol as one of the substrates of BmADH.

  3. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    Science.gov (United States)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  4. Roles for Dam methylation in bacterial chromosome replication

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Koch, Birgit; Skovgaard, Ole

    GATC sequences in the DNA of Escherichia coli and related species are methylated at the adenine residue by DNA adenine methyltransferase (DamMT). These methylated residues and/or the level of DamMT influence initiation of chromosome replication from the replication origin, oriC, which contain...... for about one third of the cell cycle. During sequestration at least three mechanisms operate to lower the activity of the initiator protein, DnaA. First, the dnaA promoter, which also contains an excess of GATC sequences, is sequestered for the same period of time as oriC to prevent de novo DnaA synthesis....... Second, new DnaA binding sites outside oriC are generated by replication which serve to titrate free DNA protein. Third, after initiation, DnaA-ATP is converted to inactive DnaA-ADP by a process called RIDA (regulatory inactivation of DnaA), which is dependent on the beta-clamp of DNA polymerase III...

  5. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy

    Science.gov (United States)

    Schweitzer, Dietrich; Deutsch, Lydia; Klemm, Matthias; Jentsch, Susanne; Hammer, Martin; Peters, Sven; Haueisen, Jens; Müller, Ulrich A.; Dawczynski, Jens

    2015-06-01

    The time-resolved autofluorescence of the eye is used for the detection of metabolic alteration in diabetic patients who have no signs of diabetic retinopathy. One eye from 37 phakic and 11 pseudophakic patients with type 2 diabetes, and one eye from 25 phakic and 23 pseudophakic healthy subjects were included in the study. After a three-exponential fit of the decay of autofluorescence, histograms of lifetimes τi, amplitudes αi, and relative contributions Qi were statistically compared between corresponding groups in two spectral channels (490diabetic patients and age-matched controls (p450 ps, and the shift of τ3 from ˜3000 to 3700 ps in ch1 of diabetic patients when compared with healthy subjects indicate an increased production of free flavin adenine dinucleotide, accumulation of advanced glycation end products (AGE), and, probably, a change from free to protein-bound reduced nicotinamide adenine dinucleotide at the fundus. AGE also accumulated in the crystalline lens.

  6. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  7. The Formation of Nucleobases from the Ultraviolet Photoirradiation of Purine in Simple Astrophysical Ice Analogues.

    Science.gov (United States)

    Materese, Christopher K; Nuevo, Michel; Sandford, Scott A

    2017-08-01

    Nucleobases are the informational subunits of RNA and DNA and are essential to all known forms of life. The nucleobases can be divided into two groups of molecules: the pyrimidine-based compounds that include uracil, cytosine, and thymine, and the purine-based compounds that include adenine and guanine. Previous work in our laboratory has demonstrated that uracil, cytosine, thymine, and other nonbiological, less common nucleobases can form abiotically from the UV photoirradiation of pyrimidine in simple astrophysical ice analogues containing combinations of H 2 O, NH 3 , and CH 4 . In this work, we focused on the UV photoirradiation of purine mixed with combinations of H 2 O and NH 3 ices to determine whether or not the full complement of biological nucleobases can be formed abiotically under astrophysical conditions. Room-temperature analyses of the resulting photoproducts resulted in the detection of adenine, guanine, and numerous other functionalized purine derivatives. Key Words: Pyrimidine-Nucleobases-Interstellar; Ices-Cometary; Ices-Molecular processes-Prebiotic chemistry. Astrobiology 17, 761-770.

  8. Effect of nicotinamide adenine dinucleotide on bupivacaine-induced neurotoxicity%烟酰胺腺嘌呤二核苷酸对布比卡因所致神经细胞毒性的影响

    Institute of Scientific and Technical Information of China (English)

    郑艇; 徐世元; 赖露颖; 李乐; 李亚文; 周树勤

    2017-01-01

    Objective Investigating whether bupivacaine induces decline of intracellular nicotinamide adenine dinucleotide (NAD) level,and whether NAD level decreasing is involved in bupivacaine-induced neurotoxicity.Methods SH-SY5Y cell were treated with 1 mmol/L for indicated time points (30 min to 7 h),the intracellular NAD content and cell viability were detected.SH-SY5Y cells were treated with bupivacaine at concentrations varying from 1 mmol/L to 10 mmol/L for 30 min.The intracellular NAD content and cell viability were then detected.SH-SY5Y cells exposed to 5 mmol/L bupivacaine for 30 min,upon 30 min pre-,postNAD treatment at different concentrations.The intracellular NAD levels and the cell viabilities in all groups were examined.Results The intracellular NAD level began to decline after 3 h bupivacaine treatment.The level was decreased to (27.8±8.47)% at 7 h time point of treatment.The intracellular NAD content of SH-SY5Y cells were decreased to (21.50±3.15)%,(25.73±7.22)%,and (16.07±13.93)% respectively after receiving 2,5,10 mmol/L bupivacaine treatment for 30 min.Thus,the content levels of NAD were significantly lower than untreated control (P<0.05).Upon same conditions,there were no significant differences among different experimental groups with 1 mmol/L bupivacaine treatment at indicated time points (P>0.05).And cell viability were also decreased while concentrations of bupivacaine increasing [cell viability significantly declined to (49.44±8.55)%,(35.75±15.83)%,and (25.58±4.45)%,respectively,at the concentration of 2,5,10 mmol/L (P<0.05).The cellular NAD levels reached (85.87±11.82)%,(89.21±11.55)%,and (105.05±58.82)% in 2.5,5,10 mmol/L NAD pre-treatment groups respectively.The cellular NAD levels were significantly higher than the levels in bupivacaine groups (P<0.05).The cell viabilities were higher in cells receiving NAD pretreatment or post-treatment than viability of cells were treated with 5 mmol/L bupivacaine alone

  9. Inhibitory action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein kinases

    NARCIS (Netherlands)

    Wit, René J.W. de; Hekstra, Doeke; Jastorff, Bernd; Stec, Wojciech J.; Baraniak, Janina; Driel, Roel van; Haastert, Peter J.M. van

    1984-01-01

    A series cAMP derivatives with modifications in the adenine, ribose and cyclophosphate moiety were screened for their binding affinity for the two types of cAMP-binding sites in mammalian protein kinase type I. In addition, the activation of the kinase by these analogs was monitored. The binding

  10. Cytokinin treatment and flower quality in Phalaenopsis orchids ...

    African Journals Online (AJOL)

    We previously documented an N-6-benzyladenine (BA) protocol to increase spike and flower number in Phalaenopsis orchids. To increase options for growers, we tested two additional cytokinins, kinetin (Kin) and 2-iso-pentenyl adenine (2-iP), comparing them with BA. Two key commercial cultivars were used ...

  11. Orbital interactions and charge redistribution in weak hydrogen bonds: Watson-Crick GC mimic involving C-H proton donor and F proton acceptor groups

    NARCIS (Netherlands)

    Fonseca Guerra, C.; Baerends, E.J.; Bickelhaupt, F.M.

    2006-01-01

    The discovery by Kool and coworkers that 2,4-difluorotoluene (F) mimics thymine (T) in DNA replication has led to controversy regarding the question of whether this mimic has the capability of forming hydrogen bonds with adenine (A). Recently, we have provided evidence for an important role of both

  12. Potential of Klebsiella oxytoca for 1,3-propanediol production from ...

    African Journals Online (AJOL)

    The increased rate of glycerol consumption and the formation of 1,3-propanediol coincides with formate degradation. This indicates that formate degradation likely works as an alternative means to generate part of the nicotine adenine dinucleotide (NADH) used by the 1,3-propanediol-dehydrogenase enzyme. Yield in mole ...

  13. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  14. Modified formulation of CPDA for storage of whole blood, and of SAGM for storage of red blood cells, to maintain the concentration of 2,3-diphosphoglycerate.

    Science.gov (United States)

    Kurup, P A; Arun, P; Gayathri, N S; Dhanya, C R; Indu, A R

    2003-11-01

    A dramatic decrease in the level of 2,3-diphosphoglycerate (2,3-DPG) takes place during the storage of whole blood (WB) in CPDA (citrate-phosphate-dextrose-adenine) and a similar decrease occurs during the storage of red blood cells (RBCs) in SAGM (saline-adenine-glucose-mannitol). The aim of the present study was to prevent this decrease by modifying CPDA and SAGM. The pH of WB anticoagulant or RBC preservative solution was maintained at 7.6 by autoclaving the dextrose solution separately, by incorporating ascorbic acid and nicotinic acid into both CPDA and SAGM (to produce modified CPDA and SAGM solutions), and by reducing the concentration of adenine and adding citrate to the modified SAGM solution. The concentration of 2,3-DPG in WB after 28 days of storage in modified CPDA, and in RBCs stored in modified SAGM, was compared with that in WB or RBCs stored in unmodified solutions. The initial 2,3-DPG levels were maintained after 28 days in the modified formulations [10.63 +/- 2.58 microM/g of haemoglobin (Hb) in the case of modified CPDA and 12.07 +/- 1.47 microM/g of Hb in the case of modified SAGM], whereas in standard CPDA and SAGM solutions, the concentration of 2,3-DPG decreased to very low levels (0.86 +/- 0.97 microM/g Hb for CPDA and 0.12 +/- 0.008 for SAGM). Our modification in the formulation of CPDA or SAGM is effective in arresting the dramatic decrease in the level of 2,3-DPG that occurs during storage of WB and RBCs in unmodified solutions.

  15. Structural analysis of d(GCAATTGC)2 and its complex with berenil by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Yoshida, Mitsuru; Banville, D.L.; Shafer, R.H.

    1990-01-01

    The structures of d(GCAATTGC) 2 and its complex with berenil in solution were analyzed by two-dimensional 1 H NMR spectroscopy. Intra- and internucleotide nuclear Overhauser effect (NOE) connectivities demonstrate that the octanucleotide duplex is primarily in the B conformation. Binding with berenil stabilizes the duplex with respect to thermal denaturation by about 10 degree C, based on the appearance of the imino proton signals. The berenil-d(GCAATTGC) 2 system is in fast exchange on the NMR time scale. The two-dimensional NMR data reveal that berenil binds in the minor groove of d(GCAATTGC) 2 . The aromatic drug protons are placed within 5 angstrom of the H2 proton of both adenines, the H1', H5', and H5 double-prime of both thymidines, and the H4', H5', and H5 double-prime of the internal guanosine. The amidine protons on berenil are also close to the H2 proton of both adenines. The duplex retains an overall B conformation in the complex with berenil. At 18 degree C, NOE contacts at longer mixing times indicate the presence of end-to-end association both in the duplex alone and also in its complex with berenil. These intermolecular contacts either vanished or diminished substantially at 45 degree C. Two molecular models are proposed for the berenil-(GCAATTGC) 2 complex; one has hydrogen bonds between the berenil amidine protons and the carbonyl oxygen, O2, of the external thymines, and the other has hydrogen bonds between the drug amidine protons and the purine nitrogen, N3, of the internal adenines. Quantitative analysis of the NOE data favors the second model

  16. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  17. Association between mutation spectra and stable and unstable DNA adduct profiles in Salmonella for benzo[a]pyrene and dibenzo[a,l]pyrene

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, David M., E-mail: demarini.david@epa.gov [Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hanley, Nancy M.; Warren, Sarah H.; Adams, Linda D.; King, Leon C. [Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2011-09-01

    Highlights: {yields} Benzo[a]pyrene (BP) induces stable DNA adducts and mutations primarily at guanine. {yields} Dibenzo[a,l]pyrene (DBP) induces them primarily at adenine. {yields} BP induces abasic sites, but DBP does not in the Salmonella mutagenicity assay. {yields} Stable DNA adducts alone appear to account for the mutation spectrum of DBP. {yields} Stable DNA adducts and possibly abasic sites account for the mutation spectrum of BP. - Abstract: Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ({sup 32}P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine

  18. Efficient regeneration of NADPH in a 3-enzyme cascade reaction by in situ generation of glucose 6-phosphate from glucose and pyrophosphate

    NARCIS (Netherlands)

    Hartog, A.F.; van Herk, T.; Wever, R.

    2011-01-01

    We report here a promising method to regenerate NADPH (nicotinamide adenine dinucleotide phosphate) using the intermediate formation of glucose 6-phosphate (G6P) from glucose and pyrophosphate (PPi) catalyzed by the acid phosphatase from Shigella flexneri (PhoN-Sf). The G6P formed is used in turn by

  19. Distribution of 3H within purine nucleotides of Ehrlich mouse ascites tumour cells after intraabdominal injection of myo-[2-3H]inositol

    DEFF Research Database (Denmark)

    Christensen, Søren; Klenow, H.; Overgaard-Hansen, Kay

    2000-01-01

    /desorption the nucleotides were dephosphorylated, enriched with [U-14C]adenosine, and exposed to purine-nucleoside specific enzymes. Reverse phase HPLC and radioactivity measurement demonstrated that for adenosine about 82% of total stable 3H label was in ribose and thus about 18% in adenine. For guanosine about 89...

  20. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability

    NARCIS (Netherlands)

    Hageman, G.J.; Stierum, R.H.

    2001-01-01

    Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD+ (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD+ is the sole

  1. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    Science.gov (United States)

    2014-11-24

    onto the glass/ITO substrates and baked at 120uC for 15 min before depositing organic and metal (electrode) layers in a molecular beam deposition...PLEDs by using salmon DNA as an electron blocking layer. J. of Lumin. 130, 331–333, doi:10.1016/j.jlumin.2009.09.012 (2010). 13. Gupta, R. B., Nagpal

  2. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its ...

  3. Micropropagation of Plumbago zeylanica L.

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... Available online at http://www.academicjournals.org/AJB ... alternative technology could be the application of in vitro culture of desirable .... tions of BAP, IAA, NAA and adenine sulfate (ADS) to induce plant regeneration. After 5 ... were transferred to polythene bags, which were placed in green- house till the ...

  4. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    Multifunctional ligand 5-cyano-6-(-4-pyridyl)-2-thiouracil (L) was prepared and allowed to react with trans [Co(en)2Cl2]+Cl– ... thymine and adenine bases. Complexes thus prepared after characterization by their elemental analysis, FAB ... Thus on the basis of above reports it was considered worthwhile to synthesize some ...

  5. DNA homoduplexes containing no pyrimidine nucleotide

    Czech Academy of Sciences Publication Activity Database

    Kypr, Jaroslav; Kejnovská, Iva; Vorlíčková, Michaela

    2003-01-01

    Roč. 32, č. 2 (2003), s. 154-158 ISSN 0175-7571 R&D Projects: GA ČR GA301/01/0590; GA AV ČR IAA4004201 Institutional research plan: CEZ:AV0Z5004920 Keywords : adenine * base pairing * circular dichroism spectroscopy Subject RIV: BO - Biophysics Impact factor: 1.769, year: 2003

  6. galactosidase and α

    African Journals Online (AJOL)

    phosphate, fructose-6-phosphate, fructose-1- phosphate, α -nicotinamide adenosine dinucleotide (α ..... compared with that of α -nicotinamide adenine dinucleotide (16.3 ± 0.6%) and sodium phytate. (15.2 ± 1.8%) ..... 47: 829–835. Aritajat S., Saenphet K. & Srikalayanukul C., 2005. The toxicity of a crude enzyme extract from.

  7. The on–off switch of CRISPR immunity against phages in Escherichia coli

    OpenAIRE

    Mojica, Francisco J.M.; Díez-Villaseñor, César

    2010-01-01

    CRISPR/CAS is a novel prokaryotic defence system against cell invaders. A typical CRISPR/CAS system consists of one or more clusters of regularly interspaced short, often palindromic, repeats (CRISPR) followed at one side by an adenine- and thymine-rich (AT-rich) leader sequence, and a variable set of CAS (CRISPR associated) genes.

  8. Oral aversion to dietary sugar, ethanol and glycerol correlates with alterations in specific hepatic metabolites in a mouse model of human citrin deficiency.

    Science.gov (United States)

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Fujimoto, Yuki; Furuie, Sumie; Yamamura, Ken-Ichi; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Moriyama, Mitsuaki; Sinasac, David S; Yamamoto, Takashi; Furukawa, Tatsuhiko; Kobayashi, Keiko

    2017-04-01

    Mice carrying simultaneous homozygous mutations in the genes encoding citrin, the mitochondrial aspartate-glutamate carrier 2 (AGC2) protein, and mitochondrial glycerol-3-phosphate dehydrogenase (mGPD), are a phenotypically representative model of human citrin (a.k.a., AGC2) deficiency. In this study, we investigated the voluntary oral intake and preference for sucrose, glycerol or ethanol solutions by wild-type, citrin (Ctrn)-knockout (KO), mGPD-KO, and Ctrn/mGPD double-KO mice; all substances that are known or suspected precipitating factors in the pathogenesis of human citrin deficiency. The double-KO mice showed clear suppressed intake of sucrose, consuming less with progressively higher concentrations compared to the other mice. Similar observations were made when glycerol or ethanol were given. The preference of Ctrn-KO and mGPD-KO mice varied with the different treatments; essentially no differences were observed for sucrose, while an intermediate intake or similar to that of the double-KO mice was observed for glycerol and ethanol. We next examined the hepatic glycerol 3-phosphate, citrate, citrulline, lysine, glutamate and adenine nucleotide levels following forced enteral administration of these solutions. A strong correlation between the simultaneous increased hepatic glycerol 3-phosphate and decreased ATP or total adenine nucleotide content and observed aversion of the mice during evaluation of their voluntary preferences was found. Overall, our results suggest that the aversion observed in the double-KO mice to these solutions is initiated and/or mediated by hepatic metabolic perturbations, resulting in a behavioral response to increased hepatic cytosolic NADH and a decreased cellular adenine nucleotide pool. These findings may underlie the dietary predilections observed in human citrin deficient patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Structural models of zebrafish (Danio rerio NOD1 and NOD2 NACHT domains suggest differential ATP binding orientations: insights from computational modeling, docking and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Jitendra Maharana

    Full Text Available Nucleotide-binding oligomerization domain-containing protein 1 (NOD1 and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved 'Lysine' at Walker A formed hydrogen bonds (H-bonds and Aspartic acid (Walker B formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. 'Proline' of GxP motif (Pro386 of NOD1 and Pro464 of NOD2 interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.

  10. Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Camila P. Jordão

    Full Text Available OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR and Wistar Kyoto rats (WKY were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively. The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%. Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving

  11. Efficient micropropagation of Citrus sinensis (L.) Osbeck from ...

    African Journals Online (AJOL)

    ... shoots/explant) in comparison to control (0.00±0.00 shoots/explant). Microshoots were rooted best (75.00±14.43%) under the treatment 100μM NAA for 48 hrs. and rooted plantlets were transferred to soil, following acclimatization were taken to maturity in the polyhouse. Keywords: Malta, Himalaya, benzyl adenine (BA), ...

  12. AVE bond index in the H-bond of the Watson-Crick pairs

    International Nuclear Information System (INIS)

    Giambiagi, M.; Giambiagi, M.S. de; Barroso Filho, W.

    1981-01-01

    The normal Watson-Crick base pairs are treated as super-molecules. The properties of the electronic distribution along the N-H...Y bonds are studied in an all-valence-electrons calculation, through a bond index formula devised for non-orthogonal basis. Eletronic density diagrams of the adenine-uracil base pair are analysed. (Auhor) [pt

  13. 108 - 114_Tanko_ Anti-Diabetic

    African Journals Online (AJOL)

    pc

    2017-06-01

    Jun 1, 2017 ... excessive nicotinamide adenine dinucleotide phosphate- oxidase ... Acute toxicity study. The lethal dose (LD50) of the plant extract was determined by the method of Lorke (1983) using 12 mice. In the first phase, mice were divided into 3 groups of 3 ... They were observed for 24 hours for signs of toxicity.

  14. Pancreatic Beta-Cell Purification by Altering FAD and NAD(PH Metabolism

    Directory of Open Access Journals (Sweden)

    P. de Vos

    2008-07-01

    Full Text Available Isolation of primary beta cells from other cells within in the pancreatic islets is of importance for many fields of islet research. However, up to now, no satisfactory method has been developed that gained high numbers of viable beta cells, without considerable alpha-cell contamination. In this study, we investigated whether rat beta cells can be isolated from nonbeta endocrine cells by manipulating the flavin adenine dinucleotide (FAD and nicotinamide-adenine dinucleotide phosphate (NAD(PH autofluorescence. Beta cells were isolated from dispersed islets by flow cytometry, based on their high FAD and NAD(PH fluorescence. To improve beta cell yield and purity, the cellular FAD and NAD(PH contents were altered by preincubation in culture media containing varying amounts of D-glucose and amino acids. Manipulation of the cellular FAD and NAD(PH fluorescence improves beta cell yield and purity after sorting. This method is also a fast and reliable method to measure beta cell functional viability. A conceivable application is assessing beta cell viability before transplantation.

  15. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  16. Regular exercise training reverses ectonucleotidase alterations and reduces hyperaggregation of platelets in metabolic syndrome patients.

    Science.gov (United States)

    Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-02-15

    Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (Pexercise training (Pexercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lanthanide ions as absorption spectral probes in biochemical reactions

    International Nuclear Information System (INIS)

    Misra, S.N.

    1989-01-01

    The interactions of adenine, adenosine, adenosine 5'-monophosphate, 5'-diphosphate and 5'-triphosphate with Pr(III) and Nd(III) in different stoichiometries and at varying pH levels have been investigated by electronic spectral studies. The intra 4f-4f transitions yield sharp bands which were analysed individually by Gaussian curve analysis. The energy interaction (Fsup(k),Esup(k)) spin orbit interaction (ζ4f), bonding(b), nephelauxetic (β,δ) and intensity parameters (Tsub(τ.P)) have been computed on HP-1000/45 computer using regression analyses refined by least square fit. The nature of bonding, coordination environment, outer and inner sphere coordination have been interpreted in terms of the magnitude of these parameters as compared to the lanthanide free ion. In order to supplicate the solution studies the crystalline compounds of AMP, ADP and ATP with Pr(III) and Nd(III) have been isolated and characterized by IR, 1 H and 31 P NMR studies. The infrared spectral data indicated weak interaction with the imidazole nitrogen of adenine moiety and bidentate attachment of oxygen. (author). 10 refs

  18. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    Science.gov (United States)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  19. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study.

    Science.gov (United States)

    Srivastava, Ruby

    2018-03-01

    We study the binding of the neutral Ag n (n = 8, 10, 12) to the DNA base-adenine (A), guanine (G) and Watson-Crick -adenine-thymine, guanine-cytosine pairs. Geometries of complexes were optimized at the DFT level using the hybrid B3LYP functional. LANL2DZ effective core potential was used for silver and 6-31 + G ** was used for all other atoms. NBO charges were analyzed using the Natural population analysis. The absorption properties of Ag n -A,G/WC complexes were also studied using time-dependent density functional theory. The absorption spectra for these complexes show wavelength in the visible region. It was revealed that silver clusters interact more strongly with WC pairs than with isolated DNA complexes. Furthermore, it was found that the electronic charge transferred from silver to isolated DNA clusters are less than the electronic charge transferred from silver to the Ag n -WC complexes. The vertical ionization potential, vertical electron affinity, hardness, and electrophilicity index of Ag n -DNA/WC complexes have also been discussed.

  20. High-fidelity in vivo replication of DNA base shape mimics without Watson–Crick hydrogen bonds

    Science.gov (United States)

    Delaney, James C.; Henderson, Paul T.; Helquist, Sandra A.; Morales, Juan C.; Essigmann, John M.; Kool, Eric T.

    2003-01-01

    We report studies testing the importance of Watson–Crick hydrogen bonding, base-pair geometry, and steric effects during DNA replication in living bacterial cells. Nonpolar DNA base shape mimics of thymine and adenine (abbreviated F and Q, respectively) were introduced into Escherichia coli by insertion into a phage genome followed by transfection of the vector into bacteria. Genetic assays showed that these two base mimics were bypassed with moderate to high efficiency in the cells and with very high efficiency under damage-response (SOS induction) conditions. Under both sets of conditions, the T-shape mimic (F) encoded genetic information in the bacteria as if it were thymine, directing incorporation of adenine opposite it with high fidelity. Similarly, the A mimic (Q) directed incorporation of thymine opposite itself with high fidelity. The data establish that Watson–Crick hydrogen bonding is not necessary for high-fidelity replication of a base pair in vivo. The results suggest that recognition of DNA base shape alone serves as the most powerful determinant of fidelity during transfer of genetic information in a living organism. PMID:12676985

  1. Structural Properties of G,T-Parallel Duplexes

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2010-01-01

    Full Text Available The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.

  2. A PAT approach for the on-line monitoring of pharmaceutical co-crystals formation with near infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Ribeiro, Paulo R S; Santos, Adenilson O; Silva, Marta C D; Lopes, João A

    2014-08-25

    Cocrystals represent a class of crystalline solids consisting of two or more molecular species usually held together by non-covalent bonds. Pharmaceutical cocrystals can alter the physicochemical properties of the active pharmaceutical ingredient to improve solubility, dissolution rate, particle properties and stability. This work presents a process analytical technology (PAT) approach to monitor on-line the cocrystallization of furosemide and adenine by solvent evaporation using near infrared spectroscopy (NIRS). Furosemide and adenine were added to a small volume of methanol in a beaker and stirred on an orbital stirring table during 8h at room temperature. The on-line monitoring was performed with a FT-NIR spectrometer fitted with a reflectance fiber optic probe. Monitoring was performed with the probe tip placed 1cm above the cocrystallization medium to avoid interference with the cocrystallization process. Cocrystals were vacuum dried to remove residual solvent and characterized off-line by NIRS, MIRS, DSC and XRPD. Results demonstrate that it was possible to follow the main cocrystallization events on-line. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis of puric bases labelled with carbon 14 and nitrogen 15

    International Nuclear Information System (INIS)

    Lamorre, Yves

    1975-01-01

    In this report for graduation in organic chemistry engineering, the author reports the synthesis of adenine 14 C-2 et 14 C-6 by two different chemical ways from two derivatives of imidazole. He has used adenine 14 C-6 to obtain hypoxanthine 14 C-6, and then, by enzymatic processing, uric acid 14 C-6. He reports the study of the production of guanine 14 C-2 by cyclization of silylated derivative of imidazole with the carbon 14 C sulphur. However, a method of complete synthesis of this same compound revealed to be more practical. This complete synthesis way allowed the labelling of guanine in positions 1, 2 and 3 by the 96 per cent isotopic nitrogen. Nitrogen in positions 7 and 9 could have been labelled by the same way from the ethyl cyanoacetate 15 N and from the sodium nitrite 15 N. The study of the mass spectrum of these compounds labelled with nitrogen 15 N allowed most of fragments obtained during this analysis to be identified [fr

  4. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.

    Science.gov (United States)

    Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng

    2017-12-01

    An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Diagnosis and epidemiology of red blood cell enzyme disorders

    Directory of Open Access Journals (Sweden)

    Richard Van Wijk

    2013-03-01

    Full Text Available The red blood cell possess an active metabolic machinery that provides the cell with energy to pump ions against electrochemical gradients, to maintain its shape, to keep hemoglobin iron in the reduced (ferrous form, and to maintain enzyme and hemoglobin sulfhydryl groups. The main source of metabolic energy comes from glucose. Glucose is metabolized through the glycolytic pathway and through the hexose monophosphate shunt. Glycolysis catabolizes glucose to pyruvate and lactate, which represent the end products of glucose metabolism in the erythrocyte. Adenosine diphosphate (ADP is phosphorylated to adenosine triphosphate (ATP, and nicotinamide adenine dinucleotide (NAD+ is reduced to NADH in glycolysis. 2,3- Bisphosphoglycerate, an important regulator of the oxygen affinity of hemoglobin, is generated during glycolysis by the Rapoport-Luebering shunt. The hexose monophosphate shunt oxidizes glucose-6-phosphate, reducing NADP+ to reduced nicotinamide adenine dinucleotide phosphate (NADPH. The red cell lacks the capacity for de novo purine synthesis but has a salvage pathway that permits synthesis of purine nucleotides from purine bases...

  6. A Simple Decision Rule for Recognition of Poly(A) Tail Signal Motifs in Human Genome

    KAUST Repository

    AbouEisha, Hassan M.

    2015-05-12

    Background is the numerous attempts were made to predict motifs in genomic sequences that correspond to poly (A) tail signals. Vast portion of this effort has been directed to a plethora of nonlinear classification methods. Even when such approaches yield good discriminant results, identifying dominant features of regulatory mechanisms nevertheless remains a challenge. In this work, we look at decision rules that may help identifying such features. Findings are we present a simple decision rule for classification of candidate poly (A) tail signal motifs in human genomic sequence obtained by evaluating features during the construction of gradient boosted trees. We found that values of a single feature based on the frequency of adenine in the genomic sequence surrounding candidate signal and the number of consecutive adenine molecules in a well-defined region immediately following the motif displays good discriminative potential in classification of poly (A) tail motifs for samples covered by the rule. Conclusions is the resulting simple rule can be used as an efficient filter in construction of more complex poly(A) tail motifs classification algorithms.

  7. Critical role of γ-phosphate in structural transition of Na,K-ATPase upon ATP binding

    Science.gov (United States)

    Petrushanko, Irina Yu.; Mitkevich, Vladimir A.; Anashkina, Anastasia A.; Klimanova, Elizaveta A.; Dergousova, Elena A.; Lopina, Olga D.; Makarov, Alexander A.

    2014-06-01

    Active transport of sodium and potassium ions by Na,K-ATPase is accompanied by the enzyme conformational transition between E1 and E2 states. ATP and ADP bind to Na,K-ATPase in the E1 conformation with similar affinity but the properties of enzyme in complexes with these nucleotides are different. We have studied thermodynamics of Na,K-ATPase binding with adenine nucleotides at different temperatures using isothermal titration calorimetry. Our data indicate that β-phosphate is involved in complex formation by increasing the affinity of adenine nucleotides to Na,K-ATPase by an order of magnitude, while γ-phosphate does not affect it. ATP binding to Na,K-ATPase in contrast to ADP binding generates a structural transition in the enzyme, which is consistent with the movement of a significant portion of the surface area to a solvent-protected state. We propose that ATP binding leads to convergence of the nucleotide-binding and phosphorylation domains transferring the enzyme from the ``E1-open'' to ``E1-closed'' conformation ready for phosphorylation.

  8. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    Science.gov (United States)

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. CHANGES IN ENDOGENOUS CYTOKININ CONCENTRATIONS IN CHLORELLA (CHLOROPHYCEAE) IN RELATION TO LIGHT AND THE CELL CYCLE

    Czech Academy of Sciences Publication Activity Database

    Stirk, W. A.; van Staden, J.; Novák, Ondřej; Doležal, Karel; Strnad, Miroslav; Dobrev, Petre; Sipos, G.; Oerdoeg, V.; Balint, P.

    2011-01-01

    Roč. 47, č. 2 (2011), s. 291-301 ISSN 0022-3646 R&D Projects: GA ČR GA301/08/1649; GA ČR GA206/09/1284 Institutional research plan: CEZ:AV0Z50380511 Keywords : cell cycle * Chlorella * cis-zeatin * cytokinins * N6-(2-isopentenyl)adenine Subject RIV: EF - Botanics Impact factor: 2.071, year: 2011

  10. An efficient plant regeneration protocol from petiole explants of ...

    African Journals Online (AJOL)

    The highest percentage of shoot buds induction (64.0%) was observed on MS medium supplemented with 0.52 mgL-1 TDZ with organic additives; adenine sulphate (50 mgL-1) + glutamine (100 mgL-1) + L-arginine (25 mgL-1) + citric acid (0.0025%) + ascorbic acid (0.005%). A maximum of six shoots per explant were ...

  11. Purine Bases in Blood Plasma of Patients with Chronic Pulmonary Diseases

    Directory of Open Access Journals (Sweden)

    Larissa E. Muravluyova

    2012-09-01

    Full Text Available The article is focused on the study of purine bases and intermediates of purine catabolism in plasma of patients with chronic obstructive bronchitis and idiopathic interstitial pneumonia. Decrease of adenine and hypoxantine in plasma of patients with idiopathic interstitial pneumonia was registered. Increase of guanine in plasma of patients with chronic obstructive pulmonary disease was established.

  12. Environ: E00137 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00137 Benincasa seed (JP17) Crude drug Oleic acid [CPD:C00712], Linoleic acid [CP...D:C01595], Adenine [CPD:C00147], Trigonelline [CPD:C01004], Linolenic acid [CPD:C06426 C06427] Benincasa cer...ifera [TAX:102210] Same as: D06767 Cucurbitaceae (cucumber family) Benincasa seed Major component: Trigonelline [CPD:C01004] ...

  13. Interaction of ADP, atractyloside, and gummiferin on the ADP translocase of the inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vignais, P V; Vignais, P M; Defaye, G; Lauquin, G; Doussiere, J; Chabert, J; Brandolin, G

    1972-05-01

    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). Two specific inhibitors of the adenine nucleotide translocation, gummiferin (GUM), identified to 4-carboxyatractyloside and atractyloside (ATR), were labeled with /sup 35/S and their binding properties to whole mitochondria and inner mitochondrial membrane vesicles used to monitor changes of membrane conformation induced by ADP. (auth)

  14. Restoring NAD(+) Levels with NAD(+) Intermediates, the Second Law of Thermodynamics and Aging Delay.

    Science.gov (United States)

    Poljsak, Borut; Milisav, Irina

    2018-04-26

    The hypothesis regarding the role of increased nicotinamide adenine dinucleotide (NAD+) levels with reference to the fundamental concepts of ageing and entropy is presented. Considering the second law of thermodynamics, NAD+ seems the appropriate candidate for reversing many aging-associated pathologies. NAD+ is presented as an essential compound that enables organisms to stay highly organized and well-maintained, with a lower entropy state.

  15. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    C/G. 2p13. 31805706. SRD5A2. C−2486459_10 rs9332975. C/T. 2p13. 31750417. SRD5A2. C−11160708_10 rs7594951. C/T. 2p13. 31791793. Chr., chromosome; C, cytosine; T, thymine; A, adenine; G, guanine. All the assays are commercially available at Applied Biosystems, except *Custom assays. Journal of Genetics ...

  16. Study of Adenine and Guanine Oxidation Mechanism by Surface-Enhanced Raman Spectroelectrochemistry

    Czech Academy of Sciences Publication Activity Database

    Ibanez, D.; Santidrian, Ana; Heras, A.; Kalbáč, Martin; Colina, A.

    2015-01-01

    Roč. 119, č. 15 (2015), s. 8191-8198 ISSN 1932-7447 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : nucleic- acid bases * electrochemical oxidation * silver electrode Subject RIV: CG - Electrochemistry Impact factor: 4.509, year: 2015

  17. Prevention of injury by resveratrol in a rat model of adenine-induced ...

    African Journals Online (AJOL)

    administration were analyzed using an auto-analyzer. Results: Resveratrol treatment significantly inhibited ... administration in a rat model of CKD by inhibiting FGF-23, parathyroid hormone, and phosphate. Thus, resveratrol may be of therapeutic ... FGF-23 also inhibits the generation of vitamin D and maintains the balance ...

  18. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.

    Science.gov (United States)

    Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi

    2018-01-20

    Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.

  19. Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals

    Science.gov (United States)

    Tan, Rongri; Liu, Huixuan; Xun, Damao; Zong, Wenjun

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11564015 and 61404062), the Research Fund for the Doctoral Program of China (Grant No. 3000990110), and the Fund for Distinguished Young Scholars of Jiangxi Science & Technology Normal University (Grant Nos. 2015QNBJRC002 and 2016QNBJRC006).

  20. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available The reduced nicotinamide adenine dinucleotide phosphate (NADPH is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH, a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC, malic enzyme (ME, malate dehydrogenase (MDH, malate synthase (MS, and isocitrate lyase (ICL that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK and the upregulation of pyruvate kinase (PK ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.

  1. The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging.

    Science.gov (United States)

    Stebbings, Kevin A; Choi, Hyun W; Ravindra, Aditya; Llano, Daniel Adolfo

    2016-06-01

    The relationships between oxidative stress in the hippocampus and other aging-related changes such as hearing loss, cortical thinning, or changes in body weight are not yet known. We measured the redox ratio in a number of neural structures in brain slices taken from young and aged mice. Hearing thresholds, body weight, and cortical thickness were also measured. We found striking aging-related increases in the redox ratio that were isolated to the stratum pyramidale, while such changes were not observed in thalamus or cortex. These changes were driven primarily by changes in flavin adenine dinucleotide, not nicotinamide adenine dinucleotide hydride. Multiple regression analysis suggested that neither hearing threshold nor cortical thickness independently contributed to this change in hippocampal redox ratio. However, body weight did independently contribute to predicted changes in hippocampal redox ratio. These data suggest that aging-related changes in hippocampal redox ratio are not a general reflection of overall brain oxidative state but are highly localized, while still being related to at least one marker of late aging, weight loss at the end of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Free radical formation in single crystals of 9-methyladenine X-irradiated at 10 K. An electron paramagnetic resonance and electron nuclear double resonance study

    International Nuclear Information System (INIS)

    Hole, E.O.; Sagstuen, E.; Nelson, W.H.

    1995-01-01

    Single crystals of 9-methyladenine were X-irradiated at 10 K and at 65 K and were studied using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques in the temperature range 10 K to 290 K. Three major radicals are stabilized in 9-methyladenine at 10 K. These are: MA1, the adenine anion, probably protonated at N3; MA2, the species formed by net hydrogen abstraction from the 9-methyl group; and MA3, the radical formed by net hydrogen addition to C8 of the adenine moiety. Radical MA1 decayed at about 80 K, possibly into the C2 H adduct (MA4). The other two species (MA2, MA3) were stable at room temperature. A fifth radical species was clearly present in the EPR spectra at 10 K but was not detectable by ENDOR. This species, which decayed above 200 K (possibly into MA3), remains unidentified. The radical population at room temperature is as described by previous authors. The mechanisms for radical formation in 9-methyladenine are discussed in light of the hydrogen bonding scheme and molecular stacking interactions. 32 refs., 4 figs., 2 tabs

  3. Electrocatalytic oxidation behavior of NADH at Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Hoseini, S. Jafar [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of); Azadpour, Mitra [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Heidari, Vahid; Bahrami, Mehrangiz; Maddahfar, Mahnaz [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of)

    2016-10-01

    We have developed Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon (Pt/Fe{sub 3}O{sub 4}/RGO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Characterization of as-made composite was determined using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and energy-dispersive analysis of X-ray (EDAX) where the Pt, Fe, Si, O and C elements were observed. The Pt/Fe{sub 3}O{sub 4}/RGO/GC electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect between Pt, Fe{sub 3}O{sub 4} and RGO, the nanohybrid exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation in 0.1 M phosphate buffer solution, pH 7.0, with a low detection limit of 5 nM. - Highlights: • Preparation of a novel electrochemical sensing platform system • Excellent performance of Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids • Dihydronicotinamide adenine dinucleotide oxidation with a low detection limit of 5 nM.

  4. Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels

    International Nuclear Information System (INIS)

    Kleist-Retzow, Juergen-Christoph von; Hue-Tran Hornig-Do; Schauen, Matthias; Eckertz, Sabrina; Tuan Anh Duong Dinh; Stassen, Frank; Lottmann, Nadine; Bust, Maria; Galunska, Bistra; Wielckens, Klaus; Hein, Wolfgang; Beuth, Joseph; Braun, Jan-Matthias; Fischer, Juergen H.; Ganitkevich, Vladimir Y.; Maniura-Weber, Katharina; Wiesner, Rudolf J.

    2007-01-01

    Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca 2+ homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A > G and 3302A > G in tRNA Leu(UUR) , as well as Rho 0 cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP + ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases

  5. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    Science.gov (United States)

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    Science.gov (United States)

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  7. Nuclear Overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase

    International Nuclear Information System (INIS)

    Rosevear, P.R.; Powers, V.M.; Dowhan, D.; Mildvan, A.S.; Kenyon, G.L.

    1987-01-01

    Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (X = 78 +/- 10 0 ) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH 3 ) 4 ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides. Distance geometry calculations also suggest that upper limit distances, when low enough (≤ 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker

  8. Study of the interaction of multiply charged ions and complex systems of biological interest: effects of the molecular environment

    International Nuclear Information System (INIS)

    Capron, Michael

    2011-01-01

    This PhD thesis describes the experimental study of the interaction between slow multiply charged ions (tens of keV) and molecular systems of biological interest (amino acids and nucleobases). It is the aim to identify and to better understand the effect of a molecular environment on different collision induced phenomena. To do so, the time of flight spectra of cationic products emerging from collisions with isolated molecules as well as clusters are compared. It is shown that the molecular environment protects the molecule as it allows to distribute the transferred energies and charges over the whole system (global decrease of the fragmentation and quenching of some fragmentation channels). Furthermore, in the case of adenine clusters, the molecular environment weakens some intramolecular bonds. Moreover, products of chemical reactions are observed concerning proton transfer processes in hydrated cluster of adenine and the formation of peptides bonds between beta-alanine molecules in a cluster. The latter finding is studied as a function of the cluster size and type of the projectile. Some criteria for peptide bond formation, such as flexibility and geometry of the molecule, are investigated for different amino acids. (author)

  9. Anhydrous crystals of DNA bases are wide gap semiconductors.

    Science.gov (United States)

    Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L

    2011-05-07

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  10. Gas chromatographic determination of purines and pyrimidines from DNA using ethyl chloroformate as derivatizing reagent

    International Nuclear Information System (INIS)

    Brohi, R.O.Z.; Khuhawar, M.Y.; Laghari, A.J.; Channa, A.

    2016-01-01

    An analytical method has been proposed for the separation and determination of guanine, adenine, cytosine, thymine and uracil by gas chromatography (GC) following precolumn derivatization using ethyl chloroformate. The GC separation was achieved from HP-5 (30 m x 0.32 rnrn id) column with layer thickness 0.25 microm. The linear calibrations were observed within 0.5-50.0 micro mole/L for each of the compound and limits of detection were within 0.1-0.17 micro mol/L. The derivatization, separation and quantitation was repeatable with intra (n=5) and inter (n=5) variation in terms of peak height/peak area and retention time with relative standard deviation (RSD) within 4.70-6.43%. The method was applied for the analysis of isolated DNA from human blood and plant leaves after acid hydrolysis. The concentration of thymine, adenine, cytosine and guanine in blood samples were observed within 0.602-2.135 micro mol/L of each compounds with RSD 2.60- 6.00%. The recovery of the nucleobases by standard addition was calculated within 98-108% with RSD 2.5-7.8%. (author)

  11. Gas Chromatographic Determination of Purines and Pyrimidines from DNA Using Ethyl Chloroformate as Derivatizing Reagent

    Directory of Open Access Journals (Sweden)

    Rafi O. Zaman Brohi

    2016-06-01

    Full Text Available An analytical method has been proposed for the separation and determination of guanine, adenine, cytosine, thymine and uracil by gas chromatography (GC following precolumn derivatization using ethyl chloroformate. The GC separation was achieved from HP-5 (30 m × 0.32 mm id column with layer thickness 0.25 µm. The linear calibrations were observed within 0.5-50.0 µmol/L for each of the compound and limits of detection were within 0.1-0.17 µmol/L. The derivatization, separation and quantitation was repeatable with intra (n=5 and inter (n=5 variation in terms of peak height/peak area and retention time with relative standard deviation (RSD within 4.70-6.43%. The method was applied for the analysis of isolated DNA from human blood and plant leaves after acid hydrolysis. The concentration of thymine, adenine, cytosine and guanine in blood samples were observed within 0.602-2.135 µmol/L of each compounds with RSD 2.60-6.00%. The recovery of the nucleobases by standard addition was calculated within 98-108% with RSD 2.5-7.8%.

  12. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.

    Science.gov (United States)

    Laskoski, Kerly; Santos, Adrian R S; Bonatto, Ana C; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2016-05-01

    Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.

  13. Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease.

    Science.gov (United States)

    Pocernich, Chava B; Butterfield, D Allan

    2003-01-01

    In Alzheimer's disease (AD) brain increased lipid peroxidation and decreased energy utilization are found. Mitochondria membranes contain a significant amount of arachidonic and linoleic acids, precursors of lipid peroxidation products, 4-hydroxynonenal (HNE) and 2-propen-1-al (acrolein), that are extremely reactive. Both alkenals are increased in AD brain. In this study, we examined the effects of nanomolar levels of acrolein on the activities of pyruvate dehydrogenase (PDH) and Alpha-ketoglutarate dehydrogenase (KGDH), both reduced nicotinamide adenine dinucleotide (NADH)-linked mitochondrial enzymes. Acrolein decreased PDH and KGDH activities significantly in a dose-dependent manner. Using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS), acrolein was found to bind lipoic acid, a component in both the PDH and KGDH complexes, most likely explaining the loss of enzyme activity. Acrolein also interacted with oxidized nicotinamide adenine dinucleotide (NAD(+)) in such a way as to decrease the production of NADH. Acrolein, which is increased in AD brain, may be partially responsible for the dysfunction of mitochondria and loss of energy found in AD brain by inhibition of PDH and KGDH activities, potentially contributing to the neurodegeneration in this disorder.

  14. Deproteinization is Necessary for the Accurate Determination of Ammonia Levels by Glutamate Dehydrogenase Assay in Blood Plasma From Subjects With Liver Injury.

    Science.gov (United States)

    Vodenicarovova, Melita; Skalska, Hana; Holecek, Milan

    2017-11-08

    To determine the effect of presence of high concentrations of nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes on the accuracy of glutamate dehydrogenase (GLDH) assay for ammonia. We measured ammonia concentrations using GLDH and NADH or NADPH in blood-plasma specimens and specimens deproteinized by sulfosalicylic acid from CCl4-treated or control rats. The nonspecific oxidation of NADH and NADPH was measured in mixtures without GLDH. We observed a gradual decrease (~0.5%) in absorbance in the plasma of controls after the addition of NADH but not after adding NADPH. The decrease in absorbance in plasma of CCl4-treated animals was 13.2% and 5.2% after the addition of NADH and NADPH, respectively. The decrease in absorbance was not detected in deproteinized specimens. The values of ammonia concentration were higher in the plasma specimens compared with the deproteinized ones. Deproteinization is necessary for accurate measurement of ammonia using GLDH assay in the blood plasma of subjects with liver injury. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Effects of irradiation on red cells stored in CPDA-1 and CPD-ADSOL (AS-1)

    International Nuclear Information System (INIS)

    Jeter, E.K.; Gadsden, R.H.; Cate, J.

    1991-01-01

    Red blood cells (pRBC) collected in citrate, phosphate, dextrose, adenine-formula 1 (CPDA-1) and citrate, phosphate, dextrose-adenine, manitol saline solution (CPD-ADSOL [AS-1]) anticoagulants are increasingly being stored for variable periods in transfusion service inventories following irradiation. While anecdotal reports of increased K+ following irradiation and storage have recently appeared in the literature, concomitant in vitro biochemical changes resulting from differences in anticoagulants have not been reported. Utilizing two venipunctures, two units each of 225 mL of blood from five volunteers were collected in anticoagulant-adjusted CPDA-1 and AS-1 bags. Within two hours of collection, each unit was equally divided. One of each pair was irradiated (2000 rads). Samples were analyzed on Days 0, 1, 3, 7, and every seven days to expiration. Irradiation resulted in a 2.3 fold increase in K+ during the first seven days of storage for both anticoagulants, although significantly greater K+ levels were observed in the CPDA-1 pairs compared to the AS-1 pairs. Comparison of glucose utilization, plasma free hemoglobin, 2,3-diphosphoglycerate (2,3-DPG) and lactate dehydrogenase between control and irradiated CPDA-1 and AS-1 pairs and between anticoagulants were documented

  16. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    Science.gov (United States)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  17. Computational analyses and annotations of the Arabidopsis peroxidasegene family

    DEFF Research Database (Denmark)

    Østergaard, Lars; Pedersen, Anders Gorm; Jespersen, Hans M.

    1998-01-01

    Classical heme-containing plant peroxidases have been ascribed a wide variety of functional roles related to development, defense, lignification and hormonal signaling. More than 40 peroxidase genes are now known in Arabidopsis thaliana for which functional association is complicated by a general...... containing 40-71% adenine, a rare feature observed also in cDNAs which predominantly encode stress-induced proteins, and which may indicate translational regulation....

  18. Yield of DNA strand breaks and their relationship to DNA polymerase I-dependent repair synthesis and ligation following x-ray exposure of toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1981-01-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is observed. This is an exaggerated repair synthesis which can be abruptly terminated by the addition of the DNA ligase cofactor, nicotinamide adenine dinucleotide. This communication describes experiments which bear on the relationship between measurable strand breaks, DNA polymerase I-directed, exaggerated repair synthesis, and strand-break repair

  19. Interaction of Microbial and Abiotic Processes in Soil Leading to the (Bio)Conversion and Ultimate Attenuation of New Insensitive Munitions Compounds

    Science.gov (United States)

    2016-12-30

    adenine dinucleotide (phosphate) NC Camp Butner soil (alternative abbreviation, soil is from North Carolina) NCBI National Center for Biotechnology ...knowledge and perspectives of bioelimination of xenobiotic compounds. Journal of Biotechnology 51, 287-295, doi:http://dx.doi.org/10.1016/S0168...McKenzie, R. M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine 38, 493-502

  20. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    Science.gov (United States)

    2010-03-01

    that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research...ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross

  1. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Jabůrek, Martin; Zelenka, Jaroslav; Ježek, Petr

    2010-01-01

    Roč. 59, č. 5 (2010), s. 737-747 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA303/07/0105; GA MŠk ME09018; GA AV ČR(CZ) KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : Heart mitochondrial phospholipase A2 * Fatty Acids * Adenine nucleotide translocase Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  2. Role of Klotho in Osteoporosis and Renal Osteodystrophy

    Science.gov (United States)

    2015-10-01

    It is well documented that PTH is catabolic in cortical bone and anabolic in trabecular bone, so it is no surprise that adenine fed mice with...Kaludjerovic serves as an ambassador for the European Young Endocrine Scientists Society. In this role she is integrally involved in communicating...the opinions, suggestions and expectations of young scientists to European Society of Endocrinology, strategic planning of scientific meetings and

  3. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.

    Science.gov (United States)

    Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing

    2010-05-04

    High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding

  4. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  5. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    Science.gov (United States)

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural

  6. Target Site Recognition by a Diversity-Generating Retroelement

    OpenAIRE

    Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.

    2011-01-01

    Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype...

  7. [Studies on the chemical constituents of Portulaca oleracea].

    Science.gov (United States)

    Liu, Ce-jia; Liu, Dian-yu; Xiang, Lan; Zhou, Wen; Shao, Ning-ning

    2009-11-01

    To study the chemical constituents of Portulaca oleracea. The constituents were isolated by column chromatography and identified on the basis of physicochemical and spectral data. Five compounds were isolated from 70% ethanol extract of this plant and their structures were elucidated as cyclo (Phe-Ile) (1), cycle (Tyr-Ala) (2), adenine (3), friedelin (4) and isoselachoceric acid (5). Compounds 1-5 are isolated from Portulaca oleracea for the first time.

  8. Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration

    OpenAIRE

    Won, Seok Joon; Jang, Bong Geom; Yoo, Byung Hoon; Sohn, Min; Lee, Min Woo; Choi, Bo Young; Kim, Jin Hee; Song, Hong Ki; Suh, Sang Won

    2012-01-01

    Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD+...

  9. The change of intracellular NAD level at the process of fusarium sambucinum growth and development

    International Nuclear Information System (INIS)

    Gulyamova, T.G.; Ehshtukhtarova, M.Kh.; Umarova, G.D.; Kerbalaeva, A.M.; Khalmuradov, A.G.

    1996-01-01

    Alterations of intracellular NAD(Nicotinamide-Adenine Dinucleotide) level have been studied in the process of growth and development of Fusanium sambucinum, selected earlier as a potential NAD producer. It was established that essential fluctuations of NAD concentration are dependent on growth phase, morphological cell type and DNA biosynthesis, that allowed to propose a real linkage between coenzyme pool and replicative activity of cells. (author). 7 refs., 2 figs

  10. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  11. New Inosine and Guanosine Analogs as Inhibitors of Parasitic Infections.

    Science.gov (United States)

    1985-11-30

    infections. Although chloroquine (CQ) is generally considered to be one of the most fascinating, useful and versatile drugs developed during the modern...ribonucleosides are of particular interest since these nucleosides may be looked upon as aza- analogues of formycin B. The parent s-triazolo[3,4-f]-as...hexopyranosyl)adenine indicate slightly altered glycon. This type of nucleoside analogues could mimic either as ribonucleo- sides or as 2

  12. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of “Desulfomonile tiedjei”

    OpenAIRE

    DeWeerd, Kim A.; Suflita, Joseph M.

    1990-01-01

    We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, “Desulfomonile tiedjei.” We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c3, or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, C...

  13. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence

    Czech Academy of Sciences Publication Activity Database

    Kretová, M.; Šabová, L.; Hodný, Zdeněk; Bartek, Jiří; Kollárovič, G.; Nelson, B. D.; Hubáčková, Soňa; Luciaková, K.

    2014-01-01

    Roč. 26, č. 12 (2014), s. 2903-2911 ISSN 0898-6568 R&D Projects: GA ČR GA13-17658S; GA ČR GA13-17555S Grant - others:Slovak Grant Agency(SK) VEGA [2/0107/11] Institutional support: RVO:68378050 Keywords : Smad * Nuclear factor 1 * Senescence * Adenine nucleotide translocase-2 * Transforming growth factor-β * Oxidative stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.315, year: 2014

  14. One-step construction of an electrode modified with electrodeposited Au/SiO2 nanoparticles, and its application to the determination of NADH and ethanol

    International Nuclear Information System (INIS)

    Liu, X.; Li, B.; Wang, X.; Li, C.

    2010-01-01

    A new electrode was developed by one-step potentiostatic electrodeposition (at -2. 0 V for 20 s) of Au/SiO 2 nanoparticles on a glassy carbon electrode. The resulting electrode (nano-Au/SiO 2 /GCE) was characterized by scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) at the nano-Au/SiO 2 /GCE were thoroughly investigated. Compared to the unmodified electrode, the overpotential decreased by about 300 mV, and the current response significantly increased. These changes indicated that the modified electrode showed excellent catalytic activity in the oxidation of NADH. A linear relationship was obtained in the NADH concentration range from 1. 0 x 10 -6 to 1. 0 x 10 -4 mol L -1 . In addition, amperometric sensing of ethanol at the nano-Au/SiO 2 /GCE in combination with alcohol dehydrogenase and nicotinamide adenine dinucleotide was successfully demonstrated. A wide linear response was also found for ethanol in the range from 5. 0 x 10 -5 to 1. 0 x 10 -3 mol L -1 and 1. 0 x 10 -3 to 1. 0 x 10 -2 mol L -1 , respectively. The method was successfully applied to determine ethanol in beer and biological samples. (author)

  15. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  16. Occurrence and stability of lone pair–π stacking interactions between ribose and nucleobases in functional RNAs

    KAUST Repository

    Chawla, Mohit; Chermak, Edrisse; Zhang, Qingyun; Bujnicki, Janusz M.; Oliva, Romina; Cavallo, Luigi

    2017-01-01

    The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4′ atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose–base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair–π stacking interactions also occur between ribose and aromatic amino acids in RNA–protein complexes.

  17. Tributyltin interacts with mitochondria and induces cytochrome c release.

    Science.gov (United States)

    Nishikimi, A; Kira, Y; Kasahara, E; Sato, E F; Kanno, T; Utsumi, K; Inoue, M

    2001-01-01

    Although triorganotins are potent inducers of apoptosis in various cell types, the critical targets of these compounds and the mechanisms by which they lead to cell death remain to be elucidated. There are two major pathways by which apoptotic cell death occurs: one is triggered by a cytokine mediator and the other is by a mitochondrion-dependent mechanism. To elucidate the mechanism of triorganotin-induced apoptosis, we studied the effect of tributyltin on mitochondrial function. We found that moderately low doses of tributyltin decrease mitochondrial membrane potential and induce cytochrome c release by a mechanism inhibited by cyclosporine A and bongkrekic acid. Tributyltin-induced cytochrome c release is also prevented by dithiols such as dithiothreitol and 2,3-dimercaptopropanol but not by monothiols such as GSH, N-acetyl-L-cysteine, L-cysteine and 2-mercaptoethanol. Further studies with phenylarsine oxide agarose revealed that tributyltin interacts with the adenine nucleotide translocator, a functional constituent of the mitochondrial permeability transition pore, which is selectively inhibited by dithiothreitol. These results suggest that, at low doses, tributyltin interacts selectively with critical thiol residues in the adenine nucleotide translocator and opens the permeability transition pore, thereby decreasing membrane potential and releasing cytochrome c from mitochondria, a series of events consistent with established mechanistic models of apoptosis. PMID:11368793

  18. Purine Metabolism in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ye. V. Oreshnikov

    2008-01-01

    Full Text Available Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia.

  19. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  20. Measuring Inhibition and Cognitive Flexibility in Friedreich Ataxia.

    Science.gov (United States)

    Corben, Louise A; Klopper, Felicity; Stagnitti, Monique; Georgiou-Karistianis, Nellie; Bradshaw, John L; Rance, Gary; Delatycki, Martin B

    2017-08-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with subtle impact on cognition. Inhibitory processes and cognitive flexibility were examined in FRDA by assessing the ability to suppress a predictable verbal response. We administered the Hayling Sentence Completion Test (HSCT), the Trail Making Test, and the Stroop Test to 43 individuals with FRDA and 42 gender- and age-matched control participants. There were no significant group differences in performance on the Stroop or Trail Making Test whereas significant impairment in cognitive flexibility including the ability to predict and inhibit a pre-potent response as measured in the HSCT was evident in individuals with FRDA. These deficits did not correlate with clinical characteristics of FRDA (age of disease onset, disease duration, number of guanine-adenine-adenine repeats on the shorter or larger FXN allele, or Friedreich Ataxia Rating Scale score), suggesting that such impairment may not be related to the disease process in a straightforward way. The observed specific impairment of inhibition and predictive capacity in individuals with FRDA on the HSCT task, in the absence of impairment in associated executive functions, supports cerebellar dysfunction in conjunction with disturbance to cortico-thalamo-cerebellar connectivity, perhaps via inability to access frontal areas necessary for successful task completion.